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I. AN INTRODUCTORY OVERVIEW 

1.1. Opening Remarks 

Electron storage rings have now come of age. With the successful operation 

of Adone, ' experiments will now begin using colliding beams of electrons and 

positrons with energies of 1 GeV and beyond, expanding the area  of storage ring 

research which was begun a t  lower energies with the pioneering instruments at 

Stanford, Frascati,  Novosibirsk, and Orsay. Projects under way at  Novosibirsk, 

Cambridge, Hamburg, and Stanford will soon provide stored colliding beams of 

electrons a t  even higher energies. Larger  numbers of workers will be basing 

their research in particle physics ori these instruments. Many of the physicists 

who will be using storage rings will not have had a part  in their design and con- 

struction, and will not initially have a knowledge of their inner workings. The 

aim of this report is to provide for such physicists a review of the basic physical 

processes that determine the behavior of electron storage rings - with a particu- 

l a r  concern for their performance a s  instruments for research in particle physics. 

Because of this aim, the material is generally not presented in the form which 

might Be most convenient for 'those who will be interested in the design of storage 

rings. It is ,  rather, developed in a form intended to give the using physicist an 

understanding of the inherent properties of his instrument - especially those 

which wi l l  have an influence on his observations - and to give him some feeling 
' 

for  its basic limitations and its ultimate capabilities. 

In the res t  of this introduction I give a qualitative description of each of the 

basic phenomena that play a role in colliding beam storage rings, including a 

discussion of the factprs which determine the luminosity. This f i rs t  part  is intended 

to provide a background and a vocabulary for the appreciation of the other reportst  

which describe the operating experience with existing rings and the projects for 

new rings. In the remaining parts  I shall consider in detail the theory of those 

basic single particle processes which determine the ultimate limits on the per- 

formance of storage rings. A. discussion of the important collective effects, 

which have lead to many practical difficulties in high intensity rings, is  - not 

-- - 

'other "reports" mentioned here refer  to other contributions a t  the Varenna 
Summer School of 1969. 



included here, but will be found in the report of Pellegrini. At the end, I return 

to a discussion of the limitations on the performance of high energy storage rings, 

and apply the results to an illustrative example - the new Stanford design for a . 
2-3 GeV ring. 

1 .2 .  Basic Processes 

Let me begin with a brief qualitative description of the. basic processes which 

come into play in producing a stored electron beam. f (See Fig. 1. ) 

IPJ JECTION 

DESIGN ORBIT 

GUIDE FIELD 
ELEMENT 

1011.1 

FIG. 1--Schematic diagram of an electron storage ring. 

-- A short pulse of a beam of electrons is  injected into a vacuum chamber 

embedded in a more-or-less circular magnetic guide - field. The guide field leads 

the electroils around in more-or-less closed paths to make a -- stored beam. 
-- The guide field has focussing properties which drive all electrons toward 

an ideal design orbit and cause them to execute lateral (radial and vertical) beta- 

tron oscillations about the ideal closed path..tt 
- 3 - "  . . -- ---- . 

- - During each revolution an electron loses a small fraction of its energy 

by synchrotron radiation. For stored electrons this energy loss is  compensated 

'I shall always speak only of electrons, since positrons are, of course, just 
electrons with the opposite charge. 

 he design orbit is taken to lie in a horizontal plane. 



for  by a corresponding gain of energy from a radio frequency cavity ( o r  from 

several cavities acting in concert. ) 
- - The periodic accelerating field collects the electrons into circulating 

bunches,' within which the individual electrons oscillate in longitudinal position 

and in energy relative to an ideal reference particle at  the center of the bunch. 

The associated motions in longitudinal position and energy a r e  called the 

synchrotron oscillations. t 
-- The energy loss by synchrotron radiation together with the compensating 

energy gain from the rf cavity gives r i se  to a slow radiation damping of all  os- 

cillation amplitudes; the trajectory of each electron tends toward that of an ideal 

reference particle a t  the center of the bunch (which moves with constant speed 

along the design orbit. ) 
-- Radiation damping does not conserve phase density, so  it is possible to 

inject, successively, many pulses into the neighborhood of the same ideal orbit 

and obtain high circulating currents from weak sources - for example with 

positron beams. 
-- The damping of all oscillation amplitudes is effectively arres ted because 

of a continuous excitation of the oscillations by "noise" in the electron energy, 

which comes 'about from the fact that the synchrotron radiation is emitted in 

photons of discrete energy - the so-called quantum fluctuations of the energy loss. 
- - In stationary conditions a balance i s  reached between quantum excitation 

and radiation damping, leading to a statistically stationary distribution of the 

oscillation amplitudes and phases of the electrons in a bunch. The bunch then 

takes on the aspect of a traveling s t r ip  of ribbon which has a stationary "sizeff 

and with a Gaussian distribution of amplitudes in each of the transverse 

and longitudinal coordinates (see Fig. 2). (The shape of a bunch will be different 

a t  each azimuthal position because the focussing properties of the guide field varv 

f rom place to place, but in the stationary condition the bunch has the same shape 

a t  each successive t ra~lsversa l  of any chosen azimuth.) 

'often called flphasefl oscillations. I prefer a different term in order to avoid 
the confusion which results when one wishes to speak of the phase of the "phaseM 
oscillations. 
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FIG. 2--Circulating bunches in a stored beam. 

- - For each coordinate of an electron there is some maximum oscillation 

amplitude above which the electron no longer remains capturedin the bunch. We 

may refer  to the range of stable amplitude in each coordinate a t  its aperture. An 

electron is lost from a bunch when some disturbance increases the amplitude in 

any coordinate beyond the corresponding aperture limit. The aperture limit for 

each coordinate may be se t  by a physicai obstacle which intercepts the electrons, 

o r  by nonlinear effects in the focussing forces which lead to unbounded trajectories 

for  large displacements from the ideal reference electron. 
-- Electrons may be lost by sca1;tering or  energy loss in collisions with 

molecules of the residual gas in the vacuum chainber, o r  by a large statistical 

fluctuation in the quantum excitation of an oscillation'amplitude. 

* * 6 

The basic processes considered above a r e  the single-particle effects which 

a r e  primarily responsible for the intrinsic properties of a stored electron beam. 

Until now I have considered a bunch a s  a collection of noninteracting electrons 

each of which inoves as tliough. it  w e r e  d u n e  in the fitorago ring. Unfortunutcly, 

life is not so simple. 

'scattering on the residual gas can, in principle, also modify the shape (and 
increase the size) of the stored bunch. But with relativistic electrons and the 
low chamber pressures required for. long beam. lifctimcs this cffcct is' gcncrally 
negligible. 



1 . 3  Collective Effects 

When the number of electrons in a circulating bunch i s  large enough (typically, 
9 greater than 10 o r  so) interactions among the electrons of a bunch, or  among 

'bunches, become important - and have, in fact, been a serious problem in all 

electron storage rings. I turn now to a brief listing of the most significant - col- 

lective effects. 

-- The - AdA.- or Touschek-effect. Two electrons oscillating within a bunch 

may Coulomb scatter, transferring some of the oscillation energy of each electron 

from one coordinate to another. The new amplitudes in the second coordinate may 

lie outside the available aperture, or  may contribute to an increase of the bunch 

dimensions. The Touschek-effect is generally significant only at low energies - 
below 1 GeV or  so. 

-- Coherent oscillations. Each electron in a circulating bunch produces 

electromagnetic fields in the vacuum chamber which influence the motion of the 

other stored electrons. t Such collective interactions among the electrons can 

lead to unstable coherent oscillations, in which al l  of the electrons of a bunch 

oscillate in a collective mode whose amplitude grows exponentially with time. 

Such coherent oscillations may involve either the transverse or longitudinal 

motion of the electrons and can lead to a growth of the bunch size o r  to the loss 

of electrons from the bunch. 
- - Constructive interference of the radiation fields of electrons in a bunch 

may give ri.se to coherent synchrotron' radiation, which can increase the energy 

loss of individual electrons. (This effect is not believed to be significant in the 

storage rings now i.n, operation.. ) 
* * * 

To get the high current densities desired in electron storage rings it i s  

generally necessary that the coherent instabilities be suppressed o r  otherwise 

controlled. Then the remaining collective kffects (which a r e  essentially inco- 

herent) combine with the single particle effects discussed earl ier  in determining 

the bunch dimensions. (I  an1 a s su~~ i ing  that the strange bunch-lengthening effect 

observed in many storage rings - which is ,  a s  yet, not understood - will 

 he direct electromagnetic interaction between two electrons of a bunch decreases 
a s  the energy squared and is generally negligible for high energy storage rings. 



ultimately be explained in terms of one or  another of the processes already 

described. ) 

Once one has learned how to make a high current, stored beam, i t  remains 

only to prepare two of them and arrange that they collide. Except that, unfortu- 

nately, new complications then arise. 

1.4. Two-Beam Effects 

When two stored beams a r e  made to collide - by arranging things so that the 

orbits of the two beams intersect, and that bunches of each beam arrive simulta- 

neously a t  the intersection - the electron motions a r e  disturbed by two-beam 

cffcotc. 
- - When an electron of I3ea.m 1 passes thr61.1gh t.he intersection, it feels the 

strong electromagnetic. field set  up by Beam 2. This macroscopic field disturbs 

the single-particlk orbits of the electrons on .Beam 1, and a t  sufficiently large 

current densities, leads to what we may cah  a itsoftlt instability - one in which 

there is an incoherent growth of the transverse oscillation amplitudes and, there- 

fore, of the dimensions of Beam 1. It i s  this effect which.wil1, in general, set  

the ultimate limit on the rate of high ene'rgy interactions which can be achieved 

in electron storage rings. 
-- The forces between the two beams will couple the coherent oscillation 

modes of the two beams and can produce unstable modes in the two-beam system. 

Also these coherent oscillations must be suppressed if successful colliding beam 

operation 1s to be achieved. 
-- Close collisions between pairs of particles in the colliding beams can 

cause scattering o r  energy loss with a resultant loss of the particles Irom the 

bunch, or an increase of oscillation amplitude. Such effects are,  of course, 

welcome; they are ,  after all, the collision processes the storage rings have been 

constructed to produce! 

The trajectories of the stored beam can be arranged so that the counter- 

rotating beam collide head-on or at some small crossing angle. The magnitude 

of the crossing angle affects both the size of the zone of particle-particle collisions 

and the strength of the macroscopic beam-beam interactions; this angle plays, 

therefore, an important part in the performance of the storage ring. 



-1.5 Luminosity 

Given the energy of the particles in a storage ring, the next important param- 

e te r  is i ts  luminosity, which is defined a s  the counting rate of events for a process 

of unit cross  section. I shall complete this introduction with a brief discussion 

of the factors which determine the luminosity of a storage ring. The treatment 

is intended to serve a s  a basis for the following sections of this report, and also 

a s  a background for the other reports which discuss the experiences with operating 

rings o r  the designs of projected rings. Consider some particular process which 

can occur in the collisions of the particles in two colliding beams. (You may 

include, if you wish, in the definition of the "process, " the requirement that 

certain be detected in certain counters. ) Let (+ be the c ross  section, 

for  the process and R the rate of events of that kind which occur at a particular 

intersection region; then the luminosity 2' is defined by 

R =Lz (1- 1) 

(If the two beams collide at more than one place around the ring, the luminosity, 

a s  used here, will refer to the events at  only one of the intersections. ) 

Let's look now at  how the luminosity i s  related to the properties of the stored 

beams. Consider f i r s t  the simplest situation in which each beam contains only 

a single bunch and these bunches collide head-on a t  the intersection. (See Fig. 3.  ) 

l NTERACTION 
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FIG, 3--Head-on collision of two bunches. 
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The total'number of particles in the bunch may be different for the two beams - 
say N1 for  one beam and N, for  the other. Let's imagine for the moment that a 

a 

bunch is a ribbon-like object .with a transverse a rea  A, and that there i s  a uniform 

density of particles inside. (For  a rectangular transverse section the a rea  A' 

would be just the product of the width w ,and the height h. ) Let the bunches: cir- 

culate around the ring with a revolution frequency f. When a particle of Beam 1 

passes through the bunch of ~ e a m  2 the probability of.an event of unit cross  

section is N ~ / A  Since there a r e  N1 particles in Beam 1 and the bunches collide 

a t  the frequency f, the luminosity a t  the interaction region would be given by 

NlN2f ' 

g?=- 
A , (1.2) 

The model of a bunch I have just used is,  of course, over simplified. A s  

. described earl ier ,  we expect a bunch to have a Gaussian distribution of particle 

density in each coordinate - the transverse section of the "ribbonf1 i s  a fuzzy 

ellipse. Suppose we let  - w and - h stand fo r  the width and height of the horizontal: 

and vertical density distributions in a bunch, where by these dimensions I wish 

to refer  to twice the root-mean-square.spread of the . distributions. . We may then 

define the "area" of the bunch to be 

mvh A =  

This a r ca  may not, however, be used directly in Eq. (1 .2)  because the luminosity 

will be obtained from the overlap, integral of the two-dimensional density distri- 

butions d' the two bunches. This integral just contributes a factor of 1/4, so  we 

have,  f n r  rea.'l (Ga,l~ssia.n) hunches,  that  

with the area defined a s  in Eq. ' (1.3). .. - 
Next oonsider the effect of intersection at an angle. Suppose that the trajectories 

of the bunches intersect with a "verticalf1 crossing angle a s  indicated schematically 

in Fig. 4 .  Now when a particle of one beam transverses the bunch 01 the second 

beam, the mean transverse particle density it sees - and therefore, the probability 

of interaction - depends on the projected a rea  of the opposite bunch. One might 

a t  f i r s t  think that the a rea  A of Eq. (1.2) should simply be replaced by the static 

projectcd arca  which would be thc product of thc beam width w by an effective 



FIG. 4--Bunches colliding with a vertical crossing angle. 

projected height. Suppose that the vertical thickness of the ribbon is  much less 

than the projected height; then the latter would be just the product of the beam 

length Q and the crossing angle 26 .  However, the relative motion of the two bunches 

must be taken into account. When this i s  done, one finds that the proper projected 

height is one-half the product of the length and crossing angle, so  that for an " 

idealized ribbon-like beam we should in computing A of Eq. (1.2) take for the ef- 

fective height he, = Q B  . 
If we now take into account the Gaussian distribution of density of particles in 

the bunch in. all three dimensions (using Q to represent twice the rms  longitudinal 

sp read) ,  and also the fact that, in general, both the beam thickness and the crossing 

angle will contribute to the projected height seen a t  the interaction, then the 

luminosity is  correctly given by Eq. (1.4) also for a vertical crossing angle' if we 

use for the area  A, the effective projected area  

(vertical crossing) . 

with 

It i s  also possible to arrange the storage ring orbits so  that the beams will 

cross  with a "horizontal" crossing angle a s  shown schematically in Fig. 5. Again 

the luminosity i's given by Eq. (1.4) if for  the area  A one now uses the effective 

, projected area  

(horizontal crossing) 



FIG. 5--Bunches colliding.with a horizontal crossing angle. 

with. 
2  2 . 2 1 , / 2  

w = ( w  + P  b ) eff 

where 8 is now one-half,the horizontal angle between the two beam trajectories. 
. . 

Finally we should take into account that the circulating beams may contain 

many separate bunches. Suppose that each beam consists of B identical bunches 

arranged so that each bunch of one beam encounters a bunch of the other beam as  

it  transverses a specified region of intersection. See Fig. 6. Now let N, and N2 

be the - total number of electrons in each beam, so  that the number of electrons 

per bunch is N ~ / B  in one beam and N ~ / B  in the other. The contribution to the 
2 luminosity from each pair  of colliding bunches is then reduced by 1 / ~  , but there 

a r e  B such pairs contributing, so  the totai luminosity at one interaction region i s  

reduced only by the factor 1/B below that for single bunch beams. I choose to ..-- . 
include this effect by retaining .Eq. (1.4) for the luminosity and absorbing the 

factor B into the definition of an "effective.interaction area" of the intersection 

of the beams. 

A generalized luminosity formula may then be written a s  

with 
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FIG. 6--Beam collision geometries with several circulating bunches. 

where f o r  w eff and heff we a r e  to use either w and h, o r  one of the expressions in 

Eq. (1.6) or  Eq. (1.8) depending on whether there is a vertical o r  a horizontal 
. 

crossing angle. 

It i s  often convenient in the storage ring business to characterize the intensity 

of a stored bealii in terms of i t s  electric current rather than in terms of the number 

uf stored particles. The current I of a beam is defined a s  the mean rate at which 

electric charge passes any chosen point on the orbit. This current i s  rclated to 

N by 
I = Nef (1.11) 

with e thc electronic charge. In tern1s of the beam currents the luminosity becomes 

In what follows I shall find it  more convenient to continue to,use N, the number 

of stored particles, a s  a measure of the intensity of a stored beam, although from 

time-to-time referring to it loosely as the "beam current. " 



1.6. Beam Density Limitation 

Equation (1.9) would imply that the luminosity can be increased at will by 
increasing the number of particles in either o r  both beams. That the reality is 

otherwise was f i rs t  pointed out by Amman and Ritson. As the electrons of a 

beam traverse the interaction region their trajectories a r e  disturbed by the macro- 

scopic electromagnetic field generated by the collective action of the electrons of 

the other beam. When these disturbances reach a certain strength they influence 

in an essential way the properties of the stored beams. In particular, they cause 

a dramatic growth in the beam area  and corresponding decrease in the luminosity, 

which niore than cancels the effect 'of any further increase in the current. I shall 

consider this effect in detail later (Section 2.13); for now I shall take into account 

the effects of this beam-beam interaction by making the assertion that the fieffective 

transverse particle density" of a stored beam must be, a t  the interaction region, 

no largcr than a certain critical value. Specifically, the effective transverse 

particle density D in a bunch, defined a s  the ratio of the number of stored electrons 

N to the effective a r ea  A.eff (at the interaction region), must not exceed a critical 

value D . We must impose, then, the condition that 
C 

whcrc Dc is a number which is independent of the beam current, but  i s  given in 

terms of the basic ring parameters - ilicluding the beam energy. 

A pl~ysical justification if Eq. (1.13) must be deferred until later. (See 

Section 2.12. ) It may be useful for now, however, to report here a formula for 

D,. I must emphasize, though,that the formulation I shall give is correcd only for 

certain restrictions on the characteristics of the ring and its operation. Although 

most well-designed rings will satisfy these restrictions, the applicability of the 

formula should be confirmed for  any paAicular case. With these cautionary 

a.drnon.itjons I write t.h.a.t. 

where Avo is  the traditional notation for the "maximum linear tune shift" and 

stands for a number approximately equal to 0.0251 y i s  the beam'eriergy in units 

of the electron res t  energy, 'r is  tlie classical electron radius, and pV is the e 
usual notation for a certain function ("the vertical betatron functiontf which deskribes 



the focussing properties of the magnetic guide field) evaluated a t  the beam inter- 

section point. The function will be considered in detail in the next Par t ;  for now 

the number p may be crudely described as being proportional to the f'sensitivity" v 
of the electron trajectories to a transverse perturbation applied at  the intersection 

point - a small p indicating a smaller  effect for  a fixed perturbation. Since P v v 
is the only "freefr parameter in Eq. (1.14), you will appreciate why so much 

attention i s  devoted to i t  in discussions of the designs of colliding beam storage 

rings. 

1.7.  Maximum Luminosity 

The f i rs t  consequence of the intensity limitation just described is that the 

maximum luminosity will always be reached when both stored beams a r e  operated 

a.t the same maximum permissible current. (Requiring only that, a s  has been 

tacitly assumed until now, the two stored beams move in quite similar guide fields 

and so have the same a rea  at  the intersection.) Say that one beam has more cur- 

rent than the other, and that the numbers of electrons of the "stronger" and 

lfweakerff beams a r e  Ns and N respectively. The density limitation will thea 
W 

apply only to the strong beam; if i ts  current is a s  large a s  possible, we will have 

that 

and for the luminosity, using Eq. (1.9), that 

It is clear that the luminosity can always be increased by increasing N - until, 
W 

of course, i t  becomes as large as the number of electrons in the strong beam! 

The maximum luminosity will always be achieved when the transverse particle 

density ill each bean1 i s  a t  the limiting value. 

I shall, from now on, assume that a storage ring is always operated with the 

same number N of stored electrons in each of the two beams. The luminosity - 
formula, Eq. (1.9), should then be written: 

n 



And the maximum luminosity will be obtained when 

I would like now to consider briefly some of the ways in which the limit on the 

luminosity of any particular storage ring may arise. 

Case 1: The effective area of the beams at  the interaction is limited below I .  some maximum value A and there is available sufficient beam current 
max' 

I -to reach the critical particle density. 

In this case we may always fill the storage ring to the critical particle number 

N gi.veri hy 
C 

Nc = DcAint (1.19) 

and the maximum luminosity .will be 

f 2 9 = -  D A 
1 4 c max 

Notice that in Case 1 the maximum luminosity does not depend explicitly on the 

number of stored particles available, but is ,  rather, directly proportional to the 

maximum available beam area. This behavior i s  usually characteristic of low- 

energy storage rings (or  of high energy rings operated at  low energy), and describes 

the behavior of all presently operating rings. The form of Eq. (1.2 0) makes clear 

why other reports give particular emphasis to the problem of controlling the ef- 

fective area of stored beams. 

I should point out thAt in i~lterpreting Eq. (-1.20) you Sliot~ld be careful to take 

into account the following considerations. For a given ring with fixed focussing . . .  
properties and operated at a particular energy, Dc is  a fixed number. If the 

effective area is varied without changing the focussing properties of the ring, 

Eq. (1.19) shows properly the dependence of the luminosity on the area. However, 

in comparing two rings with different focussing properties, or  the same ring with dif- 

ferent focussing conditions, it may be that both Aint and Dc change together and 

the variation of the luminosity will then not be in direct proportion to the variation 

of Aint. Such complexities will be considered in some detail in a later section. 

I 
Case 2: The number of stored particles in the beams is limited (at a 

given energy) to some maximum value N 
max' and it is  possible to adjust 

the effective area s o  as  to reach the critical current density. 



In this case the stored beams a r e  filled to the intensity Nmax, and the effective 

interaction area  is adjusted to the value 

The maximum luminosity which can be achieved is then 

f 9' = - D  N 2 4 c max' 

It is proportional to the f i rs t  power of the beam intensity and to Dc, but does not 

depend explicitly on the beam area.  Case 2 generally applies to high energy 

storage rings operated in their upper energy range. Clearly, the highest possible 

currents a re  desired, and if the highest luminosity is to be achieved it is necessary 

always to control the area  to satisfy Eq. (1.21). 

Case 3: The particle number is  limited to some value No, the effective 

area  is limited above some minimum value A and their ratio i s  less 0' - 
than the critical density Dc. 

People generally try to avoid such circumstances in the design of a storage 

ring, but they may occur, for  example, a t  the very highest operating energies of 

some rings. Then the limit on the current density plays no role, and the maximum 

attainable luminosity is just 
9 

It varies a s  the square of the available current and inversely as  the minimum area.  

The dependence of the luminosity on the significant parameters of the rjqg - 
particularly on the energy - is quite different in the three cases considered above, 

and i s  one of the mainconcerns of the remaining parts  of this report. Before 

turning to such details, however, ' i t  will be'useful to review briefly the factors 

which may determine the effective area  of the beams a t  their intersection. ' 

1.8. Effective Interaction Area 

In Eq. (1.10) .the effective interaction area  was defined, a s  the product of the 

number of bunches - B, with the of the beam width and the height - 
apart from the factor ~ / 4 .  I wish'now to consider how these factors may be 

determined for a "givenr1 ring, by which I mean, here, . one operated at  a given 

energy and with all of the essential properties of the guide field held fixed. 



As remarked ear l ier  a stored bunch will, under stationary conditions, have 

a s ize  se t  by quantum effects in  the synchrotron radiation. In an ideal machine 

with a flat orbit such effects act  directly to produce random radial oscillations 

and determine a "natural" o r  intrinsic beam width - which depends only on the , 

electron energy and the fbcussing parameters. The width i s  typically abbut a 

millimeter. The direct quantum excitation of vertical oscillations is ,  on the other 

hand, very small, and i s ,  in a practical machine, generally dominated by the 

coupling of energy from the horizontal to the vertical .oscillations. Such coupling 
. . 

is due to the various smal l  imperfections in a real  storage.r.ing, and it is generally 

presumed that the beam height can only with difficulty be made less  than five to 

ten percent of the beam width. Often, coupling between radial and vertical oscil- 

lations may be intentionally augmented in order to increase the. beam height a s  

a way of increasing the beam area .  (Such augmented coupljng can be introduced 

by operating a ring so  that there is a resonance - o r  near resonance - between 

the horizontal and vertical betatron frequencies, o r  by introducing a special 

coupling element such a s  a skew quadrupole. ) The maximum area  is reached 

when the oscillations in the two coordinates a r e  effectively equal - resulting in 

a large increase in the beam height with only a. ama.1.l decrease i n  the be8m width - 
so  that the beam has a nearly circular cross  section. 

This technique has been used to increase the luminosity obtained from rings 

which fall in Case 1 of the preceding section - for example the ring A.CO at Orsay. 

Both the width  and the height of a lseann call, in prlnclple, be increaoed by the 

artificial excitation of the betatron oscillations, although attempts to do so in ACO 

have not lead to the expected increase of luminosity. The possibility deserves 

more study, because if incoherent oscillations could conveniently be excited one 

would be able to incrcase the beam a r ea  to the maximum value set  by the available 

aperture and obtain the largest possible luminosity for  rings operated at low 

cnergies (Case 1). 

With beam intersection at  an angle the crossing angle can be varied to obtain 

a desired effective beam area. With some rings, particularly with those in which 

'TO be precise I should say that the num,ber Dc may depend slightly on the form of 
the beam. It is generally independent of the beam dimensions for a ribbon-shaped 
beam but may change by a factor of 2. if the "beam section i s  made circular. See 
Section 2.13. 



both beams (one electron and one positron) a r e  stored in a common magnetic 

guide field - a s  in Adone - a continuous control of A may be obtained by a int 
c0,ntinuous variation of the vertical crossing angle at  the intersection. 

It is ,  finally, c lear  that the effective interaction area  can be adjusted by 

controlling By the number of circulating bunches. Generally a ring is equipped 

with a radio-frequency accelerating system whose operating frequency is at  some 

harmonic k of the rotation frequency f .  Then k is also the maximum number of 

bunches which can be stored. By selective filling of the available bunch positions, 

however, the number B of stored bunches can also be made any integer less  than 

k. So the range of possible values of B is 1 < B <  k. This opportunity for control- 

ling Aint may, however, be of limited use if the selective partial filling of the 

bunches so reduces the filling efficiency that i t  decreases the total beam current 

that can be achieved. It may, however, offer the best alternative for achieving 

the optimum luminosity in high energy storage rings. 

Let me close this section by emphasizing an essential feature of the beam 

intensity limitation. , The optimum luminosity condition depends on the geometrical 

parameters h, w, 6, and 'B only through a single number, the interaction area  

Aint . All methodst used to achieve a particular value of Aint a r e  equally valid - 
and there is no fundamental reason to prefer  one over the other. A wide flexibility 

i s ,  therefore, available in the design and operation of storage rings. It is hoped 

that the firmulation presented here will make clear how rings adopting different 

approaches a r e  to be compared. 

This completes the Overview I wished to give of the physics of electron 

storage rings. I turn in the next part to a detailed, quantitative discussion of some 

of the basic phenomena which I have been able to describe only qualitatively until 

now. 

'within certain wide limits. 



2.1.  Coordinates of the Motion 

Electrons a r e  held in a storage ring by the forces from the magnetic guide 

field. Magnets a r e  disposed along an -- ideal orbit which is generally a smooth, 

roughly circular o r  racetrack shaped, closed curve. When the magnet currents 

a r e  adjusted to any particular se t  of consistent values the designed fields a re  

intended to be such that an electron of a nominal energy Eo, once properly started, 

will move forever along the ideal orbit. All other stored electrons a r e  constrained 

by the guide field to move in quasi-periodic, stable trajectories in the neighbor- 

hood of the ideal orbit. ?? The nature of these stable trajectories is the subject 

of t h i ~  part.  The treatment will ,  however, be lirnjted to a sn--ral l~d linear ap- 

proximation and will be applied only to electrons of constant energy, ignoring 

the effects of the radiation loss and the accelerating fields. Such effects will be 

taken into account later  as perturbations of the idealized trajectories. 

Ln most rings the ideal orbit lies in a plane, and I shall limit the discussion 

to such cases;  although the extension to the more general cases is  relatively 

straightforward. The presentation will be simplified by presuming that the plane 

of the ideal orbit lies horizontal. 

It is convenient to describe the motion of an electron in terms of coordinates 

related to thc idcal orbit. The instantaneous position of an electron will be specified 

by ( s ,  x, z) where s is the distance along the ideal orbit from some arbilrary 

reference point to the point nearest the electron, and x and z a re  the horizontal 

and vertical distances from the ideal orbit. See Fig. 7 .  We may call s the 

azinluthal coordinate. The horizontal and vertical displaccments are ,  of course, 

the displacements locally perpendicular to ,the design orbit. The positive sense 

of s will be taken in the sense of the electron's motion, of x in the Ifoutward" 

direction, and of z in the lfupwardv direction. I shall often refer  to x a s  the radial 

coordinate. 

' ~ o s t  of the ideas presented in this part w i l l  be found - although often in a different 
form - in the now classic paper, "Theory of the Alternating; Gradient Synchrotron, " 
by Courant and snyder4 or  in the book, lfAccelerateurs Circulaires de Particules, " 
by Bruck. 

t t ~  shall use consistently, the following terminology: a "trajectoryf1 i s  % electron 
path; while an "orbitv i s  a particular trajectory which repeats itself on successive 
revolutions. 
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FIG. 7--Coordinates for describing the trajectories. 

The coordinates x and z will be considered a s  "small" quantities in the sense 

that they a r e  assumed to be always much less  than the local radius of curvature 

of the trajectory, and that in considering variations of the magnetic guide field in 

the vicinity of the ideal orbit, only linear terms in x and z need be retained. These 

conditions define the linear approximation of our treatment. 

Because the design orbit is a closed curve, the azimuthal coordinate s i s  cyclic. 

That is ,  a s  s increases indefinitely the location in space repeats itself, repeating 

each time that s increases by the circumference of the orbit. Let ts  'call this cir- 

cumference L - and refer to it as the &h of this design orbit. A physical 

location on the azimuth may be identified by s ,  or  by s + L,  or  by s + 2L, and 

so' on. It w i l l  from time to time be convenient to use in place of L an equal quantity 

~ T R ,  where R is a kind of "effective radius" of the design orbit'. It i s  common - 

though strictly improper - to speak of R a s  the flineanll radius of the ring. 

2.2. The Guide Field 

The guide field is taken to be static, s o  the motion of an electron i s  determined 

only by the magnetic field strength a t  each point of i t s  trajectory. As the ideal 

orbit has. been taken to be always horizontal, the field must be purely vertical 



everywhere on that orbit. I shall make here a further assumption: . . that the design 

magnetic field is ideally symmetric with respect to the plane of the' ideal orbit. 

Taking into account all of the assumptions s o  f a r  deliniated, the magnetic guide 

field may be characterized completely by giving just two quantities for each 

azimuthal position s ,  namely, Bo(s), the magnitude of the magnetic field on the 

ideal orbit, and (d~/d,x) the horizontal gradient of the field strength evaluated 
0s 

at the ideal orbit - that i s ,  a t  x = 0 - for  each azimuth. (Since the field i s  sym- 

metric with respect to the plane of the ideal orbit go and d%dx have only vertical 

components, and we need give only their magnitudes.) As already mentioned, the 

field Bo(s) produces the curvature of the ideal orbit; whereas the Iield gradient 

dB/& gives r i se  to the focussing forces responsible Ior the stable trajectories 

n w  r t.112 1, i ~ ~ . l ~ i l , .  

The two transverse components of the magnetic field acting on an electron at 

( s ,  x, z) may now be written as 

dB B ( s ,  x, z) = B0(s) + - 
Z . , 

B (s, x,. z) = 
X 

The last relation follows from Maxwell's equations, which give, for  fields with 

the symmetry imposed here, that q ~ ~ / d z  = BB,/~x. And the linear approximation 

has, clearly, been evoked to permit dropping of any terms in the higher derivatives 

of the fields. The field components above a.re to he used to obtain the Lorentz 

force in the equations of motion of the electron. 

Storage rings a r e  designed to operate over a range of electron energies. 

This is accomplished by arranging that all magnetic fields can be varied together - 
being scaled in proportion to the desired aperating energy. Clearly if the mag- 

netic field on the design orbit is changed everywhere by the same factor the 

design orbit will again be possible t r a j e c t ~ r y  of an e1ecl;rurl whose iniril~el~tul~l 

is changed by the same factor. Varying al l  fields together nierely changes the 

energy to be associated with the design orbit. For these reasons, it i s  convenient 

l;o specify the properties of.the guide field in a m'nnnncr which i s  independent of any 

selected operating energy, which i s  easily done by dividing all fields by a factor 

proportional to associated electron energy. I choose to define the (linear) 



properties of the guide field by the two functions 

where E p i s  the nominal energy, c i s  the speed of light, and e is  the electronic 0 
charge. 

