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PREFACE

Operations with fissionable material outside of nuclear reactors involve the
danger that a sufficient amount of material will be accumulated in one place
to constitute a critical mass, that 1s, to sustain a nuclear chain reaction.
Safety can easlly be ensured by keeping amounts and sizes well below those
estimated to be critical; but in many cases the critical masses and sizes
are small and there 1s economic pressure to approach them closely in large-
scale operations. It 1s necessary, therefore, to determine accurately the
critical conditions for fissionable materials.

During the last several years, numerous experiments have been performed from
which was obtalned a large amount of data on critical conditions for
fissionable material. These data are assembled in a readlly usable form in
this Handbook.

The critical experiments have generally been performed for ideallzed
sltuations. Hence they may readily be compared with calculations, and
theoretical procedures for extending the data may be developed with a high
degree of confidence. These procedures may be as elaborate as one wishes;
but since the departure from experimental conditions will generally be small,
1t appears desirable to use the simplest method that will glve reasonably
accurate results. Simple calculations can be performed quickly without
recourse to high speed computing machines, allow a wlde range of variations
In parameters to be studled easlily, and do not require a large amount of
speciallzed knowledge on the part of those performing them. This Handbook
presents these simple methods of calculation in such a form that they may
readlly be used.

In practical applications of critical mass data or calculated extensions
thereof, 1t 1s necessary to know how closely actual condlitions may safely be
permitted to approach critical conditions. The margin of safety must include
reasonable estimates of the uncertalnty in the data and in the methods of
calculation, and perhaps should also include an additional margin thrown in
"for good luck". Even if the critical conditions were known accurately
enough that actual conditions could be set so that neutron multiplications as
high as, say, 100 could be reached but could not be exceeded, 1t would be
undesirable to operate so close to the critical conditions. Conditions that
are consldered to be safe are presented 1n a reasonably consistent manner in
this Handbook. The cholce of safety margin 1s necessarlily somewhat arbitrary;
but since the data and the methods of calculatlon are presented, other margins
may readlly be determined if those used here are considered to be either
Insufficient or overly restrictive.

There are several other compilations of data and safety guldes to which the
reader may wish to refer for the treatments of critical mass data or for data,
e.g. on aqueous solutions of U223, not included in this Handbook. Notable
among these are the K-1019 series of reports, the "Gulde to Shipment of Uranium
Materials" prepared by H. F. Henry et al., of the 0Oak Rlidge Gaseous Diffusion
Plant, and the Nuclear Safety Guide, which is a product of a commlttee on
industrial criticality problems composed of members from various sites. The
last report i1s falrly general in that safe conditions for all fissionable
materlals are included; however, data and methods of calculation are generally
not present.
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‘ GLOSSARY

keff Effective neutron multiplication constant. Represents the
average number of neutrons resulting from fission that are
captured in fissionable material to cause another fission.

¢ Neutron flux. In general it 1s a function both of position
—
r and neutron energy E.

b ) Macroscopic cross section. It is equal to the product of
the microscopic cross section ¢ and the number of atoms per
unit volume. Subscripts a, s, f, and t denote absorption,
scattering, fission, and total, respectively.

D Diffusion constant. The Laplacian of the flux, V2¢ when
multiplied by -D gives the neutron leakage from a differential
element of volume.

k Neutron multiplication constant. Represents the average
number of neutrons produced by fission per neutron absorbed.

[[D(E,T)¢(E,T)dEdT

/1= (E,7) ¢(E,T)dEdD

B= Buckling. The subscript m denotes the material buckling
k-1

defined as B; = 2 The subscript g denotes the geometric

buckling defined as

M= Migration area defined by M2 =

2
PN |2
Bg (R+S)%

2. = 2
B; = izﬁégfé— for a cylinder, and

'TT2 2 2

for a sphere,

B2

s s
= +
» (X+25)g (Y+2S)2 + (Z+2S)2 for a rectangular parallelepiped

where R represents radius and X, Y, and Z the dimensions of

the parallelepiped and where S is the reflector saving or
extrapolation distance, namely the distance beyond the physical
boundaries at which the flux would become zero if extended
analytically. 1In a critical assembly B2 = Bé.

S Reflector saving or extrapolation distance (see BZ).

v Number of neutrons released per fission.




Thermal utllizatlion. The fraction of the thermal absorptions
that occur in fissionable material. In heterogeneous systems
the fissionable material may be considered to be the material
of the fuel element even though 1t 1s an alloy of fissionable
and nonfissionable material.

The number of neutrons released per absorption in fissionable
material.

Fast fission factor. The factor by which the neutrons released
by fissions in U2®% are increased as the result of fissions
in YRRE,

The fraction of the fission neutrons that escapes capture
in the resonances of U23® quring moderation to thermal energles.

Disadvantage factor. The relative value of the average neutron
flux in a material. - - -
[ [, D(E,T)6(E,7)dEdT

Thermal diffusion area defined by
e i —
ffThZa(E,r)¢(E,r)dEdr
where the 1integral is taken over thermal energles only.
Neutron age defined so that LZ + 1 = M2, The age may be
divided into as many parts as desired so that M2 = L2 + %Ti.

Albedo. The ratio of the neutrons returned by a medium to
the neutrons entering it.
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HANDBOOK OF NUCLEAR SAFETY
CHAPTER | - INTRODUCTION
1.1 FACTORS THAT DETERMINE A CRITICAL MASS

An assembly of fissionable material is critical, i.e., the neutron

chain reaction is self-supporting, when on the average exactly 1.0 of
the 2.5 to 3 neutrons that result from a fission is absorbed to

produce another fission. If more than 1.0 neutron is absorbed to
produce fission the number of fissions per unit time rises exponentially
with time; if less than 1.0 neutron is absorbed to produce fission a
single fission may on the average result in many fissions, but the chain
is eventually terminated.

Besides the path by which a fission neutron is absorbed to produce
another fission, the other paths that compete for it are absorption by
fissionable material without causing a fission, absorption by other
materials, and escape from the assembly. The distribution of the
neutrons among these paths is dependent on the size and shape of the
assembly and on the neutron cross sections of the materials present.
These cross sections, in turn, are dependent on the neutron energy.

At the high energy (~2 Mev) at which the neutrons are born in fission,
absorption cross sections are small; hence mean free paths for
absorption are long. Thus a large amount of fissionable material is
required to reduce the probability of escape to the point where kg re,
the effective neutron multiplication constant, is unity. At low
energies cross sections are much larger and less material is needed.

High energy neutrons lose energy by inelastic or elastic scattering
collisions with nuclei. If the nuclei are light, the average loss in
neutron energy per collision is large, and only a few collisions are
required to thermalize the neutrons, i.e., to moderate their energies
to the point (~0.025 ev) where, on the average, collisions with nuclei
result in no change in energy. Mixing fissionable materials with
moderating materials dilutes the former and hence increases the mean
free path for fission for the fast neutrons. The moderator also
competes with the fissionable material for the capture of neutrons.
However, the large increase in fission cross section at low energies
more than compensates for these effects, and the net result is a much
lower critical mass when a good moderator is present.

In general, as nonfissionable material is mixed with fissionable
material, the first effect is an increase in the critical mass as the
result of dilution. Then, as more nonfissionable material is added,
moderation becomes more effective and the critical mass falls if the
absorption cross section of the added material is not too great.
Finally, the critical mass rises again, and criticality becomes
impossible when the amount of nonfissionable material present reaches
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the point where the fraction of neutrons absorbed in it is sufficient ‘
to make kopp less than unity, regardless of the size of the assembly.

The effect of the size or shape of the assembly on 1ts critical mass
1s fairly obvious. If one or more dimensions are made sufficlently
small, the fraction of the neutrons escaping is so large that kegep 1s
less than unity. Since for a given volume a sphere has the smallest
surface of any shape, the neutron leakage and hence the critical mass
1s least for a sphere. The critical mass increases as the shape
deviates from being spherical.

The neutron leakage is reduced, and hence the critical mass, if some
fraction of the neutrons escaping from an assembly of fissionable
material 1s returned to it. Placing a reflector adjacent to an
assembly has this result. The same result can also be achieved by the
Juxtaposition of two or more assemblies of fissionable material.

Another factor that affects the neutron leakage and hence the critical
mass 1s the density of the fissionable material. It can be shown
theoretically that for an unreflected sphere the critical mass variles
inversely as the square of the density. Thus the critical mass of

2
$-phase plutonium is (ig'g) = 1.54 times as great as that of a-phase
plutonium. :

Finally, when fissionable material is mixed with moderating materials,
clumping of the fissionable material increases the critical mass.
Neutrons thermalized in the moderator have difficulty in penetrating

to the center of the clumps because of the large neutron cross sectlon
of the fissionable material. As the result,of this self-shielding, the
fraction of the neutrons absorbed in the moderator is greater than it
would be if the two materials were mixed uniformly.

In Table I.1 critical masses of U2®® taken from the chapters that follow
are presented to 1llustrate the dependence of the critical mass on some
of the factors Jjust discussed.

TABLE I.1

Critical Masses of U2%%

Form Mass, kg of U23%%
Unreflected sphere of uranium containing 93.5%
pe=> 48.6
Water-reflected sphere of uranium containing o
93.5% U=s® 22.8
Unreflected sphere contalning a water solution
of U2®® at about 75 g/liter 1.440
Water-reflected sphere contalning a water )
solution of U®®® at about 52 g/liter 0.840
Unreflected infinite 8.70-inch-dlameter
cylinder containing water solution of U23% ®
Water solution of U2%5 at 11.94 g/liter ® ’
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T2 CONSEQUENCES OF ATTAINING A CRITICAL MASS

When a fission occurs, the energy released is approximately 190 Mev
(8.3 x 107*® xw hours, 7.3 x 10722 calories). Most of this energy
appears as kinetic energy of the fission fragments and is dissipated

in heating the assembly of fissionable material. Approximately 7.8 Mev
of prompt y radiation is emitted, and nearly an equal amount of delayed
Y radiation is associated with the decay of fission products. At a
distance of one foot from a fission the gamma dose is thus about

7.2 x 10713 rem/fission*. The fast neutron dose at this same distance
is about 6.8 x 1072 rem/fission. In an assembly of fissionable
material the doses are reduced considerably by self-absorption, but
may still be sufficient to be lethal in even the mildest of nuclear
incidents.

When an assembly of fissionable material is supercritical, the number of
fissions per unit time increases exponentially at a rate that depends
upon the amount by which k.pr exceeds unity. The generation of heat
causes the assembly to expand, thus increasing the neutron leakage and
hence reducing Keppe In solutions, radiolytic gas generated by the
fission fragments is responsible for most of the expansion until the
solution boils. The number of fissions that will have occurred by the
time expansion has made the system subcritical depends upon the rate
at which kere increases and upon any constraints on the expansion of
the system. 1In a nuclear weapon these factors are adjusted so as to
make this number exceedingly large. In any accidental assembly of a
critical mass, however, it is unlikely that the burst would approach
within several orders of magnitude that of a weapon. Calculations of
radiation bursts have been made for solutions of UZ3® on the basis of
a simplified model{*+%)., These calculations show that even for fairly
well constrained systems the magnitude of the burst is not greatly
dependent on the rate of assembly untll rates of increase in kg pp Of
the order of one per cent per second are approached. At lower rates
(and even at rates this high for unconstrained systems), the number of
fissions in the initial burst was calculated to be about 10%7.

This result is in general agreement with the magnitudes of the bursts
that have been observed in the few accidents that have occurred.
Accidents that have occurred in critical experiment laboratories(?:2)
have generally been terminated within a short interval of time by
safety devices. 1In the absence of such devices (particularly in the
case of solutions), bursts can occur one after another until sufficient
material is expelled or the concentration or shape is sufficientl¥ .
altered to keep Kerf less than unity. The incident that occurred &b}
in a production area at Oak Ridge had a duration of about 20 minutes,

* 1 roentgen equivalent man (rem) is défined as: +that amount of
radlation absorbed in tissue which has the relative biological
equivalence in man of 1 roentgen of X- or gamma rays.
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during which interval a total of 1.3 x 10*® fissions occurred in a
serles of bursts. The man closest to the incildent owes his 1life to his
prompt departure from the area ilmmediately followlng his observance of
the blue glow characteristic of such incidents. The incident at

Los Alamos(*+%) resulted in 1.5 x 10*7 fissions and in the death of one
operator. The violent disturbance created by the burst caused the
termination of the accident.

The situation is changed somewhat 1f the fissionable material is >
confined in shielded areas that are inaccessible to personnel. 1In

such areas contamination from radloactive materials 1s expected; hence
cleanup following a nuclear incident that expels radloactive material

i1s no great problem. The shlelding 1s generally sufficient to prevent
radiation doses from belng serious, particularly if alarms are used in
the event of an incident to warn personnel to evacuate nearby areas.

In such areas somewhat smaller safety margins may be tolerated, and

more rellance may be placed on procedures. In the incident that occurred
at the Idaho Chemical Processing Plantf{?'®) the shielding limited the
maximum radiation exposure to 50 rem despite the occurrence of about

101® fissions, and this dose, which was chiefly due to beta radiation,

1s believed to have resulted from airborne fission and decay products
released through a sampler openling and through floor drains.
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1.3 THEORY

In a critical assempbly of fissionable material the number of neutrons
produced by fisslon per second exactly balances the number absorbed
and the number that escape, 1l.e., Kepp = 1. 1In describing these events
mathematically 1t is convenlent to express them in terms of the neutron
flux, the product of the neutron density in neutrons/cm® and the neutron
speed in cm/sec. The neutron flux is a function both of the neutron
energy and of position within the critical assembly. For a particular
assembly it is possible to find energy intervals, or groups, within
which the flux may be considered to be separable into a product of a
function of energy, ¢(E), and a function of position, ¢ (¥). Within an
energy group the absorption of neutrons per second per unit volume of
the assembly 1s represented by (35 + Zp) ¢ () where S5 1s the true
macroscopic absorption cross section of the material of which the
assembly 1s composed, and where 3p is a fictitious absorption cross
section that, when multiplied by the flux, gives the number of neutrons
lost from the group as the result of energy changes resulting from
collisions between neutrons and the materials of the assembly. The
escape or leakage of neutrons from a unit volume is given, according to
the diffusion approximation, by —DV2¢(?) where D is the diffusion
constant. The production of neutrons per unit volume includes neutrons
entering from other groups as the result of the energy changes Jjust
mentioned and neutrons in that fraction of the fission spectrum
encompassed by the group that result from fissions occurring in all
groups. Withlin a group and within a region in which they are
independent of position the constants 3, Zr, and D are given by

J2a(E)¢ (E)dE J2r(E)¢ (E)dE
a~ T TJe(B)aE T~ [e(B)aE ’
and
5 D(E)¢ (E)dE
[6(E)aE °

This representation of the fissionable assembly is known as the multi-
group model. A second-order differential equation describes the
neutron diffusion within each group. The equations are coupled through
the source and fictitious absorption terms which give the neutrons
transferred from one group to another. The boundary conditions
satisfied by the various ¢(?) at the interfaces between regions, as for
example between two fissionable materials of different properties or
between fissionable material and reflector, are that the neutron flux

¢ (#) and the net neutron current -DVé (¥) be continuous. At the
external boundary of an assembly where for every neutron escaping none
1s returned, the boundary condition is that the flux extrapolate (by
analytic continuation) to zero beyond the physical boundary at a
distance that depends upon the properties of the assembly.
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For uniform assemblies in which the propertles are independent of
position the energy band over which the flux may be considered separable ‘
into a product of a function of energy by a function of position

comprises the entire energy region for a majJor portion of the core.

This one-group representation results in a considerable simplification

since only one differential equation is required and the production

term can be written simply as kS;¢ where k represents the number of

neutrons produced by fission per neutron absorbed. The one-group

equation 1is 4

DV3® ~ 356 +k3g6 = O, LX)

The constants D and X5 are obtalned by integrating over the entire
energy region. The neutron multiplication constant k 1s given by

[kS,46 (E)AE
a2 = To(myaE
Even with the one-group model the calculation of D, 25, and k may be
difficult because of the difficulty in obtaining ¢ (E). The flux as a
function of energy 1s determined by the scattering and absorption cross
sections as functions of energy. In moderated systems with low
absorption the neutron energy distribution at thermal energiles is
nearly Maxwellian and at higher energies ¢ (E) is proportional to 1/E.
For other systems ¢ (E) has a more complicated form. It is often
convenient to obtain ¢ (E) by a multigroup calculation in which ¢ (%) is
assumed to be the same for all groups. In effect, this procedure
breaks the flux-weighted integrals for k, 25, and D into summations
over the number of groups employed.

Equation 1.1 may be rewritten as
V2% + B2 = 0 (1.2)

oo
where B2 = ﬁgl and M2 = g— . The migration area, M2, can be shown to
a
be one-sixth the mean square distance travelled by a neutron from the
point at which it 1s born to the point at which 1t is captured, and
hence i1ts magnitude 1s a measure of the probability that a neutron will

escape from an assembly of given size.

Solutions to Equation 1.2 are

Sphere: ¢ = A sianr (1.3)
Infinite cylinder: ¢ = A' Jg, (Br) (1.4)
Infinite slab: ¢ = A" cos Bx (15)
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where A, A', and A" are constants and r and x are distances measured
from the center of the assemblies. The boundary condition that the
flux extrapolate to zero beyond the physical surface of the assembly of
fissionable material leads to the following relations between the
buckling (B2), the extrapolation distance (S), and the physical

radii ‘R) or half-thickness (X).

2

s
Sphere: B? = TR—#-_S.)_'? (1.6)

.405)2*
Infinite cylinder: B2 = Lg——géé—— (1.7)

(R+3)
2

’ 2 _ _T 1.8
Infinite slab: B2 = T(x75)2 (1.8)

Thus in a critical assembly, one of the three parameters R(or X), S,
and B is determined by the other two.

For finite cylinders and parallelepipeds the flux is assumed to be
separable as ¢(r) ¢(z) or ¢(x) ¢(y) ¢(z). If S is assumed to be
the same in all directions, the results are

(2.405)2 i

(RtS)2 T T(X+8)2 (12

Cylinder: B2 =

2 2 2
. > _ 2 % o 0 s )
Parallelepiped: B® = T%8)2 T Twes) + (7752 (1.10)

Reflected assemblies may alsc be handled with Equation 1.2, provided
the flux 1s separable into space and energy components over the central
portion of the fissionable core. A buckling can be determined for this
region. The critical size is then determined from Equations 1.6-1.10
with the proper choice of S. The effect of the reflector is to
increase S and hence to decrease the critical size. 1In this Handbook
the term reflector saving rather than extrapolation distance will
generally be applied to S for reflected systems. To calculate the
reflector saving requires a calculation of the critical size, in which
case several energy groups may be required, but only a few such
calculations are required since the reflector saving varies slowly with
shape.

It 1s customary to speak of the geometric buckling (Bg) as being
defined by Equations 1.6-1.10 (or similar equations for more complicated

shapes) and the material buckling (Bﬁ) as being defined by-ﬁ%l. The

critical equation is then
B2 = Bg. (1.11)

1
N
=
(@)
Ut

*¥The first zero of J, (y) is at y




1.4 EXTENSIONS OF EXPERIMENTAL DATA

Many data exlst that give experimentally determined critical conditions
for fissionable material; that is, conditions for which Equation 1.11
is satisfied. In many cases direct reference to such data 1s
sufficient to indicate the conditions that may be considered safe. 1In
other cases extrapolations or interpolations of the data are required.

It is desirable to have a theoretical basis for making such extensions.
In this Handbook two methods are used. For large bucklings, and hence
small assemblies, the material buckling corresponding to a particular
set of critical conditions is calculated, sometimes by fairly simple
and approximate methods, and the reflector saving S is determined from
Equation 1.11 and the proper equation among Equations 1.6-1.10. Such
values of S serve as parameters to relate theory and experiment. They
vary slowly with shape and composition; hence extrapolations of
experimental data can be made with a high degree of confidence. For
small bucklings, S is very sensitive to errors in the buckling, and
conversely the buckling is insensitive to S. In this range either
calculated or experimental values of S are employed or S is chosen to
minimize the variation of buckling with shape. Extensions of the data
are then made by calculating the expected changes in S and Bﬁ, which
can be calculated by simple methods to higher accuracy than the
absolute magnitudes of S and B;. For intermediate bucklings either
approach 1is satisfactory, and the one employed depends upon factors
such as the accuracy with which the buckling can be calculated.

In either approach, B; and S are mutually dependent. If someone wishes
to use what he considers to be a more accurate value of B; than the one
used in this Handbook, he must also use different values of S obtained
by fitting the data to his buckling. Similarly, small bucklings,
corresponding to a particular value of S, are altered if the value of

S is changed.

For large bucklings (2 0.003 em~2) the first procedure is not greatly
dependent on whether or not the correct Bﬁ is used. In test
calculations, S was assumed independent of shape, and a number of
dimensions were chosen consistent with an S of 6.50 ecm and bucklings of
0.003, 0.01, and 0.03 cm~2. Variations in S corresponding to bucklings
higher and lower than these values by 5 and 10% were then calculated.
The results are presented in Figure 1.1. The principal effect of
changing the buckling is to change the general level of S. Variations
in S become appreciable only for the extreme shapes. One clearly must
be careful, however, in extrapolating S very far outside the range of
shapes for which it has been determined. For example, if values of S
determined from experiments with spheres are to be used to obtain
critical or safe dimensions of slabs, it would be wise to err on the
side of using too small a B;.
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FIG. 1.1 DEPENDENCE OF REFLECTOR SAVING ON BUCKLING AND SHAPE
Dimensions were chosen so that S would be independent of shape for
B2 = 0.003, 0.010, and 0.03 cm~2. The effect on S of * 5% and + 10%
changes in B2 are presented.
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Actually there are theoretical reasons for expecting S to vary with
shape. According to the one-group model, the reflector savings for a
slab and a sphere surrounded by reflecting material are given,

respectively, by

Dr K
cot BS = coth kt, (1.+12)
Dc B
t B 1 Dr 1) Or © th kt (1.1
—— - + »
and co S 7-B3 (Dc D, B coth kt, 3)

1
where k% = v in the reflector, t is the reflector thickness, and r

and c¢ denote reflector and core, respectively. Thus only if Dp = D¢
would S be expected to be the same for a slab and a sphere. For finite
cylinders and paralleleplpeds the separation of variables employed in
the core cannot truly extend into the reflector, and corner effects
must tend to make the effective value of S smaller. Thus the reflector
saving for a cube should be smaller than that for a sphere. If this
were not so, the critical mass for a cube would be less than that for

a sphere for reflector savings in excess of 0.309 %. It is, therefore,
difficult to determine from variations in S with shape whether or not
the correct buckling has been used.
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1.5 MARGINS OF SAFETY

The effective multiplication constant, kersr, may be defined as

1+M*B2 .
- = . 1.1
Keff 1+M°B; ~ 1+M°BZ (1.14)

Clearly kepp is unity if B§ = Bf and is less than unity if BF > B}
Assemblies in which Bé > Bf are therefore subcritical.

How much margin should be allowed in Bg for safety or what maximum
value of k.pp may be considered safe are difficult questions to answer.
Even when experimental data are available for a particular case there
is some uncertainty in the conditions for which kope 1s exactly unity,
and this uncertainty increases as situations deviate from those studied
experimentally. Particularly uncertain are the effects of interactions
between assemblies of fissionable material and/or between such
assemblies and nearby reflectors. Aside from these uncertainties 1t is
undesirable on general principles to permit high values of kggee Or of

i !
1-kepf '
margins would be tolerated for situations that are considered unlikely
or where an accident would have relatively minor consequences.

the neutron multiplication, m = Presumably smaller safety

In this Handbook three levels of safe conditions are specified
corresponding to kere's of 0.98, 0.95, and 0.90, i.e., to over-all
neutron multiplications of 50, 20, and 10. In situations where very
good experimental data are availlable the maximum value may be
acceptable. It may also be acceptable where the data are not quite so
good or where some extrapolations are required, provided the fissionable
material is located in a shielded area, or provided the attainment of
this high a value is considered so unlikely that one is willing to take
the risk that a margin of 0.02 1n k.pe may be insufficient to cover
uncertainties in data and calculations. For situations in which
appreciably higher multiplications than those existing under normal
operating conditions cannot be attained, and in which calculated
extensions of data are required, the maximum safe allowable value of
keps should probably be set at 0.90. When the data are good or
extensions thereof are small, or where calculations are definitely
known to be conservative, perhaps as the result of the omission of
certain factors, a value of 0.95 may be acceptable. Admittedly these
choices are arbitrary and those using this Handbook may wish to use
somewhat different margins, which they may easily do from the data and
calculations presented.

