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ABSTRACT

Neutrino scattering processes are studied in the framework of

general local current-current interaction.  The scattering amplitudes

for such processes are expressed in a simple factorized form in terms

of helicity form factors for the current vertex functions.  These ex-

pressions explicitly display the full kinematic content of the local

current-current interaction and are used as the basis for a systematic

study of possible ways to test the V-A structure of the weak current

in high energy neutrino scattering processes.  A direct test in an

"inclusive experiment" consists of measuring the outgoing lepton

polarization.  Alternative tests from angular and spin correlations

"
are possible only in"exclusive experiments. Several examples of

this latter type of experiments are given:  (i)  pure lepton scatter-

ing processes,  (ii)  neutrino scattering off spin zero (nuclei)

targets,  (iii)  quasi-elastic scattering off polarized neucleon,

(iv)  quasi-elastic hyperon production (decay asymmetry) and (v)
*

single pion production in the N  region.
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I.  Introduction

All present experimental evidence in weak decay processes is

consistent with the V-A theory of weak interactions.1  The weak vector

(V) and axial-vector (A) currents played an essential role in the

remarkable theoretical developments beginning with the Conserved-

Vector-Current hypothesis and culminating in the successes of "current

algebra".1,2

The weak decay processes all involve rather limited ranges in

the energy and momentum-transfer variables.  The neutrino scattering

processes, which are just becoming experimentally feasible (both  in

existing laboratories and with the projected new generation of accelera-

tors) promise to extend the range of these variables to entirely new

territories.  This will open up vast domains of the weak interaction

hitherto.unavailable for our scrutiny.3  The first obvious questions

are:  at these high energies and large momentum transfers, are these

processes still describable by an effective current-current local inter-

actjon Hamiltonian and, if so, is this interaction still a V and A

combination?  These questions must, in principle, be answered by

experiments in the affirmative before further comparison with more

detailed theoretical predictions based on this basic structure together

with other dynamical assumptions can be made truly meaningful.

Consequences of the local V-A current-current interaction in

neutrino scattering processes have been studied before.4,5  Pais

and Treiman, in particular, have exhibited the "full content" of the

locality assumption for such processes by giving the energy and angular

distributions for the outgoing lepton. Assuming the most general form
5
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of local (non-derivative) interaction, we study in this paper in

considerable detail the resulting energy and angle spectrums as well

as angular and spin correlations in an arbitrary neutrino-scattering

process with the specific aim of seeking particular cases in which

the presence of any local scalar (s), pseudo-scalar (P) and tensor (T)

admixture to the V-A interaction can be experimentally detected.

The systematic investigation of all possible processes of this

type for our particular purpose is facilitated by a helicity-like

67
formalism '  which  (a)  suggests the most natural variables to use

in analysing such processes,  (b)  defines helicity form factors for

arbitrary current vertices which are natUral generalizations of the

familiar GE and GM form factors for nucleon electromagnetic current

vertex and  (c)  allows us to write down a general expression for the

scattering amplitude which compactly displays all the kinematical

contents of current-current interaction in a fattorized form (in terms

of the helicity form factors) and leads to expressions for angular and

spin correlation functions in the form of simple matrix products.

In Section II we spell out our basic assumptions.  In Section III

we introdece the helicity expansion for the current vertices functions.

In Section IV we give the general expressions for the transition

amplitude and intensity distribution of an arbitrary neutrino scattering

process with general local interactions.  It is pointed out, as is

undoubtedly known to others, that if the lepton mass can be neglected,

the most unambiguous way to distinguish the V-A interaction from the

other types (S, T or P)is to look at the polarization of the outgoing

lepton.  For neutrino initiated reactions, this should be purely left-
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handed if V-A is the only interaction involved and purely right-

handed if any combination of S, T and P interaction is responsible.

For anti-neutrino initiated reactions, the result is the converse.

Since the measurement of lepton (mainly muon) polarization at very

high energies is an extremely difficult task,  we examine possibilities

for testing the V-A theory through angular and (target) spin correlation

experiments.  The method used is explained at the end of Section IV and

specific Oxamples are given in Section V.  These neutrino processes

include:  (i)  Pure leptonic scatterings;  (ii)  Quasi-elastic scattering

off spin zero (nuclear) targets;  (iii)  Quasi-elastic scattering off

polarized nucleon targets;  (iv)  Decay angular correlations in hyperon

production, and  (v)  Angular correlations in single pion-production

in the N* region.  These tests involve the measurement of the outgoing

lepton angular distribution (one variable only) in either the

differential cross-section [(i) and (ii)] or in certain asymmetry

functions [(iii), (iv) and (v)].  For maximum statistics, data obtained

at different incident energies can be combined and integrated over to

obtain the needed spectrum.

For high energy scattering processes, the lepton mass can,

for all practical purposes, be neglected.  In Appendix A we briefly

indicate the lepton mass correction effects.  In Appendix B we describe

some properties of the helicity form factors and give the explicit

relations to the conventional invariant form factors for the case of

spin 1/2 particles.  In Appendix C we give some detailed formulae on

the single-pion-production process discussed in the text.
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II. BASIC ASSUMPTIONS

We are interested in the neutrino scattering processes,  (Fig. 1):

 v} + A+ {£3 + B

V                 i                                                                                  (1)

where Z stands for either the electron or muon and A and B can be leptons

(pure leptonic processes) or hadronic systems (semi-leptonic processes).

In the latter case, A is usually a single particle state while B may be

a single particle or multi-particle hadronic system with or without

additional lepton pairs.  For definiteness, we shall consider explicitly

the neutrino initiated processes (first line in (1)) and refer to the

A, B systems as hadrons, all considerations obviously remain valid for

the anti-neutrino initiated reactions and for the case where A, B are

leptons with little change in the resulting formulas.  We shall remark

on the necessary changes at the appropriate places.  We denote by k,

k' , p, p' the 4-momenta and  A 'A" ,C,a' the polarization indices of the

states  v, £, A and B respectively.  In general, charge labels will be

omitted for conservation of indices.