Notice that these functions have a simple physical significance. We a r e  here 

interested only in highly relativistic electrons for which E = cp; so  G(s) i s  just 

the inverse of the radius of curvature ps of electron of the nominal energy at  

x =  0, z = 0. 

G(s) = l/ps (2.5) 

We may, then, call G(s) the curvature function. The function K (s) is the rate of 
1 

change of the inverse radius with radial displacement. 

The functions G(s) and Kl(s) may be fairly arbitrary,  but must satisfy a few 

important constraints. First ,  G(s) must be such that i t  does indeed define a 

closed orbit. (We may think that G defines the ideal orbit, o r  alternatively that 

some arbitrarily specified closed orbit defines G uniquely.) The change d 8  in 0 
the direction of the tangent to the ideal orbit in an azimuthal interval ds i s  

= - =  ds G(s) ds. 
O p s  

The angle swept out in one revolution must be 27r; so  G(s) must satisfy 

Second, both G(s) and K1(s) a r e  necessarily periodic functions of s ,  because the 

azimuthal coordinate s in physically cyclic - returning to the same point on the 

orbit after one revolution. We must have that 

where L is  the orbit length. Except for these constaints, G(s) and Kl(s) may have 

more o r  less arbitrary variations with s. 



Although the guide field functions G and K1 may, in principle, be quite general, 

i t  is often convenient to simplify the design or  the operation of a storage ring by 

imposing certain restrictions on them. For example, most electron storage rings 

a r e  designed to have the same orbit radius, say po, in all bending magnets - and 

with no bending a t  a l l  in the intervening "straight sectionsv of the orbit. Such a 

guide field is  called isomagnetic. The word is  perhaps slightly misleading. What '.. 
is  intended is that the magnetic field - on the design orbit has everywhere the same 

value except where i t  is zero. Then G(s.) i s  a dichotic function, taking on either 

the value G or  zero: 0 

= l / p o ,  magnets 
G(s) = 0, elsewhere (isomag). 

A - real  guide field cannot, of course, ever be ideally isomagnetic, since it is  

physically impossible to have a discontinuvus lllagnetic field. There must always 

be a transition zone at  the edge of a magnet, in which Lhe field goes fro111 zero to 

i ts  nominal value. The idealized isomagnetic approximation is, however, generally 

quite adequate for most purposes. 

Although accelerators and storage rings a r e  often built with bending magnets 

which have also radial gradients of the field, it is quite comllioll nowadays to 

design separated function guide fields in which the focussing functions and bending 

functions a r e  assigned to different magnetic elements. That is, the guide field 

consists of a sequence of flat bending magnets (with no gradient) and quadrupoles 

(with no field on the design orbit). I shall define a separated function guide field 

a s  one for which the functions G(s) . and . K (s), a r e  only separately different from 
I 

zero. So that we have the condition that 

G(s) I C ( S ) ~  = 0 (6ey funcl) . (2.10) 

One note of caution. It is sometimes convenient to design bending magnets 

whose pole faces a r e  rectangular. With such a magnet, the design orbit must 

enter o r  leave the magnet a t  other than a right angle to the pole edge, (See Fig. 8 . )  

Even if the magnet i s  "flatff (no radial gradient in the magnet) there will be radial 

gradients at  the edges, where the fleld is not z,,ero. Equation (2.10) is  not satisfied 

a t  the edges, and a guide field constructed of such rectangular magnets - together 

with quadrupoles - would not strictly satisfy my definition of "separated function, " 
although they a r e  often referred to a s  such., , - .  Such guide fields may however, still 

be isomagnetic. 
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FIG. 8--Guide field with a rectangular magnet. 

2 . 3 .  Equations of Motion 

I would like now to write the equations of motion of an electron that i s  moving 

on a trajectory near the design orbit, and with an energy near, but not necessarily 

at, the design energy. I shall describe the energy of the electron in terms of the 

. , . deviation 5 from the design energy Eo: 

E = E -  * E~ (2.11) 

In keeping with our linear approximation I shall keep terms only to first order in 

the usmall" quantities x, z, and &.   at her than using time a s  the independent 

variable it will be more convenient to use the azimuthal coordinate s. Derivatives 

with respect to s will be indicated by the "prime" ('); for example, xf = dx/ds. 

Let's begine with the radial motion. Think of an electron that i s  at  x and 

movlng with the slope xl. See Fig. 9. The slope x1 is  the angle between the 

direction of motion of the electron and the tangent to the design orbit. Suppose 



TRAJ 

FIG. 9--Electron trajectory near the design orbit. 

we call O0 the angle between the tangent and some arbitrary reference direction 

and 8 the angle made by the trajectory with I . , . Y  the same reference direction. Then 

The derivative of go is ,  we have seen, just -l/ps = -G(s). But what i s  dO/ds? 
, . 

The radius of \curvature of the trajectory -: is  : 

E 
, . 

p = -  
epB : (2.13) 
, .. . 

and in a path element dQ of the trajectory the change in a g l e  is  



Next, notice that so  long a s  the angle x t  is small  - a s  I shall always assumeT - 
a path element a of a trajectory at x  is related to the corresponding change in 

s by 

Next, we may write for  B - 

Putting these two into (2.14) - together with Eo + $ for E - and keeping only 

f i rs t  order terms,  we find that 

And so  we get from (2.12) that 

2 x t t =  - (G + K ~ ) X +  G(:/E~) 

The corresponding .equation for the vertical motion is easier  to derive; .you 

can easily see  that 

zn = K1z (2.18) 

Notice that with our linearized approximation, the motions in x  and z a r e  independent. 

For  our consideration of the electron trajectories, I would like to use the 

standard form: 

and 

 ore rigorously, x1 will turn out to be proportional to x with a proportionality 
factor which is of the order of p .  So long a s  we keep only terms to f i rs t  order 
in x/p, Eq. (2.15) follows. . , 



with the definitions : 

2 
Kx(s) =.-G (s) - K1(s) ; . . .. (2.2 1) 

K (s) = + K (s) z 1 (2.22) 

2' 
The te rm corresponding to G is missing from KZ because of our assumption that 

the design orbit l ies in a plane. 7 Storage rings a r e  most often "strong focussing. 
2 For  such rings G is generally much smaller  than K1, s o  that Kx and KZ a re  a p  

proximately equal and have oppbsite signS. 

The equation for  the motion in z looks like the equation of a classical oscil- 

lator (force proportional to displacement) with a variable "restoring-force" 

coefficient -- the function Ke(s).  The equation in x is similar except that it has, 

in addition, a varying "driving term1' which is proportional to the energy deviation 

6 .  In useful guide fields the solutions a r e  indeed oscillatory, and describe the 
4 

lateral  oscillations - including the so-called betatron oscillations - of the electron 

trajectories. These oscillations result from the focussing properties of the guide 

field which a re  characterized by focussing functions Kx and KZ. As we shall see 

later ,  the function G(s) enters a s  well in the e n e r a  focussing properties of the 

guide field. 

It is important to remember that a l l  of the focussing functions a r e  necessarily 

.periodic in s ,  the minimum.period being one revolution of the ideal otbit;  that i s ,  

fo r  both Kx and KZ ( a s  well as for G) 

where L is the length of the ideal orbit. For convenience in construction - as  

well a s  in design - storage rings generarly have also an inner periodicity. That 

i s ,  they a r e  made up,at least in part,  of sequences of identical magnetic -3 cells 

each cell consisting of a prescribed set  of magnets and quadrupoles. Then in a 

certain span of s ,  the focussing functions will satisfy 

c,(s+ll,) = G(s) 

' G~ is a centrifugal force term, and a corresponding term would appear in the 
z-motion if the orbit had hills and valleys. 



where PC is the cell length. Note, however, that while Eq. (2.23) is true for  
' the actual fields of a ring - since when s is increased by L, the electron returns 

to the same physical point in the ring - the cell periodicity i s  a design property 

and will not be strictly true for the actual fields (due to construction imperfections). 

It will be useful to have in mind some illustrative example of a guide field. 

Let's take the design of the proposed SLAC ring. In it, most of the ring would 

consist of a repetition of a standard cell, each of which occupies about 1/16 of a 

. full circle. I show in Fig. 10, the nature of the focussing functions over a part 

I I I 
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FIG. 10--Magnet lattice and focussing functions in the normal cells 
of a particular guide field. 

: of the ring, comprising two such cells. Pa r t  (a) of the figure shows the layout of 

bending magnets and quadrupoles. The bending magnets designated By have a 

uniform field (dB/& = 0); the quadrupoles have no field on the design orbit (Bo= 0) 

and a r e  designated F o r  D (for focussing o r  defocussing in the radial motion) 

depending on whether their gradients a r e  positive o r  negative. The other parts  of 

' the figure give the focussing functions G, Kx, and KZ. 

2.4. Separation of the Radial Motion 

It is conceptually convenient to separate the radial motion into two parts ,  

one part  being a displaced, closed curve, which is the equilibrium orbit for electrons 



of the displaced energy, and the other part  being the f ree  transverse oscillation 

about this orbit. Suppose we write for x 

then certainly Eq. (2 :19) i s  satisfied if - both of the. followilig equations a r e  true i 

We may make the decomposition unique by requiring that x,(s) be a single-valued 

function a t  each physical azimuth; that is ;  that x (s) be a function which is periodic 

in s with period L. It is then clear that x,(s) i s  a possible (and in fact, unique) 

closed orbit for an electron of energy E~ + 6 (with x = 0), and that the general 
P 

radial motion will consist of the sum of the displacement of this new eqkilibrium 

orbit and a free betatron oscillation x wliich satisfies Eq. (2.27). 
P 

The displacement xE  is proportional to the energy deviation 5.  Let's write 

Now q(s)  is the single-valued fwiction which satisfi.es 

= Kx(s)q + G(s). (2.29) 

And the total displacement f rom the ideal orbit can be written 

x = l ( s )  t xp (2.30) 
Eo 

I shall call q(s)  the off-energy function; it is a iinique pajrticular solution of 

Eq. (2.29) (because of the required periodicity). and is therefore, a function which 

characterizes the total gGde field. It will be studied in more detail later on. 

2.5.  Betatron Trajectories 

Equations (2.20) and (2.27) describe the f ree  vertical and radial betatron 

oscillations. With the approximations made, the motions in the two coordinates 

a r e  independent. Since the two eqtiations have the same matheinatical form - 
although the functions KZ(s) and Kx(s) bill generally be different - let's take as 

the representative form 



which is the same a s  Eq. (2.27) with the subscripts ,L3 and x suppressed. (With 

K(s) = Kx(s), Eq. (2.31) w i l l  describe the radial betatron oscillation of an electron 

of the nominal energy Eo ; and with z substituted for x and with K(s) = KZ(s) , it 
w i l l  describe the vertical motion.) 

The focussing function K(s) is a prescribed function - the storage ring design 

specifies i t s  value a t  each azimuthal position. Jf the position and slope (x and xl) 

of an  electron a r e  given for some azimuth, the subsequent motion is uniquely 

determined. It can in fact be determined by a direct numerical integration of 

Eq. (2.31). Generally, however, the guide field is constructed of magnetic seg- 

ments, in each of which K(s) may be taken a s  a constant so  that the integration can 

be made algebraically for each segment and the motion can be pieced together 

from such solutions. Depeliding on whether the value of K is positive, zero, o r  

negative in a particular segment of s ,  the motion in x will have one of the 

forms 

K > O :  x = a c o s  

where - a and - b a r e  constants in each segment - and may be determined f rom the 

values of x and xt  a t  the entrance to the segment. (Since K is everywhere finite, 

x and xt  must both be everywhere continuous - and,in particular, .at the boundary 

between the two segments.) 

As an, illustration suppose we donsider the motion for a K(s) like that shown 

for Kx(s) in Fig. 10. Two possible trajectories a r e  shown in (b) of Fig. 11. The 

f i rs t  one i s  a trajectory which s tar ts  a t  so with a unit displacement (x = 1) but 
0 

no slope (xb = 0) ; and the second s tar ts  a t  s with zero displacement but with a 0 
unit slope (xt = 1). Each of them is made up of pieces described by one of the 0 
functions in @. 32). There are ,  of course, an infinite number of possible trajectories, 

depending on the initial conditions a t  so; but the two shown a r e  of pa'rticular 

interest. The f i rs t  one i s  balled (for chosen so) the f7cosine-liket1 trajectory 

associated with s and is designated C(s, so); the other one is the "sine-likett 0 
trajectory S(s, so). 



FIG. 11--Focussing function K(s) and two trajectories: the cosine-like 
trajeclury arid the sine-like trajectory fo r  the starting azimuth so. 

The detailed form of C and of S will depend on the reference azimuth so; They 

a r e  in general, not periodic functions, even though K(s) is. For  a ring with stable 

trajectories, C and S a r e  bounded oscillatory functions which have a different shape 

on each successive revolution of the 'ring; although they a r e  wquasi-periodic!f in 

the sense that after some number of revolutions they will lie very close (o r  in 

some hypothetical cases  even exactly on) the trajectory of an 'earl ier  revolution. 

Now since Eq. (2.31.) is linear in x, any linear'combination of C and X will 
. .  . 

also describe a possible trajectbry; and more particularly, . . - all pos'sible trajectqries 

can be described by such a linear combination. That i s ,  for  any trajectory 

. . 

where C1 and St a r e  the derivations of C and S with respect . to . s ;  and pO and xb 

a r e  the value of x and x1 a t  so. 

It is often convenient to write the last  two equations in n matrix notation. 

Let 's let g(s) stand for the lfvectorlf whose components a r e  x(s) and xl(s); 



Then we may write that 

x(s) = Ws, so) z(so) rc 
(2.36) 

in which 3 is the transfer matrix' to  s from so,  which depends only on the properties 

of the.,guide field between the two azimuths. Its elements can be written in terms 

of the cosine-like and sine-like functions: 
r -. 

I C(s9 so) S(s, so) 
Z ( s ,  s ' )  0 = 

CYs, so) Sf(s ,  so) J 
The transfer matrix for any span of s can often be conveniently found in terms of 

the matrices for segments of the span, since for any sl between so and s ,  

The matrix for a segment wh,ich extends from sl to s2 = sl + Q with a constant K 

i s  given in Table I for the three cases ;  K < 0, K = 0, and K > 0. They may be 

derived from the equations in (2.32). 

The transfer matrix method is useful when designing a ring, o r  in looking . 
a t  special problems such a s  the initial trajectories at  injection. It does not, 

however, provide the most convenient description of the general nature of the 

trajectories of stored electrons. For  many purposes another method of describing 

the trajectories is more useful. It may be called the "pseudo-harmonic" 

description. 

TA.BLE I 

Transfer Matrices for  Segments of Constant K 

cos 
1 - sin TK Q 

K < 0: $(sZ, sl) = 
0 [ - G s i n  cos . I 

cosh FK Q sinh FKQ 
K > 0: $T(s2, sl) = 

F K  

f i s i n h  FKP cosh FKQ I 



'l'he general solutions of Eq. (2.31) can be written a s  

X(S) = a [(s) cos { $(s) - 91 (2.39) 

where [(s) and $(s) a r e  specially d.efined functions of s with certain convenient 

properties and a and 9. a r e  constants ("initial . . . .  . 'conditionsf1) which deterrri'ine a: 
. . 

particular trajectory. Specifically, if y e  define?? : 

so that 

1 $'p? = 3 3 (2.41) 
. . :.$ .' . .  

and if wo dofino C(E) to bo that positive yalued, analytic function which satisfies 
. . I .  , . 

then, as you can show by direct substitution, the x(s) o f ' ~ q .  (2.39) satisfies the 
. . 

differential equation (2.31). ' 

Following tradition, I shall choose generally .. , to deal rather than with [(s), . , .  
with i t s  square - which isuniversally . . written as p ( s ) .  With this translation 

Eq. (2 ; 39) gets replaced by 

X(S) =' a &%5 c?s {$(s) - $1 (2 .43)  

with . 

and 

so  that is the function defined by Eq. (2.42). 
j .  

Given the focussing function K(s) f o r  a. . ,  storage . >  ring, the function . . P(s) i s  

uniquely determined; i t  can therefore, serve as an alternate "representation'! of 

T ~ o t e  that S does - not refer  to the value of $(s) a t  s = 0 since $(O) = 0. 

"TO avoid confusion when writing indefinite integrals over s ,  I shall write the 
integration variable o r  Z. 



the focussing characteristics of the ring. Notice, however, that while K(s) i s  

given in terms of the local properties (at each s)  of the guide field, the function 

P(s) - or  ((s) - depends on the - total configuration of the ring. On the other hand 

once P(s) is known, K(s) can be immediately obtained from its  local derivatives 

, by Eqs. (2.42) and (2.45). But i t  is P(s) which reveals more directly the signifi- 

cant characteristics of the trajectories of stored electrons. 

It i s  possible to have guide fields that do not result in stable (that i s ,  bounded) 

trajectories. For such fields P(s) is not defined. But such fields can hardly be 

said to form a 7'storage" ring; so  we a r e  not interested in them here. Although 

they may be of interest to the storage ring designer - as  something to be avoided! 

I will return later  to a discussion of how P(s) is related to the guide field prop- 

ert ies;  but it  will be more useful to look f i rs t  at the qualities of the trajectories 

described by the pseudo-harmonic solutions described by Eq. (2.43). 

Don't forget that al l  of the discussion of this section applies equally to vertical 

as  well a s  to radial motion. A ring i s  therefore, described by the - two functions 

P x and ,O (or ( and lz) ,  which a r e  derived from the two focussing functions Kx 
Z X 

and KZ. It follows that the phase function @(s) is also different for motion in x 

and in z. 

2.6. Pseudo-Harmonic Betatron Oscillations 

We have seen that the betatron oscillations - in either x o r  z - a re  described 

by a pseudo-harmonic oscillation whose representative form i s  

X(S) = a f i c o s ( @  - 6) (2.46) 

where p is a given function of s ,  which we may call the betatron function, and a 

and 19 a re  constants of the particular trajectory. The two equations above 

describe completely the taken by the electron. To get a complete picture of 

the motion of the electron in the coordinate x we must only add the fact that the 

'YOU may be wondering why I have nbt adopted the imaginary exponential notation 
for representing the betatron oscillation. Such, a representation i s ,  of course, 
possible; but in the present instance the inconvenience seems generally to outweigh 
the convenience gained. 



electron travels always at the speed c of light. Fo r  many purposes i t  is adequate 

to take that the azimuth of the electron varies simply as , 
. ' 

s = s + ct  (approx) 0 (2.48) 
L 

You should remelhber, however, that this is only an approximation which neglects 

t e rms  that a r e  the order  of x/ps, where p is the radius of curvature of the design 
S 

orbit. The correction t e rms  to Eq. (2.48) will be looked a t  in Section 3.2. 

The betatron function describes completely the lateral focussing properties 

of the guide field. By i t s  nature the behtron function must be always positive- 

definite; it has a lfwave-likell character, and in a well-designed ring i t  will wander 

not too f a r  (say a fraction of an order-of-magnitude) from its mean value. It 

might typically look like the curve (a) in Fig. 12. The definition of P(s) constrains 

it to be periodic in s with the period L ;  

P(s + L)  = P(s). (2.49) 

It has a unique value a t  each physical azimuth. Tf the guide field has a higher 

rotational symmetry - being composed of two o r  more identical periods - P will 

have the same symmetry. A guide field which produces the P of Fig. 10(a) would 

have sixteen identical cells in its circumference. Note, however, that a local 

periodicity in the focussing functions G(s) and K(s) in only a part of the guide field 

will not, in general, give r i s e  to a corresponding local periodicity in P. It will 

do s o  only when the local periodicity is repeated al l  the way around the ring to 

produce a true rotational symmetry. 

As tho ~ l e o t r o n  travels around the ring it exeoutes a lateral osoillation whioh 

is not harmonic - nor periodic. The motion is a kind of distorted sine-wave with 

a varying amplitude (a#) which i s  modulated in proportion to the root of the beta- 

tron function, and with a "phaseu (@ - 9.) which advances with s a t  a varying rate 

proportional to I/@. The nature ofthemotion is illustrated in parts  (b) and (c) of 

Fig. 12. The two segments of trajectory shown correspond to the same 2, but to 

different starting phases. 

Suppose that we chose some initial - a and 3, and follow the trajectory for many 

successive revolutions. We would get a path such a s  the one shown in part (d) of 

Fig. 12, wherc, for  convcnicnce, I have superimposed dl of the successive revolu- 

tions on the same seginent of s. (Or, if you wish, since s is a cyclic variable, 1 

am plotting s(modu10 L) instead of s . )  The picture gives some idea of what we 

would see  if we watched a single stored electron circulating in a ring. 
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FIG. 12--(a) Betatron function. (b) Cosine-like trajectory for  s=O. 
(c) Sine-like trajectory fo r  SO. (d) ,One trajectory on 
several  successive revolutions. 



One important feature of the betatron motion is evident in Pig. 12(d) - at  

each physical azimuth the displacement x of a circulating electron lies always 

below a limiting extreme value X(s) obtained by setting cos ($I - 8 )  = 1; namely 
A 

~ ( s )  = am (2.50) 

The complete trajectory of a stored e l e ~ t r o n  will fall forever within an envelope 

defined by 5 X(s). And i t  follows that the , ., aperture required to contain an electron 

with a given oscillation amplitude v a r j ~ s  around ?;h? ring a s  X(s). The ratio of 

the envelope width a t  two locations sl $?d s2 is ,  of course, just 

At each physical azimuth a stored electfqn may generally be expected to pass 

frequently with a displacement near the maximum. 

Let 's look now at  the slope of the betatron -.. trajectory, x' = dx/ds. Taking the 

derivative of Eq. (2.46), we may write 
, 

The f i r s t  term comes from the changing phase; and the second from the variation 

of 8.  
Notice that the zeros of x1 - and therefore, the peak values of x - do . not . . . . ,. 

occur wliun uuu($ . 3) io 1, Ral;lror tlluy sro re;ral~ad w l ~ e n  

tan ($I - ,?) = P 1 / 2  

which means at 

If the peak of a particular cycle of an oscillation ... . a .. occurs a t  some s ,  the peak dis- . . -  

See. Fig. 13. 

JJI a classical harmonic bscillaei~rl the amplitude i s  an invariant: of the ruuliun. 

Its square is proportional to the energy of the oscillator, and can be expressed a s  

a quadratic function of the instantaneous position and velocity. The corresponding 

invariant of the pseudo-harmonic oscillator i s  the constant - a .  
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FIG. 13--The maximum of a particular cycle of a betatron oscillation. 

If we isolate the cosine and sine terms in Eqs. (2.46) and (2.52), square 
2 

them, and add, we can.relate a to x and xl. We find that 

If we know x and x' at  any azimuth, say sl,  - a can be found and all subsequent dis- 

placements can be expressed by 

The phase constant 19 must also be determined from x and xl .  It can be obtained 

from 

where = 4(s1). 

We are often interested only in the maximum value X(s) which can be reached 

a t  any physical azimuth on any subsequent revolution. This maximum is independent 

of 9. and i s  obtained by replacing the cosine factor of Eq. (2.57) by 1: 



If P were everywhere comparable - say not too far from some typical value 

P n - then the ensuing peak amplitude, which would result from a sudden lateral 

displacement 6x would be about equal to6x,  and theamplitude which would result 

from a sudden lateral impulse that changed the slope by 6x1 would be about pro- 

portional to pn6x1. Generally, we may expect that the amplitudes which result 

from disturbances to the trajectory.&ill be less the smaller is 6 .  Indeed, we may 

consider-that 1/P i s  a measure of the "strength" of the lateral focussing, and that 

small values of p a r e  generally desirable. More will'be said on this subject later. 

2 .  '1. ' lhe Betatron Number v 

As an electron makes one complete revolution of a storage ring starting at  

some azimuth, say s its oscil1ation.phase (@ - 8 )  advances by. 0' 

Because of the pkriodicity of P ,  this integral is  ---- the same for all so: i n 9  complete 

revolution the phase increases by the same amount. This phase advance is  an impor- 

tant parameter of a storage ring and i s  usually written a s  27rv (although in Europe 

often 2nQ); and v i s  called the betatron number. We have the definition 

(I shall m e  from now oii the complete integral symbol to inchate any inlegral § 
around the whole ring.) The betatron numbers for the two oscillation coordinates 

x and z - written a s  v and vz - a r e  generally different, being derived from the 
X 

two betatron functions px and pZ. Both vx and v a r e  typically not-too-large 

numbers near, but not at  a quarter integer - such as  2.78 or  5.15. Other ways 

of calculating v will be treated in Section 2.10. 

Although the betatron trajectory i s  a contorted aperiodic oscillation, if we sit 

a t  some particular azimuth and observe the successive passages of a stored electron 

we find that the displacement follow a simple sinusoidal law. Suppose we pick our 

observation point at  so,  and let the successive passages past this azimuth be 

identified by the index j = 0, 1, 2, 3, . . . Also let @ O  be the phase at the zero-th 
! 

passage. On each successive passage the phase will increase by 27rv; at  the j-th 

p a s s e e  the phase will be 

2nvj + @ 
0 '  



and the displacement will be 

x. = a 4 cos(2nvj + 40) 
J 

The "amplitudef1 factor ( a T o ) i s  a constant (Po = @(so)), so  the displacement, a s  

sampled each revolution, varies as the sampling of a simple sinusoidal oscillation. 

Since the time for each revolution is constant, t namely L/c, we may aLso 

write that the time t. of the j-th passage is 
3 

or  that 

where 

is the (angular) frequency of revolution of the electron. Then (2.61) becomes, ' ,  
. for any fixed s ,  

When observed at a particular azimuth the lateral motion is indistinguishable from 

a sampled simple harmonic oscillation a t  the frequency vw, - generally called the 

belatron frequency. 

Looking a t  Eq. (2.61) we can see  the justification for the statement of the 

preceding section that at each azimuth we may sooner-or-later expect to see x 

take on i t s  maximum value X(s) = a m .  Unless v is an integer, o r  better, 

unless the difference between v and an integer is a simple fraction - which is 

not likely to be exactly true for a real  storage ring - the phase (modulo 279 at  

successive passages of any fixed point will flwalkv through a large number of 

values between 0 and 27r before repeating itself. And the displacement will sooner- 

or-later t2.k.e on its peak value X at,  or  near,each azimuth. 
Perhaps the most important significance of the betatron number v of a storage 

ring is related to the existance of disturbing resonances which appear if v takes 

' ~ e ~ l e c t i n g  a small correction proportionalto x. 



on certain values. For example, if v were an integer, the betatron oscillation 

would ideally become kuite periodic - repeating itself each revolution. However, 

the smallest imperfection in the guide field (and there will surely be at  ieast one!) 

wi l l  act a s  a perturbation which is synchronous wit'h the oscillatidn frequency. A 

synchronous pertuibati6n leads to a resonance excitation of the oscillations and 

an exponential growth .of the amplitude.  here will be no stable oscillation. (Said 

in another way, the betatron function of the actual maohine,may not be defined. ) 

As we shall se& later, other resonances will occur also at half-integral values of 

v ;  or  if nonlinear effects a r e  taken into account when the difference between v and 

an integer. is aliy simple fraction. . . 

Resonances must, of course, be avoided in both the radial and vertical betatron 

oscillations. It turns out that resonances of some kind may occur when v and 
X 

11 satisfy 
Z 

mux + nv ' = r ,  z ' , (2.65) 

where m, n, and r a re  integers. Significant effects a re  generally observed only 

for  low-order resonances, that is ,  those for which m, n, r take on the'small values 

0, 1, 2, 3.  The operating point of a storage ring i s  specified by giving both v 
X 

and v and must be chosen to avoid the serious resonances. The resonance relation 
Z 

(2.65) defines a set of lines ina(vx, v ) diagram. Some of them a re  shown in 
z 

Pig. 14, where a possible operating point is also indicated. '  or one particular sel; 

FIG. 14--Lower order resonance lives on a vx, v, diagram. 



' of resonances, namely when vx is equal to vZ  o r  when their difference in integer, 

there will be strong coupling between the horizontal and vertical oscillations. At 

such a resonance our assumption of completely independent oscillations is no 

longer valid and the motion will be more complicated. Sometimes a storage ring 

may intentionally be operated on o r  near such a coupling resonance in order to 

increase the amplitude of vertical oscillations by feeding them energy from the 

radial oscillation. 

To stay clear of dangerous resonances i t  i s  necessary that the actual operating 

point remain fairly close to the chosen one - a s  is clear from Fig. 14. We may 

expect that magnet imperfections will generally cause shifts of v which a r e  pro- 

protional to v itself. A storage ring with a large betatron number i s  likely to be 

a lftouchyff machine. This is one of the reasons that designers tend to choose v 

values between about 2 and 6. 

2.8. A.n Approximate Description of Betatron Oscillations 

For  many purposes i t  is convenient - and sufficient - to approximate the 

betatron motion by a simple harmonic oscillation. Consider the oscillation 

x = A cos(s/X - 8 )  (2.66) 

'where i( is a constant (the "reduced wavelength"). One complete oscillation is 

completed while s advances by one wavelength 2T%. It is clearly convenient to 

think of the pseudo-harmonic oscillation of Eq. (2.46) a s  merely a "sineu-wave 

with a locally varying reduced wavelength - if we may ignore the amplitude vari- 

ation. And, s o  long a s  P doesn't vary too wildly, we might expect to have a 

rcasonablc approximation to the actual motion if we use the f o r n ~  sf  Eq. (2. G G )  

with a suitable choice for 5 .  Suppose we define the number pn to be that constant 

which would give the same phase change (2.47) in one revolution as does the actual 

p .  That is ,  we define pn by 

and call i t  the typical value of P. Then the oscillation - 
x = A cos(s/pn + 0) 

will - with A = - agree with the actual trajectory at  least , .  . once each revo- 

lution; and, in particular, will on the average stay in phase 'with the true oscillation. 



I show in Fig. 15 one of the trajectories of Fig. 12 together with the approximation 

obtained from Eq. (2.68); for many purposes the approximation is  quite adequate. t 
X 

FIG. 15--Approximation to the betatron trajectory. 

It i s  . , Convenient to remember that,, by (2.67), l/pn is just the average around 

the ring of l /p:  

Recalling the definition of from Eq. (2.60) we may also write 

People commonly define the gross radius R of a ring by 
,, . 

- 

'When using the approximation of Eq. (2.68), it becomes generally convenient to 
revert to the usual exponential representation of the cosine function. 



then pn is most simply defined by 

R p .= - 
n v (2.72) 

(Note that p is not equal to the average of P although it may not be much different n - 
if the undulations of P a r e  not too large. ) 

The time-variation of the approximate trajectory of Eq. (2.68) is  simply 

written as 

x = A cos (vw t - 13) r 

a s  follows by using (2.78) together with the definition of wr a s  C/R. The angular 

frequency vw is usually referred to a s  the "betatron frequency" and will be written r 

"P . Notice that when the approximate trajectory is observed only a s  it passes some 

one fixed azimuth, i ts  time variation is indistinguishable from the actual one - 
compare Eq. (2.64). 

The approximate description of this Section is not only entirely adequate for  

many calculations of storage ring effects, but indeed provides the only tractable 

approach for an analysis of some of the coherent effects which involve large numbers 

of stored electrons. 

2.9. Nature of the Betatron Function 

The storage-ring designer is very much occupied with finding a magnet design 

which will provide a suitable betatron function P(s). And a user may generally 

expect that along with the design of the ring will come a plot of that function. I do 

not wish here to go into the intricate matter of the techniques for  arriving at  a 

design which will yield a "good" P(s), but rather I would like only to give some idea 

a.hmit. how P(s)  may be evaluated fo r  a given se t  of magnet parameters. 

What is a desirable form for  P(s)? We have already seen at  the end of Section 

2.7 that a t  least in certain respects, small  values of P (strong focussing) a r e  

desirable - provided that P is reasonably uniform. Unfortunately, small  p ' s  can 

only be obtained with alternating gradient focussing which tends to give reasonably 

large undulations to p .  Also, smaller p's imply larger values of v, which may, 

as rema.rked in Section 2.8,  lead to greater  difficulties from resonances. One 

normally t r ies  to ar r ive  a t  a P whose typical value in most of the ring i s  some 

fraction (1/2 to 1/6) of the mean radius R, and which does not have too extreme 

an  undulation. 



In Section 2 . 6  the betatron function P ( s )  was defined a s  that single-valued 

continuous function whose square root '((s) satisfies 

where K(s) is  the magnet focussing function. The  typical modern storage ring i s  

made up of a chain of segments in each of which the function K(s) has a constant 

value, positive, negative, or  zero. An example was given in Fig. l l (a) ,  with the 
2 

corresponding P = 6 shown in Fig. 12(a). 
3 The requirement that [(s) be periodic, together with the nonlinear term I/[ , 

gives a unique specification - including the scale. The function [(s) 'is the "eigne- 

functionff of Eq. (2.'74) and because of the nonlinearity, there i s  no arbitrary 

normalization of the amplitude. 
- 1/4 From a dimensional argument we would expect that 6 should scale a s  (KI , 

or  that p should scale 1 ~ 1  -'I2. (Recalling that 1/p is like the fffrequencyff of an 

oscillator we might expect i t  to go a s  the root of the "restoring force constantff. ) 

For a given geometry of the field, such a scaling law i s  roughly true. It i s  in fact, 
- 1/2 strictly true if the scale length of the focussing geometry is  scaled as  )K( , as  

would generally be truc for a well-designed guide field. 

