SNAP-III

Thermoelectric Generator Environmental Test

VOLUME III
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
SNAP-III......
Thermoelectric Generator
Environmental Test

VOLUME III
MND-P-2101-III
JANUARY 1960

Report Prepared By:
Louis W. Gross
Eugene J. Schramm

Approved By:
R. J. Wilson
Project Engineer

MARTIN
NUCLEAR DIVISION
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
DISTRIBUTION LIST

1. Air Force Ballistic Missile Division
 For: Major George Austin
 Copy No. 1

2. Air Research and Development Command
 Attn: RDTAPS, Capt. W. G. Alexander
 Copy No. 2

3. Army Ballistic Missile Agency
 Attn: ORDAB-c
 Copy No. 3, 4

 U. S. Atomic Energy Commission
 Attn: Mrs. J. M. O'Leary
 For: Lt. Col. G. M. Anderson, DRD
 Capt. John P. Wittry, DRD
 Lt. Col. Robert D. Cross, DRD
 R. G. Oehl, DRD
 Edward F. Miller, PROD
 Technical Reports Library
 Copy No. 5, 6, 7, 8, 9, 10

5. Atomics International
 Attn: Dr. Chauncey Starr
 For: J. Wetch
 Copy No. 11

6. Bureau of Aeronautics
 Attn: C. L. Gerhardt, NP
 Copy No. 12

7. Bureau of Ordnance
 Attn: Mrs. Maryle R. Schmidt or Laura G. Meyers (To be opened
 by addressee only)
 For: Ren
 SP
 Copy No. 13, 14

8. Bureau of Ships, Code 1500
 Attn: Melvin L. Ball
 Copy No. 15

 Canoga Park Area Office
 Attn: A. P. Pollman, Area Manager
 Copy No. 16

10. Chicago Operations Office
 U.S. Atomic Energy Commission
 Attn: A. I. Mylyck
 For: T. A. Nemzek
 Mr. Klein
 Copy No. 17, 18

11. Chief of Naval Operations
 Copy No. 19

12. Department of the Army, Atomic Division
 Copy No. 20

MND-P-2101-III
<table>
<thead>
<tr>
<th>Number</th>
<th>Organization</th>
<th>Address Information</th>
<th>Attention Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Diamond Ordnance Fuse Laboratories</td>
<td>21, 22, 23</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Hanford Operations Office</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Lockheed Aircraft Corporation</td>
<td>25, 26</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Mound Laboratory</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>National Advisory Committee for Aeronautics, Ames</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>National Advisory Committee for Aeronautics, Langley</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>National Advisory Committee for Aeronautics</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Naval Ordnance Laboratory</td>
<td>31, 32, 33</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Naval Research Laboratory, Code 1572</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>New York Operations Office</td>
<td>35, 84</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Oak Ridge National Laboratory</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Office of Naval Research, Code 735</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Project Rand</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Rome Air Development Center</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST (continued)

27. Technical Information Service Extension
 U.S. Atomic Energy Commission
 Oak Ridge, Tennessee
 40 through 64

28. Thompson Ramo Wooldridge
 Staff Research and Development
 Attn: C. G. Martin

29. University of California Radiation Laboratory
 Technical Information Division
 Attn: Clovis G. Craig
 For: Dr. Hayden Gordon

30. Wright Air Development Center
 Attn: WCACT
 For: Capt. Clarence N. Munson, WCLPS
 G. W. Sherman, WCLEE
 69

31. Jet Propulsion Laboratory
 Attn: W. H. Pickering, I. E. Newlan

32. University of California Radiation Laboratory
 Technical Information Division
 Attn: Clovis G. Craig
 For: Dr. Robert H. Fox

33. Los Alamos Scientific Laboratory
 Attn: Report Librarian
 For: Dr. George M. Crover

34. Air Force Special Weapons Center
 Attn: Kathleen P. Nolan

35. School of Aviation Medicine
 Randolph Air Force Base, Texas
 Attn: Col. J. E. Pickering

36. Air Technical Intelligence Center
 Wright-Patterson Air Force Base, Ohio
 Attn: H. Holzbauer, AFCIN-4 Bla

37. National Aeronautics and Space Administration
 Attn: Dr. Addison N. Rothrock
 79 through 83

MND-P-2101-III
This report was prepared by the Nuclear Division of the Martin Company under contract AT(30-3)-217 with the United States Atomic Energy Commission. It describes the effects of simulated space vehicle vibration, acceleration and shock on the electrical output and efficiency of a SNAP III thermoelectric generator.

