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ABSTRACT 

Very weak alpha branching in heavy elements was studied by a 

recent ly developed coincidence technique. This technique makes it 

possible to m e a s u r e the energies and intensi t ies of both a = par t ic le 

groups and de-exci t ing radiat ion, even when the t rans i t ion intensi t ies 
~ 8 

a r e as low as 10 relat ive to the most intense alpha group. Twenty 
214 254 

a -par t i c le emi t t e r s from Po to F m ' have been examined. 

00+ s ta tes ("beta v ibra t ions") were observed in six even-even 

nuclei , and analogous s ta tes were found in th ree odd-mass nuclei . 

They a r e in genera l cha rac t e r i s ed by low alpha-decay hindrance factors 

and roughly equal de-exci ta t ion by e lec t r ic monopole and quadrupole 

t r ans i t ions . However, the de-exci tat ion of these s ta tes is in d i s a g r e e ­

ment with vibrat ional model predict ions in cer ta in c a s e s ; more i m ­

portant , the de-exci ta t ion and other p roper t i es of the s ta tes exhibit 

some i r r e g u l a r var ia t i cns from nucleus to nucleus which a r e evidence 

for some par t ic le c h a r a c t e r in the s t a t e s . 

Information was also obtained about some other types of l eve ls . 

A number of 1- s ta tes ("octupole vibrat ions") were observed, and a 
236 possible 2- s tate was observed in U . A state that appears to be 

analogous to the 1-oct ^polestates of even-even nuclei was observed in 
235 239 

U . In Pu , a K = 3 / 2 + [ 6 3 l ] band was identified with reasonable 
249 

cer ta in ty , and numerous par t ic le s ta tes were observed in Bk , a l ­
though it was not possible to classify them. No 22+ s ta tes ("gamma 
vibra t ions") were observed, and it appears that the alpha t rans i t ions to 
these s ta tes a r e r a the r highly re ta rded . 



L INTRODUCTION 

A recent ly developed coincidence technique makes it possible 

to study ve ry weak t rans i t ions occurr ing in alpha decay. The method 

has been used to study excited levels up to about 1 MeV in heavy nu­

clei . In the exper iments repor ted in this paper , energy levels of nu­

clei from Pb to Cf have been examined. 

Much of what is known about nuclear level s t ruc tu re can be 

explained in t e r m s of semi- independent nucleons in a cen t ra l field. In 

recent yea r s this model has been extended to include spheroidal ly de = 
1 

formed fields. The level s t ruc tu re of deformed, odd-mass nuclides 

in the heavy-e lement region has been successfully in te rpre ted in this 
2 

way. The band s t ruc tu re which also occurs in the heavy m a s s region 

is well cha rac t e r i zed as a r i s ing from collective surface-wave rotat ion 

of the deformed nucleus . 

However, a number of s ta tes in even = even nuclides cannot be 

descr ibed sa t i s fac tor i ly as par t ic le excitations or as ro ta t ions . Like 

ro ta t ions , these have been cha rac te r i zed as collective s ta tes because : 

1. Their E2 and E3 t rans i t ion probabi l i t ies , as m e a s u r e d in 

Coulomb excitation, a r e enhanced beyond s ing le -par t i c le e s t i m a t e s . 

2. The s ta tes occur below the energy gap defined by the odd-even 

m a s s difference. 

3. States with the same spin and par i ty occur somewhat s y s t e m a t i ­

cally in many nuclei . 

More detai led explanations of these s ta tes have met with some 

succes s . In the two major regions of deformation, the s ta tes have 

been descr ibed as surface-wave vibrat ionsof an axially s y m m e t r i c 

3 
ell ipsoid. The 00+, 22+, and 0 1 - s ta tes that occur in even-even nu­
clides a r e cha rac t e r i zed as beta v ibra t ions , gamma v ibra t ions , and 
octupole v ibra t ions . (The quantum numbers KI TT a r e used throughout 
the paper to denote s ta tes of deformed nuclei . S ingle-par t ic le levels 
of odd-nnass nuclides a r e somet imes designated by the additional 
Nilsson quantum numbers [ Nn A ] , Excited 00+ and 02+ s ta tes a r e 
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are dist inguished from m e m b e r s of the ground-s ta te band by the con­

text in which they appear . ) Coulomb excitation studies show that the 

E3 t rans i t ion probabil i t ies between the ground-s ta te band and the 

K = 0= bands a r e enhanced re la t ive to single = par t ic le e s t ima te s . E2 

t rans i t ion probabil i t ies between the ground state and the K = 0+ and 

K = 2+ bands a r e likewise enhanced. The K = 0+ bands decay by strong 

monopole t rans i t ions . All these facts a r e in accord with the vibra= 

tional model . On the other hand, there a r e good reasons for believing 

that the vibrat ional descript ion of these s ta tes is inadequate. The ex­

citation energies a r e comparable to the energies of par t ic le exci ta t ions, 

so one would not expect the vibrat ions to be adiabatic . The E2 t r a n s ­

ition probabil i t ies a r e on the o rde r of only a few s ing le -par t ic le uni t s , 

compared with hundreds for rotat ional-band E2 t rans i t ions . 

More detailed exper imental information about "col lec t ive" 

s ta tes of heavy elenaents is difficult to obtain, because the re is no 

s imple , general ly applicable way to excite them. Methods such as 

Coulomb excitation and nuclear react ions a r e unsuitable because of the 

short l ifet imes of most heavy nuclides and hence the genera l a.bsence 

of suitable ta rge t m a t e r i a l s . Beta-decay studies a r e l imi ted to cases 

in which a suitable be ta-decay parent exists^ the decay energy is suf­

ficiently high to excite the s t a t e s , and spin changes a r e smal l enough 

to allow substant ial population of them. 

Alpha decay pos se s se s many advantages. A la rge number of 

the heavy elements a r e alpha emi t t e r s with suitable half l ives . Alpha-

par t ic le energies fix the energy of an excited s tate unambiguously if 

the isotope assignnaent is cer ta in . The chief disadvantage of alpha de ­

cay is the s trong energy dependence, which resu l t s in ve ry weak popu­

lation of highly excited s t a t e s . For example, unhindered t rans i t ions 
-5 "8 

to s ta tes at about 1 MeV have intensi t ies on the o rde r of 10 to 10 

re la t ive to the favored t rans i t ion, (An unhindered t rans i t ion is defined 

as one for which the reduced t rans i t ion probabili ty is the same as for 

the t rans i t ion to the ground s tate of an even-even nucleus. Reduced 

t rans i t ion probabil i t ies used to calculate hindrance factors quoted in 
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this paper a r e calculated from the one-body-model a lpha-decay equa-
4 5 

tions of P res ton . A s impler formula by Fr'5man, which yields 

approximately the same numer ica l r e s u l t s , was used for even-even 

nuclei . ) 

The exper iments repor ted he re were designed to m e a s u r e such 

weak t r ans i t ions . The p r i m a r y exper imenta l tool is a silicon s e m i ­

conductor cha rged-pa r t i c l e de tec tor . In o rde r to observe v e r y weak 

alpha branching, it is nece s sa ry to observe a la rge number of decay 

events in a reasonable t ime ; the ability to count a par t ic les at r a t e s 
5 

over 10 per second with good energy resolut ion is an essent ia l p roper ty 
of these de t ec to r s . 

Even so , ve ry weak alpha groups a r e obscured in d i rect ly de ­

t e rmined spec t ra by the low-energy ta i l of the intense peaks frona the 

main t r ans i t i ons . However, the decay to higher excited s ta tes occurs 

in coincidence with h igh-energy y rays and convers ion e l ec t rons , and 

is therefore dist inguishable in coincidence exper imen t s . This type of 

exper iment can also yield data on y - r ay branching and convers ion co ­

efficients that a r e ve ry helpful in charac te r i z ing s t a t e s . 

Another problem that a r i s e s in m e a s u r e m e n t s of ve ry weak 

t rans i t ions is the possibi l i ty that they a r e due to sma l l impur i t i e s in 

the active sample . Simultaneous m e a s u r e m e n t of alpha and gamma or 

e lect ron energies in mos t cases gives unambiguous proof of c o r r e c t 

isotopic ass ignment . 

Very weak alpha branching has previously been infer red from 

the m e a s u r e m e n t of y rays and e lec t ron-K x - r a y coincidences . Such 

studies a r e possible for a few alpha emi t t e r s which can be obtained in 

sufficient quantity with high isotopic and chemical puri ty. They can be 

done with intense thick sources because the a pa r t i c l e s themse lves 
244 

a r e not analyzed. In one favorable case^ Cm decays, d i rec t m e a ­
surement of two alpha groups populating 00+ and 02+ s ta tes around 

870 keV was made in a magnet ic spec t rograph , although the i r total 

intensi ty was only 2X10 . The 01= s ta tes have been observed in a 

number of cases by measu r ing the corresponding alpha groups , because 

the s ta tes lay at re la t ively low ene rg ie s . 
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The decay of Pu and Cm populates 00+ s ta tes c h a r a c -
7 8 

t e r i zed by low alpha-decay hindrance factors ' and strong monopole 

de-exci tat ion. Such s tates a r e designated "beta v ib ra t i ons" in the r e ­

mainder of the paper , although this is not meant to imply that the i r 

detailed proper t ies cor respond to the s imple vibrat ional descr ipt ion. 

States analogous to the "col lec t ive" levels of even-even nuclides a r e 

a lso expected to occur in nuclei with unpaired nucleons among m o r e 

numerous s ingle-par t ic le s t a tes . The associat ion of beta vibrat ions 

with low hindrance factors and strong monopole t rans i t ions offers a 

possible means to distinguish thena from s ingle-par t ic le levels in odd-

naass spec ies . Gamma vibrat ions have recent ly been identified in 

Coulomb-excitat ion exper iments on some odd-mass r a r e ea r th 
9 

isotopes; they a re distinguished in this case by the i r high E2 t r a n s ­
ition probabi l i t ies . 
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II. E X P E R I M E N T A L P R O C E D U R E 

A. A p p a r a t u s for M e a s u r i n g A l p h a - G a m m a and 
A l p h a - E l e c t r o n Coinc idences" 

The o r i g i n a l c o i n c i d e n c e count ing s y s t e m , c o n c e i v e d and d e ­

s igned in I 9 6 0 - 1 9 6 1 by Sven B j ^ r n h o l m , was u s e d in a m a j o r i t y of the 

e x p e r i m e n t s , and h a s p r o v e d h ighly v e r s a t i l e and r e l i a b l e . F i g u r e 1 

shows the v a c u u m chanaber tha t h o u s e s the s o u r c e and d e t e c t o r s . In 

(a), the c h a m b e r i s a s s e m b l e d for m e a s u r i n g c o i n c i d e n c e s b e t w e e n a 

p a r t i c l e s and y r a y s . The g a m m a d e t e c t o r i s a 3X3-inch Nal s c i n ­

t i l l a t o r c o m m e r c i a l l y m o u n t e d wi th a p h o t o m u l t i p l i e r ( H a r s h a w ) . The 

ef f ic iency of the g a m m a d e t e c t o r was c a l i b r a t e d wi th s t a n d a r d s whose 

a b s o l u t e i n t e n s i t y w a s known to ±5%: Na (511 and 1276 keV) , Cs 

(662 keV) , and Co (1173 and 1333 keV) . A se t of c a l i b r a t e d a b s o r b e r s 

could be i n s e r t e d in the s l o t s b e t w e e n the s o u r c e and the s c i n t i l l a t o r . 

T h e s e a r e d i f fe ren t t h i c k n e s s e s of l e a d , c a d m i u m , and c o p p e r . 

F o r m e a s u r i n g a l p h a - e l e c t r o n c o i n c i d e n c e s , an a n t h r a c e n e 

s c i n t i l l a t o r e l e c t r o n d e t e c t o r e x t e n d e d into the c h a m b e r t h r o u g h a ho le 

in the w a l l , F ig . 1(b). O p t i c a l con tac t to a p h o t o m u l t i p l i e r w a s o b t a i n e d 

by a s h o r t l ight gu ide , and the face of the p h o t o m u l t i p l i e r s e a l e d v a c u u m -

t igh t a g a i n s t a r u b b e r g a s k e t . The so l id ang le of the d e t e c t o r w a s naea -
137 

s u r e d wi th a c a l i b r a t e d Cs s o u r c e and found to be 33% of 4TT, C a l i ­

b r a t e d a l u m i n u m a b s o r b e r s could be u s e d to a b s o r b l o w e r - e n e r g y 

e l e c t r o n s . 

The a lpha d e t e c t o r is a p h o s p h o r u s - d i f f u s e d p - n j u n c t i o n s i l i c o n 
10 s e m i c o n d u c t o r wi th a g u a r d r i n g . The s e n s i t i v e a r e a s of d i f fe ren t 

d e t e c t o r s r a n g e d f r o m 0.5 to 2.0 c m in d i a m e t e r . Many s u c h d e t e c t o r s 

w e r e u s e d ; t h e i r e x c e l l e n t qua l i ty w a s an i m p o r t a n t f ac to r in the s u c ­

c e s s of the e x p e r i m e n t s . The r e s o l u t i o n , l i f e t i m e , and a v a i l a b i l i t y of 

the d e t e c t o r s w e r e i m p r o v e d c o n s i d e r a b l y d u r i n g the c o u r s e of t h i s w o r k . 

Sur face b a r r i e r type d e t e c t o r s w e r e a l s o u s e d in a few e x p e r i m e n t s ; 

t h e i r p e r f o r m a n c e c h a r a c t e r i s t i c s w e r e s i m i l a r . 

The e l e c t r o n i c c i r c u i t i s shown in a b l o c k d i a g r a m , F ig . 2. The 

anap l i f i e r s for the s c i n t i l l a t i o n c o u n t e r s , fas t c o i n c i d e n c e un i t , and 



-6-

Photomultiplier 

3 X 3 in. 
Na l 

Scint i l lator 
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Fig. 1, Source-detector housing (a) for a--y coincidence 
measurenaents , and (b) for measur ing a-e- co­
incidences. The position of the a -par t ic le de ­
tector can be var ied relat ive to the source . Ab­
so rbe r s can be inser ted between the source and 
the scintil lation detector . The electron ab­
so rbe r , shown in position in (b), was used to 
co r r ec t for response of the anthracene sc in­
t i l la tor to y r a y s . In a normal a-e~ m e a ­
surement it is naoved away. 
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single-channel and multichannel analyzers a r e of conventional design. 
The preamplif ier for the semiconductor detector was designed by 

10 Goulding, and the l inear amplifier by Landis and Goulding. The 
11 zero c rossover pickoff ex t rac ts a t ime signal from the alpha pulse 

which is matched to the fast signal from the wide-band amplif iers by a 

continuously var iable delay. The output of the l inear amplifier feeds 

the l inear gate, and three means for opening the gate were available. 

Normally the gate opens whenever a fast coincidence has occur red . 

For alpha singles m e a s u r e m e n t s , the gate could be opened by the out­

put of the scale-down unit, permit t ing every pulse, or every 10th, 100th, 

1000th, or lOsOOOth pulse to pass . This reduced the count ra te in the 

biased amplifier and ana lyzers . A pulser fed the first stage of the 

preampl i f ier , and produced a synchronous pulse to t r igger the fast co­

incidence. It was thus possible to m e a s u r e singles alpha, coincident 

alpha, and pulser spec t ra without changing the counting ra te at the de ­

tec to r . This prevented amplitude shifts that would otherwise occur at 

such high count r a t e s . 

The chief experinaental problem is the compromise between 

good resolution and high count r a t e s . Silicon de tec to rs , because they 

generate a higher charge per unit energy in a much shor t e r t ime , a r e 

great ly super ior to the ea r l i e r gas ionization chambers in both reso lu ­

tion and ability to handle high count r a t e s . Never the less , high r epe t i ­

tion ra tes cause ser ious problems unless the ent i re de tec tor -preanapl i -

fie r -ampl i f i e r -ga te sys tem is specially designed to prevent them. 