In a region of s where K(s) is a constant Eq. (2.74) has just the form of the 

one-dimensional equation of motion of a particle being acted on. by a linear "restoringu 
3 forcc K ( ;  and a "repulsive core" force I/( . O r  i f  yon prefer, of a particle which 

moves with a potential energy proportional to 

(The second tern1 i s  much 1ike.a "centrifugal barrier"!) The shape of the effective 

potential is  shvwll in Fig. 16 for I< > 0, K = 0, and K : 0. In any region where 

K F 0 the acceleration in f (the displacement of the model particle) is  always posj.- 

tive; and ( is  driven always toward larger values - or, of course, turned around 

if  it has an initial velocity toward the origin of 5 .  For positive K the driving force 

is, a t  large 3, proportional to the size of K. On the other hand, in any region 

where K < 0 there will be a nice stable potential well, and when 5 is large, there 

is always a ffforcelf driving i t  toward the origin. 



FIG. 16--Effective flpotentialll functions for 4. 

It is also qualitatively apparent that there may exist llstablell solutions for which 

[ ( q )  enters a region of K > 0 moving inward (toward the origin) and is turned around 

by the 'lrepulsionll only to be sent back inward again by the llattractivell force in a 

later region where K < 0. For a periodic K(s) like that in Fig. 17(a), we must 

FIG. 17--Form of the function [(s) with a periodic focussing function K(s). 

expect a solution .[(s) like the one sketched in part (b) . The solution exhibits an 

important general characteristic of the function E(s): its maxima occur in focussing 

sections - one where K < 0 - and its minima occur in defocussing or neutral 
9 

sections - where K L 0. 



It is also clear that, for a given spacing of the segments of different K values, 

if the magnitude of K is scaled upward, the amplitude of the undulations will grow 

rapidly larger. Less apparent - and left as  a point to ponder - is  the fact that 

as the scale of K is increased a situation will be eventually reached for which a 

llstablelt - i. e., periodic - solution no longer exists for ((s). So the strength of 

the focussing (magnitude of K) and the element spacing must be adjusted together 

in playing with a storage ring lattice (a word used to indicate the geometry of the 
,. " 

segments). 

You may be tempted to wonder: ' m y  not just have K < 0 a t  all s ?  Clearly 

the stability of [(s) is then guaranteed. 'l But don't forget that when K is negative 

for one coordinate of lateral motion in the storage ring - say x - then the K for 

the other coordinate - z - is positive, and vice versa. Recall Eqs. (2.21) and 

(2.22). The need for an alternating gradient is clear. 

It should also be now apparent that the undulations of [(s) - and so  also of 

P(s) - will be llout-of-phasell in the two coordinates x and z, the 5 for one being at  

its maximum where the [ for the other is at its minimum. 

The out -~f -~hase  behavior is quite general - even fdr rather complicated 

focussing lattices - although i t  will not generally be true that the lx(s) and Zz(s) 

a r e  entirely similar in shape. In Fig. 18 I show the two functions 5. and [ for 
X z 

the periodic lattice -of Fig. 10. 
' 

FIG. 18--The functions Cx and Cz for the guide field of Fig. 10. 
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It is instructive to relate the betatron function P(s) to the sine-like trajectories 

which were defined in Section 2'. 6. The sine-like trajectory S(s, so) associated 

with the azimuth so is that trajectory which s tar ts  at so with zero displacement 

and unit slope. It can be expressed in terms of the pseudo-harmonic oscillation 

Eq. (2 .'46) by setting a = m<) and 19 = n/2 - @(so) ; 

(You can check that S(so, so) = 0, and St(so, so) = 1.) Now consider what happens 

if we follow t h i s  sine-like trajectory for one complete revolution - that is to 

s = s + L. The integral becomes, by Eq. (2.60) just 2nv. Because of the period- 0 
icity of the betatron function, &so + L) = P(so). So 

S(s + L, so) = P(sO) sin ~ T V ,  0 

which - since v is independent of so - I can also write a s  

The betatron function a t  s is ,  within a constant, just the displacement after one 

revolution of t'he sine-like trajectory which s tar ts  a t  s. See Fig. 19. 

l s,l+~ 
I REVOLUTION * 

101,.1v 

FIG. . 19--Relation . between S(s, so) and &so). 

We now have another prescription for finding'/3(s). One needs only calculate 

directly the sine-like trajectory after one revolution, starting a t  each s. The 
' 

displacements obtained a r e  proportional to P(s). There is left only to determine 
' 

the l fnoka l i i a t ionf f  factor 1/2nv. Using the definition of v ,  Eq. (2.60) together 



with Eq. (2.77), you can see that v can be obtained as  the solution of the tran- 
: . -  : 
scendental equation . . 

, L 

So, given S(s + L, s)  for al l  s, we can determine uniquely P(s). 

The calculation of S(s +L, s) can be carried out by a straightforward numerical 

integration of the eqyations of motion. Or, for a piece-wise-uniform guide field, 

it is conveniently obtained by using the matrix method described in Section 2.5. 
8 9  

Recalling Eq. (2.37), the sine-like trajectory from so to s + L is  just the upper 
0 

right element of the transfer matrix E ( s ,  so) for the complete machine starting . :. 
nt each azimuth so. 

It can also be shown - but I shall not stop to do so - that v can be obtained 

from the trace of the matrix for  the complete ring. Namely 

cos 2sv = 2 T r  $(s.+L, . . s)  = ~c(s+.L,.s)+S'(S+L, s) 
e 2 ) :  } 

where C is the cosine-like function. .So if Cand  S' a r e  calculated a s  well a s  S, 

v can be determined and Eq. (2.77) w i l l  give P(s) directly. 

Although I have thought i t  more c b n v e ~ e n t  to write the differential equation 

for ,!3 in terms of i ts  square root 5 ,  one can, of course, write one in terms of P 
. . . . 

directly. Equation (2.74) can be rewritten a?  

1 2 . ... 
ZPPv - +if2 + K(s)P = 1 (2.80) 

The form is clearly less. convenienl;. I rnay, huwever, use it to ?lake the following 

obsewatisns. 

In a field free segment of the guide field K(s) = 0, and the solution to Eq. (2.80) 

where s and ,O ai-e suitable coiistmnts. If P hau a minirxrulrl irl Llie field free seg- 0 0 ' .  
ment then Po axid so a r e  the values of p and s +t the minimum. . . Generally, the 

intersection of two colliding beams occurs at a symmetry point where P must be 

a minimum. ~ h h n  Eq. (2.81) the form of P ( s )  in thF vicinity pf thn inter- 

section. Its form i s  illustrated in Fig. 20. ~ p t i c e  thit ill? . c&fliFient . of the 

quadratic term i s  just the inverse of the value of P at the minimum - the ,smaller 
. , 

i s  Po, the more rapid the increase of /3 with increasing . > distance from the miMmum. 



FIG. 20--Variation of P near the minimum that occurs in a long 
field free region. 

Finally, observe that in a segment in which K is large and P' is not, Eq. (2.80) 

can. be approximated by 

Then @ is a sinuskid o r  an e ~ p o n ~ n t i a l  depending'on the sign of K. 
, . 

2.10. Disturbed Closed Orbits 

Until now I have considered the trajectories of electrons in a prescribed 

guide field. I wish next to consider the following question: Suppose we have 

analyzed the electron trajectories for this prescribed.field; how will the trajectories 

be different if there a r e  small deviations of the fields from the assumed prescrip- 

tion? In our linear approximation, the prescribed - o r  nominal - guide field was 

specified by giving its value on the ideal orbit and i t s  radial derivative. See 

Section 2 . 3 .  Also, it was assumed that the field a t  the ideal orbit was everywhere 

vertical. I wish now to inquire about the effects of small deviations from the 

nominal field. If the vertical magnetic field a t  the ideal orbit differs from its 

nominal value, o r  if  .there is some small  horizontal field, the lateral accelerations 

will be.different-from what is necessary to'keep an electron on. the design. orbit. 

The deviations of the field at the design orbit w i l l  be called - field errors..  Changes 

in the fields whichcause the focussing functions Kx and KZ to differ from their 

horriinal values will, for  convenience, be called gradient e r ro rs .  t 
. ' .  . . 

. . 
' ~ l t h o u ~ h f i e l d  e r ro r s  will, through the term G~ in E ~ :  (29) also change Kx, such 

effects a r e  not usually important. 



When there a r e  field e r rors ,  the design orbit i s  no longer a possible trajectory. 

If the e r ro r s  a r e  small, however, there will be' another closed curve which i s  a 

possible orbit for an eleckron of the nominal energy. I shall call this trajectory 

the disturbed -- closed orbit. , The general trajectory will execute betatron oscillations 

with respect to this disturbed closed orbit; And the form of the betatron oscillations 

will be determined by the modified focussing .function. That is, if we continue to 

let x represent the displacement from the original design orbit, we may write 

where xc i s  ,the displacement of the disturbed closed orbit from the ideal one, and 
. . 

x i s  the'"freefl betatron oscillation about the disturbed closed orbit. P 
If the closed orbit displacements a r e  small, our assumed linearity of the 

field variations means that the betatron oscillations a re  the same with respect to 

the disturbed closed orbit a s  they would be with respect to the design orbit. We 

may therefore, consider separately the distortions of the closed orbit caused by 

field e r ro r s  and the disturbances to the betatron oscillations caused by gradient 

errors .  And we may interpret Eq. (2.83) a s  a superposition of the closed orbit 

distortion xc and a free betatron oscillation x that i s  calculated with respect to P 
the design orbit by the methods we have been using until now. 

Let's look f i rs t  at the effect of the field errors .  Suppose we begin by con- 

sidering the effect of a field e r ro r  which exists only in a small azimutha1,interval 

As, which we may a s  well place at s = O. In passing through As the displacement 

x i s  unchanged, but the slope x1 change by the amount 

where 6B i s  the deviation.of the magnetic field from its nominal value. For the 

vertical motion we would have..the same form if 6B were identified as.the t o e l  

radial field at  the design orbit .(with a suitably chosen sign).' In keeping with the 

definition of Eq. (2 .3)  we set ec 6B/E0 = 6G with a suitable :subscript x o r  z. 

implied when we a r e  considering the radial o r  verticalmotion. We may, a s  before, 

collsider only a generic..x-motion with the understanding that all the results a 
- .  

equally to x-motion o r  to 'z-motion when all identifying subscripts a r e  restored. 

We.write, then the effect of the field e r ro r  in As a s  . 
. .  . 

&l-aGAs . , (2.84) 



The field e r r o r  at  s adds to xl' = &'/As a term 6G; and is ,  therefore, equiva- 

lent to adding a driving force SG(s) to the equation of motion. We get the complete 

equation of motion for  xcbY adding this new force term to the usual equation for 

x, Eq. (2.31): 

x f t  = K(x) x + 6G(s) (2.85) 

The displacement xc of the disturbed closed orbit is the solution of this equation 

that is single valued at each physical azimuth. 

We may make an estimate of the effect of a localized field e r r o r  a t  s = 0 by 

using the approximate harmonic form of the betatron motion described in Section 

2.9. Think for the moment of an electron that i s  traveling along the design orbit - 

s o  that its slope x1 is zero. When i t  a r r ives  a t  s = 0 i t s  slope is suddenly changed 

to Ax1.  See Fig. 21. After 's = 0 there is no field e r ro r  (for one full revolution) 

s o  the electron begins to oscillate about the ideal orbit with the amplitude 

b =  x A x t = p  A x t = p n  6GAs. n (2.86) 

We may expect the closed orbit displacement xc to be of the same order of 

magnitude . 

FIG. 21--Effect of a localized field e r ro r .  

To make a proper calculation of x we should use the correct  pseudo-harmonic c '  
f ree  oscillation, and remember also that the displaced closed orbit i s  defined as  

that particular trajectory which closes on itself after one revolution. In other 

words x must be single valued a t  each physical azimuth s ,  namely sC(s + L) = x (s). 
C C 

In particular, 

xc(L) = xc( 0) ; (2.87) 

and by Eq. (2.84) 

xL(L) + 6GAs = xL(0) (2.88) 



Rut between s = 0 and s = L there a r e  no field e r ro r s ,  s o  x c is just a f ree  oscil- 

lation about the ideal orbit. See Fig. 22. That i s ,  xc must be given by Eq. (2.46): 

(2.89) 

with the arbitrary constants - a and 9 to be chosen s o  that Eqs. (2.87) and (2.88) 

a r e  satisfied. 

FIG. 22--The disturbed closed orbit for  a field e r ro r  at  s = 0. 

Using Eq. (2.52) for  x1 (s)  - everywhere but at  s = 0 - you may verify that the 
C 

appropriate values of - a and 9 are? 

6G As fi) a = 2 sin nv 

The displacement of the disturbed closed orbit is then 

x (s) = 
C 
fiO cus (@(s )  - BY\ 2 sin nv 

l'he foi'm sf the amplitude lrlvurlunl - a &splays tlie two lnost ii~terestihg fcatureo 

of the disturbed closed orbit. Notice f irst ,  that the displacement of the closed 

orbit is everywhere proportional to the "strength" 6G A s  of the field e r ro r ,  -- and to 

the root of P(O), the magnitude of the betatron function at  the location of the per- --- 
turbation. You sec  why one may consider that P(s) - o r  more precisely 

[(s) = m- is a measure of the 11sensitivity71 to disturbances. 

Second, notice that the denominator of - a goes toward zero, and x c becomes, 

therefore, very large whenever the betatron number v approaches an integer. It 

is this behavior which was referred to ear l ier  as an integral resonance which 

must be avoided in choosing the operating point (vX, vZ). 

 he phase constant 0 is, of course, only defined within an integral multiple of 
2n. 



Notice that the 'displacement of the closed orbit a t  the location of the e r r o r  

has a particularly simple form. ' You just set  s = 0 in Eq. (2.92), o r  generalizing 

to an e r r o r  SG located in a s  a t  an. arbitrary azimuth, say sl,  you get 

. . 
P(sl) 

x (s ) = SGAs 
c 1 2 tan TV 

  he displacement i s  now proportional to the f i rs t  power of P, but the same resonance 

dependence on v is evident in the tangent factor. Notice also that except for the 

resonant denominator, this result agrees with the estimate given in Eq. (2.86). 

We may also generalize Eq. (2.92) to give the closed orbit distortion for an 

arbitrary distribution 6G(s) of field e r r o r s  around the ring. At each azimuth s 

the closed orbit displacements caused by the e r ro r s  at  al l  other azimuths will add. 

For an e r ro r  a t  B we should replace s = 0 by S in Eq. (2.92) - and at  the same time 

replace @(s) by @(s) - @(Z). We may then sum over all  A5, to get 

x (s) = c 2 sin TV 8 ) )  cos{@(s) - $0 - n u /  

If we have a known field deviation SG(s), this equation will (with P(s) and v taken 

a s  their undisturbed values) give us the form of the displaced closed orbit. 

If the field deviations a r e  true lferrors" with an unknown statistical distribution, 

a more complex statistical'analysis must be made to arr ive a t  a statistical estimate 

of x . I shall not go into that subject here. 
C 
As mentioned earl ier  the total displacement from the ideal orbit is the sum of 

x and a free betatron oscillation. In the following sections I shall'ignore xi .with 
C 

the understanding that it must always be added in when one wishes to find the total 

displacement of a trajectory from the design orbit. 

2.11. Gradient E r ro r s  
( 

Let's turn now to the effects of gradient e r r o r s  on the betatron oscillations 

about the ideal closed orbit. These "errors" refer  to the deviations of the focussing 

function K(s) from its initially prescribed - o r  nominal - value a t  each azimuth s. 

Lctfa  writc 
- 

K(s)actual - K(s)nominal + k(s) (2.95) 

where we assume k(s) to  be a small quantity. The effect of the deviation k(s) will 

be to change the betatron function from its nominal value P(s) to some new value 

- 53 - 



P(s) + A/3(s). And the betatron number will be changed from its nonlinal value v 

to some new value v + Av. Generally the -- tune shift Av is' of more particular con- 

tern, because of the need'to keep the operating point away from resonances. 

, Since the evaluation of i s  a bit tedious, I shall not give a rigorous deviation 

here . .  I shall rather show how a simple calculation of Av can be made and then . 

just write down the exact results for whose derivation can be found elsewhere. 7 
Suppose that there is a gradient e r r o r  k. i n  only a small azimuthal interval 

As a t  s = 0. Then as an electron passes s = 0 i t  will receive, an extra angular kick 

Axt which is proportional to i t s  displacement x. In fact, by Eq. (2.19) 

A x 1 - k A s x .  (2.96) 

Let 's again approximate the betatron motion by, a simple harmonic oscillation; and 

ask what will happen when an electron arrives a t  s = '0. at ,  the maximum of an oscil- 

lation. The motion will be a s  shown in Fig. 23. Before arriving a t  s = 0 the 

FIG. 23-Effect of a gradient e r r o r  a t  s = U. 

displacement wao givon by 

x = b cos s/p . n ' 

and after s = 0 it will follow 

x = (b + Ab) cos(s/pn + A@) 

where . 

'1n any book on accelerators; see  for  example Ref. 5 o r  7. 



For  small Ax', A@ is  small and Ab is  much less  than by so  we can write that 

Using Eq. (2.96) for  Axt - and remembering that a t  s = 0 the displacement is 

b - we have that 

A$ = P, k As 

The effect of the gradient e r r o r  i s  mainly to shift the phase of the oscillation by 

this A@. Now recall that the 2 ~ v  is just the total phase shift in one revolution; 

s o  roughly speaking the gradient e r r o r  has 'produced 

The negative sign comes in because the total phase advance has been reduced. 

This result is  actually too large by a factor of two. The reason i s  that we have 

calculated A@ for  the spe'cial case of the electron arriving a t  s = 0 at  the maximum 

of its oscillation. .If the electron arrives at  s = 0 with the phas'e @O, the phase 
2 

shift A@ gets reduced by the factor cos @ O  - a s  you can easily check. Since on 

successive turns @ O  walks through many values we should expect the average A@ 
2 

to be reduced by the average of cos @O, which is just 1/2. With this correction 

we estimate a Av which is precisely what is obtained& a more direct calculation, --- t 
namely I 

Notice that the tune shift is just proportional to the gradient e r ro r  at  any point 

and to the value of p there. We see  again that the betatron function is an indicator 

of the local "sensitivity" to imperfections of the guide field. 

If there i s  a gradient e r r o r  k(s) distributed around the ring, the total tune 

shift is 

'AS can be carried out with only a little effort by making use of Eq. (2 179)for v 
. . 



I have said ea r l i e r  that we might expect Av to scalc a s  v ,  s o  that large v - 

values a r e  to be avoided.. To  see  that it is  so; recall. (from Section. 2.10) that P 
is expected to scale roughly as ~1- l '~ .  Then v should scale a s  )XI 'I2. . From 

Eq. (2.104), Av wmld scale a s  s o  A V / V  would scale as k / ~ .  For  a given 

relative size of the gradient e r r o r s  the tune shift Av is proportiofial'to v .  But 

the spacing between resonances is independent of v s o  large v values imply a 

more  delicate machine. 

A change of v implies that there must have been a change of ,6 which is not 

.evident in,the simple calculation above. . I shall now just write down an expression 

for  4 3 ,  and make some comments on it. It can be shown that 

a $k(!) P(S) coos 2 {@(s) - @(S) - nv 1 dI. Ap(s) = 2 sin 2m) 

where, a s  usual, 

Compare this result with the one obtained in .Eq. (2.94) for the closed orbit 

d is tor t iok.  The form is similar ,  but with two important differences. First ,  

while p112 appears i n  the integral f o r  the closed orbit displacements, the first .. . 

power of p appears in the integral for  w .  Second, notice. that the argument of 

the sine factor in the denominator is now Zirv instead of Tv.. . The resonant "blow 

UP of W occurs at  , hqth i%nte_gra! and, half ir!te.gx?! ?r?i~%s of.2 . The gradient 
e r r o r s  introduce a new set  of resonances in the operating diagram of v versus 

X 

v which must. be avoided in a working storage ring. z 
The tune shift A v  comes, of course, from the change in the betatron function. 

From the definition of v ,  Eq. (2.60), we can write that 

2n AV = ,- ds (2.106) 

\ 

2 A straightforward integration over s of using Eq. (2.105) gives the AV of 

Eq. (2.104). 

You a r e  perhaps by now wondering about the following strange point. Although 

has a resonance blow-up a t  half-integral values of v ,  the tune shift Av does not. 

How can that be? The reason is that the expression we have derived for Av 

applies only for small  changesin P ,  a i d  is therefore not valid too close to a 
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FIG. 24--Electric and magnetic fields seen by a n  electron. of Beam 1 a s  it 
passes through a bunch of Beam 2. 



resonance, where diverges. A more precise calculation,which retains second 

order effects in the perturbation k, must be made to find Av - and, in fact, @ 

il;self - near a resonance of v . . 

2.12. 13eam-Beam Interaction; Tune Shift 

I have mentioned in'section 1.6 a limit on the intensity of colliding beams. 

The ground is now prepared for some ~ d e r s t a n d i n ~  of this limit. Each time two 

bunches collide, each electron of one b a 6 h  receives a lateral impulse from the 
. * I.' . . 

macroscopic (fyspace-chargefl) electromaghetic field generated by the other bunch. 

A. complete analysis of the effect of these impulses is  quite complex. We can, 

however, take a simple semiquantitative approach to the effects in terms of the 

tune shift Av which ar ises  from the "gradient errorl ' .set  up by the space-charge 

forces. In many (perhaps most) storage rings the dominant effect is  on the verti- 

cal oscillations. To simplify the treatment, I shall make the assumption that that 

i s  so  and defer until later in this section a consideration {f the bffects on the hori- 

zontal motion. In cases where the horizontal effects dominate the appropriate 

translation of the discussion and conclusions can easily be made. 

Think of the beam bunches a s  flat rectangular slabs and consider 

the force on an electron of Beam 1 a s  it passes through the bunch of Beam 2 .  See 

Fig. 24(a). the axis of the bunch the force is zero. Above the center there is 

an electric field 8 - Fig. 24 (b) - which increases linearly with z until the surface 
of the bunch, and then falls off a s  sketched in Fig. 25. For all z within the bunch 

FIG. 25--Electric field strength 8 above and below the center of an 
idealized rectangular bunch. 

the electric field i s  obtained easily from Gauss's Law. The electric field & at 

z is given by the superificial charge density between 0 and z. If the bunch has 

the dimensions w, h, and I and contains N electrons, the electric field i s  B 



When an electron passes'through a bunch it feels the electric force e& for  a time f' 

8/2c, and receives from it a vertical impulse which changes the vertical component 

of its momentum p by 

e &I Ap (electric) = -- z 2c (2.108) 

The moving charges of a bunch also generate a magnetic field - Fig. 24(c) - 

which is always just &/c. The magnetic force is equal, in both magnitude and 

direction, to the electric one, s o  the total impulse received by the electron i s  just 

doubled o r  

The direction of the impulse is repulsive for collisions of like beams (e. g . ,  electron- 

electron) and attractive for unlike beams (electron-positron). For  the present 

purposes we shall not be concerned with the algebraic sign of the impulse. 

Now an electron which receives a vertical impulse Ap suffers a change in 
z 

slope Azl  given by 

Apz Az'= - 
P 

where p = ymc. Since this vertical impulse is proportional to z, 'it has the same 

effect - see  Eq. (2.96) - a s  an impulsive gradient e r r o r  of strength kZ As with 

Such a grgdient e r r o r  produces change in the betatron number of the vertical 

oscillntlons whose magnitude is, by Eq. (2.1031, 

where p* is the value of the vertical betatron function a t  the azimuth of the inter- 
Z 

section point. Pul l ing all. the  pieces a.hnve t.ng;et.h'er w e  f,i.nd tha t  

r P*N e z  z 
a v ~ =  y w h  (rectangular beam) 

'Don't forget that both the bunch and the electron a r e  moving a t  the speed c. 



when r is the usual definition of the classical electron radius: e 

A 'real beam does not however, have the ideal rectangular shape assumed. 

Rather i t  has a Gaussian distribution of particle density in all three dimensions. 

The main difference is  that variati&:hf :the impulse with z is not strictly linear - 
the linear part in Fig. 25 gets rounded dff at its upper and lower edges. To the 

extent that the impulse depends nonlineariy on z we should no longer speak of a 

tune shift Av. But for small betatron amplitudes, the impulse does depend nearly 

lirrearly on z and we may define the linear vertical tune shift as  the Av for these 

small amplitudes. The calculation proceeds as  before; if we now let w/2 and h/2 

now stand for the rms half-widths of the distributions, and if the beam is  reasonably 

a s  flat ( h e w )  we get the same result except for a factor of 2 / ~ :  

- 
2re 

- - -  (flat Gaussian beam) 
7.f " y w h  

If we also extend the calculation to include beam crossing at an angle - see 

Section 1.5 - we find that the impulse depends only on the projected transverse 

dimensions weff and hcff, as  did the luminosity. Recalling the definition of Aint 

in Eq. (1..10) we may write the linear vertical tune shift as 

- 
r e P';N 

- - -  
A% 2 y Aint (flat Gaussian beam). 

where N.=  N B is the total number of electrons in the B equal bunches of the stored B 
beam. If the aspect of two beams at the intersection iS not flat (that is if haff 

- - .  
became comparable to, o r  greater than w ) Eqs. (2.115) and (2.116) need cor- 

eff 
rection. The correction would,forexample, amount to a factor of 2 for round 

beams. To simplify thc discussions of Par t  I this small corrcction has been ignored 

although it shodd be kept in mind for more precise calculations. (A complete 

expression for AvZ, correct for any ratio of h to w is  given in Eq. (2.122). 

What i s  the effect of this vertical tune shift? Suppose we have a stored beam 

whom vortioal botatron numbcr v i s  plaocd niocly away from any disturbing 
Z 

resonance - say by 0.1 of an integer. As we put this beam in collision with another 

beam vz is  charged by AvZ, and for a high enough beam intensity the tune shift - 



may push v Z  to a resonance. We might expect to be in difficulty when AvZ reaches 

,some number like 0.1. This is 'roughly the origin of the beam density limit described 

in Section 1.. 6. In any storage ring the tune shift AvZ can be no larger than some 

critical limit, which by Eq. (2.116) se ts  an upper limit to the transverse charge 

density N/A~,~.  

The nature of the limiting tune shift is however, somewhat more subtle than 

just described. If there were just a tune shift AvZ due to the beam-beam inter- 

action, one might, inprinciple, compensate for it by making an opposite pertur- 

bation somewhere in the guide field. Remember however, that the AvZ evaluated 

above is an approximation for small  oscillation amplitudes. Due to the nonlineari- 

ties in the forces, the actual effective tune shifts will be different for different 

amplitudes - being lower for the larger amplitudes. Also, we must remember 

that an electron oscillates simultaneously in both z and x and that when it i s  at its 

maximum excursion in x, it w i l l  find smaller forces in the z direction - see 

Fig. 26. So Av should more properly be thought of a measure of the spread of 
Z 

tune shifts within the beam. And such a spread cannot be compensated for by any 

change in a linear guide field. 

FIG. 26--Electric field &.from a flattened elliptical bunch. . 

A complete analytical theory of the beam-beam interaction in an electrdn 

storage ring is  not available. The treatment is complicated by the nonlinearity of 

the  forces and by the quasistocastic variations of the perturbation on successive 
8 revolutions - due to the combined oscillations in x and z. Various people have 

investigated 'the beam-beam interaction by approximate computer simulations and 

the'results appear to be in reasonable accord with observations on the Princeton- 

Stanford, Orsay, and Novosibirsk rings. The results may be described a s  . 



follows: The expression for Av, should be taken merely a s  a measure of the 

strength of space-charge forces. There is a negligible perturbation on the stored 

beams provided that AvZ is less than a certain small number Avo. But if.Avz 

exceeds Avo then the electron oscillations of the perturbated beam grow rapidly 

to amplitudes much larger than normal. There appears to be a "threshold" at  

Av for a so-called incoherent instability. The increased beam size from the 
0 

instability may cause loss of electrons ; or, at best, so  decrease the beam density 

that the luminosity is  drastically reduced. . . 

The effect we a re  considering describes the disturbances on the electrohs 

in one beam by the macroscopic fields of the other beam. There is  of course, 

the corresponding effect of the first beam on the individual electrons of the second 

beam. Notice, however, that if one beam is  stronger (more intense) than the . 

other, the instability should occur first  in the weaker beam. For this reason, the 

effect has often been described as  the "weak-beam instability. I f  Notice also, that 

once the weak beam has "blown up" due to the instability, its current density i s  

sharply reduced, and the Av for the strong beam becomes quite small. Any z 
further increases in the intensity of the weak beam will not lead to an instability 

of the strong beam. You can see that for two beams of comparab1.e Intensity there 

will be a kind of "flip-flop" effect. Near the instability threshold each beam is 

trying to make the other blow up. Once one of the beam wins - by making the 

other go 'imstable - it can relalgsince the AilZ it sees then drops sharply. A stahle 

equilibrium w i l l  always be reached with one beam blown up a d  the otlier undisturbed. 

We call IIUW see llle 1ra1ur.e u1 llle Lea111 illlel~sily lilllil desc l iLd  ill 3ecliu11 1. 0. 

The currents in the colliding beams must be such that for each beam AvZ ( Avo; 

which it i s  generally agreed, is  a number very near 0.025. Equation (2.116) then 

sets a limit on the current density permitted in each beam. This limit is  just the 

one adopted in Eq. (1.14) if P is  identified a s  P:, the vertical betatron function v 
a t  the interaction point. 

Recently, the Orsay group has proposed a way of avoiding the effect of beam- 

beam interaction by using neutral colliding beamsg - each beam consisting of equal 

numbers of positrons and electrons. For such beams Av would be obtained by 

replacing N by N+ - N - and clearly, Av goes to zero for neutral beams. The po- 

tential advantages and disadvantages of this interesting new idea have not yet been 

fully analyzed (at least not by me), and it will not be considered further in this 

report. 



The vertical tune shift AvZ has been emphasized because i t  tends to play the 

dominant role in limiting the current of high energy storage rings, but this will 

be s o  only s o  long as  the horizontal tune shift Avx is less  than AvZ. Let 's look 

now at  Av s o  we can tell  when the assumed domination of AvZ is justified. 
X 

Returning to the flat-ribbon model of a beam, consider the force on an electron 

that passes through a bunch at  a small  radial distance x<< w from the axis. See 

Fig. 27.  We can find the electric force on the electron by noticing that - by 

z 
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FIG. 27--Electric field at  an electron that passes through a 
bunch a t  a small radial distance from the axis. 

symmetry - all  of the unshaded areas  of the bunch will contribute no net force 

and that the resultant force is due just to the shaded a rea  of width 2x. Considering 

the shaded area  a s  a line charge with the linear charge density A a t  the distance 

W/Z, the electric field strength &at the electron a t  x i s  

The fraction of the total charge in the shaded area  is 2x/w, so 



and 

1 2NBex &'= - 
2 

(2.11.9) 
7T E' 

0 Qw 

Notice that the field strength per  unit displacement differs from that in Eq. 

(2.107) by the factor 2w/L The res t  of the analysis proceeds a s  before except 

that when one goes to Gaussian b e a ~ s  the factor of 2 drops out of the ratio and 

for flat Gaussian beams one finds - corl;,e,sponding to Eq. (2.115) - that 

If the beams cross  a t  an angle, w and h in Eq. (2.115) and (2.120) get replaced 

by weff o r  heff  See Section 1.5. So in the general case the ratio of the horizontal 

to the vertical tune shift.can be written a s  

This result is ,  i t  turns out, correct  for any aspect ratio of the beam cross section 

(any ratio of w to h). 

We might expect that P i  and P; would generally be comparable. And since the 

natural width of a beam is much larger than i t s  natural height, the ratio above would 

be expected to be less  than 1 - as  has been assumed in the discussion of the section. 

With beam crossings at an angle, however, and by the use of special techniques to 

modify, almost a t  will, the beta functions a t  the intersection, it i s  possible to have 

the ratio P*/P* take on almost any value. If the ratio of Eq. (2.121) is greater  
X 2 

than 1 the horizontal tune shift dominates the discussion of this section 'should be 

modified accordingly. It is ,  of course, necessary always to insure that both tune 

shifts a r e  less than Avo. 

Now that the physics of the tune shift should be clear, let me write down here 

the complete expressions one obtains for the vertical and horizontal linear tune 

shifts with Gaussian beams of any aspect ratio. To avoid confusion I write now 

u a and cr for  the r m s  half-widths of the distributions (q refers to the x' Z'  S S 



longitudinal distribution). For head-on collisions: 

,' (The expressions a r e  symmetric in z and x a s  they should be. Notice also that 

they gb over to the expression derived for flat beams when cr >> (+ .) If the beams 
X z 

cross a t  a vertical angle of 26 ,  rrz gets replaced by 

or  for a horizontal crossing angle of 26, ox gets replaced by 

I should perhaps emphasize that the beam-beam interaction considered in 

this sections does not take into account the effects coherent lateral oscillations of 

the electrons in a bunch - that i s ,  of lateral motions of the bunch as  a whole. 

