NUCLEAR MAGNETIC RESONANCE
SPECTRA OF TRIALKYL PHOSPHATES
AND RELATED COMPOUNDS
I. Proton Magnetic Resonance Spectra
by
W. E. Shuler and R. C. Axtmann
Separations Chemistry Division
June 1960

E. I. du Pont de Nemours & Co.
Savannah River Laboratory
Aiken, South Carolina
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
NUCLEAR MAGNETIC RESONANCE SPECTRA OF TRIALKYL PHOSPHATES AND RELATED COMPOUNDS

1. PROTON MAGNETIC RESONANCE SPECTRA

by

Woodfin E. Shuler and Robert C. Axtmann*

June 1960

E. I. du Pont de Nemours & Co.
Explosives Department - Atomic Energy Division
Technical Division - Savannah River Laboratory

Printed for
The United States Atomic Energy Commission
Contract AT(07-2)-1

Approved by
C. H. Ice, Research Manager
Separations Chemistry Division

* Present address: Department of Chemical Engineering
Princeton University
Princeton, New Jersey
ABSTRACT

High resolution proton magnetic resonance spectra are presented for 48 trialkyl phosphates and related phosphorus compounds. Chemical shifts, spin-spin coupling constants, and spectral analyses are reported for representative compounds of interest in solvent extraction technology.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Summary</td>
<td>4</td>
</tr>
<tr>
<td>Discussion</td>
<td>4</td>
</tr>
<tr>
<td>Experimental</td>
<td>4</td>
</tr>
<tr>
<td>Results</td>
<td>5</td>
</tr>
<tr>
<td>Analysis of the High Resolution Proton Spectra</td>
<td>6</td>
</tr>
<tr>
<td>Bibliography</td>
<td>11</td>
</tr>
<tr>
<td>Appendix</td>
<td>13</td>
</tr>
<tr>
<td>Table I - Chemical Shifts and Coupling Constants</td>
<td></td>
</tr>
<tr>
<td>Spectrograms - As Listed in Table I</td>
<td></td>
</tr>
</tbody>
</table>
NUCLEAR MAGNETIC RESONANCE SPECTRA OF TRIALKYL PHOSPHATES AND RELATED COMPOUNDS

1. PROTON MAGNETIC RESONANCE SPECTRA

INTRODUCTION

Tributyl phosphate (TBP) is the solvent most commonly used in solvent extraction processes for the purification and recovery of uranium and plutonium from irradiated fuels. Although the TBP solvent extraction processes have been well characterized from the standpoints of stoichiometry, mass transfer, and stability of the solvent, the molecular structure of the complexes involved in the processes has received relatively little attention. Comyns pointed out in a recent review\(^1\) that no determination has been made of the structure of a complex as common and important as the one formed by the addition of uranyl nitrate to TBP. In spite of the fact that nitric acid is present in nearly all TBP processes, the TBP·H\(_2\)O·HNO\(_3\) system has never been properly characterized and several recent authors\(^2,3\) have disagreed as to whether TBP associates with one, two, or more molecules of nitric acid.

The present paper reports a portion of the effort to characterize TBP and its complexes by means of optical and nuclear magnetic resonance (NMR) spectroscopy. An NMR study of the TBP-water system has already been reported\(^4\). Axtmann, Shuler, and Eberly studied the reflection of the inductive effect on the spin-spin coupling interaction between P\(^{31}\) and the a protons in TBP and other trialkyl phosphates\(^5\).

Other work in progress bears on the relationship of the thermodynamics of extraction of uranyl nitrate to chemical shifts and coupling constants, and the behavior of the chemical shift of the protons undergoing exchange in solutions of H\(_2\)O, D\(_2\)O, and HNO\(_3\) in TBP.

SUMMARY

Proton NMR spectra were obtained for TBP and 27 other trialkyl phosphates, several trialkyl phosphites, phosphines, phosphorothioates, phosphonates, and tri-n-butylphosphine oxide. Spectra representing the different classes of compounds were analyzed to first order, and chemical shifts, \(\delta\), and spin-spin coupling constants, \(J\), were determined.

DISCUSSION

EXPERIMENTAL

All of the NMR spectra were obtained at room temperature with samples rotated in coaxial sample tubes*. The spectrometer was a Varian Model 4300B that was equipped with a "superstabilized" 12-inch magnet

* Wilmad Glass Co., Landisville, New Jersey
system. Chemical shifts were measured by the sideband technique to ±0.5 cps relative to benzene as an external reference in the outer sample tube. About 5 volume per cent benzene was added to the compound in the inner tube after the high resolution spectra were recorded, and new spectra were run to obtain the "solvent shift" or separation between the internal and external benzene reference signals. The spectrometer's Sanborn recorder was used together with sidebands for some of the shift measurements, while others were measured by sideband calibration of spectra recorded on a Varian G-10 recorder.

The spin-spin coupling constants of highest precision in Table I were determined from G-10 recordings for which the known splitting of the methylene group (4.8 cps)\(^6\) of ethyl alcohol was used to calibrate the magnetic sweep speed before and after each measurement. The reproducibility of these measurements on successive traces was ±0.2 cps. The spin-spin coupling constant for trimethyl phosphate was determined by the "wiggle-beat" method.\(^7,8\) The remaining coupling constants in Table I were determined by measurement of slow recordings (≈0.2 cps/second) that were calibrated by the sideband technique.

Some of the phosphorus compounds were obtained commercially and used without further purification. T. H. Siddall, III, of this laboratory, synthesized the other compounds whose spectra are reported.\(^9\)

RESULTS

The high resolution spectra and, for some compounds, the theoretical spectra based on first-order coupling of spins are given in the Appendix. The protons on the carbon atom adjacent to the ester oxygen -- or, if no oxygen atom is interposed between the alkyl chain and the phosphorus atom, the protons on the carbon bonded to the phosphorus atom -- are designated as α protons. Those protons on the second carbon from the phosphorus atom are β protons, etc. Signals known to result from water contained in the sample and spurious signals are shaded in the spectra. Reference signals from internal and external references and sidebands are designated by \(R_\alpha\), \(R_\beta\), and \(R_\gamma\), respectively.

The chemical shifts given in Table I are displacements from an external benzene reference and have not been adjusted for bulk magnetic susceptibility.