To express margins of safety in this way requires a reasonably accurate
value for k. If the first method for fitting the data is employed,

such a value is necessarily obtained in calculating Bf. If the second
method 1s employed, particularly if S 1s chosen by minimizing variations
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in B; with shape, a value for k may not be avallable. It can be ‘
calculated, however, either from

[k=,¢ (E)GE
= [5,0(E)dE

or from k = 1 + MzBrfl. The latter method i1s much simpler, provided
satisfactory estimates of M2 are available. Actually no more than -
reasonable accuracy in k is required. If Equation 1.14% is solved for

B; (the safe value corresponding to a particular kepp), and if M® is

k-1
replaced by —=—

2
Bm (1.15)

and errors in k tend to cancel out.
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CHAPTER Il - METAL SYSTEMS
2.1 INTRODUCTION

In this chapter critical and safe conditlons are given for fissionable
materials both as pure metals and when alloyed with other metals.
Dispersals of fissionable materlial in materials commonly known as
moderators are relegated to Chapters III and IV, but the effects of
such materials as reflectors are included here. The interaction of
units of fissionable material in air is treated in Chapter V as part
of a general treatment of interaction problems that include solutions
as well as pure metal. The most extensive treatment is given to U233,
since the most data are available for this material, and since the

general treatment of this material is applicable also to plutonium and
u2es,
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2.2 URANIUM-235

2.2.1 HIGHLY ENRICHED URANIUM

A large amount of data exists(2+1-2:4,2.6) fon ypanium that contains
about 93.5% U2%°. This has been chosen as a standard concentration,
and data obtained for slightly different enrichments have been
adjusted(z'z) to this value. The standard density has been taken to
be 18.8 g/em® and again adjustments{2:2) in the data to this figure
have been made where necessary.

From the critical mass of a bare sphere of uranium (93.5% U235) and
from an extrapolation distance of 2.15 cm (consistent with theory) a
buckling of 0.0837 em™2 1s calculated for this material. This buckling
is in good agreement with the value (0.0836 cm™2) calculated for this
Handbook from a six-group diffusion theory model employing constants
glven in Reference 2.7. The six-group calculation gives a k of 2.300.
The migration area, M2, consistent with Bﬁ = 0.0837 and k = 2.300 is
15.53 em®=.

2.2.1.1 Spheres

For spheres the values of R + S corresponding to kepe's of 1, 0.98,
0.95, and 0.90, obtained from Equations 1.6 and 1.15, are,

respectively, 10.86, 10.67, 10.39, and 9.93 cm. The radiil corresponding
to these values of kgpp are obtained by subtracting the appropriate
value of S. The minimum value of S is that for a bare sphere far from
reflectors, namely 2.15 cm. Reflectors or nearby units of fissionable
material increase S, and hence decrease R and the mass. Reflectors are
most effective when they are in contact with the sphere, but reflectors
even some dlstance away may contribute significantly to S.

In Figure 2.1 masses of U2%% in uranium (93.5% U23®) spheres are plotted
versus S for the four values of Kopp glven. Experimental data gilving
the critical mass as a function of reflector material and thickness are
expressed as reflector savings in Figures 2.2 and 2.3. Glven an S,
determined from Figures 2.2 or 2.3, or from estimates of interactions
with other units or with nearby reflectors (see Chapter V), one obtains
from Figure 2.1 the critical or the safe mass (with various margins of
safety) of U®®° in a sphere of uranium (93.5% U2°%),

2.2.1.2 Other Shapes

Most of the critical mass data have been obtailned with, or have been
adjusted to, spherical shapes, since a sphere has the smallest critical
mass of any shape. In handling flssionable materials, however, other
shapes may be encountered and one may wish to take advantage of the
deviation from the spherical shape in setting safe mass limits. Data
are available(2+1) that give the critical heights of cylinders of
various diameters, surrounded by varlous materials as reflectors.
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FIG. 2.2 REFLECTOR SAVINGS OF MODERATING MATERIALS FOR URANIUM (93.5% U235)
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FIG. 2.3 REFLECTOR SAVINGS OF NONMODERATING MATERIALS FOR URANIUM (93.5% U235)
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Subcritical experiments‘2°822:®) have been performed with rectangular ‘

parallelepipeds, with multiplications in some cases in excess of 10,
and the results may be extrapolated to give critical conditions. The
critical mass of a cube has been determined.(2°%°) As in the case of
spheres, these data, obtained with various reflectors, may be expressed
as effective reflector savings by equating geometric and material
bucklings, with the assumption that S is the same on all surfaces.
Values so obtained are plotted for cylinders in Figure 2.4 and are
tabulated for rectangular parallelepipeds in Table II.1. These values
are somewhat dependent on shape. For cylinders with height
approximately equal to diameter, as might be expected (see Section 1.%4),
the values are smaller than the corresponding ones for spheres.

TABLE II.1l

Reflector Saving, S, for Rectangular Parallelepipeds
of Uranium (93.5% U2%°) in Water

Dimensions, in. Max Multiplication S, cm
2.70 .= 5% 8 ~ 14 Bl
1 s 10 x 16 ~ 6 4.23
1.14 x 16 x 20 ~ 28 4.22
4.295 x 4.295 x 4.295 ~100 3.95

Determining safe conditions for shapes other than spheres is more
complicated since there are two (or three) dimensional parameters to
adjust and since the reflector saving is dependent on shape.
Corresponding to kgpe's of 1, 0.98, 0.95, and 0.90 the geometric
bucklings are, respectively, 0.0837, 0.0867, 0.0915, and 0.1002 cm~2.
For cylinders the heights and diameters consistent with these bucklings
are obtained from Equation 1.9.

it n®__ . 23.1361
g ~ (H+28)2 " (D+2s)?

(Equation 1.10 is used for parallelepipeds.) The reflector saving, S,

is obtained from experimental data (e.g., Figure 2.4) or extensions

thereof, or from interaction calculations or measurements. In

Figure 2.5, H + 2S 1is plotted versus D + 2S on a reciprocal scale for

the four values of Kepp. Corresponding to given D and S, the critical

or safe value of H + 23 and hence of H 1s read from the graph. -

Since the data for nonspherical shapes are not so extensive as for

spheres, extrapolations of the data may often be necessary. Figures 2.2

and 2.3 giving the reflector savings for spheres may be used in these
extrapolations, attention being paid to the effect shape has on S by

taking ratios between values read from Figure 2.2 or 2.3 and Figure 2.4.

In such cases one should use somewhat larger safety margins to allow for .
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errors. The margin in k.pp assoclated with margins in S is readily
apparent from Figure 2.5 and a sufficient margin should be allowed in
kerr to cover the estimated uncertainty in S in addition to the margin
allowed on general principles.

2.2.2 OTHER ENRICHMENTS

The buckling and the multiplication constant as functions of enrichment
were determined for this Handbook by six-group diffusion theory
calculations, again based on the constants given in Reference 2.7.

These calculations, together with geometric bucklings corresponding to
keff's of 0.95 and 0.90, are presented in Table II.2 and are plotted

in Figure 2.6. At any particular concentration of U235, critical and
safe conditions can be determined in the same manner as at 93.5%, gRRe
provided the reflector saving is known. A limited amount of critical
mass(2+1) data exist for unreflected uranium and for uranium reflected
by a thick layer of natural uranium. These data have been fitted to the
calculated bucklings to obtain effective values of S with the results
shown in Table II.3 and in Figure 2.7. The increase in S with
decreasing concentration may be the result of errors in the calculated
buckling, errors in the experiments, or a real effect associated perhaps
with the increased radius of the assembly. Equation 1.12 indicates that
S increases as the buckling decreases. In any case this increase must
be taken into account in determining safe conditions.

Bucklings have been measured in exponential experiments(z‘ll) at low
concentrations. The experiments indicate that the buckling is zero at
a concentration of 4.2 to 5.4% U23°. The higher value is believed to
be more realistic and compares well with the calculated value of 5.66%.
At a concentrdation of 9.18% experimental bucklings of 0.00517 em~2 and
0.00649 cm~2 are reported, the lower buckling being believed to be more
reliable. From Figure 2.6 the corresponding calculated buckling is
0.0048 em~2. The experimental values of S determined from radial flux
traverses are 1.9 cm with no reflector and 7.1 cm for a 3-inch-thick
natural uranium reflector (determined at a concentration of 9.18%). 1In
this range of low concentration the second method (see Section 1.4) of
extending data should be used in which experimental bucklings are
employed.

When the experimental critical mass data are plotted as critical mass
of U2%° versus per cent concentration of U23° 1in uranium metal, a
straight line is obtained on a log-log plot for concentrations greater
than 20% for both the bare uranium and the uranium reflected by thick
natural uranium. At lower concentrations the plot curves upward toward
infinite mass betwsen 5 and 6% U232, The slope of the straight line
portion is such that the critical mass of U223 is proportional to the
-0.73 power of the concentration.
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TABLE II.?2

Uranium Bucklings Versus Concentration of y23%

% U%°° Bn (kerr = 1) Bg (kerr = 0.95) Bg (kepp = 0.90)  k .

100 0.0896 cm~2 0.0979 0.1072 2.314
93.5 0.0836 cm—2 0.0913 0.1000 2.300 .
60 0.0534 cm~2 0.0585 0.0643 2.191

30 0.0263 cm—2 0.0292 0.0323 1.943

10 0.0058 cm~2 0.0070 0.0083 1.347

5.86 .0 - - 1.000

5.05 - 0 - -

4.50 - - 0 ~

TABLE II.3

Reflector Saving, S, Versus Concentration of U23%°

No Reflector Thick Natural Uranium Reflector

% Uzas S, em % y2ss §L_EE
93.5 2.15 93.5 4.80
53.5 2.41 80.5 5.13
.5 - 2.84 67.6 5.53
29.0 2.89 66.6 5.53
16.2 . 2.86 47.3 6.27

The calculated buckling 1s nearly a linear function of concentration.
In the range of 93.5 +6.5% U235, relations can be derived that permit
the calculation of the effect of changes in concentration from the
standard 93.5%. These relations are

B2 = 0.0009323 y - 0.00361,

k = 0.4796 log,o ¥y + 1.3548

I

where y is per cent of U23% by weight in uranium of density 18.8 g/cm®.
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2.2.3 DENSITY

The migration area, M% in any material is inversely proportional to the
square of the density; hence the material buckling of uranium 1s
directly proportional to the square of the density. If there are no
effects associated with the curvature of the boundary, the reflector
saving due to any material is inversely proportional to the density of
the uranium. Thus the critical mass of a sphere of uranium as a
functior of density is given by

4 Pom™  PoSo 2 Po?
m = p3 |5 - =m, —=,

PBo p P

where m is the mass and p the density and where the subscript zero
denotes the reference state.

According to Equation 1.13, the reflector saving for a critical sphere
of uranium surrounded by a reflector is gilven by

1 D Dk

r r
e - e h kt.
—cY (DC 1) + D.B coth «

cot BS =

As the core density decreases, B decreases in a manner proportional to
the density and D, increases in a manner inversely proportional to the
density, hence the product D.B 1s unchanged. If the reflector density
remains constant, the decrease in DT/DC with decreasing core density
requires that S increase more than if inversely proportional to the
density.

This effect has been observed experimentally(z'l) for uranium (93.5%
U235) cores surrounded by a thick reflector of natural uranium with the
results given in Table II.4. In the range of densities covered by the
experiment, S varies with the -1.28 power of the density rather than
the -1 power. 1In terms of critical mass these data show the mass to
vary as the -1.2 power of the density. Experiments performed with
beryllium reflectors 2:6) show that the mass varies with a power from
-1.2 for a very thick reflector to -2.0 for no reflector, the
intermediate points being at -1.6 for a 5-cm-thick reflector and at
-1.8 for a 2-cm-thick reflector. Clearly, in extending data obtained
at one density to a lower density, the increase in reflector saving
must be allowed for. In proceeding in the opposite direction it is,
of course, conservative merely to decrease the reflector saving in a
manner inversely proportional to the density.
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TABLE II.4

Reflector Saving, S, Versus Density of Uranium Core

The reflector 1s natural uranium and the core is uranium (93.5% Uassy

Relative Critical Critical
Density, p/po Mass, kg U2®5 Radius, em S, cm 4.81 Po/P,cm
=il 16.17 6.03 4.81  4.81
0.854 19.67 6.79 5.90 5.63
0.846 20.06 6.85 5.96 5.69
0.702 25Dl 7. 88 1 =D0 6.85
0.500 36.98 10.01 11.67 9.62

If the denslity of the reflector decreases to the same extent as that of
the core so that Dn/D, remains unchanged, and if its thickness
Increases inversely with the density so that kt remains unchanged,
Equation 1.13 indicates that S increases inversely as the density.

Thus for bare systems and for ones in which the density of both
reflector and core are changed and the thickness of the reflector 1is
increased inversely with the density, the critical mass is inversely
proportional to the square of the density.

For an infinite slab of uranium, S varies inversely with 1ts density
regardless of whether or not the reflector density varies, provided

the amount of reflector per unit area of slab remains constant. The
critical thickness thus varles inversely with density and the critical
mass of uranium per unit area of surface is unchanged. For an infinite
cylinder, if S varies inversely with density, the critical radius does
likewise and hence the critical mass per unit length varies inversely
with the density. However, as in the case of the sphere, the radius is
involved in the equation for the reflector saving, and for a reflected
cylinder S would be expected to increase more than inversely with the
density and hence the mass per unit length somewhat less 1f the density
of the reflector remained the same.

2.2.4 DILUTION

Estimates have been made(2-12) of the critical mass of U225 in the form
of bare spheres of uranium (93.5% U22°) diluted with various materials
as a function of the concentration of diluent. These are presented in
Figure 2.8. For reflected spheres the masses should be scaled downward
by the ratio of the critical masses of reflected and bare yndiluted
uranium spheres.

Since these masses are estimates and except for small dilutions are not

directly confirmed by experiment, generous margins of safety should be
allowed.
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2.3 PLUTONIUM

Data for plutonium systems(2+1s2:352:5) ane mych less extensive than

for uranium. Moreover, there are two forms of plutonium to be
considered, namely the & phase with a density of 15.8 g/ecm® and the
o phase with a density of 19.6 g/cm®. The Pu®%® concentration 1s an
additional variable, but in amounts less than 10% 1t may be
considered(2-2) equivalent to Pu2%%,

A six-group calculation (based on constants given in Reference 2.7)
for plutonium gives material bucklings of 0.1469 cm~2 for §-phase
plutonium and 0.2261 ecm™2 for g-phase plutonium. The multiplication
constant is 2.916 and the respective migration areas are 13.04 and
8.47 cm®. Geometric bucklings corresponding to kefre's of 0798, 0,95,

and 0.90 are 0.1515, 0.1587, and 0.1718 cm™2 for §-phase plutonium and

0.2332, 0.2443%, and 0.2645 cm~2 for a-phase plutonium, respectively.

2.3.1 SPHERES

In Figure 2.9 curves of mass versus reflector saving are presented for

the four values of kgry for spheres of both §-phase and a-phase
plutonium. Thus as in the case of uranium, the critical or safe mass
can be read from the proper curve provided one knows S.

The available data(2°122:3s2+5) for s_phase plutonium spheres reflected
give the

with various materials when fitted to a buckling of 0.1469 em™2

reflector savings plotted in Figure 2.10. The data as reported
indicate some uncertainty in the critical mass with an infinite
reflector of H-0.

The uranium (93.5% U2®%) data expressed as reflector savings

(Figures 2.2, 2.3, and 2.4) are useful in extending the plutonium data.

There are theoretical reasons‘2:7) for expecting reflector savings of
thin reflectors to have a constant ratio for different core materials
regardless of the reflector material. The ratios of the reflector

savings of various thicknesses of various materials for plutonium to

the corresponding reflector savings for uranium (93.5% U235) might thus

be expected to be dependent only on the reflector saving for uranium.
This relationship appears to be approximately true. In Figure 2.11
ratios of reflector savings of such diverse materials as uranium
(93.5% U235) and carbon are plotted versus reflector savings for
uranium (93.5% U2%%). Reflector savings ratios for both §-phase and
a-phase plutonium with respect to the uraniun are presented. 1In the

case of g-phase plutonium, the graph(z'a) from which these ratios were

determined was for a density of 19.5, and no correction was made to
the standard value of 19.6 being used in this Handbook.
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2.3.2 OTHER SHAPES

Some data!2°®) have been obtained with §-phase plutonium cylinders

surrounded by various reflectors. Expressed as reflector savings,
these data are plotted in Figure 2.12. Graphs of H + 2S versus D + 28
are presented in Figure 2.13 for both 6§- and a-phase plutonium for
keff's or 1.0, 0.951 and 0.90. As in the case of uranium, estimates
of the proper reflector savings to use in cases for which data are not
directly available can be made from the data that are available. Such
estimates should be made very carefully, since, as may readily be
verified, Kerrp is very sensitive to S.

2.3.3 DENSITY AND DILUTION

The same general remarks apply to the effect of density on the critical
mass of size of plutonium as apply to uranium. Dilution of plutonium
by materials such as aluminum presumably to a first approximation
increases the critical mass by the same factor as estimated for uranium.
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2.4 URANIUM- 233

Data for U2®2® are very meager. Six-group calculations give

B = 0.1672 cm™2, k = 2.547, and M® = 9.25. In Figure 2.11 reflector
savings ratios of U232 to uranium (93.5% UZ®®) are plotted versus the
reflector saving for uranium (93.5% U22°). Estimates of S can thus be
obtained from this graph and the reflector savings reported for
uranium (93.5% U2®®). Plots of mass versus S for k.pr values of 1.0,
0.95, and 0.90 are presented in Figure 2.14. 1In Figure 2.15,H + 2S is
plotted versus D + 2S for cylinders on a reciprocal scale for the same
three kepp values. The standard density for U222 1s taken(2:2) as
18.5 g/em3. :

225




1 2 3 4 4.5

S, cm

FIG. 2.14 DEPENDENCE OF THE MASS OF A U233 SPHERE ON S AND kg

224




H+2S, am

7.5 e

8.5

10

1"

12

13

4
15
16
17

18
19
20
25

30

100

/

Vi
/]
/ ///

e
/|
7
|
3

/K/ L

//
/r

I
\

i

o 100 50 40 30 25 2019181716 15 14 13 12 n 10
D +2S, em

FIG. 2.15 DIMENSIONS OF A U233 CYLINDER AS A FUNCTION OF § AND kg

225




REFERENCES

2.1

‘ 2.3

25

2.6

2.7

2.8

2.9

2412

Shapiro, M. M. "Reactor Statics; Experimental and Numerical
Results". The Reactor Handbook, Volume 1, Physics. First Edition,
Chapter 1.5, March 1955.

Paxton, H. C. and G. A. Graves. Critical Masses of Fissionable
Metals as Basic Nuclear Safety Data. Los Alamos Scientific

Laboratory, New Mexico. AEC Research and Development Report
LA-1958, 24 pp. (January 1955). (Declassified August 17, 1957).

Paxton, H. C. Critical Data for Nuclear Safety. Los Alamos
Scilentific Laboratory, New Mexlico. AEC Research and Development
Report LAMS-2415, 68 pp. (February 1960).

Hansen, G. E., et al. Critical Masses of Oralloy in Thin

Reflectors. Los Alamos Scientific ILaboratory, New Mexlico. AEC

Research and Development Report LA-2203, 33 pp. (January 1958).

Kloverstrom, F. A. Spherical and Cylindrical Plutonium Critical

Masses. University of California Radiation Laboratory, Livermore

Site. AEC Research and Development Report UCRI~4957, 17 pp.
(September 1957).

Ralston, H. R. Critical Masses of Spherical Systems of Oralloy
Reflected in Beryllium. Unilversity of California Radiation
ILaboratory, Livermore Site. AEC Research and Development Report
UCRI~4975, 7 pp. (October 1957).

Hansen, G. E. '"Properties of Elementary Fast-Neutron Critical
Assemblies". Proc. U. N. Intern. Conf. Peaceful Uses Atomic
Energy, 2nd, Geneva, 12, 84-88 (1958) P592.

Schuske, C. L., et al. The Dow Chemical Co., Rocky Flats Plant,
Denver. AEC Research and Development Report RFP-66, 22 pp.
(August 1956) (Secret).

Schuske, C. L., et al. The Dow Chemical Co. Rocky Flats Plant,
Denver. AEC Research and Development Report RFP-69, 19 pp.
(October 1956) (Secret).

Hoogterp, J. C., et al. Los Alamos Scientific Laboratory,
New Mexico. AEC Research and Development Report LA-2026, 56 pp.
(March 1957). (Confidential).

Neuer, J. J., et al. Preliminary Survey of Uranium Metal
Exponential Columns. Los Alamos Sclentific Laboratory, New Mexico.

AEC Research and Development Report LA-2023, 44 pp. (January 1956).

Paxton, H. C. Los Alamos Sclentific Laboratory, Los Alamos,
New Mexico, Private Communication.

226




CHAPTER IIl - HETEROGENEOUS MODERATED SYSTEMS
3.1 INTRODUCTION

Fissionable material must often be handled when mixed with moderating
materials. In the Purex process, plutonium is separated from uranium
and from fission products in aqueous and organic solutions. Spent
fuel elements are stored under water, and fissionable material is
recovered from such elements by dissolving them in acid. In fuel
element fabrication processes cleaning and etching baths may be
employed.

Even when the fisslonable material is handled in alr, attention must
be given to the posslibility that moderators may inadvertently be
permitted to intermingle with i1t. As pointed cut 1n Chapter I, such
intermingling can lead to a drastic reduction in the critical mass.
The principal moderator one needs to be concerned about is Ho0 (or
other hydrogenous substances). Carbon may also be of importance in
some special cases, but moderators such as Be and D0 are ordinarily not
encountered in nuclear safety problems. Hydrogenous materials are
both excellent moderators and very common substances, and guaranteeing
their exclusion may be difficult if not impossible. It is, therefore,
often customary to handle fissionable material as though it actually
were moderated by water, although this means that in the absence of
moderation the margins of safety are very large.

A considerable simplification results if the fissionable material and
moderator are homogeneously mixed as in the case of solutions or of
mixtures of very fine machining chips and moderator. In these cases
there is no self-shielding of the fissionable material for thermal or
resonance neutrons. Data for solutions are very extensive because of
their importance in separations and recovery processes. A separate
chapter (Chapter IV) is therefore devoted to the treatment of
solutions and homogeneous moderated systems; the present chapter 1is
restricted to heterogeneous systems.

301




3.2 THEORY

3.2.1 EFFECT OF MODERATION

When moderator and fissionable materials intermingle, the neutron
energies become degraded. For most moderators the degradation is not
sufficient for moderator to replace fissionable material on a volume-
per-volume basis, hence the critical volume increases and the critical
buckling decreases. The energy degradation is sufficient, however,

to reduce the critical mass at optimum moderation by a large factor
because of the increase 1n fisslion cross sectlion with decreasing
neutron energy. In a fisslon spectrum the average fission cross section
of U2®° 15 1.22 barns. In a neutron spectrum with a Maxwellian
distribution of energies about the room temperature thermal value of
0.025 ev the average fission cross section is 504 barns. Moderation,
however, cannot reduce the critical mass by as large a factor as the
ratio of the cross sections indicates because (1) the migration area of
the neutrons 1s greater in the moderated system than in pure U235,

(2) some fraction of the neutrons is absorbed in the moderator, and

(3) the number of neutrons produced per neutron absorbed in fissionable
material is less at thermal energies.