The test specifications were developed by Jet Propulsion Laboratories for the third stage and payload of the Vega vehicle, and by the Lockheed Missile Systems Division for the WS117L vehicle.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal Notice</td>
<td>ii</td>
</tr>
<tr>
<td>Distribution List</td>
<td>iii</td>
</tr>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Summary</td>
<td>xi</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Description</td>
<td>3</td>
</tr>
<tr>
<td>III. Generator 1G4</td>
<td>11</td>
</tr>
<tr>
<td>A. Vibration Test</td>
<td>11</td>
</tr>
<tr>
<td>B. Acceleration Test</td>
<td>12</td>
</tr>
<tr>
<td>C. Shock Test</td>
<td>12</td>
</tr>
<tr>
<td>IV. Generator 1G5</td>
<td>17</td>
</tr>
<tr>
<td>A. Vibration Test</td>
<td>17</td>
</tr>
<tr>
<td>B. Acceleration Test</td>
<td>17</td>
</tr>
<tr>
<td>C. Shock Test</td>
<td>17</td>
</tr>
<tr>
<td>V. Generator 1H2</td>
<td>25</td>
</tr>
<tr>
<td>A. Vibration Test</td>
<td>25</td>
</tr>
<tr>
<td>B. Acceleration Test</td>
<td>25</td>
</tr>
<tr>
<td>C. Shock Test</td>
<td>25</td>
</tr>
<tr>
<td>VI. Generator 1H3</td>
<td>41</td>
</tr>
<tr>
<td>A. Vibration Test</td>
<td>41</td>
</tr>
<tr>
<td>B. Acceleration Test</td>
<td>41</td>
</tr>
<tr>
<td>C. Shock Test</td>
<td>41</td>
</tr>
<tr>
<td>VII. Conclusions</td>
<td>57</td>
</tr>
<tr>
<td>References</td>
<td>59</td>
</tr>
<tr>
<td>Appendix</td>
<td>A-1</td>
</tr>
</tbody>
</table>
SUMMARY

This report summarizes the results of tests on four thermoelectric generators (two each of two different configurations) of the Snap III type to both the J.P.L. and the L.M.S.D. specifications for shock, vibration and acceleration test. The simulated levels were based on the anticipated environments of the Vega (J.P.L.) and WS117L (L.M.S.D.) systems.

All four generators exhibited the same characteristic behavior pattern throughout the vibration portion of the test program, showing a d-c ripple in the generator output only in the Y plane. This behavior of the generator is attributed to the oscillatory change in internal resistance resulting from vibratory elastic deformation of the thermoelectric elements. This produces a transient in the electrical output with a resultant reduction in generator efficiency. The maximum reduction in efficiency was noted in the 700 cps region. A resonance on the generator shell at 1845 cps was noted, but generator electrical output and efficiency were not affected. Upon discontinuance of the induced vibration, the generators returned to normal operating conditions.

While undergoing shock test, a d-c transient was noted at the time of impact, resulting in a slight decrease in efficiency. The generators immediately returned to their normal operating efficiency.

In the acceleration portion of the test no d-c transient was evident in any of the three planes, therefore the generator efficiency remained constant.

Steady state conditions were re-established at the start of each new test phase (i.e., changing planes of excitation, changing from shock to vibration, etc.). Thus, any variation from pretest efficiency was attributed to the external load resistance becoming unmatched due to the change in internal resistance. The important result is that complete generator recovery was consistent in all cases and normal operation continued.