The spectra of several of the smaller molecules yield a complete set of proton coupling constants. For example, \(J_{\alpha H-\beta P}\), \(J_{\alpha H-P}\), and \(J_{\beta H-P}\) were obtained for triethyl phosphate. The sharp decrease in \(J_{\alpha H-P}\) in going from the α protons to the β protons (from 8.38 cps to 0.76 cps for triethyl phosphate) constitutes experimental evidence for the rapid attenuation of electron spin coupling of nuclei as the number of intervening bonds increases.
The decrease in J_H-D with increasing alkyl chain length of several tri-n-alkyl phosphates has been correlated with the inductive effect(s).

The data indicate that in carbon chains containing about six or seven atoms the coupling of nuclei through the spin of their electrons is very slight; extrapolation was made of the J_H-H values for adjacent methylene groups estimated from Spectrum 10 for α, β, γ, and δ protons in tri-n-amyl phosphate. The conclusion that these methylene groups are devoid of any intrinsic difference in chemical properties is demonstrated in a less precise manner by the fact that the protons in methylene groups that are several carbons removed from the electronegative substituent show indistinguishable chemical shifts, i.e., magnetic equivalence.

ANALYSIS OF THE HIGH RESOLUTION PROTON SPECTRA

The fields at which resonance occurs are slightly different for the several chemically distinguishable groups of protons in a given molecule. Thus, the protons of a methyl group resonate at a higher field than do those of a neighboring methylene group if both groups are irradiated at the same fixed frequency. These small differences, termed "chemical shifts", are proportional to the applied field strength. In this paper the shifts are reported in cycles per second above the proton resonance of an external benzene reference at 40 megacycles per second. Shifting numbers are shown on the spectra. The shielding number is independent of applied field strength and equal to (H-H_p)/H_p, where H is the resonance field of the sample signal and H_p is the resonance field of the reference benzene signal with both H and H_p being determined at the same frequency.

The resonances of the magnetically equivalent protons in a chemical group (e.g., methylene group of ethyl alcohol) often exhibit a field-independent fine structure if there are nuclei with nonzero spin within the distance of three or four chemical bonds. The fine structure arises from spin-spin interactions via the valence electrons of the intervening atoms. The relations governing the number and intensity ratios of the fine structure of multiplet signals are quite simple in the cases of molecules that contain only spin 1/2 or spin zero nuclei^{10}. If N is the number of chemically (and magnetically) equivalent spin 1/2 neighbors of a given chemical group, to first order the number of multiplet signals will be (N + 1), and the signal intensities will be in the ratios of the coefficients of the binomial expansion of (a + b)^N. If, in addition, there is a second group of M near neighbors, each of the (N + 1) signals will be split into (M + 1) subsignals and the intensity ratios of the new subsignals will be as the coefficients of the binomial expansion of (a + b)^M.

When, by a combination of instrumental and molecular factors, "super" high resolution occurs, additional signals appear as splittings of those that appeared at lower resolution. The simple rules of first-
order multiplet analysis given in the preceding paragraph then break down, and more sophisticated analyses such as those applied to a number of simple organic compounds by Arnold(6) and Anderson(11) are required. The fine structure of a number of the compounds studied here may be analyzed with the first-order rules.

One of the purposes of the present work was to analyze the proton NMR spectrum of tributyl phosphate. As in most problems of spectroscopic assignment it was necessary to examine the spectra of a number of closely related compounds. Phosphorus compounds were selected on the basis of the length of the alkyl chain and the class of compound. By selection of compound class, the atom adjacent to the phosphorus atom was varied from no atom (phosphines and phosphites) to oxygen (phosphates and phosphonates) and sulfur (phosphorothioates). Since several of these compounds have shown promise as alternate extractants for various radiochemical separation processes(9), the spectra of all as well as representative analyses are presented here. The spectrograms all show the external benzene reference as a single signal at the low field end.

1. Trimethyl Phosphate, (CH₃O)₃PO (Spectrum 1)

The protons on the methyl groups give a symmetrical doublet that arises from spin-spin interaction with the single phosphorus nucleus. No evidence is seen for rotational isomerism, which would be manifested in this spectrum as a further splitting of the two signals of the doublet. Mortimer has explained the doublet observed in the fundamental stretching band at 1290 cm⁻¹ for the phosphoryl bond of trimethyl phosphate by invoking rotational isomerism(12). Although the present results do not confirm Mortimer’s suggestion, they do not rule out the possibility of rotational isomerism, for, as Pople has pointed out recently(13), there is no guarantee that the protons of any given pair of rotational isomers will be magnetically nonequivalent or that the rotational isomers will have lifetimes long enough that they may be observed by NMR.

2. Triethyl Phosphate, (C₂H₅O)₃PO (Spectrum 2)

The signal from the methyl protons appears as a triplet at the high field end of the spectrum. The splitting of the central signal of the triplet could be due to rotational isomerism but is much more likely to result from an extremely weak spin-spin interaction with P³¹, which is four chemical bonds removed compared with three in the case of trimethyl phosphate. A temperature study would be required to confirm the point. The apparent quintet at the low field end of the spectrum is the signal from the methylene protons. Close inspection of the spectrum demonstrates that the three central signals of the quintet are split approximately equally, making a total of eight multiplet signals. This fine structure can be accounted for by assuming that the methyl protons interact with the methylene protons.
to produce four multiplet signals in the ratios 1:3:3:1; and that the single \(P^3 \) nucleus then splits each of these signals into a doublet. The "theoretical" spectra on this basis would be as shown in Spectrum 2B, which agrees quite well with the observed spectrum.

3. Triethyl Phosphite, \((C_2H_5O)_3P\) (Spectrum 31)

Superficially at least, the spectrum of this compound is similar to that of triethyl phosphate. Spectrum 31B shows, however, that the methylene protons produce a multiplet with extensive fine structure; at least 16 signals are apparent whereas only 8 appeared with the phosphate. The simple first-order rules for intensity ratios and number of signals are not very useful at this stage of resolution. A second or perhaps even a third-order perturbation calculation such as that done for ethyl alcohol\(^{16}\) is required to account for all the signals that are observed.

The phosphite gives better resolution than the phosphate under the same experimental conditions because the phosphite has a significantly lower molecular dipole moment. The phosphate molecule, with its highly polar phosphoryl group, is held more rigidly within the liquid structure by induced dipolar attraction and is less free to tumble about. Free tumbling is necessary to average out the nuclear dipolar interactions to zero, which is necessary for the highest resolution\(^{14}\).