Besides increasing the cross sections, moderation changes thelr relative
values. For unmoderated uranium metal, the neutron multiplication
factor (k) was calculated in Chapter II to be unity at a U®®° concen-
tration of 5.66%. Lower concentrations are subcritical because the
fraction of neutrons with energies below the fission threshold of

U238 (~1 Mev) absorbed to produce fissions in U23° is too small. In a
Maxwellian thermal neutron spectrum, however, the fission cross section
aff U*E9 1g enough larger than the ¥ absorption cross section that

in a moderated system employing natural uranium (0.714% U23°) k would be
1.327, were it not for the resonance absorption of neutrons in U23®
during moderation and the absorption of neutrons by the moderator.

In a homogeneous Hs0-moderated system of optimum concentration an
enrichment to only about 1% U=®° 1s required to make k unity.

Distribution of the fissionable material throughout the moderator in
clumps rather than homogeneous dispersion decreases the probability
that a fission neutron will be moderated, and also decreases the
probability that if a fission neutron is moderated it will be absorbed
in fissionable material. For high concentrations of U235 the result
1s an increase in the minimum critical mass obtainable at optimum
moderation, with the mass approaching that of reflected metal as the
size of the clump increases. For low concentrations of UZ3°® the high
energy fissions in U2°® are increased and the absorption of moderated
neutrons in U23® and U2%° is reduced. The greatest reduction in
absorption occurs in the resonance energy region (~5 to ~10,000 ev)
where the effective absorption cross section of U2%® 1s much higher
with respect to the fission cross section of U2®°® than at thermal
energies. As a result, for optimum moderation and clumping, uranium
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can be made critical in Hp0 when the U2®° concentration is only

slightly 1n excess of that of natural uranium.

3.2.2 EXTENSION OF DATA AND CALCULATION OF SAFETY MARGINS

Because of the much wider energy region for moderated systems, and
because of the added complication of heterogeneity, multigroup
calculations of the buckling are much more difficult than for pure
metal systems and may be less accurate. Moreover, especlally for low
concentrations of U23%, the bucklings may be small, and hence reflector
savings that are determined by fitting data to calculated bucklings

may be very sensitive to the particular buckling employed. Accordilngly,
for heterogeneous moderated systems the second approach outlined in
Section 1.4, in which the data are fitted to calculated or experimental
reflector savings or to reflector savings that are chosen to minimize
the variation of buckling with shape, 1s much more satisfactory and

is the one generally used 1n this chapter.

Simple formulas may be employed to extend the data or to express

margins of safety in terms of keff' The expression for the geometric
buckling corresponding to a particular keps that is considered to be
safe 1s given by Equation 1.15. A simllar expression may be written
for an extrapolated buckling BZ in terms of a known value BS, namely

k
(ko)ko_l (Mz)
g 2
i k-1 w2 )5 (3.1)

As in Equation 1.15, k, appears both in the numerator and in the
denominator; hence the buckling 1s not greatly sensitive to small
errors in kg. Although the calculation of accurate values of k or
of M2 may require considerable care, 1t 1s not expected that this 1s
so in the case of k/ky and M3/M?, since errors should tend to cancel
out. It is generally best to calculate ko, itself as ko = 1 + M3BRo,
where BR, 1s the experimental buckling and MZ is either determined
experimentally or calculated. In extending data, reflector savings
should, of course, be calculated for the extended situation, but for
large systems the accuracy of the calculations need not be very great.
Equation 1.12 may be employed to estimate the change, although a two-
group calculation might be expected to give better results.

In calculating k it is convenient to break it down into several factors.
According to the definition given in Chapter I,

fk(E)Za(E)¢(E)dE
fza(E)o(E)dE

k=

If the fission cross section 1s represented by Zf(E) and the number

vife
—Eru and
a

of neutrons released per fission by v(E), k(E)
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Bz (E)e(E)aE
[= (E)o(E) &

a
The absorption cross sections of most substances, including fissionable
materials, vary approximately inversely as the neutron velocity in the
thermal energy range. For moderators this behavior continues to high
energies. Hence, when a large fraction of the fissions 1s caused by
thermal neutrons, it 1s convenient to separate the 1/v absorptions from
the remainder. If Zp, and Z55 represent the 1/v portion of the cross
section, if Vv, represents the constant thermal value of v, and if
ASp(E), AS5(E), and AV(E) represent deviations from the 1/v cross
sections and the thermal value of v as functions of energy,

[lv AZf+ZfAV]¢( )dE
1
i ke ¥ F 1B [vo2po®(E)AE
" (E) [AZ ¢dE
ao (o] 1 a
2 ¢dE
ao

where E,y 1s some convenlient reference energy such as 0.025 ev. The
particular value of E5 in the thermal range is unimportant if the cross
sections vary strictly as 1/v in this region, since the energy
dependence cancels out in the flux weighted integrals.

vZ_ (E )
The term ETE%E—%— is commonly represented as the product of two factors,
ao
(Zao)fissionable material (Zfo)
o e b
ao’all materials ao’fissionable material

Actually some cross sections deviate slightly from 1/v behavior in the
thermal energy range. It 1s usually customary to include this deviation
in the computation of f and of m by means of a "non-1/v" factor, which

is of course dependent on the shape of the neutron spectrum at thermal
energies. The neutron spectrum often assumed for the calculation of the
"non-1/v" faccor is Maxwellian(®*'?), although in the presence of
absorptions this spectrum is only an approximation to that which actually
exlsts.

If the epithermal non-1/v absorptions and fissions occur at approximately
equal energles and with approximately the same ratio of fissions to
absorptions as at thermal energies, as for example is the case for

U235, they tend to cancel each other. They may be allowed for by
modifying the thermal value of 1, but the error introduced if they are
ignored is small. In highly enriched, moderated uranium, then, a two-
factor formula for k, namely k = nf is adequate.
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For low enrichments, additional factors are required to take account

of the non-1/v events in U23®, Fissions occur in U2%® at neutron
energlies in excess of 1 Mev and resonance absorptions occur over the
entire epithermal region with major contributions from the resonances
of lower energy which start with a large resonance peak at about 7 ev.
It is customary to represent these events by the product of two factors,
€ and p, where € gives the increase in the number of fast neutrons as
the result of fissions in U23® and p gives the probabllity that a fast
neutron escapes capture in the resonances of === during its moderation
to thermal energies. The multiplication constant 1s then represented
as the product of four factors

k = nfep.

In heterogeneous systems the calculation of f requires a knowledge
of the self-shielding or disadvantage factors, as well as a knowledge
of the thermal cross sections. The disadvantage factor of material
i may be defined as
[}
PR !

i %‘E N

where Ei is the average neutron flux in material i. The thermal
utilization, f, 1s then given by

(zva)

£ fissionable material

(zividi)

Z'all materials

where V4 1is the volume of the ith material. Diffusion theory is
generally inadequate for computing d;, although 1its use in nuclear
safety calculations is conservative since it underestimates the self-
shielding of the fissionable material. The P3 approximation to the
neutron transport equation gives much more nearly correct values for
the disadvantage factors. This is the method used at the Savannah
River Laboratory for calculating f; an IBM-650 code is available for
calculating f in cylindrical geometry.

The factors € and p are also functions of the heterogeneity of the
system. For large clumps € tends to be large because the probabllity
of a fission neutron escaping from the clump without causing a fission
in U2%® is relatively low, and p also tends to be large because the
self-shielding against resonance energy neutrons entering from the
moderator is large. As the spacing between clumps, and hence the
relative amount of moderator present, increases, € decreases because
the probability of a fast neutron escaping from one clump and entering
another clump without having its energy degraded by collisions with
moderator atoms decreases. Two somewhat compensating effects occur
in p as the spacing is increased: the increased amount of moderator
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increases the probability (p) that a neutron will be thermalized witchout ‘
resonance capture, and the increased spacihg decreases the shielding

of one clump by another against neutrons of resonance energy. At

large spacings the interaction effect in € and the shielding of one

clump by another against resonance neutrons are insignificant.

The calculation of € and p is somewhat complicated for close-spaced
clumpss.  Je Wi wei1(3-2) describes methods for calculating € in
uranium-water lattices, and a Monte Carlo code 1s avallable at the
Savannah River Laboratory. Experimental values‘a'a) also exist, which
can be used to normalize the calculations. The calculation of p 1is
described in Reference 3.4 and requires a knowledge of the resonance
integral, which has been determined experimentally(a’s) as a function
of the surface-to-mass ratio of the uranium. For close-spaced clumps
the effective surface of a clump 1s reduced by the shielding provided
by the other clumps. Methods are available(®'®) for computing this
effect.
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3.3 HIGHLY ENRICHED URANIUM IN WATER

For clumps of uranium (93.5% U23%) of a given size, increasing the
spacing between clumps, and hence increasing the relative amount of
moderator present, decreases the material buckling and thus ilncreases
the critical size of the system. The decrease in buckling results
from an increase in migration area as it approaches that for pure
moderator and from a decrease in k, due to the degradation of neutron
energies and to the absorption of neutrons in the moderator. These
effects tend to increase the critical mass, but they are opposed by
the increase in fission cross section, which results from moderation of
the neutrons and tends to reduce the amount of fissionable material
required for criticality. The result i1s that the critical mass has a
minimum as the relative amount of moderator increases. As the size
of the clump decreases, this minimum critical mass decreases because
of the decrease in self-shielding for moderated neutrons, and the
relative amount of moderator at the minimum mass increases.

Experiuwents to determine the critical mass have been performed‘3'7’

with approximately cubic arrays of l-inch and 1/2-inch cubes of uranium
(~94.4% U2%%) arranged at varlous regular spacings in water. 1In

Figure 3.1 the reciprocal of the length of one side of the array (the
volume to the -1/3 power) is plotted against the logarithm of the
fraction of the volume occupied by the uranium blocks for blocks of both
sizes. Interpolations made from these slowly varylng curves were

used in constructing the graphs of critical mass versus the logarithm
of the uranium volume fraction shown in Figure 3.2.

Other éxperiments(s'7) have been performed with approximately cylindrical
arrays of 1/8-inch diameter, 12-inch-long rods of uranium (93.6% UZ3°)
arranged at various regular spacings in water. 1In Figure 3.3 the
reciprocal of the diameter of the array and the critical mass are
plotted against the logarithm of the volume fraction of uranium in

the lattice. Silince the rods were all of the same length, varying the
spacing introduces a variation in the ratio of height to diameter of

the array as well. The minimum mass occurs at a height-to-diameter
ratio of about 1.3. For an assembly of 1/8-inch-diameter rods of optimum
shape the critical mass is about 10% lower. Some experiments(3‘7) were
performed in which the arrangement of rods was nonuniform. Although

the critical mass in some cases was less than that of a uniform array
with the same average volume fraction of uranium, in no case studiled

was 1t less than that at optimum spacing.

The minimum critical masses of the arrays of cubes and rods can be
plotted against the volume-to-surface ratio of an individual unit to
permit interpolations for clumps of other sizes and shapes. As the
volume-to-surface ratio approaches atomic dimensions, the minimum
critical mass for a solution must be approached. At the other end of
the range the minimum critical mass must approach that for solid uranium.
Inspection of Figure 3.2 indicates that for blocks larger than l-inch
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cubes there may be a minimum critical mass as a function of volume fraction
that lies above the mass of the solid metal. In the range of the
experimental data, the minimum critical mass 1s nearly a linear function

of the logarithm of the ratio of volume to surface.

In addition to the experiments with uranium blocks and rods, some
experiments(s'e) have been performed in which machining chips were
immersed in water at H/U2®5 ratios between 60 and 120. The experiments
were performed in 8- and 10-inch diameter cylinders reflected by water.
Critical masses were between 18 and 92% higher than for solutions at the
same H/U2%% ratios in the same dlameter vessels.

Margins of safety are not given for these systems because of the
difficulty of computing k and B2. Moreover, no variation in shape was
made in the experiments so that BZ and S could be obtained by choosing

S to minimize variations in B®. According to solution data, (see
Chapter IV) a reasonable value for S appears to be about 6 cm. With this
value bucklings can be obtalned and equated to solution bucklings, and
the thermal disadvantage factor of the uranium can be obtalned. Values
of k can then be obtained, and margins of safety calculated in the usual
manner. The validity of such an approach 1s perhaps questionable for
the 1-inch blocks, but for the 1/8-inch rods and the machining chips it
should give good results. The interest in these data 1s insufficient,
however, to justify presenting the results of such an analysis here.
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3.4 SLIGHTLY ENRICHED URANIUM IN WATER

3.4.1 GENERAL CONSIDERATIONS

For arrays of clumps of uranium (< 5% U®®®) in water, the buckling has
a maximum as the spacing between clumps is varied. The maximum is the
result of the opposing effects of the increase in the ratio of U23°
fissions to U23® absorptions and the increase 1n moderator absorptions
(and, for some moderators, the increase in migration area) as the
proporticn of moderator is increased. The critical mass, of course,
passes through a minimum since it approaches infinity both as the
spacing approaches zero and as it becomes very large.

The maximum buckling as a function of the water-to-uranium ratio is 1in
turn a function of the size of the clump. For large clumps the neutron
spectrum in the clump approaches that in pure metal, and the self-
shielding against thermal neutrons entering from the moderator is large;
hence the maximum buckling tends to be small or even negative. For
smaller clumps the maximum buckling is higher as the result of
relatively fewer absorptions in the moderator and of a more nearly
thermal neutron spectrum. The maximum buckling then falls off as the
clumps become very small, since the decrease in self-shielding against
resonance absorptions in U23® eventually predominates, and the buckling
approaches that for a solution. The relative volume of moderator at
maximum buckling increases as the size of the clump decreases.

The critical mass shows much the same sort of variation except that it
has minima, whereas the buckling has maxima. For a clump of given
size it passes through a minimum as the spacing between clumps in the
moderator is varied. This minimum mass in turn passes through a minimum
as the size of the clump is varied. The minimum masses and maximum
bucklings do not, of course, occur at the same moderator-to-uranium
ratios. Since the rate of decrease in concentration of fissionable
material with increasing moderator concentration at the point of
maximum buckling is generally greater than the rate of decrease of
buckling, the minimum critical mass occurs at a higher moderator-to-
uranium ratio than that at which the maximum buckling occurs.

3.4.2 EXPERIMENTAL DATA

There is a large amount of data giving bucklings that have been measured
with lattices of slightly enriched uranium rods in H,0. These bucklings
are necessarily associated with values of the reflector savings of the
essentially infinite H-0 reflector which surrounded the lattices. In
the Brookhaven experiments(®:3,8:953+10) o3¢tpen 1attices of various
effective diameters were employed and the reflector saving was chosen
that minimized the variation in the buckling, or reflector savings
were determined by fitting radial flux traverses to Jo(Brr). In the
Hanford experiments(®:3153+12) the reflector savings were estimated
from the Brookhaven results. In both sets of experiments the lattices




were approximately cylindrical and the effective radlus of the cylinder
was taken to be &/NA/m, where N is the number of rods in the lattice
and A is area of the lattice cell associated with each rod.

The experiments both at Brookhaven and Hanford’ were exponential rather
than critical experiments. A reactor or neutron scurces furnished a
plane source of thermal neutrons at the base of the cylindrical array

of rods, and the attenuation of this source was fitted to the theoretical
flux shape ¢(z) = A sinh k,(z + S) where z is measured downward from

the top of the assembly. In this manner k; was determined. The

2
buckling is given by BZ = Bi s 2.405

z where B% =(J]\I_A )2.
= + g
™

The data were obtained with aluminum-jacketed rods, and there was
generally a small air gap separating the aluminum sheath from the
uranium. At the same water-to-uranium ratio the effect of the aluminum
on p and € is small and tends to be in opposite directions for the

two factors. Extensions of the data to unclad rods can thus be made
solely on the basis of the change in M® and in f. It is a reasonable
assumption that

v v v
& ok —%39~ 1 + —%39-+ Vél
R U U u_
2 £, ;
MAl frels VHZO i VAl % Vair
V. Vv Vv
U U U

where Mf; and M® denote respectively migration areas for the lattices
of clad and bare rods.

Extensions to bare rods have been made for this Handbook by means of
this approximation and by P; calculations to determine the f/fAl ratio,
use being made of Equation %.1. The values of M2 used in computing Ky
are either those obtained experimentally(®:322:19) 4r yalues inferred
from these where such data do not exist. For lattices of bare rods
the reflector savings are smaller; but the differences are small, and
it 1s conservative to ignore them. For convenience all the experimental
bucklings have been adjusted to average values of reflector saving
determined from the Brookhaven data. These average values are plotted
in Figure 3.4. In making these adjustments it was assumed that the
experimental bucklings apply to infinite cylinders.

Extension of the bucklings obtained for bare rods to other enrichments
have also been made for this Handbook. A change in enrichment was assumed
to affect only f and 7, with €, p, and M® remaining unaffected. The f
ratio was obtained by P, calculations made with thermal Maxwellian

2

cross sections, and the”n ratio was obtained from thermal values. The
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reflector savings are considered unchanged from the values plotted in
Figure 3.4. 1In cases where data were obtained at more than one enrich-
ment with the same diameter rod, average values are chosen for the
bucklings extrapolated to other enrichments.

In Table III.1 the bucklings of bare rods are presented at the enrichments
at which the bucklings for clad rods were measured and at concentrations
of 0.714% (natural uranium), 1.0, 2.0, and 3.0% U2®3, There are

numerous ways in which these bucklings can be plotted to furnish useful
interpolations and extrapolations.

In Figures 3.5-3.8 graphs of B2 versus water-tc-uranium ratio are
presented for each rod size at each of the four enrichments. In
constructing these graphs the shapes of the curves, particularly the
maxima, were determined by interpolations made on auxiliafy graphs of
f, k/f, and M® against Vy,0/Vy-

3.4.3 MARGINS OF SAFETY

In terms of k.pp, the data at these low enrichments are very good. The
Brookhaven data give the error in the buckling as generally considerably
less than #10”* cm™2. With an average value of M2 of 32, which is
sultable for margin of safety calculations, the corresponding error in
kepr is less than #0.0032. Although there are uncertainties in extending
the data to bare rods, the greatest being in the M2 ratio, the total
magnitude of the buckling correction is at most about 10 x 10™%* em™2 or
about 0.032 in keff; and this large a correction applies only to the
0.387-inch-diameter rods at the highest enrichment and to the 1.34-inch-
diameter rods at low water-to-uranium ratios. For large rods, low
enrichments, and high water-to-uranium ratios, the correction is only a
fraction of this. In the extension of the data to the four enrichments
chosen, the spread in the three values of buckling obtained by
extrapolating the Brookhaven data for enrichments of 1.027, 1.143, and
1.299% is at most about 3% x 10"% em™2. For natural uranium at a water-
to-uranium ratio of 1.5 and for a rod diameter of 1.1 inches the
extrapolation of the data gives a buckling of -3 x 10™% em™2. This may
be compared with an experimental buckling 3'13), corrected for the
presence of cladding, of -0.5 x 10”% em™2.

From the foregoing remarks 1t appears that the maximum safe value of
kepp may generally be taken to be as large as 0.98. The corresponding
margin in buckling is 6.4 x 10°% cm™2 + 0.02 B2, For situations that
do not deviate greatly from those studied experimentally, even higher
values of keprp may be considered acceptable, but one should consult
the original data to satisfy himself that this 1s so.
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Material

TABLE IIT.1

Bucklings of Lattices of Uranium Rods in Water

0.387-inch-diameter rods

2

Buckling in ecm~2 x 10* at U23° concentrations of:

Va.0/'y o0.714% r.0  1.027#(2) 1.143%(2) 1.299#(a) 2.0  3.0%
i | -31.00 4. 40 T7.10 17.80 28.50 63.60 88.60
1i5 -12.90 24.70 26.40 39.70 51.40 88.60 115.80
2 - 9.70 33.60 36. 40 50.90 63.80  108.20 140.40
3 -10.30 35.40 37.50 5570 68.70 115.80 15130
4 -20.60 27.00 29.70 46.10 62.10 112.80.7151.30

0.600-1inch-diameter rods
Buckling in em~2 x 10* at U23° concentrations of:

Vo’V 0.714% 1.06  1.027%(2) 1.143%(a) 1.099¢4(a) 2.04  3.0%
i -24.50 11.70 13.40 25.80 37.40 T2,50 97.80
1D - 8.00 31.10 34,30 45,90 58.20 97.50 125.60
2 - 4,50 37.60 40.60 53.80 67.30 109.90 140.80
3 -13.70 32.80 36.00 51.10 65.80 114.20 149.80
4 -30.00 18.80 22.50 38.10 53%.60 106.00 144.70

0.750-1inch-diameter rods

Buckling in cm™2 x 10* at U2%° concentrations of:

Vio/Vy  0.714% 1.0  1.027%(2) 2.0% 3.0%
1.334 - 8.80 29.40 32,30 93.90  121.00
1.584 - 4.60 34,60 37.60 101.00 129.00
1.834 - 3.90 T 10 40.20 107.00 137.00
2.334 - 7.80 36.00 39. 30 111.00  14%.00
2.834 -13.10 i O 48 3510 110.00 143.00
3.83%4 -30.50 15+ 50 19.00 96.90 1353%.00
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Buckling in cm™

TABLE III.1 (Continued)

0.925-1nch-diameter rod

2

x 10% at U235 concentrations of:

Buckling in cm”™

1.007%(2)

31.90
37.50
36.10
52.20

2.0%

95.60
105.00
106.00
104.00

1.34-inch-diameter rod

2

3.0%

123.00
133.00
136.00
135.00

x 10% at U23% concentrations of:

Buckling in cm”

1.0% 1.44%(2) 2.0% 3. 0%
26.10 61.70 88.40 114.00
28.90 65.10 92.30 119.00
28.20 65.20 9%.20 120.00
17.90 57.00 86.60 116.00
26.50 41.70 71.40 100.00

1.66-inch-diameter rod

2

x 10% at U2%% concentrations of:

VHgo/VU 0.714%
1.37 - 7.10
1.74 - 3.40
1.94 - 6.20
2.15 -10.90

VHZO/VU 0.714%
1.31 -11.40
1.46 - 9.20
1.73 -10.70
2.30 -22.80
2.92 -37.70

VHZO/VU 0.714%
0.86 -19.80
1.33 - 9.90
1.85 -17.00

1.oo7g(a)

17.50
28.20
22.10
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2.0%

77.50
89.80
85.80

3.0%

103.00
116.00
113.00

concentrations for which experimental data were obtailned
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The safe bucklings corresponding to particular cholces of k. pp are
cbtained from Equation 1.15, which with M® = 32 becomes

& P &
Bsafe Ve 32 b e o
eff

Safe dimensions of water-reflected systems are then calculated from
the appropriate equation among Equations 1.6-1.10 and the reflector
savings read from Figure 3.4. For large rods at high enrichment it may
be physically impossible to arrange them 1n such a manner as to give

a good approximation to the calculated safe cylinder (or other shape).
This effect, provides an additional margin of safety and, of course,
enters into the experimental determinations of the bucklings. The
safe masses are calculated easily from the composition and size of the
safe assemblies. In setting safe conditions allowance should be made
for extremes in all variables such as enrichment and the dimensions of
the uranium pileces.

3.4.4 EXTRAPOLATION OF DATA

It may be necessary 1in certain applications to extend the bucklings of
Table III.1 and Figures 3.5-3.8 to situations that differ from those
studied experimentally, other than in enrichment and cladding. Some
of the possibilities are described in the following paragraphs, along
with precautions which should be observed and methods of calculations.