The generator, shell, internal structure and pressure, and the hot and cold junction temperature were not affected during the test.

As a result of this test program, it was concluded that the Snap III thermoelectric generator will operate reliably in the environments associated with the Vega and WS117L vehicles.
I. INTRODUCTION

On May 15, 1959, tests were begun in the Environmental Dynamic Test Facility at The Martin Company on four thermoelectric generators designated 1G4, 1G5, 1H2 and 1H3. These units were fabricated by the Minnesota Mining and Manufacturing Company, St. Paul, Minnesota. The radioisotope was simulated by an electrical resistance heater located in the source cylinder.

The generators were subjected to vibration, acceleration and shock environments in each of the three principal orthogonal planes in accordance with the space vehicle environmental test requirements submitted by the Jet Propulsion Laboratories and Lockheed Missile Systems Division.

These tests were concluded on October 26, 1959. The principal environmental facilities used were a Calidyne vibration shaker, a Genisco centrifuge and a special shock testing rig.

This is the third of three volumes covering the results of the SNAP III environmental test program for generators 1G4, 1G5, 1H2 and 1H3. The test results are divided among the three volumes as follows:

<table>
<thead>
<tr>
<th>Volume</th>
<th>JPL Specification</th>
<th>IimdD Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1G4</td>
<td>1G5</td>
</tr>
<tr>
<td>II</td>
<td>1G5</td>
<td>1G4</td>
</tr>
<tr>
<td>III</td>
<td>1H2</td>
<td>1H2</td>
</tr>
<tr>
<td></td>
<td>1H3</td>
<td>1H3</td>
</tr>
</tbody>
</table>

The results of these tests (time versus efficiency) in graphic form follows the written description of each generator operation.

The test procedures described in Volumes I and II are the same as the procedures used here.
II. DESCRIPTION

The configurations of all four SNAP III generators are basically the same as described in Volume I. The main differences are in the thermoelectric element diameters. The four generators used in the test are compared in Table 1.

TABLE 1
Basic Generator Comparison Data

<table>
<thead>
<tr>
<th>Generator No.</th>
<th>Element Diameter (inches)</th>
<th>Interior Atmosphere</th>
<th>Insulation Material</th>
<th>Average Output (watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G4</td>
<td>0.225 0.210</td>
<td>85% N₂ 15% H₂</td>
<td>MIN-K 1301</td>
<td>3.0</td>
</tr>
<tr>
<td>1G5</td>
<td>0.225 0.210</td>
<td>85% N₂ 15% H₂</td>
<td>MIN-K 1301</td>
<td>3.0</td>
</tr>
<tr>
<td>1H2</td>
<td>0.158 0.149</td>
<td>95% Ag 5% H₂</td>
<td>MIN-K 1301</td>
<td>1.5</td>
</tr>
<tr>
<td>1H3</td>
<td>0.158 0.149</td>
<td>95% Ag 5% H₂</td>
<td>MIN-K 1301</td>
<td>1.5</td>
</tr>
</tbody>
</table>

NOTE: The 1H series generators are rated at approximately 5% efficiency. The 1G series are rated at approximately 6% efficiency.

*Diatomaceous earth is used in place of powdered MIN-K 1301 around the elements in the hot junction area.

Figure 1 shows a SNAP III generator undergoing disassembly. Fig. 2 shows the aluminum ring at the cold junction. Under each screw is a pressure spring. Figure 3 shows the thermoelectric element arrangement with mica electrical insulation and partially evacuated MIN-K thermal insulation. The electrical heater terminals are located in the isotopic source cylinder. Figure 4 is a plan view of the thermoelectric element arrangement. The hot shoe is constructed of low carbon steel, flame sprayed with aluminum oxide. Figure 5 is a close-up of the thermoelectric element arrangement. Figure 6 shows the soldered joint at the cold junction end with the electrical interconnecting wire.