We assume a general local current-current interaction.  The

transition amplitude for the process (1) (first line) is of the form

f = (G/42) <k'x'Ij (0)1kx><p'c' IJ(0)1Pc,      (2)
where j(x) and J(x) are the weak currents associated with the v-2

(leptonic) and A-B ("hadronic") vertices respectively. These currents

can be an arbitrary combination of the five types of possible currents

S, V, T, A and P.
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Since the incoming neutrinos usually come from pion (or K-

meson) decay in flight and are known to be purely left-handed, we can

assume  they are descri bed  by  the two component theory  wi th

<k'x'Ij (0)lkA> = Ox'(k')r(1+Y )u (k)               (3)5 X

where r stands for some combination of 1, YU and al'vand x E -1/2

because of the factor (1+y ). Since Eq. (3) automatically implies
5

parity non-conservation in these processes, the distinction between

the scalar and pseudo-scalar currents as well as the vector and axial

vector currents at the hadronic vertex (Eq. (2)) becomes unnecessary.

From now on, J stands for some combination of S (scalar as well as

pseudo-scalar), V (vector as well as axial vector) and T (tensor)

currents and Eq. (2) becomes

f       ,        ,                 =       (G/ ,/2 ) [<k' A'Is+Ik,-i, <p'c'ISI pc,
A c 'C

+<k'x'Iv lk,-1, <p'c'Ivulpa,      (4)
+<k'x' It+ I k,-· > <p' a' 1 TlivIpo>]

U V

The first factor of each term is given by an expression of the form

(3).

We shall neglect the lepton mass for most of our considerations

since we are mainly interested in high energy regions where the

existing theory has not been tested before.  The lepton mass can be

easily incorporated,however, in the ensuring considerations. Appendix

A indicates how this can be done should it become necessary.  We shall

not consider radiative corrections which,modify strict locality, nor

shall we consider second order weak interaction effects for which we

know of no reliable estimates.

To begin with, we study the kinematical structure of each of

the current vertex functions appearing in Eq. (4).
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III.  THE CURRENT VERTEX FUNCTIONS8

The current vertex function <p'x'  J(0)  pA> is related to the

decay current matrix element <p'x', PA IJ(0)10> by crossing.  It is

a familiar fact that in such decay processes, the kinematics of the

angular and spin correlations are much simplified if the transition

amplitudes are expressed in terms of the center of mass (CM) variables

of the· (p', B) pair and if x', i are chosen to be the helicity indices. 

This suggests that for the matrix element <p'X' IJ(0) Ipx>, it is most

natural to choose our variables in the Brick-Wall (BW) frame in which

the space like 4-momentum transfer q = p-p' is of the standard form

(0,0,0 '/q2). Refering back to Eqs. (2) or (4), because of the relation

q = p-p' = k'-k we see that both current vertices can be simplified

at the same time by this choice.  Furthermore, since the transiton

amplitude f is a Lorentz invariant (j and J are always contracted),

there is no loss of generality in choosing a particular frame to

evaluate the vertex functions.

(i) Definition of States
10

In analogy to the well known Jacob and Wick9 CM system helicity

states, we proceed to define the particle states Ipx> and Ip'x'>in the

BW Frame as follows:  the standard BW frame state for the "incoming" (or

first) particle is defined to be

|psx,  = 83(U) |OX>                              (5)

while that for the "outgoing" (or second) particle is

 psx'> = 83(-u')1Ork'> .                    (6)
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Here 83(u) denotes a boost along the positive 3-direction characterized

by the hyperbolic angle u and  OX>  are the usual rest frame angular

momentum states.  The standard BW Frame vectors (Ps, P;) are of the form

Ps = M(ch u, 0,0, sh u)
(7)

ps = W(ch u", 0, 0, -sh u')

with M2 =-p2, W2 = .p,2 and

M sh u = (q2-M2+W2)/2 492

W sh u' = (q2-W2+M2)/2 042                (8)

so that q = p-p' is of the standard form (0,0,0, /q2). A general

configuration of the vectors (p,p') in the BW frame can be obtained

from the standard vectors, Eq. (7), by a common SO(2,1) transformation

which leaves the vector q invariant (i.e. Lorentz transformations

involving the 0, 1, 2 axes only).  Denoting this tranformation by

0(0, 0) we have:

 PX> = 0(9,0)|PSX>
(9)

 p'X'> = 0(*,$) PSA'>

where 0(4,0) is chosen to be a boost along the 1-axis by the (hyperbolic)

angle * followed by a rotation around the 3-axis by the angle 0, i.e.

0(0,0) = R3(0)81(0)'
(10)

10,

the general BW frame momenta (p,p') are therefore parametrized as:

p = M(ch u ch lit, ch u sh *cos 4, ch u sh Wsin  0, sh u)
(11)

p '     =    W (ch    u 'ch   0      ,    ch    u  'sh   *cos   0,    ch    u 'sh   *sin      0,-sh    u  ').
0:
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With these definitions, let us turn to the various vertex

functions that enter Eqs. (2) and (4).

(ii) Scalar current

Using the definition (9), the scalar vertex function in the

brick wall frame can be written

<p'X' ISIpx>=<PSA'10-1(4,$)S O(4,$)IPSA>

(12)

= <psx' ISIPsx>= Sx'x(q2)

-1

where we used the fact that 0  SO = S (S is a scalar) and that Ps and

p  depend only on the invariant variable q2, Eq. (7).  The second line

in Eq. (12) defines the "scalar form factor" or "reduced matrix element"

SA'x(q2).  This equation shows that the vertex function <p'A'IS.Ipx>

is independent of the variables W and 0 .  It is shown in Appendix B

that

SA'A(q2) = 60'A+X'Sx(q2) (13)

which expresses angular momentum conservation.

(iii) Vector currents

Let the unit vectors in the BW frame be  {e l),e l)'e 2)'e 3)3

We define

eY+1)=  C eyl)-i e92))/ 42. (14)

and use the set
{ey  ; a=+1,0,-1,3} as our basis vectors.  They satisfyla

the orthonormality and completeness conditions:
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e, ."*e(B)  =6 8
Ca) 11           a

(a)0    v* uv
(15)e    e, , =g

Ca)

where e
--eCO) and

e
- e,. . i =+ 1,3.  The vector current can

(0) _ (i)

(1

be written as

Vp = e   BV(a)                    CP (3) p m,
(16)

(,)     = ec) V  te(m) V
where m = +1, 0, -1 and V(a) (a)kl "=e v  .  In analogy with the scalar

li

case, we can now write down the general expression for the vector vertex

function in the BW frame,

<p'X' IVU(0)IPX> = <p X' 10-1(0,0)VV(O)0(4,0)1Psx>

=e(a)*D(*,0)aBV(81
(q2)

(17)

where

VA A)(q2) = <PSA'IV(a)(0)|Psx>
(18)

D(*,4)33= 1, D(*,0)3m= D(*,0)m3= 0

D(*,0)mn = e-im48(4)mn
(19)

(1/2(1+ch 4) -Shlp/,/2

(1/2)(1-ch 4)   and

a  (4) m n       =                                                                       -sh 4/  ,/3                                           c h

W sh*/,/2.

