OAK RIDGE NATIONAL LABORATORY operated by
UNION CARBIDE CORPORATION
NUCLEAR DIVISION
for the
U.S. ATOMIC ENERGY COMMISSION

ORNL - TM - 3242

VISCOELASTIC ANALYSIS OF IRRADIATED GRAPHITE WITH VARIABLE CREEP COEFFICIENT

S. J. Chang
J. A. Carpenter
D. W. Altom

NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a fingl report.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their emplovees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Contract No. W-7405-eng-26

Mathematics Division

VISCOEIASTIC ANALYSIS OF IRRADIATED GRAPHITE
WITH VARIABLE CREEP COEFFICIENT
S. J. Chang, J. A. Carpenter, and D. W. Altom

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
This document is
PUBLICLY RELEASABLE
$\frac{B \text { ang Steeb }}{\text { Authorizing Official }}$
Date: $6-19-0+$

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the
U. S. ATOMIC ENERGY COMMISSION

Table of Contents

Page
Nomenclature V
Abstract 1
Introduction 1
Revised Constitutive Equations 2
Formulation and Solution 6
Numerical Example 9
Conclusion 17
Acknowledgment 18
Appendix 19

Nomenclature
$\sigma, \tau \quad$ Stress
ε, γ Strain
D Accumulated neutron exposure
$J_{x} \quad$ Creep function in the transverse plane
$J_{z} \quad$ Creep function in the axial direction
$J_{z x} \quad$ Creep function in shear
$\mu \quad$ Poisson's ratio
$J_{p} \quad$ Primary creep
$J_{S} \quad$ Secondary creep
J_{o} Temperature-independent creep function
G Relaxation function
E Young's modulus
K Creep coefficient
$A_{o} \quad$ Material property constant
φ Stress function
$T_{x} \quad$ Boundary traction, x-component
T_{y} Boundary traction, y -component
ψ Dimensional change function
$\alpha \quad$ Coefficient of thermal expansion
T Temperature
$T_{a, b}$ Surface temperature
Z Coordinate in the axial direction
L Length of the cylinder
S. J. Chang, J. A. Carpenter, and D. W. Altom

Abstract

This report is an addendum to a previous report ${ }^{1}$ concerning a method of stress analysis for irradiated graphite which may be used for Molten Salt Breeder Reactor (MSBR) core design. To provide a refined analysis, the present method includes the effect of a variable creep coefficient which is caused by the nonuniform temperature distribution. To facilitate a simple formulation, it is assumed that the temperature dependence of the elastic response of the material is approximated to be inversely proportional to the creep rate. It is shown that the problem reduces to the solution of several associated (fictitious) elastic problems which have a common elastic modulus inversely proportional to the creep rate of the irradiated graphite. Numerical examples in the previous report were recalculated based on the present theory. It shows, for large dose values, an improvement to the previous method. A computer program is written for the purpose and can include the previous solution as a special case.

Keywords: stress analysis, graphite, neutron irradiation, dimensional change, temperature, viscoelasticity, lifetime, MSBR, creep coefficient.

INTRODUCTION
The graphite moderator located in a Molten Salt Breeder Reactor (MSBR) is subjected to intense neutron irradiation and temperature change. The irradiated graphite is known to exhibit the properties. of creep and dimensional change which depend significantly on temperature. A report ${ }^{I}$ was written to provide a method of stress analysis

[^0]for the purpose of MSBR core design. It applied the theory of linear viscoelasticity and reduced the problem to the stress analysis of several fictitious elastic problems. It was illustrated that the method can analyze the effects of any two-dimensional geometry, boundary tractions, temperature distribution, and neutron-induced dimensional change by calculating several elastic problems.

The method, however, was based on the assumption that the creep rate $K(T)$ was independent of temperature change throughout the cross section. This assumption, as shown in the next section, will lead to some error according to the preliminary analyses given in the previous report. ${ }^{l}$ It is the intention of the present report to provide a modified method so that the variation of $K(T)$ with respect to temperature is included in the formulation. The resulting analysis in the text shows that the modified formulation can also reduce the problem to the solution of several associated elastic problems. But these associated elastic problems have a common nonuniform elastic modulus, inversely proportional to $K(T)$.

The numerical examples of the previous report were recalculated. The results show an improvement of the method of analysis. The computer program in the present case includes the previous one as a special case.

REVISED CONSTITUTIVE EQUATIONS

The purpose of this revision is to provide a reasonable concern about the variation of the creep rate $K(T)$ with temperature in the creep function. The necessity of this modification is supported by the numerical values shown below.

The preliminary analyses for the temperature profile of the Moiten Salt Breeder Reactor (MSBR) presented in a former report indicated that the temperature ranges from $670^{\circ} \mathrm{C}$ to $760^{\circ} \mathrm{C}$ as shown in Fig. 4 of that report. The resulting variation in $K(T)$, as well as its consequence in the range of large neutron dose, will provide us the obvious reason why the modified analysis in the present report is necessary. In fact, the formula shown in Eq. (55) of the earlier report shows a difference
of 14% in $\mathrm{K}(\mathrm{T})$ for the temperature range from $670^{\circ} \mathrm{C}$ to $760^{\circ} \mathrm{C}$. With a neutron dose value of $D=3 \times 10^{22}$ nvt this will lead to a difference in creep function, shown in Eq. (19) of that report, of

$$
\Delta K(T) D=8.4 \times 10^{-6}
$$

when $K(T)$ is computed at $T=700^{\circ} \mathrm{C}$. The value of $\frac{1.5}{E}$ in the creep function is $8.8 \times 10^{-7}, \frac{1.5}{E}$ is understood to be the sum of the instantaneous and primary creeps. Therefore, the change in $K(T)$ • D in the creep function because of the temperature difference is important as compared with $\frac{1.5}{E}$. Furthermore, the term $K(T)$. D itself in the creep function for $D=$ 3×10^{22} nvt has a higher order of magnitude as compared with $\frac{1.5}{E}$ in the creep function. These facts indicate that, in creep analyses, the variation of $K(T)$ with temperature is not negligible and the variation of $\frac{l .5}{E}$ is of less importance. The latter fact will be used below as the approximation in our modified creep function as shown in the next paragraph. This creep function will be used later.

With the above concern, it is therefore reasonable to approximate the creep function in the following form

$$
\begin{equation*}
J(D)=\frac{K(T)}{K_{0}} J_{0}(D) \tag{I}
\end{equation*}
$$

with

$$
\begin{equation*}
J_{0}(D)=\frac{1}{E}+\frac{1}{2 E}\left(1-e^{-A_{0} D}\right)+K_{0} \cdot D \tag{2}
\end{equation*}
$$

K_{o} is the creep coefficient $K(T)$ computed at some average temperature and A_{o} is a large constant. Therefore, the initial response is represented approximately but the creep rate is exact. Hence the method is more effective for large dose range, and for temperature sensitive $K(T)$. For lower dose range the method of the previous report ${ }^{l}$ is more accurate. Since the present method will include the method developed previously as a special case, the solution for small dose can be obtained readily by assuming $K(T)$ to be constant throughout the cross section in the present method. The reason that this form of approximation is proposed
is that in Eq. (I), $J(D)$ can be factored into two parts, one depending on the space coordinates, the other on dose. This factorization still can facilitate the inversion operation in a series of derivations shown in the last section of this report. The constitutive equations based on Eq. (I) for a three-dimensional body can therefore be derived similarly to that in our previous report.