The normal 20-|Jisec decay t ime of the preampli f ier output pulse 

resul ted in severe pi le-up overload of l a te r s tages , and was accordingly 

lowered to 0.45 |Jisec for most exper iments . The l inear amplif ier p r o ­

vided s ingle-delay- l ine , double-delay-l ine, or RC pulse shaping. For 

maximum count r a t e s , up to 2X10 / s e c , double delay line (DDL) shaping 

was neces sa ry , although the peak width at low count r a t e s was g rea te r 
12 13 

than for RC shaping by a factor of 1.5. ' The DDL pulses 

(Fig. 3a) decay quickly and cleanly to zero ampli tude, which resu l t s 

in minimum spec t ra l tail ing. Also, the i r t ime integral is near ly ze ro , 

which prevents voltage level shifting from the accumulation of pulses 
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a 

Z N - 4 0 2 5 

F ig . 3. O s c i l l o s c o p e t r a c e s of s h a p e d a lpha p u l s e s . 
(a) Double de l ay l ine (DDL,) s h a p i n g , 0.2 \isec 
p e r h o r i z o n t a l d i v i s i o n , 2 V p e r v e r t i c a l d iv i s ion , 
The l i g h t e r t r a c e i s c a u s e d by f i s s ion p u l s e s 
f r o m the Cf^^^ s o u r c e . 
(b) RC s h a p i n g . T i m e c o n s t a n t s : p r e a m p l i f i e r 
0.45 i-Lsec, d i f f e r e n t i a t o r O.Z|j.sec, i n t e g r a t o r , 
0.1 M-sec. S c a l e : 1 |-Lsec and Z V p e r d iv i s ion . 
(c) RC shap ing . As m (b), but the p r e -
anapl i f ie r t i m e c o n s t a n t has b e e n r a i s e d to 
Z ^ s e c . 

file:///isec
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in la ter s tages . Their baseline c ros sove r point (zero voltage) provides 

a t ime naarker that is independent of the pulse anaplitude. 

When RC shaping is used with the shortened preampli f ier 

pulse, a double differentiated pulse resu l t s (Fig, 3b). This pulse has 

a near ly zero t ime in tegra l , and c r o s s e s the basel ine at a tinae near ly 

independent of pulse anaplitude. The resolut ion is considerably bet ter 

than with DDL shaping at count ra tes up to 5X10 / s e c . 

For be t ter resolut ion, it is nece s sa ry to use a longer p r e ­

amplifier pulse and RC shaping. The resul t ing pulse (Fig. 3c) is only 

slightly double-differentiated, so that the c rossover point depends more 

strongly on pulse ampli tude, making it n e c e s s a r y to lengthen the coin­

cidence resolving tinae by a factor of 5 to 10. Resolution is improved 

sonaewhat, but severe pi le-ups occur at count r a t e s above 10 / s e c , so 

that this type of pulse shaping found much sma l l e r use , (See Pu 

r e su l t s . ) 

The optinaum resolut ion obtained was 0.46%; typically resolut ion 

fell in the range 0.5% to 1,3%, depending on the count ra te and the de ­

tec tor used. The sys tem has proved reasonably s table , normal ly 

drifting less than 0.1% during a 24-hour measuremen t , 

B. Improvements in the Coincidence Counting Technique 

Fiss ion Anticoincidence Counter 
252 

A few of the heaviest nuclides studied, par t icu lar ly Cf , de ­

cay to a substantial extent by spontaneous fission, producing high-energy 

fragments in coincidence with abundant y r a y s . Large pulses , p r o ­

duced when a fission fragnaent s t r ikes the alpha de tec tor , sa tura te the 

amplif ier , and consequently have a c rossover point that occurs too late 

to give a t rue coincidence (see Fig, 3b), However, smal l pulses 

from the tailing of the fission spectruna will be in t rue coincidence 

with fission y r a y s , and this will produce a background that can ob­

scure weak alpha groups. Also, t e rna ry f iss ions, occurr ing in about 

0.2% of the fission events , produce a par t ic les that give r i s e to addi­

tional background. 
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Since at leas t two high-energy fragments a r e produced in every 

fission, it is possible to el iminate most of the fission background by 

detecting fission fragments in a separa te counter connected to an ant i ­

coincidence c i rcui t . This counter must have near ly 2Tr geometry in 

o rde r to detect at leas t one fragment from a t e rna ry event. This was 

accomplished by depositing the active source di rect ly on the surface 

of the anticoincidence detec tor . 

The anticoincidence c i rcui t is shown in Fig. 4. The 10-Mc 

d i sc r imina to r re jec ts the m o r e abundant low-energy alpha pulses . The 

res t of the c i rcui t is included to produce the proper pulse and dc volt­

age to operate the blocking input on the mult ichannel analyzer . 

Improved Elect ron Resolution 

In the course of the experinaents it becanae des i rab le to resolve 

e lect ron lines in coincidence with a pa r t i c l e s . The anthracene de ­

tec tor suffers from inherently poor resolution; semiconductors a r e 

capable of bet ter resolut ion, but it is very difficult to produce a dif­

fused-junction detector with a depletion layer sufficiently thick to stop 

energet ic e lec t rons . With the advent of lithiuna-drifted sil icon de tec to rs , 

depletion l ayers thick enough to stop 1-MeV elect rons have recent ly 

become avai lable . Typical resolut ion is 30 keV, as compared with 

~ 150 keV for anthracene sc in t i l l a to rs . 

For a lpha-e lec t ron coincidence m e a s u r e m e n t s that employed 

these new electron de tec to rs , as well as for m e a s u r e m e n t s employing 

the fission anticoincidence sys tem, a new vacuum chamber was designed. 

A new coincidence amplif ier unit, designed by Goulding and Landis , was 

also used. This unit contains a complete coincidence sys tem in a single 

unit, including two anaplifiers and zero c r o s s o v e r s , fast and slow coin­

cidence uni ts , s ingle-channel analyzer , l inear gate, and biased amplif ier 

The ent i re design r ep re sen t s a considerable improvement over the 

ea r l i e r equipment. Even higher count ra tes can be accommodated with­

out loss of resolut ion, and stabili ty and lifetime of the components have 

been great ly inc reased . 
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Fig, 4. Fission anticoincidence circui t and s o u r c e -
detector a r rangement . 
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With the new sys tem and a good l i thium-drif ted detec tor , e l ec ­

t ron resolut ion of 25 keV (alnaost independent of e lec t ron energy) wa,s 

obtained. Resolution during coincidence exper iments was 42 keV, be ­

cause it was neces sa ry to use a source backing thick enough to stop 

a par t ic les from reaching the detector . The solid angle of the detector 

in these exper iments was 15% of 4TT. 

C. Equipment for Gamma-Ray Measurements 

Gamma spec t ra were m e a s u r e d with a 3X3-inch Nal scint i l la tor 

coupled to s tandard pulse-height measur ing equipment. Gamma-ganama 

coincidences were m e a s u r e d with two 3X3-inch Nal de tec tors coupled 

to a s tandard fast-s low coincidence c i rcui t . The resolving t ime of the 
232 244 

fast c ircui t was 0.045 p-sec for U s tudies , 0.060 |a.sec for the Cm 

studies . 

D. Source P repa ra t ion 

A major i ty of the alpha emi t t e r s enaployed were available and 
o o zl 

requ i red lit t le or no purification. Pu was produced by Frank Asaro 
235 

in a prolonged bombardment of U with a par t ic les in the 60-inch 
r̂  242 _ . ,• .^, r- 243 , . 

cyclotron. Cm containing negligible Cna was p repa red in a 
241 230 

short neutron i r rad ia t ion of Am . U was p repared by V. 
Subramanyam, as a byproduct of protact inium isotopes he was studying, 

232 
by bombarding Th with protons in the 184-incli cyclotron. 

The heaviest isotopes were made available from a campaign 
244 

in which dec ig ram quantities of Cna were i r r ad ia t ed for seve ra l yea r s 
252 253 

in the MTR, and the resul t ing actinides separa ted . Cf and E 
254 

were available d i rec t ly from this p rog ram. In o rde r to produce Fm 
250 9 

and Cf , 45 nanograms (2.6X10 alpha dis integrat ions per minute) 
253 

of E was carefully purified from californium isotopes and then i r ­
radiated for 6 days in the MTR at a flux of 2X10 n e u t r o n s / c m / s e c . 

254 250 
Fm and Cf a r e produced by the react ions 

^253 ^ „254 |3". „ 254 a ^-^^50 E + n -• E ^•» Fm • Cf 
1.5d 3.3hr 
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Following i r rad ia t ion , a californium fraction was separa ted and the 
254 einsteiniuna fraction was milked severa l t imes for Fna 

Radiochemical techniques used for separa t ion and purification 

of the sanaples a r e s tandard, and a r e not d iscussed he r e . Thin sources 

were p repared by one of two naethods. Substances of low specific act iv­

ity were vacuum sublimed as oxides or chlorides from a tungsten fila­

ment. The source backing was 5- or 10-mil polystyrene, except for a 
234 U source , which was a l ready available on nickel foil backing. Poly­

s tyrene was used because it causes a nainimuna loss of e lec t rons by 

backscat ter ing . Shor ter - l ived act ivi t ies were deposited from solution 
2 

into a thin cation-exchange layer (10 to 15 |jLg/cna ) p repa red by con­
t rol led sulfonation of the polystyrene surface with fuming sulfuric 

acid. 
232 

Special ca re had to be exerc ised with U sou rce s , because 

the growth of daughter act ivi tes in te r fe res with spec t r a l m e a s u r e ­

ments . Alpha-gamnaa and a lpha-e lec t ron coincidences were studied 

within 24 hours after purification from daughter act ivi tes by anion ex­

change. Gamma-gananaa studies were done within 6 hours after pijri-

fication. In o rde r to prevent contamination of the vacuum chamber with 
228 the 2-year Th daughter, the vacuuna-sublimed alpha sources were 

15 covered with a film of VYNS res in thick enough to stop the alpha 

decay recoi ls (10 to 20 |JLg/cna ) without ser ious ly affecting a -par t i c le 

resolution. 
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III. PROCEDURE 

Singles a -par t i c le and Y-ray or e lect ron spec t r a were m e a s u r e d 

f irst to es tabl ish the s t rength and composition of the source . Delays 

were adjusted, and the coincidence measu remen t was then run, usually 

for 24 hours or m o r e . Singles spec t ra and delay sett ings were checked 

at in tervals during longer runs to insure adequate stabil i ty. 
Gamma- ray energy cal ibrat ions were naade with s tandard sources . 

For the anthracene electron detector , energy cal ibrat ions were made 
137 

with a single source (Cs , E _ = 624 keV); the resolution of this de ­
tec tor did not war ran t be t ter cal ibrat ion. 

Alpha-par t ic le energy cal ibrat ion was done with the source under 

investigation, because switching to a s tandard would change the count 

ra te and cause peak shifting to occur . Unfortunately naost alpha emi t t e r s 

have only one or two intense alpha groups. This difficulty was over ­

come by taking pulser spec t ra with the alpha source in place. By gating 

the fast coincidence with the synchronous pulse frona the pulser , it was 

possible to m e a s u r e the pulser spec t rum without introducing a sub­

stant ial i nc rease in the count r a t e . The pulser had been shown to be 

prec i se ly l inear , so that a constant ra t io of alpha energy to pulser 

voltage could be assunaed. This rat io was de termined with the main 

alpha group frona the source . A sinailar procedure was used for e l ec ­

t ron energy cal ibrat ion when the l i thium-drif ted detector was used. 

The alpha energy cal ibrat ion could be checked in a number of 

cases in which exci ted-s ta te energies were known m o r e accura te ly frona 

other naeasurements . Under c i rcumstances of favorable resolut ion and 

counting s t a t i s t i c s , the agreement was usually good to about 5 keV. 

The intensity of a t rans i t ion observed in the coincidence naea­

surements is easi ly calculated: 

. _ Number of coincidences observed X cor rec t ion factors 
^ Number of alpha singles counts accumulated 

The number of alpha singles counts accumulated is calculated from the 

singles alpha spec t rum and the length of the coincidence measu remen t . 
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• 
Correct ion factors a re for the efficiency and solid angle of the y ;ray 

or e lect ron detec tor , the efficiency of the fast coincidence unit, and a 

smal l correc t ion for pi le-up effects. 

• 
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IV. R E S U L T S 

C o i n c i d e n c e s t u d i e s of e ight a lpha e m i t t e r s have p r e v i o u s l y 
16 234 

b e e n r e p o r t e d . L i t t l e o r no add i t i ona l w o r k h a s b e e n done on U , 
239 244 

Pu , o r C m ; the r e s u l t s a r e , h o w e v e r , i n c l u d e d h e r e in br ief , 
r> 1̂  . ^ ^ -D, 238 „ 242 „ . 2 5 2 _ 2 5 3 ^ . „ 254 . . , 

R e s u l t s r e p o r t e d for P u , C m , Cf , E , and F m inc lude 

the e a r l i e r d a t a p lus s u b s t a n t i a l new i n f o r m a t i o n . In add i t i on , t h i s 

p a p e r i n c l u d e s the r e s u l t s for 12 o t h e r a l p h a e m i t t e r s t h a t have b e e n 

exanained . 

E n e r g i e s and i n t e n s i t i e s of a l l t r a n s i t i o n s quoted in the t ex t a r e 

frona t h e s e m e a s u r e m e n t s , excep t w h e r e o t h e r w i s e s t a t e d . E x c i t e d -

s t a t e e n e r g i e s g iven in the d e c a y s c h e m e s a r e s o m e t i m e s m o r e a c c u r a t e 

v a l u e s when a v a i l a b l e f r o m o t h e r m e a s u r e n a e n t s . Th i s i s i n d i c a t e d by 

the a b s e n c e of e r r o r l i m i t s . No e r r o r s a r e quoted for the i n t e n s i t i e s 
238 

of the t r a n s i t i o n s o b s e r v e d in P u d e c a y , b e c a u s e t h e s e w e r e u s e d 
a s s e c o n d a r y s t a n d a r d s . 

. .^ 238 a , , 234 
A. P u -* U 

234 234 
L e v e l s of U p r e v i o u s l y r e p o r t e d in the b e t a d e c a y of Np 

234 
( r e f e r e n c e 17) and the two i s o m e r s of P a ( r e f e r e n c e s 18, 19) i nc lude 

s t a t e s a t 795 keV (01- ) , 810 keV (00+), 853 keV (02+), 922 keV (22+), 

and 1046 keV (00+), As m e n t i o n e d in the i n t r o d u c t i o n , t he a l p h a d e c a y 
238 7 

of P u i s known f r o m g a m m a s i n g l e s and e l e c t r o n - K x - r a y c o i n -
7 8 

c i d e n c e ' s p e c t r a to popu la t e the 00+ l e v e l at 810 keV. 

F i g u r e 5(a) shows the s p e c t r u m of a l p h a p a r t i c l e s in c o i n c i d e n c e 

wi th y r a y s of e n e r g y g r e a t e r t han 350 keV. The Y- r ay d i s c r i m i n a t o r 

w a s s e t at t h i s e n e r g y to e l i m i n a t e the r e l a t i v e l y i n t e n s e c o i n c i d e n c e s 

r e s u l t i n g f r o m a l p h a popu la t ion of the g r o u n d - s t a t e r o t a t i o n a l band . A 

p e a k a p p e a r s at 4 .71 MeV, c o r r e s p o n d i n g to an e x c i t a t i o n e n e r g y of 

- 7 
(800±15) keV. I ts i n t e n s i t y i s 5X10 , in good a g r e e m e n t wi th the i n ­
t e n s i t y of a 765 -keV "y r a y o b s e r v e d in g a m m a s i n g l e s s p e c t r a . T h e r e 
a r e no o t h e r a l p h a g r o u p s in t r u e c o i n c i d e n c e wi th an i n t e n s i t y g r e a t e r 
t h a n 1X10"^. 
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Fig. 5 a , b . Alpha decay of Pu^^^ 
(a) Alpha spec t rum in coincidence with y rays 
> 350 keV. Pulse shaping is DDL; count r a t e , 
1.65X10^ alpha coun t s / s ec . The resolut ion 
is 70 keV. 
(b) Alpha spec t rum in coincidence with e lect rons 
> 450 keV (DDL pulse shaping). Singles count 
ra te is 0,93X10^ alpha coun t s / sec ; resolution is 
45 keV, The shape of the alpha groups to the 
ground-sta te band, as recorded in the alpha singles 
spec t rum, is drawn in lightly at the position of the 
4.70-MeV peak for compar ison. 
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The s p e c t r u m of a p a r t i c l e s in c o i n c i d e n c e with e l e c t r o n s of 

e n e r g y > 400 keV is shown in F i g , 5(b), A peak a p p e a r s at 4.70 MeV, 
-7 

i n t e n s i t y 7X10 , in good a g r e e m e n t wi th e - K x - r a y m e a s u r e m e n t s . 