4. Triethyl Phosphorothioate, \((C_2H_5O)_3PS\) (Spectrum 29)

The spectrum for this compound is quite similar to that for the previous two compounds. Due to a favorable ratio of \(J_{CH_2-P}/J_{CH_3-CH_2} \), the multiplet of the methylene protons appears as a clearly delineated octet (see discussion under triethyl phosphate). Finegold\(^{15}\) has noted that \(H^*-P^3 \) spin-spin coupling is enhanced when the phosphorus atoms are attached to double-bonded sulfur atoms rather than to double-bonded oxygen atoms. This observation is borne out in the present case (8.38 versus 10.18 cps) as well as in tributyl phosphorothioate.

5. Tri-n-propyl Phosphate, \((C_3H_7O)_3PO\) (Spectrum 4)

The apparent quartet at the low field side of the spectrum is from the \(\alpha \) methylene protons. Actually the apparent quartet is an unresolved sextet. The methyl protons give a triplet that is, characteristically, at the extreme high field end of the spectrum. It is noteworthy that this triplet does not have the 1:2:1 intensity ratio that would be predicted by the binomial coefficients rule. The high field branch of the triplet is quite low in intensity. In butyl compounds this branch disappears almost entirely (see Spectrum 6 and compare with Spectrum 2, the ethyl compound). The signal of the \(\beta \) methylene protons appears as a multiplet at slightly lower field than the methyl protons. This multiplet should have at least 12 signals; these are not well resolved in the spectrogram.
6. **Tri-n-butylphosphine, \((C_4H_9)_3P\) (Spectrum 37)**

Because no oxygen atoms are interposed between the phosphorus atom and the alkyl chains, there is very little chemical shift for the \(\alpha\) methylene protons and the \(\alpha, \beta,\) and \(\gamma\) methylene spectrum is grouped near the signal of the methyl protons. The protons from the methyl groups give an asymmetric doublet -- the high field branch of the expected triplet disappears in butyl compounds. The natural width of the methylene proton signal obscures the fine structure and no further analysis is possible.

7. **Tri-n-butyl Phosphate \((C_4H_9O)_3PO\) (Spectrum 6)**

The protons of the \(\alpha\) methylene groups give a sextet -- the \(P^{31}\) interaction doubles the triplet from interaction with the pairs of nearest neighbor methylene protons. The small single signal located about 60 cps above the signal just described has been definitely identified as a water signal\(^4\). The intense signal at the extreme high field end of the spectra is at the usual methyl position. The remainder of the signals, from the \(\beta\) and \(\gamma\) methylene protons, (21 may be seen) are not well resolved. Attempts to improve the resolution by diluting the TBP in an inert solvent such as \(CCl_4\) were unsuccessful.

8. **Tri-n-butyl Phosphite, \((C_4H_9O)_3P\) (Spectrum 32)**

The spectrum is very similar to that of TBP. The \(\beta\) and \(\gamma\) methylene signals are much better resolved, however, for the same reason that triethyl phosphite gave a higher resolution than did triethyl phosphate.

9. **Tri-n-butyl Phosphorothioate, \((C_4H_9O)_3PS\) (Spectrum 30)**

The sextet arising from the \(\alpha\) methylene protons is much clearer in this compound than in TBP because the spin-spin coupling with the \(P^{31}\) nucleus is stronger (see discussion under triethyl phosphorothioate).

10. **Di-n-butyl n-butylphosphonate \((C_4H_9O)_2(C_4H_9)PO\) (Spectrum 41)**

This spectrum is very similar to that of TBP (Spectrum 6) except that the signal of the \(\alpha\) methylene groups bonded to oxygen has relatively less intensity than does the corresponding \(\alpha\) methylene signal of TBP. This is because there are only 2/3 as many such protons in the present compound. The signal from the \(\alpha\) methylene groups bonded directly to phosphorus is present in the partially resolved region at about 204 cps.
11. *n*-Butyl di-*sec*-butylphosphinate \((C_4H_{10})(C_4H_{12})_2PO\) (Spectrum 39)

Compared to TBP, the spectrum shows a diminution of intensity at 105 c.p.s.
as noted above for di-*n*-butyl *n*-butylphosphonate. The attendant
increase in intensity due to the increased number of alkyl groups
bonded directly to phosphorus (no intervening oxygen atoms) appears at
about 210 c.p.s.

W. E. Shuler
W. E. Shuler

R. C. Axtmann
R. C. Axtmann
Separations Chemistry Division
BIBLIOGRAPHY

TABLE I

CHEMICAL SHIFTS AND COUPLING CONSTANTS

(Reproducibility ±0.5 ppm except as noted)