With the understanding of the new form of $J(D)$, the constitutive equations for the transversely isotropic graphites, as possessed by many kinds of graphite, are

$$
\begin{align*}
& \varepsilon_{x}=J_{x} *\left(d \sigma_{x}-\mu_{x} d \sigma_{y}\right)-\mu_{z} J_{z} * d \sigma_{z}+\alpha_{x} T+\psi_{x}(T, D), \tag{3}\\
& \varepsilon_{y}=J_{x} *\left(d \sigma_{y}-\mu_{x} d \sigma_{x}\right)-\mu_{z} J_{z} * d \sigma_{z}+\alpha_{x} T+\psi_{x}(T, D), \tag{4}\\
& \varepsilon_{z}=J_{z} *\left(d \sigma_{z}-\mu_{z} d \sigma_{x}-\mu_{z} d \sigma_{y}\right)+\alpha_{z} T+\psi_{z}(T, D), \tag{5}\\
& \gamma_{x y}=2\left(1+\mu_{x}\right) J_{x} * d \tau_{x y}, \tag{6}\\
& \gamma_{y z}=J_{z x} * d \tau_{y z}, \tag{7}\\
& \gamma_{z x}=J_{z x} * d \tau_{z x}, \tag{8}
\end{align*}
$$

where z axis is assumed to be the axis of mechanical symmetry and both Poisson ratios, μ_{x} and μ_{z}, to be constant. The Poisson ratio μ_{x} is defined as the ratio of induced lateral strain to longitudinal strain for a uniaxial test when both directions lie in the plane of isotropy (x, y). Whereas, μ_{z} is the ratio of the lateral strain induced in a direction in the plane of isotropy to the longitudinal strain in the direction normal to the isotropic plane. When these ratios are dose dependent, two creep functions, in addition to J_{x}, J_{z}, and $J_{z x}$, are required for the stress-strain representation. The notation (*) is used to represent a convolution relation, e.g.,

$$
\begin{equation*}
J * d \sigma=\int_{0}^{D} J\left(D-D^{\prime}\right) \frac{\partial \sigma}{\partial D^{\prime}} d D^{\prime} \tag{9}
\end{equation*}
$$

The terms αT and $\psi(T, D)$ represent the strains due to thermal expansion and dimensional changes resulting directly from neutron irradiation, respectively.

The generalized plane-strain conditions are defined by the case when the normal strain in a given direction, say the z direction, assumes a constant value ε_{o}, all derivatives with respect to z vanish, such that the net resultant force in the z direction vanishes. Under these conditions the system of equations, Eqs. (3)-(8), reduces to an equivalent twodimensional case

$$
\begin{align*}
& \varepsilon_{x}=\left(J_{x}-\mu_{z}^{2} J_{z}\right) * d \sigma_{x}-\left(\mu_{x} J_{x}+\mu_{z}^{2} J_{z}\right) * d \sigma_{y} \\
& +\left(\alpha_{x}+\mu_{z} \alpha_{z}\right) T+\psi_{x}+\mu_{z} \psi_{z}-\mu_{z} \varepsilon_{o}, \tag{10}\\
& \boldsymbol{\varepsilon}_{\mathrm{y}}=\left(J_{\mathrm{x}}-\mu_{z}^{2} J_{z}\right) \star d \sigma_{y}-\left(\mu_{x} J_{x}+\mu_{z}^{2} J_{z}\right) \star d \sigma_{x} \\
& +\left(\alpha_{x}+\mu_{z} \alpha_{z}\right) T+\psi_{x}+\mu_{z} \psi_{z}-\mu_{z} \varepsilon_{o}, \tag{11}\\
& \gamma_{x y}=2\left(I+\mu_{x}\right) J_{x} * d \tau_{x y} . \tag{12}
\end{align*}
$$

For an isotropic graphite, the following simplifications can be made in the generalized plain-strain formulation:

$$
\begin{align*}
& \mu_{z}=\mu_{x}=\mu \tag{13}\\
& J_{x}=J_{z}=J \tag{14}\\
& \alpha_{x}=\alpha_{z}=\alpha, \tag{15}\\
& \psi_{x}=\psi_{y}=\psi \tag{16}
\end{align*}
$$

and it follows that

$$
\begin{align*}
& \varepsilon_{\mathrm{x}}=\left(1-\mu^{2}\right) J *\left(d \sigma_{\mathrm{x}}-\frac{\mu}{1-\mu} d \sigma_{y}\right)+(1+\mu)(\alpha T+\psi)-\mu \varepsilon_{0}, \\
& \varepsilon_{y}=\left(1-\mu^{2}\right) J *\left(d \sigma_{y}-\frac{\mu}{1-\mu} d \sigma_{x}\right)+(1+\mu)(\alpha T+\psi)-\mu \varepsilon_{0}, \tag{18}\\
& \gamma_{x y}=2(1+\mu) J * d \tau_{x y} . \tag{19}
\end{align*}
$$

Thus, it is seen from Eqs. (17)-(19) that the viscoelastic stress analysis of an isotropic graphite requires the determination of oniy one creep function, $J(D)$, and one Poisson ratio, μ.

FORMULATION AND SOLUTION

In this section, a method of viscoelastic stress analysis is made to correspond to several equivalent elastic problems. These fictitious elastic problems have the same moduli of elasticity, inversely proportional to the creep coefficient $K(T)$. This differs from our previous analysis. Consider an arbitrary two-dimensional cross section where the neutron flux is assumed to be uniform over the entire section and the creep function $K(T)$ depends on the temperature distribution. As used before, ${ }^{l}$ the stress function, φ, is introduced by

$$
\begin{align*}
\sigma_{x} & =\frac{\partial^{2} \varphi}{\partial y^{2}} \tag{20}\\
\sigma_{y} & =\frac{\partial^{2} \varphi}{\partial x^{2}} \tag{21}\\
\tau_{x y} & =-\frac{\partial^{2} \varphi}{\partial x \partial y} \tag{22}
\end{align*}
$$

which will satisfy the equations of equilibrium. After substituting Eqs. (20), (21), and (22) into the equation of compatibility

$$
\begin{equation*}
\frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}}+\frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}}=\frac{\partial^{2} \gamma_{x y}}{\partial x \partial y} \tag{23}
\end{equation*}
$$

the governing equation of φ is

$$
\begin{array}{r}
J_{0} * d\left[\frac{\partial^{2}}{\partial x^{2}} \frac{K(T)}{K_{0}}\left(\frac{\partial^{2} \varphi}{\partial x^{2}}-\frac{\mu}{1-\mu} \frac{\partial^{2} \varphi}{\partial y^{2}}\right)+\frac{\partial^{2}}{\partial y^{2}} \frac{K(T)}{K_{0}}\left(\frac{\partial^{2} \varphi}{\partial y^{2}}-\frac{\mu}{1-\mu} \frac{\partial^{2} \varphi}{\partial x^{2}}\right)\right. \\
\left.+\frac{2}{1-\mu} \frac{\partial^{2}}{\partial x \partial y} \frac{K(T)}{K_{0}} \frac{\partial^{2} \varphi}{\partial x \partial y}\right]=\frac{-\mu}{1-\mu} \nabla^{2}[\psi(D, T)+\alpha T] \tag{24}
\end{array}
$$

where

$$
\begin{equation*}
J_{0}=\frac{1}{E}+\frac{1}{2 E}\left(1-e^{-A_{0} D}\right)+K_{0} D \tag{25}
\end{equation*}
$$