Such oscillations can'occur and can lead to coherent instabilities involving both 

beams. A discussion of such effects is outside the scope of this report, but may 

be found elsewhere. lo. For successful operation of a storage ring such oscillations 

must be inhibited in some way or another. And then the conclusions of this section 

a r e  applicable. 

2.13. Low- Beta Insert 

In a 'high energy storage ring the maximum beam current will, at high energy, 

be determined by the a.vailalnle radio frequency power - a s  discussed in Section 1.7.  

We saw there that if the beam dimensions can be suitably, adjusted, the.maximum 

achievable luminosity is  proportional to the maximum permitted current density - 
see Eq. (1.22). If we take Av from Eq. (2.116) this maximum current density is 

Z 

and the maximum lurninosity'is 



Given the energy (y), the beam current (N-), and the radius of the storage - 

ring (f = c/27r~),  the only "freeff para'meter is P*. The form of this result lead 
Z .  

Robinson and Voss to propose an idea for increasing the luminosity of high energy 
/ 

rings. 

A uniformly small betatron function. pz(s) w ould have the disadvantage (among 

others) of producing large values of v Z  with the attendant difficulties of avoiding 

resonances. Robinson and Voss realized, however, that it was possible to obtain 

an abnormally low value of P a t  the location of the beam crossing point while 

leaving the rest  of the ring with a normal size P .  ' 'he idea is to introduce :a speeial 
section in the guide field which produces only a localized region of very low P. - 

Z 
. the so-called low-beta insert. --- 

To see how the idea works we must return-to the discussion of the betatron 

trajectories in Section 2.6. Imagine that a ring has been designed with generally 

satisfactory properties for storing the desired beams. Now imagine that this ring 

is  "broken open" a t  some azimuth and a special section of focussing elements is 

inserted with the following property: Its transfer matrix 3 is the unit matrix, so 

that an electron which enters the insert kith the displacement . . and slope (x, xl) 
lckvcs the insert with the.same displacement and slope; and the same is true for 

the z motion. An insert with these properties will not affect the trajectories in the 

remainder of the ring.; it follows that, the betatron functions there wil1,also be,un- 

changcd. Thus if we place, the constraint on'an insert that it shall have unit transfer 

matrices in both x and z we a r e  otherwise free to choose its structure in any way 

we wish. And it' we a r e  clever enough, we call' nialre the betatron f unctidns take on 

almost any values we wish a t  some place inside of the insert. 

Actually, the requirement that thc inoort have a unit transfer matrix i s  atrone;eim 

than necessary. For example; you can easily show that a transfer matrix of -1 

would also not change the betatron function in the res t  of the ring. And, indeed, 

there a r e  still other pbssibiliti&, a s  youcan see b$ referring to the results of 

Section 2 . 9 .  There we saw that [(s), the square root of the betatron function P(s), 

is that function which satisfies the differential equation (2.74) and i s  single-valued 

around the ring. Suppose we wish to "break openff a ring at  some point where 5 .  
and [' take on the values lo and I;' and insert a special focussing section,, which 0 
we may define by i ts  focussing function K(s). Say that the insert will go from sl 

to s2 - with s now suitably redefined to include the insert. Then the function [(s) 



will be unchanged outside of the insert provided only that the K(s) of the insert is 

such that [(s) satisfies Eq. (2.74) with the boundary conditions that [(sl) = [(s2)= 

50 and gl(sI) = tl(s ) = Jb.  Or we may say the same thing in another way. Sup- 2 
pose we s tar t  a t  one end of the insert,  say a t  sl ,  with the initial conditions that 

{(s ) = 1; and C(S ) = and integrate Eq. (2.74) through the insert to s2. If we 
1 0 1 0 

arr ive  a t  s2 with [(s2) = to and t1(s2) = [ b  then the function [(s) through the res t  

of the ring will be left unchanged. This is the most general definition of an insert 

that will not disturb the trajectories in the main part  of the ring. 

A special insert will, necessarily, change the betatron number v of the whole 

ring, since there must be some advance of the betatron phase $(s) through the 

insert. For example, an insert with a unit transfer matrix must increase the 

phase by 27r - or  some integral multiple of it. So the v of the modified ring would 

be increased by 1 or  some integer. Practical inserts which satisfy the more general 

requirement of the preceding paragraph will generally change v by something near 

an integer. 

The design of low-beta inserts which satisfy the required conditions, which 

give the desired low value of P at  some chosen interior point, and which can be ,, 

constructed with real  magnetic components i s  an a r t  the details of which a r e  outside 

the scope of this report - and which, in any case, I am not competent to discuss. 

Let me just show one specific example of such an insert and then make some ob- 

servations that wi1.l apply generally to such inserts. 

I show in Fig. 28(a) the focussing function Kx for a low-beta insert which 

was designed for a storage ring proposed at SLAC. For this insert KZ is just 

-K . The insert was intended to be inserted between two of the "normal" cells 
X 

of the magnet whose amplitude functions [(s) = were shown in Fig. 18. 

The functions tx and tZ of the insert a r e  also shown in Fig. 28. Both functions 

have zero slopes a t  the boundary of the insert (as does the normal cell) and their 

values match the normal cell at the boundary. So all required conditions a r e  

satisfied. 

The insert shown in Fig. 28 w a s  designed to have a very low & at its center - 
namely 5 cm in comparison with a typica1.p of =I000 cm in the normal cell - z 
but to have only a normal P there. The center i s  of course, to be the point of 

X 

intersection of the stored beams. For  this reason there a r e  no magnet elements 

for 2 . 5  meters on either side of the center - leaving 5 meters free for the 

detection apparatus. 
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FIG. 28--Focussing function and envelope functions for  the SLAC 
low-beta insert.  



A striking feature of the curve for (,(s) in Fig. 28 i s  the very large value 

reached a t  the quadrupoles nearest  to the center  of the insert.  These large values 

have several  unfortunate consequences. F i rs t ,  since the betatron oscillation 

amplitudes (for a given amplitude in the normal cell) go in proportion to ((s) they 

will be very large a t  these nearest  quadrupoles - requiring that they have a large 

aperture. Second, a s  we have seen,the closed orbit distortions and the perturbations 
2 

to P(s) and to v a r e  proportional to ,B = ( at  the location of the perturbation. The 

effect of any field of gradient e r r o r s  at the nearest  quadrupole i s  magnified by a 

large factor. Clearly, the large values of P a r e  undesirable and place stringent 

technical requirements, on the construction of the i.nsert. 

Why must P be s o  large ? We worked out in Section 2.10 a simple expression 

for  the form of P(s) in a focus- f r e e  region - Eq. (2.81). If P(s) has the minimum 

value Po, then for  distances Q large compared with P o  - in a region where K =O - 
we found that 

' If we ask fo r  2 .5 .me te r s  f r ee  space to the nearest  quadrupole and also for  

p = 5 cm,  we must get that p becomes a s  large a s  125 meters  (!) at  the position 0 
of the f i r s t  quadrupole. The large pZ a t  the quadrupole is the price paid for having 

a c lear  experimental region together with the high 'luminosity which comes. from 

the smal l  PZ at the intersection. 



111. ENERGY OSCILLATIONS 

3 . 1 .  Off-Energy Orbits 

In the preceding sections I have been discussing the trajectories in a storage 

ring of electrons with the nominal energy E .-- which is  the design energy for a 0 
given setting of the magnet currents. -Stored electrons do not, however, all have 

. , 
. . 

this ideal energy. In general, the eqergy E of a stored electron will deviate from 

the nominal energy, and, as described in section 1.2, w i l l  oscillate about. it. These 

energy oscillations - often called "synchrotron oscillationsf' - a r e  the subject of 

the part.  . 

We must, f irst ,  understand the motion df electrons whose energy diffel-s by 

a small  amount 5 from'the.nomina1 energy. ' Keeping the assumptions of Section 

2 . 3  that the design orbit l ies in a'horizontal plane, energy deviations will, to 

f i r s t  order in small quantities, affect only th'e'radial motibn. The vertical dis- 

placement will still  be described by the betatron oscillations analyzed in Par t  11, 

and will not be considered further here. From Section 2.6 onward it was convenient 

to let the symbol x stand generally for either x or  z the lateral displacements P P' 
associated with the betatron oscillations. I now return to the notation in which x 

represents the total horizontal displacement of a trajectory:from the design orbit. 

It was shown in Section 2.5 that in >an ideal guide field the.radia1 motion for 

an electron with the energy deviation 5 can be written as  the sum of two parts  

whcrc x io thc bctatron displaccmciit: m d  x, i s  a displacement which depends 
P 

only on the energy of the electron. If we wish to include also the results of Section 

2.11, we should include in addition, the distortion of the closed orbit due to magnet 

imperfections and write 

Since the various contributions add lincarily undcr our aooumptiono of a lincar 

guide fielaof small  energy deviationq and of small displacements - we have been 

able to consider separately the several contributions to x. We now ignore the 

other contributions to x and focus on x,. 

According to Eq. (2.28) the energy displacement x, can be written a s  



where q(s) is a function of the azimuthal coordinate s which is single valued at  

each physica1,azimuth. An off-energy electron with no betatron oscillations runs 

around a new -- closed orbit whose displacement from the ideal orbit i s  everywhere 

proportional to ~ / ~ ~ ~ w i t h  a proportionality factor which depends on the azimuth 

according to a given function q(s),  characteristic of the total guide field configuration. 

I shall call q(s)  the off-energy function - i t  is just the closed orbit displacement 

per  unit energy deviation. 

Let's look now at  the nature of q(s).  It was defined - see  Eq. (2.29) - as  that 

solution of the diiferential equation f 
7'1 = K s X ( )rl + G(s) (3.4) 

which is  periodic in s with period L and is, therefore, single valued for all  physical 

aziwuths. The functions G(s) and K . (s )  were defined in Eqs. (2.3) and (2.21). 
X 

Let's consider the qualitative behavior implied by this equation for the q(s)  of 

a separated function guide field (which was defined in Section 2.2). We may take 

as  an example the guide field of the SLA.C proposal which was used for illustration 

in Sections 2.6 and 2.10. In Fig. 29(a), (b) I show Kx and G for this guide field 

and in (c), the off-energy function q(s) .  

In a field free section both G and K a r e  zero s o  7(s) has a segment of constant 
X 

slope, In a pure quadrupole G i s  zero and K is just the quadrupole strength. In 
X 

a focussing quadrupole Kx is negative and q(s)  follows a segment of a sinusoidal 

oscilla.tion a.bout zero with the form 

?=aces ( & s + o )  

Tn a defo'cussing nl!a.dru~ol.e K is  positive and q(s)  follows's segment of a positive 
X 

exponential like 

The curve of q(s).  i s  "attractedM toward the s-axis in a focussing quad and repelled 

from the axis in a defocussing quad. 
2 

'Although K1 is zero in a flat bending magnet, K is not. In fact, Kx = G and 
X 
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FIG. .29--Guide-field functions and the off-momentum function for 
the SLAC guide field. 
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The curve of r) is a segment of a sinusoid which is  "attracted" toward the level 
2 qO = 1 / ~  with a "restoring forcev proportional to G . (The level q0 .is just equal 

to the radius of curvaturc p of the design orbit. ) 

From the above discussion you can understand the qualitative features of the 

variations of q(s)  that appear in Fig. 29. For  all "normaln storage rings i t  turns 

out that the off-energy function is  everywhere positive. 

A storage ring user i s  not generally faced with the need to make a detailed 

calculation of r)(s). Its graph should be provided by the ring designers. I will 

theretore, only indicate briefly how it  may be calculated. For  a separated 

function guide field the preceding discussion can be expanded to give a method for 

calculating q(s). Suppose you begin a t  s = 0 with some assumed values of q(0) and 

vll(U) and evaluate ~ ( s )  as a succession of segments of the kind described above 

until you make your way around one complete revolution - until you get to s = L.  

You will get the true q(s)  if you then choose q(0) and ql(0) so  that q(L) and ql(L) 



a r e  respectively, equal to ~ ( 0 )  and ql(0). The computation can be car r ied  out 

most straightforwardly by using a matrix technique. (See Ref. 11). 

The off-energy function can also be obtained (for  any kind of guide field) by 

making use of the results  we obtained in Section 2.11 for  disturbed closed orbits. 

We may imagine that an  off-energy orbit is just a "disturbedfr closed orbit since 

an  energy deviation gives rise to a change in curvature just a s  does a field e r r o r .  

That is to say, that a field e r r o r  6G in a segment A s  of the orbit produces a change 

of curvature in the path of an electron of energy Eo which i s  the same a s  the change 

of curvature that results  when an  electron with an energy deviation 6 goes through 

the nominal field provided that 6G/G = : / E ~ .  Since q(s) is the ratio of the closed 

orbit displacement to S / E ~ ,  we may compute ~ ( s )  by replacing 6G in Eq. (2.92) 

of Section 2 .11 by G. This argument can also be juStified by noticing that Eq. (3.4) 

f o r  'q has the same form a s  Eq. (2.85) for  xc in Section 2.11; the lat ter  going into 

-the former  if we make the substitutions x --7 and 6G --G. Making the same 
C 

substitutions in Eq. (2.94) we get 

So if P(s) is already known we can get q(s)  by an integration. Notice that ~ ( s )  too 

will have a resonance behavior when v approaches an integer. 

If the design orbit does not lie in a plane - as ,  for  example, in the recent 
' .DESY or 'Orsay designs - then the discussionof this Section must be repeated:for 

the vertical displacements. There will in such cases  be two curvature functions 
; G and G a s  well a s  the two focussing functions K and KZ. The vertical displace- 

X Y X 
' 

ments will also hxve an off-energy contribution which will be proportional 'to an 

off-energy function q (s) .  And this vertical off-energy function can be evaluated 
z 

in t e r m s  of the vertical focussing and curvature functions. There will be generally 

one important qualitative difference from the horizontal case  in that -qz will have 

both positive and negative values and i t s  average around the ring will be zero. 

3 . 2  Orbit Length; , Dilation Factor 

An important consequence-of an energy deviation is the associated change in 

the circumference of the closed orbit. I wish now to take a look a t  this effect. An 

electron of the nominal energy Eo which circulates on the design orbit will, in one 

revolution, travel the distance L,  the circumference of the design orbit. On any 



other trajectory, the path length traveled in one revolution will depend on the 

deviations from the ideal orbit and may be expected to differ f rom L. We have 

already noticed in Section 2.4 that an electron which moves from s to s + ds with 

a displacement x from the design orbit has a path length dQ different from ds by 

an amount that depends on the local radius of curvature. See Fig. 9.  We found 

there - Eq. (2.15) - that 

dP = (1 + G(s )x /d s ,  (3.7) 
s o  long a s  only t e rms  to f i r s t  order in x a r e  retained. 

A betatron oscillation will produce -- on the average no f i rs t  order change in the 

path length. The path i s  lengthened on a positive swing (x > 0) of the oscillation 

and shortened on a negative swing. Since the betatron displacements a r e  on the 

average, symmetric about x = 0, the path length change is zero when averaged 

over one o r  more complete betatron cycles. If the betatron number v i s  much 

grea te r  than 1 s o  that there a r e  several betatron cycles in one revolutiun, the net 

change in the path length in one revolution is small. If v = 1 however, there will 

be changes in the path length from one revolution to the next. We shall however, 

be interested here only on the avera ie  path length (averaged over several revolutions) 

and the betatron oscillations will not, to f i rs t  order, affect this average. 

There is  a second order effect - which gives a time change proportional to 

the square of the betatron amplitude. It can introduce a very small coupling 

bctwccn betatron oscillations and energy oscillations. I am ignoring here all such 

second-order processes. 

The lateral displacement x, of an off-energy orbit does give r i se  to a change in 

the orbit length - because, fo r  a given energy deviation, x, has generally the same 

sign all around thc ring. Putting xc for  x in Eq. (3.7) and integrating olrce around 

the ring, we get fo r  the circumference Q E  of an off-energy closed orbit 

The f i r s t  term 'of the integral gives the complete integral of ds which is just L,  

the length of the design orbit. The second term gives the elongation due to the 

energy deviation; let 's cal l  i t  6 4 .  Recalling Eq. (3.3) for  x, , we get that 



The change in the orbit length is proportional to the energy deviation fi, with a 

constant of proportionality - the definite integral - which can be obtained from 

the known properties of the guide field. 

It is convenient to define a dimensionless parameter a ,  which we may call 

the dilation factor by 

It follows from Eq. ( 3 . 9 )  that 

The dilation factor a! is a number which like the betatron number v is a character- 

istic of the total guide field. It is a crucial parameter of the energy oscillations. 

It is with some reluctance that I have introduced the name "dilation factor" 

for a!,  since it is quite generally known a s  the frmomentum-compaction. This : 

other name was adopted in the early analyses of alternating gradient guide fields 

in relation to the lateral spread of o'rbits of different momenta - which spread is  5 

proportioned to our ~ ( s ) .  It i s  true that a! i s  a general indicator of the mqgnitude 

of q. However, a greater  "compaction" of different momenta generally corresponds 

to a smaller a .  One might therefore think that the "compaction" would be measured 

by the inverse of a!. Since a! relates anyway only indirectly to y and is specifically 

a measure of the variations in orbit length, I would hope that some more appro- 

priate - and less  misleading - name might be brought into general use. My 

candidate is lfdil.ation fa.ctor. l 7  

We can get a little better understanding of the nature of a! by looking a t  it for  

the most common kind of guide field, the isomagnetic guide field defined earl ier .  

In an isomagnetic field, G has the value G in all magnets and zero elsewhere 0 
(see Eq. (2.9)) s o  Eq. (3.12) can be expressed by 

where the integral is to be taken over only those parts  of the design orbit which 

a r e  in the bending magnets. 



This result can be written in a morc  illuminating way. Suppose we define the . 

magnetic average of 7 a s  

where II is  the total length of the orbit segments in the bending magnets. (This Mw 
would be the usual definition of the mean value of 7 in all the magnets.) 

But a l l  of the bending magnets must add up to a complete circle so  P is 
Mag 

just 2a times the constant orbit radius % in the magnets which is  just 1 / ~ ~ ;  so  

Where R = L / ~ T  is the gross  orbit radius defined earl ier .  The dilation factor 

a! is just the ratio of the magnetic average of 7 to the gross radius of the orbit. 

The high energy electrons we a r e  concerned with here travel always a t . a  speed 

which is not noticeably different from the speed of light; and the time required for 

each revolution of the storage ring i s  just proportional to the length of the trajectory. 

On an  off-energy orbit corresponding to the energy deviation 5, the change ST in 

the revolution time i s  in the same proportion to the revolution time To on the design 

orbit a s  the change in length of the closed orbit is to the length of the design orbit: 

3.3. Approximations for the Off-Energy Function and the Dilation Factor 

For  most practical guide fields there is a close relation between the 'off-energy 

function ~ ( s )  and the radial betatron function P (s )  which was our central concern 
X 

in the preceding part .  Since the demonstration of this connection is a bit long, I . . 
shall simply, offer i t  to you without proof. ( A  demonstration can be dug out of 'the 

material in Ref. 4 . )  For  an isbmagnetic a i d e  field that has a well behaved beta- 
. . 

tron function (with no wild variations) a rather good approximation to ~ ( s )  is 

where a i s  a constant. Except for  the scaling factor ao, the function "(s) has 0 
very nearly the same form a s  our function [(s). You can confirm this similarity 

for a t  least  one case  by comparing Figs. 18 and 29 which show cx(s) and q(s)  for  

the same illustrative guide field. For  this example Eq. (3. 16) is good to a few per 

cent. 
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F o r  most purposes i t  will be sufficient to take a. f rom the ra t io  of the known 

functions. A formula fo r  i t  comes out of the mathematical derivation of Eq. (3.16) 

which gives 

a = 0 
(isomag), 

l'x 

where vx is the radial betatron number and the magnetic average of i s  defined 
x 

in the same way a s  we did for 7 in the preceding section - see  Eq. (3.13). 

The scaling factor au can also be expressed in te rms of already defined ring 

paramcters .  If we average both sides of Eq. (3.16) over all the magnets we have 

that 

(isomag). 

By Eq. (3.15), the left-hand side i s  just aR and by Eq. (3.17) the right-hand side 
2 i s  a v so  we get that 
0 x 

This approximation will generally give a reasonably adequate representation of 

rl(s). 

A somewhat rougher approximation to a. can be obtained by noticing that, 

generally spealcing, the magnetic average of x should be approximately' the 

. . s ame  a s  the square root of the typical, value of P x - which was defined ear l ie r  

- a s  Pxn = R/v,. (See Eq. (2.72)). Then, using Eq. (3.17), we expect that 

The last  two resu1.t.s also display a useful approximate connection between 

the betatron number vx and the dilation factor a; namely that 

1 a = -  2 ( rough) (3.22) 

x 



T h i s  simple connection between n and v x  is useful for  anunderstanding of the 

general characteristics of high energy storage rings. If we consider v to be a 
X 

measure of the focussing "strength" of a guide field, the dilation factor i s  seen 

to decrease a s  the inverse square of the strength. 

3 . 4  ' finergy 'Loss .and Gain 

Until now we have ignored those effects which change the energy of a stored 

electron; i t  is now necessary to consider the processes by which an electron . . ,  loses 

o r  gains energy. The lateral  acceleration along the curved parts of a trajectory 

causes an electron to radiate away some of its energy. The characteristics of this 

radiation loss will be discussed in some detail in Section 4.1. If the electron i s  

to.remain captured, in the storage ring this radiation loss must be compensated 

for,  on the average, by an equal energy gain from the --- racljo - . -- frequency accelerating 

system of the ring - one o r  more electrode structures which produce, along parts 

of the orbit, an electric field that can feed energy to the moving electron. It is the 

interplay of the radiation loss and the acceleration gain - together with the properties 

of the guide field - that gathers injected electrons into stable circulating bunches 

and i s  responsible for the residual small energy oscillations, of the electrons in a 

1:~t.mcll. 

An electron of the nominal energy Eo, moving on the design orbit will radiate 

away a certain amount of energy, say U ,each revolution. This radiation loss is 
0 -4 

always a very smal l  fraction (typically 10 oi. less) of thc 61cctroa's 6nkrpy,' And 
the energy gain from the acceleration system is  of course, nf t,he sa.me prder. T h e  

smal l  magnitude of the loss in one rkolut ion allows us,' f&tunately, t b  make a number 

of simplifying a'ssumptions without which a study of the energy oscillations would 

hardly be tractable. We may, to begin with, make the approximation that an electron 

which s tar ts  a revolution with the energy Eo will also loose the energy Uo during 

the revolution. Although the energy will nat strictly remain a t  Eo, nor the trajectory 

remain on the design orbit, the deviations during one revolution can be neglected. 

The effects which accumulate over several revolutions must, however, be taken 

into account. . . 

If an electron with the energy EO i s  given a betatroil oscillafiuri its instaulaarous: 

r a te  of radiation loss may change - because of a different lateral acceleration along 

the trajectory. But the average energy loss over a complete betatron oscillation will 

not change to f i r s t  order in the betatron amplitude. (Changes in the lateral oscillation - 



will be proportional to x and will, to f i rs t  order,  average to 'zero over a complete 

cycle.) Since we shall be satisfied to consider only the effects which occur over 

many betatron oscillations, we need to look only at the average energy loss. So 

long a s  we a r e  keeping to our f i r s t  order view of a storage ring we may ignore 

any dependence of the radiation loss on the betatron displacements. 

The radiation loss will however, change with a change in the energy of an 

electron. 'Both its. different trajectory and i t s  different energy can contribute to 

a modified energy loss. Because a l l  energy changes occur slowly, we may consider 

that an electron is at  any instant moving on the off-energy closed orbit which cbr- 

responds to its instantaneous energy - or  is performing f ree  betatron oscillations 

about that orbit. Since we know the form of the off-energy orbit, we can compute 

the energy lost in each revolution. I shalL consider this problem later  (in Section 

4.1); f u r  mow we nlay take i t  a s  a given function U d(f) of the energy deviation I .  r a  
Since we shall generally be interested only in small  energy deviations, we 

need keep only the linear term in the variation of Urad and write that 

where 

and the derivative is evaluated at  the nominal energy Eo. For  the present, then, 

the radiatioh loss may be described by the two constants Uo and D - which will be 

evaluated in terms of the properties of the guide field in part N. 

Let's now turn to the radio frequency accelerating system - "rf system" for 

short - which supplies energy to the electrons to compensate for  the radiation loss. 

The rf system consists typically of one o r  more cavity resonators such a s  the one 

shown schematicall'y in Fig. 30, disposed a t  various places around the storage ring 

and supplied with rf power from some synchronized radio power sources. These 

cavities produce oscillating electric fields along the electron trajectories; and it 

is the component of these fields along the electron's path which feeds energy to the 

electrons. An electron which goes around once on the design orbit will be given 

by the rf system an amount of energy Urf equal to the integral of the instantaneous 

electric force along its trajectory. 
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. , FIG. 30--Schematic diagram of an rf accelerating cavity. 

Since the d fields a r e  time varying, I the energy p i n e d  by an electron in 

making one circuit around the ring will depend on the time at which that circuit 

begins in relation to the oscillations of the accelerating fields. ' Let's say that the 

time dependence of the fields i s  given. Then the energy Upf gained by the electron 

in one revolution will depend on the timef that it s tarts  its revolution. (We may 

take that the revolution s tar ts  at  some reference azimuth, say s = 0.) 

If electrons a re  to be stored on (or near) the design orbit, the variation of 

ur.(I) must have certain characteristics. I shall assume that u ~ T )  is a periodic 

function with a period that i s  some integral submultiple of the period To, the 

period of revolution of an electron that circulates on the design orbit.   hat is, 

u,& + T0/k) = U,p) . . (3 .25) .  

where k i s  some integer that will be called the 'harmonic number of the rf system. 

The variation of ~ ~ 6 )  might be, for example, like the function shown in Fig. 31. 

(Although the assumed time variation of Urf is  somewhat more restrictive than 

necessary, the rf'fields must have at least similar characteristics if a storage 

ring i s  to work. And most storage rings d i l l  have generally the characteristics 

assumed. ) 

Now consider what can happen with an electron of the nominal energy Eo that 

is.circulating on the design orbit. Suppose that it i s  started'on its journey at just 

?AS they must be if there i s  to be a net integral of the electric field around a 
closed path! 
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FIG. 31--Energy gain from the rf system as  a function of the 
starting time t of a revolution. 

the right time fs for which the rf gain U f(T ) is just equal to the radiation loss U r s 0' 
See Fig. 31. In the next revolution the energy lost and gained will compensate 

and the electron will return to its starting point again with the energy E The 
0' 

time taken for the revolution is To; so  the electron will s tar t  the next revolution - 
at  the time T + T and by Eq. (3.25) the rf gain will again be equal to Uo. The s 0 - 
electron - will continue circulate indefinitely -- on the design orbit. Such an electron 

which passes the reference azimuth a t  the times Ts + j To  (where j = 1,2,3 ,  . . . ) 
is called a syiichronous electron - because its rotation is synchronous with the 

oscillating rf fields. And is generally called the synchronous phase of the rf 
S .  

system. (Of course with a periodic rf there a re  equivalent synchronous starting 

times once each rf period. ) 

I have clearly assumed that the peak value of Urf is greater than the radiation 

loss Uo of the Gynchronous electron. It follows that there will, in actuality, be 

two possible choices (at least) of Ts in each cycle of Urf - one where U has a rf 
positive slope and one where it  has a negative slope. Only one of the two - the 

one where the slope is neg;a.t.ive - corresponds to a phase of stable equilibrium, 

a s  you will presently see. So only that one will be designated as the synchronous 

phase zs. You can also see from Fig. 31 that with a rf harmonic number k there 

will be k different synchronous starting times - and therefore, k distinguishable 

synchronous electrons. These k synchronous phases correspond to k possible 

stored b k h e s  of electrdns. 



An electron which i s  moving with a lateral displacement from the design orbit 

will see  somewhat different electric field$ than one moving bn the design orbit. 

It is generally true, however, that its energy.gain in one complete revolution - 
the path integral of the electric force - depends very little on the lateral dis- 

placements. I shall therefore ignore any dependence of the energy gain on such 

lateral displacements - whether they a re  due to energy deviations o r  to betatron 

oscillations - and consider only the important variation of the 'energy gain with 

the starting time 1. 
The circulating position of a synchronous electron provides a convenient 

reference point for the study of the longitudinal oscillations of the electrons in a 

bunch. We may indeed refer to the moving position of the synchronous electron 

a.s the "centerl1 of th.e bu.nch, a.nd descr,i.ha the i,ns.tantaneaus azirnllth.a.1. position of 

any other electron of the bunch by giving its longitudinal displacement y from the 
. . 

bunch center. That is ,  we define 
I 

~ ( t )  = s(t) - sc(t) (3.26) 

where s i s  the azimuthal position of any particular electron and s refers to the 
C 

' position of the bunch center. See Fig. 32. 
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FIG. 32--The longitudinal coordinates .y and T of an electron in a bunch. 
.* 

For the present discussion I find i t  somewhat more convenient to describe 

the longitudinal motion by an equivalent variable defined simply b.y 

T (t) = Y(~)/c  ' 
C 

(3.27) 

which I shall ?all the - time displacement from 'the center of the bunch. (The time . . 
displacement is ve ry  nearly eq'ual to the time interval a t  between the '&rival of 

an electron at  any particular azimuth and the arrival o'f the synchronous electron. 



The difference is  equal to the change  of^ in the time At = r which because of the 
m 

slow rate of change of can be ignored.) Notice that the time displacement 7 .  is  
L 

positive when an electron arrives at  each azimuth ahead of the synchronous 

electron. 

Because of the time variations of the rf accelerating fields only a synchronous 

electron will receive the energy Uo each revolution. Any other electron will gain 

in one revolution an energy U which depends on its time displacement J . We r f 
may follow the conventional notation and write 

where e i s  the electronic charge and V(r ) i s  called the lfrf voltage'f - by analogy 
Y 

with a dc accelerating system. The form of V(S) is of course related to U&); 

specifically, 

~v(L, )=  urffiS - ) (3.29) 

The variation with +J i s  reversed from the variation with T so the energy gain 

function of Fig. 31 would give the V(T) shown in Fig. 33 - where now = 0 
L - : '  

FIG. 33--The rf voltage function V(r ). 

corresponds to the time displacement of a 'synchronous electron. Notice that the 

slope of V(-T) i s  positive a . t . ~  = 0. 

It should,perhaps be emphasized that the effective "voltage" of a multiple 

cavity system typical of high energy rings i s  not simply related to any observable 

electric "voltage" but depends on the relative positions and oscillation phases of 

the various rf cavities in the system. The voltage V(T) may in fact, depend on 

the sense of circulation around the ring and may therefore, be quite different for 

electrons circulating one way around the ring and positrons circulating in the 

opposite direction. 



'We a r e  now ready to consider the energy oscillations of 'an electron in a ' 

circulating bunch in a storage ring. Let's f i rs t  see qualitatively what w i l l  happen.. -. 

Suppose an electronhas'initially the nominal energy Eo but a positive time dis- 

p l a c e m e n t ~  - so  that i t  is  ahead of the synchronous position. The radiation loss . 
depends only on the energy s o  it will be Uo each revolution: But the energy gain 

will be greater than Uo. The electron will gain a little bit of energy each revo- 

lution. But an increase in energy will, by Eq. (3.15), cause its revolution time 

to get longer; and its time advance with respect to the bunch center will, accordingly, 

begin to decrease. After some revolutions the time displacement will decrease 

to zero. But, by then, the electron's energy will be higher than,the nominal energy 

Eo - since the electron has continually been gaining energy - so the time dis- 

plaosmont will oontinuo to dooronoe now toward negativc valuce of 2 . At negative 

values of however, the energy gain will be too small to compensate for the 

energy loss b,y radiation and the electron's energy wi l l  begin to ,decrease toward 

the nominal energy. When the nominal energy is  reached, the time displacement 

will stop decreasing; but, since it is then negative the energy gain per .revolution 

is below Uo and the energy will begin dropping below Eo. Now the time displace- 

ment will begin returning toward zero. The process will continue  until^ returns 

to its starting value, at which point the energy will again be Eo. 

Let's put this description into quantitative terms. First,  take the variation 

of the time displacement z . It i s  co~lvenient to keep track of what is happening by 

observing a bunch once each revolution when the bunch center is at some arbitrarily 

choocn rcfcrcncc point. The discussion will be easiest if we take the rCferer~ca 

point in some field free region (away from any magnets o r  rf cavities). In Fig. 34 

I show two "picturesff of the same bunch on two successive passages of the reference 

azimuth. In each picture the bunch centcr i s  at  the reference azimuth so the time ' 

between the two pict&es is  just To the revolution time on the design orbit. 