3.4.4.1 Assembly Shape

The lattices studied are by nature anisotropic, and the migration area
in the direction parallel to the rods might be expected to differ
somewhat from its value in the perpendicular direction. In this case
a single material buckling does not truly exist since the critical
equation is

k =1 + M2B2 + M3B2
3 £l o zZ Z

where r represents the radial or perpendicular direction and z the axlal
direction. If MZ > Mr, as appears to be the case,(3 =3) applying
bucklings determined 1n exponential experiments where B2<:O to finite
cylinders where B2 > 0 1s conservative since the critical buckling,

2 2
k-1 Mz Mr
M= T M

r r

Bi + B: = B;, actually decreases

as B§ increases. The anisotropy, however, has not been measured in many
cases and 1s somewhat uncertain. Moreover, there may be changes in S
with shape; hence somewhat larger margins of safety should be allowed
for assemblies differing considerably in shape from those studled
experimentally.
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3.4.4.2 Shape of Uranium Clump

The uranium pieces may not be solid rods. To a first approximation
the equivalent solid rod 1s one which has the same surface-to-volume
ratio. The probabillity of a fission neutron escaping the piece without
a collision, upon which € depends, 1s very nearly a function only of
surface-to-volume ratio for a uniform source distribution in such
diverse shapes as slabs, cylinders, spheres, and hemispheres. The
resonance integral, too, is a function of surface-to-volume ratio.
However, thermal disadvantage factors and interaction effects between
clumps may be shape dependent. At the same water-to-uranium ratio a
hollow cylinder with the same volume as a solld cylinder would have
lower values of p and € because of the greater surface, but higher
values of f because of the higher thermal disadvantage factor in the
uranium. It 1s not known whether it is possible to obtain with
different shapes or hollow rods, bucklings greater than the maximum
achievable with solid rods; however, allowance should be made for this
possibility 1in setting safe limits. Data exist(8°12,8:1478.16) pop gome
particular shapes that may be compared with data for solid cylinders

of the same volume or surface-to-volume ratio or that may be useful

in evaluating methods of calculating the changes in €, p, and f in
going from a solid cylinder to some other shape.

3.4.4.3 Arrangement of Pileces

The bucklings in Table III.1 are for arrays of regularly spaced rods.
Experiments performed at Hanford(®'*7:2:18) yith uyranium slugs close

to the optimum size for maximum buckling indicate that a random
arrangement generally has a lower buckling than a regular array at a
water-to-uranium ratio corresponding to the average of the random array.
This result appears reasonable 1f the average water-to-uranium ratio is
close to the optimum since this ratio is the result of rods with
separations on both sides of the optimum. Irregular arrays of very
small uranium rods might very well, however, have bucklings larger
than regular arrays since grouping several small rods together would
tend to approximate a larger rod.

3.4.4.4 Other Reflectors and Moderators

The bucklings in Table III.1 apply to the situation in which a regular
lattice of rods is immersed in water and a thick layer of water
surrounds the assembly. If the immersion medium 1s an organic liquid,
corrections to these bucklings may be necessary. If the organic liquid
has a lower hydrogen density than water, both M2 and f are larger because
relatively fewer neutrons are moderated and captured by hydrogen atoms.
Except for very small or negative bucklings the net result is a decrease
in buckling. The change in f can be calculated by the diffusion or P3
approximation. The change in M2 can be estimated from the approximation




where M'2 1s the migration area with the organic liquid, M2 the

migration area with water, V, 3 and Vi are the volumes of moderator

and uranium, and p 1s the hydrogen density in the organic liquid

relative to that in water. The reflector saving, to a first approximation,
is unchanged since changes in B are compensated by changes in «

(see Equation 1.12).

In a dissolver the immersion medium may be nitric acid. As dissolution
progresses uranium goes into solution and the uranium pieces become
smaller. The increase in surface-to-volume ratio decreases p and €,
and the decrease in self-shielding increases f. The solution that
finally results has a lower buckling than that achlevable with pileces
of optimum size, but if sufficlently large pieces are dissolved, the
buckling may pass through a maximum as the dissolution progresses. It
is of course conservative to assume that p and € do not change as
dissolution progresses and to calculate f by the P3 approximation. The
poisoning due to nitrogen decreases f. The displacement of hydrogen
by nitrogen increases MZ, but 1t is conservative to ignore this effect.

In some circumstances an array of enriched uranium might be surrounded
by natural uranium. The reflector saving provided by the natural uranium
1s readily calculated from Equation 1.12 with D = Dp and K? = -BZ for
natural uranium.

3.4.4.5 Moderator Density

When uranium pieces are handled in air, reliance may be placed on

control of the spacing between pleces to ensure that a nuclear incident
will not occur in the event of flooding by water. As Table III.1
illustrates, either a close-packed arrangement or a widely spaced
arrangement results 1n a consilderable increase in critical mass over

the value at optimum spacing. Although it 1s possible to lncrease the
separation between pleces sufficiently that an infinite mass is
subcritical in the event of flooding, there is danger in relying too
heavlily on this procedure since full flooding 1s not the worst
circumstance. At the large separation the optimum water-to-uranium

ratio is achieved by filling only a fraction of the available space
around each plece wilth water, such as flooding with water of density

less than 1 g/cm®. The critical mass 1s, of course, greater than for

an array at optimum moderation with water of full density, but is by

no means infinite. Examples of situations in which such partial flooding
or its equivalent might occur are the spraying of an array with a hose,
or the separation of pileces from each other by wooden or plastic partitions.
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The buckling of a partially flooded array, contalning volds, can be
obtained from that of a compact array of the same water-to-uranium ratio
by calculating the change in M2, which 1is given by

v 2
e F . % ggo 1 4 Vvoid
volds _ ¥ void = U H-0
o Vi,0 + U V.0
. 1 + 2=
Y

where M2, ;4 and M? denote respectively the migration areas of the
arrays with and without voids.

In addition to the change in M? there may be changes in k that are
functions of the placement of the volds. Thus a positive buckling for
natural uranium rods 1in water has been reported(a's’ when an annular
vold surrounds the rods. The volds also affect the reflector saving,
which increases at least as fast as M; the increase may be even greater
1f the considerations discussed in Chapter II apply here. In view

of these uncertainties generous margins of safety should be applied

to such arrangements 1f partial flooding 1s considered possible.
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CHAPTER IV - HOMOGENEOUS MODERATED SYSTEMS
4.1 INTRODUCTION

In this chapter critical and safe conditions are gilven for homogeneous
mixtures of fissionable and moderating materlals. Only such additional
theory as is needed here is included, since a fairly complete
presentation of the effect of moderation is given in Chapters I and III.
Water solutions of U22% recelve the most extensive treatment because of
the large amount of data avallable. The general treatment and methods
of handling the data apply also to plutonium and gEeR,

4.2 AQUEOUS SOLUTIONS OF URANIUM (~93.5% U235)

4.2.1 THEORY

A large number of critical experiments{4:2~%:%4) have been performed at
the Oak Ridge National Laboratory with solutions of UOsFz in which the
uranium contained approximately 93.5% UseS, 1his compound was chosen
because of its high solubility and because of the small neutron capture
cross sections of oxygen and fluorine. A somewhat smaller number of
experiments{*:®) have been performed with UO»(NOs)s solutions with
various amounts of HNOg present. Except perhaps for solutions of low
concentration, the bucklings of these solutions are large enough that
it is practical to use the first method given in Section 1.4 for
extending data, in which the reflector savings serve as parameters that
relate theory and experiment. Although bucklings calculated by
multigroup methods would probably be more accurate and hence preferable,
a simple one-group expression is adequate. As pointed out in

Section 1.4, even when the correct buckling is used, some variation of
reflector saving with shape is expected; hence the small variations
(see Figures 1.1-1.3) attributable to an incorrect buckling are not
objectionable provided the error in the buckling is not too great.

The expression used for the buckling 1is

i1
B2 - l_cF (4.1)

where k = nf and M® = 7 + L?. Thermal cross sections are employed for
n and f, and 1 1s taken to be the neutron age in pure moderator. The
thermal utilization, f, is given by

a
U235

£ * - (%.2)
(0] (0]
U235 2 Eggg H + Eggg GX

where the o's are thermal cross sections in barns, X denotes elements
other than hydrogen and U23® that may be present, and ﬁggg and Eégg
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are atomlic ratios. The diffusion area, L%, 1s approximated by

o 2
12 = (1 - £)L2 (4.3)
where L2 1s the diffusion area of the moderator. -

Values of thermal cross sections employed in this Handbook are given

in Table IV.1l, together with the thermal value of n. The U®3° cross :
section contains a non-1/v factor calculated for a Maxwellian
distribution about 0.025 ev so as to glve a nearly correct cross section
for dilute solutions. Allowance for the small contributions of UZ2* and
U228 are included in the U23° cross section; hence these isotopes may be
ignored for uranium containing approximately 93.5% U2%®. Resonance
absorption in U2%® is assumed to be compensated by fast fissions in
U*3®, The only substance other than hydrogen and uranium considered to
contribute significantly to f is nitrogen. Fluorine and oxygen have
such small cross sections that they may be ignored. Absorbers such as
boron or cadmium might be present in special cases, but they are not
considered here.

TABLE IV.1l

Parameters Employed in Calculating k
for U2%° gSolutions

Material o, barns n

i 678 2.07
H 0.332
N 1.88

For UOsF, solutions the pure moderator is taken to be Hp,0; for UOs(NO,)»
solutions it i1s taken to be a nitric acid solution with the same acid
normality as that of the uranyl nitrate solution. The diffusion area in
nitric acid solutions 1s plotted in Figure 4.1 against the acid
normality. In Figure 4.2 a similar graph is presented for the neutron
age. Both curves are calculated, and they are based on values for pure
H>0 that are consistent with experiment.

4.2.2 URANYL FLUORIDE SOLUTIONS

4.2.2.1 Spheres

Some experiments(4°424:654:7,4:15) paye peen performed in which bare

and water-reflected spheres were made critical by adjusting the
concentration of the solution within the spheres. The reflector was
effectively infinite. The spherical contalners were fabricated from
aluminum to minimize the effect of the container wall. When these data
are fitted by means of Equation 1.6 to bucklings calculated by the
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procedure Just outlined, the reflector savings reported in Table IV.2
are obtalned. These reflector savings are plotted against solution
concentration in Figure 4.3 with the not unreasonable assumption being
made that the bare and water-reflected curves are parallel. Use of
values obtained from Figure 4.3 by interpolation leads to Figures 4.4
and 4.5 in which critical masses and radii of bare and water-reflected
spheres are plotted against concentration. Also presented in these
figures are safe masses and radii corresponding to keep's of 0.98 and
0.95, determined from Equation 1.15. Since at a given buckling an
increment in radius 1s the negative of an increment in reflector
saving, Figure 4.5 also illustrates the margins in S that correspond

to margins of 0.02 and 0.05 in k.pep. The data appear to be good enough
that in the region of the minimum mass a kgpp Of 0.98 allows an adequate
margin of safety.

TABLE 1V.2

Critical Mass Data Obtalned with Spheres of UOsFs; Solutlon

(The data are expressed in terms of reflector savings.
The uranium contains approximately 93.5% UZ3°.)

Conc., Reflector Saving(S), cm
g U2%%/11ter H/U23® Bare Infinite H,0 Reflector

18T 1393 4.15

20.4 1270 T37
23.4 1112 3,81

49.4 524 6.65
95.1 268.8 6.57
125.2 20%.5 3.16
200 126.5 6.56
225 76.1 6.36
483 49.9 6.12
649 35.8 5.99

The data and the curves are, of course, for homogeneous solutions. A
concentration gradient in the solution affects the results.
Goertzell*+®) has shown theoretically that in a reflected sphere in
which the concentration decreases from the center toward the outer
boundary in such a manner as to give a flat thermal flux in the
solution, the critical mass is 30% lower than with a zero gradient.
Morfitt(#+®) has confirmed this effect experimentally in cylinders
containing a number of coaxial annular regions with successively lower
concentrations, but he found the magnitude of the effect to be somewhat
less than the calculated value. Conversely, a concentration gradient in
the opposite direction would be expected to lead to a higher critical
mass. :

405




S

T
Tt
T

No Reflector

100
g U235/liter

FIG. 4.3 S FOR SPHERES OF UO,F, SOLUTION
(The reflector savings were obtained by equating the geometric
bucklings to calculated material bucklings as a function of
U235 concentration in the solution.)
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4.2.2.2 Cylinders

A large number of experiments(4:1-4:5,4:15) haye been performed at the
Oak Ridge National Laboratory in which the critical heights of bare

and water-reflected cylinders of uranyl fluoride solution were measured
as a function of cylinder diameter and of solution concentration. Both
aluminum-walled and stainless-steel-walled vessels were employed, but
almost all of the more recent data have been obtained with aluminum-
walled vessels. For both materials the wall thickness was 1/16 inch.
Fitting the data to calculated bucklings through the use of Equation 1.9
gives the reflector savings recorded in Tables IV.3 through IV.6. These
values are generally smaller than values for spheres for the same
concentration and reflector read from Figure 4.3. In determining
critical and safe conditions for cylinders (and also for slabs),
reflector savings from Figure 4.3 may therefore be used for situations
for which fairly direct experimental data on cylinders and slabs may be
lacking.

TABLE IV.

Critical Mass Data Obtained with Bare, Aluminum-Walled
Cylinders of UOpF, Solution

(The data are expressed in terms of reflector savings.)

Reflector Saving(S) in cm for Cylinder Diameter

Cone., in Inches of:
g U°%/1iter H/UZS® TB.76 9.5 10 12 15 20 30

34.3 T55 3.05

52.2 499 3.45

77.9 331 3.05 3.12 3.03 2.90
78.7 329 3.38

78.5 328 3.06

79.1 325 2.86

151 169 2.97 3.09
291 85.7 2.68

300 83.1 2.70

331 74.6 3.00

337 T3.4 2.67 2.63

342 T2.4 2.52
350 71.5 2.61 2.63

373 66.1 2.58 2.58

402 60.8 2.53 2.53 2.47 2.51

437 55.4 2.49 2.47 2.43

459 52.9 2.48

470 51.5 2.48 2.46 2.51 2.42 2.71
480 50.1 2.43 2.39 2.4 2.4%0 2.39 2.45
532 4y.7 2.41 2.36 2.35

538 4.3 2.38 2.36 2.32 2.22 2.36 2.54 2.47
537 43.2 2.32
829 27.1 1.91 2.01 2.07
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TABLE IV.4

Critical Mass Data Obtained with Water-Reflected,
Aluminum-Walled Cylinders of UOpFp, Solutlon

(The data are expressed in terms of reflector savings.)

Reflector Saving(S) in cm for Cylinder Diameter

Conc., in Inches of:
g U235 /11ter H/UZ3S 6 6.5 8 10 15 30
26.0 999 7T.15
34.3 755 6.49
52.2 499 6.56 6.54
78.7 329 6.45
88.1 290 6.38
116 221 6.24
134 192 6.29
199 127 6.39
212 119 6.34
254 99.5 6.11
315 78.7 6.25 6.37
342 72.4 6.6 +0.5
415 58.8 6.26 6.02
4ol 56.7 6.14 6.24
459 52.9 6.22 6.1% 6.12 6.05 6.47
470 51.5 6.64(a)
488 49.5 6.21 6.26
538 44,3 6.09 6.8 +0.5
537 43,2 6.15 6.18 6.24
759 29.9 5.T4
829 o7 .1 5.93 6.14 6.39 6.6 0.5
827 26.2 5.78 5.60 ~5.99(Db)

(a) This value is considered to be in error by the experimenters.(4'15)

(b) ~ is placed in front of values derived from estimates of critical
conditions based on subcritical measurements.
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TABLE IV.5

Critical Mass Data Obtained with Bare, Stalnless-Steel-Walled
Cylinders of UOpFz Solution

(The data are expressed in terms of reflector savings.)

Reflector Saving (S) in cm for Cylinder Diameter

Conc., in Inches of:

g U2%%/11ter H/U2°S 9 10 12 15 20
26.0 999 . 55(8)
34.3 i 3.89 3.91
52.2 499 3.40 585 . 3.57
78.7 329 3.45
80.5 320 3.37

114 226 3.21 3.18

116 221 3.17 3.39
148 174 34T 301

205 123.2 3.05

288 86.4 2.95

331 T4.6 2.81

396 62.7 2.77

39% 62.6 ~2.73(a)

4oy 56.7 2.75

538 43.9 2.55

(a) ~ 18 placed in front of values derived from estimates of critical
conditions based on subcritical measurements.
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TABLE IV.6

Critical Mass Data Obtained with Water-Reflected,
Stainless-Steel-Walled Cylinders of UOFp Solution

(The data are expressed in terms of reflector savings.)

Reflector Saving (S) in cm for Cylinder Diameter

Conc., in Inches of:

g U235 /11ter H/UZ®® 6 6.5 7 8 9 10 12 15
26.0 999 ~6.34(a)
34.3 755 6.36 6.10
52.2 499 ~6.14(2) 5.86 5.53
80.5 320 6.05 6.00 5.94 5.82

114 226 6.00 5.92 5.94 5.54

116 221 5.56
134 192 6.18

15 183 ~6.07(8)

148 174 6.09 5.96 5.89 5.88 5.59

205 123.2 ~6.07(8) 6.02 5.89 5.82 5.T4

254 99.5 5.88

288 86.4 6.06 5.96 5.82 5,72 " "'5:78

396 62.7 5.98 5.73 5.66 5.64

I 62.6 5.58

394 61.1 5.93

415 58.8 5.98

4oy 56.7 5.76 5.56
538 44.3 5.97

538 43.9 5.85 5.78 5.69 5.54 5.56

724 31.6 5.72 5.61 5.50 5.38 5.36

827 26.2 5.34

869 24 .4 5.48 5.34 5.26 5.30

(a) ~ 1is placed in front of values derived from estimates of critical
conditions based on suberitical measurements.

2




For bare cylinders, stainless steel walls are seen to give slightly
greater reflector savings than aluminum walls, whereas for water-
reflected cylinders the opposite 1s true. The reasons for this
behavior are that (1) stalnless steel has a higher scattering cross
section than aluminum and hence reduces the leakage of fast neutrons,
and (2) stainless steel also has a higher thermal absorption cross
section and hence captures more of the thermal neutrons headed back to
the solution from the reflector.

From close examination of these reflector savings one can gain some
feeling for the uncertainty in the experimental data. Plotting the
reflector savings against concentration or against cylinder diameter
permits interpolations and extrapolations to be made and reveals data
that should perhaps be regarded with suspicion. Estimates of reflector
savings obtained from examining the values in Table IV.3 and IV.4 have
been used to calculate the critical and safe (kepp = 0.98 or 0.95)
dlameters of infinite aluminum-walled cylinders of UOLFs solution,

both bare and water-reflected, as functions of solution concentration.
The results are plotted in Figure 4.6. As in the case of spheres, an
increment in the critical or safe radius 1s the negative of the
corresponding increment in reflector saving; hence the margin in S
corresponding to a margin of 0.02 or of 0.05 in korr 1s readily apparent
from Figure 4.6. From a comparison of these margins with the scatter
in the values in Table IV.3 and IV.4 a margin of safety of 0.02 in keff
appears adequate at concentrations where data are fairly extensive.

The curves of Figure 4.6 exhibit minima at concentrations in the
neighborhood of 500 g of U23® per liter. Similar minima no doubt occur
for spheres’, but the data are not sufficiently extensive to show them.
The minima may appear surprising since the critical diameters of bare
and water-reflected cylinders of uranium (93.5% UZ3%) metal are only
about 4.6 and 3.1 inches, respectively (see Figures 2.4 and 2.5), or
much smaller than the minima shown in Figure 4.6; but it should be
remembered that pure UO-Fs rather than pure metal is being approached
as the concentration increases and that the dilution of uranium by
oxygen and fluorine increases the critical size markedly.

In Figure 4.7 (H + 2S) and (D + 2S) are plotted against each other on
reciprocal scales for a number of solution concentrations where H and D
are the height and diameter of a cylinder. The concentrations are so
chosen that the buckling at a particular concentration is equal to the
geometric buckling corresponding to keer = 0.95 for the next lower
concentration. The curves thus permit both critical and safe

(kepp = 0.95) cylinder sizes to be determined as functions of solution
concentration when the appropriate values of S are employed. These
values of S are determined from Tables IV.3 through IV.6, from data on
the effect of reflector thickness and material, or from estimates of
Interaction. It should be noted that unless the values of S are the
same, cylinder dimensions that are critical at one concentration do not
correspond exactly to a kgopp of 0.95 at the next lower concentration.

413




15

14

13

12

sayoul “Jejawo!q

o

—
-— —

HiH:T H

T
Hi

T

t

T

T
T
T
T

T
a1

1
it
wis

e &

Infinite Hy0 Reflector T3

15

wd ‘snipoy

10

10

Concentration, g U235/liter

oF 5 SOLUTION

eff

FIG. 4.6 DEPENDENCE OF DIAMETERS OF INFINITE CYLINDERS OF UO
ON CONCENTRATION AND k

41y



Conc. in g U235/

at k." of:
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In some situations the reflector may be different on different portions ‘
of the surface. In these cases the value of S applied to these

different portions 1s varied accordingly. In Table IV.7 pairs of

values of S are given that were determined by equating calculated

material bucklings to geometric bucklings calculated from datal4-2,4.23)

for water-reflected, aluminum-walled cylinders with no top reflector.

The requirement was made that the pair of reflector savings be in

reasonable agreement with the values of Tables IV.3 and IV.4. As can

be seen 1t 1s generally possible to meet this requirement fairly well.

TABLE IV.7

Pairs of Reflector Savings Fitting Data for Water-Reflected
Cylinders of UO,F, Solution with No Top Reflector

(The upper value is that for an unreflected
surface; the lower, a water-reflected surface.)

Reflector Savings in cm for Cylinder Diameter

Cone .« in Inches of:
g U223 /11ter H/U33S 6 T5 8 10 15 20 30
331 T4.6 2.86
6.3%6
337 T3.4 2.67
6.28
342 72.4 2.67 2.67 2.67 2.92
6.25 6.31 6.48 6.62
470 5145 2.32
6.01
538 44.3 2.38 2.38 2.29
6.15 6.17 5.99
4 43.2 2.08
5.98

In Table IV.8 the effective reflector saving on the lateral surface of
cylinders reflected on only one-half of this surface(4-2) 1s compared
with the average between the values for complete reflection and no
reflection. The effective value 1s somewhat less than the average
value.
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TABLE 1v.8

Average Lateral Reflector Savings for
Partially Reflected Cylinder

Cylinder
Cone., Diameter, Sy + So
g U?%5/11ter H/U22®  inches Reflector S, cm Sp, cm So. cm
78.5 328 10 4-inch thickness of H,0 4.60 6.45 3.06 4.76
on bottom and on one-half
(180°) of lateral surface
470 51.5 8 6-inch thickness of H»0 6.48 L 2.48 -
on entire lateral surface
470 51.5 8 6-inch thickness of H,0 4.25 6.48 2.48 4.48

on one-half (180°) of
lateral surface

T 1s the average reflector saving, Sy is the value for infinite H,O,
and S, 1s the bare extrapolation distance.

4.2.2.3 Rectangular Parallelepipeds

A few experiments‘*'a) have been performed with rectangular
parallelepipeds. In one set of experiments the heights of reflected
slabs of solution were measured as functions of thelr thicknesses.
The containing walls were constructed of "Iucite", and the thickness
of slab was varied by inserting thin sheets of "Luclte" adjacent to
one wall. 3ince "Lucite" appears to be a somewhat better reflector
than water (see Table IV.12), the critical thicknesses of water-
reflected slabs of the same height would have been somewhat greater.
The slabs were surrounded by water on all surfaces except the top.
The reflector saving for this surface was estimated from Table IV.3,
but the reflector savings for the water-reflected surfaces that fit
the data are fairly insensitlive to the particular value of reflector
saving used for the top surface.