I m p r o v e d r e s o l u t i o n d u r i n g t h i s r u n p e r m i t t e d p a r t i a l r e s o l u t i o n of the 

a l p h a g r o u p s popu la t ing the f i r s t two m e m b e r s of the g r o u n d - s t a t e r o ­

t a t i o n a l band . In F i g , 5(b), t h i s a l p h a s i n g l e s p e a k h a s b e e n d r a w n in 

l igh t ly a t t he pos i t i on of the 4 . 7 0 - M e V c o i n c i d e n c e peak . The c o i n c i d e n c e 

p e a k l a c k s the l o w - e n e r g y s h o u l d e r , i n d i c a t i n g tha t t he 02+ m e m b e r of 

the K = 0+ band at 853 keV i s e i t h e r p o o r l y popu la t ed , o r h a s a l o w e r 

EO t r a n s i t i o n p r o b a b i l i t y t han the 00+ s t a t e . 

The above s p e c t r a w e r e t a k e n wi th DDL p u l s e s h a p i n g . F i g u r e s 

5(c) and 5(d) show s i m i l a r s p e c t r a , but the r e s o l u t i o n i s c o n s i d e r a b l y 

i m p r o v e d by the u s e of RC p u l s e s h a p i n g . F i g u r e 5(c) shows the 

4 . 7 0 - M e V a lpha peak in c o i n c i d e n c e wi th e l e c t r o n s ( s e m i l o g s c a l e ) , 

a g a i n wi th the a lpha s i n g l e s s p e c t r u n a to the g r o u n d - s t a t e band d r a w n 

in l igh t ly for c o m p a r i s o n ; a b s e n c e of the 8 5 3 - k e V s t a t e i s s e e n even 

naore c l e a r l y . The a l p h a - g a m m a c o i n c i d e n c e s p e c t r u m , F i g . (5d), 

a p p e a r s a l s o to show no popu la t ion of the 02+ s t a t e , but the p e a k i s too 

b r o a d on t h e h i g h - e n e r g y s i d e . T h i s would be the c a s e if a c o n s i d e r a b l e 

f r a c t i o n of the peak r e p r e s e n t s d e c a y to the 0 1 - s t a t e a t 795 keV, The 

d a t a have b e e n i n t e r p r e t e d t h i s way , a l though the e v i d e n c e i s not c o m -
17-19 pe l l i ng . T h i s i n t e r p r e t a t i o n i s not i n c o n s i s t e n t wi th b e t a - d e c a y d a t a . 

The d e c a y schenae i s shown in F i g . 5(e) , Co inc iden t a l p h a 

g r o u p s in a l l t he above s p e c t r a a r e iden t i f i ed a s popu la t ing t h e 00+ s t a t e 

at 810 keV, wi th the p o s s i b l e e x c e p t i o n no t ed in the l a s t p a r a g r a p h . 

T o t a l popu la t ion of the 00+ s t a t e i s I . IXIO" , The h i n d r a n c e f a c t o r (HF) 

for a l p h a d e c a y to t h e s t a t e i s 6, The 02+ s t a t e at 853 keV i s not popu la t ed 
-7 

wi th an i n t e n s i t y > IXIO ; i t s h i n d r a n c e f a c t o r i s > 40 . T h i s f a i l u r e to 

popu la t e the 02+ m e m b e r of the b e t a band i s r a t h e r s u r p r i s i n g s i n c e the 

c o r r e s p o n d i n g t r a n s i t i o n in the g r o u n d - s t a t e band i s v i r t u a l l y u n h i n d r e d . 
- 8 

The a b s e n c e of a lpha d e c a y to h i g h e r - l y i n g s t a t e s , l i m i t IXIO" , 

p e r m i t s the a s s i g n m e n t of m i n i m u m h i n d r a n c e f a c t o r s : for the 9 2 2 - k e V 

22+ s t a t e , H F > 20, and for the 1044-keV 00+ s t a t e , H F > 10. G a m m a 
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238 
Fig. 5 c ,d . Alpha decay of Pu 

(c) Semilog plot of the 4,70-MeV alpha group of 
Pu ° in coincidence with e lect rons > 350 keV. 
RC pulse shaping; count r a t e , 4X10'^ alpha 
coun t s / sec . The alpha singles peak has again 
been drawn in lightly for compar ison. 
(d) Alpha spec t rum in coincidence with y 
rays > 350 keV. RC pulse shaping; 5X10^* 
alpha coun t s / sec . O Alpha counts per channel; 
^ alpha counts per four channels . 
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(e) D e c a y s c h e m e for Pu238 , The d e c a y s c h e m e s g iven in t h i s p a p e r c o n t a i n only the w e a k 
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singles spec t ra give some evidence for population of the 1046-keV 
- 8 level with an intensity of about 1X10 

Figure 5(f) shows the spec t rum of e lect rons in coincidence with 

a„ .-., taken with the l i thium-drif ted electron detector . The two peaks 

a r e identified as K and L,+M+N+- • • e lectrons from a single 

(8l6±10)-keV t rans i t ion . There is no corresponding y - ray t rans i t ion , 

confirming again the EO nature of the t rans i t ion . The rat io 

K / K + L + M + ' • " is 3.5, in good agreement with beta decay m e a s u r e -
. , ,. . 20 

ments and theore t ica l predict ions . 

B, The U Series 

U decays by the chain 

„ 2 3 0 g rp, 226 a „ 222 a . „ 218 a ^ 214 g , , oi^^lO 
20.8 d 30.9 m 38 s 0.019 s 1.6X10 s 

The t ime needed for a coincidence measu remen t is long compared with 
230 the 31-minute half life with which the U daughters grow in. The 

five alpha emi t t e r s were therefore studied simultaneously. There was 

no difficulty with ass ignment of the observed t rans i t ions to the co r r ec t 

member of the decay chain, so the data a r e presented separa te ly for 

each one, although t rans i t ions from each of the five alpha emi t t e r s 

were present in the spec t ra . 

Previous studies of U alpha decay ' have shown the ex i s ­

tence of a 01" state at about 230 keV, decaying by y rays of 158 and 

232 keV. In my s tudies , a spec t rum of a par t ic les in coincidence with 

210- to 370-keV y rays showed the alpha t rans i t ion to a state at 

(229±10) keV, identified with the 0 1 - s ta te . The intensi ty, 
-3 22 

(1.4±0.5)X10 , is slightly lower than the intensity repor ted for the 
_3 

232-keV y ray^ (2.4±0.5)X10 . (The intensi t ies quoted in this section 
a r e all per alpha decay of a single member of the decay chain. ) 
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230 No other alpha groups of U were observed. There are no 

alpha groups in coincidence with y rays > 390 keV, with a limit of 
_5 

1X10 . In coincidence with y rays > 700 keV, there are no alpha 

groups more intense than 3X10 . In coincidence with electrons 
-7 > 410 keV, there are no alpha groups more intense than 5X10 

T h ^ 2 ^ 
? ? A ? ? ? 

Th_ populates a 242-keV 0 1 - state of Ra with an intensity 
2 21,22 

1.7X10 . The alpha group to this s tate was observed in coin­

cidence with 210- to 370-keV y r ays . The intensi ty, (1.2±0.4)X10" , 

ag rees well with the intensity previously repor ted for a 242-keV y 
22 

ray. 
22A 

No other alpha groups of Th were observed. In coincidence 
with y rays > 390 keV, there a re no alpha groups to s tates above 600 

_5 
keV more intense than 1X10 . Below 600 keV excitation energy, where 

222 the spec t rum is par t ia l ly masked by alpha groups of Ra , a l imit of -5 3X10 appl ies . In coincidence with gamma rays > 700 keV, the re a r e 
226 -6 

no alpha groups of Th naore intense than 3X10 , In coincidence 
with e lec t rons > 410 keV, the re is no alpha decay to s ta tes above 600 

-7 
keV more intense than 5X10 
R a ^ " : 

218 
Previously repor ted s ta tes of Rn , observed in the alpha decay 

222 
of Ra , include a 2+ state at 325 keV, and s ta tes at 650, 800, and 

22 23 850 keV, tenatively assigned 2+, 1-, and 4+. ' 

The alpha spec t rum in coincidence with 210- to 370-keV y rays 

shows population of a (326±10)-keV state with an intensity 
-2 21 

(4.1±1.2)X10 , in good agreement with the intensity previously repor ted 
-2 

for a 325-keV y ray , 3.6X10 . Owing to the p resence of interfer ing 
t r ans i t ions , it was not possible to observe decay to the 650-keV s ta te , 

which decays via the 325-keV state by a cascade of two 325-keV y 
23 

r a y s . 

The situation with the two higher- lying levels is somewhat dif­

ferent than repor ted e a r l i e r . Figure 6(a) shows the alpha spec t rum in 

coincidence with 370- to 550-keV y r a y s , and 6(b) shows the alpha spec ­

t r u m in coincidence with y rays > 700 keV. Alpha groups populating 
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218 
s t a t e s of Rn a r o u n d 800 and 850 keV e x c i t a t i o n e n e r g y a p p e a r in 

bo th s p e c t r a . A p o r t i o n of the gamnna s p e c t r u m in c o i n c i d e n c e wi th 

t h e s e two a lpha g r o u p s i s shown in Fig . 6(c) . T h e r e a r e y r a y s at 

474 , 526, 792, and 846 keV. The i n t e n s i t i e s of t h e s e y r a y s a r e 

l i s t e d in T a b l e I. The 4 7 4 - and 526-keV y r a y s have p r e v i o u s l y b e e n 
23 

o b s e r v e d in c o i n c i d e n c e wi th the 325-keV y r a y ; t h e i r i n t e n s i t i e s 

f r o m g a m m a - g a m m a c o i n c i d e n c e m e a s u r e m e n t s a g r e e r e a s o n a b l y wi th 
23 

the v a l u e s l i s t e d in the t a b l e . The i n t e n s i t y r e p o r t e d for a s ing le 

7 9 8 - k e V y r a y , p r e v i o u s l y o b s e r v e d in a g a m m a s i n g l e s s p e c t r u m , i s 

h i g h e r t han the s u m of the 792- and 846-keV g a m m a i n t e n s i t i e s l i s t e d 

in T a b l e I. The o v e r e s t i m a t e of t h i s i n t e n s i t y and the f a i l u r e to r e s o l v e 

the two "Y r a y s w a s undoub ted ly due to the p r e s e n c e in the g a m m a s i n g l e s 
214 

s p e c t r u m of a 7 9 6 - k e V y r a y f r o m Po d e c a y ; t h i s wi l l be s e e n s h o r t l y . 
F i g u r e 6(c) a l s o shows s o m e y - r a y i n t e n s i t y in the r e g i o n of 

600 to 700 keV. T h i s m u s t be c a u s e d p a r t i a l l y by c o i n c i d e n c e s wi th the 
218 6 0 9 - k e V y r a y f r o m Rn d e c a y , s t a c k - u p of the 325 -keV c a s c a d e y 

218 
r a y s d e - e x c i t i n g the 6 5 0 - k e V s t a t e of Rn , and Compton t a i l s fronn the 

h i g h e r - e n e r g y p e a k s . The p o s s i b i l i t y t h a t the s t a t e s a r o u n d 800 keV 

d e - e x c i t e p a r t l y by y r a y s in the 6 0 0 - to 700 -keV r e g i o n cannot be 

r u l e d out e n t i r e l y . An a lpha s p e c t r u m in c o i n c i d e n c e wi th y r a y s 

> 390 keV showed popu la t ion of the two s t a t e s a r o u n d 800 keV wi th a 

t o t a l i n t e n s i t y 1.3X10 . T h i s a g r e e s we l l wi th the s u m of the i n t e n s i t i e s 

of the four y r a y s l i s t e d in T a b l e I, i n d i c a t i n g tha t t h e s e y r a y s 

p r o b a b l y accoun t for the e n t i r e d e - e x c i t a t i o n of the two s t a t e s . A l i m i t 
- 5 

of 1X10 can be p l a c e d on a l l o t h e r y r a y s above 390 keV d e - e x c i t i n g 

the two s t a t e s . 

An a t t e m p t to r e s o l v e the c o n v e r s i o n e l e c t r o n s in c o i n c i d e n c e 

with I7Q2 + °'R4.f, ' ^^s only p a r t i a l l y s u c c e s s f u l . The K e l e c t r o n s 

f r o m the 4 7 4 - and 5 2 6 - k e V t r a n s i t i o n s a p p e a r to have rough ly equa l i n ­

t e n s i t y . The K - c o n v e r s i o n coef f i c ien t s a r e , v e r y r o u g h l y , 0 ,01 for the 

4 7 4 - k e V y r a y , and 0.025 for the 526-keV y r a y . Th i s l e a d s to a p r o b ­

ab le E l a s s i g n m e n t for the f o r m e r and a p r o b a b l e E2 a s s i g n m e n t for 

the l a t t e r . The fact t ha t bo th the 7 9 2 - and 846-keV s t a t e s a r e popu la t ed 
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218 
Table I. States of Rn around 800 keV 

De-excit ing radia t ion: 

Excited=state Energy Assignment 
energy and intensity K-conversion Transi t ion of s tate 
(keV) of y r ays coefficient ass ignment I tr 

(792±10) 

(846±10) 

(474±10) keV 

(5.6±1.7)X10 

(792±10) keV 

(2.3±0.7)X10" 

(526±10) keV 

(2.9±0.9)X10" 

(846±10) keV 

(3.8±1.1)X10" 

-5 -0.01 

-0.025 

( E l ) 

( E l ) 

(E2) 

(E2) 

(1-=) 

(2+) 
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by a lpha decay and d e - e x c i t e to 0+ and 2+ s t a t e s l i m i t s t h e i r p o s s i b l e 

sp ins and p a r i t i e s to 1- o r 2+. The p r e f e r r e d c h o i c e s a r e shown in t h e 

t a b l e and the d e c a y s c h e m e , F ig . 6(d), 

TJ 218 Rn : 
214 

The only known e x c i t e d s t a t e of Po be low 1,3 MeV i s a 2+ 
, 21 

s t a t e at 609 keV, The a lpha s p e c t r u m in c o i n c i d e n c e wi th y r a y s 
214 

> 390 keV shows popula t ion of a s t a t e of Po at (606±15) keV wi th an 
_3 

i n t e n s i t y (1.6±0.5)X10 . T h i s i s in r e a s o n a b l e a g r e e m e n t wi th the va lue 
- 3 

(2.0±0,5)X10 p r e v i o u s l y r e p o r t e d for the i n t e n s i t y of a 609 keV g a m m a 
21 

r a y . 