After inversion, φ satisfies

$$
\begin{align*}
& \frac{\partial^{2}}{\partial x^{2}}\left[\frac{K(T)}{K_{0}}\left(\frac{\partial^{2} \varphi}{\partial x^{2}}-\frac{\mu}{1-\mu} \frac{\partial^{2} \varphi}{\partial y^{2}}\right)\right]+\frac{\partial^{2}}{\partial y^{2}}\left[\frac{K(T)}{K_{0}}\left(\frac{\partial^{2} \varphi}{\partial y^{2}}-\frac{\mu}{1-\mu} \frac{\partial^{2} \varphi}{\partial x^{2}}\right)\right] \\
& \quad+\frac{2}{1-\mu} \frac{\partial^{2}}{\partial x \partial y}\left[\frac{K(T)}{K_{0}} \frac{\partial^{2} \varphi}{\partial x \partial y}\right]=\frac{-\mu}{1-\mu} G_{0} * \alpha \nabla^{2}[\psi(D, T)+\alpha T] \tag{26}
\end{align*}
$$

where G_{0} is related to J_{0} by 2

$$
\begin{equation*}
\int_{0}^{D} G_{0}\left(D-D^{\prime}\right) \frac{\partial}{\partial D^{T}} J_{0}\left(D^{\prime}\right) d D^{\prime}=H(D) \tag{27}
\end{equation*}
$$

and $H(D)$ is the unit step function. The function G_{0} which corresponds to J_{0} given by Eq. (25) is

$$
\begin{equation*}
G_{0}(D)=\frac{E}{\sqrt{\left(E \cdot K_{0}+1 \cdot 5 A_{0}\right)^{2}-4 E \cdot K_{0} A_{0}}}\left[\left(k_{1}+A_{0}\right) e^{k_{1} D}-\left(k_{2}+A_{0}\right) e^{k_{2}^{D}}\right] \tag{28}
\end{equation*}
$$

where

$$
k_{1}=-0.5\left(E \cdot K_{0}+1.5 A_{0}\right)+0.5 \sqrt{\left(E \cdot K_{0}+1.5 A_{0}\right)^{2}-4 E \cdot K_{0} \cdot A_{0}}(29)
$$

[^1]\[

$$
\begin{equation*}
k_{a}=-0.5\left(E \cdot K_{0}+1.5 A_{0}\right)-0.5 \sqrt{\left(E \cdot K_{0}+1.5 A_{0}\right)^{2}-4 E \cdot K_{0} \cdot A_{0}} \tag{30}
\end{equation*}
$$

\]

Both k_{1} and k_{2} are seen to be negative. For prescribed boundary traction, the boundary conditions are

$$
\begin{equation*}
\frac{\partial \varphi}{\partial y}=\int_{C} T_{x} d s \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x}=-\int_{C} T_{y} d s \tag{32}
\end{equation*}
$$

where T_{x} and T_{y} are the x and y components of the boundary traction acting on the boundary, C, of the cross section of the body.

If the temperature-dependent neutron-induced dimensional change is given by ${ }^{3}$

$$
\begin{equation*}
\psi(D, T)=A_{2}(T) D^{2}+A_{2}(T) D \tag{33}
\end{equation*}
$$

then the right-hand side of Eq. (26) reduces to

$$
\begin{align*}
\frac{-1}{1-\mu}\left\{G_{0}(D) \alpha \nabla^{2} T+\nabla^{2} A_{2}(T)\right. & \int_{0}^{D} G_{0}\left(D-D^{\prime}\right) \cdot 2 D^{\prime} \cdot d D^{\prime} \\
& \left.+\nabla^{2} A_{1}(T) \int_{0}^{D} G_{0}\left(D-D^{\prime}\right) d D^{\prime}\right\} \tag{34}
\end{align*}
$$

where the temperature distribution is assumed to be applied suddenly at $D=0$ and to be kept constant for $D>0$. The left-hand side of Eq. (26) is seen to be the same as that used in the elastic problem with nonuniform elastic modulus. The solution to the present problem can therefore be expressed by

[^2]\[

$$
\begin{equation*}
\varphi(x, y, D)=\varphi^{a}(x, y)+\varphi^{b}(x, y) \frac{G_{0}(D)}{G_{0}(0)}+\varphi^{c}(x, y) F_{1}(D)+\varphi^{d}(x, y) \cdot F_{z}(D), \tag{35}
\end{equation*}
$$

\]

where $\varphi^{a}, \varphi^{b}, \varphi^{c}$, and φ^{d} are elastic solutions, corresponding to boundary tractions, thermal expansion, dimensional change $A_{1}(T)$, and dimensional change $A_{2}(T)$, respectively, and

$$
\begin{equation*}
F_{1}(D)=\frac{1}{G_{0}(0)} \int_{0}^{D} G_{0}\left(D-D^{\prime}\right) d D^{\prime} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}(D)=\frac{1}{G_{0}(0)} \int_{0}^{D} G_{0}\left(D-D^{\prime}\right) 2 D^{\prime} d D^{\prime} \tag{37}
\end{equation*}
$$

The proof of the statement Eq. (35) can be carried out by a similar procedure as shown previously. ${ }^{\text {I }}$ The elastic solutions are understood to be found from a nonuniform elastic medium with the common elastic modulus, $\frac{\mathrm{E} \cdot \mathrm{K}_{\mathrm{O}}}{\mathrm{K}(\mathrm{T})}$. From this consideration, the problem of irradiated graphite of an arbitrary two-dimensional cross section can be found, provided that a computer program is available to calculate the elastic thermal stress.

The displacement for the present problem due to the dimensional change and the thermal loading is the same as that obtained from a corresponding elastic problem. This result is due to the fact that the solution is independent of the creep function $J_{0}(D)$.

With the present formulation, a simple correspondence is made between the viscoelastic solution and the elastic solutions. The effort to solve the problem therefore reduces to the solutions $\varphi^{a}, \varphi^{b}, \varphi^{c}$, and φ^{d}. The time-dependent solution is connected with them by $F_{i}(D)$ and $F_{2}(D)$ which can be calculated from Eq. (28).

NUMERICAL EXAMPLE

Based on the theoretical formulation of the last section, the numerical examples of the previous report were recalculated. To compare the results, the curves corresponding to Figs. 6, 7, 8, 11, and 12 of

ORNL-TM-2407 are drawn and labeled as Figs. 1, 2, 3, 4, and 5 in the present report. The temperature distributions are the same as the former ones and, therefore, will not be shown here. The material constants as well as the thermal loading are the same as shown from page 13 to page 16 of the previous report. Therefore, to avoid repetition, we shall not rewrite them here.

To solve the problem numerically, we have to solve the elastic problems with the nonuniform elastic constants. Let $u_{i}(i=1,2,3)$ denote the radial displacements due to the volume expansions $\alpha T, A_{1}(T)$, and $A_{2}(T)$. We recall that α is the coefficient of the linear thermal expansion shown in Eq. (15), and $A_{1}(T)$ and $A_{2}(T)$ are given by Eq. (33) and more specifically by reference 3 . The problem reduces mathematically to the solution of a second-order linear ordinary differential equation of the following form:

$$
\begin{align*}
\frac{d}{d r}\left[\left(\frac{\lambda+2 \mu}{E}\right) \frac{d u_{i}}{d r}\right] & +\frac{\lambda+2 \mu}{E} \frac{1}{r} \frac{d u_{i}}{d r}-\frac{\lambda+2 \mu}{E} \frac{u_{i}}{r^{2}} \\
& +\left(\epsilon_{i}+\frac{u_{i}}{r}\right) \frac{d}{d r}\left(\frac{\lambda}{E}\right)=\frac{d}{d r}\left[\frac{3 \lambda+2 \mu}{E} F_{i}\right](i=1,2,3) \tag{38}
\end{align*}
$$

where $F_{1}=\alpha T, \quad F_{2}=A_{1}(T)$, and $F_{3}=A_{2}(T)$. In Eq. (38), $\varepsilon_{i}(i=1,2,3)$ correspond to the three axial strains because the problems are solved under the assumption of the generalized plane strain. λ and μ are respectively defined by

$$
\begin{equation*}
\frac{\lambda}{E}=\frac{\sigma}{(1+\sigma)(1-2 \sigma)} \frac{K_{o}}{K(T)} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu}{E}=\frac{1}{2(1+\sigma)} \frac{K_{0}}{K(T)} \tag{40}
\end{equation*}
$$

where $K(T)$ is defined by Eq. (1) and K_{0} and E are the values of $K(T)$ and Young's modulus when T is evaluated at the inner surface of the concentric cylinder $r=a$. σ is the Poisson's ratio. Since T varies along r so do λ and μ.