Volume I of this report describes the SNAP III generator in more detail.
Fig. 1. Disassembly of SNAP III Generator

MND-P-2101-III
Fig. 2. Aluminum Ring--SNAP III Generator
Fig. 3. Thermoelectric Arrangement and Electrical Heater
Fig. 4. Radial Element Arrangement

MND-P-2101-III
Fig. 5. Close-up of Elements

MND-P-2101-III
Fig. 6. Cold Junction Area
III. GENERATOR 1G4

The tests on generator 1G4 to the JPL specification were described in Volume I. This chapter covers the No. 1G4 test to the IMSD specification. The test procedure and specification followed are described in Volume II.

A. VIBRATION TEST

The vibration test results for sinusoidal and random motion are basically the same for each generator configuration. The maximum efficiency decrease, which was approximately 4% of the overall performance, occurred in the Y plane (Figs. 7 and 8). Since different steady-state conditions were established at the start of each test, various pretest efficiency points are evident. The input force, identical in each of the three planes, caused the greatest loss in efficiency in the Y plane, and the generator required a longer period of recovery to normal operating efficiency.

The d-c ripple was monitored throughout and showed a peak of 6.5 mv in the Y plane.

A sinusoid one-half the specified test level of from 5 to 2500 cps was applied in the X, Y and Z planes to determine the frequency at which this peak occurred. The d-c ripple was found to peak at 700 cps in the Y plane (Fig. 9).

B. ACCELERATION TEST

The generator output was normal in all three planes as illustrated in Fig. 10. The slight efficiency increase noted during acceleration in the Z plane is believed to be due to a change in ambient environment within the centrifuge and is not a typical reaction. After the test the generator immediately returned to normal operation and this apparent slight efficiency rise may be discounted in the overall evaluation of generator performance.

No transient d-c output resulted from the accelerations applied during this test.

C. SHOCK TEST

As explained in Volume I, the specification was deviated from the shock test due to equipment limitations. Two shocks of 40 g in each
of the principal orthogonal planes were substituted. A facility capable of meeting the pulse shaping requirements will be available soon.

Figures 11, 12 and 13 show the shock wave input to the mounting base, the output through the generator, and transient d-c ripple during the sequence. Figure 14 shows the efficiency variation for each shock in the three mutually perpendicular planes.

The efficiency remained effectively stable during this test phase. The maximum oscillatory d-c of 6.55 mv occurred in the Y plane. Normal operation was resumed after the environmental forces were discontinued.
Fig. 7. Efficiency Versus Time, Generator No. 1G4 X-, Y- and Z- Plane Sinusoidal Vibration Tests--LMSD Specification
Fig. 8. Efficiency Versus Time No. 1G4 X-, Y- and Z-Plane Random Vibration Tests--LMSD Specification
Fig. 9. No. 1G4 Y-Plane Frequency Response Curve—LMSD Specification
Fig. 10. Efficiency Versus Time, No. 1G4 X-, Y- and Z-Plane Acceleration Tests--LMSD Specification
Fig. 11. No. 1G4 Y-Plane Shock Test--LMSD Specification
Fig. 12. No. 1G4 X-Plane Shock Test--LMSD Specification
Fig. 13. No. 1G4 Z-Plane Shock Test--LMSD Specification
Fig. 14. No. 1G4 X-, Y- and Z-Plane Shock Tests--LMSD Specification
IV. GENERATOR 1G5

Volume II of this report covers the results of tests on generator 1G5 to the specification furnished by LMSD. The test to the JPL specification completes the current series of tests on generator 1G5. The test procedures and specifications followed are contained in Volumes I and II.

A. VIBRATION TEST

The vibration test to the JPL specifications revealed a decrease in efficiency in the Y plane only (Fig. 15). The generator returned to normal operating efficiency minutes after the vibrating force was discontinued.

The d-c ripple observed on the generator output reached a maximum of 1.8 mv in the Y plane. To determine the peak of this transient, a frequency survey from 15 to 1500 cps was conducted. A peak in the 750 cps region was recorded (Fig. 16).