These and other data obtalned with rectangular parallelepipeds are
presented in Table IV.9. The reflector savings of Table IV.9, or of
Figure 4.3 at concentrations where data are lacking, may be used in
conjunction with Figure 4.7 to determine the critical and safe
thicknesses of infinite slabs.

By multiplication of the critical and safe thicknesses of infinite
water-reflected slabs by the solution concentration, minimum critical
and maximum safe masses of U23% per unit area can be determined. Such
masses are useful 1n cases where precipltation or evaporation 1is
possible. For U22° the minimum critical mass per unit area is

335 g/ft®. The maximum safe mass at k.pp = 0.95 1s 280 g/ft®. The
concentration at which the minimum mass occurs 1s 25 g U235/liter.
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TABLE IV.9

Critical Mass Data Obtained with Rectangular Parallelepipeds
of UO-Fz Solution

(The data are expressed in terms of reflector savings.) <

Conc., Length(2), width(2), Reflector Saving (S), em
g U233 /1iter H/UZ%° inches inches No Reflector Ho0 Reflector .
TT.9 331 20 20 2.93
6 48 2.87
87.8 293 2.92 6.23
342 72.4 20 20 2.83 8.6 £0.5
469 51.5 2.06 58 6.40
1.995 58 6.42
532 4y 7 2:19 58 6.38
2.06 58 6.38
2.00 58 6.41
1.995 58 6.40
538 4y .3 20 20 7.35 0.5
829 2741 20 20 LD F05 6.3 0.5

(2) The height 1s the dimension varied to make the parallelepiped
critical and hence 1s different for each case.

4.2.3 URANYL NITRATE SOLUTIONS

4.2.3.1 Spheres

Experiments have been performed!4**) with bare spheres of UOs(NOs)s
solution having diameters of 27.5 and 48 inches. The H/U‘?35 ratios
were respectively 1379 and 1849, and the concentrations were 18.75 and
14.11 g U2%5/11ter. The N/U23° ratio was 3.64 in the former case and
presumably about the same in the latter. Expressing the data as
reflector savings gives values of 4.32 and 5.05, respectively. The
Increase in S with H/U235 1s probably partly the result of increased
sensitivity to errors in buckling as the buckling decreases. These
reflector savings are slightly larger than those obtained wlth spheres
of UOzFz solutions, but the bucklings of these nitrate solutions are -
enough lower than those of the fluoride solutions to make the critical
masses slightly larger.
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. 4.2.3.2 Cylinders

In Tables IV.1l0 and IV.1ll, reflector savings for UO»(NOs)s solutions
are presented that were obtained by fitting data‘4+5) to calculated
. bucklings. Except at high concentrations (low H/U22% ratios) the
values are of the same order of magnitude as those for UOzFz solutions.
At high concentrations the nitrate values are lower, presumably because
b UO- (NOs)» displaces more solvent than UOsF,, and hence taking 7T as
small as 1t 1s 1n pure moderator 1s a poorer approximation.

TABLE IV.10

Critical Mass Data Obtained with Bare, Aluminum-Walled
Cylinders of UO»(NOs)s, Solution

(The data are expressed in terms of reflector savings.)

Reflector Saving (S) in cm for Cylinder Diameter

Conc., in Inches of:

g U235 /11ter H/UZ%® N/U2°S 10 12 15
36 153 2.86 3.49
53 493 2.86 3.49 3.36
73 352 2.86 3.03 3.07
105 240 2.86 2.87 2.95 3.02
> 327 7.48 2.82 2.86
102 230 7.48 2. To 2.7
237 88 7.48 1.36 1.75

TABLE IV.11

Critical Mass Data Obtalned with Water-Reflected Aluminum-Walled
Cylinders of UOo(NOs)p Solution

(The data are expressed in terms of reflector savings.)

Reflector Saving (S) in em for Cylinder Diameter

Conc., in Inches of:
g U225 /11ter H/U2%S N/UZ3S 8 9 10 12 15
36 733 2.86 6.70 6.52
53 493 2.86 €.53 6.31 6.32
- 73 352 2.86 6.33 6.25 6.08 6.24%
105 240 2.86 6.27 6.22 6.22 6.25 6.17
r 359 61.8 2.86 5.63 5.54 5.48 6.06
73 327 7.48 6.09 6.01 6.08
102 230 7.48 6.04 6.01 6.02

' 237 88 7.48 5.16 5.00 5.15 5.32
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4.2.4 REFLECTOR MATERIAL AND THICKNESS

Experiments were performed with UOs(NOs)s solutions{#:S) in which the
reflector thickness and material were varied on the lateral surfaces
of 8- and 10-inch-diameter cylinders. The reflectors employed were
water, stalnless steel, and stainless steel surrounded by water. 1In
the first two cases the top and bottom were bare and in the third case,
water reflected. Reflector savings consistent with the values 1in
Table IV.10 and IV.1ll were assigned to these surfaces, and the
reflector savings on the lateral surface were determined. In some
cases small adjustments in the values of reflector saving used for the
top and bottom were necessary to obtaln a reflector saving for 3.5 or
4.5 inches of water on the lateral surface consistent wlth the fact
that these thicknesses are nearly effectively infinite.

It is convenlent to express these results in terms of the albedo of the
particular thickness and material relative to that of an infinite water
reflector where the albedo 1s the ratio of the neutron current returned
by the reflector to that entering it. If the assumption 1s made that
the reflector saving as a function of thickness 1s independent of
vessel shape, the shape may be taken to be an infinite slab. In terms
of the reflector savings and material buckling the albedo of the
reflector 1s then given by

sin By, (S-Sg)
Br = Sin By (S+S,)

(4.%)

where S, 1s the bare extrapolation distance. In Figures 4.8 and 4.9,
Br/BHZO 1s plotted against reflector thickness for water and stainless
steel reflectors where BH-0 1s the albedo of an infinitely thick water
reflector. In Figure 4.10, BIVBHgo 1s plotted against the thickness
of stalnless steel separating the uranium solution from an infinitely
thick water reflector*. The curves are nearly independent of solution
concentration and may be used not only for uranium solutions of other
concentrations but also for plutonium and U22® solutions. In using

* If the data of Tables IV.3, IV.4, and IV.6 are used to obtain points
on Figure 4.10 corresponding to a stainless steel thickness of
1/16 inch, a wide scatter in the data is observed. In particular,
for a 15-inch-dlameter cylinder at an H/U235 ratio of 499,
Br/PH,0 = 0:75, and for an 8-inch cylinder at an H/U*°° ratio of
58.8, Br/BHgo = 0.99. Although the steel wall might be expected to
be slightly more effective at high H/U2®° values, a variation of this
magnitude is too great, and leads one to suspect that there are
inaccuracies in these data.
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the curves to obtain the reflector saving for a particular case, it is
convenient to express Equation 4.4 as

tan By Sl - (%.5) .
Br

Other reflector materials have been studied. 1In one experiment“‘a) a
palr of slabs of UOsFz solution interacting in water was reflected on
the outer surfaces by water and by a l-inch-thick layer of "Plexiglas"
surrounded by water. The water thicknesses were effectively infinite.
"plexiglas"(%®), steell%:®), carbon(%:2), fire brick(**2), and
magnesia(4'8) have also been investigated with UOsF; solutions. The
albedos of these reflectors relative to an infinite thickness of H0
are recorded in Table IV.1l2. A serles of experiments‘*'l"has been
performed in which stainless steel cylinders containing UOzFz solutions
were enclosed in 0.020-inch-thick cadmium and surrounded by water.
Results are glven 1n Table IV.1l3 as reflector savings.

For reflector materials, for which data obtained with solutions are not
avallable, data obtalined with metal systems may be used to glve some
indication of the effectiveness of a particular material as a reflector.
Some cautlion should be exercised, however, because of the large
difference 1n the neutron energy spectra, particularly in nonmoderating
reflectors. Thus, lead as a reflector enclosing uranium (93.5% UZ3%)
metal 1s less effective than water up to a thickness of about 7 inches,
but a 4-inch-thick layer of lead adjacent to an assembly of uranium-
aluminum alloy slugs in water was found{“:2!) to be a slightly better
reflector than an infinitely thick layer of water.

In some cases calculations may be required to determine the effectiveness
of a reflector. Two energy groups of neutrons are generally sufficient
to glve satisfactory results. The calculations should be normalized to
agree with reflector savings obtalined by fitting data to bucklings in
cases where data are availlable. Codes for the IBM 650 are available at
the Savannah River Laboratory for performing such calculatlions in slab
geometry.

4.2.5 INTERSECTIONS OF CYLINDERS

Investligations of critical conditions for intersecting plpes have been
made®“+2) with UO,F, solutions with concentrations (337-538 g U%°°/1)
corresponding to minimum volume. The pipes had 1/16-inch-thick-
aluminum walls and had diameters of 4, 5, and 7.5 inches. The two
types of intersection investigated were a 60° Y and a 90° cross. The
four arms of the cross and the three arms of the Y were each at least
24 inches long, measured from the center of the intersection. The
5-1nch cross and 5-inch Y, when reflected by an effectively infinite
amount of water, became critical before they were completely filled
with solution. A greater height of solution (measured from the
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TABLE 1V.12

Effectiveness of Various Reflectors Compared with

an Infinite Thickness of Water

Reflector Material H/UZ®S Vessel B/BHz0
1 inch of "Plexiglas" backed by 337 6 x 48-inch-slab 1.06
water
1 inch of "Plexiglas" 337 6 x 48-inch-slab 0.70
1/2 inch of stainless steel 337 6 x 48-inch-slab 0.35
2 inches of magnesia (0.32 g/cc) 337 6 x 48-inch-slab 0.17
4 inches of magnesia (0.24 g/cc) 337 6 x 48-inch-slab 0.18
4 inches of magnesia at 0.24 g/cc 337 6 x 48-inch-slab 0.24
backed by 2 inches of magnesia
0.32 g/ce
2 inches of magnesia at 0.32 g/cc 337 6 x 48-inch-slab 0.27
backed by 4 inches of magnesia
0.2% g/cc
3 inches of "Styrofoam" 293 6 x 48-inch-slab 0.057
6 inches of "Styrofoam" 293 6 x 48-inch-slab 0.081
3 inches of "Styrofoam" backed 293 6 x 48-inch-slab 0.55
by water
6 inches of "Styrofoam" backed 297 6 x 48-inch-slab 0.41
by water
0.5 inch of fire brick 27.1 20-inch-dia. cyl. 0.089
reflected on bottom
2.0 inches of fire brick 27.1 20-inch-dia. cyl. 0.17
reflected on bottom
5.5 inches of fire brick 27h1 20-inch-dia. cyl. 0.32
reflected on bottom
0.5 inch of carbon L R | 20-inch-dia. cyl. 0.25
reflected on bottom
1 inch of carbon 27.1 20-inch-dia. cyl. 0.42
reflected on bottom
2 inches of carbon 27.1 20-inch-dia. cyl. 0.69
reflected on bottom
3.5 inches of carbon 27.1 20-inch-dia. cyl. 0.82
reflected on bottom
5.5 inches of carbon 27.1 20-inch-dla. cyl. 0.95
reflected on bottom
1 inch of wet fire brick backed 27.1 20-inch-dia. cyl. 0.95
by water reflected on bottom
2 inches of wet fire brick 27.1 20-inch-dia. cyl. 0.93
backed by water reflected on bottom
2 inches of wet fire brick 7.1 20-inch-dia. cyl. 0.69
reflected on bottom
3 inches of carbon backed by 27 <1 20-inch-dia. cyl. 137
water reflected on bottom
5.5 1nches of carbon backed by 27.1 20-inch-dla. cyl. 1.26
water reflected on bottom
5.5 inches of carbon backed by 2T.1 20-inch-dia. cyl. 1.28
water with 0.25 inch of water reflected on bottom
between vessel and carbon
Same as above but, with 0.5 inch 2r.1 20-inch-dia. cyl. 1.30
of water reflected on bottom
Same, but with 0.75 inch of water 27.1 20-inch-dia. cyl. 1.26
reflected on bottom
Same, but with 1.0 inch of water 270 X 20-inch-dla. cyl. 1.24
reflected on bottom
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TABLE IV,13 ‘l'

Critical Mass Data Obtalned with Water-Enclosed, Cadmium-Wrapped,
Stainless-Steel-Walled Cylinders of UOpFp Solution

(The data are expressed in terms of reflector savings.) 1

Reflector Saving (S) in cm for Cylinder Diameter

Conc., in Inches of': Y
g U= Miater HAGEIN 8 9 10 12

52 499 4.84
11% 226 L.34
116 221 4,49

148 174 4,37 4,24
205 123.2 4.30

288 86.4 4,17 4.24 4.3

396 62.7 L S L e SRR ey 5

4o 56.7 4,36
538 43.9 3.93 3.92 4.06

724 31.6 3.79 4.02

827 26.2 ~4.22
869 24.4 ~3.53

intersection of center lines) was required in the final arm being
filled in the Y than in the cross. It was not possible to make the
reflected 4-inch cross, or the unreflected 5-inch Y or 7.5-inch cross
critical, and extrapolation of the reciprocal source-neutron
multiplication curve indicated that filling the final arm to infinite
height would still not make the system critical.

The minimum critical diameters of reflected and unreflected infinitely

long cylinders are respectively 5.75 and 8.70 inches (see Figure 4.6).

In the reflected case, the cross and Y intersections are thus

equivalent to an increment of between 0.75 inches (5.75 - 5.0) and

1.75 inches (5.75 - 4.0) in diameter, or to an increase in reflector

saving of more than 0.95 cm but less than 2.22 cm. In the unreflected

case, the cross intersection 1s equivalent to an increase in reflector a
saving of less than 1.5 cm. Since a T.5-inch Y was not investigated,

the same statement cannot be made concerning it. Although in the

reflected case the cross is closer to being critical than the Y, the 5
same statement cannot be made for the unreflected case because of the

interaction between the two arms at 60° to ea 2 other.
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4.2.6 MINIMUM CRITICAL CONCENTRATION

At sufficlently high dilution, absorption of neutrons by hydrogen makes
criticality impossible for solutions (or mixtures) of UZ2° in
hydrogenous materials. The crlitical and safe concentrations are

readily obtained from Equations 4.1 and 4.2. 1In the absence of nitrogen
the minimum critical (k = 1) H/U®°® ratio is 2185, and the corresponding
concentration in aqueous solution is 11.94 g U225/1. The minimum safe
(k = 0.95) ratio is 2408, and the maximum safe concentration in aqueous
solution 1s 10.83 g U225/1. Experiments(“+**S) performed with dilute
uranyl nitrate solutions indicate that the minimum critical
concentration 1s actually slightly higher than 11.9% g/1, namely

12.2 g U®%3/1. 1In Table IV.14 the data obtained in these experiments,
performed in unreflected stalnless-steel-walled cylinders, are presented
as reflector savings obtalned by equating material and geometric
bucklings. The negative values obtained at low concentrations indicate
that the calculated material bucklings are too large; they also point to
the desirabllity of using the second approach, Section 1.4 for fitting
data when the buckling 1s small.

TABLE IV.1l4

Critical Mass Data Obtained with Dilute
Solutions of UOp(NOs)s

(The N/U ratio is about 3.8. The data
are expressed as reflector savings.)

Conc.,

g USS%fteer AR 4, o
25.9 1000 4.39
16.13 1604 4.29
14.22 1821 3.16
13.59 1905 0.82
13.24 1951 0.62
13.07 1981 - 1.42
12.92 2000 - 4.95
12.61 2052 -25.96
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4.3 AQUEOUS SOLUTIONS OF URANIUM CONTAINING LESS THAN 93.5% U235

Data for solutions of uranium (93.5% U®®) may be used as points of
departure for calculating bucklings and hence critical and safe
conditions for solutions of uranium containing lower concentrations

of U235, For a particular solution concentration (in moles/liter) the
neutron spectrum may be assumed independent of the concentration of
U2%% 1in the uranium. All non-1/v events in U®®® may then be assumed
to be included in an effective value of n (identical with the thermal
value), as 1s assumed when k 1s taken to be nf for uranium (93.5% UZ2°)
solutions. The non-1/v events in U22® consist of high energy fissions
and resonance absorptions that may be allowed for by the factors e and
p In the four-factor formula for k. Since for simplicity the product
of these two factors 1s assumed to be unity in calculations made for a
concentration of 93.5% U2®® the product must be normalized to unity at
this concentration in extrapolating the data to lower concentrations.
(For the highest concentration of UOsF» solution for which data exist,
3.77 molar, ep 1s calculated to be 0.98 at a uranium composition of
93.5% U22%, 6.5% U2%®. The product approaches unity as the solution
concentration decreases.)

Calculations of k and B2 for aqueous solutions of UOxFz in which the
uranium contains less than 93.5% U2®° have been made for this Handbook
by the procedure outlined above. The same approximations regarding

f, n, L?, and T were made as for the uranium (93.5% U2®°) solutions.
The fast fisslon factor e€ was obtalned from a three-group calculation
involving Hansen's{2'7) cross sections for U235 and U2%® and removal
cross sections for oxygen and hydrogen calculated from the neutron
spectrum obtained in calculating T for this Handbook. The removal
cross sections of fluorine were assumed to equal those of oxygen. The
resonance escape probability, p, was calculated from the resonance
integral of U2%®, which in turn was calculated as a function of
scattering cross section per U222 atom from resonance parameters and
from data giving the resonance integral both in pure U2%® and at
Infinite dilution. The buckling was calculated as before from the
one-group expression.

A code, which 1s available at the Savannah River ILaboratory, was
developed for the IBM 650 to perform these calculations. Values of
Bﬁ and k calculated for selected concentrations and assays are given
in Tables IV.15 and IV.16. These parameters may be used in
conjunction with the reflector savings determined for uranium

(93.5% U22°) solutions of the same uranium concentration (Figure 4.3
or Tables IV.2 through IV.9) to give critical and safe conditions for
solutions in which the uranium contains lower concentrations of U233,
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TABLE IV.15

Dependence of B*® on Solution Concentration and on
Isotopic Composition of Uranium

Solution

Conc., moles B® (em~2 x 10*) for Isotopic Composition in % U2S% of:

UOoFz/1iter H/U 93.5 75 50 30 15 3 b 2 1
347T 25.3 324.9 304.6 283.2 261.3 226.4 133.12 T70.59 15.68 -76.65
2.45 1.4 319.1 301.2 280.1 254.6 208.9 92.37 22.84 -33.10
2.1% 48.2 316.6 299.8 278.2 250.9 201.4 TT 76 6.90 -48.47
1.83 56.8 313.5 297.2 274.8 245.3 191.0 59.97 =-11.57
1.59 66.9 310.0 293.9 270.6 238.5 179.3 41.43 -30.02
1.37 77.7 306.2 290.2 265.7 231.1 166.8 23.59 =47.07
1+16 93.0 301.0 284.9 258.7 220.4 150.21 1.63 -67.25
0.933 115 293.6 277.1 248.4% 205.4 127.94% -24.66
0.610 180 273.3 254.8 219.4 165.4 74.50 =T77.50
0.358 308 236.8 214.3 168.8 101.97 22.07 -132.8
0.238 Ler 198.1 171.6 118.50 45.37 =-52.82
0.156 706 150.16 120.01 61.63 -12.84
0.118 934 113.04 81.20 21.47 -50.47
0.0851 1300 65.71 33.08 -25.47
0.07T4 1430 51.62 19.02 -38.64

TABLE IV.16
Dependence of k on Solution Concentration and on
Isotopic Composition of Uranium
Solution

Conc., moles k for Isotopic Composition in % U235 of:

UOpFp/liter H/U 93.5 75 50 30 15 5 3 2 i
BT 25.3 2.0429 1.9786 1.9115 1.8440 1.7373 1.4448 1.2402 1.0542 O0.727%
2.45 41.4 2.0261 1.9699 1.9044% 1.8267 1.6870 1.3147 1.0795 0.8826
2.14 48.2 2.0191 1.9662 1.8996 1.8164 1.6648 1.2667 1.0242 0.8267
1.83 56.8 2.0102 1.9590 1.8904 1.8006 1.6333 1.2073 0.9590
1.59 66.9 2.0000 1.9497 1.8784% 1.7809 1.5975 1.1444 0.8928
1.37 T77.7 1.9891 1.9393 1.8646 1.7589 1.5589 1.0829 0.8305
1.16 93.0 1.9737 1.9240 1.84%42 1.7272 1.5067 1.0058 0.7556
0.933 115 1.9522 1,901% 1.8140 1.6817 1.4354% 0.9115
0.610 180 1.8922 1.8356 1.7267 1.557T4 1.2589 0.7156
0.358 308 1.7827 1.7128 1.5696 1.3519 1.0079 0.5006
0.238 467 1.6635 1.5796 1.4073 1.1600 0.8070
0.156 706 1.5113 1.4128 1.2163 0.9537
0.118 934 1.3900 1.2832 1.0765 0.815%

0.0851 1300 1.2306 1.11T4 0.9077
0.07T4 1430 1.1820 1.0678 0.8593
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The code may also be used to determine the minimum concentration of '
U2%5 in uranium for which k can be made unity in homogeneous agueous

UOoFz systems. Since an extrapolation of bucklings is not being made,

the normalization of ep to unity at a concentration of 93.5% is not

made here. The minimum concentrations for which the maximum values of

k are 0.95, 0.98, and 1.00 are calculated to be respectively 0.916,

0.990, and 1.042% U2°® by weight. The hydrogen-to-uranium ratios

corresponding to maximum k 1s approximately 5. These results are in .
excellent agreement with experimental results{%:22), which give 1.02

+0.02 wt % U2°° as the minimum concentration for which the maximum

value of k 1s unity in homogeneous mixtures of UOs and Hz0. The

experimental H/U ratio for which k is maximum is about 5.
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4.4 PLUTONIUM SOLUTIONS

4.4.,1 THEORY

There are apparently a number of compensating effects that make it
possible to represent the buckling of uranium (~93.5% U22%) solutions
adequately by the simple relation

2 1fel
- Bn = TH1Z(1-7)

where n 1s a constant and £ i1s the ratio of thermal cross sections,
with a small 1/v correction (determined for a Maxwellian distribution of
neutrons) applied to the U2%% cross section. It appears unlikely,
however, that such a simple representation would be adequate for
plutonium solutions. Plutonlum-239 has a large resonance peak at

0.3 ev at the upper end of the thermal region in which the ratio of
absorptions to fisslons 1s considerably smaller than at energies on
elther side. Both n and f are therefore strongly dependent on the
neutron energy spectrum, which is in turn dependent on the plutonium
concentration. In addition, plutonium-240 has a very large absorption
resonance at 1 ev, which must be treated properly.

As a compromise between a multigroup calculation of buckling and the
simple expression used for U23% solutions, the one-group model 1s used
for the buckling with k being the sum of contributions from four energy
regions. The highest energy reglon extends from 0.1 Mev to ». In this
region Pu®%® 1s assumed equivalent to Pu®3®, and Hansen's cross
sections'2*7’ for Pu®®® and removal cross sections calculated for H; 0O
and N are employed. The next region extends from 6.25 ev to 0.1 Mev.
Capture in Pu?%® 1s considered insignificant, and capture in Pu®3® 1is
calculated from the resonance integral, which in turn 1is calculated as
a function of the scattering cross section per Pu®3® atom. The neutron
spectrum is assumed to vary as 1/E. In this region n 1s calculated
from resonance parameters to be 1.61. The third region extends from
0.625 to 6.25 ev. The neutron spectrum is assumed here also to vary as
1/E. Absorptions in the Pu®*° resonance at 1 ev are calculated from
the resonance integral, which is a function of the scattering cross
sectlon per Pu®%°® atom. Allowance is made for 1/v absorptions. The
absorption cross section of Pu®®® in this region is determined from
cross section curves and the 1/E spectrum. The value calculated for

n is 2.15. In the fourth or thermal region lying below 0.625,
Amster's(#4°22) cross sections for Pu?2® and for 1/v absorbers are used.
The 1/v absorbers considered are Pu®*® (295 b), H, N, and Fe (present
as an impurity in the Hanford experiments). The diffusion area, /g

is computed from the cross sections ir this reglon as %é. The
computation of k by this procedure and of B2 as %%%?, where T 1s given
in Figure 4.2, has been coded for the IBM 650, and the code is
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avallable at the Savannah River Laboratory. Since Amster's cross
sections are for Pu®®? ratios greater than or equal to 100, the code .
is not valid for lower ratios.