<table>
<thead>
<tr>
<th>Spectrum No.</th>
<th>Compound</th>
<th>(\delta_{\alpha})</th>
<th>(\delta_{\alpha-P})</th>
<th>(\delta_{\alpha-\beta})</th>
<th>(\delta_{\alpha-\beta})</th>
<th>(\delta_{CH_3})</th>
<th>(\delta_{solvent})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trimethyl phosphate</td>
<td>-</td>
<td>11.4 ±0.1</td>
<td>11.19 ±0.2</td>
<td>7.10 ±0.2</td>
<td>7.13 ±0.3</td>
<td>212.9 ±2.5</td>
</tr>
<tr>
<td>2</td>
<td>Triethyl phosphate</td>
<td>-</td>
<td>101.5 ±0.2</td>
<td>8.38 ±0.2</td>
<td>7.10 ±0.2</td>
<td>7.18 ±0.3</td>
<td>212.9 ±2.5</td>
</tr>
<tr>
<td>3</td>
<td>Tris-(2,2,2-trichloroethyl) phosphate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Tri-n-propyl phosphate</td>
<td>-</td>
<td>106.5 ±0.2</td>
<td>7.70 ±0.2</td>
<td>6.35 ±0.2</td>
<td>6.39 ±0.3</td>
<td>227.4 ±2.5</td>
</tr>
<tr>
<td>5</td>
<td>Triallyl phosphate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Tri-n-butyl phosphate</td>
<td>-</td>
<td>106.2 ±0.2</td>
<td>7.65 ±0.1</td>
<td>5.94 ±0.2</td>
<td>6.21 ±0.3</td>
<td>227.9 ±2.5</td>
</tr>
<tr>
<td>7</td>
<td>Triisobutyl phosphate</td>
<td>-</td>
<td>114.2 ±0.2</td>
<td>6.60 ±0.1</td>
<td>6.60 ±0.1</td>
<td>6.67 ±0.3</td>
<td>224.5 ±2.5</td>
</tr>
<tr>
<td>8</td>
<td>Tri-sec-butyl phosphate</td>
<td>-</td>
<td>90.1 ±0.2</td>
<td>6.17 ±0.2</td>
<td>6.17 ±0.2</td>
<td>6.36 ±0.3</td>
<td>227.8 ±2.5</td>
</tr>
<tr>
<td>9</td>
<td>Trimethallyl phosphate</td>
<td>-</td>
<td>79.1 ±0.2</td>
<td>7.62 ±0.2</td>
<td>5.76 ±0.2</td>
<td>5.74 ±0.3</td>
<td>228.4 ±2.5</td>
</tr>
<tr>
<td>10</td>
<td>Tri-n-amyl phosphate</td>
<td>-</td>
<td>105.1 ±0.2</td>
<td>7.62 ±0.2</td>
<td>5.76 ±0.2</td>
<td>5.74 ±0.3</td>
<td>228.4 ±2.5</td>
</tr>
<tr>
<td>11</td>
<td>Tri-2-amyl phosphate</td>
<td>-</td>
<td>85.7 ±0.2</td>
<td>7.30 ±0.2</td>
<td>5.50 ±0.2</td>
<td>5.50 ±0.3</td>
<td>228.5 ±2.5</td>
</tr>
<tr>
<td>12</td>
<td>Tri-3-amyl phosphate</td>
<td>-</td>
<td>95.4 ±0.2</td>
<td>7.30 ±0.2</td>
<td>5.50 ±0.2</td>
<td>5.50 ±0.3</td>
<td>228.5 ±2.5</td>
</tr>
<tr>
<td>13</td>
<td>Trineopentyl phosphate</td>
<td>-</td>
<td>115.8 ±0.2</td>
<td>5.24 ±0.1</td>
<td>5.24 ±0.1</td>
<td>5.24 ±0.3</td>
<td>228.2 ±2.5</td>
</tr>
<tr>
<td>14</td>
<td>Tri-n-hexyl phosphate</td>
<td>-</td>
<td>105.7 ±0.2</td>
<td>7.30 ±0.2</td>
<td>5.70 ±0.2</td>
<td>5.70 ±0.3</td>
<td>232.4 ±2.5</td>
</tr>
<tr>
<td>15</td>
<td>Tris-(4-methyl-2-amy)</td>
<td>phosphate</td>
<td>-</td>
<td>94.5 ±0.2</td>
<td>5.87 ±0.2</td>
<td>5.87 ±0.3</td>
<td>226.0 ±2.5</td>
</tr>
<tr>
<td>16</td>
<td>Tri-4-heptyl phosphate</td>
<td>-</td>
<td>92.4 ±0.2</td>
<td>6.7 ±1</td>
<td>4.9 ±1</td>
<td>4.9 ±1</td>
<td>227.6 ±2.5</td>
</tr>
<tr>
<td>17</td>
<td>Tris-(2,4-dimethyl-3-amy)</td>
<td>phosphate</td>
<td>-</td>
<td>109.6 ±1</td>
<td>-</td>
<td>-</td>
<td>226.0 ±2.5</td>
</tr>
<tr>
<td>18</td>
<td>Tris-(1,1,7-trihydropropyloxypheryl) phosphate</td>
<td>-</td>
<td>85 ±5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Tri-iso-octyl phosphate</td>
<td>-</td>
<td>102.5 ±1</td>
<td>5.3 ±1</td>
<td>5.3 ±1</td>
<td>-</td>
<td>234.9 ±2.5</td>
</tr>
<tr>
<td>20</td>
<td>Tris-(2-ethylhexyl) phosphate</td>
<td>-</td>
<td>105.5 ±1</td>
<td>5.3 ±1</td>
<td>5.3 ±1</td>
<td>-</td>
<td>226.7 ±2.5</td>
</tr>
<tr>
<td>21</td>
<td>Triocyclopentyl phosphate</td>
<td>-</td>
<td>66 ±1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>190.0 ±2.5</td>
</tr>
<tr>
<td>22</td>
<td>Triocyclohexyl phosphate</td>
<td>-</td>
<td>84 ±1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>196.5 ±2.5</td>
</tr>
<tr>
<td>23</td>
<td>Tri-o-toly</td>
<td>phosphate</td>
<td>-</td>
<td>4.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>Tri-n-toly</td>
<td>phosphate</td>
<td>-11.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>Tri-p-toly</td>
<td>phosphate</td>
<td>-18.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>Di-sec-butyl phenyl phosphate</td>
<td>-21.3 ±1</td>
<td>85 ±5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>233.9 ±2.5</td>
</tr>
<tr>
<td>27</td>
<td>Triphenyl phosphate</td>
<td>-17.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>Tribenzyl phosphate</td>
<td>-28.0</td>
<td>64 ±5</td>
<td>8.30 ±0.5</td>
<td>8.30 ±0.5</td>
<td>-</td>
<td>-28.2 ±2.5</td>
</tr>
<tr>
<td>29</td>
<td>Phosphorothioates (R0)_{2}PS</td>
<td>-99.5</td>
<td>10.18</td>
<td>7.11</td>
<td>7.16</td>
<td>7.16 ±0.3</td>
<td>210.9 ±2.5</td>
</tr>
<tr>
<td>30</td>
<td>Tri-n-butyl phosphorothioate</td>
<td>-103.0</td>
<td>8.66</td>
<td>6.12</td>
<td>-</td>
<td>-</td>
<td>225.7 ±2.5</td>
</tr>
</tbody>
</table>

*Ring methylene groups
Phosphites (RO)$_2$P	Triethyl phosphite	-	119.0	7.90	6.87	6.90	223.2	-19.6
Tri-n-butyl phosphite	-	118.0	7.47	6.06	-	230.7	-18.4	
Tridecyl phosphite	-	105.8	-	-	-	226.2	-	
Triphenyl phosphite	0.00	-	-	-	-	-	-	
Tri-p-tolyl phosphite	-0.02	-	-	-	-	-	190.8	
Triethylene diphosthosphate	-	-100	-	-	-	-	-	

| Phosphines Raf | Tri-n-butylphosphine | - | - | - | - | - | 229.0 | - |
| Triphenylphosphine | -27.6 | - | - | - | - | - | -24.3 |