B. ACCELERATION TEST

The generator operated normally throughout the acceleration test, as shown in Fig. 17. No d-c transient was observed during the test.

C. SHOCK TEST

Figures 18, 19 and 20 show the shock input to the base plate, the four separate shocks to the generator, and the oscillatory d-c in each principal orthogonal plane.

The generator behaved in a normal manner during this sequence (Fig. 21). The maximum d-c ripple of 21.5 mv occurred in the Y plane. The generator returned to normal operation when the environmental forces were discontinued.
Fig. 15. No. 1G5 X-, Y- and Z-Plane Vibration Tests--JPL Specification
Fig. 16. No. 1G5 Y-Plane Frequency Response Curve--JPL Specification
Fig. 17. No. 1G5 X-, Y- and Z-Plane Acceleration Tests--JOP Specification
Oscillatory

DC

21.5 mv

0.01 sec

0.01 sec

Typical input pulse

Shock I

Shock II

Shock III

Shock IV

Fig. 18. No. 1G5 Y-Plane Shock Test--JPL Specification
Fig. 19. No. 1G5 X-Plane Shock Test--JPL Specification
Fig. 20. No. 1G5 Z-Plane Shock Test—JPL Specification
Fig. 21. Efficiency Versus Time, No. 1G5 X-, Y- and Z-Plane Shock Test--JFL Specification
V. GENERATOR LH2

The same LM3D and JPL specifications and test procedures used for the IG series generators were used for the LH series. As shown in Table 1, the thermoelectric elements are approximately 30% smaller in diameter than those of the IG series.

A. VIBRATION TEST

Figures 22, 23 and 24 show that the generator behavior was basically the same for both the LM3D and JPL specifications. The d-c transient noted in the IG series was evident during the test on the LH series and reached a maximum of 7.6 mv in the Y plane. The generator returned to normal operating efficiency when the environmental forces were discontinued.

A frequency survey conducted from 5 to 2500 cps for the LM3D specification, and from 15 to 1500 cps for the JPL specification, showed the peak to be in the 650 cps region (see Figs. 25 and 26).

A typical calidyne shaker equalization curve and data sheet for the LH2 generator are shown in the Appendix.

B. ACCELERATION TEST

The generator operated in a normal manner during the LM3D specified tests (Fig. 27). However, there was a 2% variation in efficiency in tests to the JPL specification (Fig. 28). This is thought to be a result of a change in the laboratory ambient temperature.

C. SHOCK TEST

The shock test inputs to the generator and the transient ripple on the d-c output are shown for the LM3D specification in Figs. 29, 30 and 31, and for the JPL specification in Figs. 32, 33 and 34.

The generator showed a slight variation in efficiency for the LM3D specification, with a larger variation in efficiency noted for the JPL specification (Figs. 35 and 36). This increased variation was caused by a shock input greater than the prescribed 50 g. In all cases the generator returned to normal operation.

Oscillatory d-c was evident for both environmental specifications. The maximum d-c ripple occurred in the Y plane, and was 9.15 mv for the LM3D specification and 21.8 mv for the JPL specification. These transients disappeared at the conclusion of each shock input and normal generator operation was resumed.
Fig. 22. Efficiency Versus Time, No. 1H2 X-, Y- and Z-Plane Random Vibration Tests--LMSD Specification
Fig. 23. Efficiency Versus Time, No. 1H2 X-, Y- and Z-Plane Sinusoidal Vibration Tests--LMSD Specification
Fig. 24. Efficiency Versus Time, No. 1H2 X, Y and Z Planes---
J. F. L. Specification
Fig. 25. No. 1H2 Y-Plane Frequency Response Curve—LMSD Specification
Fig. 26. No. 1H2 Y-Plane Frequency Response Curve--JPL Specification
Fig. 27. Efficiency Versus Time, No. 1H2 X-, Y- and Z-Plane Acceleration Tests--LMSD Specification
Fig. 28. Efficiency Versus Time, No. 1H2 X-, Y- and Z-Plane Acceleration Tests--JPL Specification
Fig. 29. No. 1H2 Y-Plane Shock Test--LMSD Specification
<table>
<thead>
<tr>
<th>Oscillatory DC</th>
<th>Input</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.82 mv superimposed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01 sec</td>
<td>40 g</td>
<td>0.01 sec</td>
</tr>
<tr>
<td>Oscillatory DC</td>
<td>Generator shell output</td>
<td>Generator shell output</td>
</tr>
<tr>
<td>1.8-mv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01 sec</td>
<td>40 g</td>
<td>0.01 sec</td>
</tr>
</tbody>
</table>