The pictures show also the position of -some particular electron of the bunch: 

"Electron A. I f  In the first  picture Electron A i s  ahead of the bunch center by the 

distance yl. In the second picture the longitudinal displacement has decreased to 

y2. Between the two pictures the bmch center has traveled once around the design 

orbit, a distance L =cTo. And since Electron A travels also at the speed c,  it 

also ha's covered a path.length equal to L. But if it has an energy deviation E from 

the nominal energy, the path length for one complete revolution (back to yl) - 
I 
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FIG. 34--Longitudinal motion of an electron within a bunch. 

would be, a s  shown in Section 3.2, greater  than L by the amount 611 with 

Electron A fails to reach its previous azimuth by the small distance 6y = -611, s o  

The change i n 2  during the revulutiun is 

. . 

Since the time between the two pictures is To the time rate-of-change of P 7 is 

A nice simple result. 

Next, the energy variation. During its revolution Electron A has lost by 

radiation the energy Umd(t-) and gained from the rf system the energy eV(gl). 

The net change in energy during the revolution is then, 



The rate-of-change of the energy deviation 5( - when averaged over a complete 

re'volution - i s  ~ u / T O  s o  we have' that . . 

(We m a y  drop the subs.cripts on& because we may now take it a s  a continuous 
, < 

variable, obtained by a smooth interpolation from r. t o  r to z3 ,  etc. ) *l.. . -2 
The two coupled kquations; (3.32) and a3.34) describe the energy bscillations - 

and the associated oscil lat iok of the time displacement - of a stored electron. 

They must be solved together to give the time variation of and of: 

It will'turn out -,unfortunately - that the time displacements which a r e  

associated with small  energy deviations need not themselves be "small, in the 

sense that they may span a significant fraction of a complete cycle of the variation 
. . 

of V(Q. T h i s  wil lbe theolie i~ l s ta~ lce  ih whichwe m a y k t  - l o o k ~ n l ~  at linear 

terms.  We s.hal-1 need a t  times. to .take into account: the. full, nonl.inear vayia.tions 

elf V(T). At other times, however, we shall wish to focus our attention on the 
. W  

small  energy oscillations which correspond also to small time displacements. 

For such oscillations we shall need to retain only the linear part of the 

of V(T). Since the accele,ration energyGgain at T = 0 1s by definition u&' we may 
0 * 

then write 

where v stands for d ~ / g Z  evaluated a t  T = 0. 
0 Y 

It is quite c o m a i n  fo r  the r f ' v ~ l t a ~ e  of a storage ring to have a sinusoi.da1. 

variation with time. In such cas.es we would have that 
. . . . .  . .  . A 

V(r) = V s in  o,.~(;I = T ~ )  
.) 

(3.36) 
.. , 

A 
where V is called the "peak r f  voltageff and urfrO i s  called the flsynchronous rf 

phase angle.." With our assumptions 

It also follows that 

and that 

' 4 v =wrfVCOSw 7- = =  v 1 -  0 r f o  rf (2y2 



3.5 . Small Oscillations 

We a r e  now ready to analyse in detail the energy oscillat.ions of the electrons 

in a bunch. I shall take up f i rs t  the special case of the small (linearized) oscil- 

lations which occur s o  long a s  the variations of a r e  limited to a small interval 

that corresponds to an approximately linear segment of V(z) .  And then look later 

(in the following section) at the nonlinear oscillations which occur when the ex- 

cursions of & a re  large. 

For small and 5,  we may replace V(Z) and Urad(g) by the linear approxima- 

tions of Eqs. (3.35) and (3.23). Then Eq; (3.24) becomes 

This equation can now be combined with Eq. (3.32) to give a differential equation 

for 1 o r l .  Suppose we choose,;. Taking the time derivative of Eq. (3.32) and 

eliminating 5,  you can show that 

t with 

, You will recognize that Eq. (2.43) describes a damped harmonic oscillation . . 

with the oscillation (angular) frequency a, and damping coefficient a, . Since the 

damping rate i n  a storage ring is always slow (a,<< R ) the solution of Eq. (3.41) ' 

can be written a s  
-act 

~ ( t )  = A e cos ( a t  - 00) 
L 

'careful!  here a r e  not endugh different letters. The constant a,' i s  B new quantity 
quite distinct from the dilation factor a!. . . 

C 



with A and O0 arbitrary constants. Or, using th; usual complex notation 

where? is a complex constant; 
.. . 

, Equatiolis (3.40) and (3.32) can be solved instead for f ,  which,you can show, - 
satisfies the same differential equation a s  I, Eq. (3 41) ! And so the:time variations 

of E a r e  
W \ 

From Eq. (3.32) 7 and 7 a r e  related by 
, . - , < = - i -  a E 0  

a 7 

(because ae<< a) and s o  the oscillations of 6  and^ will have a phase difference 

of n/2. 

Nullce ll~al tile usc i l l a t io~~  frtquei~cy of the snlall cacrgy oocillationo.dopondo 

on the rf system only through GO. The frequency is proportional to the square 

root of the rf slope a t  the synchronous phase. The other parameters, a ,  To, Eo  
a r e  characteristics of the guide field (including the energy a t  which it i s  operated). 

The damping constant of the energy oscillations ere - which is  the inverse of the 

damping time constant - is proportional to D, which i s  the rate-of-change of the 

radiation loss with energy. As we shall see, this rate depends on the electron 

energy and on the properties of the guide field. 

I would like to give now some orders of magnitude for  the various quantities 

which have been appearing. The skeptical among you may then be happier about 

the approximations which have been made. A storage ring for 1 GeV electrons 

might have the following typical magnitudes fo r  the various (angular) frequencies: 

- 1 a % 10 sec 

The large ratios wrM1 and i?/q justify the approximations we have been making. 

In the absence of damping $ and T are  conjugate variables. In a "phase * 
diagram, l t  where f is plotted versus 7, the oscillations a r e  described by a point 

& 



which moves cyclicly around an ellipse. See Fig. 35(a). The ratio of the two 

FIG. 35--Phase diagram for energy oscillations. (a) Without damping. 
(b) With damping. (The damping rate is very much exaggerated. ) 

semimajor axes of the ellipse would be - by Eq. (3.45) 

If the scales a r e  chosen so  that the ellipse becomes a circle, the reference point 

rotates at the constant angular frequency R .  With damping, the size of the ellipse 

decreases slowly and the phase trajectory i s  a slow inward spiral as  indicated 

crudely in Fig. 35(b). The phase diagram also makes transparent why the damping 

depends on d ~ , ~ / d ~ . .  If this derivative is positive, the electron i s  losing a little 

extra amount of energy while on the upper half .of the ellipse, and ,gaining a little 

extra.energy while on the lower half. So i t  i s  always ''drifting" toward the axis of 

T and the oscillation amplitude is  decreasing - in proportion to durad/dE. 
x4 

According to our solution, the energy oscillations of.all electrons should 

ultimately be completely damped out and they should a l l  end up on top of the syn- 

chronous electron. But we have not yet taken into account the excitation of the 

oscillations by the quantum effects which "shake up" the oscillations and prevent 

them ever from going completely to zero. (They a r e  considered in the next 'part. ) 

Under stationary conditions any stored electron will typically be found with some 



residual oscillation amplitude in which there is  a balance between the excitation 

and the damping. Since both of these processes a re  slow we may think of the 

energy oscillation during any brief time a s  being described by a fixed phase ellipse 

such a s  the one in Fig. 34(a). 

I should also remind you that the energy oscillations relate not only to the 

longitudinal oscillations (in y o r z )  of the electrons in a bunch but have also a 

lateral  component. According to Eq. (3.3) an energy deviation &results in a 

radical displacement x, which is  proportional to 5- and in phase with it. So the 

component xc of the total horizontal displacement oscillates in synchronism with 

the energy oscillations. Generally, this transverse manifestation of the energy 

oscillations has (under stationary conditions) about the same amplitude as  the 

het.a.t.son oscill.a.tions. 

3.6 Large Oscillations ; Energy Aperture 

A storage ring guide field can usually accept only a small range of energies - 
typically only a few percent of the nominal energy - and the magnetic focussing 

forces a r e  usually reasonably linear over the whole energy range. Even much 

smaller energy deviations however, may correspond to rather large oscillations 

of the time displacement L. I mean by "large" oscillations those for which V(L) 

departs significantly from a linear dependence on$. Such large amplitudes may 

t.ypically occur when the peak rf voltage i s  not very much larger than the radiation 

loss (as  is  usually the case a t  very high energies) or  when the rf harmonic number 

k is very large. We should take a t  least a brief look at the large amplitude os- 

cillations because they a re  generally responsible for determining the energy 

llaperturell- o r  "acceptance" - of a ring. Please keep in mind however, that 

although we shall be dealing with "large" time displacements - which may encom- 

pass a major fraction of an rf period - the maximum energy deviations will still  

be llsmall, " a very small fraction of the energy itself. 

We may begin with the two basic results of the preceding section, Eqs. (3.32) 

and (3.34). As before, we replace Urad by Uo + DJ, since the energy deviations 

remain small. But we must retain V(T) without any simplification. We get for 
I- 

Eq. (3.34) 



Lf we now express both and its time derivative in terms of T by using Eq. (3.32) 
r*, 

we get the following equation. 

This equation describes the variation of T for  all amplitudes. 
ir 

I now ask you to look a t  another equation which is probably familiar to you: 
n 

d'x dx - = F(x) - /.A 
dt2 

It represents the motion in one dimension, x ,  of a particle of mass.m, which 

moves in a conservative force field F(x), and suffers a frictional drag force pro- 

portional to its speed. We can understand Eq. (3.49) by making a direct com- 

parison between it and Eq. (3.50). The motion in E is exactly like the motion of 

a particle of unit mass which moves in the conservative force field 

and which is subject to a frictional drag proportional to the velocity with a drag- 

coefficient D / T ~ .  

The motion in can, in general, only be evaluated by a numerical computa- 

tion. We can however, get a good heuristic idea of the motion by considering 

f i rs t  what happens if the friction term i s  zero. It is small  anyway and can be . . 

taken into account later  a s  a perturbation. We wish to study the motion 
n 

with F(Z) given by Eq. (3.51). As you know such an equation i s  often handled by 

defining a Itpotential energy" function 9Q-J which i s  the negative of the integral of 

the force. Le t t s  define 

We can then analyze the motion by evoking the principle of conservation of "'energy. " 
At each instant the sum of the "potential energytt @a) and the "kinetic energytt - 

1 2 here Z(d;r/dt). - must be a constant, the ltLotal energy. The total energy is 

also the maximum QO that can be reached by @(T) - which will occur when $/dt 



is zero - so we may write that 

Suppose that the energy gain function eV(r) has the form shown in Fig. 36(a) . 
and that the synchronous energy gain Uo is as  shown there. Then @(T') will. be as 

a 
drawn'in part (b) of the figure. The form shown is quite typical. Notice that there 

is a general downward trend of @(s) with an average slope of -U This must c'  
occur because the rf accelerating fields must integrateto zero over each complete 

cycle (at least over each complete cycle of the lowest frequency present). 

You can now visualize the nature of the time displacement oscillations. The 

motion is like that of a point particle (an "electron") which slides around "onf1 the 

hilly surface represented by $ (T )  - where you nlust uf course, Lli~lk u f ; ~  as a 
W 

horizontal spatial coordinate. First,  there is a potential minimum a t  2 = 0. If 

you place an electron there i t  remains stationary; it is a "synchronous electron. "t 
If however, you place an electron at  s1 - so that it is a t  point A on the hill - it 
will slide down the hill and coast up the other side to point B. Both A and B a re  

at  the same height djO = At zA and 7 the "kinetic energy" will be zero. *B 
The kinetic energy will reach its maximum value a s  the electron p a s s e s ~ =  0. At 

each 7 the kinetic energy i s  given by Eq. (3.54) and from it we can obtain the 
Ir 

"velocity" at each 7 : 

Remember, now, that accnrding tn Rq. (3 .32)  thc "ve1n~i ty~  is 

s o  that the energy deviation (of the real electron) at  e a c h ~  i s  given by 

1/2 
(3.56) 

am-- 

'ThereaTe of course, stationary points at  each potential minimum and these 
correspond to the synchronous electrons at  the centers of other bunches (so long 



FIG. 36--(a) 'Yhe rf acceleration function e'V(r), and (b) the effective 
potential energy function (P(T). , 



you can easily see that if you plot a phase diagram - 15 versus 7 - you w i l l  get 

a more-or-less elliptical curve much like the curve a drawn in Fig. 37. YOU 

SEPARATRIX  I 1 6 3 2 ~ 3 7  

FIG. 37--Phase diagram for large oscillations. Bounded energy 
oscillations occur only inside of the separatrix. 

,must only use your common sense to choose the proper sign for the square root 

on each half cycle. 

Also you can see what would happen if you were now t o  include the friction 

term - the radiation damping. - During each oscillation cycle a sma1l.amount of 

energy would be lost in a resulting dec~ease  of the total "energy. " (You could even 

estimate this loss by, say, approximating the motion by a sinusoid. ) 

It should also be a~parent. that 'there will be a maximum amplitude of a stable. 

(periodic) oscillation of 7. It occurs when the electron can just reach the peak of 
"! 

the hill at z3 - corresponding t o  the point C in  Fig. 35(b) - where @(:) takes on 

the value Qm,. An electron with, any larger amplitude will sail on over . the .. peak 

and on into the next valley where i t  will have'so much 'kinetic: energy'! that it will 

keep on going forever - ~ t i l - i t  i i  lost from the storage ring. 

The maximum stable oscillation goes back and forth between the points C and 

D. Notice that the point C is also where eV(7) is  again equal to Uo. (To the left 
a 

of C the real electron always gains energy and may have some hope of returning 

to the origin of g). The other extreme of the oscillation at  point D has no special 

qwlity except that O(T) is again equal to @ 
max' .the value at C. The phase diagram 

. . . . 



of the extreme oscillation is a little peculiar, since both the velocity - and the 

acceleration go to zero at  C but not at D. The electron lllingers" at  C - in the 

ideal case for an infinite time! As a result the phase diagram will have a "corner, " 
a s  shown by the curve b of Fig. 37. This special curve i s  called the separatrix . 

because it separates the stable oscillations from the unstable trajectories. An 

electron injected into a storage ring with a certain energy deviation hand  time 

 displacement^ corresponding t'o the point P in Fig 37 will circulate on a more- 

or-less elliptical closed curve (neglecting damping). If an electron i s  injected 

a t  a point outside the separatrix it i s  "lost. " 
You can now see how the rf system can determine the energy aperture of a 

storage ring. Energy deviations larger than * E - of Fig. 37 - cannot be * max 
held in the storage ring. Electrons may be lost at  smaller energy deviations if 

the lateral displacements x, associated with 6 cause the electron to collide with 

some physical obs1;ruct;ion that limits the radial aperture. Normally, however, 

the rf limitation sets in first  and the energy aperture is h cpealt. From Eq. (3.56) 

fmax 1 - = -  )1/2 
Eo  a (2 'max 

If you work out @(&) for the special case of an rf voltage function that i s  a 

pure sinusoid - as described by Eq. (3.36) - you will find that 

in which 

q = eV/u0 

is the overvoltage - namely the ratio of the peak rf voltage to the minimum voltage 

required to store a synchronous electron - and 

The energy aperture & for this case i s  then given by Tnax 



The aperture.function F(q) is plotte'd'in Fig. 38. Notice that for large q 

FIG. 38--The energy aperture function F(q). 

 ina all^' if you think-about what happens if you start  an electron outside of the 

energy aperture - say at  points above the pdint D on the curve' of @(7) in Fig. 36(b) 
sr 

and figure out what their phase trajectories will be you will see that they become 

ounreE like the ones drawn in Fig. 39. Three S U C C ~ S P ~ V ~  separatrices are shown 

FIG. 39--Phase trajcctorics for clcctrons not captured in a bunch. 
(A qualitative sketch. ) 



and several examples of unstable trajectories. Again you see  that an electron 

once outside a stable region will - barring a fortunate accident - stay outside 

forever. 



. . . - . .  . ? .  

IV . RADIATION DAMPING? 
I . . . . . . .. . . . 

4.1. Energy Loss . . 

A relativistic electron which is  accelerated in a macroscopic force field will 

radiate electromagnetic energy at a rate which is proportional to the square of 

the accelerating force. The rate depends on the angle between the force and the 
2 2  2  

electrons velocity and i s  larger by the factor y = ( ~ / m c  ) when the force is  

perpendicular to the velocity than when the force i s  parallel to the velocity. In 

a storage ring the typical longitudinal forces (from the accelerating system) are  
Z 

much smaller than the typical transverse magnetic forces and y is a large number 

indeed, so we need consider only the radiation effects that accompany the magnetic 
\ forces. 

Let P stand for the rate of loss of energy by radiation; it may be written 
Y 

where m is the rest  mass of the electron, r is the classical electron radius, and e 
FI is the magnetic force on the electron. It will be convenient to define the 

constant 
m 

'l'keii, since - ecD, the rndiutcd powcr lu 
1 

2 3  2 2  p = -  e c  C E B .  
Y 2 =  Y 

This instantaneous power i s  proportional to the square of both the energy and the 

local magnetic field strength. It i s  sometimes useful to express the magnetic 

force in terms of the local radius of curvature p of the trajectory; then 

'1 shall assume that you a r e  familiar with the classical theory of electromagnetic 
radiation by relativistic electrons (see e.g., Ref. 10) and will only review briefly 
the results needed for our purposes. 



An electron circulating on the design orbit has the nominal energy Eo and 

moves on the radius ps = 1/G - see Section 2.2. To find the energy Uo radiated 

in one revolution we must integrate P with respect to time once around the ring. 
Y 

Since dt = ds/c, 

2 
We may write the integral a s  the mean of G multiplied by L = 2nR, the distance 

around the ring: 

For  an isomagnetic guide field? G = Go = l /po along the curved parts of length 

2npo and zero elsewhere, so  - - 
2 - < G >  = - - -  I (isornag) 

Rpo 

and 

For a fixed radius po, the energy radiated per  turn varies a s  the fourth 

, power of the electron energy. A 1 GeV electron moving on a 5 meter radius 

looses 17 keV each revolution. 

The average power radiated is U /T where To= c/2nR i s  me time elapsed 
0 0 

during one revolution. For the general guide field 

And for an isoma.gnetic ring, 

cc E:G~ cc E 
4 

2 - = 2 (isomag) <'?>= 2n R . ~p~ 

An electron that is not on the ideal orbit radiates at a different rate. Consider 

f i rs t  an  electron that has the nominal energy Eo but is circulating with a betatron 

. . . .  

G e e  Section 2.2. 



oscillation. It's rate of radiation will be different from an electron moving on the 

design orbit only because it moves through a slightly different magnetic field - 
due.to i ts  betatron displacement. But a t  each azimuth its displacement is equally 

often positive o r  negative. And we have assumed that the fields have only a linear, 

variation with displacement. So --- to f irst  order in the betatron amplitude the radiated 

power averaged over a betatron cycle i s  .the same a s  that of an electron on the 

design orbit. 

The same i s  - not true of an electron'with an energy different from Eo. That 

case will be analyzed in the next section. 

For ultra-relativistic electrons the radiation i s  emitted primarily along the 

direction of motion. Most of the radiation i s  emitted within the angle I/?. The 

radiation reaction fdrde - and therefore, the accdmpanying momentum change - 
is exactly opposite to the direction of motion. t The only effect bf the radiation i s  

then to decrease the energy of the electron without,.changing its direction of motion. 

4 . 2 .  Damping of the Energy Oscillations 

In Section 3 . 5  we saw that small energy oscillations were damped at a rate 

'proportional to the change of the radiation loss with energy. From Eqs. (2.43) 

and (3.24) the damping coeffici,ent a, i s  
. . . , 

where Urad is the energy loss per revolution. When the energy 01 all electron 

deviates from the nominal energy Eo, the energy radiated in one revolution changes 

in part because of the energy change, in part because the electron travels in a 

different magnetic field and in part because its path length i s  different. Letts  

look at  how d u r a d / d ~  may be evaluated. 

We have already seen that a betatron oscillation does not, to first order, 

change the average power radiated; So to get Urad at any energy we must merely 

integrate the < of Eq. (4.8) with rcopcct to timo around one aornplete oU+nergy 
, I  

closed orbit. It will, however, be conveliient to changc the variable of 'integration 
. . 

' ~ e i l e c t i n ~  quantum effects; see Section 5.1. 



to s. Then 

dt 
Urad = f pYdt =$py ds. 

We have earl ier  evaluated dt/ds, see  Eq. (2.15) : 

where x is the displacement from the design orbit and ps(s) is the radius of cur- 

vature of the design orbit. Since we a r e  now interested in the energy loss on an 

off-energy closed orbit we should take x = ? Z / E ~ ,  where f = E - Eo and ~ ( s )  i s  

the off-energy function. See Eq. (2.28). Then 

We have already looked a t  this integral for 5 = 0; it is just Uo. So let's 

differentiate now, evaluating the derivative a t  $ = 0. 

where the subscript "0" on the curly brackets means that all quantities in the 

integrand a r e  to be evaluated on the design orbit, and a t  the energy Eo. From 

Eq. (4.3) P is proportional to the product E ~ B ~  - and remember that when $ 
Y 

changes, the orbit moves to a different location s o  that B also changes'. We may 
. . . .  . then write that 

But ' 

'where d ~ / d x  i s  a of the guide field. Putting these last two together and 
, . 

into Eq. (4.14) 



The integral of the f i rs t  t e rm yields just ~ u ~ / E ~  so our result for the variation 

of the radiated energy'is ". 

We may now write fo r  the damping constant: 

.. . 
with 

Taking P and Uo from Eps. (4.3) and (4.8) and expressing B and d~ /dx in terms 
Y 

of G(s) and Kl(s) a s  defined in Section 2.2, . w e  may rewrite 9 a s .  . . .  . . ,  . . . . 

This form makes clearer the fact that.' 9 i s  just a number which i s  a property of 

'the total guide field configuration - obtained fr0.m integrations, aro,md the ring of . . 

expressions involving o d y  the guide field functions. G, K1, and 7. The number a 
. . .  . 

is typically a positive number quite . . a bit smaller than 1. . - .  . 
. ~ ~ u a t i o n  (4.16) hno a picc p-hyoical intcrp~etation. Eincc Cd is  usually small . .  . . . 

we have the approximate relation: 

where <Y >is the average rate of energy loss. The damping time constant for 
Y 

energy oscillations - which is the inverse of aE - is just the time it takes an ----- 
electron to radiate away its total energy! . . - -- 

The expression above for k2r becomes simpler if the guide field is isomagnetio. 

. ~hbn 'G( s )  is ei ther zero o r  equal to some constant i i the '  &agnbts and thd int'kgrals 
2 .  

extend only over the magnets. Equation (4.18) becomes 

2 .rr Mag 



If the guide field is also Ifseparated function, J I  the magnets have no gradients and 

G2 
o = 3 hq q(!) ds (is'rnqo sep. func. ) 

The integral is familiar; it appeared earlier when we calculated the dilation factor 

a! for an isomagnetic guide field. Using Eqs. (3.13) and (3.14) - 

g = ~ ~ < ? > ~ ~ ~  sep. func. 

For this type of ring, the number g is just the dilation factor a! increased by the 

ratio of the gross orbit radius R to the magnetic radius po. Typical values for ' 

these parameters of a ring might be: 

Recapitulating, for energy oscillations in an isomagnetic, separated function guide 

field, the damping coefficient for energy oscillations i s  

aE ' = "Y' (2 + C Y ~ )  (isornag. 1 
2 E ~  sep.func. , 

' 4; 3. . Damping of Betatron Oscillations . , 

It i s  now time to take a look at the so-called radiation damping of the betatron 

oscillations. I shall give here only an approximate treatment, but using a method 

which can - with only a bit of tedious algebra - be extended to an exact calculation. 

The exact result is, in any case, obtained more easily by a general theorem that 

will be discussed in the next section. 
/-J 

Let's look first at the vertical betatron oscillations. (The notation will be 

the one used in Part  11. ) I shall approximate the motion by ignoring the variation 

of B with s ,  then I may write (see section 2.8) 

z = A cos +, zf = - sin +, (4.24) 

where $I is s/P. The amplitude A of the oscillations can be obtained from z and 

z' at  any instant by . . 
) .  

2 2 2 A = k + (pzl) I . (4.25) , 



Suppose we are  looking at  an electron of energy Eo - which is then oscillating 

vertically about the design orbit. In any element of azimuth 6s the electron will 

lose by radiation the small amount of energy 6E. Its momentum vector p w i l l  be 
L. 

changed by 6p and, a s  was remarked earlier, 6& is parallel (and opposite) to p, 
d lr 

so  16~1 = c6E. See Fig. 40(a). The radiation loss does not change either the 

- .  
FIG. 40--Effect of an energy change on the vertical betatron oscillatiois: 

(a) for radiation loss, (b) for rf acceleration. 

displacement o r  the slope of the trajectory; and so the amplitude A , . i s  unchanged 

b~ - the radiation. (There i s  a small effect due to the fact that the effective focus- 

sing forces and, therefore, also P are  changed with a change of energy but this 
. . 

so-called, !'adiabaticf1 damping effect is of second order and can, anyway, be 
. . .  

neglected.since the energy is  not changing on the average when the rf acceleration 

is also taken into account. ) 

Notice now, that the effect of the rf accelerating force is quitc different. 

This f0rc.e is, on the average, parallel to the design orbit. Then the momentum 
. . 

increment 6 received in the azimuthal element 6s is  no longer exactly parallel B 
to p. See Fig. 40(b). Let's write pl for the component of g perpendicular to the 

b 

design orbit; thcn, 'since the angles are small. we may write 

Again, the accelerating force doesn't change z. But now it does change zt  which 

goes over to 



The change in z' is 
6E Sz' = - z' P = - - E ' .  

There is' a corresponding change in the amplitude A; 

2 2 6E 
A8A = P Z' 6z' = -(pz') - E (4.28) 

Now the phase of the oscillation at  the arr ival  of the electron at  the point s is 

arbitrary (and all values between 0 and 27r a r e  equally probable) s o  we should 
2 28 2 . 

inquire only about the average change in A .  The average of (z') i s 'A  /2P , so  

Suppose we now sum over all  the elements of acceleration gain in one revo- 

lution. Since all of the 6E must add up to the radiation loss Uo, we find for the 

change AA that occurs in A. during one revolution (due to the rf acceleration): 

Since AA in each revolution time To i s  proportional to A, the motion i s  exponentially 
- 

damped - as  e azt. That is ,  

so  the damping coefficient is 

You can show that an exact calculation - using the full-blown form for the vertical 

betatron oscillation - yields the same result. Notice that the damping rate for 

the vertical oscillations is just 1/2 the typical rate for  the energy oscillations 

(when $3 is small); see  Eq. (4.20). 

It is amusing to notice that the l1radi,ation1' damping does not occur in the radi- 

ation process, but rather in the process of energy gain from the rf system. One 

might question the appropriateness of the name "radiation damping. " But on 

second thought, there would be no opportunity for damping by the rf fields if there 

were not the necessity to compensate for the energy loss by radiation. So the 

namc "radiation damping!' i s  not s o  bad. 



Now lett s turn to the radiationeff ects  on the radial betatron oscillations'. 

You might at f irst ,  think that the radial betatron oscillations would be radiation 

damped in the same way a s  the vertical ones. . But there a r e  additional comp1,ica.- 

tions s o  we shall have to treat  them as a new problem. One new element ar ises  

from the change in t h e  betatron displac'eme'nt that occurs when there is an energy 

change. Remember .that the total.radia1 displacement .x is the sum of two parts: 

the displacement x, of the off-energy closed orbit, plus the betatron displacement 

x  with respect to .the closed orbit, 
P . . 

. . 

x = x e + x  
B : 

(4.33) 

When the energy of an electron changes by 6E, there is a change of x, by the 

amount, see  Eq. (2.28), 

But since the position -- in space of the electron i s  not changed by a finite momentum 

impulse, the total x  does - not change, s o  there must be . a  compensatory change in 

x~ 
. That i s ,  from Eq. (4.33) . . .  

, . 

. .  . 6x = ax, Sx = 0, . . P 
from which 

When there i s  an energy change, the electron doesn't instantaneously move, but 

the reference axis of i ts  osciflations does and the displacement with respect - to 

that axis is therefore changed - as  is illustrated in Fig. 41. -- 
Something similar occurs for the betatron slope. Corresponding to Eq. (4.33)  

, . we must have 
. . 

X' = x' + x' . 
E P  

(4;36) 
. , 

Only now, an elementary impulse may change the total xf by some 6x1 so w e  should 

have for  the change in the betatron slope 
.. . . . ' I  i 



OFF - ENERGY 

B E F O R E  A F T E R  

FIG. 41--Effect of a sudden energy change a t  so on the betatron displacement. 

Taking the derivative xk f rom Eq. (2.28), 

where r]' is ,  of course, d ~ / d s .  Even if 6xf were zero,  a change in the slope of 

x, - the baseline of the osc.illations - would produce a change in the slope of the 

betatron oscillation. 

Still an additional complication a r i ses  from the curvature of the reference 

orbit. The positive and negative halves of a betatron oscillation occur in equal 

intervals of s ,  but the electron travels a grea ter  path length on the posltive s~vi~ ig  

than on the negative swing - s e e  Eq. (3.7). Although the net effect on the path 

length i s  zero, over a complete oscillation, there is, in general, a different amount 

of energy lost by radiation during the two halves of an oscillation. And the ampli- 

tude of the oscillation is thereby affected. 

Now let 's apply these ideas to  the radiation loss 6E in an azimuthal element 

6s. A. precise calculation would proceed from the changes in x and x' found in 

Eqs. (4.35) and (4.38). In keeping with the approximations made ea r l i e r  in this 

section, however, I a m  going to make the simplifying assumption that r]  i s  a 

constant, s o  that r]' = 0; and write the variation of x with s in the same form that 
. . P 



I took for z ; namely, 

."P = ~ c o s + ;  x l =  P ,  P * , s i n + .  

This time we have that 
0 

and since only 6x i s  different from zero, 
p 6E 

A6A = -X 7- (4.41) 
E~ 

Again let's take the energy change 6E a s  the radiation loss in an azimuthal 

element 6s. For the z-motion we assumed that the electron was always moving 

with zero radial displacement so the rate of radiation loss was the same (to first  

order in z) as the rate of energy loss on the design orbit. Things a r e  different 

for the x-motion if the magnets have a field gradient. To simplify the discussion 

here I will restrict  consideration to an isomagnetic and separated function guide 

field (see Section 2.2). In a separated function machine the rate of radiation loss 

i s  independent of x - to f i r s t  order. t I may then take that (for an electron of 

the nominal energy) the rate of radiation loss P ?' (s)  does not depend on x, but only 

on s. The energy change in a path element M is  then . . 
P 

Taking for M the . . expression in (2.15), 

Combining. this. result with Eq. (4.41) we have for the amplitude chang 

Again we a re  interested only in the expectation value of FA - the average over all 
2 2 

phase angles +; The ekpkctatibn value d f x  P i s  zeroand of x f i  i s  A -/2; w,e get that 

Since I am assuming an isomagnetic guide field wherever P Y is different from zero 

p = ps - 1 / ~ ~  and we o m  e a ~ i l y  sum up the effect at each As to.get the change aA 

. . 

 here is only a field gradient in the quadrupoles; where B is proportionai t'o x. 
Since the rate of radiation varies is B~ there is no first  order eIIect. 

1 



in one complete revolution. The sum of all  P s/c is  just the energy loss U in 
Y 0 

one complete turn. So we have for the effect of the radiation 

Observe that the sign on the right hand side is positive. There i s  an increase of 

the amplitude due to the radiation! 

Fortunately, this is only part of the story. We must also take into account 

the effect of the rf acceleration. For i t  however, there is no corresponding "path 

length" effect. Generally the rf cavities a r e  located in places where p = a, ; but 
I 

in any case, i t  is a property of such cavities that the energy gain i s  (to f irst  order 

at  least) independent of the betatron displacement. The calculation of the contribution 

f rom the r f  acceleration goes exactly the same a s  for the vertical oscillations with 

the result shown in Eq. (4.31). To get the total effect in one revolution we must 

add the contributions from the radiation loss and from the acceleration to get 

which gives for the damping coefficient ax of the radial oscillations 

A precise calculation for a separated function isomagnetic guide field gives exactly 

the same result, if we replace I) by the mean value of q ( s  ) in the magnets. 

But recalling Eq. (3.14), <q > = a R so  
Mag 

a ~ .  . u~ isomag. 
ax = ( l -  Pg) 2EOT0 sep. func; 

Provided a R /p is less  than 1- a s  it usually is - the damping coefficient i s  0 
positive and the radial oscillations a r e  damped. But there is an flantidamping" 

effect of the radiation - the term ~ R / P ~  - which counteracts somewhat the posi- 

tive damping from the rf: system. So long as the antidamping term i s  small  no 

harm is done. 

If you compare Eq. (4.49) with the results of the preceding section you will 

see  that we may also write our result in terms of the parameter 53 defined there: 

(general) (4.50) 



A.lthough we have demonstrated this result only for a special kind of guide field 

(and with some approximations) Eq. (4.50), it turns out, is  exactly -- true for  any 

guide field. That i s ,  if we had in our treatment kept account of the effect of the 

variation of 7 with s we would have found that in place of q/po in Eq. (4.48) we 

would have the complete expression for Q in Eq. (4.17). More will be said about 

this interesting llcoincidencefl in the next section. 