Phosphinates (RO)R'PO	n-Butyl di-sec-butyphosphinate	-	106.5	7.24	6.00	-	223.7	-28.4
sec-Butyl di-sec-butyphosphinate	-	86.6	6.17	6.17	-	224.1	-28.5	
Di-n-butyl n-butyphosphonate	-	105.0	7.33	5.90	-	227.1	-23.7	
Di-sec-butyl sec-butyphosphonate	-	91.8	-	-	-	227.8	-21.4	
Di-n-amyl n-amylphosphonate	-	104.9	-	-	-	227.8	-23.2	
Bis-(2-ethylhexyl) chloromethylphosphonate	-	200.6 ±2	-	-	-	224.8	-24.4	
Di-n-butyl cyclohexylphosphonate	-	101.5	7.39	-	-	224.5	-24.2	
Di-n-hexyl n-hexylphosphonate	-	104.3	7.20	-	-	228.6	-23.4	
Di-n-butyl n-tetradecylphosphonate	-	104.4	7.06	-	-	225.9	-24.7	

| Phosphines Oxides RafPO | Tri-n-butylphosphate oxide | - | 216.2 | - | - | - | 232.0 | -16.4 |

(a) Chemical shift of aromatic ring protons with reference to external benzene reference
(b) Coupling constant determined from a proton spectrum
(c) Coupling constant determined from δ proton or CH₂ proton spectrum
(d) Chemical shift of internal benzene (~5% v) with reference to external benzene reference
Triethyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

A

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

B: \(\beta \)-H

86.8 101.1

C: \(\alpha \)-H

116.3
cps from Benzene

Sample

\((CH_2-CH_2-O)_3PO\)

\(\beta\) \(\alpha\)

Ext. Reference

Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 0.99
Other (Spectrum B): 0.24
(Spectrum C): 0.24
Temperature: 26°C

Solvent

Conc.

Int. Reference

Benzene, 5% v

Resonance Position

-24.4 cps from Benzene

Source and Purity

Eastman (Proc.)
Tris-(2,2,2-trichloroethyl) phosphate

Proton Magnetic Resonance Spectral Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ext. Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CCl₃.CH₂.O)₃PO</td>
<td>Benzene</td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scan Rates, cps/sec:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD (Spectrum A): 1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature: 26°C</td>
</tr>
</tbody>
</table>

Serial No. 3

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

A

cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280
Tri-n-propyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

Serial No. 4

Sample

(CH$_3$-CH$_2$-CH$_2$-O)$_3$PO

γ β α

Solvent

Benzene

Concentration

Int. Reference

Benzene, 5%v

Resonance Position

- -24.4 cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
- STD (Spectrum A): 0.98
- Other (Spectrum B): 0.47
- (Spectrum C): 0.48

Temperature: 26°C
Triallyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

Serial No. 5

cps from Benzene

Sample
(CH₂=CH-CH₂-0)₃PO

Ext. Reference
Benzene

Int. Reference

Resonance Position
cps from Benzene

Instrument and Conditions
Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.06
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C

Source and Purity
Aldrich Chemical Co.
Sample

(CH$_3$-CH$_2$-CH$_2$-CH$_2$-O)$_3$PO

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Benzene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc.</td>
<td>50% v</td>
</tr>
</tbody>
</table>

Source and Purity

Commercial Solvents Co.

Ext. Reference

Benzene

<table>
<thead>
<tr>
<th>Int. Reference</th>
<th>Benzene, 5% v</th>
</tr>
</thead>
</table>

Resonance Position

-24.1 cps from Benzene

Instrument and Conditions

- **Model:** Varian V-4300B
- **Freq.:** 40 Mc/sec
- **Scan Rates, cps/sec:**
 - STD (Spectrum A): 0.96
 - Other (Spectrum B): (Spectrum C):
- **Temperature:** 26°C

Proton Magnetic Resonance Spectral Data

- **Shielding Number**
- **cps from Benzene**

Serial No. 6
Proton Magnetic Resonance Spectral Data

Tri-iso-butyl phosphate

<table>
<thead>
<tr>
<th>Shielding Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.0</td>
</tr>
</tbody>
</table>

Serial No. 7

Sample

\[
\left(\text{CH}_3\right)_2\cdot\text{CH}\cdot\text{CH}_2\cdot\text{O}\right)_3\text{PO}
\]

Solvent

Benzene

Ext. Reference

Benzene, 5% *v*

Conc.

Resonance Position

-23.8 cps from Benzene

Instrument and Conditions

- **Model:** Varian V-4300B
- **Freq.:** 40 Mc/sec
- **Scan Rates, cps/sec:**
 - STD (Spectrum A): 0.99
 - Other (Spectrum B): (Spectrum C):
- **Temperature:** 26°C

Source and Purity: Shea Chemical Co.
Sample: (CH₃-C₂H₅-C₃H₇)₃PO
Solvent: Benzene
Conc.: Synthesis, crystallization
Ext. Reference: Benzene
Int. Reference: None
Resonance Position: cps from Benzene

Instrument and Conditions:
- Model: Varian V-4300B
- Freq.: 40 Mc/sec
- Scan Rates, cps/sec:
 - STD: 1,01
 - Other: 1,01
- Temperature: 26°C
Tri-n-amyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280
cps from Benzene

Sample

(CH₃CH₂CH₂CH₂CH₂O)₃PO

Solvent

Ext. Reference
Benzene

Conc.

Int. Reference
Benzene, 5%v

Source and Purity
Synthesis, molecular distillation

Resonance Position
-25.0 cps from Benzene

Instrument and Conditions.

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 0.99
Other (Spectrum B): (Spectrum C):
Temperature: 26°C
Tri-2-amy1 phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

- 0
- 1.25
- 2.5
- 3.75
- 5.0
- 6.75

cps from Benzene

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ext. Reference</th>
<th>Int. Reference</th>
<th>Resonance Position</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{CH}_3\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_3\cdot\text{O})_3\text{P}_0) \text{CH}_3</td>
<td>Benzene</td>
<td></td>
<td></td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scan Rates, cps/sec:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STD (Spectrum A): 2.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Temperature: 26°C</td>
</tr>
</tbody>
</table>

Source and Purity

Synthesis, crystallized
Tri-3-amy1 phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

Serial No. 12

Sample

$\left[\left(CH_3-CH_2\right)_2CH-O\right]_3PO$

Solvent

Ext. Reference

Benzene

Conc.