Fig. 30. No. 1H2 X-Plane Shock Test--LMSD Specification
<table>
<thead>
<tr>
<th>Oscillatory DC</th>
<th>Input</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mv superimposed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01 sec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 31. No. 1H2 Z-Plane Shock Test--LMSD Specification
Fig. 32. No. 1H2 X-Plane Shock Test--JPL Specification
Fig. 33. No. 1H2 Y-Plane Shock Test--JPL Specification
Fig. 34. No. 1H2 Z-Plane Shock Test--JPL Specification
Fig. 35. Efficiency Versus Time, No. 1H2 X-, Y- and Z-Plane Shock Tests—LMSD Specification
Fig. 36. No. 1H2 X-, Y- and Z-Plane Shock Tests--JPL Specification
VI. GENERATOR 1H3

The same specifications and test procedures used for the IG series of tests were used for the tests on generator 1H3.

A. VIBRATION TEST

The greatest efficiency variations for both specifications were in the Y plane (Figs. 37, 38 and 39). The post-test increase in efficiency for the X plane sinusoidal test, LMSD specification, can be attributed to a change in laboratory ambient temperature. The important fact is that recovery was complete in all cases.

The d-c ripple was evident only in the Y plane for both specifications, and reached a 4.0-mv maximum. A frequency survey to determine the peak of this d-c ripple was conducted and showed a peak in the 700-cps region (Figs. 40 and 41).

A typical data sheet for the 1H3 generator is shown in the Appendix.

B. ACCELERATION TEST

The acceleration tests to both specifications showed normal operation throughout the test phase (Figs. 42 and 43).

C. SHOCK TEST

The shock test inputs to the generator and the ripple on the d-c output are shown for the LMSD specification in Figs. 44, 45 and 46, and for the JPL specification in Figs. 47, 48 and 49.

The generator showed a slight efficiency variation in the Y plane for both the LMSD and JPL specifications (Figs. 50 and 51). In both cases recovery was complete.

Oscillatory d-c was evident for both environmental specifications. The maximum d-c ripple occurred in the Y plane, and was 23.2 mv for the LMSD specification, and 22.7 mv for the JPL specification. These transients disappeared after each shock input, and normal generator operation was resumed.
Fig. 37. Efficiency Versus Time, No. 1H3 X-, Y- and Z-Plane Sinusoidal Vibration Tests--LMSD Specification
Fig. 38. Efficiency Versus Time, No. 1H3 X-, Y- and Z Plane Random Vibration Tests--LMSD Specification
Fig. 39. Efficiency Versus Time, No. 1H3 X-, Y- and Z-Plane Vibration Tests--JPL Specification
Fig. 40 No. 1H3 Y-Plane Frequency Response Curve--LMSD
Specification
Fig. 41. No. 1H3 Y-Plane Frequency Response Curve--JPL Specification
Fig. 42. Efficiency Versus Time, No. 1113 X-, Y- and Z-Plane Acceleration Tests--GSD Specification
Fig. 43. Efficiency Versus Time, No. 1H3 X-, Y- and Z-Plane Acceleration Tests--JPL Specification
Fig. 44. No. 1H3 Y-Plane Shock Test--LMSD Specification
Fig. 45. No. 1H3 X-Plane Shock Test--LMSD Specification
Fig. 46. No. 1H3 Z-Plane Shock Test—LMSD Specification
Fig. 47. No. 1H3 Y-Plane Shock Test--JPL Specification
Oscillatory DC