The two integration constants for Eq. (38) and ε_{i} are to be determined by the boundary conditions

$$
\begin{equation*}
\lambda\left(\frac{d u_{i}}{d r}+\frac{u_{i}}{r}+\varepsilon_{i}\right)+2 \mu \frac{d u_{i}}{d r}-(3 \lambda+2 \mu) F_{i}=0 \tag{41}
\end{equation*}
$$

at $r=a$ and $r=b$ and by the condition that the axial resultant force is zero, that is

$$
\int_{a}^{b} \lambda\left[\left(\frac{d u_{i}}{d r}+\frac{u_{i}}{r}\right)-(3 \lambda+2 \mu) F_{i}\right] r d r+\varepsilon_{i} \int_{a}^{b}(\lambda+2 \mu) r d r=0 .(42)
$$

The problems are solved by the method of finite differences. An iterative procedure is used to determine $\boldsymbol{\varepsilon}_{i}$. We first assume $\boldsymbol{\varepsilon}_{i}=0$, then u_{i} is calculated from Eq. (38) and the boundary conditions Eq. (41). With the known value of u_{i}, the first approximation of ε_{i} is calculated from Eq. (42). The process continues up to a difference of the two successive $\boldsymbol{\varepsilon}_{i}$'s smaller than 10^{-6} which is approximately equivalent to a relative error of 0.1% in the present case.

After $u_{i}(i=1,2,3)$ as well as $\varepsilon_{i}(i=1,2,3)$ are solved, the corresponding elastic stress components are calculated by the constitutive equations

$$
\begin{aligned}
\sigma_{r}^{i} & =\lambda\left(\frac{d u_{i}}{d r}+\frac{u_{i}}{r}+\varepsilon_{i}\right)+2 \mu \frac{d u_{i}}{d r}-(3 \lambda+2 \mu) F_{i} \\
\sigma_{\theta}^{i} & =\lambda\left(\frac{d u_{i}}{d r}+\frac{u_{i}}{r}+\varepsilon_{i}\right)+2 \mu \frac{u_{i}}{r}-(3 \lambda+2 \mu) F_{i} \\
\sigma_{z}^{i} & =\lambda\left(\frac{d u_{i}}{d r}+\frac{u_{i}}{r}+\varepsilon_{i}\right)+2 \mu \varepsilon_{i}-(3 \lambda+2 \mu) F_{i}
\end{aligned}
$$

and the final dose-dependent stress components are calculated by

$$
\begin{aligned}
& \sigma_{r}(D, r)=\sigma_{r}^{1} \frac{G(D)}{E}+\sigma_{r}^{2} F_{1}(D)+\sigma_{r}^{3} F_{2}(D) \\
& \sigma_{\theta}(D, r)=\sigma_{\theta}^{1} \frac{G(D)}{E}+\sigma_{\theta}^{2} F_{1}(D)+\sigma_{\theta}^{3} F_{2}(D)
\end{aligned}
$$

Figure 1. Circumferential Strain As a Function of Radial Position

Figure 2. Circumferential Strain at Outside Surface As a Function of Fluence Level

Figure 3. Axial Stress at the Outer Surface As a Function of Fluence Level

Figure 4. Lifetime of MSBR Graphite Core Cylinders As a Function of Axial Position According to the Volumetric Distortion Criterion

Figure 5. Lifetime of MSBR Graphite Core CyIinders As a Function of Axial Position According to the Axial Strain Criterion

$$
\sigma_{z}(D, r)=\sigma_{z}^{1} \frac{G(D)}{E}+\sigma_{z}^{2} F_{2}(D)+\sigma^{3} F_{2}(D)
$$

The final solution of the displacement and the strain components are calculated according to

$$
\begin{aligned}
u & =u_{1}+u_{2} D+u_{3} D^{2}, \\
\epsilon_{r} & =\frac{d u}{d r}, \\
\epsilon_{\theta} & =\frac{u}{r}, \\
\epsilon_{z} & =\epsilon_{1}+\epsilon_{z} D+\epsilon_{3} D^{2} .
\end{aligned}
$$

The numerical values of temperature T; displacement u; strain components $\varepsilon_{r}, \varepsilon_{\theta}$, and ϵ_{z}; stress components $\sigma_{r}, \sigma_{\theta}$, and σ_{z} are calculated at 41 points along the radial directions of the cylinders of $b=4,5,6 \mathrm{~cm}$. The above values are calculated at each cross section of $Z / L=0.1,0.2, \ldots$, 0.9 for the neutron dose level $D\left(10^{22} \mathrm{nvt}\right)=0.0,0.2, \ldots, 4.0$. The total computation time for an IBM 360 Model 91 machine is on the order of 4 minutes. The computing time can be reduced considerably if we reduce the error bound of $\boldsymbol{\epsilon}_{i}$ in the iterative process.

To indicate the numerical results, typical curves are presented in Figs. 1-5 which indicate the difference from Figs. 6, 7, 8, Il, and 12 of ORNL-TM-2407. We superimposed the corresponding plots for the purpose of comparison. The reason for the difference is certainly because of a modification of $J(D)$. The detailed explanation has been written in the paragraph following Eq. (2). The improvement is shown in Fig. 3 where σ_{z} at $D=3 \times 10^{22}$ nvt is $13,200 \mathrm{psi}$, an increase of 6% of the previous value. This confirms our prediction.

CONCLUSION

The modified method shown in the present report has considered the effect of temperature on the creep coefficient. A difference of 6% between the components was obtained for a neutron dose level of
3×10^{22} nvt. The method is therefore important in cases when the creep coefficient is more sensitive to temperature and when the temperature gradient within the cross section is steep. The difference caused by this modification becomes more significant with increasing dose values. As the trend of the development in reactor technology is toward the higher operating temperature and the larger neutron dose level, the method presented here is therefore compatible to the need in the future. However, the instantaneous elasticity and the primary creep have an inaccurate temperature dependence imposed by the method. Therefore, the resulting solutions can be considered accurate only above some small dose value (less than $1 / 2 \times 10^{22} n v t$). Below this dose value, use should be made of the previous method ${ }^{l}$ which can be calculated by assuming a constant $K(T)$ in the present method.

As can be seen from the derivation if the creep coefficient $K(T)$ is taken to be constant, then the analysis will reduce to the case of our previous one. Therefore, the present computer program includes the previous one as a special case.

ACKNOWLEDGMENT

The authors express their appreciation to B. L. Greenstreet, head of the Applied Mechanics Section, for his supervision. Thanks are also due to C. E. Pugh of Applied Mechanics Section for many stimulating discussions and with whom the authors have been working for a part of the Molten Salt Breeder Reactor program.

APPENDIX

Date: 23 June 1970
Name of Program: VATCRP
Programmers: S. J. Chang, J. A. Carpenter, D. W. Altom
Description: VATCRP is a double-precision Fortran program which calculates the stress and the displacement fields for a Molten Salt Breeder Reactor graphite core under neutron irradiation and temperature distribution. VATCRP treats the creep coefficient as a function of temperature. The program is based upon the theoretical derivations and is intended to follow the proposed numerical scheme in the main text.

Three concentric cylinders are used to simulate the design study. The radius of the outer cylinder is designated B and is input to the program. The radius A of the inner cylinder is given by $B / A=6.667$. Input: The user must provide four data cards to VATCRP in the following order:

	VARTABLE NAMES	CARD FORMAT
Card 1:	BIN, DB, NB	(2D10.3, Il0)
BIN	initial value of the radius B of the outer cylinder (in centimeters)	
DB	increment in the value of B (in centimeters)	
NB	total number of B-values, i.e., BIN \leq $\mathrm{B} \leq \mathrm{BIN}+(\mathrm{NB}-1) \mathrm{DB}$	
Card 2:	ZLIN, DZL, NZL	(2D10.3, Il0)
ZLIN	- initial value of Z / L where L is the length of the cylinders and Z is the distance measured from the bottom of the cylinders to the point of interest, i.e., $0 . \leq Z / L \leq 1$.	
DZL	- increment in the value of Z / L	
NZL	- total number of Z / L-values, i.e., $\mathrm{ZLIN} \leq \mathrm{Z} / \mathrm{L} \leq \mathrm{ZLIN}+(\text { NZL-I }) \mathrm{DZL}$	

$$
\text { Card 3: DIN, DD, ND } \quad(2 D 10.3, I 10)
$$

DIN - initial value of the dose D (in 10^{22} nvt)

DD - increment in the value of D
ND - total number of D-values, i.e., DIN \leq D $\leq \operatorname{DIN}+(N D-1) D D$

Card 4: NMAX, CRIT (IlO,D10.3)
NMAX - number of subintervals taken on [A,B]. MMAX nominally 40. NMAX ≤ 47.