(1/2)(1-ch W) sh 0//2- (1/2)(1+cht)  
Eq. (17) is an expansion of the vertex functions in terms of the

( B)
form factors Vx'x which depend only on the invariant variable q2 (together

with possible "internal variables" if the final state is a complex

system).  The (4,0)-dependence of the vector vertex function is explicitly

exhibited in the D-functions.  Angular momentum conservation conditions

again impose the constraints:
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(3) 2 V(3)(q2)
VA,x(q ) = 60,A+X'

(20)

V(m) (q2) = 6 V(m)(q2), m=+1,0,-1.
A'A m,x+A' x

The last equation indicates that the index m has the physical inter-

pretation of being the "helicity" of the current (with 4-momentum q).

(iv)  Tensor current

r    11 \) 0 11 V
We define basis tensors  ie(m'' e.m) ; m=+1,0,-1 } ,

e(m)Wv = i[e(3)ve(m)v-e(m)ve(3)v]/47 (21)

2, . Wv = _(1/2) i guvXC
Cm) e(m)Ac'

They satisfy the orthonormality and completeness conditions:

e' ' *·e(n) = -2,,*.2(n) =s n
Cm) (m)          m

e' ' *.2(n) = 2,.*.e(n) = 0
Cm) Cm) (22)

e, , e(m) *     3(m)*  1Cm)tiv    Ac  - e(m)live Ac   = 2(guxgvc - guagvx )

It is easy to see that under the SO(2,1) transformations (10), the
ru

two sets{ e(m)11vl and(e(m)v\'l transform separately as vectors in the

(0,1,2) subspace.  Thus, for example,

XC0(4,0)jix 0(*,0)Vce, 1
= e(n)pvo(*,0)nm (24)

(mj

where D( 4,4) is given by Eq. (19).
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The anti-symmetric tensor current operator may be written as

Tuv = e   UvT(m) + 2..UU 9(m) (25)
(m)          (m)

Wv*Twhere T(m3 = e(m) Uv

Qi    - -0   Uv*T
'(m) - e(m) wv

(26)

Using (24), (25) we obtain:

<p'A'ITUV(0)Ipx> = e(m)pvD(*,0)mn T(n) (q2)

+  (m)U\'D(11',0)mn T ;  (q2)
(27)

where the tensor form factors are defined by:

T(m  (q2) = <PsA'IT(m)(0)|psx>A'X

3  (m) 2 1/rn)

1%,A (q ) =< PQX'ITI""(0)jP x>. (28)

Again we have the constraints,

T (m) (q2) = 6 T(m)(q2)
X  'i X m,1+1'   A

(29)

7 (m)   c  2) 6 7(m)(q2)'x'x  \q   =  m,A+X
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(v) Remarks

a)     The expansions (12), (17) and (27) separate out the dependence

of the vertex function on the ( 0,0) variables in the form of D-functions

(reflecting the Lorentz transformation properties of the specific

current involved) from the dependences on q2 and other internal variables

which are determined by dynamics.

b)     What we have called SA'A, vx'X'  A'x'  A'x   and TA'X
can.,(3) v(m) T (m) 0 (m)

in a certain sense be regarded as the "helicity amplitudes" for the

process; Fig. (2),

J+A+B (30)

on account of the physical meaning given to the index (m).  For

convenience, let us call them helicity form factors.  These form

factors are the natural generalizations ofthe familiar GE and GM form

factors to general currents and arbitrary states A and B.  They

diagonalize the (unpolarized) intensity distribution function for the

general process (1) (as will be shown in the next section) and, when

2
q  is small and a non-relativistic reduction procedure makes sense, are

simply related to the familiar multipole moments with the associated

12
physical interpretations. Some further properties of these form

factors are briefly enumerated in Appendix B.

We should emphasize, however, the polarization indices  x,A'

are helicities in the BW frame and should not be identified with the

Jacob and Wick helicities9 defined for two particle states in the CM

frame for scattering processes.
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IV. TRANSITION AMPLITUDE AND INTENSITY DISTRUCTIONS

We can now use the results of the last section to evaluate

the transition amplitude, Eq. (4) for the general local interaction.

In the Brick Wall frame we can choose the coordinate axies such that the

momenta (p,p') associated with the A-B vertex are of the standard

form (Ps,Ps), Eq. (7).  Then, using (12), (17) and (27) for the current

vertices and the orthonormality conditions for the basis vectors, we

obtain - (B)*     *tA'a:,0(4,0'q2...) = (G//2-)jx,   (q2)D (0,0)aBJ(a)('a(q2...)

=(G//0.){D*(4,0)mn[vx,(n)*V,  . +t .(n)*T,,  +T (n)*tifim)(.a X' (m)('c X' (m)c'a]  (31)

+s X'Sa.0 + vA'(3)*V(3)0'a  

Note that Eq. (31) (first line) appears in a "factorized" form

2consisting of two vertex functions each depending only on q  (and its

own internal variables, if any) and they are connected by a D-function

depending on the var.iables ( 4,0) which specify the relative coordinates

of the two vertices (cf. Fig. 1).

To make the choice of variables clearer, we recall that our BW

frame is chosen such that

q        =    p. -p '         =    k '         -k        =     (0,0,0,     7)

P  = CPO,0,0'P)

k  = k(ch *, sh *Cos 0, sh *sin 0,-1) (32)

where p = (q2-M2+W2)/2 /q2 , po = (p2+M2)1/2

k = (q2+m 2)/2 /q2,

M being the mass of the target particl,e A, ml that of the lepton 1 and

W the effective mass of the system B (See Fig. 3).  These variables are
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related to the Laboratory frame incoming neutrino energy e, the outgoing

lepton energy s' and scattering angle eL and the magnitude of the 3-

momentum transfer
|9L| by

ch 4 = (E + s')/19LI

sh W = (,1 2/|9L|) Ctg  eL (33)

in the approximation of m1 = 0.