. . 
4.4. Radiation Damping Rates 

Radiation damping effects have now been considered 'for 'all  three degrees of 

freedom of an electron in a b&ch: the two transverse betatron displacements 

x and z and the energy oscillations - which show'up also iri associated oscil- P P 
lations  of,^ and x, . Each of the three oscillation modes has a natural exponential 

decay with damping coefficients a .  (with i = x, z, o r  ) that can be cconveniently 
1 

expressed as 

with 
' J = 1 - g .  , J =1,  J , = 2 + 9 .  

X z ' (4.52) 

The damping time constants are ' just  l / b .  s o  
1 

 or an  isomagnetic storage ring<P >may be taken from Eq. (4; 10) then 
Y 

where C is the constant defined in Eq. (4.2):' In a given storage ring the damping 
Y .. , , , . . . , . 

time 'constants vary as the inverse cube of the energy. 

' 'I'he number D is  a property of the guide field and ma$ be eval.u&ed from one 

of the equations (2.  lo) ,  (2.12), o r  (2.13). The numbers Ji a r e  h o w n  as the 

damping partition numbers since their sum is a constant: 



Although I have not actually proved this last result, it does indeed follow from 

detailed calculations for  a general guide field. (See e. g . ,  Ref. 5.)  Such calcu- 

lations a re ,  however, riot really necessary because ~obinsonl '  has proved dn 
. . 

very general grounds a theorem that yields Eq. (4.55) directly. The theorem 

required only that all  of the fields acting on the particle a r e  determined - a pr tor i  

and'are not in any way influenced by the motion of the electron. These conditions 

apply if we consider only the prescribed magnetic and rf'fields of a storage ring. 

The damping rates for an individual electron - and more importantly, for 

the coherent motion of a clump of them - can be modified from the above numbers 

if additional forces a r e  introduced that depend on the details of the electron motion. 

Such forces may, for example, come from image currents in the wall of the vacuum 

chamber o r  from currents induced by the beam in rf cavities, o r  from forces f rom 

auxiliary electrode systems powered via amplifiers f rom detectors that sense the 

displacement of the electrons. In actual rings, the f i rs t  effect has led to unstable 

transverse coherent oscillations and the last  one has been used to tame them. The 

second effect has been both the cause and the cure of unstable longitudinal oscilla- 

tions of a bunch. Since such effects require the coherent cooperation of many 

electrons they a r e  beyond the scope of the report and will not be considered further. 

From Eq. (4.55) one would also obtain the more particular result that Jx + JE = 3 .  

This result depends, however, on one restrictive assumption - that the design 

orbit l ies in a plane and that the magnetic fields a r e  symmetric with respect to that 

plane. We have already referred briefly (at the end of Section 3.1) to one of the 

consequences of dropping this assumption. Offenergy orbits may generally have 

wverticalfl displacements z, a s  well as the 'Iradialn displacements x, . Most of 

the developments made in this report become more complicated and, in particular, 

the partition numbers will not be given by (4. 54). The lfconservationff theorem 

Eq. (4.55) will, however, remain valid. 

Two other remarks about the consequences of this theorem a r e  perhaps in 

order. First ,  for  "alternating gradient" guide fields - such a s  those used univer- 

sally in electron 'synchrotrons and in most proton synchrotrons - the number 

is g rea te r  than 1. As a consequence the radial betatron oscillations a r e  antidamped- 

and grow expone'ntially with time a t  a fixed energy. This effect has not been grave 

for the synchrotrons because the amplitude growth due to  the antidamping i s  quite 

small during the acceleration time. It has however, posed a special problem in 



the adaptation of the CEA synchrotron for  use a s  a storage ring. For  this adapta- 

tion i t  has been necessary to install special magnetic devices designed to modify 
C 

G@ without affecting significantly the other characteristics of the ring. 

Finally, you will appreciate that no real  guide ever satisfies exactly the postu- 

lated symmetry of the fields with respect to the plane of the design orbit. The ac- 

cidental asymmetries a r e  generally small  but they will, in general, lead to some 

coupling of the horizontal and vertical betatron oscillations. When such coupling 

is taken into account, x and z a r e  no longer the coordinates of the normal modes. 

And the new normal modes will have damping coefficients which a r e  somewhat 

different from ax and ay,. 



V. RADIATION EXCITA.TION 

5.1. Quantum Radiation 

Until now we have considered only the total energy loss due to synchrotron 

radiation - assuming implicitly that the energy loss is a continuous process. 

Such a view i s  all right for a f i rs t  approximation since the energy loss is indeed 

fairly smooth on the average. But we know that a l l  electromagnetic radiation 

occurs in quanta of discrete energy. And this quantization of'the energy loss has 

significant effects on the behavior of electrons in a storage ring. 

Each time a quantum is emitted the energy of the electron makes a small 

discontinuous jump. A s  we shall see  later, the most significant quanta have energies 

which range from that of visible light out into soft x-rays. Although one is on 

shaky ground in trying to speak too quantitatively about quantum effects in a classi- 

cal way, the following quasi-classical statements can be rigorously justified. 

First ,  the lftirnelf during which a typical quantum i s  emitted is certainly no greater  

than p /yc, where p i s  the radius of curvature of the trajectory and y i s  the electron 

energy in units of i ts  res t  energy. Since this time is much less than any other 

relevant time - such a s  the period of a betatron or synchrotron oscillation - we 

may consider it  to be instantaneous. Second, the emission times of the individual 

quanta a r e  statistically independent. Since the energy change in any emission 

event i s  a very small fraction of the electron energy we may consider that the 

emission of successive quanta is a purely random (that is ,  Poisson) process. 

The discontinuous energy change from the emission of a quantum disturbs the 

trajectory of the electron. The cumulative effect of many such disturbances intro- 

duces a kind of "noise" into the various oscillation modes causing their amplitudes 

to grow until the quantum excitation is ,  on the average, balanced by the damping 

of the oscillations. This process will be considered in detail for both betatron 

and energy oscillations in later  sections. 

A remark i s  perhaps required here about damping. We have, in the preceding 

sections, related the damping effects to radiation. You should notice that the 

damping depends only on the average rate of emission of energy and not on any of 

its other statistical properties. So when considering quantum effects we may take 

the same damping we have already found - understanding that it i s  due to the 

average rate of energy loss in all quantum energies. The excitation effects will 

be due to the fluctuations in the radiationabout its average rate. (One could, of 



course, treat both the average and fluctuation effects together, but to do so would 

only add unwarranted complications. ) 

In considering the effects of radiation fluctuations on the oscillations of an 

electron in a storage ring we shall need to know certain properties of the quan- 
. - 

tized radiation. I wish now to look at these 'properties. 

~ r o m ' t h e  classical view, the synchrotron radiation is emitted with a continuous 

spectrum of frequencies. (The frequency'spectrum was first  calculated by 

Schwinger, l3 a derivation is also given in ~ackson .  lo)  Consider the radiation 

emitted by an electron in some finite time interval At. Suppose we examine the 

radiation field which corresponds - by a suitable time retardation - to the emis- 

sion in At, and for each direction in space, make a Fourier analysis of the radi- 

ation field. The frequency spectrum will, in general, be different for each direc- 

tion. But we may average the spectrum over all directions to define a radiated 

power p e c t r u m  p ( w )  such that p(w)du At i s  the energy radiated in At with angu- 

l a r  frequencies between w and w + du . Clearly, the definition makes sense only 

if At is sufficiently large that most of the energy is  found in frequencies greater 

than l/At. Recall now, that the radiation is typically emitted within the angle l /y  

of the electron's velocity vector. Such an angle i s  swept out in the time p/yc, 

where p is the local radius of curvature of the trajectory. So a time interval 

zp/yc should contain most of the impulse of radiation; and i t  should, therefore, 

represent a suitable magnitude for At. We shall see later that it is  indeed so. 

With tho definition givon for 9(o) wc may pcrmit it to bc a olowly varying 

function of time and we shall not be in any difficulty provided only thatP(w) (and 

therefore, p o r  y on which i t  depends) does not change appreciably in At. This 

condition i s  generally satisfied7 for storage rings, so  we may consider that p (w)  

is an winstantaneous" power spectrum whose integral over w i s  the instantaneous 

radiated power defined earl ier ,  

 h he important results of this part actually require only that p and y do not.change 
appreciably in a time p/-y3c which i s  much smaller than At. 



The power spectrum can be written in the convenient form: 

with wc a constant defined by 
' n 

The number w i s  called the critical frequency, notice that it is approximately 
3  C 

equal to y times the angular revolution frequency of the electron. The spectral 

function ~ ( w  /wc) i s  a pure algebraic function of i ts  argument which can be expressed 

by 

where K i s  a modified Bessel function. It follows from the definition of Eq. (5 .2)  
5/3 

that S i s  normalized so  that 

The form of the spectral function is shown in Fig. 42. Its behavior for large 

and for small arguments - which can easily be obtained from the asymptotic 

FIG. 4 2 - - ~ o ~ m a l i z e d  power spectrum S and photon number spectrum 
F of synchrotron radiation. 

. . 

- - 

'caution! Some writers, for example Jackson, define the critical frequency with a 
different numerical factor. 



' 

. . . . . - 
behavior of the ' ~ e s s e l  funktion - i s  sometimes useful. . . 

For 5 >> i; 
9 ,/5 1'2 -t s(4) -" .- 8 e .  , , .  

8 '6 
. .. 

The power spectrum 9 ( w )  is  obtained from S(5) by Eq. '(5.2). Don't forget 
' 

that both P - .see, Eq. (4..4) - and o depend.on,both. y and p .  , It i s  clear from 
Y C 2 

' Fig. 42 that most of the power i s  found in frequencies near w (Since w 3  i s  y c' C 

larger  than the inverse of the At,.defined earlier, the assumptions made there a r e  

now justificd. ) 

You know that electromagnetic 'radiation a t  the angular frequency w i s  emitted 

in quanta of energy u = %, where 5 is Plank's constant reduced by 2n fi = h/2n = 

6.85 x l ~ , - ~ ~ e ~ - s e c ) .  . Letn(u)du be the number of quanta emitted per unit time 

with energies between u and u + du. The power emitted:in these quanta i s  un(u)du, 

which must be th.8 same as  the power emitted in the frequency interval du = du/5 

a t  the frequency w = u/fi; namely, 
. .. - . .. . . . . . 

'hi. 

. . . . . . .  ' un(i) du = ,P . . du/li , . ... . (5.7) 

Taking p ( w )  from Eq, (5.2) the quantum distribution function can be written a s  

with 

' 1 
, F(6) = S(6) (5.10) 

Like the frequency.spectrum, .the quantum spectrum is, apart from the scale factor 

P /u2 a universal function of the ratio u /gc ' 7/ c '  
The function F ( t )  is also shown in Fig. 42. The rate 'of emission . . of quanta 

per  unit energy interval divergeb a t  low energies.t But only a s  u - ~ ' ~ ,  so  the 

. . . t , -. . . 
( .  , 

. a  

 he spectrum is? anyway, questionable f o r  u < u /y3, according to the conditions 
C .  

. mentio~led ,earlier. . . 



rate of emission of the quanta in any finite interval of quantum energies - an 

integral over u - is finite. 

Let's let Jy stand for the total rate of emission of quanta (of all energies): 

From the asymptotic expressions for S(() in (5.6), i t s  complete integral is clearly 

" 1. It is actually 15 f i / 8  so 
P 

1 5 6  2. &= - (5.12) 
"c 

The mean quantum energy would be defined: 

The integral is just P so the mean quantum energy is 
Y 

Speaking roughly, we may say that the radiation is emitted in quanta of a typical 

energy about u and at a mean rate of about P /u For a 1 GeV electron moving c' Y c' 
on a 5 meter radius trajectory, 

11 - 1 P = 1 .7  x 10 eV sec , 
Y 

It i s  amusing to notice that the mean number of quanta emittedper radian of -- 
. trajectory d e p e n d ~  nnly nn the electron energy. Tt is ,  in fact, very nearly equal 

to simply the product of y and the fine structure constant: 

5 (Mean number of quanta per radian) = - 2 
2 4 3  137 

For  a 1  GeV electron, the number i s  about 20 .  The actual number in any time 

interval fluctuates a s  the Poisson distribution corresponding to the mean number. 

It is then under~tandable that with such small numbers the fluctuations may be 

significant. 

We shall see  later  that the quantum excitation of electron oscillations in a 

storage ring depends not only on the mean rate of quantum emission, but also on 
2 2 the mean-sq~~arn quantum energy. We would expect <u  > to be about equal to uo; 



as indeed i t  is. If you work it  out in detail you w'ill find that 

The quantity that will enter in  the quantum excitation of oscillations i s  in fact, the 

product 'of the mean 'square. quantum energy with the mean. rate A-'; namely. ' 

It will be convenient to write, using Eq. (5.12) 

2 
&<u > = c u p .  , ;  

. . . . .  
u c  Y 

: ' .. (5,181 

with 

It is important to keep in mind that both u and P . a r e  functions of the electron 
C 1' 

energy and of the local radius of curvature p of the trajectory. Taking uc from 

Eq. (5.9.) and. P from Eq. (4.4)  . .  . . . . < . ' .  . . 
Y . . .  . 

At a fixed radius the quantum excitatioA varies a s  the seventh power of the energy! 

5 . 2 .  Energy Fluctuatinns 

I turn now to au e x a ~ ~ l i ~ l a t i u ~ l  ui 1he.ellect UP quantum emission on the energy 

uec.illilliu~~s uf. a slored electron. *&hen a qtiantiiln o l  energy u i s  ,emittdd, the 

energy of the. electron is suddenly decreased by the amount u. . . .  This impulsive 

disturbance se ts  up a small  energy. oscillation. The cumulative effect nf m2.n.y 

such disturbances - occurring at random times - causes the energy oscillation 

to grow (as  ih:a random walk).  he growth is limited - on the average - b i  the 

damping; and, under-stationary conditions the energy. . . .  oscillations of any particular 

electron will fluctuate about some mean amplitude. I want now to look at these 

fluctuating .energy oscillations. . . . . . , . . 

At first ,  I sha1.l be concerned only with one measure of the typical energy 
. . 

oscil1atio.n -, namely the root-mean-square deviation . . from the mean energy - 
without considering ,iq detail the pro.bability distribution of the .energy . . deviation. 

The nature of the distribution. will be considered later  on. . 



In Section 3.5 we looked a t  the small oscillations of the energy deviation of 

a stored electron. In the absence of any disturbances, and ignoring for the moment 

any damping, the energy deviation 5 i s  described by 

where R is  the (real) synchrotron frequency and the amplitude A. is a real number. 

Now suppose that at some instant ti the en@ergy is  suddenly decreased the amount 

u - by a quantum emission. After ti the energy will go a s  

i t  - t o  i w t  - t.) 
I 

f = Age - ue 

See' Fig. 43. This new oscillation can be written a s  

FIG. 43--Effect on the energy oscillations of the' emission of a 
quantum of energy u. 

where? 

2 2 2  
A 1 0  = A + u - 2Aou cos h ( t i  - to) 

2 . . * '  
.. "obtained from A = 62 . 



and t is some time displacement of no concern to us now. The q.uantum emission 
1 . . . . . . .  

changes the amplitude' of th.e ,oscillation to a new value which depends on the . . initial 

. amplitude and on (ti - to). Since the time t. at which a quantum emission occurs 
1 .  . . < .  - .. . .  

is completely unpredictable. - and since we a r e  interested only in tht' cumulative 
. i.. 

affect of many such events - we should ask only statistical questions. Such as :  
. . 

. What is the probable. amplitude, change ? In general,. the . . . phase . . .  (ti; - to) i s  . corn- . 

pletely'random and the  expectation value of cosO(ti - to) is therefqre zero. . Then 

the probable amplitude .change due to the . quantum . event i s  , , 

Notice that our result says that the probable change in A', which occurs when we 
I .  . 2 add with random phase a new increment of oscillation of amplitude u, is..just u - 

2 
the same result we would have obtained for 6A if we had started with A = 0. 

Suppose now that such quantum events occur in a random time sequence at 
2 

the mean rate JV (number per  unit time).. Each event changes A by u2 ; and since 

the mean time between events i s  I/&, we expect that .. 

2 But the probable rate-of-change,of A is  equal to the rate-of-change of the 
2 ., . . . # . . a .  probable value of A or  . . 

In addition to exciting energy oscillations, the quantized energy losses contri- 

bute to a cuil~ulative energy change. We have however, considered such average 

effects earlier. Their effect is to produce . the , e ~ ~ e ~ g y , o s c i l l a t i o ~ ~ s  . . as  well a s  to 

cause the slow exponential damping of the amplitude A with a time const.a~~t T, = l/o,. 

With such damping the amplitude decreases at the rate A/7 ; or  its square at the 
E 2 

rate 2A. /T, . The probable . amplitude . must be similarly decreased by the damping 
2 'which would contribute to the rate-of-change of < A  > the amount 

When both quantum excitation and damping a r e  a t  work - and other conditions a r e  
. . . . 

stationary - the rates af Eqs. (5.27) and (5.28) mus't 'sum to'zero. We find that 



2 the probable value of A is given by 

For  the sinusoidal energy oscillations (as  they a r e  very nearly) the expectation 

value of 5 i s  zero, and of its square - which we shall cal l  c$ - is just 1/2 the 

probable amplitude squared: 

This then, would be the mean-square energy fluctuation in the energy oscillation 

which would be produced by the random emission of quanta all of the same energy 

u .  It should correspond. approximately to the energy fluctuations in a .storage ring 

if we were to put for u, the typical quantum energy u; and for JV the mean rate 

P lu . 
. Y C  

An approximately equivalent result can be obtained from the following simple 

argument: The typical energy fluctuation comes from the deviation from its mean 

of the number of quanta emitted in one damping time re . The mean number e&tted 

, in T~ is J V T ~  , and s o  the rms  deviation from the mean is Jq (Poisson distri- 

bution). Since each quantum has about the energy u on the average, 
C '  

The result is  roughly the same a s  Eq. (5.30). It is amusing to notice that, since 

JI; P / U  and T s E /P we may also write that 
Y c 0 Y' 

cc s (5.32) 

The energy fluctuation is roughly the geomktricmean between the e lec ron  energy 

and the critical photon cncrgy! 
' Let's now do a precise calculation which is  somewhat more complicated - 
f i rs t ,  because there is a distribution of quantum sizes and second, because both 

the distribution and the mean rate may vary around the storage ring. Returning 
. . 2 to Eq. (5.28) we should consider'separately the contribution to d <A >/dt from 

each interval of quantum sizes. Those quanta with energies between u and u + Au - , 
of which there a r e  n(u)Au - will give the contribution 



But since the emission of quanta at the various different energies i s  also.uncor- 

related, each energy will contribute independently to the random-walk growth of 
2 

<A >. We need only sum the contributions from each interval Au: 

V . , .: ' .'. : - . ,  ,: . : 

You will recognize the integral as just the p-oduct &<u ) considered in the pre- 

ceding section - Eq. (5: 17.): . 

, . 

The rate of growth just obtained depehds dn the election energy - which we 

' may take to be thenominal energy Eo - ~ n d ' b n  6; thelocal radius of iukvature 

of t'he trajectory, both of which h a y  vary' around the ring. From our derivation 

we may expect that the time for a "significantf1 change in the amplitude of'the 
. . 

cnokgy oooillatioh will b6 of tho ordor i f  tho'damping timo bbnotant:?, i Ginoc . 
both the period of th; oscillation = l/n , and the damping time < are'.eich 'much 

. . 
longer 'than a revolution time T we may, without injustice, 'replade the.rapidly 

2 
0 

varying quantity,M<u > by i ts  mean value over one r6volution -- of the m. We 

shall also make a- negligible erkor (on the average) if we replacs the instantaneous 

radius of curvature p of the trajectory a t  each azimuth s by the local radius of 
. . 

2 
curvature of the design orbit. Taking the average of A<u > over, one revolution , . 

by intcgmting with rcapect to thc .nzirnuth~l . coordinntc . s, ws may, define?. 

Following through the . ~ rest  of the derivation a s  before we get for the meaksquare 
, . 9 . . . 

energy fluctuation: , . 
, . 

. . . . .  . . 

The ,simple form of our result i . ~  misleading: the cornplexi t i ,~~ a re  hidden in 
'-I. 

. 
and Q,. Let ts  look . first  . at .Q,. We need to.evaluate &<uL> on the design . , orbit. 

. . 

 he index s on the brackets indica%s"that the average i s  taken over the coordinate 
s a s  distinct from the average of u which is  over the distribution in u. 



Suppose we begin with the form derived in Eq. (5.18). P on the design orbit is  
Y 

obtained from Eq. (4.4) by setting E = Eo and ( l /p )  = G (see Section 2.2), so 

CC 4 2 
- EOG , 

('+design orbit - 2n 

which,may be written - using Eq. (4.9) - a s  

- G2 

('$design orbit - 

And Uc on the design orbit is from Eq. (5.9), 

3 3 
= -fit yoG. 

(Uc)design orbit 2 

The only quantity which varies around the design orbit i s  G so that Q, can be 

written as? 

3 3 < P  > < G ~ >  
Q, = -C*cy0 (5.42) 2 u 

<G2> 

Taking 76 from Eq. (4.53), 

. - - Eo 
J, <Py> 

we may finally rewrite Eq. (5.37) a s  
3 4  3 

3 cU%mc y0<G > 2 
qE = . (5.44) 

. . 4~~ <4> 
The relative energy spread o ; / ~  0 is  usually more significant. We may write 

it, as 

'we may now leave off the subscript s on the average since it is clear that all 
quantities shown a re  to be averaged<ver s. I hope it is clear that < G ~ ) ,  for 
example, means $ G ~ ( S )  d s / ~  where L i s  the orbit length. 



with C - which we may call the quantum constant - given by . . 
4 . . 

" . :  . . 
' 3c,- 

C =-  - - 55 6 - = 3.84 x lo-13 meter (5.46) 
q 4m.c ' 3 2 P m c  

It i s  very nearly, just the Compton wavelength of the electron. 
3 2 .  The quantity <G >/J€ <G ) is  a geometrical property- of the guide field. 

. . 
Specifically, 

. . . ., , 
It is  roughlyequal to the inverse of the "typi&all1 radius-of-curvature of the design 

2 .  orbit. The result of Eq. (5.45) is  'then roughiy y times the ratio of the Compton 

wavelcngth to the orbit radius. For any ring the quantum induced spread in the 
. . 

relative energy deviation - namely c / E ~  varies in direct proportibn to the' electron 
E 

. energy. . , 9 .  

In a storage ring with an isomagnetic guide field (one which has a constant 

radius p in the magnets and i s  .straight elsewhere). the geometrical .expression . 
0 '  

In an isomagnetic storage ring with a 5 meter magnetic kadius, electrims stored 

with an cncrgy of 1 GcV will have. an energy spread very nearly 0.04% of the 

energy - or about 40 keV. 
. . 

\ . .  . . 

5.3.  Distribution of the ~luctuations 

The energy deviation a t  'atiy'instant t i s  the result of a super position of the 
C .  

contributions from, . .  the . . .  emission . .  of quanta at  all ... earlier .. times t.. We may in fact, 
. I . .  . . 

where ui is  the energy of the quantum emitted at  ti. Since the typical value of g(t) 

is much larger than the typical quantum energy - see Eq. (5.32) - and since the 
. . .  

: t i~mes ti are  randomly distributed, the, sum atlany instant t consists of contributions . . . . . I .  

from a large numb& of ,s$all terms which a re  all st+tiiticiliy iddependexit, and 
. . .: , . -  . . . . 



, . . . 

which a r e  positive and negative with equal probability. It i s  wdll k n o ~ n t  that the 

result of such a sum is a stochastic quantity who* most probable value i s  z'ero 

and which. is otherwise distributed a s  a normal e r r o r  function - a so-called 

Gaussian distribution. That is  the probability w(c)dk that the energy deviation * 
will be found in an interval dg a t  ; is distributed according to 

1 
W ( E ) ~ E  = exp (-&a:) d~ . Jz?r I P 

The parameter a,, often called the standard deviation, is equal to the root-mean- 
2 

' square spread of the distribution - that i s ,  the square root of (6  > - a s  can 

easily be shown by a direct integration: 

(The distribution function W ( E )  is properly normalized so  that its complete integral 

is equal to 1.) The standard deviation cE is then, the same quantity we have evalu- 

ated in the preceding section. 

In a stored beam we have,normally, a large number N of stored electrons. 

So long a s  any interactions among them can be ignored, the distribution of energies 

within the bunch will - under stationary conditions - also be described by Eq. (5.40). 

That i s ,  the number of electrons with energies between & and & + d s  will be just 

Nw(g) d k  And the "half-widthn of the spread of energies in the beam is described 

by cc. 
The distribution function of Eq. (5.50) and also our calculation of cr, assume 

that the energy oscillations a r e  linear. (With nonlinearities, Eq. (5.49) i s  not 

correct  and the effects of the individual quanta a r e  no longer independent. ) We 

have already seen however, that the energy oscillations a r e  - not linear for large 

energy deviations. L€ the rf voltage function is significantly nonlinear over the 

time displacements that correspond to the likely energy deviations, we must expect 

the probability distribution for g to be distorted from the ideal distribution of 

Eq. (5.50). If, however, the nonlinearity is not too great over the largest part 

, ' ~ n d  follows from the Central Limit Theorem of probability theory. 



of the distribution, we may expect that neither a, nor the distribution function of 

the energy deviations will be affected very much. 
/ 

The distribution of energy deviations just considered implies related distri- 

butions in other parameters of the energy ossillations. The relationships a re  
. - 
most easily understood by considering the electron's trajectory in a ?'phase diagramff 

such a s  the one discussed in Section 3.5. Suppose we describe the state of the 

energy oscillation by giving its energy deviation : and its lfscaled" time displace- 

ment #, which we define by 

R ,  the angular frequency of the energy oscillation and a, the dilation factor are 

constants soQ is just a scaled equivalent of the time displacement coordinate of 

the energy oscillations. (See Section 3.5. ) So long as  the damping rate is small, 

' 8 could equally well be defined by 

so it may also be viewed a s  a normalized derivative of We may now represent 

the state of motion of an electron by a point on a two-dimensional graph in which& 

and: a re  orthogonal coordinates - see Fig. 44(a) - and in which an oscillation 

STATE OF 
AN ELECTRON 

E - 

FIG. 44--Scaled phase space of the energy oscillations. 



of constant amplitude would describe a circle. Then so  long a s  the damping and 

the quantum effects a r e  small, we. may consider that for  any small  interval of 

time, 5 and vary as 

5 = A COS #, 

where 

6 = A  sin $I; 
Y 

# =  fit-#,,  

and A is slowly varying amplitude. The quantities A and # a r e  a polar representa- 

. tion of the representative point and # increases a s  Rt. 

The distribution of energy oscillations of the electrons in a stored bunch can 

now be represented by a distribution of points in the phase plot a s  indicated 

schematically in Fig. 44b. A complete description of the distribution i s  given by 

specifying the density $($,(I) in the ,$,c plane. That is $(E, 6)d~dO i s  to represent 

the number of electrons found in the element of area  dgdj  located at  (g,O). We 

already know the projection of $(zyd) on the horizontal axis. If there a r e  N elec- 

trons in the bunch i t  is just Nw(f). But in onequarter  of an oscillation each elec- 

tron rotates one-quarter of a revolution about the origin of the figure. And since 

we a r e  assuming a stationary distribution - that is one with no time variations - 

the projection on the vertical and on the horizontal axes must be identical. It 

must be then, that the number of electrons in an element of area  d ~ d &  is given by 

The projection on. the horizontal axis is 

g d e  = exp ( - P/2 CT: ) dI , 
F% )r 

which agrkes with the w(e) of Eq. (5.50). Similarly, the distribution in i s  * 

We may now ask what is the distribution of oscillations amplitudes. Since 
2 2 2 .  A = .+ $ ¶ .  the density of electrons in the 5 ,i plane a t  the amplitude A i s  



just 

If we now let g(A)dA be the number of electrons in an amplitude interval dA at A, 

that number i s  just 2nAdA times the density a t  A: 

2 (See Fig. 44(c).) The mean-square of A in this distribution is  just the <A > that 
2 .was discussed in the section. By direct integration bf A g(A)dA you can 

2 2 see  that (A > = 2uc, a s  wasargued eadikr .  Sothe last equation can be written 

a s  

2A g ( ~ ) d ~  = N - exp ( - A ~  / < A ~  >) d ~ .  
k 

2 Suppose we take the number W = A a s  a measure of the lloscillation'eiergy, 

and compute the mean oscillation energy <w>. ' Since the energy interval d~ cor- 

responds to BAdA, the, number of electrons which a re  found in the interval dW at 

W i s  

N 
h(w)dw = exp(-w/(w>)d~ . ( S .  tiZ) 

The distribution ill oscillation ene1:gies i s  a pure exponential and corresponds to 

the Boltzman distribution of energies in an ensemble of mechanical systdms in 

thermal equilibrium - with the characteristic energy <w> given by 

5.4. Bunch Length 

We have just seen that the distribution in the normalized time displacement2 

is a s  a Gaussian with a standard dcvintion that is.cqua1 to thc standard dcviation 

uc of the energy oscillations - refer to Eq. (5.50). It follows that the fluctuating 

energy oscillations a r e  accompanied by associated fluctuations in the time 

'W is proportiqnal to - but different by a numerical factor from - the lloscillation 
energyf1 defined in Section 3 .6 .  



I 

displacement 7 ,  and that the standard deviation u of these fluctuations is - see  * 7 

For  an isomagnetic guide field Eq. (5.45) gives 
0 

2 
Taking R from Eq. (3.44) 

c r2 27fC 
3 

u2 = - a!R E~ a T ~ E ~  q o  - 9 -- (isomag). (5.66) 
T . J ~ P O  ( m c )  2 2 J,p0 eirO 

The spread u in the time displacement gives when multiplied by c ,  also the spread 
7 

of longitudinal displacement from the bunch center - or ,  what we may call the 

b&ch half-length. :? 

If the energy Eo of the stored beam in a particular storage ring i s  variedwhile 

holding constant the slope of the rf voltage (v0), the bunch length will increase.  

with the energy a s  E ~ ' ~ .  However, we shall see  later  (Section 6.5) that it may be 0 
advantageous to adjust the rf voltage when changing the energy and, in fact, in such 

a way that the peak rf voltage is kept proportional to E:. If the rf voltage is sinus- 
3 

oidal, the slope v0 will also vary a s  Eo and, by Eq. (5.66) the bunch-length will 

then be independent of energy. The constant bunch length, 2 c o  is in such a case,  
7 

typically about 10% of the distance between bunch centers. 

In several of the storage rings that have been constructed to date the bunch 

length i s  observed to be larger than is predicted here by a significant factor 

which depends on the number of electrons in the stored bunch. The mechanism 

responsible for this anomalous lengthening is not understood at  this time. 

5.5. Beam Width 

The emission of discrete quanta in the synchrotron radiation will also excite 

random betatron oscillations and these quantum-'induced oscillations a r e  responsible 

for the lateral extent of a stored electron beam. Let 's look f i rs t  a t  the quantum 

effects on the horizontal betatron oscillations. (As in the preceding section, I will 

consider f irst  only the gross statistical properties of the fluctuations.) 



In Section 4 .3  we considered the effect of a small radiation loss 6E - which 

was assumed there to occur continuously in a path length 6Q - under the assump- 

tion that the momentum loss was parallel to the direction of motion. We may take 

over the results obtained there and adapt them to the case of quantum emission by 

setting 6E to the quantum energy u - keeping for the moment the assumption that 

quantum emission gives only a change in the magnitude of the momentum and not 

in i ts  direction. You will recall from Section 4 .3  that a change in energy i s  ac- 

companied by a change in the betatron displacement only because of the sudden 

displacement of the reference orbit - the energy displaced orbit - about which 

the betatron oscillations occur. Taking the results of Eqs. (4.35) and'(4.38), the 

emission of a quantum of energy u will result 'in a change 6x in the betatron dis- P 
placement and a change 6xt in the betatron slope given by /s 

\ 

The effect that such a sudden disturbance will have on the betatron oscillations 

will depend on where in the storage ring the quantum emission occurs - ,and on 

where we observe the oscillation. From Section 2 . 6  we know how to relate the 

oscillations observed .at one azimuth to those that will be found a t  another azimuth; 

so  we can for.convenience, evaluate the quantum effects by what they do to the 

oscillations at some fixed azimuth - say a t  s - and later  transfer the result to 1 
any other azimuth. Our program can then be the following: (1) We ask what i s  

thc cffect a t  s of a quantum emission that occurs at some other azimuth s ( 2 )  1 2 '  
Wc avcrugc ovcr all quanta which might bc cmittcd a t  E ~ .  , (3) We sum the contri 

butions from a l l  possible values of s,. 
& 

bl Sectio11.2.6 we considered the motion which resulted at s, from the "initial 
I 

conditions" 3 and x' at s2,  the result can be written in the formmi' 2 

where the 4. a r e  the oscillation phases a t  the times t. of the successive passages 
1 1 .  

of the electron by the azimuth sl,P1 is the betatron f&ction at .sl and - a is an 
* . 