The s a m e a lpha g r o u p w a s a l s o o b s e r v e d in c o i n c i d e n c e with 
- 5 

e l e c t r o n s > 410 keV, wi th an i n t e n s i t y (3.6±1.1)X10 . The c o n v e r s i o n 

coeff ic ient for the 6 0 9 - k e V y r a y i s t h u s 0.022 ± 0 . 0 0 6 , in e x c e l l e n t 

a g r e e m e n t wi th the t h e o r e t i c a l va lue for an E 2 t r a n s i t i o n , 0 . 0 2 1 . The 

t h e o r e t i c a l c o n v e r s i o n coeff ic ient for an E l i s 0 .006; for a l l o t h e r 

m u l t i p o l a r i t i e s it i s g r e a t e r t h a n 0 .07, T h i s c o n f i r m s the E2 t r a n s i t i o n 

and the 2+ a s s i g n m e n t for the s t a t e , 

o 214 Po : 

The a lpha s p e c t r u m in c o i n c i d e n c e wi th y r a y s > 700 keV, 

F i g . 6(a) , shows an a lpha g r o u p at 6.894 MeV, (801±15) keV e x c i t a t i o n 
210 

in P b . A (792±10)-keV y r a y was o b s e r v e d in c o i n c i d e n c e with t h i s 
_4 

a lpha g r o u p . The i n t e n s i t y i s (l,4±0o4)X10 in both c a s e s , and the b e s t 

e n e r g y for the s t a t e i s (796±10) keV. As no ted in the above s e c t i o n on 
222 

Ra d e c a y , the 792 -keV y r a y m a s k e d w e a k e r t r a n s i t i o n s f r o m the 
222 

d e c a y of Ra in e a r l i e r g a m m a s i n g l e s m e a s u r e m e n t s . 

The a l p h a t r a n s i t i o n to the 796 -keV s t a t e h a s b e e n o b s e r v e d 
25 

in a m a g n e t i c s p e c t r o g r a p h . The e n e r g y of the e x c i t e d s t a t e quoted 
- 4 

i s 796 keV, and the i n t e n s i t y of the a lpha t r a n s i t i o n i s IXIO ' , in good 

a g r e e m e n t wi th m y d e t e r m i n a t i o n . A y r a y a r o u n d 780 keV h a s b e e n 
210 r e p o r t e d in the p d e c a y of T l , and a 2+ s t a t e of t ha t e n e r g y w a s 

210 2^ t e n t a t i v e l y a s s i g n e d in P b 

The 6 . 8 9 - M e V a lpha g r o u p a l s o o c c u r s in c o i n c i d e n c e wi th e l e c ­

t r o n s > 410 keV, wi th an i n t e n s i t y (2.5±0.8)X10~ , The c o n v e r s i o n c o -
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efficient for the 792-keV y ray is 0.017±0.005, compared with the theo­

re t ica l values 0.0114 for an E2, 0.003 for an E l , and > 0.04 for all 

other mul t ipo la r i t i es . The agreement is good enough to war ran t an E2 

ass ignment , and the (796±10)-keV state is ass igned a spin and pari ty 

of 2+. 

C. u ^ 3 ^ - ^ Th^^S 

228 Levels of Th have been studied extensively in the e lec t ron-
, ^ .̂  228 26 . . , , « - , . A 228 27, 28 ,^^ 

capture decay of Pa , and m the p decay of Ac . (Other 

re ferences a r e not quoted because they add no information, or contain 

substant ial e r r o r s in the decay scheme. ) Levels repor ted include 

328 keV (01-), 396 keV(03-), and 969 keV (22+). 
232 Gamma spec t ra of U (references 29, 30) display gamma 

rays of 266- and 324 keV, in te rpre ted as depopulating the 328--keV 0 1 -
228 

state of Th . The alpha spec t rum in coincidence with y rays be ­

tween 240 and 360 keV is shown in Figo 7(a), The intensity of the peak 
-5 

at 5.000 MeV, or (323±10) keV excitation, is (6±2)X10 , in good a g r e e ­
ment with the value from gamma singles m e a s u r e m e n t s . No decay to 
the 03- state at 396 keV is evident. 

A much weaker alpha group appears at about 820 keV excitation. 

When one gates on this group (see the pulse-height window, PHWj in 

Fig. 7(a)) the gamma spec t rum of Fig. 7(b) is observed. In addition 

to the y rays at (272±10) and (334±10) keV, a considerable portion of 

which must have resul ted from tailing of the 5.00-MeV alpha group 

into the PHW, the re is a single peak at (500±10) keV, and ve ry weak 

peaks at higher energ ies . The 500-keV y ray is in te rpre ted as a t r ans i 

tion from the state at about 820 keV to the 328-keV 0 1 - level. In a sub­

sequent measurements an alpha group at (823±10) keV was observed in 

coincidence with the 500-keV y ray (Fig. 7(c)) 

The existence of the cascade t rans i t ion was also verif ied in a y-y coincidence exper iment (Fig. 7(d]|. The intensity of the cascade , 

(2.1±0.6)X10~^, ag 

incidence spec t ra . 

-7 
(2.1±0.6)X10 , ag rees excellently with the value obtained in a-y co-
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Fig. 7 a, b, c. Alpha decay of U 

(a) Alpha par t ic les in coincidence with 240- to 360-keV y r ays . 
PHW refe rs to the pulse-height window (alpha energy d i s c r i m ­
inator) used to gate the y - r ay spec t rum. Fig, (b), 
(b) Gamma spect rum in coincidence with the alpha group to the 
state around 820 keV. 
(c) Alpha par t ic les in coincidence with 440- to 650-keV y r a y s . 
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Fig. 7. d,e,f . Alpha decay of U 

(d) Gamma-gamma coincidence spect rum: y rays in coincidence 
with 235- to 365-keV y r a y s . 
(e) Alpha par t ic les in coincidence with e lectrons > 283 keV. 
(f) Decay scheme for u232_ 
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26 Arbman et al, failed to observe such cascades in e lec t ron-
228 - 228 

gamma coincidence measu remen t s on Pa . The P decay of Pa 
thus does not populate the 825-keV state in appreciable intensity. There 

228 is also no evidence for population of this level in Ac decay, although 

the s e a r c h was not so thorough. 

Weak y rays found in coincidence with o-o^o -̂t about 770 and 

830 keV resul t largely from s tack-up of the cascading y r a y s , owing 

to the close geometry of the Nal detector . Correct ing for th i s , one 
- 8 

finds the intensi t ies of each of these t rans i t ions to be |1±1)X10 

The best energy value deduced for the new state is (825±10) 

keVo Because it decays only to the 0 1 - m e m b e r of the octupole band, 

it is probably a 00+ s ta te . The low hindrance factor, l l i S , is excel ­

lent evidence that in fact is a beta vibrat ional s ta te , and it has been 

so assigned. 

Figure 7(e) shows the alpha spec t rum in coincidence with e l ec -
Q 

t rons > 285 keV. The peak at (840±20) keV, intensity 2.4X10" , is iden­

tified with the same 00+ s ta te . On the assumption that the 500-keV y 

ray is an E l t ransi t ion, most of the e lect rons in coincidence with this 

alpha group must r ep resen t a nnonopole t rans i t ion to the ground s ta te , 
- 8 intensity (2±1)X10 , This information and the r e s t of the decay scheme 

a re sunamarized in Fig, 7(f). 

As can be seen from Fig. 7(c), no population of the expected 
- 8 

02+ member of the beta band is observed, l imit 3XlO , The same 

limit applies to the 22+ state at 969 keV. 

On the bas is of v ibra t ion-ro ta t ion dis tor t ion of the ground-s ta te 
228 

band, it has been predicted that the beta vibrat ion of Th should lie 
31 at about 520 keV. F r o m these m e a s u r e m e n t s , no state in the region 

-8 430 to 780 keV is populated with an intensity > 5X10 . This l imit 

applies whether the state decays to the ground-s ta te band or to the odd 

pari ty band. More is said about this in Section V, 



-33 -

D. U^^^ ^ Th^^Q 

Previously observed levels of Th include 508 keV (01-), ' 

634 keV (00 + ), ^' ^' ^^ 677 keV (02+), ^^ and 783 (22+). ^^ 

The alpha spec t rum in coincidence with e lec t rons shows popu-
230 -7 

lation of a s ta te of Th at (650±20) keV, intensity (2.1±0,5)X10 •. 
This s tate is identified with the 634-keV 00+ level . The intensity is 

7 8 - 8 

higher than previously repor ted , ' 6X10 for the K line. The spec ­

t r u m of Y rays in coincidence with 3.98- to 4,38-MeV a par t ic les shows 

population of the 00+ state and a s ta te at 510 keV, identified with the 

508-keV 0 1 - s ta te ; the intensi t ies a r e in good agreement with the r e -
1. r . , 32 

suits oi gamma singles measurennents . 

The decay scheme is shown in Fig. 8. It is impossible to tel l 

from these data whether or not the 00+ state decays part ly by E l c a s -
228 cades via the 0 1 - s t a t e , as in Th . This is so because the low spe -234 

cific activity of U makes it very difficult to resolve the alpha groups 
to the 508- and 634-keV s t a t e s , and the possible 126-keV y ray con-

235 necting these s ta tes would be obscured by radiat ions from U presen t 
in the sou rce . In the absence of exper imenta l information, it has just 

been a s sumed that no such E l cascades occur . 

The hindrance factor for the 0 1 - s tate is 300±80, for the 00+ 

state it is 40±10, and for the 22+ s ta te , HF > 20. 

^ ^ 236 a 232 
E. Pu -• U 

232 - 232 

The levels of U , as populated by the (3 decay of Pa , 

have been carefully studied by examination of the continuum spec t rum 

and de-exci t ing radiat ions with magnet ic s p e c t r o m e t e r s and a bent-

c r y s t a l y - r a y s p e c t r o m e t e r . The s ta tes include 565 keV (01-), 630 

keV (03-), 693 keV (00 + ), 735 keV (02+), and 868 keV (22+). 

Alpha spec t r a in coincidence with y rays and with e lec t rons a r e 

shown in F igs . 9(a) and 9(b). The re la t ively intense peaks a r e well 

sui ted to s tudies at higher resolut ion , and the spec t r a shown were ob­

tained by using RC pulse shaping and a l-|jLsec preampl i f ie r t ime con­

s tant . The high intensi ty of e lec t rons de-exci t ing the (700±10) keV 
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236 
F ig . 9 a , b , c , d . Alpha d e c a y of Pu 

(a) Alpha p a r t i c l e s in c o i n c i d e n c e wi th y r a y s > 420 keV. The 
p u l s e r peak was added d u r i n g the e n t i r e r u n to c h e c k s t a b i l i t y . 
The i n s e t shows a p o r t i o n of a b e t t e r - r e s o l v e d s p e c t r u m , run 
for 90 h o u r s at a l o w e r count r a t e . 
(b) Alpha p a r t i c l e s in c o i n c i d e n c e with e l e c t r o n s > 300 keV. 
The a lpha s i n g l e s peak i s d r a w n in l igh t ly at the pos i t i on of 
the co inc iden t g r o u p for c o m p a r i s o n . 
(c) G a m m a r a y s in c o i n c i d e n c e with the a lpha g r o u p to the 
6 9 3 - k e V 00+ s t a t e . 
(d) Decay s c h e m e for Pu236_ 
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level helps to confirm its identification as the 693-keV 00+ s ta te . 

Fa i lu re to observe the 565-keV state in the a-e spec t rum sets an up­

per limit of 0.015 on the conversion coefficient of y rays de-exci t ing 

that s ta te , confirming their E l mult ipolar i ty and the 1-assignment for 

the s ta te . In another spec t rum (not shown), the expected two y rays 

de-excit ing the state were observed. Their relat ive intensi t ies a re in 
232 

agreement with theore t ica l predict ions and the value found in Pa de -
35 cay. 

The gamma spec t rum in coincidence with a/^Q-,(Fig, 9(c)) shows 

c lear ly the expected E2 y ray at (643±10) keV, but gives no evidence 

of y rays at 128, 518, or 565 keV that would indicate the p resence of 
228 -7 

E l cascade t rans i t ions , such as occur in Th . A limit of 1X10 , 

2% of the total decay of the 00+ s ta te , can be placed on such t r ans i t ions . 

Total population of the 0 1 - and 00+ states i s , respect ive ly , 

(6±2)X10' and (2,7±0,6)X10"^. For the 0 1 - s ta te , HF = 160±40, and 

for the 00+ s ta te , HF = iZdz3, The 00+ state decays 60% by EO e lec t rons 

and 40% by E2 gammas , in fair agreement with the value obtained in 
T3 ^ 3 2 . 35 
Pa decay. 

No decay to the 630-keV 03- state was observed, l imit 
_7 

1.5X10 , or HF > 1000, More surpr i s ing , no population of the 
-7 

735-keV 02+ state was found, l imit 2X10 , or HF > 200, For the 
22+ state at 835 keV, HF > 50. 

Figure 9(d) summar i ze s the r e su l t s . 

^ ^ 239 a „235 F. Pu -• U 
ZT9 

The alpha decay of Pu has been studied by many inves t iga tors . 

Recent studies of the alpha spec t rum have revealed m o r e than 20 levels 

below 550 keV, a number of which have been ass igned to th ree rotat ional 
23'i ^7 "̂ 8 ?^Q 3Q 4n 

bands of U ^ . - ^ ' ' ^ ^ The ground state of P u ^ is 1/2+[631],-^^ ' 
and favored alpha decay populates the well-known l /2+ i s o m e r i c level 

235 41 

of U 75 eV above the 7/2-<ground s ta te . 

The alpha spec t rum in coincidence with e lec t rons > 400 

keV es tabl ishes a s tate or band at (780 ±20) keV, decaying by 



. 3 7 -

-8 electron emiss ion with an intensity of (7±2)X10 . This is in r e a -
-7 sonable agreement with the value (1.5±0.8)X10 deduced from electron— 

• -A ^ 4 2 
K-x- ray coincidence m e a s u r e m e n t s . 

The same alpha group appears in coincidence with y rays > 680 
_7 

keV, intensity (1.8±0.7)X10 . The total intensity of the alpha group, 
_7 

(2.5±0.8)X10 , cor responds to a hindrance factor of 25±8. In compar ­
ing this value with hindrance factors for s ta tes of even-even nuclei , it 
is more reasonable to divide it by the hindrance factor for the leas t hin­
dered factor for the leas t hindered ( "favored") alpha t rans i t ion , 2,5 in 

43 this ca se . The " reduced" value of the hindrance factor is then 10±3. 
The high e lect ron intensity de-exci t ing the state shows the ex­

is tence of an EO t rans i t ion . Together with the low hindrance factor, 

this indicates a beta vibrat ion analogous to the 810-keV 00+ state of 

Another s tate was observed at (650±20) keV. It decays by y rays 
-7 with an intensity of (8±3)X10 , and by e lec t rons with an intensity of l e s s 

than 1% of this value. Gamnaa radiat ion of this intensity has previously 
44=46 been repor ted around 640 keV. The de-exci t ing radiat ion is un­

ambiguously E l , and the state has been ass igned K = 1/2-, by analogy 

with the 0 1 - s ta tes of even-even nuclei . 

Figure 10 i l lus t ra tes the decay scheme. 

„ ^ 240 a ,,236 G, Pu -* U 

There is ve ry l i t t le published information on the excited levels 
236 

of U above the ground-s ta te rotat ional band. In the Coulomb exci ta-
236 tion of U with pro tons , Durham et a l . observed a 909-keV t rans i t ion , 

which they ass igned as a monopole fronn. a 02+ state at 953 keV to the 
34 

45-keV 02+ s ta te . This would place the 00+ menaber of the beta band 
234 

around 909 keV. Gallagher and Thomas;, in the i r study of Np decay, 

observed some weak e lect ron lines which decayed with the 22-hr Np 
17 half life. These were ass igned to 687.0- and 641.7 = keV t rans i t ions 

236 
de-exci t ing a 687-keV state of U to the ground and f i rs t excited s ta tes , 
T3 2 4 0 . . . X. ,..r • J ^ 1 - 4 5 , 4 6 ^ 
Pu Y-r^-y singles spec t r a by M u m and Clme, show the ex-

-7 is tence of a (640±10)-keV t rans i t ion , intensity 1.7X10 
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Fig. 10. Decay scheme for Pu^^^. 
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My studies give scant evidence for population of the proposed 

910-keV 00+ s ta te . A questionable (860±30)-keV y ray was seen in the 
240 Pu gamma singles spec t rum, and in coincidence with 4.0- to 

4.4'^MeV a par t ic les (5 counts observed) . The a lpha-e lec t ron coin = 

cidence spec t rum gives questionable evidence for an alpha group to a 
_ Q 

state around 880 keV, intensity «3X10 , (See Fig. 11(a)). 

Alpha decay to a s tate around 690 keV was observed ).n coin­

cidence both with e lect rons (Fig. 11(a)) and with y r a y s . Total popu­

lation of the state is (2,1±0,4)X10'^, or HF - 70±15. 