The leptonic form factors are, of course, explicitly known

from (3).  Straightforward calculations yield

1

v(-1) = tl(0 = i 0) = - 47 sl = - 2,/Z 2 (1 + mi/q2)2
/22 2

(34a)

and
1

vl    - vl 2 -1 2 1
(0) - -(3) - -1 t(-1) = -1 i(-1) = 2m£(1 + m /q2)2

2        2               2
(34b)

and all other form factors vanish due to the conditions(13), (20) and

(29).  We note also that the form factors given in Eq. (34b) are propor-

tional to the lepton mass.  In the limit ml = 0, which is a good

approximation for high energy processes, the only surviving (leptonic)

form factors are those in Eq. (34a) and they are all proportional to

"4-2. The transition amplitude (31) can, therefore, be written

f     = - 26,/EF[S ,  + eim48(4)m T      ]           (35a)
lal,c C a 0  (m)c 'a
2

f,      = - 26,/Ei2 eim#a(w)m V. .
-1 G",a -1 Cm)a'a (35b)
2

where, for simplicity, we have written T(m  for the combination

T, ,-T, , and absorbed a factor (-1/ d) into the definition of Sc'c.Cm)  Cm)
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Eq. (35) exhibits very compactly the full kinematic content of

the general local current-current interaction for all neutrino scatter-

ing processes.  The most obvious feature of this equation is the separa-

tion of the S-T and V interactions according to the helicity of the

outgoing lepton.  THis is expected (as can be seen by a close examina-

tion of (3)) and holds true for all possible targets A and final

states B.  This points to the most unambiguous way of testing the

structure of the local current-current interaction at high energies

and large momentum transfers--to the extent that the lepton mass can be

neglected,a purely left-handed outgoing lepton indicates V interaction,

a purely right-handed one indicates S-T interaction and the coexistence

of both helicities indicates a mixture of the two.  Although this sounds

very simple, the practical difficulties of measuring the polarization

of the very high energy outgoing lepton (muon in almost all planned

experiments) are quite formidable though perhaps not entirely insur-

mountable.

We are thus led to explore the more detailed structure of Eq. (35)

and to seek to distinguishing the two types of interaction through

angular or (target) spin correlation experiments.  To this end, we

write down the transiton probability for the general reaction (1) when

the lepton helicity is not observed:

A                           *                             *
I - paT,6'.[f- 0:,f-I»';T + fin;af 12';T]. (36)

A       B
Here p  and  p  are the density matrices for the states A and B respec-

tively.  Substituting (35) into (36) and using the explicit expressions

for 8( 4), we obtain the following general distribution in the variables

C 4,0),
6
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2 2   2               2            2
I * 26 q {sh 0 Il + (1-ch *) I2 + (1+cht) I3

+ sh*(1-ch *)(costI4+sintIS) + sh*(1+ch *)(costI6+sintI7)
2

+sh *(cos 20I8 + sin 20I9)                                       (37)

where the coefficients Ii' are given by

Il = V(O)V(0)  + T(+)T(+)  + T(-)T(-)  +
T - SS(0)T(0)*     *

I2 =   V(+)V(+)* + (T(0) + S)(T(0) + S)*]

I3 =  [V(-)V(-)* + (T(0) - S)(T(0) - S)*]
I4 = -47 Re[VC+)VC')* + (TC+) - TC-))(TCO) + S)*]

I5 = 47 Im[VC+ VC')  + (TC+) + TC-))(TCO) + S) ]
(38)

I6 = -/7 Re[VCO)VC-)  + (TC+) - TC-))(-TCO) + S)*]

I7 = 42 Im[VCI)VC-)  + (TC+) + TC-))(-TCO) + S) ]

I8 = -  Re[V(+)V(-)* + 2T(+)T(-)*]

I9 =   Im[V(+)V(-)* + 2T(+)T(-)*]

For simplicity, in Eq. (38) we have: (a) used (i) in place of (il) for the

superscript (m) and  (b) omitted a common factor consisting of the density

AB
matrices p p.  In other words, each term in Eq. (39) stands for:

J(a)J(B)  E pA pB   J(a)J(B)* (39)CT aT G O T T
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We note a few features of Eqs. (37), (38) wand (39):   (a)  The

form of the 9-term distribution function is the same for V and T-S

interactions in general.3,5  (b)  When the state B consists only of a

single particle or includes all possible final states, the form factors

can be taken to be real provided time reversal invariance holds.  In

that case, the sin  0 terms (Is, I7 and I9) vanish and we have a six

term distribution function.  In all of these processes, time reversal

invariance can be tested by measuring the asymmetry in 0  with all other

variables integrated over. (c)  The first three terms in (37) (Il'
13)

I2 and I3) which are the only surviving terms in the unpolarized quasi-

two-body cross-sections, are diagonal in the helicity form factors.

The other terms involve simple interference terms.  The same distribution

functions when written in terms of the Lab. or CM frame variables and

the conventional invariant form factors are invariably so complicated

as to be almost untractable except in the simplest cases.

We remark at this point some necessary sign changes in the

formulas presented so far if they are to be applied to anti-neutrino

scattering.  The first change comes in Eqs. (34a, b) where all the signs

of the polarization indices ( x' and m) should be reversed.  In addition,

all form factors appearing in Eq. (34a) change sign.  These changes imply

that the right hand sides of Eqs. (35a,b) change sign and 8(0) 1 is replaced

by 3(4)1.  These, in turn, imply that in Eq. (37) we should replace

sh * by (-sh *) and interchange (1-ch *) and (1+ch 111).