18.2 mv

0.01 sec

Typical input pulse

50 g

0.01 sec

Shock I

50 g

0.01 sec

Shock II

50 g

0.01 sec

Shock III

50 g

0.01 sec

Shock IV

50 g

Fig. 48. No. 1H3 X-Plane Shock Test--JPL Specification
Fig. 49. No. 1H3 Z-Plane Shock Test--JPL Specification
Fig. 50. Efficiency Versus Time, No. 1H3 X-, Y- and Z-Plane Shock Tests--
LMSD Specification
Fig. 51. Efficiency Versus Time, No. 1G3 X-, Y- and Z-Plane Shock Tests—
JPL Specification
VII. CONCLUSIONS

A comparison was made of the four generators, each of which was tested to both the JPL and IMSD specifications. The operating time of each generator during the entire test program is as follows:

<table>
<thead>
<tr>
<th>Generator</th>
<th>Operating Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGL4</td>
<td>736 hours</td>
</tr>
<tr>
<td>IGL5</td>
<td>790 hours</td>
</tr>
<tr>
<td>LH2</td>
<td>629 hours</td>
</tr>
<tr>
<td>LH3</td>
<td>438 hours</td>
</tr>
</tbody>
</table>

In general, all the generators showed the same variations and transients throughout the environmental test program. The LH generators showed a greater deviation in power output than did the IGL generators. This could be due to an increase in element displacement of the LH series for a given input force because of the reduced element diameter (i.e., decreased stiffness).

Overall decreases in efficiency are attributed mainly to the change in generator internal resistance. When this occurs, the external load resistance is unmatched with the internal resistance of the generator. Figure 52 is a typical performance curve taken from Ref. 1. For maximum power output, an optimum external load compatible with the internal generator resistance is required. It is obvious that an unbalanced condition immediately reduces the maximum power output and decreases the overall efficiency. Therefore, a change in resistance across any thermoelectric element within the generator can cause this variation. A new, but lower, maximum power output may be obtained with an adjusted external load resistance. This is shown by the dotted line in Fig. 52.

When the restoration process begins within the generator, a reversal of the above takes place. The internal resistance is restored to its original magnitude as the thermoelectric elements return to their static relationship. The dotted line plot in Fig. 52 reverts to the original solid curve, where maximum power output is resumed in normal operation.

The d-c transients on the power output may be caused by motion of the thermoelectric couple and hot shoe. Since the oscillograph records show complete continuity in the power output, electrical contact was maintained at all times. The motion may have been of a rocking nature,
where the contact area of the thermoelectric element changed in unison with the environmental force rather than elastic deformation of the elements themselves. In all cases, the transient d-c disappeared when the environmental forces were discontinued.

The greater efficiency variations occurred in the generators containing the thinner elements (IH series). It is therefore recommended that generator design be optimized on the keynote of rigid generator internal components. This should reduce d-c transients in the system.

In all cases the internal pressure was maintained, indicating adequate sealing design. There was no damage to the electrical insulating materials, as the output of the generator was unimpaired. It is concluded that the current design of the SNAP III generators is applicable to space vehicle environments as defined by the JPL and LMSD specifications.
Fig. 52. Power Output Versus Load Resistance for SNAP-III