Figure 11(b) shows the gamma spec t rum in coincidence with 

the 4,48-MeV alpha group. The peak at (650±10) keV has an intensity 
-7 

1.7X10 . A gamma singles spec t rum showed this peak resolved into 

two y r a y s . The best energies and intensi t ies for the t rans i t ions a r e 

(644±5) keV, (1.44±0.24)X10"^, and (692±10) keV, (0.36±0,09)X10"^. 

The e lect ron spec t rum in coincidence with the 4.48-MeV alpha 

group, Fig, 11(c), shows c lear ly the existence of two different K-

elect ron l ines . The e lect ron intensi t ies and conversion coefficients 

a r e l is ted in Table II, together with the y - r ay data. Nielsen and others 

have recent ly observed 642- and 687-keV t rans i t ions in the e lec t ron-
236 47 

capture decay of Np . Their conversion coefficients and re la t ive 

intensi t ies a r e included in the table for compar ison with the resu l t s 

from alpha decay. The close agreement between the values is the bas i s 

for ass ignment of the t rans i t ions observed in alpha decay to Nielsen ' s 

accura te energy va lues , and to the more p rec i se energies of Gallagher 

and Thomas , 641.7 and 687.0 keV. ^^. 

The resu l t s a re puzzling, and no s t ra ightforward in te rpre ta t ion 

fits the data. The 687-keV t rans i t ion t e rmina tes at the 0+ ground s tate 
236 

of U s and should therefore be of a single multipole o rde r . Its con­
ve r s ion coefficient is consistent only with an M2 ass ignment , which r e ­
quires that the re be a 2< state at 687 keV. The m e a s u r e d alpha energy, 
howeverj, places the excited state populated by alpha decay at (693±20) 
keV. Although this is very close to 687 keVj pari ty conservat ion forbids 
alpha decay of an even-even parent to a 2- s ta te . There appear to be 
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240 Fig, l l a , b , c , d . Alpha decay of Pu 
(a) Alpha par t ic les in coincidence with e lec t rons > 450 keV. 
(b) Gamma rays in coincidence with a£,Q3. The Pu240 
source contained 2% Pu239 by alpha activity, and some 
Am241. The source used for the other measu remen t s con­
tained < 0.7% Pu239, and negligible quantities of other 
active contaminants. 
(c) Elect rons in coincidence with a^gs. The e lec t rons 
were analyzed with a l i thium-drif ted silicon semiconductor . 
(d) A possible decay scheme for Pu240^ 



Table II. Gamma t rans i t ion in coincidence with Pu 
240 

693±20 

Trans i t ion ass ignment 

Measured y - r a y energy 

Measured e lec t ron t rans i t ion energy 

Gamma ray intensi ty 

K-elect ron intensi ty 

{ F r o m this work 
a 

I^From Np E. C. decay 

K/L+M+N+- {F r o m this work 
F rom Np^^" decays 

W (642) r F r o m this work 

W (687) I F rom Np^^^decay^ 

W„(642) / 'From this work 

W (687)| F r o m Np^^^decay^ 

642 keV 

(644±5) keV 

(628±15) keV 

(1.44±0.24)X10" 

(1.6±0.5)X10"^ 

687 keV 

(692±10) keV 

(674J:15) keV 

(0.36±0.09)X10° 

(1.0±0.3)X10"^ 

0.115±0.04 
0.11±0.03 

3.5±1,0 
2.6±0.5 

4±1 

3.3±0.5 

1.70±0.25 

1.70±0.15 

0.27±0.10 
0.20±0.05 

3.0±1.2 
3.4±0.5 

rf^ 

from re fe rence 47 
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severa l possible explanations: 

(a) The 687-keV t rans i t ion is in fact not an M2, and its conversion 

coefficient is anonaalous, or 

(b) the 687-keV t rans i t ion is not of pure multipole o rde r ; this can 

be the case only if the " t rans i t ion" consis ts of two different 

t rans i t ions of the sanae energy, such as an EO and an E2, 

originating from different s t a tes , or 

(c) alpha decay does not populate the 687-keV state d i rect ly . 

There is precedent for the first explanation, in that anomalously 

high E l and Ml conversion coefficients have been observed. They oc­

cur in special cases in which select ion ru les inhibit contributions to 

in ternal conversion from the radiat ion field outside the nuclear vol-
48 231 

ume. There i s , for example, an 84-keV E l in Pa decay, whose 

K-conversion coefficient is 10 t imes the theore t ica l value, and whose 

Lj and L.,, conversion coefficients a re 20 t imes too l a rge . 

There a r e , however, substantial reasons for ruling out anomalous 

conversion in this case . Ml t rans i t ions a r e not expected, although there 

could be E l ' s de-excit ing an octupole vibrat ional s ta te . The E l t r a n s i ­

tions from such a state to the ground-s ta te band should not be subject 

to the special selection rules that apply to anomalously converted t r a n s i -
228 

t ions . The E l ' s de-exci t ing octupole s t a t e s , including those of Th , 
^ , 2 3 0 ,,232 ,,235 ^ 2 3 8 . x̂ . 240 , ,. , . . ^ , 

Th , U , U , Pu , and Pu studied in my exper iments , do 

not have anomalously high convers ion coefficients, Stephens and 

Diamond have de termined from Coulomb excitation that the E l ' s de -
9 Q o 7 "̂  ft 

exciting octupole s tates of Th and U a re hindered by factors of 
2 3 

10 to 10 , whereas anomialously converted E l ' s a r e hindered by much 

l a rge r fac tors . 

It should be possible to rule out anomalous E l ' s by observing 
236 the L-subshel l ra t ios of the 687-keV t rans i t ion in Np decay, since 

the IJ^^, conversion coefficient should be normal , while the L^ and 
LJ^ would be high in the case of an anomalous t rans i t ion . 
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The possibil i ty that the t rans i t ions a re actually double lines 

from two near ly degenerate s ta tes at around 687 keV must be considered 

more se r ious ly , because admixtures of EO t r ans i t i ons , which de-exci te 

beta vibrat ional s t a tes , occur commonly in deformed nuclei. Never the­

l e s s , the re is very s t rong, though not conclusive evidence, that the 

gamma t rans i t ions a r e not unresolved double l ines : 

(a) Attempts were made to reproduce the conversion and r e l a t ive -

intensity data in Pu decay, using combinations of hypothetical 00 + , 

02+, 04+, 22+, 23+, 24+, 0 1 - , and 0 3 - s ta tes around 687 keV, but all 

such schemes failed to give the observed in tens i t ies . All combinations 

t r i ed requ i red a 00+ state in the vicinity; this is also objectionable be ­

cause the hindrance factor for alpha decay to this s tate would be higher 

than observed for other 00+ s t a t e s , and because a "beta v ib ra t iona l " 
236 

band of U probably exists around 910 keV. 

(b) The excellent agreement (Table II) between the t rans i t ion in tensi t ies 
240 236 

observed in Pu alpha decay and those observed in Np e lec t ron-

capture decay is not possible for t rans i t ions originating from more than 

one s ta te , except in the unlikely event that alpha and beta decay popu­

late the seve ra l s ta tes with the same rela t ive in tens i t ies . 

(c) N ie l s en ' s h igh-resolut ion e lect ron spec t r a would show complex 

lines or energy d isc repanc ies unless the t rans i t ions originated from a 

single s ta te , or seve ra l s ta tes within 1 keV of each other , whereas in 

fact no such complex l ines or energy d isc repanc ies were seen. The 
17 energy difference between Gallagher and Thonnas • s two l ines ag rees 

with the spacing between the ground state and f i rs t excited state to a 

few tenths of a kilovolt. 

The th i rd possibi l i ty, that the 687-keV level is populated in­

di rec t ly in alpha decay, r equ i res a s tate above 687 keV and a fast t r a n s i ­

tion between this state and the 687-.keV level , although the re is no evi­

dence that e i ther of these real ly ex is t s . If the 687-keV level were a 

22- octupole s t a te , t he re should be a 23- s tate around 730 keV which 

should decay to the 22- s tate by a fast M1-E2 rotat ional t rans i t ion . 

However, the state populated d i rec t ly by alpha decay is at (693±20) keV, 

which appears to be too low for the hypothetical 23- s ta te , and is d i s ­

turbingly close to 687 keV. 
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In sp i t e of t h e s e o b j e c t i o n s , the t h i r d p o s s i b i l i t y s e e m s to be 

the m o s t p l a u s i b l e one . A p o s s i b l e d e c a y s c h e m e a long t h i s l ine i s 

p r o p o s e d in F ig . 11(d). 

The p r o p o s e d d e c a y s c h e m e i s r e a s o n a b l e and s e l f - c o n s i s t e n t . 

One can expec t 22-voctupole v i b r a t i o n s to o c c u r , a l though none have 

b e e n def in i t e ly iden t i f i ed to d a t e . T h e o r e t i c a l and e x p e r i m e n t a l c o n ­

v e r s i o n coef f ic ien t s a g r e e v e r y n i ce ly in t h i s s c h e m e . The p r e d i c t e d 

r a t i o of K e l e c t r o n s W - - ( 6 4 2 ) / W T , ( 6 8 7 ) , b a s e d on a 3:1 E 1 / M 2 m i x i n g 

r a t i o for the 6 4 2 - k e V t r a n s i t i o n , i s 1.50, in good a g r e e m e n t wi th the 

o b s e r v e d v a l u e , 1.70±0.25. The 3:1 E 1 / M 2 m i x i n g r a t i o for the 6 4 2 - k e V 

t r a n s i t i o n w a s c a l c u l a t e d on the a s s u m p t i o n s tha t t he 6 8 7 - k e V y r a y i s 

p u r e M2, and tha t the r a t i o W p(642) /W (687) i s 1.02, a s p r e d i c t e d 

by t h e o r y . 

The i n t e n s i t y of the y r a y s m e a s u r e d in the g a m m a s i n g l e s 

s p e c t r a i s the s a m e a s the v a l u e found in a l p h a - g a m m a c o i n c i d e n c e 

m e a s u r e n n e n t s , showing tha t t he l i f e t ime of the 6 8 7 - k e V s t a t e i s s h o r t e r 
- 8 

t han the r e s o l v i n g t i m e of the c o i n c i d e n c e c i r c u i t , ~ 2X10 s e c . T h i s 

innpl ies tha t t he M2 t r a n s i t i o n s have p a r t i a l half l i v e s s h o r t e r t h a n 
- 8 

« 5X10 s e c , c o r r e s p o n d i n g to a m i n i m u m r e d u c e d t r a n s i t i o n p r o b a ­
b i l i ty of 0.02 s. p . ( s ing le p a r t i c l e ) u n i t s , a r e a s o n a b l e v a l u e . A s s u m i n g 

tha t the M 2 ' s a r e b e t w e e n 0.02 and 1 s, p . u n i t s , the E l t r a n s i t i o n h a s 
-10 -8 

a p a r t i a l half life b e t w e e n 8X10 and 3X10 s e c , c o r r e s p o n d i n g to 
6 R 

a r e d u c e d t r a n s i t i o n p r o b a b i l i t y b e t w e e n 2X10 and 4 A 1 0 S. p, u n i t s . 

As a v e r y rough e s t i m a t e , t he E l shou ld be h i n d e r e d by about 3 o r d e r s 

of m a g n i t u d e for an oc tupo le s t a t e , and 2 o r 3 o r d e r s of m a g n i t u d e for 

K f o r b i d d e n n e s s , in r e a s o n a b l e p r o x i m i t y to t h i s r a n g e . It shou ld be 

no ted tha t a s m a l l p r o p o r t i o n of c o l l e c t i v e E 3 t r a n s i t i o n s (about 20 

s. p . u n i t s for a 0 3 - s t a t e ) cou ld a l s o c o m p e t e wi th the M2 and E l t r a n s i ­

t i o n s . 

S e v e r a l f u r t h e r t e s t s of t h i s d e c a y s c h e m e shou ld be p o s s i b l e . 

As m e n t i o n e d a b o v e , r e s o l u t i o n of the L - s u b s h e l l c o n v e r s i o n l i n e s in 
236 

Np d e c a y cou ld c h e c k the p o s s i b i l i t y t ha t the t r a n s i t i o n s a r e a n o m a ­
lous ly c o n v e r t e d , and m a y be ab le to e s t a b l i s h the m u l t i p o l a r i t y of the 

240 t r a n s i t i o n s u n a m b i g u o u s l y . In Pu a lpha d e c a y , it m a y be p o s s i b l e 
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to m e a s u r e the l i fet imes of the t r ans i t ions , a measu rab le delay 

(> 10 sec) being possible evidence that they a r e M 2 ' s , It might also 
7 '^f\ 

be possible to Coulomb-excite the state in U ; if it is in fact an octu-

pole vibrations the excitation function should show an E3 dependence. 

. 241 a ^, 237 
H. Am -» Np 

241 The alpha spec t rum of Am has been well studied with magnet ic 
49 alpha spec t rog raphs , most recent ly by Baranov et aL Levels of 

Np have also been studied in the p decay of U , and in the 
P *? 7 K "̂  

e lec t ron-cap tu re decay of Pu „ Most of the observed s ta tes fit well 
49 51 into rotat ional bands based on four Nilsson leve ls . ' The ground 

state of Np is 5/2+[ 642] ^ '̂̂ ^ ==> ^ ̂  The ground state of Am ii 

523 
237 

5 / 2 - [ 5 2 3 ] , ' ' and favored alpha decay populates a 59.6-keV state 

in Np 
The alpha spec t rum in coincidence with -y rays > 500 keV is 

_5 
shown in Fig. 12(a),, A surpr i s ing ly intense peak, (1.0±0.3)X10 , ap -

237 pears at 4.829 MeV, or 719 keV excitation in Np . The peak is in-
49 

tense enough for Baranov et al . to have seen in thei r magnet ic spec ­
t rograph , had they scanned this energy region. A smal l shoulder on 

the low-energy side indicates a second state about 55 keV higher , in-
-7 =.7 

tensi ty about 9X10 . A l imit of 3X10 applies to the population of any 

higher- lying s ta te . 

In coincidence with the 4.83-MeV alpha group (PHW in Fig. 12(a)) 

is a complex yf-xa-y peak, consist ing of at leas t two y r a y s . Fig. 12(b). 

In o rde r to be t te r reso lve the y r a y s , a singles spectrum, of an intense 
241 

sample of pure Am was studied. F igure 12(c) shows a portion of 
this spec t rum. The peaks at (6l7±10), (663±5), and (727±10) keV a re 

well es tabl ished. The peak at 698 keV is probable , as well as n e c ­

e s s a r y to the decay scheme . Fig. 12(d). 

The four y rays a r e in te rp re ted as depopulating a single s ta te , 
237 

at (721±5) keV, to the f i rs t four levels of Np at 0, 33, 60, and 103 
keV. The la rge alpha population of the 721-keV level indicates that it 
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is probably a 5/2 5 /2 - beta vibrat ional s tate based on the 5/2 5/2-[ 523] 

s ta te at 60 keV. The 617- and 663- keV t rans i t ions to the lower K=5/2-

band a r e in terpre ted as Ml t r ans i t ions . The 698- and 727~keV t r a n s i = 

tions a r e assigned E l mul t ipo lar i t ies . The ass ignment of the lower-

energy t rans i t ions as Ml instead of E2 contradicts definite predict ions 

of the vibrat ional model . P re sence of the E l t rans i t ions is also un­

expected. Some discuss ion and the justification for the Ml ass ign­

ment is given in Section V. 

Measurenaents on conversion e lect rons complete the decay 

scheme and confirm most of the above hypotheses . Figure 12(e) is the 

alpha spec t rum in coincidence with conversion e lec t rons > 380 keV. 

The peak at 4.820 MeV, intensity (1. liO.SIXlO" , is identified with the 
-5 

(721±5) keV s ta te . Total population of the state is (1.2±0.3)X10 . The 

hindrance factor is 7*2, or 5.5±2 rela t ive to the favored alpha t rans i t ion , 

and the state decays 88% by y r a y s , 12% by e lec t rons . 