4.4.2 PLUTONIUM NITRATE SOLUTIONS

Critical experiments‘%*%%) have been performed at Hanford with 9-, 10-,
11-, and 12-inch dlameter stalnless-steel-walled cylinders and with
11-, 12-, 13-, 14-, and 15-inch-diameter stalnless-steel-walled spheres
containing plutonium nitrate solutions and surrounded by an effectively
infinite thickness of water. The thickness of the stainless steel wall
was 0.050 inch for the spheres and 0.062 inch for the cylinders. The
parameters that were varied in the experiments were the nitrate ion
concentration, the acid normality, the concentration of Pu®%® in the
plutonium, and the plutonium concentration. Reflector savings
determined by fitting the data to bucklings calculated by the procedure
outlined in the preceding section are recorded in Table IV.1l7. All the
data for plutonium nitrate solutions are presented including, in a
number of cases, duplicate runs to illustrate the order of magnitude of
the experimental error. As can be seen from the table the bulk of the
experiments were performed at plutonium concentrations between 25 and
60 grams per liter. The total spread in S is 0.75 cm.

Extrapolation outside the range of the experiments could be performed
by means of calculated bucklings and an average value of S. It 1s
desirable, however, to make use of any trends in S that may be observed.
If for the critical spheres the acid normality 1s plotted against the
H/Pu®®® ratio, 1t 1s apparently possible (see Figure 4.11) to represent
the data wlthin experimental error by parallel stralght lines. If the
data are interpolated and extrapolated on these straight lines to give
values at acid normalities of 0, 2, 4, and 6 and if three nitrate ions
are assumed per plutonium atom (the data show considerable variation in
this figure), reflector savings determined from the sphere dimensions
and from bucklings calculated for these points bear out trends
exhibited by the values of Table IV.1l7. Plotting values for the same
acld normality against plutonium concentration shows a trend toward
higher reflector savings as the plutonium concentration increases.

Thls same trend 1s exhibited by the data obtained with cylinders.

There appears to be no appreciable trend in reflector saving with Pu®%°
concentration in the plutonium.
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FIG. 4.11 DATA OBTAINED WITH WATER-REFLECTED SPHERES
OF PLUTONIUM NITRATE SOLUTION
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TABLE IV.1l7

Critical Mass Data Obtained with Water-Reflected,
Stalnless-Steel-Walled Spheres and Cylinders of Plutonium Solutlons

Conc.,

g Pu/liter H/Pu®3®

(The data are expressed in terms of reflector savings.)

%NMO

25.02
25.10
25.83
26.23%
26.33
26.45
26.69
= S ar
27.05
27.29
27 9.
27 .92
27.95
28.50
28.63
28.78
29.61
29.74
29.82
29.94
30.15
30.33
30.75
30.79
30.79
30.81
31.04
31.14
31.72
31.79
32.41
33.17
33.54
33.81
34,06
34.07
34.59
34,81
55.53
35.65
35.82

1049
1046
1005
978
984
976
971
958
937
927
908
928
928
875
871
920
887
882
896
893
871
857
859
858
860
843
853
840
825
798
809
788
T3
756
T67
750
4T
Tho
686
717
682

.12
.12

HHOOWOOMNOOWWW
w1
=

3.12
3.12
4.05
4,05
3.12
3.12
4.05
4.05
4,40
2.85
4.40
2.90
4.05
3.12
4.%40
1.76
2.85
4,05
1.76
4.05
1.76
176
3.12
Y.76
% 12

Acid

g NOg/liter Normality Vessel S, cm
116 1.60 15-inch-dia. sphere 7.09
116 1460 15-inch-dia. sphere 7.06
147 2.08 15-inch-dia. sphere 6.97
107 1.41 14-inch-dia. sphere T.14
773 0.99 14-1inch-dia. sphere 6.96
134 1,09 12-inch-dia. cylinder 6.59
78.3 0.97 14-inch-dia. sphere 6.86
107 1542 14-inch-dia. sphere 6.98
212 BT 15-inch-dia. sphere 6.93
137 1.90 14-inch-dia. sphere 6.95
138 1.85 14-inch-dia. sphere 6.81
110 i D 14-inch-dia. sphere 6.99
109 1.44 l4-inch-dia. sphere 6.99
187 2,70 14-inch-dia. sphere 6.90
188 2.72 14-inch-dia. sphere 6.88
87 .4 1.02 14-inch-dia. sphere 7,08
110 1.40 14-inch-dia. sphere 6.93
115 151 14-inch-dia. sphere 6.93
87.5 1.01 14-inch-dia. sphere TLOL
87.5 101 14-inch-dia. sphere 6.98
109 1.39 1l4-inch-dia. sphere 6.80
143 1:92 14-inch~-dia. sphere 6.94
119.3 1.44 14-inch-dia. sphere 6.94
119.3 1.44 14-inch-dia. sphere 6.93
126 1.63 14-inch-dia. sphere T
136 1.78 1l-inch-dig. cylinder 6.57
127 1.71 14-inch-dia. sphere T .03
114 1.44 12-inch-dia. cylinder 6.61
147 188 14-inch-dia. sphere 6.87
208 2.90 14-inch-dia. sphere 6.93
158 2.22 14-inch-dia. sphere 6.91
86.2 1.02 13-inch-dia. sphere 7.03
137 1.76 1l-inch-dia. cylinder 6.64%
211 2.92 1l4-inch-dia. sphere 6.79
BT .1 1.04 13-inch-~-dia. sphere 6.89
211 2.92 14-inch-~dia. sphere 6.75
i 5 I 1.44 13-inch-~dia. sphere 6.92
116 1.46 13-inch-dia. sphere 6.89
311 4,32 14-inch~dia. sphere 6,75
145 1.88 13-inch~dia. sphere 6.88
308 4.39 14-inch-dia. sphere 6.69
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TABLE IV.17 (Continued)

Conc., Acid
g Pu/liter H/Pu?®® ¢ pu®%° g NOg/liter Normality Vessel S, cm
36.38 686 4.05 272 3.69 14-inch-dia. sphere 6.65
36.52 719 2.90 107 1.39 12-inch-dia. cylinder 6.51
36.90 666 2.83 300 4,28 1l1-inch-dia. cylinder 6.59
37 .84 649 4.05 334 5.46 14-inch-dia. sphere 6.90
37.99 686 3.12 132 1.64 13-inch-dia. sphere 6.86
38.11 686 3.12 128 1567 13-inch-dia. sphere 6.84
38.74 635 4.05 335 5.46 14-inch-dia. sphere 6.79
38.83 665 3,12 156 2.01 13-inch-dia. sphere 6.86
39.10 663 2.85 138 1.70 10-inch-dia. cylinder 6.87
39.10 663 2.85 138 1570 1ll-inch-dia. cylinder 6.82
39.62 592 3.12 408 5.75 14-inch-dia. sphere 6.65
40.69 624 3.12 205 2.90 13-inch-dla. sphere 6.87
41.10 618 3,12 205 2.90 13-inch-dia. sphere 6.83
41.12 581 4.05 385 5.40 14-inch-dia. sphere 6.59
41.19 580 4.05 385 5.40 14-inch-dia. sphere 6.58
41.73 603 2.83 215 277 1ll-inch-dia. cylinder 6.65
42,29 615 2.90 127 1.36 12-inch-dia. cylinder 6.55
44,12 561 3.12 270 3.63 13-inch-dia. sphere 6.78
44,64 555 3.12 269 3.71 13-inch-dia. sphere 6.75
47.21 553 2.83 117 1.38 1ll1-inch-dia. cylinder 6.69
48.75 535 2.90 116 127 12-inch-dia. cylinder 6.70
48.98 527 2.90 139 1.38 ll-inch-dia. cylinder 6.83
49.26 524 2.85 142 1.63 10-inch-dia. cylinder 6.89
49.26 524 2.85 142 1.63 10-inch-dia. cylinder 6.90
50.25 5.17 3.12 139 1.61 12-inch-dia. sphere 7.05
50-39 515 3,12 138 1.57 12-inch-dia. sphere 7.04
51.80 498 3.12 163 2.20 12-inch-dia. sphere 7.08
54.53 478 2.83 120 1.36 9-inch-dia. cylinder 6.85
56.20 450 3.12 207 2.49 12-inch-dia. sphere 7501
56.75 445 3.12 207 2.49 12-inch-dia. sphere 6.98
59.93 418 3.12 237 3.20 12-inch-dia. sphere’ 7.00
60.35 415 3.12 237 3.20 12-inch-dia. sphere 6.99
61.49 421 2.83 134 1.34 9-inch~-dia. cylinder 6.90
62.47 412 2.85 146 1.52 10-inch-dia. cylinder 7.06
63.75 388 3.12 270 3.62 12-inch-dia. sphere T:02
63.99 4ot 2.90 121 g 0 b g 1l-inch-dia. cylinder 6.8%
64.16 386 3.12 270 3.62 12-inch-dia. sphere 700
70.22 344 3.12 322 4.07 12-inch-dia. sphere 6.99
73.92 353 2.83 126 1.78 9-inch-dia. cylinder T7.02
76.93 334 2.85 146 1.52 10-inch-dia. cylinder 7.17
77.22 309 3.12 359 y.72 12-inch-dia. sphere 6.99
77 .40 332 2.85 152 1.41 10-inch-dia. eylinder T7.10
85.14 304 2.83 151 1.29 9-inch-dia. cylinder 7.13
99.09 261 2.83 137 1437 9-inch-dia. cylinder T7.17
109.16 234 2.83 166 1.68 9-inch-dia. cylinder 7.26
109.16 234 2.83 166 1.68 12-inch-dia. cylinder 7.08
135.8 183 3.12 229 1.81 1l1-inch-dia. sphere(a) ¢7.56

(a) The sphere was subcritical by an unknown amount and the reciprocal neutror
multiplication curve was concave as the concentration was increased.
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Two experiments(4'14) were performed with 13-inch-dlameter, 20-gage

aluminum-walled spheres containing plutonium nitrate solution and
surrounded by an infinite water reflector. The data are expressed as
reflector savings in Table IV.18. Comparison of these reflector
savings with values for stalnless-steel-walled spheres at the same
acid normality, pyR P concentration, and plutonium concentration,
obtained by interpolation, shows that the reflector saving with
stainless steel walls 1s about 0.25 cm smaller, which 1s 1n agreement
with similar results obtained with uranium solutions. The ratio of
the albedos for the water-reflected stalnless steel and aluminum
spheres 1s 0.935, in excellent agreement with Figure 4.10.

TABLE 1V.18

Critical Mass Data Obtained with Water-Reflected,
Aluminum-Walled Spheres of Plutonium Solution

(The data are expressed in terms of reflector savings.)

Conc., Acid

g Pu/liter H/Pu®®® ¢ pPu®*® g NOg/liter Normality Vessel S, cm
36.27 729 3.12 93.1 1.15 13-inch-dia. sphere T «20
STadl T05 Sl 125 1.66 13-inch-dia. sphere T .22

Five experiments{%+%%4) ywere performed in a bare 16-inch-diameter
stainless-steel-walled sphere. The results, expressed as reflector
savings, are given in Table IV.19. Comparison of these reflector
savings with corresponding values for reflected stainless steel spheres,
obtalned by interpolation, gives an average ratio of unreflected to
reflected of 0.5% and an average difference between reflected and
unreflected of 3.14 cm.

TABLE IV.19

Critical Mass Data Obtalned with Bare,
Stainless-Steel-Walled Spheres of Plutonium Solution

(The data are expressed in terms of reflector savings.)

Conec., Acid

g Pu/liter H/Pu®®® ¢ Pu?%° g NOg/liter Normality Vessel S, em
34.80 763 4.15 104 132 16-inch-dia. sphere 3.82
36.22 733 4.15 109 1.31 16-inch-dia. sphere 3.65
38.31 691 4.15 163 2.79 16-inch-dia. sphere 3.72
38.15 679 4.15 180 2.58 16-inch-dia. sphere 3.72
43,20 578 4,15 282 4.18 16-inch-dia. sphere 3.63
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4.4.3 EXTRAPOLATIONS OF DATA

Because of the large number of variables involved with plutonium
solutlions, graphical representation of critical and safe conditions

1s not feasible unless restrictions are placed on these variables. In
this Handbook tabular presentation is employed so that anyone using
the Handbook can make the plots he considers most useful, if he
considers such plots necessary to interpolate between tabulated values.
For the tabular presentation, concentrations of 5, 10, 15, 20, 30, 40,
59, 70, 90, 120, 150, and 200 g of plutonium per liter, nitric acid
normalities of 0, 2, 4, and 6, and plutonium-240 concentrations in the
plutonium of O, 2, and 4% are chosen. The plutonium is assumed to be
present as Pu(NOa)as. The hydrogen concentration is calculated from
the Hanford formulal4:24). hydrogen concentration = 111.8 - hydrogen
lon concentration - 0.0535 x nltrate ion concentration where all
concentrations are in g/1. Critical bucklings for these conditions
are presented in Table IV.20. The corresponding values of k are given
in Table IV.21 and the H/Pu?®® ratios in Table IV.22.

TABLE IV.20

Material Bu¢klings of Aqueous Solutions of Pu(NOs)s

BE, em~®
HNOg Normalit 0 2 4 6
?%bmr___l 0 2 1 0 2 § 0 2 I 0 2 [
Conc.,
g Pu/liter
200 .02445 ,02232 .02102 .02390 .02176 .02045 .02329 .02114 .01984 ,02250 .02037 .01909
150 .02439 .02257 .02136 .02380 .02197 .02075 .02316 .02132 .02011 .02236 .02053 .01933
120 .02418 ,02258 .02145 .02357 .02195 .02082 .02291 .02130 .02017 .02209 .02048 .01936
90 .02366 .02231 .02129 .02300 .02164 .02062 .02231 .02095 .01992 .02146 .02011 .01910
70 .02298 ,02183 .02090 .02227 .02111 .02018 .02153 .02036 .01943 .02065 .01949 .01857
50 .02168 .02072 .01990 .02090 .01995 .01913 .02009 .01914% .01833 .01917 .01822 .01T42
40 .02032 .01947 .01870 .01952 .01867 .01791 .01870 .01785 .01709 .01778 .01694% .01619
30 .01797 .01723 .01653 .01715 .01641 .01571 .01632 .01558 .01490 .01541 .01468 .01401
20 .01359 .01296 .01236 .01273 .01211 .01151 .01189 .01128 .01069 .01102 .01042 .0098%
15 .00991 .00936 .00881 .0090% .00850 .00796 .00822 .00768 .00715 .00739 .00686 .00635
10 .00424 .00377 .00330 .00341 .00295 .00248 .00264 .00219 .001T4 .00193 .00149 .00105
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Multiplication Conatants of Aqueous

TABLE IV.21

Solutions of Pu(NOs)ga

X
T e e S e e e s gt
Conc.,
€ Pu/liter
200 1.7916 1.7227 1.6805 1.7867 1.7164 1.6734% 1.7816 1.7098 1.6663 1.7761 1.7028 1.6589
150 1.7913 1.7324 1.6932 1.7852 1.7250 1.6851 1.7792 1.7175 1.6770 1.7733 1.7T101 1.6689
120 1.7862 1.7345 1.6980 1.7796 1.7262 1.6888 1.7727 1.7184 1.6805 1.7657 1.7100 1.6715
90 1.772% 1.7287 1.6954% 1.7637 1.7188 1.6850 1.7554 1.7095 1.6749 31.T470 1.7000 1.6649
70 1.753% 1.7159 1.6856 1.7424 1.7040 1.6733 1.7320 1.6926 1.6611 1.7215 1.6813 1.649%
50 1.7159 1.6847 1.6577 1.7021 1.6703 1.6429 1.6883 1.6560 1.6283 1.6T47 1.6418 1.6137
40 1.6750 1.6470 1.6219 1.6594 1.6310 1.6056 1.5444 1.6154% 1.5895 1.6297 1.6001 1.5739
30 1.6026 1.5779 1.5548 1.5847 1.5597 1.5363 1.5673 1.5420 1.5184 1.5503 1.5246 1.5009
20 1.4626 1.4415 1.4211 1.4406 1.419% 1.3989 1.4197 1.3983 1.3776 1.3996 1.3780 1.3571
15 1.3417 1.3227 1.3041 1.3169 1.2979 1.2792 1.2935 1.2743 1.2556 1.2712 1.2520 1.2331
10 1.1489 1.1%25 1.1160 1.1217 1.1052 1.0888 1.0960 1.0796 1.0633 1.0719 1.0556 1.0393
5 8006  .7881  .TT55 .TTHO  .TE1T  .T493  .TH94 .T373  .7252 .T266 .T1H8  .7029
TABLE IV.22
H/Pu®2® Ratio for Aqueous Solutions of Pu(NOs)s
H/Puzse
HNOs Normalit 0 2 5 6
Z"ﬁuﬂ""——x 0 2 & .0 2 5 0 2 R 0 2 =
Cone.,
g Pu/liter
250 96.2 98.2 100 91.8 93.7 95.6 87.4 89.2 91.1 83.1 84.8 86.5
200 123 125 128 117 120 122 112 114 116 106 109 111
150 167 170 174 160 163 166 152 155 159 145 148 151
120 211 216 220 202 206 210 193 197 201 184 188 191
90 285 291 297 273 278 284 260 266 271 248 253 259
70 369 317 384 353 361 368 338 345 352 322 329 336
50 521 531 542 499 509 519 4T 487 497 455 464 T4
4o 653 667 680 626 639 652 598 611 623 571 583 595
30 874 892 911 838 855 873 801 817 835 765 780 796
20 1316 1343 1371 1261 1287 1314 1207 1231 1257 1152 1175 1200
15 1758 1794 1831 1685 1720 1755 1612 1645 1679 1539 1571 1603
10 2642 2696 2153 2533 2585 2638 2423 2473 2524 2314 2361 2410
5 5294 5402 5515 5075 5179 5287 4856 4955 5058 4637 k31 4830
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Reflector savings for an infinite water reflector, obtailned by adding
0.25 em to the values for stalnless-steel-walled spheres surrounded by
water, are presented in Table IV.23. In making the extrapolatlions out-
side the range of the data, the procedures previously outlined, based
on Figure 4.11, were followed, and consideration was given to the
suberiticality of the ll-inch sphere (see Table IV.17). These
reflector savings, calculated from the data obtained with spheres, are
greater than the corresponding values for cylinders and in most cases
are considerably greater than for spheres of U2%° solutions at the
same concentrations (see Figure 4.3); hence the bucklings with which
they are assoclated are probably too small. As the discussion in
Chapter I indicates, applying these reflector savings to cylinders and
slabs will result in underestimates of the critical dimensions and
thus be conservative from the point of view of nuclear safety.

The reflector savings, Sg, for bare systems are obtalned from the
values of Table IV.23 by subtracting 3.39 cm (3.14% + 0.25), since the
U235 solution data indicate that a constant difference rather than a
constant ratio is the better approximation. The values of S, are
required in determining the effect of reflectors other than infinitely
thick water.

TABLE IV.23

S for Water-Reflected Spheres of Pu(NOs)s Soiution

S, em
L R T SR Wt NI DU I NCRR. W S WA
Conc.,
g Pu/liter
200 7.75 T7.75 T7.75 T7.60 T7.60 T7.60 T.45 T.45 7.45 7T7.25 7.25 T.25
150 T.75 T.75 T7.75 7.60 T7.60 T7.60 T.45 T.45 7.4 7.25 7.25 7.25
120 T.75 T.75 T7.75 T7.60 T7.60 T.60 T.45 T7.45 T.45 7.25 T7.25 T7.25
90 7.70 T7.70 7.70 T7.55 T7.55 T7.55 T.40 7.4 7.4 7.20 T7.20 T7.20
70 7.65 T.65 T.65 T.45 T.45 T.45 T.24 T.24 T.24 T7.00 7.00 7.00
50 T.52 T.52 T7.52 T.29 T7.29 T.29 6.97 6.97 6.97 6.T5 6.75 6.75
40 T.42 T7.4%2 T7.4%2 T.15 T7.15 T7.15 6.90 6.90 6.90 6.75 6.75 6.75
30 7.30 7.30 T7.30 T7.15 T7.15 T7.15 T7.06 T7.06 T.06 T.00 7.00 7.00
20 T45 T.45 T.45 T.45 T.45 T.45 T.45 T.45 T.45 T.45 T7.45 T7.45
15 7.65 T7.65 T7.65 T.65 T.65 T7.65 T.65 T.65 T.65 T7.65 T7.65 T.65
10 7.85 7.85 7.85 7.85 7.85 7.85 7.85 T7.85 T7.85 T7.85 7.85 7.85
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4.4.4 CRITICAL AND SAFE CONDITIONS

k

0.95 ~ !

Safe bucklings, determined from the relation B = ————————-Bm, are
given in Table IV.24%. 1In Tables IV.25 and IV. 26 critical and safe
masses of plutonium (as Pu(NOs)s) in water-reflected spheres are
given. 1In Tables IV.27 and IV.28 critical and safe water reflected
Infinite cylinder diameters are given. 1In Tables IV.29 and IV.30
critical and safe water-reflected infinite slab thicknesses are
given. For finite slabs and finite cylinders, the critical and safe
dimensions can be obtained from Equation 1.9 or 1.10 and the proper
choice of buckling and reflector saving or from Figure 4.7 if
attention 1s given to the buckling labels for the curves rather than
the concentration labels.