Maximum power at optimum load
Lower maximum power at new optimum load
REFERENCE

Summary of Generator No. 1H2 Vibration Tests—MSUD Specification

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature (°F)</th>
<th>Input</th>
<th>Output</th>
<th>Efficiency, η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temperature</td>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hot</td>
<td>Cold</td>
<td>Volts</td>
</tr>
<tr>
<td>Pretest</td>
<td></td>
<td>696</td>
<td>115</td>
<td>43.2</td>
</tr>
<tr>
<td>Test I</td>
<td></td>
<td></td>
<td></td>
<td>2.21</td>
</tr>
<tr>
<td>Post- and Pretest</td>
<td></td>
<td>2.21</td>
<td>0.636</td>
<td>1.406</td>
</tr>
<tr>
<td>Test II</td>
<td></td>
<td></td>
<td></td>
<td>2.23</td>
</tr>
<tr>
<td>Post- and Pretest</td>
<td></td>
<td>2.23</td>
<td>0.636</td>
<td>1.418</td>
</tr>
<tr>
<td>Test III</td>
<td></td>
<td></td>
<td></td>
<td>2.21</td>
</tr>
<tr>
<td>Post-test</td>
<td></td>
<td></td>
<td></td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y Plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretest</td>
<td></td>
<td>712</td>
<td>114</td>
<td>44.0</td>
</tr>
<tr>
<td>Test I</td>
<td></td>
<td></td>
<td></td>
<td>2.29</td>
</tr>
<tr>
<td>Post- and Pretest</td>
<td></td>
<td>2.29</td>
<td>0.668</td>
<td>1.530</td>
</tr>
<tr>
<td>Test II</td>
<td></td>
<td></td>
<td></td>
<td>2.16</td>
</tr>
<tr>
<td>Post- and Pretest</td>
<td></td>
<td>2.29</td>
<td>0.668</td>
<td>1.530</td>
</tr>
<tr>
<td>Test III</td>
<td></td>
<td></td>
<td></td>
<td>2.23</td>
</tr>
<tr>
<td>Post-test</td>
<td></td>
<td></td>
<td></td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z Plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretest</td>
<td></td>
<td>668</td>
<td>114</td>
<td>43.1</td>
</tr>
<tr>
<td>Test I</td>
<td></td>
<td></td>
<td></td>
<td>2.31</td>
</tr>
<tr>
<td>Post- and Pretest</td>
<td></td>
<td>2.31</td>
<td>0.585</td>
<td>1.351</td>
</tr>
<tr>
<td>Test II</td>
<td></td>
<td></td>
<td></td>
<td>2.28</td>
</tr>
<tr>
<td>Post- and Pretest</td>
<td></td>
<td>2.31</td>
<td>0.585</td>
<td>1.351</td>
</tr>
<tr>
<td>Test III</td>
<td></td>
<td></td>
<td></td>
<td>2.31</td>
</tr>
<tr>
<td>Post-test</td>
<td></td>
<td></td>
<td></td>
<td>2.31</td>
</tr>
</tbody>
</table>
Summary of Generator No. LH3 Vibration Tests—JPL Specification

X Plane

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature (°F)</th>
<th>Input</th>
<th>Output</th>
<th>Efficiency, η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hot</td>
<td>Cold</td>
<td>Volts</td>
<td>Amperes</td>
</tr>
<tr>
<td>Pretest</td>
<td>708</td>
<td>110</td>
<td>43</td>
<td>0.808</td>
</tr>
<tr>
<td>Test I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post- and Pretest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Y Plane

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature (°F)</th>
<th>Input</th>
<th>Output</th>
<th>Efficiency, η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hot</td>
<td>Cold</td>
<td>Volts</td>
<td>Amperes</td>
</tr>
<tr>
<td>Pretest</td>
<td>716</td>
<td>105</td>
<td>43</td>
<td>0.808</td>
</tr>
<tr>
<td>Test I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post- and Pretest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Z Plane

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature (°F)</th>
<th>Input</th>
<th>Output</th>
<th>Efficiency, η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hot</td>
<td>Cold</td>
<td>Volts</td>
<td>Amperes</td>
</tr>
<tr>
<td>Pretest</td>
<td>696</td>
<td>105</td>
<td>43</td>
<td>0.808</td>
</tr>
<tr>
<td>Test I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post- and Pretest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. A-1. No. 1H2 Y-Plane Final Equalization Curve, Model 177A Calidyne Vibrator--LMSD Specification