. .. 

'1t will be understood that here P means Px. 

- 130 - 



invariant amplitude factor given by 

2 
If we put for  x2 and xi the disturbance of Eq. (5.67) and write Sa for the resulting 

amplitude, we have that the emission of a quantum of energy u a t  s2 gives the 

amplitude 
n 

All of the s-dependent quantities on the right-hand-side a r e  to be evaluated at s2, 

so  let's definc a new function of s: 

which is  specified by the properties of the guide field. Then Eq. (5.70) becomes 

simply 
9 

This result gives the amplitude produced when we s tar t  with zero amplitude. 

What happens if we already have some amplitude - a ,  and then a quantum is emitted? 

AS we saw at  the beginning of Section 4 .6  for the amplitude A, s o  long a s  there is 

no correlation between the phase of the initial oscillation and the occurrence of.  

the quantum.event - that i s ,  if.the qua.ntum emission is completely random - then 
2 2 

the change in the probable value of a is just the Sa we have calculated. .We may, 

therefore, say that the change in the probable invariant amplitude of the betatron 

oscillation caused by the emission of a quantum of energy u a t  s2 will be 
r. 

We now know what will be the result - if a quantum is emitted at  s2; we must 

next ask what is  the likelihood that such an event will occur. Consider what hap- 

pens as the electron tiravels tlic distance As at  s - which will take the time 
2 

At. = As/c . Taking the definitions of Section 4.5, the probability that a quantum 
2 

will be emitted is &AS/C, and the probable value of u for the quantum emitted 
2 

is <$>. SO' tht! change i n the  probable value of a due to the element As of the 



trajectory can be written a s  

6<a2> >- 2 (5.74) 

C E ~  

The subscript on the curly brackets means that al l  quantities inside a r e  to be 
2 evaluated at  s2. (Both JV and <u >, you will remember, depend on the local 

radius-of-curvature of the trajectory.) 
2 Suppose we now add up the contributions to changes in <a > during one tr ip 

2 of the electron around the ring. The resulting change, which we may call ~ < a  >, 
is obtained by integrating the right-hand-side of Eq. (5.74) once around the ring: 

A.s before, t i t  will be convenient to represent the integral a s  the product of the . , 
length of the orbit 2aR, with the mean valuk - with respect to 's  - of the' integrand. 

2 
A,lthuugh JP and <u > depend on the actual electron trajectory - and so  may change 

from one, turn,to the. next - they will differ little from the values on the design 
. . 

orbit. Also the differences will, t'o f i rs t  brder, in the displacements . 'from . the design 

orbit,-average to zero. Since we a r e  going to be interested, an-way, only in effects 

which accurnulat,~ over many revol~t ions ,  w e  will make no significant, e r r o r  if we . . 

take (as we did for  the energy oscillations) the average in Eq. (5.76) by evaluating 
2 

Jv <u > on the design orbit. We shall therefore, interpret the average over s 

in that way. . . 

The change A <a2> of Eq. (5.76) occurs in the time of one revolution, namely 

~ T R / C .  So; we may write that 

 or the remainder of the development I shall follow the same line of argument used 
in the preceding section and will not rcpeat all  of the details. You should refcr  to 
that section for  any details that a r e  not clear. 



This is of course, only the contribution from the quantum noise. As in Section 

5.2, we must still  add in the average effect of the radiation which contributes a 

damping term 

where 7 is the damping time constant of the radial betatron oscillations. Under 
X 

stationary conditions the  total time derivative - the sum of Eqs. (5.77) and (5.78) 
0 

is zero. Wc get for the stationary expectation value of a*: 

We may now return to Eq. (5.68) to get the expected spread in the betatron 

displacements. Squaring and taking the expectation of x (s ) we may write for P I  
the rms  spread in the radial betatron displacement a t  sl: 

Since the azimuth sl may be anywhere, we may now drop the subscript. Combining 

the last two equations, we may write that 

The form of the result is similar to that obtained for uc. Both T~ and Qx a r e  

numbers which a r e  determined from the overall properties of the guide field - 

and do not, therefore, vary with s. The only variation of u comes from the 
xP 

factor P(s). This then i s  our result for the horizontal spread of a stored electron 

beam due to quantum induced betatron oscillations. 

To see the physical significance e of our result we must recover the complexities 

hidden and Q x  Taking &<uz> from Eq. (5.41) 

3 3 <p,>, <G">~ 
Qx = 2 C u s c ~ o  

<G2 > 
were G(s) is the inverse radius of the orbit, andMs)  is the function of Eq. (5.71). 

Taking T~ from Eq. (4.53) we get that 

where C i s  the quantum coefficient defined in Eq. (5.46). 
q 



For  an isomagnetic guide field (G = 1/p 0' o r  zero) the result simplifies .to 

2 

2 n = (isomag), 

where (&'>Mag i.s the average of .3V taken only in the magnets. That is,  

1 
(5.85) 

. . , . 

Comparing Eq. (5.84) with Eq. (5.48) we see  that for an isomagnetic guide 

field w e  may wrltg that 

2 
v ~ k ( s )  = ' ~ c ( ~ ) M n ~  (a2 (isomag) . (5.86) 

P (S) J x 

. . For  a precise calculatior~ UT u the inlegral of Eq. (5.85) must be evaluated. 
xP  

We can however, get a simple - but usually quite good - approximation by making 

. " use of the approximate relations discussed in Section 3 . 3 .  Equation (3.21) gives 

a s  a good approxjmation to q(s):  

1/2 (5.87) 

T o  the extent that this approximation i s  valid Pql and 1/2 P1q a r e  everywhere equal 

and H(s) is just a constant! Namely, 
aR 3-L' % - (5.88) 
V 
X 

and Eq. (5.86) becomes 

2 2 

(isomag). 

Alternatively, Eq. (5.84) can be written a s  

The radial betatron spread is proportional to the energy of the stored electrons and 

to the geometric mean of C and a length that is a characteristic of the guide field. 
q *. 



To get a qualitative feeling for the order of magnitude of the effect, we may 

in Eq. (5.89) repace P on the right-hand side by its typical value pn = R/V and 
X 

replace a by its approximate equivalent 1/v2 - see  Sections 2.8 and 3.3 - to 
X 

obtain 

The ratio of u to pn is the same as the ratio of a; to Eo except for  the factor 
2 xP  

J, /Jxvx, which mighttypically be r; 1/3. As noted earl ier ,  uE /E0 is just y times 

the ratio of the Compton wavelength to the magnetic radius. For  a typical 1 GeV 

storage ring we might have P , 6 meters and % / E ~  z. 4 x 1c4 (as  found earl ier) ;  n 
then u 1.4 millimeters. . 

$ 
As argued in Section 5.3 for the energy deviations, the likelihood of finding 

any particular betatron displacement will vary a s  a normal e r r o r  function. That 
is, the probability of finding a particular electron with a betatron displacement '. 

between x and x + dx will be 
P P , P  

1 
W ( X ~ ) d x ~  = J Z ; ; ~ ~  exp (-xg/2{ P)  dxp 

If we think of a particular bunch of electrons which contains, say, N electrons, 

then a s  it passes any particular azimuth s ,  the number of electrons n(x ) which P 
lie in the radial interval dx a t  x is P P 

n(x )dx = Nw(x )dx P P P P '  
and s o  has also a Gaussian distribution. We 'may think then, of a stored beam a s  , 
a fuzzy object with a half-width (which depends on s) given by the standard deviation 

u%3 
of i ts  distribution i.n radius. 

We should not forget, however, that the total radial spread has contributions 

from both the betatron and energy oscillations,since the spread of energies of the 

electrons i n  a bunch gives r i se  to an associated radial spread. Recalling that an 

electron with the energy deviation & moves on an orbit whose radial displacement 

varies with the azimuthal position - s acc'ording to x,(s) = ?(s) f/E0, it follows that 

the mean-square radial spread due to the energy spread is' --- - 
2 



. . .  

N ~ W  the periods of the energy oi~i l la t ions  and of the betatron oicillatidns a r e  

widely different, and certainly not precisely commensurate. We may therefore, 

consider that - although they a re  stimulated by the same sto'chastic events - they 

will be statistically independent. We may then add their contribution to the 'tocal 

radial spread a s  the squares and write that 

~ e t ' s  consider only an Gomagnetic guide.field. Taking u : ~  from Eq. (5.86) 
n 

and using Eq. (5.48) for u-', we may write that 

' c $ q2(sli 
&,) = Sl + (isornag.). 

X 
'(5.95) 

P o  Jx Je 

Or  if we a re  willing to use the approximate expressions of (5.87) and (5.88) for 9 

and34 the ratio of the two terms in the curly brackets i s  just P /J~  and we may 

write that . . 

. . 
(isomag). ' ' 

. . . .  
The two contributions to the radial spread vary together so their sum i s  a constant 

factor. Recalling that J, i s  typically about twice Jx we have that 

The results of the section do not take ipto account the e f feo t~  of oou~l ing bchvccn 

radial and vertical osciUations. If such coupling exists the results must be modified 

a s  described in the following section. 

. .  , 
5.6. Beam ~ e i ~ h t  

In calculating the beam width we assumed that the emission of a quantwn did 

not change the direction of motion of the ele,ctron.   his assumption'is not strictly 

correct. ' Any individual quantum event m;ijr 'give ci small transverse i mpulsF! t.n t.he 

electron. We may think that the quantum event corresponds to the emission of a 

photon of momentum u/c at, say the angle 0 with respect to the electron's momentum. 
Y 

It will carry off a transverse component' of momentum equal to-8 u/c. Conservation 
Y 

of momentum requires that there be a corresponding change in the transverse h o -  

mentum X ' E ~ / C  of the electron - s e e  Fig. 45. That i s  there will be a change in x' 



FIG. 45--Change in the direction of an electron due to the 
emission of a photon. 

given by 

where Ox i s  the horizontal projection of 6 The synchrotron radiation is  emitted 
Y' 

generally along the direction of motion of the electron, but is spread out in a cone 

of half-angle l/y. So we may consider that 6 i s  typically of the order of l/y. The 
Y 

quantity r)' which appears in Eq. (5.67) is of order-of-magnitude 1, so  the neglect 

of the contribution from (5.98) on the radial motion was well justified. 

Consider however, what may be the quantum effects on the vertical betatron . . 

motion. If the design orbit l ies strictly in a plane there a r e  no first-order effects 

from quantum emission on the vertical motion. (That i s ,  the vertical function 

which corresponds to 7) i s  precisely zero. ) The only remaining effect would be 

f rom the angular distribution of the radiation. Let's see what the magnitude of 

effect would be. 

We may take over the results of the preceding section by replacing Eq. (5.67) 

where 8 is the projected, vertical angle of emission of the photon. Equation (5.73) 
z 

would become - using the subscript z to remind us that we a r e  now dealing with a 

vertical oscillation - 9 



Following throygh the derivations we would find in place of Eq. (5.81) 
. . 

with 

To  evaluate Q, we would need to take into account the v a r i a t i ~ n  of the frequency 
/, 

spectrum of synchrotron radiation with the angle of emission. Since the effect 

we a r e  dealing with' is in any case small, an approximate calculation will do. 

Suppose we f i r s t  make the approximation . ' . . 

For  the mean-square proj,ected angle, we may take 1/2 the mean-square polar 

angle of the radiation 

Also let 's replace PZ(s) by a typical value pn. We then get that 

2 Recall that the average ofJ<u  > is just'what we called Q, in Section 5.2. We may 

then write that 
. . 

For  a flat design orbit JZ r; 1. Considering only the isomapet ic  case, we may 
2 2 fake q / E ~  from Eq. (5.48) and get 

n 

c p' . . 2 q n  . .  . 
uZ (isomag) . 

P o  , '  ' 



Roughly speaking, gn is the same order a s  po and 

2 
% = CsPn. 

The vertical oscillations induced by the quantum emission are  energy independent 
2 and less than the radial oscillations by roughly the factor l/yo. They are  very 

small indeed. 

The vertical oscillations given by Eq. (5.107) a re  so small that they will 

always be negligible in comparison with the vertical oscillations produced by an- 

other much larger effect - a coupling of oscillation energy from the horizontal 

betatron oscillations into the vertical ones. We did not analyze such effects when 

we were considering, in Part II, the nature ofthe betatron oscillations because 

they would be essentially perturbations of second order. An analysis of the per- 

turbations expected from the construction impe'rfections in a real ring shows that 

the coupling between horizontal and vertical oscillations i s  likely to produce a beam 

height in the ring which is at least a few percent of the beam width - and is. there- 

fore 'much larger than the minimum intrinsic width calculated above. 

Indeed,it i s  - a s  we shall see later - sometimes desirable to obtain a beam . 

height larger than i s  produced by accidental imperfections. And this can be done 

by introducing an intentional augmentation of the coupling between the horizontal 

and vertical oscillations - a s  can be effected by special magnetic elements (skew 

quadmpoles) or by operating the ring near a resonance between v, and vz, pr by ' 

a combination of the two. 
\ 

A detailed analysis of the coupling of vertical and horizontal oscillations i s  

beyond the scope of this report, but a phenomenological approach will serve our 

purposes. Suppose we let g and g, represeAt the invariant mean-kquare amplitudes 
X 

of the radial and vertical oscillations. That is, I 

For the special case in which the damping rates of the vertical and horizontal os- ---- --- - - 
cilla.t.ions - are  equal, we may now argue as  follows. In the absence of coupling, 

1 



- from Eq.. (5.81). When coupling i s  taken into account, the quantum excitation 

of the- radial oscillations can be shared with the vertical oscillations in any pro- 

portion up to an equal division. That is, we may have that 

where w i s  the "coefficient of coupling. l' In principle K may be any number between 

0 and 1, although it is probably difficult in practice to reduce K below one percent - 

or  so. Since the excitation is being shared, the combined excitations must s t i l l .  

be equal to go. 

gx -I- gz = go' 

W e  may equivalently write that 

The excitation go is to be taken from any of the expressions for a2 /p  derived 
- xP 

(w,ithout taking coupling into account) in Section 5.6. Given any coupling coefficient 

K, g and g arc  obtained; and from them the beam half-width and half-height; 'ux 
Z X 

and % can be found using Eq. (5.109). 

The maximum beam height that can be obtained in this way will occur when 

K - 1 8  Than (gZIrnax - go ,/2, 2nd 

Using the approximate results of the preceding section for an isomagnetic guide 

field we may write for the ,maximurn vertical beam spread 

2 
C q a  R'Y0 

(is ornag) 
z 2Povx 

. where, since we have assumed that rX = rZ, I have set J = Jz = 1. 
X 

I n  principle, either or both,of the width and height o f a  beam can be increas,ed 

by the artificial stimulation of the transverse oscillations - for example, by the 

periodic application of impulsive electric or magnetic forces to the stored beam. 
- 



In practice, however, such external stimulation will give r ise  also to coherent 

motions of large numbers of the electrons in a bunch which has been found to have . 

deleterious effects on the luminosity of colliding beams. It is likely however, 

that artificial beam enlargement can be used in future rings which will have the 

possibility of operating with different betatron numbers for the two colliding beams. 

5.7. Beam Lifetime from Radial Oscillations 

In the preceding section I have argued that the likelihood that a stored electron 

will pass a given azimuth s with a radial displacement between x and x + dx is 

distributed a s  a Gaussian e r r o r  function - namely as 

w(x)dx = 
1 

exp (-x2 /2 2') dx, 
f i v x  

with cr a function of s. Such a distribution can clearly not be completely correct  
X 

since it has f'tailsfl which extend to arbitrarily large positive and negative dis- 

placements while an actual stored beam must live in a vacuum chamber with a 

finite aperture! The probability distribution of Eq. (5.116) can be only an approxi- 

mation which we may expect to be reasonably correct  s o  long as the radial aperture 

is much larger than crx everywhere around the ring. 

Even when the aperture i s  large however, there may still  be a significant 

effect from its finite extent. Sooner o r  later  an electron will suffer a sufficiently 

large fluctuation in i ts  emission of quanta to produce a radial displacement as 

large a s  the aperture limit. Then the electron will be lost by a collision with the 

edge of the vacuum chamber - o r  whatever obstruction defines the limit of the 

aperture. Alternatively if we take into account the nonlinearities of the guide 

field, large amplitude oscillations may become unstable leading to the loss of the 

electron from the stored beam. It will be convenient for  the present discussion 

to think in terms of an  aperture that i s  limited by a physical obstruction. An 

extension of the discussion to a magnetic aperture limit is relatively straight- 

forward. 

So long a s  the chance of an electron being lost a t  the aperture limit is small  - 
by which we should mean that i t  is much less  than 1 in a damping time - the proba- 

bility pe r  unit time of getting lost is the same for a l l  electrons. Then the loss 

rate f rom a stored beam will be proportional to the number N of electrons present; 

and N w i l l  therefore, decrease exponentially and with a time constant 7 related 
cl 



to the loss rate by 

The number r is usually referred to a s  the quantum lifetime of the stored beam. 
q 

A precise evaluation of the quantum lifetime for all conditions is a bit intri- 

cate. I shall therefore, show a way to compute it which i s  reasonably accurate 

only when the lifetime is long - which is ,  after all, the condition of most interest 

for  a storage ring. I shall f i rs t  look a t  the lifetime due to lateral oscillations 

and then look later at  the lifetime due to energy oscillations. 

Let's think now of a. somewhat over-simplified situation in which we imagine 

that only the radial betatron oscillations a r e  excited - ignoring for the moment 

the radial spread associated with the energy oscillations. We saw in Section 2.6 

that in the absence of radiation effects the betatron oscillations of an electron 

sweep out a band between the envelope limits X(s) = a&(s) - recall Fig. 12. 

When we include quantum effects and radiation damping, the "invariant" ampli- 

tude factor - a of any particular electron wanders up and down in a random way. 

The time scale of the variations of 5 i s  however, rather slow - that is ,  much 

larger than the revolution time - so we may think that the electron continuously - 
sweeps out a radial band whose envelope i s  slowly varying. 

Suppose now that there i s  at some azimuth, say sl, an obstruction which 

defines an sperture limit of the ring. By that I mean that as the invariant ampli- 

tude a - ,  i s  varied, the envelope X(s) will first encounter an obstruction at  sl. See 

Fig. 46. All losses will occur at sl and we need only consider the radial distri- 

bution at this azimuth. 

FIG. 46--Radial aperture limit. 



We have seen in Section 2 . 7  that the radial displacement on successive 

passages of any chosen azimuth varies with time as 

X =  a &  cos o t  (5.118) 

As we did in Section 5.3 for the energy oscillations we may take the square of the 

amplitude factor a s  a measure of the "effective energy" of the oscillations. Let's 

define 

Quantum effects and radiation damping produce slowly varying fluctuations in W. 

The same arguments made in Section 5.3 can be used again to show that - in the 

absence of any aperture limit - the electrons in a beam will have a distribution 

of W1s according to (see Eq. (5.62)) 

2  
where the mean value <iY) is equal to 2%. (The function h(W) i s  defined such '' 

that the number of electrons with "oscillation energy" between W and W = dW is  

h(W)dW.) The function h(W) is shown by the solid curve in Fig. 4 7 .  

I 

Qj. 
I.,,.., 

FIG. 47-- Distribution of oscillation energies. 

Now .consider what happens when there i s  an aperture limit' that removes any 
A 

electron.for which W exceeds some limiting value W - whichwe.may callllW-peaklf. 
A 

There can be no electrons with W > W, so the actual distribution h(W) must change 

for large W to correspond to something like the broken line curve in Fig. 4 7 .  We 

may think about what is happening in the following way. The quantum effects a r e  

continually trying to fill in'the ideal distribution by a "diffusion".of electrons from 



the region of small W into the region of large W. But each time an electron 
A 

reaches W it is "wiped off", so  there i s  a continuous 1os.s out of the tail of the . ,  . . 

distribution. I would like now to make an estimate of this loss rate. 

We may make a rough estilfiate in the following way. We have said that there 

is a characteristic "relaxation timef1 for the quantum fluctuations equal to the 

damping time constant rX. We may guess that.there is an flattempt'( to fill in the 

tail of the ideal distribution once each damping time. Then the number of electrons 

lost in each damping time w i l l  be equal to the number of electrons in the ideal 
A 

distribution with W > W. That number is  

The electron loss rate will then be estimated by . . 

. . 
which would give a quantum lifetime of , ' 

A 
We would estimate that the lifetime itself depends exponentially on W/ ( W) . 

An exact calculation of 7 requires setting up a diffusion equation for h(W) 
q - 

and solving it numerically with the appropriate boundary conditions. I shall not 

attempt to do this but rather show how a good approximation to the exact result 

can be obtained. 

Consider what would be happening in the neighborhood of some particular Wo 

that is much greater than < W) ---- if "there were no aperture limit. The chance of 

finding any particular electron with W > Wo Ln the ideal distribution is very small. 

We may expect that if an electron once gets into the tail (W > Wo) it i s  most likely 

to return rather quickly to the  main body of the distribution - being replaced in 

the tail by some other unfortunate electron. .Consider now the flux of electrons 

passing through a sma,U zonet near Wo. , The electrons which have beenpopulating 

the, tail will be'passing to the left through 'this zone and.an equal flux of electrons 
. . . '. 

'We should think of passage through a "zone" so that we may ignore the, microscopic 
fluctuations in the amplitude. 



will (in the stationary state) be passing toward the right throught the zone due to 

abnormal quantum fluctuations. (We a r e  neglecting the unlikely events in which 

an electron leaving the tail would have at  that instant an abnormal fluctuation and 

reenter the tail of the distribution right away.) 

Let's estimate the flux of electrons coming - out of the tail. When W is large 

the f'normal" energy fluctuations can be neglected in comparison with the rate of 

decrease of W due to the damping. For any electron the damping gives 

and the flux of electrons through Wo due to the damping will be 

In the absence of an aperture limit the net flux through any W - and past Wo 

in particular - must be zero so there would also be an outward flux of electrons. 

quite equal to the inward flux of (5.125). 
A 

Now put in the aperture limit at W. If it i s  sufficiently large, the main body 
A 

of the distributionis little affected. The flux outward through W will be unchanged 

while the ret;lurn flux wi l l  of course, be zero. We have that the flux of (5.124), 
A 

evaluated at Wo = W, is also an estimate of the outward flux of lost electrons. The 
< 

loss rate wi l l  be 

Using Eel. (5.12 0) for h(W) we obtain, 

A 
Remember that W and < W> a re  related to the limiting radial excursion permitted 

by the aperture (assumed to occur a t  some azimuth sl) and the rms  radial displace- 

ment at  that azimuth by 

with both numbers evaluated at  the azimuthal position of the limiting aperture. ' 

This result differs from the estimate in Eq. (5.123) by the factor <W > /2& 

and gives, therefore, a lifetime smaller by a factor which might be typically 5 o r  



10. The discrepancy can be explained by arguing that the "relaxation timett i s  

shorter by this factor for the population of the tail of the distribution than for the 

main body of i t  - which i s  understandable since a large fluctuation has a better 

chance of dominating the radiation damping if i t  accumulates during a relatively 

short time span. Although Eq. (5.127) was derived by making some approximations 

whose quantitative significance we have not tried to estimate, the same result has 

been obtained by more sophisticated - although still approximate - techniques. 
5,15 

In our derivation of the quantum lifetime we have assumed that the radial 

fluctuations were due solely to betatron oscillations. As we have seen in Section 

5.5 however, the r aga1  beam spread has contributions from both the betatron and 

energy oscillations. And the analysis is complicated by the fact that the two com- 

ponents have dikterent damping time constants. 1 shall not attempt to retine the 

calculation but settle for the following comments. The two damping time constants 

a r e  not very different - usually within a factor of two of each other. It i s  then 
2 

clear that Eq. (5.125) will give a reasonable approximation if we use for ux.the 

total mean-square beam spread and for 7x some value between the betatron and - 
synchrotron damping time constants. Or alternatively we may get a "safev esti- 

mate of 7 - that is a lower limit - by using for 7x the smaller of the two time 
g. 

constants. 

The quantum lifetime increases approximately exponentially with the square of 

the limiting radial excursion - an exceedingly rapid variation. There i s  then, a 

rather precise criterion for the aperture required. If the aperture i s  just a little 

bit too small the lifetime will be disastrously short, but if it i s  a little larger than 

necessary the lifetime will be astronomically large and w i l l  be of no consequence.? 

The "criticaltt aperture limit occurs at  about 

A 
which gives w/(w> z 18 and from Eq. (5.120), 

'since other loss mechanisms w i l l  then dominate. 

- 146 - 



Since rX is  typically about 0 . 1  sec, the critical aperture gives a quantum lifetime 

of about one day. other  effects such as  gass scattering usually give lifetimes of 

several hours and the filling time (time to store an operating beam) is  generally 

a fraction of an hour, so  a quantum lifetime of one day i s  quite "safe. l f  We can 

understand the lfrule-of-thumb" that the full aperture must be at  least 12 times 

the standard deviation % of the radial distribution, A similar rule clearly holds 

for the vertical aperture.. 

5.8. Beam Lifetime from Energy Oscillations . 
In the preceding section we have examined the loss of electrons due to abnormal 

fluctuations in the amplitudes of the radial oscillations. Loss of electrons from a 

stored beam w i l l  also occur when abnormal fluctuations in the energy oscillations ' 

result in energy excursions so large that they can no .longer be contained within the 

energy aperture that is determined by the radio frequency accelerating system. 

In Section 3.6 we saw that the energy oscillations correspond to the motion of 

an ideal particle in a potential well,one of whose walls is  a potential "hill" of limited 

height. The situation was described by Fig. 36(b), a part of which is redrawn in 
. . 

Fig. 48(a). The horizontal coordinate is the time displacement& associated with 

the energy oscillations and the vertical coordinate i s  a fictitious "potential energy" . . 

. . 0 T ' . '  . . 
Lmax - lel:..l 

. % . -  . 

FIG. 48--~uantum spread in the energy oscillations. 



of the oscillation. The corresponding "kinetic energyff is 

. . 
where g is the instantaneous energy deviation of the real  energy . .. oscillation. . 

Suppose we let H represent the lltotal oscillation energyf1 - that is ,  the sum 
' I .  . . 

of the llpotential energy1! and the "kinetic energyr1 of Eq. (5.131) - 

($f H = O(L) + (5.132) 
. . 

( @  is taken to be zero a t  the bottom of the potential well.) During the oscillation 

of any particular electron the "potential energy'' reached a t  the maximum of w T is 

eq,ual to H. And the peak "kinetic energytf,- which occurs as the electron passes 
. . . . 7 = 0 - is also equal to H, s o  

1- 
. . 

2 (6.183) 

where ? is the peak value of $during i t s  oscillation. An electron is captured in a 

stable energy oscillation if H is less  than Qmax, the maximum height of the po- 

tential weli. (See Section 3 : 6. ) Otherwise it will be lost. 

In Sections 5.2 and 5.3 we have examined the quantum-induced energy oscil- 

lations under the assumption that they were ideally linear - which would corres- 

pond to the ideal parabolic potcntiatwell indicated by the brokcn line in Fig. 4.8(a). 

Under these assumptions, the distribution of time displacements in a stored bunch 

of electrons would be a s  the Gaussian function drawn in Fig. 48(b) - whose standard 

deviation cr was evalwted in Section 5.4. 
7 

We have a lso  seen that the energy fluctuations yield an exponential distribution 

in the square of the amplitude of the energy oscillations - a s  described by Eq. 

(5.62). The quantity W used there is just the square of the amplitude (of the oscil- 

lation in:) and is therefore, proportional to the lltotal energy" H. In fact, 
n 

It follows that the distribution over H for the electrons stored in a bunch i s  also 

exponential. Specifically,, if we let .f(H)dH represent the number of electrons with 

"total oscillation energies" between H and H + dH, then a direct translation of 



Eq. (5.62) gives 

where 

This distribution in oscillation energies i s  shown in Fig. 48(c). 

The real  situation must evidently be different. Any electron whose time dis- 

placement once exceeds zmax, the value of .(r 7 at the top of the actual potential 

hill - or  equivalently, one whose f'oscillation energyf1 H exceeds 0 - will max 
be lost from the stored bunch. As we saw inthe  preceding section for the radial 

oscillations, we must expect that the actual distributions will fall to zero  at^^^^ - 
n 

and therefore at H = H = Omax. And there will be a continuous loss of electrons 

due to diffusion out of the tail of the distribution. 

The situation here is similar to the one discussed in the preceding section, 

which would correspond to a parabolic potential well which i s  suddenly truncated 

at ~ m a x  . The smooth rounding of the potential maximum will have a somewhat : 
different effect on the comportment of the distribution of electrons near the ,edge . 

of the distribution. One may expect however, that s o  long a s  L~~ >> q , t he . ,  

rate of loss of electrons inay be estimated in the same way for both situations. 

Without repeating the argument here we may write the result which corresponds 

to Eq. (5.127), translated to the case of the energy oscillations, 

with 

The height amiot of the potential maximum can be evaluated by performing the 

integration of Eq. (3.53) - o r  for a sinusoidal rf voltage, from Eq. (3.58). 

The potential Omax was introduced in order to obtain the magnitude of the 

"aperture1' of the energy oscillations. It i s  related to the maximum acceptable 

energy deviation - see  Eq. (5.57) - 



So 6 has ,the ,conceptually simple form 

E 
2 

*max ,$= i-- n 

The potential Omaxand, therefore, the number 6 depends on the magnitude 

of the rf vo1,tage which must always .be sufficiently large to give a quantum lifetime 

greater than the desired storage time of the beam. Typically ,$ must be at  least 

a s  large a s  18 o r  so, requiring that /u ) be ab,out 6. rnv €.  , .  . . 

For the particular (but very common) . , case of a storage ring with an isornagnetic . , . .  

guide field - and a sinusoidally varying rf voltage, the parameter C can be expressed 

rather simply in terms of the ring parameters. Bringing together the results ob- 

tained in earlier sections for and u you can show that 
€ 

where El is  a constant with the dimensions of an energy: 

and F(q) i s  the energy aperture function whfch was defined in Eq.- . . (3.60) and i s  

shown in Fig. 38. The parameter q is  the rf overvoltage - namely the ratio of 

the peal< rf voltage to the energy lost in one turn, For large overvoltages F(q) is 

approximately (2q- T) and the quantum lifetime increases exponentially with in- 

creasing rf voltage. 

Notice that in a storage ring with a given guide field (that i s  with a fixed a, 

JE , re , and Eo) the overvoltage required for any particular quantum lifetime (that 

i s  for a particular 6 )  depends on the harmonic number k of the rf system. For 

large harmonic numbers the overvoltage required varied approximately a s  fi. 



VI. THE LUMINOSITY OF A HIGH ENERGY STORAGE RING 

6.1. Recapitulation 

The usefulness a s  an instrument for high energy physics of a colliding beam 

storage ring of any particular energy depends on its luminosity at each energy. 

In the first  part of this report some general expressions for the luminosity were 

derived. (See Sections 1.5 through 1.8.) They depend explicitly on certain char- 

acteristics of the guide field in which the beams a re  stored and on the dimensions 

of the colliding beams a t  the collision point. The succeeding parts of this report 

have been devoted to an analysis of the behavior of the electrons in stored beams. 

We now have all of the information needed for relating the design characteristics 

and operating conditions of storage rings to their expected luminosity. I wish to 

show how all of the pieces can be brought together to undeistand the performance 

that may be expected of a high enerm storage ring. 

In doing so it will be useful to consider not only the general results that can 
.+ 

be obtained, but also to relate - to the extent possible - the performance of a 

ring to a small number of parameters that may be used to describe the general . 
nature of a ring. Such an exercise will serve to illuminate the most significant 

aspects of a ring design and will, therefore, permit some comparisons of apparently 
I( i 

dissimilar designs. I 

Let's review where we stand. The luminosity has been written - in Eq. (1.17)- .I : 

where N is the number of electrons stored in each beam, f i s  their frequency of 

revolution and Aint is the "effective i,nteraction area. This area was defined - 
in Eq. (1.10). - by 

I 

where B i s  the number of interacting bunches in each beam and w and heff a r e  eff 
the effective projected width and height of the circulating bunches at  the interaction 

region. The latter were defined in Eqs. (1.6) and (1.8) in terms of the width w* 

and height h* (actually the doubie standard deviations) of the Gaussian distributions 

of the transverse density of the beam a t  the intersection. And in terms of the 



bunch length 1 and the half-angle 6 between the trajectories:of the two beams. -f 

Specifically, if the two beams intersect in a horizontal plane with the half-angle 

fiH between design orbits 

eff 

o r  if they cross in a vertical plane with the half-angle aV between the design orbits, 

The beam width and height may be taken a s  their "naturalf1 values (with o r  

without coupling) which were evaluated in Sections 5.5 and 5.6. Or they may be 

increased by llartificialll stimulation to, any size permitted by the transverse aper- 

tur e . 
The bunch length B can .be found from the results of Section 5.4. It depends, 

anlvrlg other things, on the nature of the rf accelerating voltage. (And may involve, 

perhaps a mysterious factor for anomalous bunch lengthening. ) But remember that 

the rf system must be operated with an rf voltage which will insure an adequate life- 

time of the stored beam - as discussed in Section 5.8. . . 