CRIT - convergence criterion of the iteration scheme outlines in the main text. CRIT nominally 10^{-6}.

Output: Output is as described in the main text.
Language: ORNL Fortran, Fortran IV
Approximate Length:
Compiler
$\left.\begin{array}{ll}\text { ORNL } & 50,000 \\ \text { Fortran IV OPT=0 } & 48,000 \\ \text { Fortran IV OPT=2 } & 45,000\end{array}\right\}$ bytes
Approximate CPU Execution Timings: Data obtained using following input: BIN $=4.0, \quad \mathrm{DB}=1.0, \mathrm{NB}=2 ; \mathrm{ZLIN}=0.1, \mathrm{DZL}=0.1$, NZL $=2 ; \quad$ DIN $=1.0$, $D D=0.2, N D=2 ; \quad \operatorname{NMAX}=40, \quad \operatorname{CRIT}=10^{-6}$.

Compiler	$360 / 91$		
		$360 / 75$	
ORNL	30 sec	100 sec	
Fortran IV OPT=0	23 sec	78 sec	
Fortran IV OPT=2	12 sec	40 sec	

Computer: IBM 360 Models 75 and 91.
C* *

C* *

 *
 PROGRAM VATCRP
C VISCOELASTIC ANALYSIS OF IRRADIATED GRAPHITE WITH VARIABLE GREEP COEP- 10
C FICIENTS. S.J.CHANG, D.W.ALIOM, J.A.CARPENTER JUNE $1970 \quad 20$
IMPLICIT REAL*8(A-H,K-M,O-2) 30
COMMON/VECT/T(50),A1(50),A2(50),K(50),FF(50),LAN(50), 40
1 MU(50), U(50), DURR(50) 41
COMMON/SINGL/B,A,K1,K2,K1EKO,K2EKC,YT,SQP,OR,ZL,BA,EPS,OX, 50

DIMENSION SIGR(50,3),SIGI(50.3),SIGL(50.3).USGL(50.3), 70
1 SGR(50), SGT(50), SGZ(5C),EPSR(50), EPST(50),EP(3), 71
P(72
DIMENSION F(50.3), DUDR(50.3),EPT(50) 80
DATA E/I.7D6/ 90
DATA SIGMA/0.2700/ 100
DATA ALPHA/6.20-6/ 110
OATA AC/1.0021 120
$3 A=6.66700 \quad 130$
C* * READ INPUT PARAMETERS . 140
READ 1001,BIN,OB,NB 150
READ $1001,2 L I N, D \angle L, N Z L \quad 160$
READ 1001, DIN,DU,ND 170
1001 FURMAT (2D10.3.I101 180
READ 1CC2,NMAX,CRIT 190
1002 FORMAT(I10.D10.3) 200
NPl=NMAX +1 210
NP3 $=$ NMAX $+3 \quad 220$
$C *$ LOAD INITIAL OUTER RADIUS B 230
$-\quad-240$
DO $22 I=1, N B \quad 250$
C* $*$ DETERMINE INNER RADIUS A 260
$A=B / B A \quad 270$
$R O=B-A \quad 280$
C* * DETERMINE INCREMENT DR 290
DK=RO/DFLOAT(NMAX) 3CO
$E L=2.0 D 0 * D R * D R \quad 310$
$E 2=2.0 D O \neq D R * A \quad 320$
$E 3=2 . O D O * D R * B \quad 330$
$E 4=D R+D R \quad 340$
$R(1)=A \quad 350$
OO 1 Nl=1,NPI 360
$1 \cdot R(N 1+1)=R(N 1)+D R \quad 370$
C* * LOAD INITIAL Z/L 380
$-\quad-\quad 390$
$\begin{array}{ll}\text { DO } 21 \mathrm{~J}=1, N \angle L & 400\end{array}$
390
$C *$ * CALL TMPT FOR TEMPERATURE DISTRIBUTION • 410
CALL TMPT 420
C* COMPUTE ARRAY CUNSTANTS $\quad 430$
$K O=(5.300-1.450-2 * T(2)+1.4 D-5 \neq T(2) * T(2)) * 1 . D-5 \quad 440$
$\begin{array}{ll}K O=(5 \cdot 300-1.450-2 * T(2)+1.40-5 * T(2) * T(2)) * 1.0-5 & 440 \\ \text { DO } 2 \text { Il }=1, N P 3 & 450\end{array}$
$T I=0.33333333333333300$ * (C.11DC-7.OD-5*T(II)) 460
$T 2=5.700-6.00-3 * T(11) 470$
480

$A 2(I 1)=T$ 2 500
$K(11)=(5.300-1.450-2 * T(11)+1.40-5 \neq T(I 1) \neq T(I 1)) \neq 1.0-5 \quad 510$
$\rightarrow 520$
LAM(II)=(SIGMA/((1.ODC+SIGMA)*(1.CDO-SIGMA-SIGMA)))斯I 530
MU(II)=(1.ODC/(2.CDC+SIGMA+SIGMA))*TI 540
2 CONTINUE 550
© COMPUTE CONSTANTS $\quad 560$
$T \mathrm{~T}=\mathrm{AO} /(\mathrm{E} \ddagger \mathrm{KO}) \quad 570$
$T 2=1.0 D 0+1.500 * T T \quad 580$
$S Q P=$ CSQRT (T2*T2-4.0DO*TT) 590
$K I E K O=-0.500 * T 2+C .500 * S Q P \quad 600$
$K 2 E K O=-0.5 D O * T 2-C .5 D O * S Q P \quad 610$