Although the general distribution function (37) is the same for

all types of local interactions, it is postible to test the structure of

the interaction in special cases when the contribution of a specific
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interaction (S, V or T) to some Ii's (or combinations thereof) vanish

due to the angular momentum constraints (13), (20) and (29).  A close

examination of these constraints together with the general formulae (37),

(38) and (39) should convince oneself that no "inclusive experiments'
,14

(in which the final state  B is only partially detected) can lend

itself to such tests.  In the next section we explicitly work out

,14 .examples of "exclusive experiments'   in which the V-A interaction can

be distinguished from the other types of interactions.  These examples

also serve to illustrate how the general formalism developed in the

preceding sections can be applied to individual cases.
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V.  EXAMPLES

(i)  LEPTON-LEPTON "ELASTIC" SCATTERING

We first consider the reaction,

vE + 1, + £+ vg,

(40)

15
which is among the experiments being comtemplated at NAL. The

intensity distribution for this reaction can be easily obtained from

(-)  (-1)the general formulas of the previous section by setting V   =v

S=   s and all other form factors zero (in particular, note T(m) =

t(m)-2(m)=0).

We    ge t

I(q2,0) = 8 62q 4(1+ch *)2

(41)

if V-A interaction still holds at high energies.  The S-P interaction,

if present, would contribute

I(q2,4) = 8 G'2q4

(42)

where we wrote G' in place of G to allow for a different coupling

16
constant.  The tensor interaction does not contribute to this process.

We also mention another lepton-lepton interaction which will

be investigated experimentally for its own right as well as in connec-

15
tion with the search for the intermediate boson. This is neutrino

lepton-pair creation in the Columb field of nuclei, e.g.

v£  +  Z+2  + T' +  v£,   + Z (43)
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Here, because of the photon interaction, the strict locality of the

4-fermion interaction is modified.  However, it has been shown
17

that the p- and u  energy spectra are markedly different for V-A

and S-P interactions.  (Again the tensor current, even if it is present,

16,
does not contribute to this process.  )

(ii)  Quasi-elastic Scattering off Spinless Targets

The cases where both A and B in reaction (1) consist of spinless

particles (nuclei) offer the only possibilities for testing the V-A

interaction in semi-leptonic processes from the lepton intensity

distribution alone.

Consider the quasi-elastic process where both A and B are single

particles of spin 0.  There is only one form factor for each type of

current and we get, from Eqs. (37) and (38),

I = 262q2[(IV12 + IT'2.- 1512)sh24

+(1/2)IT + S12(1-ch *)2 + (1/2) T-$12(1+ch *)21

(44)

We should therefore observe a pure sh2 4 distribution if the vector

(V-A in usual language) action is the only one present.  Deviation from

such a distribution indicates the presence of tensor or scalar admix-

tures.  This case is completely analogous to that of the K decaye3

where the hyperbolic angle * should be replaced by the decay angle e

in the CM system of the leptons.
18

The case where the final state B consists of two spinless
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particles is also, in principle, capable of distinguishing the V-A

interaction from the other possibilities.  There are only three

independent vector-axial vector form factors, V . entering the 9-term(m)
om '

intensity distribution (37).  We shall not enter into the details here

because of the lack of practical applications.  It is perhaps worth

noting, however, that this type of process is again very closely related

19
to the K decay in its kinematics.

e4

(iii)  Quasi-Elastic Scattering off Polarized Target

We now consider the process

v  +N+ £ +N'
1                              (45)

where the initial nucleon is polarized.'  The final particle N' can

be any spin   baryon.  Our standard BW frame is related to the laboratory

frame by a boost along the recoil N' direction which can be chosen

conveniently to be the negative 3-axis.  Let us further choose the

polarization vector of the target N to lie in the 1-3 plane and form an

angle e with the positive 3-axis in the laboratory system.  The scattering

amplitudes depend on four variables which we choose to be q2, 0,0

and 0.

The general formulas (37) - {39) can be applied to this case with

the following substitutitons for the initial and final density matrices:

11

p r = · ·(1+pg'n)ar =   dIK(0)PK dl(-0) (46)

B

pa''r'= 6T'C'
where p is the  Jarization of the target,  Pi:   =  (1 +p) and dl/2 (0)
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is the usual spin   rotational matrix.  Substituting into (39), one

obtains

JCO)J(0)* = · [IJ_+12 + IJ+-12] + pcose {IJ +12 - 1 J+-12]

(+) (*1*   1
J  -  J         = f( 1 + Pcose )1 Ji: ,=t 1 2

Jct,JCO)*   1           *=       ·ps  i   n e        J          J .1.-

J(0)JC-)* =  psine J_+J _

Jct,JC-)* = 0 (47)

where we have omitted the superscript (m) on the right since m = c'+0.

These results can be applied to each term in Eq. (38) yielding ,

I. = a. + pcose
bi

i = 1,2,311

= psin e ai for i = 4,5,6,7

= 0. i = 8,9 (48)

Eq. (48), when substituted into Eq. (37), gives rise to a ten-term combined
-

correlation function in the variables 4,0  and e.  The contribution of the

vector form factors to the coefficient functions are:

al I  IV-+12 + IV+-12]

bl I  I'V-+12 - IV+-12]

1,   :2a    =  b    =  -I J     I
2 2 41 ++1

a3 = - b3 = t'J--12

all = - (1/,/Z) Re V. .. .V _
*

a5 = (1/12) Im V  V++ +-
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*

a6 = -(1//I) Re V_ V__
*                               (49)

al = (1//F) Im V_  V-_
The four vector form factors appearing above are essentially the usual

GE, GM and their axial-vector counterparts.  The exact relations between

the two sets are given in Appendix B.  It is clear from (49) that if

this process is mediated only by the usual vector current then there

exist four relations among the ten coefficient functions ai' bi.  The

two more useful ones among these relations are already explicitly displayed

in the third and fourth equations in (49).  From Eqs. (37), (38), (39),

(47) and (48), it is straightforward to verify that the presence of any

scalar or tensor currents will spoil these relations.  This suggests the

possibility of testing the structure of the basic interaction by measuring

the correlation functions and checking these relations among the coefficients.

In practice, it is very unlikely that the complete correlation distributions

(37) (38) and (48) can be obtained experimentally.  It is therefore desireable

to see how much of the phase space volume can be integrated over without

distroying the relevent information to be extracted.