TABLE 1v.24

Safe Bucklings (keer = 0.95) for Aqueous Solutions of Pu(NOs)s

Safe Buckling (Keff = 0.95), cm~2

HNOs Normality 0 2 4 6
T 0 2 = 0 2 4 0 2 4 0 2 -
Conc.,

g Pu/liter
200 .02722 .02498 .02362 .02661 .02437 .02299 .02594% .02369 .02232 .02507 .02284 .02149
150 .02715 .02524 .02397 .02651 .02458 .02330 .02580 .02387 .02260 .02492 .02300 .021T74
120 .02693 .02525 .02406 .02626 .02456 .02337 .02554 .02385 .02266 .02464 .02295 .02177
90 .02637 .02496 .02389 .02566 .02423 .02316 .02490 .02347 .02239 .02397 .02255 .02149
70 .02565 .02445 .02347 .02488 .02366 .02269 .02408 .02285 .02187 .02311 .02189 .02093
50 .02428 .02327 .02241 .02343 .02244 .02157 .02255 .02156 .02071 .02155 .02055 .01971
40 .02284 .02195 .02114% .02198 .02108 .02028 .02109 .02019 .01939 .02008 .01920 .01841
30 .02036 .01958 .01885 .01947 .01870 .01796 .01857 .01780 .01708 .01758 .01681 .01611
20 .01574 .01508 .O1444 ,01481 .01416 .01353 .01390 .01326 .01264% .01295 .01232 .01171
15 .01186 .01128 .01070 .01092 .01035 .00978 .01003 .00946 .00891 .00912 .00856 .00803
10 .00588 .00538 .00489 .00498 .00450 .00400 .00415 .00368 .00320 .00337 .00290 .00244
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TABLE IV.25

Critical Masses of Pu in Water-Reflected Spheres of Pu(NOs)s Solution

Critical Mass of Pu, kg

HNOg Normallty 0 2 T B
i’?:"' 0 B 5 0 2 § 0 2 ¥ 0 2
Conc.,
g Pu/liter
200 1.57 1.96 2.26 1.72 2.15 2.49 1.90 2.38 2.74 2.15 2.70 Sl
150 1.19 1.4% 1.63 1.31 1.58 1.81 1.44% 1.75 2.00 1.64 1.98 2.271
120 970 1.14 1,29 1.07 1.26 1.%3 1,18 1.4 1.59 1.35 1.60 1.81
90 778 893 .997 .859 .993 1.1l .955 1.10 1.24 1.09 1.26 1.41
70 .655 .T41  .818 .739 .834% .924 .836 .947 1.05 .962  1.09 1.21
50 553 .614 .672 .631 .TO1 .769 .736 .818 .895 .848 944 1.04
4o .525 .5TT .631 .605 .66T .730 .697 .768 844 797 .880 .969
30 527 578 .632 .599 .659 .723 .678 .T46 .818 73 .851 .936
20 .620 .686 .754 .711 .788 .872 .818 .908 1.01 .950 1.06 1.19
15 .859 .961 1,08 1.03 1,16 1.32 1.24 1.4 1.61 1.52 1.74 2.02
10 2.76 3.41 4.30 4,06 5.2%4 T.06 6.3% 8.73 12.87 10.81 16.66 29.64
TABLE IV.26
Sare Masses (kefr = 0.95) of Pu in Water-Reflected Spheres of Pu(NOs)s Solution
Safe Mass (kefr = 0.95) of Pu, kg
HNOg Normalit 0 2 4 6
E_Pu""""_z 0 2 L} 0 2 5 0 2 ! 0 2 N
Conc.,
g Pu/liter
200 1.21 1.4 1.71 1.33 1.65 1.89 1.4 1.82 2.10 1.68 2.08 2.39
150 .909 1.09 1.24% 1,01 1.21 1.37 1.12 1.3% 1.53 1.27 1.53 1.75
120 .T43 873  .984  .824 .970 1.09 915 1.08 1.21 1.04 1.23 1.79
90 .595 .681 .758 .661 .T60 .B46 .738 .849 .948 .845 .9T4 1.09
70 .502 564 .624% .569 .641 .7OT  .644 .728 .805 .T49 .845 .933
50 423 469 .512 .485 .536 .587 .569 .629 .687 .659 .731 .800
40 400 .438 U479 463 .510 .555 .537 .590 .645 .614 ,676 .T39
30 401 438 475 456 497 .543 (514 .563 .615 .584  .B42  .TO4
20 .455  .499 .547 .518 .570 .627 .593 .652 .722 .686 .759  .843
15 .599 .663 .738 .7OT .789 .882 .840 .9%0 1.06 1.01 1.14 1.29
10 1.52 1.80 2.1% 2,06 2.48 3.07 2.87 3.55 4.53 4,16 5.38 7.26
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TABLE IV.27

Critical Diameters of Infinite, Water-Reflected Cylinders of Pu(NOs)s Solution

Critical Cylinder Diameter, inches

HNOg Normallty 0 2 4 6
& Pu=*" 0 2 4 0 2 4 0 2 4 0 2 4
Conc.,
g Pu/liter
200 6.01 6.57 6.96 6.26 6.85 T.26 6.54 T.16 T.57 6.92 7.5 T7.99
150 6.02 6.51 6.85 6.29 6.79 T.17 6.58 T7.10 T.49 6.96 T.51 7.92
120 6.07 6.50 6.82 6.35 6.79 T.l% 6.64 T7.11 T.47 T7.03 T.52 T7.91
g0 6.25 6.61 6.92 6.54 6.93 T7.24 6,85 T.26 T7.59 T7.26 T.69 8.03
70 6.47 6.80 T.01 6.83 T.1T T.46 T.21 T.57 T7.88 7.6 8.05 8.38
50 6.94 T.24 T7.50 T.36 T.67 T7.95 7.88 8.20 8.50 8.36 8.71 9.03
40 7.45 T7.73 8.01 T7.93 8.23 8.52 8.4 8.74 9.06 8.89 9.23 9.57
30 8.3 8.6 8.98 8.83 9.15 9.48 9.27 9.61 9.95 9.75 10.11 10.48
20 10.37 10.77 11.16 10.92 11.35 11.78 11.51 11.97 12.45 12.17 12.68 13.22
15 13.00 13.55 14.15 13.90 14.52 15.20 14.86 15.58 16.37 16.00 16.84 17.74
10 22.90 24.66 26.78 26.25 28.69 31.85 30.68 34.28 39.22 36.93 42.88 52.27
TABLE IV.28

Safe Diameters of Infinite, Water-Reflected Cylinders of Pu(NOs)s Solution

Safe (keff = 0.95) Cylinder Diameter, inches

HNOs Normality 0 2 4 6
% Pu 0 2 I 0 2 I 0 2 I 0 2 4

Conc.,
& Pu/liter

200 5.37 5.88 6.22 5.63 6.15 6.51 5.89 6.4 6.81 6.25 6.82 7T.21
150 5.39 5.82 6.13 5.65 6.09 6.42 5,93 6.39 6.73 6.28 6.77 T7.14
120 5.44 5,82 6.11 5.71 6.10 6.4 5.98 6.40 6.72 6.35 6.79 T7.13
90 5.60 5.92 6.19 5.88 6.22 6.50 6.17 6.53 6.83 6.56 6.94%4 T.25
70 5.80 6.08 6.3% 6.1% 6.45 6.7T1 6.50 6.82 T.10 6.95 T.28 7.58
50 6:23 '6.50 673 - 656% 6,90 - Td5. T.12 T4b. T6T T80 789 8.7
4o 6.69 6.94 T.18 T.14 T7.41 T.67 T.61 T.89 8.17 8.05 8.35 8.64
30 7.52 T.79 8.04 T7.9%4 8.21 8.50 8.33 8.64 8.93 8.77 9.09 9.4
20 9.22 9.55 9.89 9.69 10.05 10.42 10.20 10.57 10.98 10.77 11.19 11.64%
15 11.37 11.81 12.29 12.10 12.60 13.12 12.89 13.44 14.04 13.81 14.45 15.11
10 18.51 19.65 20.91 20.64 22.04 23.78 23,22 25.02 27.28 26.47 28.95 32.15
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TABLE IV.29

Critical Thicknesses of Infinite, Water-Reflected Slabs of Pu(NOs)s Solution

Critical Slab Thickness, inches

HNOs Normality 0 2 4 6

Trﬁ"" 0 2 N 0 2 I 0 2 ! 0 2 5
Conc.,

g Pu/liter
200 1.81 2.18 243 2.02 ' 2.40 2.67 224 2,64 2.91 2.54 '2.96 3.24%
150 1.81 '2:13 0 2.36 2,05 2,36 2,61 2.26 2:61  2.86  2:856 " 2.92 3.19
120 1.85 2.13 2.34 2,07 2.36 2.59 2.30 2.61 2.84 2.61 2.93 3.19
90 1.98 2.22 2.41 2.21 2.4 2.67 2.45 2.72 2.94% 2.77 3.06 3.28
70 2,13 2.35 2.53 2.43 2.65 2.84 2.73 2.97 317 3.09 3.35 3.56
50 2.48 2.67 2.85 2.81 3.02 3.20 3.24 3.46 3.65 3.62 3.85 4.06
40 2.84 3,02 3.20 3.22 3.43 3.61 3.61 3.82 4.03 3.96 4.19 4.4
30 3.48 3.67 3.87 3.81 4.02 4.24 4,13 4.35 4,57 L.46 4.69 4.93
20 474 5.00 5.26 5.10 5.38 5.66 5.48 5.78 6.09 5.91 6.25 6.60
15 640 6.T6 T.15 699 T.39 T.84 7T7.62 8.09 8.60 8.36 8.91 9.50
10 12.81 13.96 15.35 15.00 16.59 18.65 17.89 20.25 23.47 21.97 25.86 31.99

IV.30

TABLE

Safe (kefr = 0.95) Thicknesses of Infinite, Water-Reflected Slabs of Pu(NOs)s Solution

Safe Slab Thickness, inches

HNOa Normality 0 2 4 6

?‘35““’ 0 2 I 0 2 I 0 2 ! 0 2 5
Conc.,

g Pu/liter
200 1.3 =02 X004 360 11,08 T2aT 12000 24T ekl ' 213 o 248 08T
150 240 < 3468 189 - 2.81 0 2.9 2.21 1.8 204 236 243  2.4% - 268
120 L4732 268 3B 1068 1.9% . 2.41. 187 2.8 235 2.17 2.6 2.68
90 1.55 L6 Ta9AN < 1,781 2,00 2438 T 1pLlOl’ 2425 208 L 2432 2.BF - OuTT
70 1.705 U89 . 2,05 288 12,38 - 2.35., 2.2F, 248 r2:66 . 2.65 2.85 - 3.04
50 2,02 . 239, 2.3 234  2.52 . 2,68 275 .2.9% 331 3313 0 3.%1- 3.50
40 2,34 250 " 2,67 2.71 " 2.89 3.06 < 3.00 327" F.45 3.41 ' 3.61 3.80
30 2.92- 3,09 7 3.26 B84 F A 360 5.82v FT1IVNZ0Y B8 .02 424
20 3.99 4.20. B.43 U300 453 U 4.63 487 5.14 . 5.00  5.28  5.57
15 BedP - 5.62"° 594 - 5.8%  6.14 - B.A4B 6.%35 6560  T.08 -6.95 T35 T.78
10 9.94 10.69 11.51 11.3% 12.25 13.39 13.02 14.20 15.67 15.15 16.77 18.86
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[n the Hanfcrd presentaticn of the critical mass data'%+2%) the
lcgarithm of the critical mass was found to vary approximately
lirearly with the nitrate lon concentration. From extrapolations of
such linear plots and from calculations of bucklings with nitrate
absent, reflector savings for solutions containing no nitrate are
cbtained. These values, together with the corresponding critical and
safe bucklings are given in Table IV.31l. The critical and safe masses
cf water-reflected spheres with nc nitrate present are given in

Table IV.32, the critical and safe infinite cylinder diameters in
Takle IV.33, and the critical and safe infinite slab thicknesses in
Table IV.34.

TABLE IV.31

S, B, and B (kgpp = 0.95) for
Plutonium Solutions Contalning No Nitrate Ion

S, em o~ B2 (kKerr = 0.95), cm™2
% Pu=*° W - B 4 0 2 4 0 2 4
Conc.,
g Pu/liter
200 8.33 8.23 8.40 .02468 .02263 .02136 .027T46 .02531 .02397
150 8.10 8.16 8.13 .02458 .02281 .02162 .02735 .02549 .0242)4
120 8.04 8.06 8.05 .02435 .02280 .02168 .02711 .02548 .02430
90 7.87 7.95 7.93 .02381 .02248 .02147 .02653 .02514% .02408
70 7T.82 7.82 7.78 .02312 .02200 .02108 .02580 .02463 .02366
50 7T.65 7.63 7.63 .02179 .02085 .02003 .02439 .02341 .02255
40 7.50 7.57T T7.53 .02042 .01957 .01881 .02295 .02205 .02125
30 7.39 7.4 7.35 .01805 .01731 .01661 .02044 .01967 .01893
20 7.52 T7.49 7.44 ,01365 .01302 .01242 .01580 .0151% .01451
15 7.84 T7.75 T7.66 .00996 .00941 .00886 .01191 .01133 .01075
10 .02 8.13 7.99 .00427 .00380 .00333 .00590 .0054%1 .00492
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TABLE IV.32

Critical and Safe (kepr = 0.95) Masses of Water-Reflected
Spheres of Plutonium Solution Containing No Nitrate Ion

Critical Mass, kg Safe (kepp = 0.95) Mass, kg
% Puz4° 0 2 n 0 2 4
Conec.,
g Pu/liter
200 1«53 1.70 1.88 1.01 1.28 1.41
150 1.07 1.27 1.46 .811 .958 1.10
120 .89 1.04 1.18 .675 .789 .890
90 135 .83 .93 .561 .629 <703
T0 .62 .70 .78 LTy .532 594
50 531 .59 .648 .405 <450 <492
40 .509 553 .610 .389 21 462
30 513 .561 .620 .389 424 466
20 .61 675 .T750 J4uT 493 542
15 .83 .94 1.07 579 .649 729
10 2.7 3D 4,2 1.49 1:T35 2.09
TABLE IV.33

Critical and Safe (keff = 0.95) Dilameters of Infinite, Water-Reflected
Cylinders of Plutonium Solution Contalning No Nitrate Ion

Critical Cylinder Diameter, inches Safe Cylinder Diameter, inches

% Pu*® 0 2 4 0 2 4
Conc.,
g Pu/liter
200 5.49 6.11 6.34 4.87 5.42 5.62
150 5.70 6.12 6.48 5.07 5.43 5.76
120 5.81 6.19 6.52 5.17 5.52 5.81
90 6.08 6.37 6.68 5.43 5.68 5.95
70 6.29 6.61 6.91 5.63 5.91 6.19
50 6.81 710 7 .57 6.10 6.37 6.60
40 7.35 7.58 7.88 6.59 6.79 7.06
30 8.27 8.56 8.91 7T.42 7.67 7.98
20 10.30 10.70 11.1% 9.15 9.50 9.86
15 12.80 13.42 14.09 11.18 11.70 12.23
10 22.69 24,34 26.53 18.35 19.33 20.72
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TABLE IV.34

Critical and Safe (kgpe = 0.95) Thicknesses of Infinite,
Water~Reflected Slabs of Plutonium Solution Containing No Nitrate Ion

Critical Slab Thickness, inches Safe Slab Thickness, inches

% Pu24° 0 2 4 0 2 4
Conc., 3
g Pu/liter
200 1.31 1.74 1.85 .906 1.30 1.37
150 1.51 TT 2.01 1.10 1.32 1.54
120 1.60 1.8% 2.06 1.18 1.40 1.59
90 1.82 1.99 2.20 1.40 1.54 1.72
70 1.98 2.18 2.39 1.54 1.72 1.92
50 2.36 2.56 2.73 1.89 2.07 2.23
40 2.75 2.88 3.09 2.26 2.37 2.56
30 3.38 3.57 3.81 2.83 2.99 3.20
20 h.67 4,94 5.25 3.92 4,16 4.y
15 6.22 6.65 .13 5.17 5.52 5.90
10 12.63 13.67 15.14 9.79 10.40 11.35

By multiplying the slab thicknesses obtained from Tables IV.33 and
IV.34 by the concentration and plotting the resulting product against
the concentration, a minimum mass per unit area is determined. These
minima can be used to provide safe mass limits when precipitation is
a possibility. The critical and safe values expressed as grams of
plutonium per square foot of horizontal surface are given in

Table IV.35 as a function of plutonium-240 concentration. The minima
in the curves of mass per unit area occur at a concentration of about
17 g Pu/liter.

TABLE IV.35
Minimum Critical and Maximum Safe (kepp = 0.95)

Concentration of Plutonium Per Unit Area in
Solutions Containing No Nitrate Ion

% pu*° Minimum Critical Mass, g/ft? Maximum Safe Mass, g/ft2
0 217 182 .
2 233 194
Y 246 207
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Critical and safe concentrations of plutonium can be calculated for
unlimited amounts of solutions; these concentrations correspond
respectively to k = 1 and k = 0.95. They are useful in cases where
concentration control alone is relied on to ensure safety. In
Table IV.36, the critical and safe concentrations of plutonium in
unlimited amounts of solution are tabulated as a function of nitric
acid normality and Pu®%® concentration. Values are also given for
the case of no nitrate in the event the plutonlum 1s present as some
other compound. The results are expressed both in terms of
concentration and of H/Pu®®® ratio since the solvent may be a
hydrocarbon rather than water.

TABLE IV.36

Critical and Safe (keprp = 0.95) Concentrations of
Plutonium in Infinite Amounts of Solutlon

Critical Conc., Safe (keff = 0.95) Conc.,

Pu Compound HNOs Normality % Pu®*® g/liter H/Pu®3® g/liter H/Pu®3®
No Nitrate 0 0 T.42 3570 6.73 3940
Ton 0 2 7.66 3535 6.94 3905
0 4 7.88 3500 7.14 3875
Pu(NOs)s 0 0 744 3535 6.75 3900
0 2 7.68 3515 6.95 3880
0 4 7.90 3490 T+16 3855
2 0 7.85 3215 7.15 3550
2 2 8.10 3185 T.34 3525
2 4 8.34 3160 7.55 3490
4 0 8.27 2930 7.49 3225
4 2 8.53 2900 T.T3 3200
} 4 8.80 2870 7.95 3170
6 0 8.68 2665 7.86 2935
6 2 8.95 2640 8.10 2915
6 4 9.24 2615 8.36 2890
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4.4.5 NATURE OF SOLVENT

The critical and safe condltions given in Tables IV.25 through IV.35
and the bucklings given in Table IV.20 apply to aqueous solutions or
slurries. If the solvent 1s organic or if the plutonium 1s held in an
lon exchange resin, k will be essentially the same as 1n an aqueous
solution at the same H/Pu®2® ratio (and at the same N/Pu®®® ratio if
nitrate 1s present). If the hydrogen density in the solvent 1s less
than in water (or in nitric acid), the buckling 1s less, due to a
greater migration area. In this case it i1s conservative to use the
safe and critical conditions for aqueous solutions with the same
H/Pu®®® ratio. If the hydrogen density 1s greater in the solvent,
allowance must be made for thils fact. The proper procedure is to
calculate 7 as was done for this Handbook for nitric acid solutilons.
A code for the IBM 650 is available at the Savannah River ILaboratory
for performing such a calculation. In the absence of such a
calculation, M? may be assumed to vary approximately inversely as the
hydrogen density in the solvent, and adequate margins of safety should
be employed to compensate for errors introduced by thils approximation.
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CHAPTER V - INTERACTION
5.1 INTRODUCTION

One of the more difficult problems encountered in nuclear safety is that
of determining interactions between units which if individually 1solated
would be subcritical, but which 1f brought close together could
constitute a critical assembly. Since complete isolation of units from
reflectors or from other units 1is often impractical, it 1s important

to have some means of calculating the reduction in size that must be
made to permit a certain minimum separation between units or between

a unit and a reflector. A large amount of experimental data
exiptg!PiatE 8] against which methods of calculation may be checked;
but, except where a specific situation happens to duplicate one

studied experimentally, direct reference to such data may not be very
helpful. A generally conservative method has been developed(s‘s) for
computing interactions between units in air. In water, interactions

can be computed satisfactorily by two-group methods. In the present
chapter methods of calculating interaction in ailr are described first.

5.2 INTERACTIONS IN AIR

5.2.1 INTERACTIONS BETWEEN FISSIONABLE UNITS

Consider two interacting surfaces (see Figure 5.1). The total* neutron
current out of the surroundings that enters surface No. 1 1s some
fraction p;o of the total neutron current into the surroundings from
Surface No. 2 and vice versa. If J,,t represents the total current

out of the surroundings and Ji, represents the total current into the
surroundings, the following equations must be satisfied:

J1 out = P12d2 in
and

J2 out p21J1 in-

The albedo of the surroundings is equal to Jout divided by Jin. Thus
the equations may be written as

0

BiJ1 in - Pi2d2 in
and
0

-p21J1 in *+ B2J2 in

where B 1s the albedo. They are satisfiled only if BBz = pi2p21, which
becomes B = p 1f the two interacting units are 1ldentical.

*The total current is the current in neutrons of all energies per cm?
per second integrated over the entire surface under consideration.
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5.2.2 CALCULATION OF p

Simplifying assumptions are made so that p can be calculated solely
from the geometry of the system. In particular, the directions of
travel of the neutrons issulng from a surface are assumed to have a
cosine distribution and the neutron current 1s assumed to be independent
of position on the surface. The latter assumption 1s good 1f the two
surfaces are of equal size and shape, but as will be shown later, can
be poor 1f they are not. The resulting equation for p 1s

cosy cosy!'
fS'fS ———j%ﬁ$gik- dsdas!

p = Tas (5.1)

where S and S' denote the two surfaces (e.g., a cylinder and a slab

as in Figure 5.1), R denotes the distance from an element of surface
on one to an element of surface on the other, and ¥ and y' denote the
angles R makes with normals to the elements of surface. This
integration 1s not readily performed for curved surfaces, and they are
approximated by flat surfaces, l1.e., a circular cylinder 1s replaced
by a square cylinder with a base of equal area and a sphere by a cube
of equal volume, axis-to-axls or center-to-center distances remaining
the same.

The basic equation for p is derived for two rectangular surfaces at
right angles to each other since the integral in Equation 5.1 cannot

be evaluated easlly for parallel surfaces except for cilrcular discs,
rectangles with one infinite dimension, or finlte rectangles at a
large separation compared to the dimensions of the rectangles. Results
for parallel surfaces are obtained by subtracting from unity the
contributions reaching slabs perpendicular to the parallel slabs. For
example, the fraction of the neutrons from a rectangle (see Figure 5.2)
in the (X,Z) plane at Y = O with vertices at (0,0,0), (2,0,0), (2,0,1),
and (0,0,1) reaching a parallel plane at Y = 1 with vertices at (0,1,0),
(3,1,0), (3,1,2), and (0,1,2) is obtained by subtracting from unity
the fractions that reach perpendicular rectangles with vertices at:

(0,0,0), (0,0,2), (0,1,2), and (0,1,0)

(3,0,0), (3,0,2), (3,1,2), and (3,1,0)

(0,0,0), (0,1,0), (3,1,0), and (3,0,0)

(O,OIE)J (01132), (3,112)’ a'nd (3,012)
The fraction in the reverse direction (1.e., those from the larger
rectangle reaching the smaller) is readily obtalned by noting that
the integral in the numerator of Equation 5.1 1s the same whichever
rectangle 1s considered as the emitter, and hence that the fraction

from the larger reaching the smaller 1s obtained by multiplying the
fraction from the smaller reaching the larger by the ratio of the
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FIG. 5.2 INTERACTION BETWEEN TWO PARALLEL PLANES
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smaller to the larger surface area. The general case 1s not as simple
as pictured in the example, but the same procedures apply.

The fraction of the neutrons from a rectangle with dimensions 2a x 2h
reaching a perpendlcular rectangle with dimensions 2d x 2g with the
rectangles arranged as shown in Figure 5.3 1s

(Z+£-2")
vr(Yl+a+b)2 + (X+e)2 + (z+£-21)2

pt - snlahz [(Z+f-2') VI(Y'+aL+b)2 + (X+e)® sin

. (Z+f£Z')2 yég (1 , (¥'4aip)® 4 (x+e)2)

(z+£-2')%

(Y'+a+b)2 + (X+e)2 (Y'+a+b)® + (X+e)?2
§ AR 198 {gram)® + (X5)% + (z+f-z')f] L5 2)

where Y' and Z' are measured along the 2a and 2h edges of the vertical
plane and X and Z along the 2d and 2g edges of the horizontal plane,

and where the summation 1s made over the 16 terms resulting from setting
Y' equal to -a and a, X equal to -e (or -d if e> d) and d, Z equal to

~-g and g, and Z' equal to -h and h. The separation between the nearer
edge of rectangular surface 4ah and the plane of surface 4dg is b. The
separation between centers of the rectangles in the direction that the
2h and 2g edges have in common 1s f. The separation between the trace
of rectangle 4ah obtained by projection onto the plane of 4dg and a line
through the center of 4dg parallel to the 2g edge 1s e. Where ed{d, p
includes only contributions from the front face of 4ah. An IBM 650 code,
which 1s available at the Savannah River Laboratory, has been prepared
for evaluating Equation 5.2.