Int. Reference

Source and Purity

Synthesis, crystallized

Resonance Position

cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 2.44
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Sample

<table>
<thead>
<tr>
<th>CH₃</th>
<th>(CH₃-C₂H₂O)₃</th>
<th>Solvent</th>
<th>Ext. Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td></td>
<td>Benzene</td>
<td></td>
</tr>
</tbody>
</table>

Source and Purity
E. I. du Pont de Nemours & Co.

Ext. Reference

- **Int. Reference**
 - Benzene, 5% v

- **Resonance Position**
 - -24.9 cps from Benzene

Instrument and Conditions

- **Model:** Varian V-4300B
- **Freq.:** 40 Mc/sec
- **Scan Rates, cps/sec:**
 - STD (Spectrum A): 1.04
 - Other (Spectrum B):
 - (Spectrum C):
- **Temperature:** 26°C
Tri-n-hexyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280
cps from Benzene

Sample

\[
\left[\text{CH}_3\cdot(\text{CH}_2)_5\cdot\text{O}\right]_3\text{PO}
\]

Solvent

Ext. Reference

Benzene

Conc.

Int. Reference

Benzene, 5%

Source and Purity

Synthesis, crystallized

Resonance Position

-24.5 cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.01
Other (Spectrum B): (Spectrum C):
Temperature: 26°C
Tris-(4-methyl-2-amy1) phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-200 280

cps from Benzene

Sample

\[
\left(\text{CH}_3\!-\!\text{CH-CH}_2\!-\!\text{CH-O}\right)_3 \text{PO} \\
\text{CH}_3
\]

Solvent

Ext. Reference

Benzene

Conc.

Int. Reference

Benzene, 5

Resonance Position

-25.0 cps from Benzene

Source and Purity

Synthesis, molecular distillation

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.01
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Tri-4-heptyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

| R_E |
|---|---|---|---|---|---|
| 0 | 1.25 | 2.5 | 3.75 | 5.0 | 6.25 |

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Ext. Reference</th>
<th>Int. Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[(CH_3 \cdot CH_2 \cdot CH_2)_2 \cdot CH \cdot O]_3 PO$</td>
<td>Benzene</td>
<td></td>
<td></td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scan Rates, cps/sec: 2.46</td>
</tr>
<tr>
<td>Conc.</td>
<td></td>
<td></td>
<td></td>
<td>STD (Spectrum A):</td>
</tr>
<tr>
<td>Source and Purity</td>
<td></td>
<td></td>
<td></td>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td>Synthesis, crystallized</td>
<td></td>
<td></td>
<td></td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Temperature: 26°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resonance Position</td>
<td>cps from Benzene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>50</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>

Serial No. 16
Tris-(2,4-dimethyl-3-amyl) phosphate Proton Magnetic Resonance Spectral Data

Shielding Number

<table>
<thead>
<tr>
<th>0</th>
<th>1.25</th>
<th>2.5</th>
<th>3.75</th>
<th>5.0</th>
<th>6.25</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ext. Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
</table>
| \[
\left(\text{CH}_3\text{CH}\right)_2\text{CH} - \cdot \text{O}_3\text{PO}
\] | Benzene | Model: Varian V-4300B |
| Conc. | Int. Reference | Freq.: 40 Mc/sec |
| | | Scan Rates, cps/sec: |
| | | STD (Spectrum A): 2.45 |
| | | Other (Spectrum B): |
| | | (Spectrum C): |
| | Resonance Position | Temperature: 26°C |
| | cps from Benzene | |

Source and Purity: Synthesis, crystallized
Tris-(1,1,7-trihydroperfluoroheptyl) phosphate Proton Magnetic Resonance Spectral Data

Shielding Number

-2.5 -1.25 0 1.25 2.5 3.75

Sample

\[\left[\text{CHF}_2 \cdot (\text{CF}_2)_5 \cdot \text{CH}_2 \cdot \text{F} \cdot \text{O} \right]_3 \text{PO} \]

Solvent

Benzene

Ext. Reference

Conc.

Int. Reference

Source and Purity

Resonance Position

cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 2.36
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Tri-iso-octyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

Sample

\[
\left[(CH_3)_2 \cdot CH \cdot (CH_2)_5 \cdot O \right]_3 PO
\]

Solvent

Benzene

Ext. Reference

Int. Reference

Conc.

Source and Purity

Synthesis, crystallized

Resonance Position

cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 2.54
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Tris-(2-ethylhexyl) phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

$[\text{CH}_3\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}\cdot\text{CH}_2\cdot\text{O}]_3\text{PO}$

Ext. Reference
Benzene

Conc.

Int. Reference

Resonance Position
cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 2.48
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C

Solvent
C$_2$H$_5$

Source and Purity
Monsanto Chemical Co.
Tricyclohexyl phosphate

Proton Magnetic Resonance Spectral Data

<table>
<thead>
<tr>
<th>Shielding Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cps from Benzene</th>
</tr>
</thead>
<tbody>
<tr>
<td>-200</td>
</tr>
</tbody>
</table>

Sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ext. Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[(\text{CH}_2\cdot\text{CH}_2)\cdot(\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2)\cdot\text{PO}]</td>
<td>Benzene</td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td>Conc.</td>
<td>Int. Reference</td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scan Rates, cps/sec:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD (Spectrum A): 1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature:</td>
</tr>
<tr>
<td>Source and Purity</td>
<td>Resonance Position</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-30.3 cps from Benzene</td>
<td></td>
</tr>
<tr>
<td>Synthesis, crystallized</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tricyclohexyl phosphate

Proton Magnetic Resonance Spectral Data

<table>
<thead>
<tr>
<th>Shielding Number</th>
<th>0</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>cps from Benzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Conc.</th>
<th>Ext. Reference</th>
<th>Int. Reference</th>
<th>Resonance Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH₂·CH₂·CH·O)₃ PO</td>
<td>Benzene</td>
<td></td>
<td>Benzene, 5% v</td>
<td></td>
<td>-27.2 cps from Benzene</td>
</tr>
</tbody>
</table>

Instrument and Conditions

- **Model**: Varian V-4300B
- **Freq.**: 40 Mc/sec
- **Scan Rates, cps/sec**:
 - STD (Spectrum A): 1.02
 - Other (Spectrum B):
 - (Spectrum C):
- **Temperature**: 26°C

Source and Purity: Synthesis, crystallized
Tri-o-tolyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280
cps from Benzene

cps from Benzene

Sample

\[\text{H}_3\text{C} = \text{O} \]

Solvent
CCl₄

Conc.
50% v

Ext. Reference
Benzene

Int. Reference
Benzene, 8% v

Resonance Position
-15.5 cps from Benzene

Source and Purity
Eastman (Prac.)