First of all, the 0-dependence is not of particular interest for our

purpose, thus can be integrated over.  The resulting differential cross-

section (for fixed incident energy) is:

fla   _           G 2q 2
dq2 -  32L 62Mz

{sh24 al(q2)+(1-ch *)2a2(q2)+(1+ch *)2a3(q2)

+pcose[sh2*bl(q2)+(1-ch *)Ab2(q2)+(1+ch *)2b3(q2)]} (50)
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where e, the Lab. neutrino energy, is given in turns of the BW

frame variables by

11
E = (1/4M){(q 2-M2+M'2)+[q2+(M'-M)2]f[q 2+(M'-M)2]2 ch 4} .

The first three terms (ai) give the spectrum function for unpolarized

target

A   +      (qi* )     =     q02  |  0=0    +    *Fle=,1

( 51 )

The last three terms (bi) can be isolated by forming the asymmetry

function

da       da,
A_(q   4 )      =     dq-zle =0     -     dq  1 0-Tr .

(52)

The q2- and 4 -dependences can be separated only by measuring A i at

many different incident energies.  (At fixed ene rgy, the two variables

are related.)  With these available, one can divide A i by the common

22 22factor (G q /32 w i  M) and integrate over the experimentally available

2
range of the variable q  at fixed 4 .  The resulting  4-spectra for

the two cases are

<a,> <an> <a >

sh24 {<bi>} + (1-ch*)2{<bz>}+ (1+ch*)2{<b3>}
1                                  2                               3

(53)

where  <ai>
= /dq2 ai(q2) and <bi> = /dq2 bi(q2).  From (49) we infer

that if the weak current remain to be a vector at high energies, we

should expect

<a2, = <b2>

(54)

<a3, =-<b3>
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We also point out that if second class currents are absent, V _ = V -+

(cf. Appendix B) and consequently (cf. Eq. (49)),

bl   =     <bl>  = 0• (55)

It is worth noting that although we integrate over q2 in order

to gain maximum statistics, the tests (54), (55) are free from any

2assumption on the q -dependence of the form factors.

For anti-neutrino scattering the coefficients of the (1* ch *)

terms are interchanged.  Consequently, the relevent relations are,

<a    >   = -    <b    >22

<a3, = <b3>
(56)

and

<bl>=0.

(iv)  Quasi-Elastic Hyperon Production

Here we consider processes of the type

v+N+E+Y
LN'+7T

(57)

where N is a target nucleon (unpolarized) and Y a hyperon.  We choose the

hyperon decay plane to be the 1-3 plane and denote by e the decay angle

of N' in the hyperon CM frame.  The overall process (57) is specified
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by the four independent variables q2,9,0 and e .

The density matrixes for the initial and final states are

A    1
POT = 2 aT

08'T'  M d&C'KCe)laK'2di,-Tke)

a2  [1-0'2.8]c' T'
(58)

where a +lare the Y-decay amplitudes for+ helicity outgoing N' (they are

simply the sum and difference of the conventional as' ap) respectively;

la 2 =la+12 + la-12 = las12 + lap12 ;a is the asymmetry parameter

-2

[la  2 _la-12]lal-2 = 2(Re as ap*)laI and n the polarization vector

with components (sin e, 0, cos e).

The similarity between this process and the polarized,target

case is obvious (compare Eq. (58) with (46)).  All considerations of the

last subsection can be carried over with very little change.  In particular,

the combined correlation distribution in the variables 4,0 and e is

given by Eqs. (37), (48).  The coefficients {ai' bi}  are expressed in

terms of the vector form factors by formulas similar to Eqs. (49) with

1 21the following changes:  (a) an overall factor of 2- a =2-( las 12+lap 12) is

inserted,  (b)  the form factors V _ and V-  are interchanged and  (c)

bl, b2' b3' a4' a5' a6 and a7 acquire an additional minus sign.  The

phase space for the present process involves one more integration in the

0-variable.  The two spectrum-functions A +(q2, 4) are obtained in this

case by integrating over the entire e-range for A  and taking the

difference of a two-fold division of events with 0 <e< 1
and  <e<Tr2

for A- (asymmetry of N' with respect to N in the Y CM frame).
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Again the q2-variable may be integrated over in the manner described

before. The relations which serve as tests of the V-A structure of the

weak current are now (56) for the neutrino initiated reactions and (54)

for the anti-neutrino initiated reactions.

It may be interesting to note that similar tests of the V-A

interaction can be carried out in polarized hyperon B-decay. Essentially

all the above analysis go through if the variables (0,0) are replaced

by the decay angles of the lepton in the (£  v) CM frame.  Data on these

processes are being accumulated at such a rate that it appears such an

analysis may be feasible in the very near future.
20

(v) Single Pion Production in the N* Region

Finally, we consider the single pion production process

v+N  + £ +N' +1 1
(59)

with the final (N'  ) invariant mass in the low energy region where N*

dominates.  As.a first approximation, we assume that the final (N'w )

3+
system is in a pure  JP = 2  state (N*) in its CM frame.  Then the

initial and final density matrices can be written,

A    1
PaT = 260·r

(60)
pB'T' = |a'2KE+id-T'KCe) d-a,KCe)

-2

where   a  stands for the magnitude of the N* decay matrix element

<N*  N' > .  Substituting (60) into (39), one can obtain the expected

distribution in the variables 0 ,0 and e from (37) and (38).
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As before, we integrate over the 0 -variable obtaining a six-term

distribution expressed by

I. = a. + b. cos2 0 i = 1,2,3111
for

(61)=0 i = 4,5,6,7,8,9

The vector current contribution to  ai'
b can be easily worked out and

i

they are

3al = bl =   [ I v (0)   l2 + I v (0) 12]

a2 =  IVC+) + 12 + IV(+)-12]

b2 =   I'VC+) + 12 -1 V(+)-121

83 =   I'V(-)-12+ IV(-)+12]
(62)

b3 =  I'VC-)-12- Iv(-)+12].
Here the form factors are labelled by the current helicity (m) and initial

N polarization. with  c' = m-c  omitted.  The first equation in (62)

can be used as a test of the V-A interaction in the same manner as described

in the previous two sections.