$K l=E \neq K O * K 1 E K C \quad 620$
K2=E*KC*K2FK。
630

```
C* * CJMPUTE F
    640
    DO 3 I2 = 1,NP 3
        F(12,1)=ALPHA*T(12)
        F(12,2)=Al(I2)
        F(12,3)=A2(I2)
    3 CONTINUE
C* *
C* * ITERATION SCHEME
    DO 11 II =1.3
    EPS=0.ODO
C* * LOAD FF WITH COKRECT F ARKAY
    DO 4 J7=1,NP3
    4 FF(J7)=F(J7,[I)
        IH=?
        DO & 14=1,10
        IH=\H+I
C* * FINITE UIFFERENCE SCHEME
    CALL FDIFF
    OO 5 I5=1,NPI 8 8 % 80
    IT = [ 5+1
    840
        Z(I5)=R(I5)*E*LAM(ITI*DURR(I5)+E*LAM(IT)*U(IS)
        850
        851
        1-3.0DO*FF(IT)*R(I5)*E*LAM(IT)-2.000*E*MU(IT)*R(I5)*FF(IT)
        851
5 CONTINUE
    860
C* NUMERICAL INTEGKATION 8 80
    CALL OQTFE(DR,L,L,NPL)
    880
    Tl=L(NP1)
    890
    DO [6=1,NP1 900
    IT=I 6+I
    9 1 0
6 L(IG)=R(IG)*E*(LAM(IT)+2.0U0*MU(IT)) 920
    CALL DQTFE(DR,Z,Z,NPI) 930
    T2=Z(NP1)
    940
    EPN=-T1/T 2
    950
C* * CONVERGENCE CHECK 960
    IF(DABS(EPS-EPNI-CRIT)9.9.7 970
    IF(DABS(EPS-EPNI-CRIT)9,G,7 
8 CCNTINUE 9. 90
C* CONVERGENCE CRITERIUN MET - STORE U ANO OERIVATIVES 10OO
9 EP(II)=EPN 1010
    DO IC IT=1,NPI
    1020
    USOL(IT,II)=U(I7) 1030
    10 DUUR(17,II)=CURR(17)
    1l CONTINUE
C* *
    00 13 18=1,3
    0O12 [9=1.NPI
    IT=19+1
    Tl=E*LAM(IT)*(DUDK(I9,I8)+USOL(IG.I8)/R(I9)+EP(I8))
    T2=E*(3.ODO*LAM(II)+2.ODC*MU(IT)|*F(IT,I8)
    T3=2.000*E*MU(IT)
    SIGR(I9,I8)=T1+T 3*OUOR(I (9,18)-T2
    SIGT(19,I8)=T1+T3*USOL(I9,I8)/R(I9)-12
    SIG゙L(I9,I8)=T1+T3*EP(I&)-T2
    CONT INUE
13 CONTINUE 1170
O-1050
1060
1070
1080
1100
1110
1120
    -1130
1140
1140
    CONTINUE 1, 1160
C* * LOAD INITIAL DOSE 1180
    D=DIN 1. ll90
C* OOSE LOOP 1200
DO 20 I 3=1,ND 12, 10
C* * PREVENT EXPONENTIAL UNDERFLOW ON IBM 360 1220
    IF(K2#D+17).ODO)14,14,15 1230
    14 DX=0.CDO 
    GO TO 16
1250
15 DX=DEXP(K2*D) 1260
16 Tl=G(D) 1270
    T2=F1(D) 1280
    T3=F2(D)
1290
    DO 17 JI=1,NP1
1300
    SGR(Jl)=SIGR(JL,1)*TI+SIGK(J1,2)*T2+SIGR(J1,3)*T3 1310
    SGT(J1)=SIGT(J1,1)*TI+SIGT(Jl,2)*T2*SIGT(JI,3)*T3, 1320
    SGL(J1)=SIGL(JI,1)*T1+SIGL(JL,2)*T2+SIGZ(Jl,3)*T3 1330
```



```
            NM=NMAX FOIF 230
            DO 3 N=2,NM FDIF 240
            GL=LAM(N ITMUIN 1+MUSN 1
            G2=LAM(N+1)+MU(N+1)+MU(N+1)
            G3=LAM(N+2)+MU(N+2)+MU(N+2)
            RN=A+(N-1)*DR
            RNL=(RN+RN)*DR
            AM(N,N-1)=(G2+G1)/E1-G2/RN1
            AM(N,N)=-(G3+G2+G2+G1)/E1-G2/(RN*RN)
            1 +(LAM(N+2)-LAM(N))/RN1
        AM(N,N+1)=(G3+G2)/EL+G2/RN1
        U(N)=1.00\cap/E4*((LAM(N+2)+LAM(N+2)+G3)*F(N+2)
            l -(LAM(N)+LAM(N)+G1)*F(N))
            2-(EPS/E4)*(LAM(N+2)-LAM(N))
            cont inue
C* * finIte difference EuS. AT R = B
        N=NP1
        G1= LAMIN IFMUIN I+MUIN I
        G2= LAM(N+1 1+MU(N+1 1+MU(N+1 1
        G3=LAM(N+2 1+MU(N+2 1+MU(N+2,
        AM(N,N-1)=(G2+G1)/EI-G2/(B*DR)
            1 +(G3+G2)/E1+G2/(B*DR)
            AM(N,NI=-(G3+G2+G2+G1)/E1
            1-G2/(B*B)+(LAM(N+2)-LAM(N))/E3
            2-((LAM(N+1)+LAM(N+1))/G2)*(DR/B)*((G2+G3)/EL
            3 +G2/E3)
            U(N)=1.0DO/E4*(ILAM(N+2)+LAM(N+2)+G3)*F(N+2)
            l-(LAM(N)+LAM(N)+G1)*F(N))
            2-(((4.CDO*LAM(N+1))/G2+2.010)*DR*F(N+1)-EPS*LAN(N+1)*E4/G2)
            3*((G3+G2)/E1+G2/E3)
            4-(EPS/E4)*(LAM(N+2)-LAM(N))
C* * SCALE
    DO 5 I=1,NPI
    U(II=0.0100 * U(I)
    DO 4 J=1,NP1
    4 AM(I,J)=AM(I,J) * 0.01D0
    5 CONTINUE
C* * call mate to ubtain suluticn vector u
    CALL MATQD(AM,U,NP1,l,OET,50,50)
C* * COMPUTE DERIVATIVES OF U WITH RESPECT TC R
    OO 6 J=2,NMAX
    O OUUR(J)=(U(J+1)-U(J-1))/E4
    DUDR(1)=(U(2)-U(1))/DR
    DUDR(NP1)=(U(NP1)-U(NP1-1))/DR
    RETURN
    END
    SUBROUTINE TMPT
    TMPT 10
CALCULATES TEMPERATUKE DISTRIGUTION TMPT 20
    IMPLICIT REAL*O(A-H,K-L,O-Z)
    COMMON/VECT/T(50),A1(50),A2(50),K(50),F(50),LAM(50),
    l MU(50),U(50),DODD(50)
    CUMMCN/SINGL/B,A,KL,K2,KIEKO,K2EKO,TT,SGP,DR,ZL,EA,EPS,DX,
    1 NMAX,NP1,NP3
    T1=DLOG(EA)
    T2=1.000-BA*BA
    TVR=(B-A)/DFLOAT(NP1-1)/A
    TSAT=625.000-75.000*DCOS(3.141592653589800*ZL)
    H=((1.4440-3)*TSAT-0.228CDC)/A**(0.2)
    CK500=0.35800
    SAT=TSAT
    DO 1 I =1,10
    CK=CK500*((TSAT+273.000)/773.000)**(-0.7)
    HK=H/CK
    Q=1.200*G.ODO*DSIN(3.1415926535898DO*ZL)
    Q=Q*\Delta*A/(4.CCC*CK)
    TBA= T2/Tl*Q*0.5DC*(BA+1.CDO)/B
    1-Q*(BA+BA*BA)/B
    TBA=TBA/(HK+1.000/T1*(BA+1.0001/B)
    FDIF 250
    FDIF 260
    FDIF 270
    FDIF 280
    FDIF 290
    FDIF }30
    FDIF 310
    FDIF 311
    HDIF 320
    FDIF 330
    FDIF 331
    FDIF }33
    FDIF }34
    FDIF }35
    FDIF }36
    FDIF }37
    FDIF 380
    FOIF }39
    FDIF 400
    FOIF 401
    FDIF 410
    FDIF 411
    FDIF 412
    FDIF 413
    FDIF 420
    FDIF 421
    FDIF 422
    FOIF }42
    FDIF 424
    FDIF 430
    FDIF }44
    FDIF }45
    FDIF 460
    FDIF 470
    FDIF 480
    FOIF 490
    FDIF }50
    FDIF 510
    FDIF 520
    FDIF 530
    FDIF }54
    FDIF 550
    FDIF 560
FDIF }57
TMPT 10
    TMPT 30
    TMPT 40
    TMPT 41
    TMPT 41
    TMPT 50
    TMPT 51
    TMPT 60
    TMPT }7
    TMPT 80
    TMPT 90
    TMPT }10
TMPT }11
TMPT }12
TMPT 130
TMPT 140
TMPT 150
TMPT 160
TMPT 170
TMPT 180
TMPT 181
TMPT 190
```