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.05
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Tri-m-tolyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

Sample

PO

Solvent

CCl₄

Conc.

50% v

Ext. Reference

Benzene

Int. Reference

Benzene, 5% v

Resonance Position

-18.7 cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.02
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Tri-p-tolyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

Sample

CH₃

Solvent

CCl₄

Conc.

Saturated

Ext. Reference

Benzene

Int. Reference

Benzene, 3% v

Resonance Position

-26.2 cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.07
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C

Source and Purity

Eastman-recrystallized
Di-sec.-butyl phenyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

Serial No. 26

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ext. Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH₃·CH₂·CH·O·CH₃)₂ (H₃·H₃·H₃·H₃·O·PO)</td>
<td>Benzene</td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td>Source and Purity</td>
<td>Int. Reference</td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td>Monsanto Chemical Co.</td>
<td></td>
<td>Scan Rates, cps/sec:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD (Spectrum A): 2.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature: 26°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resonance Position</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cps from Benzene</td>
</tr>
</tbody>
</table>
Triphenyl phosphate

Proton Magnetic Resonance Spectral Data

Serial No. 27

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

cps from Benzene

Sample

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{O} \\
\end{array}
\]

PO

Solvent

CCl₄

Conc.

Saturated

Ext. Reference

Benzene

Int. Reference

Resonance Position

cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.04
Other (Spectrum B): 1.04
(Spectrum C): 1.04
Temperature: 26°C

Source and Purity

Eastman (Prac.)
Tribenzyl phosphate

Proton Magnetic Resonance Spectral Data

Shielding Number

Serial No. 28

 cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

Source and Purity
Synthesis, crystallized

Sample Solvent
Ext. Reference Benzene
Int. Reference Benzene, 5%v
Resonance Position -29.0 cps from Benzene

Instrument and Conditions
Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.02
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Triethyl phosphorothioate Proton Magnetic Resonance Spectral Data

Serial No. 29

Shielding Number

A

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

cps from Benzene

B

83.9 90.7 98 100.9 108.1 115.2

cps from Benzene

C

203.8 210.9 218.1

cps from Benzene

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ext. Reference</th>
<th>Int. Reference</th>
<th>Resonance Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH₃-CH₂-O)₃PS</td>
<td>Benzene</td>
<td>Benzene 5% v</td>
<td>-27.2 cps from Benzene</td>
</tr>
</tbody>
</table>

Source and Purity
Aldrich Chemical Co.

Instrument and Conditions
Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.00
Other (Spectrum B): 0.29
(Spectrum C): 0.29
Temperature: 26°C
Tri-n-butyl phosphorothioate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

Sample

(CH₃·CH₂·CH₂·CH₂·O)₃PS

Solvent

Benzene

Conc.

5% v

Ext. Reference

Benzene

Int. Reference

Benzene, 5% v

Resonance Position

-25.9 cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.05
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C

Source and Purity

Virginia-Carolina Chemical Co.
Proton Magnetic Resonance Spectral Data

Serial No: 31

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

Sample

(\(\text{CH}_3\cdot\text{CH}_2\cdot\text{O})_3\text{P}\)

Solvent

Benzene

Conc.

5%

Ext. Reference

Benzene

Int. Reference

Benzene, 5% v

Resonance Position

-19.6 cps from Benzene

Instrument and Conditions

Model: Varian V-4300B

Freq.: 40 Mc/sec

Scan Rates, cps/sec:

- STD (Spectrum A): 1.03
- Other (Spectrum B): 0.26
- (Spectrum C): 0.23

Temperature: 26°C

Source and Purity

Eastman (Prac.); Aldrich Chemical Co.
Tri-n-butyl phosphite

Proton Magnetic Resonance Spectral Data

Serial No. 32

Sample

(CH$_3$·CH$_2$·CH$_2$·CH$_2$·O)$_3$P

Ext. Reference

Benzeno, 5% v

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.01
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C

Solvent

Conc.

Int. Reference

Resonance Position

-18.4 cps from Benzene

Source and Purity

Eastman (Prac.)
Tridecyl phosphite

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ext. Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{CH}_3\cdot(\text{CH}_2)_8\cdot\text{CH}_2\cdot\text{O}]_3\text{P})</td>
<td>Benzene</td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td>Solvent</td>
<td>Int. Reference</td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td>Conc.</td>
<td>Resonance Position</td>
<td>Scan Rates, cps/sec:</td>
</tr>
<tr>
<td>Source and Purity</td>
<td>cps from Benzene</td>
<td>STD (Spectrum A): 0.96</td>
</tr>
<tr>
<td>Shea Chemical Co.</td>
<td></td>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature: 26°C</td>
</tr>
</tbody>
</table>
Triphenyl phosphite

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Sample

\[
\begin{align*}
\text{Ext. Reference} & \text{ Benzene} \\
\text{Int. Reference} & \\
\text{Resonance Position} & \text{cps from Benzene}
\end{align*}
\]

Source and Purity

Eastman (white label)

Solvent

Conc.

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 0.96
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Tri-p-tolyl phosphite

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

Sample

Ext. Reference
Benzeno

Conc.

Int. Reference

Resonance Position
cps from Benzene

Source and Purity
Eastman (white label)

Instrument and Conditions
Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.06
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Triethylene diphosphite

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

Sample

CH₂-O

\[\text{P-O-CH₂-CH₂-O-P-CH₂} \]

CH₂-O

Ext. Reference
Benzene

Solvent

Conc.

Int. Reference

Resonance Position
cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.07
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
Tri-n-butylphosphine

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

cps from Benzene

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280

Sample

(CH₂CH₂CH₂CH₂)₃P

Solvent

Ext. Reference

Benzene

Int. Reference

Conc.

Resonance Position

cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.09
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C

Source and Purity
Shea Chemical Co.
A Freshly prepared saturated solution of ϕ_3P in CCl$_4$ plus benzene, 3% v.