In order to improve on the (rather drastic) approximation made

above, we may include into our consideration correction terms brought

about by other partial waves.  In the N* region, the JP =  -* states

are expected to have some influence.  An analysis may be carried out

1+ 3+
retai ni ng the three parti al waves  2, -   and  2   . The procedure  used  i s  the

same as before, the algebra becomes slightly more involved.  We give the

detailed results in Appendix C.  The combined 4, 0 and e correlation

di stri buti on consi sts  of  1 9 i ndependent terms.     Si nce the number  of  form

factors proliferates with the inclusion of more states, we found it

4
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convenient to assume time reversal invariance.  This enables us to

invoke the Watson's theorem to fix the phases of the form factors in

terms of the measured (  N) phase shifts, thus reducing the number of

unknowns.  This way, the 19 coefficients in the correlation function can

be expressed in terms of three known phase shifts and 14 (modulus of)

vector form factors if V-A interaction alone contributes.  Thus, five

relations among the 19 coefficients exist and again serve as the basis

for a test of the V-A interaction at high energies.  For the details

of this calculation we again refer the reader to Appendix C.  Here we

only note that the procedure used is, in a sense, the reverse of that

used by Pais and Treiman in K and = decays. There, the V-A
19

e4     -2 4

interaction is assumed and the phase shifts treated as unknowns to be,

solved from the coefficients of the correlation function.
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(vi)  Conclusions

We have given a formula for the general intensity distribution

function for an arbitrary neutrino scattering process in the local

current-current picture in terms of helicity form factors.  We have discussed

various ways to test whether the basic V-A interaction structure of the

weak interaction Hamiltonian deduced from low energy decay experiments

still remains valid for high energy neutrino scattering processes.  All

21
considerations are independent of dynamical assumptions. It is quite

evident that none of these proposed tests are easy to carry out in the

laboratory.  However, given the importance of the issue involved, the

clear lack of other alternatives as revealed by this analysis and the

rapid advancement in experimental techniques we hope, in time, most of  .

22
these tests can be carried out.

Aside from the proposed tests, we hope the analyses in this paper

also succeed in demonstrating the usefulness of the BW frame variables6

( 0,0) and the helicity form factors, in describing all types of weak

scattering processes.  The same halicity form factors, in fact, can be used

in other types of weak and electromagnetic processes to great advantage.6
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Appendix A

We briefly indicate the lepton mass corrections to the various

formulae in the text.  This is rather easy to do in our formalism.  Thus,

substituting Eqs. (34a) and (34b) into Eq. (31), the general scattering

amplitudes are, (compare with Eq. (35)):

f, , = - 26(q2+m£)0[Sc'a + ein148(4)0 T.    ]
*a,c lm)a'a

+JIGm£(1+Ing/q2)* [VC;) + eir,103(0)m V.     1
o  lm)('c

f,   ,  = - 2G[(q2+mg)dr V, , ,  - ,/Zing(1+m£/q2)*]eim#81(11,)Ill-     (A-1)-2 0,0 (m)c a

The intensity distribution can then be obtained from (A-1) and (36).

The distribution function is again of the form Eq. (37) but with Ii

containing more terms than those given in Eq. (38) due to contributions

from the second terms in Eqs. (A-1).  They can be easily worked out when

necessary, we do not give the complete expressions here.

As a consequence of the lepton mass terms, the outgoing lepton

polarization is not 100% for pure V-A or S-T interactions.  The correction

is roughly of the order m2/q2 (see Eq. (A-1)).  Similarly, the distribution

functions (41), (44), (49), (62) and the constraints (54), (56), (62) all

are subject to additional corrections of this order. For  lectron neutrino

interactions m /q2 is for all practical purposes zero.  For  muon neutrino

interactions m2/q2 = 0.01 for q2 = 1(Gev/c)2.
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Appendix B

We briefly enumerate a few relevent properties of the helicity

form factors defined in the text.  We recall the definition of such form

factors,

J(m) = <PsA'IJ(m)(0)1Psx> = <0-A'183(-u')J(m)(0)83(u.)lox> (B-1)

Here, as in the text, J(m  denotes the m-component of some general current

operator.  The m-index is defined such that

           = mJ(m) (B-2)
[J m (0),J31        (0)

where J3 denotes the angular momentum operator along the 3-axis.  (An

exception to this statement is V which corresponds to m=0 but, for
(3)

obvious reasons, we cannot, and did not, label it V   ).  Sandwich Eq. (8-2)

in between the states <psx' I and Ipsx>  we get (A + A')J T  = mJA,x,

which implies

J(m) = 6      J(m)
X'X m,X+A' A '

(B-3)

The hadronic states IPsx> and Ip;A'>  have definite transformation

properties under the space-and time-inversion operators.  It is therefore

meaningful to spearate the S, V, T currents in the text into the usual

S, P, V, A and T currents which also have definite transformation properties

under these discrete transformations.  One can then derive consequences

due to covariance under these transformations.  This is easy to do with the

explicity definition (B-1), we shall not go into it explicitly here but

rather confine ourselves to a few remarks.  Constrainsts on the form

factors due to these symmetries arise only if all the momenta (both the

initial and final states may be composite systems with internal momenta)

lie in a plane.  (So that the operators U R ( ) and UTR2(") will leave the
P 2

momenta unchanged.)  Otherwise one only relates form factors at different
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momentum values.  As is well known parity relates J m  to J -m -xand
-X

time reversal invariance yields information on the phase of the form

factors and, in the special case where the initial and final states are

identical, symmetry relations in the initial and final variables.

As shown in the text the helicity form factors diagonalize the

unpolarized cross-section formula and yield simple expressions for spin-

and angular-correlation functions.  The relation between these form factors

and the conventional invariant form factors can be worked out easily for

any particular case from Eq. (B-1) according to the specific way the latter

are defined.  They can be also related to the non-relativistic multipole

moments familiar in atomic and nuclear physics.  To do this, simply

observe that the operator 83(-u')J(m)(0)83(u) in Eq. (B-1) can be decom-

posed into a sum  of terms irreducible under the rotation group 0(3)

(with parity).  When sandwiched between the rest frame states in (B-1), one

obtains reduced matrix elements which are generalizations of the multi-

pole moments.8

Finally we give the explicit relations between the vector and axial

vector helicity form factors and the conventional invariant form factors

for spin 1/2 particles.  From the definition

VA,A =  A,(ps)[Ywfl + ic#Vqvf2 + qpf3

+ YUY591 + iawVqvy592 + q'7593]ux(Ps)

P-U   U
q  -ps-ps , (B-4)

straightforward calculations yield

2                                                                         1V(3) = (AMfl+C' f3)(1+4A2/q 2)*-2x(2AS11+C'293)(1+AM2/q2) 1 = 1-
-A,X                                                               2
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VC')A= (2Afl-q2f2)(1+8M2/q2)* -21(8Mg -q292)(1+4A2/q2)

V   = 4252[-(fl+2Af2)(1+6M2/q2)lr + (91+AM92)(1+482/q2)

Y '1 - = 1=2[-(fl+2Af2)(1+AM2/q2)Jr _ (gl+AM92)(1+4A2/q2)

(B-5)

where aM = M'-M and A = (1/2)(M+M').