Because four y rays de-exci te the s ta te , it is essent ia l to ex­

amine the conversion l ines to confirna the decay scheme. The e lec t ron 

spec t rum in coincidence with ciyo'i ^^ shown in Fig. 12(f). The p r e ­

dominant features a r e the K and L.+M+N+° - ° lines of a single t r ans = 

ition at (659±10) keV. This is identified unambiguously with the 663-

keV y ray . Apparent conversion coefficients a r e : a = 0.18±0,04, 

'^L+M+N+- •• • ~ 0.045±0.015, K/L+M4•N-^" • • = 4±1. If the y ray is a 

pure Ml , the t rans i t ion is therefore (11±4)% EO, but the EO component 

may be slightly higher if the t rans i t ion contains an E2 component a lso . 

This EO t rans i t ion to the 60-keV state definitely es tabl i shes the 5 /2 -

ass ignment for the 721-keV s ta te . 

It follows from Fig. 12(f) that the K-convers ion coefficient of 

y/- .y . . „ is < 10%. This l imit is consistent with ei ther an Ml or an E2 

ass ignment . The preference for Ml , on other grounds, is d i scussed 

in Section V. For the 727-keV y r ay , a ^ < 0.02, and a.̂  . vi-Ta+'' - • *" 0.005. 

This is consistent with the E l or an E2 assignnaent, but an E2 mul t i -

polari ty can be ruled out, because the pari ty of the 721-keV level is 

different from the pari ty of the ground s ta te . 
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The weak alpha group at about 4.77 MeV is in te rp re ted as the 

5/2 7 /2 - rotat ional m e m b e r of the beta band. Its intensity is (9=t4)% 

of the 5 / 2 - m e m b e r , compared to a ra t io of 15% for the corresponding 

m e m b e r s of the lower- lying K = 5 /2 - band. 

. 243 a ^, 239 
I. Am -* Np 

239 243 
The low-lying levels of Np and the alpha groups of Am 

populating them a r e quite s imi l a r to the corresponding s t ruc tu re ob-
j • A 2 4 1 ^ 58-61 ^^ J , r XT 239 , A 243 

served m Am decay. The ground s ta tes of Np and Am 

a r e 5/2+[ 642] ' ' and 5/2-[ 523] , ' respect ive ly , and favored 

alpha decay of Am populates the 5/2-[ 523] s ta te of Np at 75 keV. 

The alpha singles spec t rum of the source employed showed the 
243 244 241 

following composition by act ivi ty: Am 71%, Cm 12%, Am 
238 238 

+ Pu 12% (mostely Pu ). Coincidence studies have been per formed 
on each of these nucl ides , so it was possible to de te rmine which t r a n s i -

243 
tions belonged to Am . Fortunately , the other alpha emi t t e r s present 

243 
did not in te r fe re with the determinat ion of the Am decay scheme . 

The alpha spec t rum in coincidence with y rays > 420 keV, 

Fig. 13(a), shows a prominent coincidence peak at 4.675 MeV, 676 keV 

excitation in Np , intensity (1,6±0.5)X10 , In coincidence with this 

alpha group is the gamma spec t rum in Fig. 13(b). It displays mainly a 

peak at 654 keV, This peak is in te rpre ted as a y ray from the 676-
239 

keV state to the ground s tate of Np , although the re is a r a the r l a rge 

d iscrepancy (22 keV) in the energy. The d iscrepancy is probably due 

to a shift in the gamma energy cal ibrat ion which occu r r ed after sub­

stitution of a different pulse-height analyzer into the sys tem. The energy 

of the alpha group was accura te ly reproduced in t h r e e m e a s u r e m e n t s , 

and this value has been used to de te rmine the exc i ted-s ta te energy. 

The inset in Fig. 13(b), top half shows an at tempt to reso lve the 

gamma spec t rum. There a r e probably four y rays leading to the f irs t 
239 

four levels of Np . Trans i t ions to the 75- and 117-keV leve l s , pa r t i cu ­
la r ly the l a t t e r , a r e so weak that they can not be cons idered definitely 
es tabl ished. The level ass ignments and t rans i t ion mul t ipo la r i t i e s . Fig. 13(c), 
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a r e hypothesized here largely by analogy with the decay scheme for 
241 

Am . There is no bas i s in this case for a choice between an Ml and 

an E2 ass ignment for the weaker l ines . 

The alpha spec t rum in coincidence with e lec t rons > 350 keV 
_7 

also shows population of the 676-keV state with an intensity of 7X10 
-5 Total population of the state is (1.7±0.5)X10 ; HF=5.7±1.7, o r5 .0±1 .5 

re la t ive to the favored alpha t rans i t ion . This is good evidence for i -

dentifying the 676-keV level as the 5 /2 - beta vibrat ional s ta te . Most of 

the e lec t rons de-exci t ing the state should undoubtedly be ass igned to an 
-7 EO t rans i t ion to the 75-keV level , intensi ty (6±2)X10 

^ „ 242 a ^ 238 J. Cm -*• Pu 

The previous study of this decay scheme was made with a source 
243 16 

containing about 2% Cm . In the exper iment repor ted here in a 
242 much pure r Cm sample was used; this simplified the spec t r a con-

242 243 
s iderably . The e a r l i e r ass ignment of t rans i t ions to Cm and Cm 
is seen to be c o r r e c t , and some new information can be added. 

238 
Levels of Pu have previously been observed in the e l ec t ron-

238 69 - 238 

capture decay of Am , and in the (3 decay of Np , most recent ly 

by Albridge and Hollander and by Borggreen et a l . The levels in­

clude 943.1 keV (00+), 984.5 keV(02+), 1030 keV(22+), and 1071 keV(23+). 
7 ^ A 7 ? 4- ? 

High-energy gannma spec t ra ' ' of Cm show t rans i t ions of 562, 
7 8 

605, and 890 keV; convers ion-e lec t ron m e a s u r e m e n t s ' show a t r a n s i ­
tion at (941.4±2) keV. The 890-keV y ray and the 941-keV e lec t ron t r a n ­
sition a r e in t e rp re ted as an E2 and an EO t rans i t ion de-exci t ing the 
943-keV 00+ state to the ground and f i rs t excited s t a t e s . The 562- and 
605-keV y rays a r e cha rac t e r i zed as E l t rans i t ions depopulating a 0 1 -
state at 605 keV. 

Figure 14(a) shows the alpha spec t rum in coincidence with y 

rays > 350 keV. Two alpha groups in t rue coincidence populate s ta tes 

at (950±20) keV with an intensity (2.5±0.8)X10~^, and (6l3±20) keV with 

intensity (2.6±0.7)X10~ . These a r e in te rp re ted as the 943-keV 00+ 

state and the 605-keV 0 1 - s ta te . Only the t r ans i t i on to the 00+ state 
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_7 
was observed in coincidence with e lec t rons , intensity (3.4±1.0)X10 

Absence of the 605-keV state sets an upper l imit of 0.01 on the conver ­

sion coefficient for y rays de-exci t ing this s ta te , confirming thei r E l 

ass ignment and the 1- ass ignment for the s ta te . 

Total population of the state at 950 keV is (6±2)X10" , HF=10±3 

(assuming that the 02+ state at 985 keV is not appreciably populated). 

For the 0 1 - s ta te , HF = 170±50. 

The y - r ay spec t rum in coincidence with o.qro> Fig. 14(b) shows 

predominantly the expected (900±10)-keV E2 y ray. Weak y rays in the 

region of 580 keV a r e probably due to over lap of the s t ronger o.,.~ 

group in the pulse-height window. The possible 335-keV E l t rans i t ion 

connecting the 00+ and 0 1 - s ta tes is absent or very weak; a l imit of 1% 

of the total population of the 00+ state applies to this t rans i t ion . 

No alpha decay to the 22+ state at 1030 keV was observed, and 

a lower l imit of 20 can be set on the hindrance factor for this t r a n s i ­

tion. The decay scheme is shown in Fig. 14(c). 

^ _ 243 a ^ 239 K. Cm -* Pu 

239 Levels of Pu have been observed in the e l ec t ron-cap tu re de -
239 o8 ,64 _ 239 D 1 . O 9 = 7 2 

cay of Am , and in the |3 decay of Np . Most of 
243 ^^ 

these levels have also been observed in the alpha decay of Cm 
239 As previously mentioned, the ground state of Pu is l / 2 + [ 6 3 1 ] . 

243 239 

Favored alpha decay of Cm populates a 286 keV level of Pu . This 

level and the ground state of Cm have been ass igned 5 /2+[622] . ' 

Samples of cur ium p repa red by prolonged neutron i r rad ia t ion of 
241 243 244 

Am contain Cm and Cm , in roughly equal abundance by activity, 
242 

after the Cm has decayed away. Analysis of the alpha and gamma 
spec t ra of the source used in this investigation gave the following com-

243 244 242 238 

position by act ivi ty: Cm 50%, Cna 45%, Cm 4%, and Pu 1%. 

The p r i m a r y feature of the alpha spec t r a in coincidence with 

gamma rays (Fig, 15(a)) and e lec t rons (not shown), is a complex peak 
„5 

at 5.30 MeV. Its intensity is (4.0±1.2)X10 in coincidence with y r a y s , 
and (5±2)X10 in coincidence with conversion e lec t rons . It was possible 
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to par t ia l ly resolve the complex peak into four components, each in 

the a».y spectrunn. and in the a-e spec t rum. The information obtained 

is r ecorded in Table IIL 

The gamma spec t rum in coincidence with the complex 5.30-MeV 

alpha peak. Fig. 15(b), is very complex. The four s ta tes de-exci te to 
239 m e m b e r s of the ground-s ta te band of Pu by numerous y rays in the 

energy region 600 to 760 keV. Undoubtedly the peaks drawn into the y-

ray spec t rum do not r ep re sen t all the t r ans i t ions , since many of the pos ­

sible ones a re too closely spaced to be resolved. The intensity of the 

gamma spec t rum in the 400- to 500-keV region is soniewhat too high to 

be accounted for by Compton tai ls of the higher lying peaks. Possibly 

the re a r e weak t rans i t ions to m e m b e r s of the K ~ 5/2+ band. 

The e lect ron spec t rum in coincidence with the complex 5.30-MeV 

alpha peak is shown in Fig. 15(c). The K peaks r e semble the ^ 750-keV 

gamma peaks of Fig. 15(b), although the resolut ion is be t te r . Low-energy 

tai l ing, caused by backsca t t e red e lec t rons , a lmost masks the weaker 

e lectron lines around 670 keV. The s imi la r i ty between the e lectron 

and y - r ay spec t ra in coincidence with the 5.30-MeV alpha groups indi­

cates that the many t rans i t ions involved have s imi l a r conversion coeffi­

c ients . On this assumption, the m e a s u r e d conversion coefficients a r e 

a ^ s= 0.08±0.03, a^ ^-^^.^r. - 0.020±0.006. The t rans i t ions have a c -
K L+M+N+» • • 

cordingly been ass igned Ml . 

In the las t column of Table III, the four s ta tes observed a r e de ­

signated as m e m b e r s of a K = 3/2+[ 631] Nilsson band. Some of the 

reasons for this a r e : 

1. The energy of the band agrees well with the expected energy 
72 

for a "hole" state of that ass ignment . The sarne a s s ign ­
ment has been given to a^atate occur r ing at 312 keV in the 

233 '"* 
level spec t rum of U 

2. The energy spacings of the s ta tes agree sa t is factor i ly with 

predict ions for a K = 3/2 band with a rotat ional constant 

7 ^ = 5.6±0.5. 



Table 111. Resolution of the complex 5.30-MeV alpha peak of Cm 
243 

Energy of the Excitation energy Energy separa t ion Intensity pe r Hindrance 
alpha group 

(MeV) 
in Pu239 

(keV) 
from a 
(keV) 759 

Cm^ a decay factor 
Assignment 

K I IT [N^ A] 

5.338±0.015' 

5.315±0.010 

5.274±0.015 

5,226±0.015 

735±15 

759±10 

800±15 

849±15 

»24±10 (1.3t̂ Ĵ ^̂ )X10-̂  20otfo° 

41±5 

90±5 

(2.1±1.0)X10 

(1.0±0.4)X10 

(3.9±1.6)X10 -6 

3/2 3/2 + 

100±50 3/2 5/2 + 

110±40 3/2 7/2 + 

150±60 3/2 9/2 + 

[631] 

This alpha group is r egarded as quest ionable, because it is too c lose to ^JCQ to be resolved. 1 

I 
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3. The observed Ml t rans i t ions to m e m b e r s of the K = l /2+ 

[ 6 3 l ] band probably fix the K quantum number at l / 2 or 

3/2; otherwise these t rans i t ions would be K-forbidden. 

Poss ible weak t rans i t ions to m e m b e r s of the K=5/2+[622] 

band a r e also K-allowed. 

4. The observed Ml t rans i t ions a r e also allowed by select ion 
40 ru les for asymptotic quantum numbers . The same applies 

to the possible weak t rans i t ions to m e m b e r s of the 

K = 5/2+[622] band. 

5. The re la t ive intensi t ies of the alpha groups populating 

m e m b e r s of the band a re in fair agreement with the values 

predicted for an i = 2 alpha wave. 

6. Hindrance of the alpha t rans i t ions is reasonably low, as can 

be expected for the odd-neutron t rans i t ion 5/2+[ 622]-»3/2+ 
r , -, 75 76 
[ 6 3 1 ] . ' 

The decay scheme is shown in Fig. 15(d). Besides the groups 

d i scussed above, the a-e spec t rum gives evidence for a possible alpha 
_7 

group at 5.11 MeV, intensity l imit , 1X10 . Another group at 4,94 
244 

MeV belongs predominantly to Cm decay (see Section L); the same 
-7 243 

l imit 1X10 applies to a possible Cm group at this energy. Below 
- 8 

4.92 MeV, the re a r e no groups with an intensity 5X10 
A study of a par t ic les in coincidence with y rays > 785 keV 

-7 failed to detect any t rans i t ions m o r e intense than 5X10 , although 

there were severa l doubtful alpha groups below this intensity l imit . 

There a r e no y rays over 900 keV in coincidence with a par t ic les 
-7 with an intensity g rea t e r than 3X10 

In summary , four alpha groups were identified, and from the 

data they were ass igned as m e m b e r s of a 3 /2+[631] Nilsson band. No 
243 

other alpha groups of Cm were positively identified. Within the 

l imits s tated, the re is no alpha decay to a s tate dist inguished by low 

hindrance factor or s trong monopole de-exci ta t ion (or both) that might 

therefore be cha rac te r i zed as a beta vibrat ion. 
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„ 244 a ^ 240 
L. C m -» Pu 

240 The p d e c a y of the 7 . 3 - m i n Np p o p u l a t e s m a n y s t a t e s of 
240 

P u , i nc lud ing a 0 1 - s t a t e at 597 keV, 00+ and 02+ s t a t e s at 858 and 
77 

900 keV, and a 22+ s t a t e at 942 keV. As p r e v i o u s l y m e n t i o n e d , the 
244 

a lpha s p e c t r u m of C m h a s been s tud i ed in a m a g a e t i c s p e c t r o g r a p h , 

and a lpha g r o u p s popula t ing s t a t e s at 863 keV, (1.55±0. l6)XiO , and 

903 keV, (0.50±0.08)X10" , w e r e o b s e r v e d . T h e s e s t a t e s w e r e i d e n t i ­

fied with the 00+ and 02+ s t a t e s m e n t i o n e d above . 

A l p h a - g a m m a and a l p h a - e l e c t r o n c o i n c i d e n c e s p e c t r a showed 

popula t ion of l e v e l s at (6 l0±20) and (870±15) keV, i n t e n s i t i e s 

(1.1±0.2)X10~ and (2.3±0.5)X10" . The g r o u p a . i s iden t i f i ed with 

the 0 1 - s t a t e , a l though the p e a k shape m a y i n d i c a t e s o m e popu la t ion 

of the 0 3 - m e m b e r of the oc tupo le band . The g r o u p "aQ_,_"is iden t i f i ed 

with the double t O-Q/o + Q'qr,^ m e n t i o n e d in the l a s t p a r a g r a p h . 