The' dimensions computed fur the beam will be correct only s u  long as Lhe 

intensity of the stored beams i s  not too large. Utherwise the macroscopic fields 

produced at  the intersection of the two beams will disturb the trajectories causing 

an increase of the beam dimensions to grow, and the luminosity to fall. The limit 

on the beam intensity - which depends on the beam dimensions and on the properties 

of the guide field - was described in Section 1.6, and considered in more detail 

in Section 2.12. To simplify the discussion here, I shall continue to assume that 

intensity limit i s  set  by the v-ertical shift. l1  Then the prescription given 

above may be used to obtain the luminosity so long a s  the number of stored particles 

in each beam does not exceed the limit se t  by (see Section 1.6). 

 he bunch length does not vary around a storage ring so we do not need to specify a 

where it is to he eval.uated. 



where Avo is a constant (which I shall take to be exactly 0.025), Eo is the nominal 

energy of the stored beam,and PV is the value of the betatron function of Section 2.6 

evaluated a t  the intersection point. This last  relation se ts  a fundamental upper 

bound to the luminosity that can be reached by a storage ring of given design 

characteristics. f 

I would like to round out this report by applying the results that have been 

obtained to an idealized model storage ring. Some of the results will be independent 

of many of the details of the model. Those which do depend on particular assump- 

tions of the model can easily be adapted to alternative configurations. 

6.2. The Model Storage Ring 

As a model storage ring we may take one for which the design orbit is  in the 

form of a ttracetracklt - consisting of two more-or-less semicircular "normalft 

sections joined by two "specialtt long straight segments. See Fig. 49. The normal 

,INTERACTION POINT 

FIG. 49--- n e s i g n  orhit, nf the  model s t o r a g e  ring. 

semicircular sections of the guide field a r e  assumed to consist of periodic ar rays  

of bending magnetics andfocussing quadrupoles - such a s  might be typical of a well- 

designed circular storage ring. These normal sections may be described by their 

mean radius Rn (defined a s  the total length of the normal sections divided by 2n) t t  

- -  - 

f ~ s  pointed out' earl ier ,  the intensity limit adopted here leaves out of consideration 
the interesting proposal of the Orsay group for storage rings in which the colliding' 
beams a r e  neutralized in the collision region. 

" ~ o t i c e  that Rn is not the same a s  the parameter R sometimes used in ear l ier  
Sections. 



by the typical value pn of the betatron function (see  Section 2.8). We may take 

that both the radical and vertical oscillations have about the same typical value 

of p so  that Px = PZ = Pn. It will also be convenient to write the ratio R /@ as n .  n 
- v the betatron nuinber of the normal sections - which i s  equal to the betatron 

n ' 
number one.would have if there were no special lung straight sections. 

, . The analysis. will.be kept simple by assuming that the guide field i s  both 

separated function and isomagnetic (see Section 2.2). And the ratio of Rn to the 

bending radius po will be called An - which i s  a number usually fairly near to 3. 

The long special straight sections we assume to have - at least approximately- 

the following characteristics. They a r e  ideal "unity inscrtsll (see Section 2.13) 

s o  that the beam behavior in the normal sections of the ring will be essentially 

the same a s  if the long straight sections were not present and each of the straight 

sections will contribute 27r to the advance of the betatron oscillation phase. The 

center of the straight section i s  dcsigncd to be a beam collision point. At this 

point the vertical betatron function pZ takes on the value P and the horizontal v 
betatron function px takes on the value pH. The variation of PZ and Px in the 

neighborhood of the collision point will be ignored. 

The complete guide field will have a total lcngth L of its design orbit which i s  

2nR, plus the combined length of the two long straight sections. And the nominal 

frequency f of revolution of the electrons (the inverse period) will be c/L. 

Thc total storage ring configuration is  assumed to consist of two such idealized 

guide fields disposed so  that two separate stored beams will collide a t  the centers 

of their respective long straight sections, b u t  will be otherwise quite independent. 

It will be assumed that the crossing of. the two beam orbits occurs in a horizontal 

plane with the crossing anglc 6 Further aH will be taken always large enough H ' 
that the term 16 dominates the term w* in Eq. (6.3). (I ignore any topological H 
problem that may be implied by the configuration of the idealized storage ring!) 

Fo r  definiteness, I shall assume that the model storage ring is equipped with 

a simple' radio frequency system which produces a sinusoidal accelerating voltage 

whose peak value 0 is adjustable and whose frequency of oscillation i s  k times 

larger  than the revolution frequency - where the harmonic number k is ,  of course, 
-t. 



an integer. It will be assumed also that the systems can deliver any power 

required to store the beams UJ -- to a maximum P for each of the two stored beams. 
0 - 

In a high energy ring i t  should generally true that the losses in the rf cavity sys- 

tems a r e  a small  fraction of the total power available. I shall therefore, assume 

that P i s  independent of the actual rf voltage used and therefore, of the energy of 
0 

the electrons stored. 

We shall see  that the luminosity of the idealized rings can be expressed rather 

simply in terms of the parameters that have been chosen here to describe the 

physical characteristics of the storage ring. For future reference these parameters 

a r e  listed in Table 6.1.  

TABLE 6 . 1  

PARAMETERS OF THE MODEL STORAGE RING 

Typical value of the betatron functions in the 

normal sections . 

Mean radius in the normal sections. 

Betatron number of the normal sections. 

Bending radius in the magnets. 

Elongation factor of the normal sections. 

Total orbit length. 

Electron revolution frequency. 

Maximum radio frequency power available f ~ r  
ea,ch beam. 

Vertical and horizontal betatron functions a t  the 

beam crossing point. 

Half-angle between the beam lines a t  the crossing 
1 

point. 



6.3. High Energy Luminosity . .  . 

The maximum number Nmax of electrons that can be stored in a beam is se t  

by the maximum rf power Po available t o  accelerate each stored beam. Each 

electron in a s t o r e d  beam radiates energy a t  the rate given by Eq. (4.9) so Nmax 

is related to Po by 

The maximum stored intensity decreases a s  the fourth power of the energy. 

I shall define the high energy regime of a storage ring a9 the range of energies 

in which the intensity of the stored beam i s  limited only by the available power - 
and s o  i s  determined by Eq. (6.7) - and in which the effective interaction - area 

can always be adjusted to the value A defined by Aint - - --- C 

where Dc is the critical transverse density that was defined in Eq. (6.6). This 

high energy regime corresponds to "Case 211 of Section 1.7, s o  the optimum lum- 

inosity in this regime is given by. Eq. t1.22). Retaining the notation g2 for this 

regime we have that 

f gJ = - D N  = RnP o 
2 4 c max C2 A /3 E' 

n V  0 

where L has been replaced by c/f, and po by R,/A, The physical constant is  

29 3 -2 - 1 - i In convenient units, c2 = 6.125 x 10 (GeV) -meter -watt -sec . 
Apart from the relatively unfree parameter An (generally about 3) the optimum 

luminosity at each energy E in the high energy regime depends only on the geo- 0 
metric scale of the ring, Rn, on the available rf power Po, and on the betatron 

function pV a t  the intersection. Notice that in this regime the luminosity decreases 

as the cube of the operating energy Eo. And i t  is inversely proportional to PV. ----- 
The special long straight section in our model ring is intended to permit the 

introduction of a suitable magnet-free space for observation of the collision region 

and a lso  to provide for the lowest possible value of PV in that regiod. The general 



properties of a low-beta insert were discussed in Section 2.13 although no attempt 

was made there to illuminate the artistic aspects of their design. Let me say 

here only that practical considerations seem to preclude the realization of a beta 
I 

lower than about 5 c m  if a f ree  space of about 5 meters i s ' to  be provided. (Also, 

if the bunches in the stored beams a r e  as long a s  5 cm o r  so - which i s  not un- 

typical for  some convenient choices of the operating frequency - much smaller  

values of pV would not be useful since PZ would then vary by a large factor across  

the beam intersection region, (see  Section 2.13). ) 

I should remind you that PV appears (as  opposed to pH) because I have assumed 

that it is the vertical tune shift that se ts  the intensity limit. And I should also 

point out that - f r o ~ i  the results of Section 2.12 - the intensity limit of Eq. (6.6) 

is strictly correct  only if weff is appreciably larger than heff. If weff z heff, our 

relations need some slight modification. And if weff < heff, i t  is likely that the 

horizontal tune shift will be dominant and PV would then have to be replaced by 

pH in a l l  of the formulas of this section. 

The most important aspect of the result of Eq. (6.8) i s  perhaps the fact that 

the optimum luminosity in the high energy region does not depend edl ic i t ly  on the 

dimensions of the beam a t  the intersection region, nor on the crossing angle. We 

may then, say that - all  configurations - of high e n e r B  storage rings a r e  - equivalent - in 

the high energy regime. If rings of different configurations have comparable - 
Rn, Po and PV, (o r  pH) then their optimum luminosities will all  be comparable in 

the high energy regime! And, a s  we have seen, this luminosity will decrease,with 
- 3 increasing operating energy a s  E 0 

This behavior of electron storage rings i s  somewhat unfortunate. Cross 

sections of any particular high energy, electron-positron interaction a r e  likely to 
-2 

decrease with energy a t  least a s  rapidly a s  Eo . So the observed rate of interactions 

of a given kind will have a downward dependence on energy that i s  rapid indeed! 

We must expect that the high energy regime of a storage ring will extend over 

a limited interval of energies - namely only over those energies for which the 

stored current is determined by the available Po power according to Eq. (6.7) and 

for which the beam a r ea  can be adjusted to satisfy Eq. (6.8). If we express Eq. (6. S) 

in terms of the storage ring parameters - by using Eq. (6.7) for Nmax and Eq. (6.6) 

for  D - we get that Ac is given by I 

2 3 p0LPoPv  3 (mc ) A = -  
c 8~ cAjf 

0 



For  any particular storage ring (with a given Po, L, po, and P ) the beam area v 
must vary as the fifth power of the energy if the optimum luminosity i s  to be 

obtained a t  each energy. The boundaries of the high energy regime a r e  reached 

when i t  i s  no longer possible to satisfy Eq. (6.11). 

For a given storage ring the upper boundary of the regime will be reached 

when the minimum achievable beam area i s  larger than the critical area  of Eq. (6.11). 

(This circumstance may o r  may not occur before the maximum energy capability 

of the guide field i s  reached. ) For any given ring the minimum effective inter- 

action area that can be obtained will generally depend on the beam energy. Let's 

call this area Amin(Eo). Then the upper boundary of the high energy regime will 

occur at  the energy EL (where L stands for lllimitll) for which the equation 

Amin( EL) = Ac(EL) (6.12) 

i s  satisfied - and Ac(EO) is the function defined by Eq. (6.11). 

Above tho onorgy E w o  b v o  now rogimo whioh we may 0311 the ultr3 high L - 
energy regime. Letts  write the luminosity in this regime g3. It will be obtained 

from Eq. (6.1) with N taken a s  the Nmax of Eq. (6.7) and Aint taken equal to 

A min (Eo): 

2 It will generally turn out that Amin(EO) varies a s  either Eo o r  a s  Eo so the 
- l o l  luminosity in the ultrahigh energy regime will decrease with energy a s  E;' o r  Eo . 

It io oloar that a storago ring would probably not be very useful very far into this 

energy range. Indeed, we should expect a well-designed storage ring to have the 
. . energy EL at o r  above the highest desired operating energy. 

The lower boundary of the high energy regime will be found a t  that 'energy for 

which it is no longer possible to make the interaction area a s  large a s  the critical 

area  demanded by Eq. (6.11). The maximum achievable interaction area may be 

a fixed number set  by the aperture of the guide field and the geometry of the inter- 

action region o r  may depend on the beam energy. Let's say that the maximum 

achievable area  is  some function Amax(Eo). The lower boundary of the high energy 

regime will then occur a t  the energy ET, which we may call the transition enerEf 

t ~ o t  to be confused with the so-called "transition energy" of proton synchrotrons. 



for which 

(E = Ac(ET) Amax T (6.14) 

where Ac(EO) is the function defined by Eq. (6.11). , 

Below the transition energy the luminosity will no longer follow Eql (6.9) and 

a new regime takes over. It is discussed in the next section.' 

6.4. Low-Energy Luminosity 

A storage ring operated a t  an energy below ET, the transition energy just 

defined may be said to be in i ts  low-energy regime. The energy ET was defined 

a s  the energy below which it  is not possible - for some technical reason - to 

increase the effective interaction area  to the size demanded by'Eq. (6.8). It follows 

then that in the low-energy region the beam current must be held below what could 

be sustained by the rf power Po available if the beam density limit of Eq. (6.6) i s  

not to be exceeded. The optimum luminosity will be obtained in this region if the 

effective interaction a rea  Aint of Eq. (2.6) is adjusted to i ts  maximum possible 

value at each energy - that i s ,  to the value Amax(EO) defined in the preceding 

section - and the beam currenl is adjusted to the value Nc such that 
< 

*c = Dc Amax (6.15) 

This situation corresponds to the.Case 1 considered in Section 1 .7 ,  and the lum- 

inosity in the regime is the P1 given by Eq. (1.20): 

You should remember that Dc and Amax will generally both be functions of energy. 

The effective interaction a rea  is defined by Eq. (6.2) and Eq. (6.3) o r  Eq. (6.4) 

in terms of the width, height, and length of a stored bunch of the collision point, 

the number of stored bunches in a beam, and the beam intersection angle. The 

maximum interaction area  will be obtained when all these quantities a r e  made as 

large as possible. Let ts  now look on what determines the limits on them. 

First, it is clear that the introduction of a crossing angle will always increase 

the effective interaction area, The crossing angle may be fixed a t  some "large" 

angle - as in the recent SLAC design - o r  .may .be adjustable .- as in the Frascati 

and DESY 'designs. In any case, there will probably be some ,upper - limit set  by 

the geometry of the ring design. If the angle is adjustable, the transition between 

the high-energy and low-energy regimes will presumably occur when the, angle is 



a t  i ts  maximum. We may therefore take the crossing angle a s  fixed at  its maxi- 

mum value in the low-energy regime. -The maximum angle is probably limited to 

some number not greater than 0.1 for various reasons. So long a s  i t  i s  ,no greater 

than that, the approximations I have made .(which assume that the angle i s  much 

less  than 1) a r e  still  valid. . 

I shall aiso assume - to simplify the formulas- that the crossing angle i s  

' largef1 in the sense that the term l t jH dominates w* in Eq. (6.4). (Remember 

that I have adopted a horizontal crossing angle :for my model ring. ) Then the 

effective interaction area of Eq. (6.2) becomes 

' _ .  
And this i s  the quantity we want to be a s  large a s  possible. 

Next, it i s  clear that we want By the number of bunches, to be large.  Since 

the rf voltage is periodic with the iarmonic number k, the maximum number of 

bunches that can be stored is also k; with ill bunchis filled, B = h. It would at  

f i rs t  sight appear that k should be a s  large as possible.  hat would be true if the . 

crossing angle tjH were zero. But with'a large crossing angle i t  i s  the product EQ 

which appears and we must expect 'that P will decrease with increasing k. It can 

indeed be shown that the maximum achievable valuc of Bl i s  nearly independent of 

k so  long a s  k i s  not too small. Since the demonstration of that fact i s  a bit long, 

I defer it to the next section and just take here the result obtained there. To a 

good approximation, it i s  found.that for k not too omall, tho maximum bunoh length 

i s  just 1/37r of the minimum spacing between bunches, namely the ratio of the 

orbit length L to the harmonic number k. That is ,  

L - -  
'max 37rk 

We have the simple result that ' 

(130) .. . = kP,;= ~ / 3 n  .-;- max . . 

The maximum of Bl in Eq. ('6.17) i s  just a number proportional to the size of the 

fitorage ring. .- ' . . 

The only remainingfactor that appears in the effective interaction area i s  h*, 

the beam height'at 'the collision point. . We have seen in Par t  V that the minimum 

transverse dimensions of the beam' a r e  determined by the intrinsic quantum; excita- 

tion of the radial oscillations and by the coupling between the vertical ' a d  horizontal 



oscillations. It should be possible in principle to increase the beam dimensions 

above this minimum size by exciting the betatron oscillations with specially applied 

. external electromagnetic forces. This has in fact, been done in existing storage 

rings, But it  is also found that such artificial beam enlargement does .not lead to 

any:increase in the maximum luminosity. 

It can be shown that the techniques used for beam enlargement produce also 

some coherent transverse oscillations. And these coherent oscillations probably 

lead to a decrease' in the current density that can be tolerated when two beams a r e  

brought into collision. It should be observed however, that in all existing rings 

the two beams a r e  stored in the same guide field and have, therefore, identical 

betatron frequencies. We may expect that the coupling between the two beams 

would be greatly reduced if the beams had different betatron frequencies - as  

could be arranged in future rings. It may then, be possible to get an increased 

luminosity in future storage rings by the artificial enlargement of the transverse 

dimensions. Since this possibility has however, not yet been studied in detail, I 

shall make the more pessimistic assumption that the current density limit of . 

Eq.. (6.6) must be applied only to beams in which the betatron oscillations in a 

beam a r e  the completely incoherent "natur,al17 oscillations produced by quantum 

fluctuations. . . 

We must then ask what is the maximum beam height that can be obtained 
. . 

using only the natural quantum-induced oscillations. T h i s  question has been don- 

sidered in section 5.6. Remembering that h = Z q ,  we get from Eq.  (5.115) that 

5 5 fie ,h*2 - - 
max 64 P (mc2)3 PoVn . , 

2 For  our present purposes we may use the approximation that ru = l / v  = 1/v2 - x n 
see  Eq. (3.22). Also writing An for Rn/po: we have that 

0 

. 
' 

The maximum possible beam height varies directly with the beam energy E .. (We 
Ci 0 

are of dourse assumirig that the aperture throughout the ring is always large enough 

to accommodate the beam width and height with the maximum coupling that we have 
\ . . 

postulated. ) 



We now have all of the information required for computing the.rnaximum 

value of the interaction area of Eq: (6.17). Namely, 

~ h e r e . ( B Q ) ~ ~  is given in Eq. (6.19) and hLax, in.Eq. (6.21). Putting the pieces 

where 

With this expression for Am, (and remembering that JA = c/f) the low energy 
. ,  . . l~~minosity: of Eq, (6.16) becomes 

?iH E: n g1 = C 1 3/2 ' (6.25) 
(vnP V) 

with 

(ti. 26)  

We f i ~ d  that the optimum luminosity in the low-energy regime varies with the 

cube of the operating energy. In addition, it varies linearly with the crossing --- 
angle 8H and inversely a s  the 312 power of the betatron function at the beam inter- 

section. 

The low-energy regime in which the luminosity follows Eq. (6.25) extends 

from the encrgy ET downward. (Above the 'energy E there is no longer enough T 
current to match the intcrnctfon area.) The lower energy hound of t h i ~  regime is 

less well determined. It will, most likely, occur when - for some reason or 

other - it is  necessary to limit the stored current below the critical value defined 

by Eq. (6.15). The current limit ma.y hF! set by the onset of some beam instability 

not considered here. O r  in the nlost favorable circumstance the current will . . be 

limited at  low energies only due to the loss of beam from the Touschek effect - 
see Section 1,3. 



. 6.5. Maximum Bunch Length 

We saw in the preceding section that the low-energy luminosity will, usually, 

be proportional to the bunch length 1. It is therefore, desirable that Q be a s  large 

a s  possible in the low-energy regime. The length of a stored bunch was discussed 

in Section 5.4; we saw there that it is 2c u where u is the time spread. Using 
7 '  7 

The bunch length is related to the various ring parameters, a ,  L, Jc, po - 
which we may take a s  f&ed for a given ring - to the operating energy Eo and to the 

slope ir0 of the rf voltage - which is adjustable. I am assuming here that the rf 

voltage is sinusoidal. It is usually so  for practical reasons. I£ the voltage i s  not 

sinusoidal the conclusions will be modified somewhat, although the qualitative 

features of the result will probably not be changed. 
A 

For a sinusoidal rf voltage v will vary with the peak rf voltage V and the 
OA 

bunch length will be longest when V is a s  small a s  possible. But a s  we saw in 

Section 5.8, the rf voltage determines also the beam lifetime due to energy fluctu- 

ations. We may say that the maximum bunch length is  obtained when the rf voltage 

is se t  a s  low a s  possible compatible with an acceptable beam lifetime. . . 

A 
The voltage slope v has been written in terms of V in Eq. (3.39). It will be 

O A A 
convenient t;o use, instead of V, the ltovervoltagelf q = V/U that was found to be 0 
a useful parameter .in Section 3.6. In terms of q, Eq. (3.39) beco'mes 

Now let's replace w by. its equivalent Z T C ~ / L  where L i s  the orbit length and k is  r f 
the harmonic number of the system, and replace Uo by the expression.in Eq. (4.8). 

Then we have that 

If we use this expression in Eq. (6.29) and express C and C in terms of the constant 
q Y 

E defined by Eq. (5.140), we get for the bunch length the equation 1 



Now notice that the combination J ~ E ~ / Q E ~  i s  also contained in the parameter 

that appeared in our analysis of the quantum lifetime. See Eq. (5.141). So the 
< 

bunch length can be expressed in. terms of 6 and the overvoltage q:- Using Eq. (5.141 j 

where F(q) is the energy aperture function of Eq. (3.61). The total q-dependence 

of this expression for l? i s  

For high energy rings q will generally be a s  high a s  3 or  more to get the desired 

quantum lifetime -'provided only that the harmonic number is  reasonably large, 

say greater than 20. For any q signific&tly greater than 1 ,  the becond term oh 

the right-hand side is well approximated by [2/q (q+ 1)l 'I2, which will then also 

be quite a bit smaller than 1. We will not make a significant 'er ror  if we 'ignore 

this term and write for Eq. (6.31), 

We have then, an expression for Q which depends only, on L, k, and the lifetime 

parameter 5. 
We saw in Section 5.8 that the beam lifetime i s  an exceedingly rapid fmctioii 

of the rf voltage. The bunch length wili therefore, not be very sensitive to the 

precise definition of an llacceptablell lifetime. I may, therefore, take the simple 

criterion that the quantum lifetime T (from energy oscillations) shall be some 
q 

large fixed multiple of the :energy damping time constant T, . Since T, i s  typically 

0.01 to 0 .1  sec, .'we would probably be willing to accept a beam lifetime about 10 6 -  

times larger. 

In Eq. (5.135) the ratio of 7 to 7 was expressed in terms of the parameter (: 
Y e  

6 Let's call e0 the value of C that gives T /T = 10 ; then solving. the transcendental 
q , 

equation for to,  we find that to = 18. 



If we use this value for 4 in Eq. (6.33) we obtain the maximum bunch length 

which is the expression that was adopted in the preceding section. We have the 

interesting result that, when the bunch length is a maximum, the total circum- 

ference occupied by the bunches, Mmax, i s  always a constant fraction - namely 

about 1/3n o r  10% - of the ring circumference. 

6.6. Optimum Luminosity Function 

I have chosen to compute the optimum luminosity of any particular storage ring 

a t  the operating energy E (assumed to be adjustable) in terms of six parameters 0 
(assumed to be fixed numbers) that describe the design characteristics of the ring. 

These parameters a r e  Rn, vn, An, PV, tjH, and Po  - all  described in Table 6.1. 

These six parameters can be chosen relatively independently in designing a ring. 

They would become interdependent however, if we were to take into account con- 
. . 

siderations external to the physical characteristics of the ring. In particular, any , 

economic optimization would give relations among them all. For  example, 

increasing R would mean greater  costs fo r  certain components which might, how- n 
ever, be compensated for by decreasing Po with a net overall increase in the high 

energy luminosity. It is,  however, difficult to make a generally valid cost analysis . r 
and I shall not attempt to do s o  here.  Rather, I shall only make some comments 

about the significance of some of the parametric dependences in the luminosity a - tr 

relations. 

The maximum achievable luminosity in the low-energy regime is given by 

Eq. (6 .25)  and in the high-energy regimc by Eq. (6.9). Wc hnve that 

(low energy) ; 

2, = c 2 A1/2 'oRn 3 (high energy) . 
n PvEo 

Thecomplete optimum luminosity function has the form shown in Fig. 50. 



FTG. 50--The optimum lumirrositv function. 

The transition between the two energy regimes occurs at the .energy E which - T 
is evidently, the energy a t  which the two functions and LT2 a r e  equal. Solving 

for this energy, we find that 

with 

You will notice that the transition energy varies exceedingly slowly with all of the 

significant parameters of the ring. 
3 

Below the transition energy ET the luminosity goes a s  E . (One power c u ~ n e s  

f rom the beam height, a second from the corresponding increase uf current per- 

mitted for a fixed current  density limit and a third from the linear increase of the 
3 

limitinff current density with energy.) Above E the energy dependence i s  a s  1 / ~  . 
T 

(The current varies a s  1 / ~ ~ ,  but one poweF of E is compensated by the permitted 

linear decrease of the a rea  with energy. ) 

In the low energy region the luminosity i s  proportional to the crossing angle - )  

tjH and independent of the ring radius Rn and of the available rf power Po - 
although ET, which se t s  the upper edge of the low energy region - does depend on A 

the rf power. At high energies, on the other hand the luminosity i s  proportional 



to Po and to Rn, but independent of tjH. This lack of dependence comes about 

because the beam dimensions a r e  always adjusted to reach the limiting current 

density. The choice of 6 is  not coupled to the choice of other parameters (but 
H 

will most likely be dictated by geometrical constraints imposed by the intersgction 

region layout). The rf power Po  costs money - both for itself and for associated 

costs of the vacuum system which must absorb the power. There a r e  also costs 

associated with Rn - and perhaps roughly in proportion o r  stronger. (For  a given 

An, vn, and energy, the magnet aperture must increase with R i  although the mag- 

netic field decreases; cabling and vacuum systems increase with R + and real  
2 n '  

estate costs go a s  Hn. ) 

A dependence on v n  appears only in the low energy region - when th'e lumin- 

osity a s  ~ 1 1 ~ ' ~ .  This i s  a good place to pointout a possible cri t icism of the 

analysis for  the low energy region. In obtaining the maximum possible beam area ,  

I assumed that v was kept a constant. One might argue that v n  should be "tunedff n 
to get a further increase in beam size - that i s ,  that vn should be lowered until 

some other limit was reached. In principle, one could - by decreasing v - n 
always increase the natural beam size until beam was lost to the aperture limits. 

Such a method of operation would lead to a different energy dependence a t  low 

energies. 

There a r e  however, other constraints on vn. There a r e  relatively few good , ~ 

operating points in the resonance diagram. So the 'choices of v a r e  a discrete set ,  n 
and i t  did not appear appropriate to treat it a s  a continuously adjus.table parameter. . . 
Perhaps more importantly, for a given geometry of the components i t  would gen- 

e ra l ly  not be possible to vary v n  and maintain the appropriate matching,conditions 

with the long straight sections. One would then expect that any change in vn would 

lead to some related variation of PV. (This point i s  considered further below.) 

All in all, the analysis made here does not seem too inappropriate although one 

may wish in practice to consider the possibility of employing some alternate choices 

of v for  low energy operation. n 
Assuming a constant value of vn the primary consideration affecting the choice 

of its design value is an economic one. The aperture requirements of a l l  magnets 

a r e  related to vn. With the assumptions made here,  vn  places a requirement on 

the.usefu1 horizontal aperture a t  the maximum design energy and also one on the 

vertical aperture which must ,accommodate the beam when it takes on i t s  maximum 

height - which will occur ncar E T ' 



There is a t  a l l  energies a relatively weak dependence on the elongation factor 

An' 
for  which there is anyway, generally little freedom of choice. Notice, also 

that the harmonic number does not appear explicitly in the optimum luminosity 

functions. \ 

At both low and high energies the luminosity has a relatively strong inverse 

dependence on pv. It wouldseem that PV should always be made a s  .small a s  pos- 

sible. The lowest practical value may be set  by various factors: the variation of 
. . 

PZ across the interaction zone; aberration in the lenses; practical limitations of 

quadrupole strengths and apertures; requirement for a long magnet-free space a t  

the interaction, to name a few. In recent designs it has seemed feasible to make 

PV a s  small a s  about 0.05 meters, o r  about'10-~ of pn. But the quantitative nature 

of possible inherent constraints on PV and their relation to other parameters i s  not 

clear to me at the present moment. 

B w e  evaluate cithcr Sl or P2 a t  thc tranoition onorgy, rvo oon find tho peak 

value gT of the luminosity function. 

, (HnSHP0) 
1 /2 

g~ = C0 1/2 3/4 5 /4 .  (6.37) 
'n 'n 'V 

with 

The optimum luminsoity in the two energy regions can be expressed conveniently 

j.n terms of .!Z Clearly, T '  

Th& upper lilnil EL ol Wle high eerPrgyy r&ggim.is reached when the effective 

interaction area can no longer be reduced to,satisfy Eq. (6'. 8). Recall that the 
- 4 current i s  decreasing a s  Eo , and that the critical current density decreases a s  



- - 5 

Eo l. The interaction area  must, above ET decreaseas  E . In our model ring, 
0 

the only significant control on the beam area  is through the product of the bunch 

number B with the height h*. The product Bh* must, therefore be decreased a s  
-5 Eo through the high-energy regime. We have assumed that the beam height may 

be controlled by varying the coupling between the vertical and radial oscillations. 

Let  me assume that with the minimum achievable coupling the beam height i s  reduced 

by' some constant factor p below the height that would occur with maximum coupling. 

Then the minimum height is phkm a t  each energy. Now recall that hLax is pro- 

portional to the beam energy; so  in going from E T to the beam height can be 

reduced by the factor P E ~ / E ~  Finally, the number of bunches B can be reduced 

by filling only some of the available bunch positions. At E all of the k possible 
T 

bunches a r e  filled. To  get the minimum area  we should fill only one bunch. This 

gives us a reduction by the factor k. The total reduction possible i s  the P E ~ / ~ E ~ ,  

and this must equal ( E ~ / E ~ ) ' ~ ~  W; get that 

Probably p is about 0.02 o r  so; clearly a high harmonic number i s  needed if E is L 
to be significantly higher than E T ' 

Some further decrease in effective area  can also be obtained decreasing the 

bunch length - which can be done by increasing the rf voltage above that assumed 

in deriving A The length decreases only a s  the square root of the voltage 
m a '  

however; a n 4  since there is likely to be little excess voltage capability a t  the 

highest energy, there is not much to be gained by this procedure. 

One further remark. I have assumed all along that the critical current density 

was due to the vertical tune shift. We should now check up on this assumption. 

So long a s  PV is somewhat less  than pH, the beam height a t  the interaction point 

will always be less  than i ts  width. Applying the results of Section 2.12, to the 

crossing geometry of our model storage ring,. the ratio of the horizontal tune shift 

to the vertical one is 



If this ratio is never to exceed 1 we have the condition that 

We have until now not considered pH a t  all. We see  however, that it must 

not be too large for our calculations to be valid. For our model ring 16 will H 
generally (unless k is extremely large) be much larger than h*, so  the condition 

on pH will not usually be difficult to satisfy. , 

6.7. Luminosity Function for Project SPEAR 

The model storage ring of Section 6.2 corresponds very closcly to a design 

propoocd rcocntly by tho Storage Ring ~ r o u ~ t  at the Stanford Linear Accelerator 

Center. The design is called SPEAR - for Stanford Positron Electron Asymmetric 

Rings. (The individual rings a r e  asymmetric, because the special straight sections 

a r e  not placed symmetrically in the otherwise circular guide field. ) The essential 

parameters proposed for SPEAR are:  

R = 34.3 meters A = 2 . 7  n n 

v = 3;2 p. = 0.05 meters n V 
5 6 = 0.10 H 

P,= 5 . 5 ~  10 watts ' 

With these parameters the peak luminosity given by Eq. (6.37) and the transi- 

tion energy evaluated from Eq. (6.;36) a r e  

E 2'1.19 GeV 
* 

. . 

33 -2 -1 9 - 1 1  tin sec 
3 'r 

From these two numbers - and using the equations of (6.38) - the luminosity curve 
" of Fig. 51 is obtained. 

In the SPEAR design the rf harmonic number k i s  36 so the upper limit of the 

high-energy regime expected from Eq. (6.35) is a t  about 3.2 GeV - which is above 

the top design energy of the rings a t  S GeV. No estimate has been made of the 

lower bound of the low-energy regime. 
. . .  

 he design was developed in  January 1969 by B. Gittelman, B. ~ i c h t e r ,  . . D .  Ritson, 
and M. Sands. 



FIG. 51--Luminosity function for Project SPEAR. 

The stored beam currents required to reach the luminosities shown in Fig. 51 

a r e  rather high. If some effect that has not been taken into account limits the cur- 

rent below what i s  required to reach the optimum luminosity, the realizable lumi- 

nosity will of course, be decreased. I show by the broken lines in the figure, the 

liii~ii~~usiLies 111x1 car1 be reached with any arbitrarily specified current - provided 

only that the interaction area  can st i l l  be adjusted to get the best luminosity. To 

get the peak luminosity P T ,  a current of 40 amperes must be stored in each 

beam! It remains to be seen whether such Kigh beam currents can indeed be stored 

in an electron-positron, colliding beam storage ring. 
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