TAB=-T2/T1*Q*0.500*(BA-1.COO)/B/HK TMPT 200
$1+S A T-Q *(B A-B A * B A) / B / H K$ TMPT 201
$T A B=T A B-T B A *(B A-1.000) /(B * T 1 * H K)$ TMPT 210
TAB+TBATMPT 220
TB=TAB-TBATMPT 230
TSAT $=\mathrm{TA}$TMPT 240
$\mathrm{CO}=(\mathrm{T} A-\mathrm{TB} \mathrm{C}$ T $2 * 01 / \mathrm{T}$ TMPT 250
DO $21=1, N^{2} 3$T12 2 ODO TVR$T 1=1.0 D 0+T V R * D F L O A T(1-2)$TMPT 270
T(I)=TA-CO*DLOG(T1)-Q*(T1*T1-1.000) TMPT 280continueIMPT 290
RETURN TMPT 300
ENDTMPT 310
dOUBLE PRECISIUN FUNCTION G(D) 10
(MPLICIT REAL*8(A-H,K-M,O-Z) 20
CCMMON/SINGL/B,A,K1,K2,KIEKO,K2EKO,TT,SGP,DR,ZL,BA,EPS,DX, 30
1 NMAX,NPI,NP3 31
$G=(1.000 / S G P) *((K 1 E K O+T T) * D E X P(K 1 * D)-(K 2 E K O+T T) * O X)$ 40
return 50
END 60
double precisiun function fildi 10
IMPLICIT REAL*8(A-H,K-M,O-Z) 20
CCMMON/SINGL/B,A,K1,K2,KLEKO,K2EKO,TT,SCP,DR, LL, EA,EPS,DX, $3 n$
1 NMAX,NPI,NP3 31
Fl=(1.000/SOP)*(-(KIEKO+TI)*(1.OUO-DEXP(Kl*D))/K1 40
1 -(K2EKO+TT)*(1.ODO-OX)/K2) 41
RETURN 50
END 60
DOUBLE PRECISIUN FUNCTION F2(D) 10
(MPLICIT REAL*8(A-H,K-M,O-Z) 20
COMMON/SINGL/B, A,K1,K2,KIFKO,K2EKO,TT,SGP, DR, ZL,BA,EPS,DX, 30
1 NMAX,NP1,NP3 31
$F 2=(2.0 D O / S G P) *(-(K 1 E K O+T) *(1.000+K 1 * D-D E X P(K 1 * D)) /(K 1 * K 1)$ 40
1 +(K2EKの+TT)*(1.UDC+K2*U-DX)/(K2*K2) 41
RETURN 50
END 60

c	THIS IS CRNL DOICO4 OF 1167	DOTFEOCl
c		- DQTFEOC2
c		DQTFEDO3
C	subroutine cqife	UQTFEOC4
c		UQTFEOO5
C	purpuse	DQTFEOO6
C	to ccmpute the vector uf integkal values fer a given	DQTFECC?
c	equidistani table of function values.	DOTFE008
C		DOTFEOO9
c	USAGE	DOTFEO 10
C	CALL DUTFE (H,Y,L,NDIM)	DOTFEO 11
c		DQTFEO 12
c	DESCRIPTION OF PARAMETERS	CQTFEO 13
c	H - double precision increment of argument values.	DQTFEC 14
C	Y - DOUBLE PRECISION INPUT VECTOR GF FUNCTIUN VALUES.	DOTFEO 15
C	$z-\mathrm{RESULTING}$ double Precisicn vectior of Integral	OOTFEO 16
c	VALUES. 2 MAY BE IDENTICAL WITH Y.	OQTFEC 17
C	ndim - the dimension of vectors y and 2.	DQTFEC 18
c		DUTFEO19
c	REMARKS	DQTFEC 20
C	no action in case ncim less than 1.	DOTFEO21
C		DOTFEO22
C	subroutines and function subprograms required	DQTFEC 23
C	none	DOTFEC 24
C		DQTFEO 25

c	METHOL	DQTFEC 26
C	BEGINNING WITH Z(1)=0, EVALUATIUN OF VECTCR \angle IS DONE BY	DOTFEO 27
c	means of trapezuidal rule (SECOND GRDER fCrmula).	DOTFEO28
C	FOR REFERENCE, SEE	DQTFEO 29
C	F.B.hildebrand, intruductilin to numerical analysis,	DQTFEO3n
C	MCGRAW-HILL, NEW YORK/TORUNTO/LONDON, 1956, PP.75.	DOTFEO31
C		DQTFEO 32
C		DQTFEC 33
C		DOTFEC 34
	SUBRCUTINE DUTFE(H,Y,Z,NDIM)	350
C		DUTFEO 36
C		DQTFEO 37
	DIMENSION Y(1).2(1)	380
	DOUBLE PRECISION Y,L,H,HH,SUMI, SUMZ	390
C		UQTFEC 40
	SUM $2=0.00$	410
	IF(NDIM-1)4,3,1	420
1	$H \mathrm{H}=.500 \% \mathrm{H}$	430
C		DQTFEC44
C	INTEGRATION LOOP	DQTFEO45
	OO $2 \mathrm{l}=2$, NDIM	460
	SUM $1=$ SUM ?	470
	SUM $2=\operatorname{SUM} 2+H H *(Y(1)+Y(1-1))$	480
2	$\angle(I-1)=S U M 1$	490
3	$2(N C(M)=$ SUM2	500
4	RETURN	510
	END	520
C	THIS IS ORNL FO4C13 OF 1167	MATQ0001
	SUBROUTINE MATQO (A, X,NR,NV,OET,NA,NXI	28
	IMPLICIT REAL*8(A-H, $0-2)$	30
	DIMENSION A(961). ($^{\text {(31) }}$	40
	$D E T=1.0$	50
	NR1 $=$ NR-1	60
	OO $12 \mathrm{~K}=1$, NR 1	70
	IR1 $=\mathrm{K}+1$	80
	PIVOT $=0.0$	90
	DG $2 \mathrm{I}=\mathrm{K}$, NR	100
	$1 \mathrm{~K}=(\mathrm{K}-1) * N A+1$	110
	$z=D A B S(A) I K) 1$	120
	IFIZ-PIVCT)2.2.1	130
1	PIVOT $=2$	140
	$1 P \mathrm{P}=1$	150
2	CONTINUE	160
	IFIPIVOT 14,3,4	170
3	DET $=0.0$	180
	RETURN	190
4	(FIIPR-K) $5,8,5$	200
5	DO $6 \mathrm{~J}=\mathrm{K}$, NR	210
	$I P R J=(J-1) * N A+[P R$	220
	$Z=A(1 P R J)$	230
	$K J=(J-1) * N A+K$	240
	$A(I P R J)=A(K J)$	250
0	$A(k J)=2$	260
	DO $7 \mathrm{~J}=1 . N \mathrm{~N}$	270
	[PRJ $=(J-1) * N X+$ [PR	280
	$z=x(I P R J)$	290
	$K J=(J-1) * N X+K$	300
	$x([P R J)=x(K J)$	310
7	$x(k J)=z$	320
	DET $=-$ DET	330
8	$K K=(K-1) * N A+K$	340
	$D E T=D E T * A(K K)$	350
	DO $9 \mathrm{~J}=1 \mathrm{RI}$, NR	360
	$K J=(J-1) * N A+K$	370
	A(KJ) $=A(K J) / A(K K)$	380
	DU $9 \mathrm{I}=1 \mathrm{R} 1, \mathrm{NR}$	390
	(J = (J-1)*NA + I	400
	$I K=(K-1) * N A+I$	410

$9 \quad A(I J)=A| | J \mid-A(I K) * A(K J)$ 420
DO $12 \mathrm{~J}=1$, NV 430
$K J=(J-1) * N X+K$ 440
IF(X(KJ)) $10,12,10$ 450
$10 \quad X(K J)=X(K J) / A(K K)$ 460
DO 11 I = IRI, NR 470
$I J=(J-1) * N X+I$ 480
$I K=(K-1) * N A+I$ 490
$11 \times(I J)=X(I J)-A(I K) * X(K J)$ 500
12 CONTINUE 510
NRNR=(NR-1)*NA+NK 520
IF(A(NRNR)) 13.3.13 530
13 DET=DET*A(NRNR) 540
OO $15 \mathrm{~J}=1$, NV 550
NRJ $=(J-1) \neq N X+N R$ 560
$x(N R J)=X(N R J) / A(N R N R)$ 570
OO $15 \mathrm{~K}=1$, NRI 580
$I=N R-K$ 590
$S U M=0.0$ 600
DO $14 \mathrm{~L}=\mathrm{I}$, NRI 610
$I L=L$ *NA $+I$ 620
$L J=(J-1) \neq N X+(L+1)$ 630
$14 \quad S U M=S U M+A(I L) * X(L J)$ 640
$I J=(J-1) \neq N X+I$ 650
$15 x(I J)=X(I J)-S U M$ 660RETURN670
END 680
*