The gamnna s p e c t r u m in c o i n c i d e n c e wi th "ao_ " shows not 

only the e x p e c t e d E2 t r a n s i t i o n at 825 keV, but a l s o 2 6 2 - , 5 7 0 - , and 

6 l O - k e V t r a n s i t i o n s , i n d i c a t i n g c a s c a d e d e c a y v ia the 0 1 - s t a t e , s u c h 
228 

a s o c c u r s in Th . The c o n v e r s i o n coeff ic ient of the 262 -keV t r a n s i ­
t ion , m e a s u r e d by a c o m p a r i s o n of i n t e n s i t i e s in the c a s c a d e , i s 
0 .15±0.08 , which i s u n a m b i g u o u s e v i d e n c e tha t the t r a n s i t i o n i s E l . A 
y - y c o i n c i d e n c e e x p e r i m e n t c o n f i r m s the e x i s t e n c e of tl^e c a s c a d e , 

240 240 

which h a s a l s o b e e n o b s e r v e d in Np d e c a y to P u 

An a lpha s p e c t r u m in c o i n c i d e n c e with the g a m m a r a d i a t i o n a r o u n 

260 keV, t a k e n at h i g h e r r e s o l u t i o n , shows c l e a r l y the double t to the 00 + 

and 02-j s t a t e . In add i t ion to c o n f i r m i n g the double t n a t u r e of the peak , 

t h i s shows tha t the 02+ l e v e l a l s o d e c a y s p a r t l y v ia the oc tupo le band , 

a s would be e x p e c t e d . 

The a l p h a - e l e c t r o n c o i n c i d e n c e s p e c t r u m shows only one p e a k 
- 8 

m o r e i n t e n s e t h a n IXlO , popu la t ing the K = 0 + band , i n t e n s i t y 
8 8 

(9.5±2)X10" . Mos t of t h i s i n t e n s i t y , (8±2)X10" , i s a s s i g n e d to an EO 
t r a n s i t i o n to the g r o u n d s t a t e . F a i l u r e to o b s e r v e a^ . _ in the a - e 

° 610 

s p e c t r u m c o n f i r m s the E l a s s i g n m e n t for t r a n s i t i o n s f r o m the 6 l O - k e V 

s t a t e , and the 1- a s s i g n m e n t for the s t a t e . 
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The EO, E 2 , and E l t r a n s i t i o n s d e - e x c j l i n g the 00-f s t a t e w e r e 
240 ' ' 

p r e v i o u s l y o b s e r v e d in the |3 d e c a y of Np . The r e l a t i v e i n t e n s i t i e s 

a g r e e we l l wi th the v a l u e s r e p o r t e d h e r e . 

The h i n d r a n c e f a c t o r for the 0 1 - s t a t e i s 100±20; for the 00 + 

and 02+ s t a t e s , H F = 3±0.5 , and H F = 5±2, r e s p e c t i v e l y . No d e c a y was 

o b s e r v e d to the 22+ s t a t e at 942 keV, which s e t s a l o w e r l i m i t of 100 on 

the h i n d r a n c e f a c t o r for a d e c a y to t h i s s t a t e . 

All t h i s i n f o r m a t i o n i s s u m m a r i z e d in F i g . 16. 

- . „ . 250 a „ 246 M. Cf -* C m 

The s o u r c e for t h i s i n v e s t i g a t i o n had the fol lowing c o m p o s i t i o n 
2Sn 2*^2 24Q 

by a l p h a a c t i v i t y : Cf 96%, Cf 3.6±0.4%, Cf ^ 0 . 4 ± 0 . 1 % . The 
a l p h a s p e c t r u m in c o i n c i d e n c e wi th e l e c t r o n s > 380 keV showed no 

-7 
g r o u p s in t r u e c o i n c i d e n c e wi th an i n t e n s i t y > 1.2X10 

A l p h a - g a n a m a c o i n c i d e n c e s w e r e s t u d i e d by u s e of the f i s s i o n 
252 

a n t i c o i n c i d e n c e t e c h n i q u e to r e d u c e t h e b a c k g r o u n d f r o m Cf f i s s i o n s . 

Weak a lpha p e a k s a p p e a r e d in c o i n c i d e n c e wi th y r a y s > 460 keV at 

(5,51±0.02) and (5.24±0.04) MeV, i n t e n s i t i e s 3X10" and IXIO" , r e -
250 

s p e c t i v e l y , p e r Cf d e c a y . The 5 . 5 1 - M e V g r o u p w a s o b s e r v e d to 

d e c a y p a r t l y by a y r a y of about 500 keV, i n t e n s i t y about IXIO" . Th i s 
246 

cou ld r e p r e s e n t a s t a t e of C m at about 510 keV. H o w e v e r , i t cou ld 
245 249 

a l s o be a s t a t e of C m , popu la t ed by the d e c a y of Cf wi th an i n -
- 4 249 

t e n s i t y of about 5X10 p e r Cf a l p h a d e c a y . The 5 . 2 4 - M e V a lpha 

g r o u p i s in c o i n c i d e n c e wi th a c o m p l e x g a m m a s p e c t r u m in the r e g i o n 

500 to 900 keV, i n d i c a t i n g tha t it p r o b a b l y b e l o n g s to the d e c a y of 
249 

Cf ^ . 
With the p o s s i b l e e x c e p t i o n of the w e a k g r o u p at 5.51 MeV, 

246 t h e r e a r e no a lpha t r a n s i t i o n s to s t a t e s of C m tha t a r e above 
« 500 keV and d e c a y t o the g r o u n d o r f i r s t e x c i t e d s t a t e wi th an i n t e n -

-7 
s i t y > 8X10 . 
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^̂  „-252 a „ 248 N. Cf -»• Cm 

-7 Previous coincidence measu remen t s set a l imit of 6X10 on 

a l p h a ' s coincident with e lec t rons > 400 keV. No groups were observed 
-5 

in coincidence with y rays > 225 keV; intensity l imit , 2X10 

When the fission anticoincidence technique was used, no alpha 
_7 

groups m o r e intense than 8X10 were observed in coincidence with 

y rays > 480 keV. The fission anticoincidence counter thus reduced the 

background by a factor of about 20. 

In a s e a r c h for the 06+ m e m b e r of the ground-s ta te band, a y 

ray was observed at (160±15) keV in coincidence with 5.7- to 6.0-MeV 
-5 a pa r t i c l e s , intensity (2.0±0.6)X10 . This is identified with the 

E2 
6+ -• 4+ t rans i t ion . The theore t ica l conversion coefficient for this 

t rans i t ion is of 3.3; based on this value, alpha decay populates the 
-5 

06+ state at (203±15) keV with an intensity (6.6±2.2)X10 , HF=1170±350. 

O. E^^^ ^ Bk"^9 

249 The p r i m a r y source of information about the levels of Bk is 
"> c -2 7 R V Q 

the alpha decay of E . Most recent studies ' revea l a la rge num­

ber of l eve ls , many of which have been ass igned to rotat ional bands 

built on the Nilsson s ta tes 7 / 2 + [ 6 3 3 ] , ground s ta te ; 3/2"[ 521] , 8.8 keV; 
o C "2 

and 5/2+[ 642] , 393 keV. Favored alpha decay of E populates the 

ground state with an abundance of 90%. 

In my exper iments , five alpha spec t r a were taken in coincidence 

with y r a y s , gating at different gamnaa ene rg i e s . These show a compli-
249 

cated s t ruc tu re in the region above 600 keV excitation in Bk . Be­
low this energy, the spec t rum of weak alpha groups is masked by m o r e 
intense t rans i t ions to m e m b e r s of the K = 5/2+ band, which decay by 
prompt Ml t rans i t ions to m e m b e r s of the ground-s ta te band. Figure 17 
shows one of the a lpha-gamma spec t ra . 

Four different gamma spec t ra were taken in coincidence with 

a pa r t i c l e s , gated on different regions of the alpha spec t rum (see 

PHW's in Fig. 17). Since many alpha groups were only par t ia l ly 
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resolved, each of the gamma spec t ra r e p r e s e n t s the de-exci ta t ion of 

a number of s t a t e s ; neve r the le s s , considerable information was gained 

about the de-exci ta t ion of some of the s ta tes . 

A single alpha spec t rum in coincidence with e lect rons > 500 
-8 

keV contained no peaks more intense than 3X10 . There is thus no 

indication that any of the s ta tes observed decays by s t rong monopole 

t r ans i t ions . 

Table IV l i s ts the s tates observed and the information obtained 

about them. A state at (6l7±10) keV, populated with an intensity 

(2.4±1.0)X10 in coincidence with y r a y s , is assigned as the 13/2+ 

m e m b e r or the K = 5/2+[ 642] rotat ional band. Allowing for Ml con­

vers ion of the y rays de-exci t ing this state to m e m b e r s of the ground-

state band, one finds the total alpha population is (3.4±1.4)X10 . Asaro 

has predicted a group populating this state at about 610 keV with an 
-6 intensity of about 5X10 . The other levels l is ted in Table IV have 

not been ass igned, because the data a r e not sufficient to make unanabig-

uous choices among the many Nilsson s ta tes in this region. 

The hindrance factors l is ted in the table a r e all high with the 

exception of the value 60 for the 921-keV level. Relative to the leas t 

hindered t rans i t ion , this hindrance factor is only 30. However, the 

conversion coefficient for the (895±15)-keV y ray de-exci t ing the state 

is < 3%. If this t rans i t ion is to be predominantly E2, r a the r than E l , 

it can have an EO component no g rea t e r than 1%. This ru les out the pos­

sible in terpre ta t ion of the 921-keV state as a beta vibrat ion, in spite 

of the relat ively low hindrance factor. As noted in the table , the alpha 

t rans i t ion to this " s t a t e " appears to be complex, so that the actual 

hindrance factor could be higher by a factor of 1.5 or so. 
253 An alpha spec t rum of E has shown the existence of a group 

253 -5 ^ 

at 6,39 MeV, 250 keV excitation in E , intensity about 2X10 . It 

was thought that this might be the 7/2-[ 514] Nilsson level , which should 

decay to the ground-s ta te band by E l t r ans i t ions . Table V gives the 

negative resu l t s of a s e a r c h for this alpha group in coincidence with 



249 253 
T a b l e IV. S t a t e s of Bk o b s e r v e d in t h e a l p h a d e c a y of E 

D e - e x c i t a t i o n 

E x c i t a t i o n 
e n e r g y 

in Bk^49 

(keV) 

253 
I n t e n s i t y p e r E 
a d e c a y in c o i n c . 

wi th y r a y s 
H i n d r a n c e 

f a c t o r 

G a m m a r a y s , 
e n e r g y 
(keV) 

C o n v e r s i o n 
coef f ic ien t 

Ass ignnaent 
A s s i g n m e n t of s t a t e 

617±10 (2.4±1.0)X10 
-6 

(600±10) 

(642±10) 

(687±10) 

(712±10) 

748±10 

((790)) 

921±10 
(complex) 

((966)) 

((1010)) 

((1060)) 

((1110)) 

(6±3) 

(2±1) 

XI0 

XIO" 

-r 

(3±1.5)X10 

(2±1) XIO" 

(2.7±0.8)X10 
, -8 

-T 

-7 

4X10' 

(8±3) XIO -7 

1X10 

1X10 

4X10 

8X10 

-7 

-7 

-8 

-8 

550±250 

4000±2000 

7000±3500 

2800±1400 

3000±1500 

1400±400 

6000 

60±20 

240 

120 

180 

50 

Not measured 

Complex spectrum of [ 
y rays. Possible 
transitions: 556,585, 
640 keV. No y rays 
> 640 keV. 

Not 
measured 

(Ml) 5/2 13/2 +[6421 

Not 
measured 

I 

746±10 

799±10 

i 8 9 5 ± 1 5 
[ ( (920 ) ) 

Not o b s e r v e d 

< 0.04 

< 0.03 

< 0.10 

< 0.10 

< 0.40 

< 0.15 

E 2 , o r 
E l 

E 2 , o r 
E l 

^ T h e i n t e n s i t i e s of t h e s e t r a n s i t i o n s m a y be h i g h e r if t he s t a t e s d e c a y p a r t i a l l y by y r a y s < 500 keV. 
No p a r e n t h e s e s a r o u n d the e n e r g y m e a n s t h a t an a o r y t r a n s i t i o n i s de f in i t e ly e s t a b l i s h e d . Single 
p a r e n t h e s e s m e a n s t h a t t h e r e i s s o m e i n t e n s i t y , but the p e a k p o s i t i o n i s u n c e r t a i n , 
i n d i c a t e t ha t the t r a n s i t i o n i s doubtful . 

Double p a r e n t h e s e s 
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Table V. Limit on possible coincidences between 6.39-MeV 
a par t ic les and prompt gamma radiation (< 0.06|JLsec). 

253 
Energy of coincident y radiat ion Limit per E a decay 

(keV) 

125 to 170 2X10"^ 
-7 

170 to 200 5X10 

200 to 300 1X10"^ 

gamma radiat ion. It i s concluded that ths alpha group does not popu­

late the expected 7 /2 - s ta te . It could be an alpha branch from the p 
255 - 254 253 

emi t te r E or the 37-hour p emi t te r E , or an E alpha group 
in coincidence with delayed or highly converted t r ans i t ions . 

^ ^ 254 a „,250 P. F m -*• Cf 

No alpha groups a r e observed in coincidence with h igh-energy 

radiat ion. The alpha spec t rum in coincidence with e lec t rons > 300 keV 
-7 es tabl ishes an intensi ty l imit of 1X10 on possible t r ans i t ions . In co-

"6 incidence with y rays > 400 keV, a l imit of 1X10 is es tabl ished. 
250 A 1032-keV 22+ state of Cf has been observed in the p de -

250 " cay of Bk . F r o m my r e s u l t s , the hindrance factor for alpha de ­

cay to this s tate is > 18. 

Alpha decay to the 06+ m e m b e r of the ground-s ta te band was ob­

served in another exper iment . It decays by a y ray at (151±5) keV to 
-5 the 04+ state with an intensity of (1.0±0.3)X10 . This places the 06 + 

state at (290±5) keV. The theore t ica l conversion coefficient for this E2 

y ray is 3.95. Assuming that value,one finds the total alpha intensity to 

the 06+ state is (4.0±1.2)X10'^, or HF = 1300±400. 
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V. DISCUSSION 

Interest ing features of the level s t ruc tu re and decay schemes for 

some of the nuclides studied a r e considered in this section, Systesmatics 

of the levels is considered in Section VI. 

1 ^ ID 2 1 8 
Levels of Rn 

This nucleus falls into the nea r -ha rmon ic region — deformable 

nuclei that have low-energy vibrat ional s t ruc tu re , but whose equilibriuna 

shape is thought to be spher ica l . Although there is expected to be an 

abrupt change in s t ruc ture when one goes from spher ica l to axially 

symmet r i c nuclei , t he re is considerable evidence that the p roper t i e s 

of some levels vary smoothly a c r o s s the boundary around neutron nuna-
23 

ber 135. An example of this is the behavior of the 1- s ta tes (see 

Fig. 19). Pa r t i cu la r ly in te res t ing a r e the re la t ive intensi t ies of the E l 

t rans i t ions de-exci t ing these s ta tes to the lower- lying 0+ and 2+ s t a t e s . 

For a nucleus with axial symmet ry , the intensity ra t io , after co r rec t ion 

for the th i rd-power energy dependence of the E l t rans i t ion r a t e , de -
81 

pends only on vector addition coefficients. For the K = 0 s t a t e s , the 

predicted rat io is 

B(E1, 1- -* 2+) _ 2 
B(E1, 1- - 0 + ) 

For nonspher ica l nuclei , all m e a s u r e d values of this ra t io a r e within 

exper imenta l e r r o r of 2. Surpris ingly, the rule appears to hold also 

for spher ica l nuclei , for which K is not a good quantum nunaber. 
218 If the 1- ass ignment for the 792-keV state of Rn is c o r r e c t , 

this is the f irs t case in which the rule b reaks down; the m e a s u r e d rat io 

is 11±3. It should be noted, however, that if the ass ignment is wrong, 

and the 846-keV level is the 1- s ta te , then the rat io is 3.2±0.9, close 

to the value found for other 1- s t a tes . 