By subtracting contributions calculated from Equation 5.2 with b = o,

f =0, e=4d, and g = h from unity, p has been calculated for equal,
parallel rectangles as a function of o and ¢ where a 1s the separation
between surfaces divided by the smaller dimension of the surface and

o 1s the smaller dimension divided by the larger dimension. The results
are plotted in Figure 5.4 against a and against 1/a for a>1l. In
Figure 5.5 the region of small 1/a 1s blown up for greater accuracy in
reading the graph. Thils region is of importance when large numbers

of units interact.
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FIG. 5.3 INTERACTION BETWEEN PERPENDICULAR RECTANGLES
(The 2g and 2h edges are parallel)
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5.2.3 ALBEDO EXPRESSION

For a slab the albedo at the surface is gilven by

sin B(S-S_ ) tan BS-tan BS
< = = (5.%)
sin B(S+So) tan BS+tan BsO '

B =

where B 18 the square root of the buckling in the direction normal to
the surface, S is the effective reflector saving provided by the
surroundings, and S, 1s the bare extrapolation distance determined by
fitting data for unreflected vessels to calculated bucklings, as
described in Chapters II and III. In some applications it 1s desirable
to work with the total albedo defined as

JL out+JR out

B =
L N T

where L and R denote the left- and right-hand surfaces of the slab. The
expression for B is

sin B(E-So)
), 5 Phepsieielc, (5.4)
sin B(S+SO)

where 25 = SR + SL.

For an infinite cylinder the expression for BT is

Jo(2.405-BS)  Jqo(2.405-BSe)
_ J3(2.405-BS)  J,(2.405-BSy)

Jo(2.405-BS) % Jo(2.405-BSq)
J1(2.%05-BS)  J,(2.405-BSg)
For a sphere the expression is
m-BS ) m-BSq
1 + (m-BS)cot BS 1 + (m-BSg)cot BSg
ET - - e (5’6)
m-BS % m-BSg

1 + (m-BS)cot BS 1 + (m-BSg)cot BS,

For the cylinder and spherelg 1s the effective reflector saving of the
surroundings averaged over the entire surface of the cylinder or sphere.
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5.2.4 CALCULATION OF THE INTERACTION

The interaction problem can be stated in several ways. Thus in the
case of two parallel identical slabs, B2, Sqs the dimensions of

the interacting surfaces, and the separation between the surfaces may be
given, and the safe slab thickness may be required. Solution of the
equation B = p with p read from Figure 5.4 or 5.5 gives the critical
value of S and the critical thickness as m/B - 2S. The safe thickness
corresponding to a choilce of Kkers 18 then readlly calculated as:

T B __EE:;;_ Q
safe Bm k-k eff

Conversely, the surface dimenslions and thickness of the slabs and the
buckling may be given, and the safe separation may be required. In

this case, the safe buckling and hence a safe value of S are used in

the equation B = p and the solution gives the safe value of p from
which the safe separation can be determined. For a safe separation to
exist, the safe S must be greater than So. In some cases the surface
dimensions, the thickness, the separation, and the buckling may all be
glven. Solutlon of B = p then gilves S from which the geometric buckling

2
can be calculated as ———E———, and hence kegprf and the multiplication can

be determined. (T+28)2

For square cylinder and cube approximations to clrcular cylinders and
spheres, 1t 1s necessary to assume that Ji, 1s independent of the
emitting face as well as of position on the face if Bp, as expressed
by Equations 5.5 and 5.6, is to be employed in the calculation. This
approximation is nonconservative, but it tends to compensate for
conservatism in some of the other approximations and to yleld fairly
good results when compared with experiment. It 1s poorest when the
separation between units and the number of units are small, sometimes
giving nonconservative results (see Reference 5.9).

In the case of slabs the above approximation i1s convenient, but
permitting the currents at the left and right surfaces to have different
values does not greatly complicate the calculation. For n parallel
slabs the equations are:

J =p J
1R out iR, 2L 2L in

] J =J
2L,1R 1R in 2L out
J =p J
(n-1)R out (n-1)R,nL nL in

P J =J
nL, (n-1)R (n-1)R in nL out

For equally spaced, identical slabs the p's and the slab thicknesses
are all equal, and the following matrix equation can be derived:
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where

- sin 2B(§+so) sin 2BS

- sin 2BS sin 2B(S-So)

P o
o 1/p
There are n M matrices and (n-1) P matrices in the product. For two
slabs the result is

and

sin 2B(S-S ) sin 2BS

o o

p = = e B [ At
. sin 2BS sin 2BS

since in this case 2§ =S + So. For three slabs the result is

1
sin 2BSo 2
B B L e tieom
sin 2BS

For an infinite number of slabs, the result i1s p = Bp. With small
numbers of closely spaced slabs these or other equations derived on
the same basis should be employed.

Where the currents may be assumed independent of the face, equations
may be written in terms of the total albedo as -

- J +p J + oo +p J =0
Ti 1 in 12 2 in in n in
© (5.7)
J + J + cee = o =
pn1 1 in pnz 2 in BTn n in

If the units are identical, the Bp's are all equal and Bp 1is determined
as the appropriate eigenvalue of the matrix of coefficients of the Ji,'s.
The expressions obtalned for two, three, and an infinite number of
equally spaced ldentical slabs in this approximation are respectively
p = 2Bp, p =2 Brs, andp= Bp. If the unlts are not identical, all
Br's except one can be specified or relations between the Bqp's may be
found. For example, with two slabs of unequal thickness elther the
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thickness of one can be specified and the equation solved to glve the
eritical thickness of the other, or the ratio of the two thicknesses
can be specified and the equatlon solved for one or the other of the
thicknesses.

The P1j required in Equation 5.7 are simple modifications of values
calculated from Equation 5.2 or read from Figures 5.4 or 5.5. For
parallel slabs pyq4 1s 1/2 the value read from Figures 5.4 or 5.5 since
only 1/2 the tota{ interacting surface of one slab sees an adjacent
slab. For cylinders in the square cylinder approximation the factor
is 1/4 and for spheres it is 1/6.

Shielding of one unit by another results in a reduction in the P1j for
some situations. For parallel identical slabs numbered consecutively,
P1j = O for |i - J]) 1. For spheres in a regular array, contributlons
from nearest neighbors, next nearest, etc., are calculated with the array
conslidered infinite in all directions. Contributions, from neilghbors
sufficiently far away that ?Pij would become greater than unlty as a

result of their contributions, are multiplied by a factor chosen to
make the sum exactly unity. More distant neighbors are assumed to be
completely shielded by the intervening spheres. In the actual finite
array this same factor is employed, and the same nelghbors are included.
A similar procedure is employed for regular arrays of cylinders. The
cylinders are considered infinite in length and the array infinite in
extent for the purpose of determining the factor to be applied to
contributions from the most distant neighbor included. For some types
of finite arrays of both spheres and cylinders, this procedure may
require modification, since units on the boundary may not be shielded
from each other to the same extent as in an infinite array.

As pointed out earlier, the assumption that the current is independent
of position on the interacting surface may be poor if surfaces are not
congruent; for example, if a very large slab (1) and a small slab

(2) are parallel to each other, pi» = 1 and poy — O if calculations are
made on the basis that the current is independent of position. If both
slabs have the same thickness, and if the small slab is large enough
that B; = Bz, the equation BB, = pi1p- leads to the result B = O, which
i1s clearly wrong. This difficulty may be avoided by considering the
larger slab to be made up of a number of small slabs in edge-to-edge
contact.

In interaction problems involving unequal slabs or cylinders, or slabs
at right angles to each other, perpendicular faces of a particular unit
may be involved so that more than one buckling component 1s required.
For example, both the end and large side surfaces of slabs may be
involved in the interaction; hence, the albedos at both the end and side
surfaces will enter into the calculations. The equations for the
currents at the surfaces have to be solved subject to the condition

that 1n each slab the sum of the buckling components equals the material

512

o




buckling. In such situations, the calculation 1s considerably simplified
i1f contributions to and from the smaller surfaces are considered as
entering or leaving the larger surfaces so that only the albedos at

the large surfaces need be considered. Since the numerator of

Equation 5.1 represents the number of neutrons reaching one surface

from another, and the denominator represents the area of the emitting
surface, all neutrons can be treated as coming from the large surface

by always making the denominator the area of the large surface.

When regular arrays are beilng investigated, Equation 5.7 may be greatly
simplified if the currents for equivalent units are lumped together.

If, for example, three 1ldentical units are equally spaced in a line, the
two outer units are equivalent. If the outer units are designated 1
and the center unit 2, the equations become:

=PIy an ¥ P92 1n = 0
and

- BJ = 0.

2
pasz in 2 in

In an infinite regular array all units are equivalent; hence there 1s
only a single equation.

5.2.5 INTERACTIONS WITH REFLECTORS

The interaction between a unit and a reflector 1s calculated in a manner
similar to that employed for the interaction between fissionable units.
If the current emitted by the reflecting surface may be assumed
independent of position,

B.J

wu in ~ Ju out purJr out PaaPs® FP

= J
ur'r r in pur rruu in

where u denotes the flsslonable unit and r the reflector, and where
Bpr 1s the albedo of the reflector. Thus B, = pPyprPruPr-

Situations in which the current from the reflector may be considered
independent of position are; (1) ones in which a surface of a fissionable
unit faces a reflecting surface of equal size and shape, and (2) ones

in which symmetry requlires that the current distribution be uniform,

as for example, a spherical unit surrounded by a concentric reflecting
spherical shell. In other situations the reflector can be broken up into
a number of surfaces equal 1n size to the surface of the fissionable
unit, and the current distribution can be assumed uniform in each of
these subdivisions. In all these situations 1t 1s apparent from
Equation 5.1 that

_ Interacting area of fissionable unit (5 8)
ur Interacting area of reflector ru '
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where p,, 1s the fraction of the neutrons emitted by the reflector
that reaches the fisslionable unit and p,, is the fraction of the
neutrons emitted by the fissionable unlt that reaches the reflector.

For the particular case of a slab parallel to an infinite plane G
reflector, the fraction (Pur) of the neutrons that 1s returned from

the reflector can be calculated by integrating the contributions to the

slab from elements of surface of the plane reflector over the entire N
surface of the reflector. Results of this integratlion for an infinite

plane reflector parallel to a circular disc and to an infinite slab

of finite height are presented in Figure 5.6 as functions of disc radius

or slab height and of separation from the reflector. Other shapes may

be approximated by a disc of equal area or by an infinite slab of equal

smaller dimension, whichever approximation gives the smaller Pyur* Since

the reflector 1s infinite, pny 1s unlty.

Although the albedo of the reflector can be calculated from its
properties, 1t 1s much better to determine i1t from experimental results
such as those given in Chapter IV, so that the correct result will be
ensured in the 1limit of zero separation. When the reflector is in
contact with the fissionable unit,

sin B(S-S_)
- il
B=sin B(S+So) L

with S = S,, the reflector savings of the reflector when in contact.
Hence Bp 1s determined by the buckling and the reflector saving. For
curved surfaces, such as a spherical shell surrounding a sphere, the
effect of the radius of curvature on B, must be taken into account.
This can be done by eliminating the properties of the reflector from

J
the equation Bp = 33—523 by the use of albedos obtained with the
r in

reflector in contact with the curved surface and with the reflector
in contact with a flat surface of the same fissionable material.
In the case of a sphere of radius R,, By, for a reflector of radius

R 1s given by
- (E) (5
Pao R l+BO
r - Ro Bw_ao (5.9)
1 +1— .
R 1+Bo

where By 1s the albedo with the reflector in contact with the sphere ¢
and B, 1is the albedo with the reflector in contact with a slab of

the same material. For cylinders, B, as a function of radius can also

be found in terms of B, and B,, but an analytical expression cannot

be written.

B
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0.8

pg is the froction of the neutrons emitted by o slob

that is returned to it by a parallel infinite plane
reflector. For a disc, a is the separation divided

separation divided by the finite dimension measured

parallel to the reflector.

by the radius. For an infinitely long slab, a is the °

FIG. 5.6 pg FOR AN INFINITE PLANE REFLECTOR
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Occasionally, the components of a multicomponent reflector may be
separated from each other as well as being separated from the surface

of the flssionable unit. For example, consider a slab reflected by
material A 1n contact with it, material B separated from it by a distance
dB’ and material C separated from the slab by a dlstance dC. Suppose
that the reflectors are infinite in extent so that Figure 5.6 may be
used to obtain Pup* A simple, conservative expression for the albedo

at the surface of the slab 1s

B, = (2-p,5)8, + (P pP.c)Bis * PycPanc

where Bu is the albedo provided for the unlt by the system of reflectors,
Bp 1s the albedo of reflector A with the others removed to infinity,
Bap 1s the albedo with reflectors A and B in contact and C removed to
infinity, and Bapc 1s the albedo with all three reflectors in contact.
Both pyp and pyc are determined by the separations dg and dC between
the unit and the reflector in question with the distances so adjusted
that Py = 1l when B 1s 1n contact with A and p = 1 when A, B, and C
are 1n contact. If B and C should be in contact with each other but
not with A, they would form a new medium B'. In this case there would
be no third material so that p,c would be zero and the equation would
reduce to

1

Bu = (l'PuB')BA + PuB'BAB .

5.2.6 INTERACTIONS WITH OTHER UNITS AND WITH REFLECTORS

In the general case fisslonable units interact both with other units
and with reflectors. If the unlts are of different sizes and shapes
and of different materials, the situation becomes very complicated, and
1t is difficult to give any handy rules of thumb. In such situations
generous margins of safety should be allowed in the assumptions made

to simplify the calculations, e.g., all units may be taken to have the
size of the largest unit.

Given a number of fissionable units and a number of reflecting surfaces

on which the current may be assumed ilndependent of position, equations
of the following form may be written.

- =+ J = J + eue J ¥ hew =0
( Bu1 pUI,Ul) ur in pu1,u2 uz in Pul,r1Br1 ri in

1- J = J + oo + J s o w10
( prl,rlarl) ra. dn Pr1,r25r2 rz 1n i, i Wi dn (5 )
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The p and p terms are requlred since some of the neutrons
ui,ul 1 Gl

entering a unit may be emitted by an equivalent unit and some of the
neutrons emitted by a reflector may re-enter it. The Jp ipn terms

can be eliminated from these equations and a homogeneous set of linear
equatlons in J,; 4y, can be obtalned. For a solution to exist the determi-
nant of the coefficlents must be zero, and the set of By's that gives this
result can be found, provided the relations between the By's are known.
Since 1t 1s clear that the albedos at the surface of the fissionable

units are total albedos, the subscript T has been dropped. Equation

5.10 takes 1ts simplest form when all the units are identical so that

B =B =B etec., and when the current distribution may be
ui uz us

considered uniform over the entire surface of the reflector so that

only one reflecting surface is required. When the reflector entirely
surrounds the units, the fraction of the neutrons reaching the reflector
from a particular unit 1s obtalned by subtracting from unity the
fractions that reach all other units. It seems reasonable to assume
that the fraction of the neutrons reaching this same unit from the
reflector is given by Equation 5.8.

5.2.6.1 Sample Calculations

To 1llustrate the methods of calculation presented in this chapter, the
various steps involved 1n calculating the interactions in a 3 by 3 by 3
cublc array of 20-kg spheres of uranium (93.5% U2°®) with a lattice
spacing of 11 inches are given for an unreflected array and for an
array enclosed inside a reflecting cube measuring 3 feet on a side.
This particular example was chosen because 1t has been studied
experimentally.(s'e’ Since the dimensions and spacings of the units
are specified, thg calculation ylelds the albedo Bp from which the
reflector saving S 1s calculated and hence the k pp of the system.

The 27 units can be divided into four groups within each of which all
units occupy equivalent positions. Thus there are 1 central, 6 face
centered, 12 edge centered, and 8 corner units. If the groups are
numbered in this order, Equation 5.10 becomes:

- ﬁTJl in v 6p12J2 in + lzpqu in + Bp“J‘ in + pxrBrJr in ~ 0,

J + (4 -B)J + (4p +4p' +h4p'r )J
pz:.xin (pzzBT)zin (pzs pza P 23)31n

+ (4p +b4p' )J + J =0
(pa4 P 24) 4 in pzrﬁrrin ’

J + (2p +2p' +2p'' )J + (4p +4p' -
P (paz psz P 32)zin (psa pasBT)J

31 1 in a3 1in

+ (2p +U4p' +2p'! + J =0
(p:u ps4 P 34)J4 in psrﬁrrin ’
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J + +3p! J - 6p! t
(3942 3p 42) e (3943+ pr +3p 43)J

p41 1 1in a in

-8 d * J = 0, and
T 4 in p4rar r in f

J = J + 6p J +12p J +8p J -
= dn Pr1 1 in prz 2 in Pra 3 in pr4 4 in prrBrJr in’

In the absence of the reflector Bp = O and the fifth equation is not
required. In the presence of the reflector the fifth equation 1s
used to eliminate Jp in from the other four equations so that again

four homogeneous equations in J P | P | , and J are
3 In 2 in 3 in 4 in

obtalned. The various p's in the above equations are calculated for
pairs of individual units. The primes are used to denote p's
corresponding to greater separations between units of the same type.
Thus, for example, a face-centered unit interacts with four edge-
centered units (Pos) separated from it by one lattice spacing, s, with
four (p'a.s) separated from it by ~2 s, and with four (p'',s) separated
from it by ~5 s.

In order to calculate the values of p, the uranium spheres are

consldered to be cubes of the same volume 2§§Q%Q_= 1064 em® = (4.02 1n.®),
The face-to-face separation 1s therefore obtained by subtracting 4.02 in.
from the center-to-center separation in inches. Values of p are then
obtalined by multiplying values read from Figure 5.5 with

1 4.02

a center-to-center separation - 4.02 and ¢ = 1 by 1/6. The center-
to-center separation involved, the various p's that correspond to these
separations, and the values of p are given 1n the followlng table.

Center-to-Center

Separation, inches pij Value
11 e i TR e e e 0.01465
12 =23 23 32 34 43
11 4/2 0.00600
pla’ 931: P22: p24, p42’ paa
11 V/3 P s @ 5.p' »p" 0.003%62
14 41 23 32
11 V5 grE s ptt Pt P! 0.00200
23 32 34 43
11 /6 p' , p' , p' 0.00165
24 42 88
11 x 3 ptt , p"! 0.00100
34 43

Shielding of one unit by another makes some values of p zero. Thus

Pis ™ 0 since intervening central, edge-centered, or face-centered
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units prevent a corner unit from "seeing" any of the other T corner
units. To determine whether any other shielding 1s present, consider
the neighbors at separations up to and including 3s that a unit would
have in an infinite lattice and sum its contributions to these nelghbors.
This sum 18 performed in the following table and 1is well below unity;
hence aside from units in a direct line, there 1s no shielding of units
by intermediate units.

Center-to-Center Fraction Reaching
Separation, inches No. of Neighbors These Nelghbors
11 6 0.08790
11 x /2 12 0.07200
11 x V3 8 0.02896
1'% &5 2k 0.04800
11 x 6 2y 0.03960
1l % B 24 0.02400
0.30046

In the reflector the current 1s assumed to be independent of position.
The reflector area of a cube (six sides, 36 inches on a side) 1s 6 sides
X 36 in. x 36 in. = 7776 in.%; the unit area is 6 sides x 4.02 in. x
4.,02in. = 96.96 1n.%, Thus p , p , p , and p are obtalned by

ar’ "2r " ar 4r

multiplying p , p , p , and p Dby 96,96
¢ i ra r4

ra 7T
where
p_=1-6p -12 -8 ,
ri 21 a1 41
p =1-0p - 4p - 4p - Lp - bpr - 4p - hpv ,
ra 12 22 az a2z a2 42 42
P =1 -p =2 =2p' =2p'" -hp - hpr -2
ra 13 23 23 23 a3 as 43
- 4p! - 2p't , and
43 43
=1 - & = 1 - - 6p! - 1
pr4 p14 3p24 P 24 3p34 P 34 °p 34

The fraction of the neutrons emitted by the reflector that re-enters

it 1is given by Py = 1 - P - 6p2r - 12p3r - 8p »*
4

In the experiment(s'e) the reflector was concrete. Let thils be
approximated by infinitely thick water; then a good value for the
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reflector saving, whether for a sphere of uranium or for a slab, 1s

4.1 cm (see Section 2.2.1). The bare extrapolation distance is taken
to be 2.15 cm in both cases. Then with the reflector 1n contact with

a uranium sphere with a materilal buckling of 0.0837 cm™2 (Section 2.8:1)
and a radius R, = 6.76 cm, B, = 0.32334 (from Equation 5.6); and with ¢
the reflector in contact with a uranium slab B, = 0.55017 (from

Equation 5.3). The actual reflector may be assumed to have an

equivalent radius of 63X §'54 = 56.7 cm. Applying Equation 5.9 then ‘
3

leads to a value of 0.51913 for Br'

The matrices whose eigenvalues are to be determined in the unreflected
and reflected cases are respectlvely,

0 0.0879 0.0720 0.02896
0.01465 0.02400 0.08108 0.03060
0.00600 0.04054 0.03060 0.03930
0.00362 0.02295 0.05895 0
and
0.0067058 0.130046 0.159654 0.089441
0.021674 0.068147 0.172896 0.093953
0.013305 0.086449 0.12608 0.10518
0.011180 0.070465 0«17 TTL 0.0681858

An IBM 650 code, obtained by the Savannah River Laboratory from
International Business Machlnes, was used to obtain the four eigenvalues
for each matrix. In each case only one elgenvalue corresponds to the
value of Bp desired. Thils value can be chosen from an inspection of
the four values obtained for each matrix since two can be rejected
Immediately because they are negative and a third can be rejected
because it 1s smaller than that corresponding to the interaction of two
units. The results obtained were

BT = 0.1235 unreflected
and

BT = 0.3331 reflected.
From these albedos, S can be obtained from Equation 5.6 and k pp can be

k
calculated as k_.. = _ —=— where, (see Section 2.2.1) for
B; (rR+3)2

uranium (93.5% U%°°), k = 2.3 and BZ = 0.0837 cm™? and where R, the -

radius of the 20-kg sphere, 1s 6.335 cm. The results may be compared
with the multiplicatilons observed(®*®) with an essentlally unreflected
array and wilth the reflected array. For the unreflected array the

calculations give S = 2.77 cm, Kepp = 0.807, and a reciprocal over-all

neutron multiplication of‘-l-= ='1-= keff = 0.1935. For the

P Eex
M 1
L=k
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reflected array the calculations give S = 4.18, Kepp = 0.964. The
experiments indicate multiplications of 0.195 and 0.031 respectively for
the bare and reflected arrays, but they were not performed with uranium
spheres but with composite units equivalent in reactivity (when 1isolated)
to 20 kg of uranium (93.5% U225). When this difference in the units 1s
taken into consideratior it appears that for this situation the calculation
may underestimate kepp by as much as 5%.

For situations of this sort, the maximum safe kef should be taken to

be 0.90 to allow for possible nonconservatism in ghe calculation. The
calculations thus show that it 1s unsafe to have twenty-seven 20-kg
spheres of uranium (93.5% U2%%) in the reflected cubic array for which
the calculations were made. A safe array of these units can be achleved
by increasing thelr spacing, by decreasing the amount of reflection, or

by changing the shape of the array.
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5.3 INTERACTIONS IN WATER .

Water, in sufficient thickness effectively 1solates fissionable units
from each other through the absorption of neutrons by hydrogen. In
principle, then, an infinite subcritical array 1s possible in water
whereas 1t 1s impossible in air. For certain groupings the critical
and safe slzes are actually larger when water 1s present between the
units than when 1t 1s not, despite the reflectlon introduced by water.
In some cases, as for example in the storage of spent enriched fuel
elements, storage and handling 1n water 1s necessary. Thus, there are
circumstances when it may be desirable or necessary to have fisslonable
units interacting with each other in water.

For separations between units of ) 8 inches of water the effect of the
Interaction on keff 1s negligible when compared wilth margins of safety
ordinarily allowed for reflected units. In some applications smaller
separations may be desirable at the price of smaller unit sizes. 1In
other cases the unit size may be restricted to discrete dimensions,
1.e., the width of one element in parallel rows of fuel elements. In
these cilrcumstances methods of calculating the thickness of water
required between units to provide an adequate margin of safety are
necessary. A two-group model provides sufficlent accuracy, and codes
are avallable at the Savannah River Laboratory for performing such
calculations on the IBM 650.
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