B Aged saturated solution of ϕ_3P in CCl$_4$

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Ext.-Reference</th>
<th>Ext.-Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_H_H)P</td>
<td>CCl$_4$</td>
<td>Benzene</td>
<td>Int. Reference</td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td>Conc.</td>
<td>Saturated</td>
<td>Benzene</td>
<td>Benzene, 3% v</td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td>Source and Purity</td>
<td>Resonance Position</td>
<td>-24.3 cps from Benzene</td>
<td>Scan Rates, cps/sec:</td>
<td>Other (Spectrum B): 0.97</td>
</tr>
<tr>
<td>Eastman</td>
<td></td>
<td></td>
<td>STD (Spectrum A): 0.28</td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temperature: 26°C</td>
<td></td>
</tr>
</tbody>
</table>
n-butyl di-sec.-butylphosphinate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-cps from Benze

Sample

CH₃-(CH₂)₃-PO(CH₃)₂

Solvent

Ext. Reference

Benzene

Int. Reference

Benzene, 5% v

Conc.

Resonance Position

-28.4 cps from Benze

Source and Purity

Synthesis

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.01
Other (Spectrum B):
(Spectrum C):
Temperature: 26°C
sec.-butyl di-sec.-butylphosphinate

Proton Magnetic Resonance Spectral Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Ext. Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_3\cdot\text{CH}_2\cdot\text{CH}\cdot\text{O})</td>
<td>Benzene</td>
<td>Int. Reference</td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td>((\text{CH}_3\cdot\text{CH}_2\cdot\text{CH}\cdot\text{O}) PO)</td>
<td></td>
<td>Benzene, 5% v</td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td>(\text{CH}_3/2)</td>
<td></td>
<td></td>
<td>Scan Rates, cps/sec:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STD (Spectrum A): 1.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temperature: 26°C</td>
</tr>
</tbody>
</table>

| Resonance Position | -28.5 cps from Benzene | **Serial No.:** 40 |
Di-sec.-butyl sec.-butylphosphonate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

-200 -160 -120 -80 -40 0 40 80 120 160 200 240 280
cps from Benzene

cps from Benzene

cps from Benzene

cps from Benzene

Sample

$\left(\text{CH}_3\text{CH}_2\text{CH}_2\text{O}\right)_2\left(\text{CH}_3\cdot\text{CH}_2\cdot\text{CH}_3\right)\text{PO}$

Solvent

Benzene

Conc.

Benzene, 5% v

Ext. Reference

Int. Reference

Resonance Position

-21.4 cps from Benzene

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.02
Other (Spectrum B): (Spectrum C):
Temperature: 26°C

Source and Purity

Synthesis
Bis-(2-ethylhexyl) chloromethylphosphonate

Proton Magnetic Resonance Spectral Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ext. Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{CH}_3\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}\cdot\text{CH}_2\cdot\text{O}\cdot)_2\text{Cl}\text{CH}_2\cdot\text{P}0) \substack{\text{C}_2\text{H}_5} \substack{\text{Conc.}}}</td>
<td>Benzene</td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td>Source and Purity</td>
<td>Int. Reference</td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td>Monsanto Chemical Co.</td>
<td>Benzene, 5%v</td>
<td>Scan Rates, cps/sec:</td>
</tr>
<tr>
<td></td>
<td>Resonance Position</td>
<td>STD (Spectrum A): 1.03</td>
</tr>
<tr>
<td></td>
<td>-24.4 cps from Benzene</td>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature: 26°C</td>
</tr>
</tbody>
</table>
Di-n-butyl cyclohexylphosphonate

Proton Magnetic Resonance Spectral Data

<table>
<thead>
<tr>
<th>Shielding Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0</td>
</tr>
</tbody>
</table>

Sample:
\[
\left(\frac{\text{CH}_2\text{CH}_2\text{CH}_2\text{OC}_2}{\text{CH}_2\text{CH}_2\text{CH}_2}\right)\text{PO}
\]

Ext. Reference: Benzene

Int. Reference: Benzene, 5% v

Resonance Position: -24.2 cps from Benzene

Instrument and Conditions:
Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.01
Other (Spectrum B):
(Spectrum C):
Temperature: 27°C

Source and Purity:
Shea Chemical Co.
Di-n-hexyl n-hexylphosphonate

Proton Magnetic Resonance Spectral Data

<table>
<thead>
<tr>
<th>Shielding Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cps from Benzene</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>((C_6H_{13}O_2)(C_6H{13})PO)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ext. Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Int. Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene, 5%v</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source and Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td>Scan Rates, cps/sec:</td>
</tr>
<tr>
<td>STD (Spectrum A): 1.04</td>
</tr>
<tr>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td>(Spectrum C):</td>
</tr>
<tr>
<td>Temperature: 27°C</td>
</tr>
</tbody>
</table>

Resonance Position: -23.4 cps from Benzene
Di-n-butyl n-tetradecylphosphonate

Proton Magnetic Resonance Spectral Data

Shielding Number

-5.0 -4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Sample

$\text{C}_4\text{H}_9\text{O}_2\text{(C}_14\text{H}_29\text{)P}_0$

Solvent

Benze

Conc.

Ext. Reference

Benzene

Int. Reference

Benzene, 5%

Resonance Position

-24.7 cps from Benzene

Source and Purity

Synthesis

Instrument and Conditions

Model: Varian V-4300B
Freq.: 40 Mc/sec
Scan Rates, cps/sec:
STD (Spectrum A): 1.01
Other (Spectrum B): 0.25
(Spectrum C):
Temperature: 27°C
Sample

<table>
<thead>
<tr>
<th>(CH₃·CH₂CH₂CH₂)₃PO</th>
<th>Solvent</th>
<th>Ext. Reference</th>
<th>Instrument and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc.</td>
<td>Benzene</td>
<td>Model: Varian V-4300B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Reference</td>
<td>Freq.: 40 Mc/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzene, 5% v</td>
<td>Scan Rates, cps/sec:</td>
</tr>
<tr>
<td>Source and Purity</td>
<td></td>
<td>Resonance Position</td>
<td>STD (Spectrum A): 1.02</td>
</tr>
<tr>
<td>Synthesis</td>
<td></td>
<td>−16.4 cps from Benzene</td>
<td>Other (Spectrum B):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Spectrum C):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temperature: 26°C</td>
</tr>
</tbody>
</table>