Temperatures were calculated relative to the storage of radioactive solid waste as a function of time and radial distance for radioactive solid cylinders in infinite solid media of "average soil," "average rock," and salt. A resistance at the cylinder--infinite medium boundary was included in the form of an air space. For the range of parameters used and withia the practical limits of accuracy, the maximum temperature rise increased linearly with the heat generation rate. The fission product spectrum was not significant in the determination of the maximum temperature rise. Under the pessimistic storage conditions assumed, the storage of cylinders of …
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
Temperatures were calculated relative to the storage of radioactive solid waste as a function of time and radial distance for radioactive solid cylinders in infinite solid media of "average soil," "average rock," and salt. A resistance at the cylinder--infinite medium boundary was included in the form of an air space. For the range of parameters used and withia the practical limits of accuracy, the maximum temperature rise increased linearly with the heat generation rate. The fission product spectrum was not significant in the determination of the maximum temperature rise. Under the pessimistic storage conditions assumed, the storage of cylinders of a practical size appears feasible without excessive temperature rise. A maximum temperature rise of 1000 deg F would be produced with an initial heat generation rate of 1300 to 1600 Btu/hr-ft/ sup 3/ for cylinders with a 5-in. radius, with 350 to 450 Btu/hr-ft/sup 3/ for a 10-in. radius, and with 175 to 210 Btu/hr-ft/sup 3/ for a 15-in. radius, assuming a thermal conductivity of the radioactive cylinder of 0. 1 Btu/hr-ft- deg F. (auth)
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Perona, J. J. & Whatley, M. E.Calculation of Temperature Rise in Deeply Buried Radioactive Cylinders,
report,
February 25, 1960;
Tennessee.
(https://digital.library.unt.edu/ark:/67531/metadc865941/:
accessed December 2, 2024),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.