1. R. E. Adams
2. J. L. Anderson
3. C. F. Baes
4. S. E. Beall
5. M. Bender
6. I. S. Bettis
7. D. S. Billington
8. E. G. Bohlmann
9. S. E. Bolt
10. C. J. Borkowski
11. G. E. Boyd
12. R. B. Briggs
13. A. A. Brooks
14. J. W. Bryson
15. J. P. Callahan
16. D. W. Cardwell
17. H. P. Carter

24-33. S. J. Chang
34. C. W. Collins
35. W. H. Cook
36. W. B. Cottrell
37. J. M. Corum
38. J. S. Crowell
39. F. L. Culler
40. R. W. Derby
41. S. J. Ditto
42. W. G. Dodge

3-45. W. P. Eatherly
46. M. Feliciano
47. D. E. Ferguson

- L. M. Ferris

49. M. Fontana

左
52.
52. C. H. Gabbard
58. W. R. Grimes
59. A. G. Grindell
60. R. C. Gwaltney
61. P. N. Haubenreich
62. D. M. Hewette, II
63. F. J. Homan
64. W. H. Jordan
ll2. M. T. Kelley
113. C. R. Kennedy
114. R. B. Korsmeyer
115. K. C. Liu
116. M. I. Lundin
117. R. N. Lyon
118. R. E. MacPherson
119. W. J. McAfee
120. H. E. McCoy
121. H. C. McCurdy
122. H. A. McLain
123. L. E. McNeese
124. J. R. McWherter
125. J. G. Merkle
126. A. S. Meyer
127. A. J. Miller
128. R. L. Moore
129. S. E. Moore
130. E. L. Nicholson
131. A. M. Perry
132. J. W. Prados
133. C. E. Pugh
134. J. N. Robinson

135-136. M. W. Rosenthal
137. W. K. Sartory
138. A. W. Savolainen
139. Dunlap Scott
140. J. L. Scott
141. J. E. Smith
142. I. Spiewak
143. J. R. Tallackson
144. R. E. Thoma
145. D. B. Trauger
146. R. S. Valachovic
147. G. M. Watson
148. J. R. Weir
149. M. E. Whatley
150. J. C. White
151. G. D. Whitman
152. G. T. Yahr
153. Gale Young

154-155. Central Research Library
156. Document Reference Section
157. Laboratory Records Dept. (RC)

158-162. Laboratory Records Dept.
163. ORNL Patent Office
164. Laboratory and University Division, ORO

165-166. Division of Technical Information Extension
167-176. ORNL Mathematics Division

EXTERNAL DISTRIBUTION

177. H. W. Babel, Douglas Aircraft Co., Santa Monica, California
178. B. L. Bailey, Great Lakes Carbon Corp., Niagara Falls, New York
179. H. W. Behrman, RDT Site Office, Oak Ridge National Laboratory
180. E. O. Bergman, National Engineering Science Co., Pasadena, California
181. J. C. Bokros, Gulf General Atomic, San Diego, California
182. S. A. Bortz, IIT Research Institute, Chicago, Illinois
183. R. K. Carlson, POCO Graphite, Inc., Garland, Texas
184. W. S. Clouser, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
185. H. T. Corten, University of Illinois, Urbana, Illinois
186. W. E. Crowe, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
187. Jack Cully, SNPO-A, USAEC, Box 5400, Albuquerque, New Mexico
188. R. J. Dietz, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
189. A. J. Edmondson, University of Tennessee, Knoxville, Tennessee
190. R. F. Felgar, TRW Systems, Redondo Beach, California
191. D. M. Forney, Air Force Materials Laboratory, Wright Patterson Air Force Base, Ohio
192. C. W. Funk, Aerojet-General Corporation, Sacramento, California
193. J. J. Gangler, National Aeronautics and Space Administration, Washington, D. C.
194. Harold Hessing, SNPO-A, Los Alamos Scientific Laboratory, CMB Division, Los Alamos, New Mexico
195. R. W. Holland, University of Tennessee, Knoxville, Tennessee
196. L. E. Hulbert, Battelle Memorial Institute, Columbus, Ohio
197. B. T. Kelley, UKAEA, Culcheth, Warrington, Lancashire, England
198. J. J. Krochmal, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio
199. R. G. Lawton, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
200. C. W. Lee, University of Tennessee, Knoxville, Tennessee
201. J. J. Lombardo, NASA Lewis Research Center, Cleveland, Ohio
202. H. H. W. Losty, The General Electric Co., Ltd., HIRS' Research Centre, Wembley, England
203. L. L. Lyon, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
204. D. P. MacMillan, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
205. M. Manjoine, Westinghouse Astronuclear Laboratory, Pittsburgh, Pennsylvania
206. H. E. Martens, Jet Propulsion Laboratory, Pasadena, California
207. R. L. Maxwell, University of Tennessee, Knoxville, Tennessee
208. J. T. Meers, Parma Research Center, Cleveland, Ohio
209. Captain W. E. Mercer, III, SYMSE, U. S. Air Force, Norton Air Force Base, California
210. J. L. Mershon, U. S. Atomic Energy Commission, Washington, D. C.
211. R. A. Meyer, Douglas Aircraft Co., Santa Monica, California
212. W. C. Morgan, Pacific-Northwest Laboratory, Richland, Washington
213. J. E. Morrissey, SNPO, U. S. Atomic Energy Commission, Washington, D. C.
214. R. E. Nightingale, Pacific-Northwest Laboratory, Richland, Washington
215. E. T. Onat, Yale University, New Haven, Connecticut
216. C. D. Pears, Southern Research Institute, Birmingham, Alabama
217. Hui Pih, University of Tennessee, Knoxville, Tennessee
218. D. L. Platus, Mechanics Research, Inc., El Segundo, California
219. C. A. Pratt, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio
220. W. G. Ramke, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio
221. J. C. Rowley, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
222. W. S. Scheib, SNPO, U. S. Atomic Energy Commission, Washington, D. C.
223. R. W. Schneider, Bonney Forge, Allentown, Pennsylvania
224. F. C. Schwenk, SNPO, U. S. Atomic Energy Commission, Washington, D. C.
225. E. J. Seldin, Parma Research Center, Cleveland, Ohio
226. W. A. Shaw, Auburn University, Auburn, Alabama
227. L. R. Shobe, University of Tennessee, Knoxville, Tennessee
228. R. H. Singleton, Westinghouse Astronuclear Laboratory, Pittsburgh, Pennsylvania
229. C. V. L. Smith, U. S. Atomic Energy Commission, Washington, D. C. 230. M. C. Smith, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
230. G. B. Spence, Parma Research Center, Cleveland, Ohio
231. W. F. Swinson, Auburn University, Auburn, Alabama
232. Norman R. Thielke, SNPO, NASA Lewis Research Center, Cleveland, Ohio
233. Ru-Lung Weng, Parma Research Center, Cleveland, Ohio

[^0]: ${ }^{1}$ S. J. Chang, C. E. Pugh, and S. E. Moore, "Viscoelastic Analysis of Graphite Under Neutron Irradiation and Temperature Distribution, " ORNL-TM-2407 (October 1969); and Fifth Southeastern Conference on Theoretical and Applied Mechanics, Raleigh, North Carolina, April 1970.

[^1]: ${ }^{2}$ E. H. Lee, "Viscoelastic Stress Analysis," Chap. 53, Handbook of Engineering Mechanics, edited by W. Flügge, McGraw-Hill, New York, 1962.

[^2]: 3 P. R. Kasten et al. "Graphite Behavior and Its Effects on MSBR Performance, "Nuclear Engineering and Design 9 (2), 157-195 (1969).