The vector parts of the helicity form factors V and V
-

can be(0)      (+1)

readily recognized as multiples of the conventional GE and GM form factors

respectively.
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Appendix C

We give some detailed results on single pion production in the N*

region.  The process under considerations is

v+N+11 +N'+11 ( C-1 )

In our convention, the toal momentum of the (N' ) system is p'.  Let us

denote the relative momentum of this two particle state bYr and the N'
polarizatioh by K.  This process is described by five independent varia-

2bles (0,9,q,eand W )where w is the invariant mass of the N'Tr system.

In  the  regi on where   W is  near or below  the  two pion production threshold,

we assume the matrix elements of the current operators between the states

+  3+
(N'Tr) and N are dominated by the (N'Tr) system in the J|  = k, 2

states.

The helicity form factors which enter into Eqs. (31), (35) and (38) can

be written:

<PQ;r'<IJCm) Ipsa> = <0;r,K|83(-u')J(m) B(u)100>

=E ,dlr ,ie)[JCm)(drf)+2KJ(m)(*-)]+E,dEF, (e)J(m)(.3+)0 -a G C 0-G K     C C
(C-2)

where the second superscript indicates the JP state of the (N'w) system.

In the region of W-variable of interest to us, elastic unitarity in

the (N'w) channel holds.   If one assumes time' reversal invariance, as is

consistent with present experimental evidences in high energy scattering,

then the phases of the form factors in (C-2) are identical to the

elastic scatteridg phase shifts in the appropriate (N'w) states.  For

1+  1-simplicity in notation, let us denote the phase shifts in the 2,2 and
3+                                           (m)(JP)
   states by a, B, y  and the form factors Jc,c

in these states by

(m)    (m)    (m)
a a  m B c  'Y a   respectively.  Then, substituting (C-2) into Eqs. (37)

and (38) yields the combined correlation distribution in  4,0, e with the

result

1
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I.  =  a.  +  b.   cos2  0. +  C.   COS 0 i = 1,2,3111  1

=(a. + c. cos e)sin e for i = 4,5,6,7
1         1

= a. sin2 8. i = 8,9
(C-3)1

We give the contribution of the vector current form factors to the

coefficients {ai' b.. c.} :1 1

IL
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al = (ato)2 + (a-0)2 + (B_0)2 +  {.(Y+0)2+ (7_0)2]

.(B+Oy O - B_Oy-0) COS (B-y)

bl = 3{ [(Y+0)2 + (y-0)2] + (B+OY+0 - B-Oy-0) COS (B-Y)}

cl = 2(a+08+0 - a-08_0) cos (a-B)

a2 =  (a++)2 + (B++)21 +  {(Y++)2 + CY_+)2]

b2 =     CY++)2 - (Y-+)21 - B++Y++ Cos (B-y)}

++ +  +
(2 = - a+ B   COS (a-B) + y  a   COS (y-a)

a3 =  (a--)2 + (B_-)2 +  [(Y+-)2 + CY--)21

1·
(C-4)

28_-y_- COS (B-y)

b3 =   < CY--)2 - (Y+-)21 + B--y-- cos (B-y)}

(3 = a--B_- COS (a-B) + y--a_- COS (y-a)

a4 = - 42[(a++B+0 + B +a o) cos (a-B)

1, + O + n "r   +    O,
+ ily+ a+  + a+ Y+V + Wjy_ a- ) COS (y-a)]

(4  =  -  J CY- 7-0        A(B+ 7+0    +Y+ B+0  )-y_ B-0]  COS  (B-y)}

+ A .
a5   =   T2T(a++B+0   -   8+   a+U)   sin    (a-B)

+ · (Y++a+o + a++Y o + ,/IY++a_0) Sin (y-a)]
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(5  =   4  [1/3·(B++7+0  -'  Y++B+0)  +  y_+B_0]   sin   (B-y)

a6 = -
12- [(a_08_- + B_oa_-) cos (a-B)

+  (y_Oa-- - a_Dy_- - ,/Ta+OY+-) COS (y-a)]

(6 = - 422 <-Y+OY+- + | qi(B_Oy_- + y-OB_-)

-B Oy -] cOS (B-y)

al = 47 [(a_08_- - B_oa--) sin (a-B)

+   (y-0 a- + a_oy_- - ,/Ia+07+-) sih (y-a)]

c7  =   421  IJI(B_oy_-  -  Y_08_-)  -  8+07+-]  sin   (B-y)

a8 = (d/4)[ (y-+7_- + Y++Y+-) + (B++Y+- - y_+B_-) coS (B-y)

+
a9 = (,/3/4)[-B+ Y+- - y_ B_-] sin (B-y)
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The 19 coefficients are given in terms of 3 known phase shifts and

14 unknown form factors.  Thus, in principle there exist five relations

among the correlation coefficients which can provide as tests of the V-A

interaction.  It is not hard to see from Eqs. (C-4) however, that these

relations are rather complicated in general.  In the text we consi dered

(m)    (m)
the zeroth order approximation of setting a c  =B  c  =0 and obtained

one simple constraint relation al = 3bl.  One can improve on these
I

results by attemptong to solve the equations in (C-4) in the approximation

that (a(m) / y(m) ,) and (B(m)(/ YCm' c') are small but non-zero.  We

shall not do this here explicitly.  It can be carried out in a straight-

forward manner when the result is called for.  Let us simply state that

the afor-mentioned relation a  = 3b  still holds to the first order
1           1

approximation in the small parameters (a/y) and (B/y).
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Figure Captions

Fig. 1  A general neutrino scattering process

Fig. 2  The effective current-hadron scattering process

Fig. 3  The Brick-Wall frame kinematics
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