Levels of U 

As mentioned in the introduction, y - ray singles and electron—K 

x - r a y coincidence spec t ra es tabl ished the existence of 0+ s ta tes in 
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\,16 

^ , 2 3 4 , T^ 2 3 8 - . •, V . 1 , 1 X. ^ ^ D. 2 3 8 , _ 2 4 2 ^ 

U and Pu , excited by the alpha decay of Pu and Cm . In 

both c a s e s , the 0+ s ta tes were cha rac te r i zed by low hindrance factors 

(< 20) and de-exci ta t ion to the f irs t two m e m b e r s of the ground-s ta te 

band by EO and E2 t rans i t ions of roughly equal intensi ty. These c h a r ­

ac t e r i s t i c s have been used to define a "regular beta vibrat ional state. '" 

A surpr i s ing resu l t of nay work is the observat ion that the 02+ 
234 

m e m b e r of the beta band in U is poorly populated in alpha decay. It 
s eems m o r e reasonable to expect the re la t ive population of the 00+ and 

02+ m e m b e r s of the beta band to be s imi la r to the rat io for alpha decay 

to the corresponding m e m b e r s of the ground-s ta te band. For c o m p a r i ­

son of different nuclides, including odd-mass ones , it is convenient to 

define the quantity 

W (2nd menaber of beta band)/W (1st naember of beta band) 
R (p/f)- "• ^ r—— 

a ^ ' W (2nd m e m b e r of favored band)/W (1st m e m b e r of favored band) 

where the W ' s a r e the alpha intensi t ies to the s ta tes in paren thes i s 

and the favored band is the band containing the state to which alpha 

t rans i t ions a r e only slightly hindered, i. e. , the " b a s e " s ta te for a 

beta vibrat ion observed in alpha decay. 

For the beta band of U , R (P/f) < 0.26, compared with an expected 

value of « 1, 

Levels of Th^^^ 

228 
The 02+ m e m b e r of the beta band in Th ' a lso is populated with 

unexpectedly low intensi ty. This s tate has never been observed, but it 

must cer ta in ly lie about 58 keV above the 00+ s ta te . For this nucleus , 

R (p/f) is again <0 .26 . 
'^ 228 

The 00+ state of Th de-exc i tes about 90% by an E l y ray to 

the lower- lying 0 1 - "octupole vibrat ional s ta te . " Although this 497-keV 

El t rans i t ion has an es t imated s ing le -par t i c le l ifetime much sho r t e r 

than the competing E2 t rans i t ion to the 58-keV 02+ s ta te , it is forbidden 

by the vibrat ional model . The l ifet imes of the s ta tes a r e not naeasured 

in my exper iment , but one does obtain a useful p a r a m e t e r for compar ison 
82 

of different c a s e s , the rat io of the reduced t rans i t ion probabi l i t i es : 
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and 

B(E1) _ 0 5 . . Q - ^ A ^ / ^ ^ ^ E 2 \ W(E1) 
^ ^ ^ ^ _ x . 0 5 X 1 0 A _ -J -^^fj^y (1) 

^^El' 

where A is the atomic number of the nucleus, 

E.pP and E.j-,. are the energies of the competing transitions, 

in MeV, 

W(E1)/W(E2) is the experimentally observed intensity ratio 

for the two transitions. 

In this case, ^ j^ | j = (1.8'*'" )X10"^ . Values of B(E2) mea­

sured in the Coulomb excitation of other beta vibrational states all fall 

in the range 1 to 5 single-particle (s.p. ) units. ' The plausible 

assumption that this holds roughly true in all cases makes it possible 

to estimate the absolute transition probability for the El; in this case, 
_3 

B(E1) > 10 s.p. units. Since El transitions in heavy elements are 

quite generally retarded by at least two or three orders of magnitude, 

this becomes a rather fast El. Nevertheless, since the matrix ele­

ments are small, the presence of this El is not necessarily in serious 

disagreenaent with the vibrational naodel. A small impurity in the wave 

function of either the 00+ (beta vibrational) or the 01- state could ac­

count for the relative speed of the transition. 

It was mentioned in Section IV.B that the beta vibrational band 
O O Q 'i A 

of Th was expected to lie at about 520 keV, on the basis of mea­

sured distortion of the ground-state rotational band, presumably caused 

by vibration-rotation interaction. There are now indications that the 

ground-state band and beta band interact more strongly than previously 

expected. ' For this reason, it is not surprising to find the beta 
, , ^.,228 , . . , 84 

band of Ih at a higher energy. 

It is nevertheless interesting to consider the significance of 

failure to observe any alpha population of a hypothetical state. One 

possible approach is based on the fact that the outgoing a particle can 

excite the nucleus by electromagnetic interactions when it is outside the 

range of specifically nuclear forces. This process is closely analogous 
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to Coulombic excitation by acce le ra ted ions, and unlike that for nuclear 

in te rac t ions , the probabili ty for Coulomb excitation can be calculated 

prec i se ly (I am indebted to Dr. John A. Rasmus sen for showing me this 

calculat ion), as follows: 

The motion of a backsca t te red ion in Coulomb excitation is 

symmet r i ca l about t = 0, the t ime of c losest approach. An a par t ic le 

emerging from a decaying nucleus t r ave l s the second half of this t r a ­

jec tory , so that the excitation amplitude is in this case just half that 

calculated for an a -par t ic le project i le , with the same c. m. energy, 

in a 180* orbit . The excitation c r o s s section, which is proport ional 

to the square of the ampli tude, is just l / 4 the value calculated for a 
85 

project i le , or (for an e lec t r ic excitation) 

/ z \ 2 _2X+2 ^ W i ! ! : i i ^ . r V V 

where 
2ze a =. 

m^v.v^ 

z and m^ a r e the charge and reduced m a s s of the daughter 

nucleus , 

V and V a re the veloci t ies of the a par t ic le at radius <*> b e -
i f 

fore and after exciting the nucleus , 

B(E\) is the reduced t rans i t ion probabili ty for the e lec t r ic t r a n s ­

ition of multipole o rde r \ , 

e _ 2ze 

df. 
Vf " M ' 

E \ and —jrrj— i^ ^ tabulated function. 

The probabili ty that a given alpha decay will excite the nucleus is ob­

tained by dividing this express ion by the Rutherford c r o s s sect ion: 

^a'(^) fzeV -2X df^x^lSO'.^) 'J'^ I 2e ̂  
irHT-lf)— I - dO B(EK,i-.f). (2) 
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228 Consider the hypothetical 517-keV 0+ state of Th . Th i r ty -
232 228 

two percent of U alpha decays populate the 58-keV 2+ level of Th 

The emerging a par t ic le can then excite the daughter nucleus from this 

s tate to the 0+ state by an E2 interact ion. F r o m formula (2), the f r ac ­

tion of decays to the 2+ state that will be followed by further E2 exci­

tation is 

^ 2̂+^ = 5,4X10 " B ( E 2 , 2+ -*0+«) . 
a 

The exper imental l imit on alpha branching to the hypothetical 0+ state 
g 

is 5X10" , or 

W (0+') j -v .n-8 ^ 
a^ ' 5X10 . cAv-in-^ 

WJ2+) < -032-"^ '^^^^° " 
Therefore , 

B{E2, 2+ -» 0+') < 2.9X10" ^ cm^ = 3 s. p. uni ts . 

The calculation shows that there is no state at 517 keV that has 

an E2 t rans i t ion probability to the 2+ member of the ground-s ta te band 

g rea t e r than 3 s. p. (s ingle-par t ic le) units . Since beta vibrat ional s ta tes 

have E2 t rans i t ion ra t e s of just this o rde r , the calculation does not 

rule out the existence of a 517-keV beta vibrat ion. 

More pract ica l ly , the calculation shows that the excitation of 0+ 

s ta tes in alpha decay is not due to Coulomb interact ion occurr ing when 
228 

the a par t ic le is outside the nucleus. For the 825-keV state of Th , 

as well as the other 0+ s tates found in this work, Coulomb excitation 

accounts for l ess than 1% of the alpha population. 

Levels of U 

A low hindrance factor and strong monopole decay place the 
232 693-keV 0+ state of U in the c lass of " r e g u l a r " beta v ibra t ions . 

However, alpha decay fails to populate the 735-keV 2+ member of the 
234 228 

band, as was also observed for the beta bands of U and Th . In 
this case , favorable c i rcumstances made it possible to set a low l imit : 

R^(p/f) < 0.075. 
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The 00+ state was not observed to decay by E l t rans i t ions to 

the 565-keV 0 1 - s ta te . The rat io of reduced t rans i t ion probabi l i t ies , 

B ( E 1 ) / B ( E 2 ) , is less than IXIO" , at least an o rde r of magnitude lower 
228 than the value for the corresponding t rans i t ions in Th 

Levels of Np 

241 

The Am a-y coincidence spec t rum gives evidence for popu­

lation of the second member of the beta band. The m e a s u r e d value of 

R (p/f) is 0.6±0.3, 

The 5 /2- m e m b e r of the beta band decays part ly by y-i^a-y t rans i ­

tions to the first two m e m b e r s of the 5/2-[ 523] band at 60 and 103 keV. 

The re la t ive intensi t ies of these t rans i t ions should depend only on the 

t rans i t ion energies and the appropr ia te vector addition coefficients. 

The second column of Table VI l i s ts the exper imenta l in tens i t ies , nor ­

mal ized to a sum of 1. Columns 3 and 4 give the theoret ical intensi t ies 

for Ml and E2 t rans i t ions . The agreement is reasonable for M i ' s , 

but it is unsat is factory for E2 ' s. 

It is well known that mixing of two rotat ional bands (in this case 

the beta band and the band on which it is based) can have a considerable 

effect on the re la t ive intensi t ies of t rans i t ions between them. Calcula­

tions have been c a r r i e d out for the effect of mixing on the E2 branching 
hL 6i> jLL 

ra t ios from 22+ s ta tes , ' ' and more recent ly , for E2 branching 
9 

from gamma vibrat ional s ta tes of odd-mass nucl ides. 
It is not difficult to do a s emi -empi r i ca i calculation for the beta 

vibrat ional bands. (I am indebted to Dr. Frank S. Stephens, J r . , for 

showing me these calculat ions, ) If one a s sumes Coriolis mixing, the 

amplitude of the beta vibrat ional state of spin I admixed into the base 

state of the same spin is 
-[1(1+1) - K(K±1)]€ . 

In this express ion , e is a p a r a m e t e r to be fixed by exper iment , and 

the choice of + or - depends on whether the mixing is effected through 

an in termedia te state having K* = K + 1, or K' = K - 1. The choice 

of sign is unimportant , because the sign as well as the dependence on 
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Table VI. Ml - E2 y - ray branching from the 
721-keV 5/2 5/2- , state of Np^^^^ 

K 

5/2 

5/2 

5/2 

Final 

I 

5/2 

7/2 

9/2 

state 

IT 

-

Energy 
(keV) 

60 

103 

158 

Relative intensity (normali: 

Exper imenta l Ml E2 

0.84±0.10 0.76 0.46 

0.16±0.10 0.24 0.43 

<0 .05 0.11 

zed t( 

E 2 , 

D a sum of 1) 

co r r ec t ed for 
mixing 

0.29 

0.49 

0.22 

K drop out of the express ions for the branching ra t ios . Since the value 

of e is experimental ly determined, only the dependence on I is a r e ­

sult of the specific choice of Coriolis fo rces . The amplitude of the base 

state mixed into the beta vibrat ional state with the same spin is 

[1(1+1) " K(K±1)]€ . 

Correc ted branching ra t ios a r e obtained by multiplying the un = 
cor rec ted values by a factor chosen from Table VII. Here Q and 
Q a re the intraband (rotational) and interband reduced t rans i t ion 

ampli tudes. 

Current studies of E2 branching from the 02+ miembers of the 
232 238 

beta bands of Th and U (reference 83) indicate a value of 
e(Q /Qft ) w + 0.05. Column 5 of Table VI gives the co r rec ted E2 

g P-g 237 
branching ra t ios for the 721-keV state of Np , assuming this value 
for € (Q / Q _ ). There is no exper imental infornaation on which to 

g P-g 
base cor rec t ions for Ml t r ans i t ions , although these a r e probably 
sma l l e r . 

The co r rec t ed E2 branching ra t ios a r e far ther from the experi­

mental values than the uncor rec ted ones. Unless the sign of 

6 (Q / Q O ) in Np is different frona the same sign in Th and 
g p-g 

238 U , the mixing cor rec t ions can se rve only to widen the gap between 
observed branching ra t ios and the ra t ios predicted for E2 t r ans i t ions . 
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Table VII. Coriolis mixing cor rec t ions to theore t ica l E2 branching ra t ios 
for t rans i t ions between two rotat ional bands with AK = 0. 

Trans i t ion Correct ion factor 

Q 2 
I - > I - 2 [ 1 - (41 - 2 ) 6 - g - g - ] 

"p-g 

Q ^ 
I - I - 1 [ 1 ^ 2I6 Q ^ ] 

"p-g 

I -* I 1 

I - I + 1 [ 1 + (21 + 2) € . - ^ g ] 

I - I + 2 [ 1 + (41 + 6) € 
Q . ^ 

P-g 
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The t r a n s i t i o n s a r e t h e r e f o r e a s s i g n e d M l m u l t i p o l a r i t i e s wi th r e a ­

sonab le c e r t a i n t y . The f a i l u r e to o b s e r v e a t r a n s i t i o n to the I = 9 / 2 

l e v e l ( see the l a s t row of I 'able VI) is f u r t h e r e v i d e n c e tha t tiie t r a n s i ­

t i ons a r e M l . 

The M l t r a n s i t i o n s d e - e x c i t i n g the 'TDeta v i b r a t i o n a l " s t a t e of 
237 

Np c o n t r a d i c t a spec i f i c p r e d i c t i o n by the v i b r a t i o n a l m o d e l . The 

da ta in fact give no i n d i c a t i o n tha t the e x p e c t e d E2 t r a n s i t i o n s o c c u r , 

and t h e s e a r e p r o b a b l y l o w e r in i n t e n s i t y t han the M l ' s by a f ac to r of 

at l e a s t f ive. On the a s s u m p t i o n tha t the E 2 ' s a r e on the o r d e r of a 

few s. p . u n i t s , the M l ' s a r e at l e a s t a few h u n d r e d t h s of a s. p . un i t . 

The b r e a k d o w n of the v i b r a t i o n a l m o d e l i s in t h i s c a s e m o r e s e r i o u s 

t han tha t i n d i c a t e d by the E l t r a n s i t i o n s tha t d e - e x c i t e the b e t a v i b r a -
1 ^ * f ^ u 2 2 8 , -. 240 

t i o n a l s t a t e s of Th and Pu 
The E l t r a n s i t i o n s tha t a l s o d e - e x c i t e the 5 / 2 - b e t a v i b r a t i o n 

237 
in Np a r e a n o t h e e r c u r i o u s f e a t u r e of the d e c a y s c h e m e . If one a g a i n 

a s s u m e s tha t the b e t a v i b r a t i o n a l s t a t e d e - e x c i t e s by E2 t r a n s i t i o n s of 

1 s. p . un i t , and by M l t r a n s i t i o n s tha t a r e at l e a s t five t i m e s a s fac t , 

t h e n t h e s e E l t r a n s i t i o n s have a r e d u c e d t r a n s i t i o n p r o b a b i l i t y of at 
_5 

l e a s t 3X10 s. p, u n i t s . 

In t h i s c a s e , the E l t r a n s i t i o n s connec t the "be ta v i b r a t i o n " 

wi th a s t a t e of d i f fe ren t i n t r i n s i c s t r u c t u r e . T h i s i s i n d i c a t e d in F ig . 18 

by s c h e m a t i c " v i b r a t i o n a l - m o d e l wave func t ions . " (Ro ta t iona l func t ions 

and s y m m e t r i z a t i o n have b e e n o m i t t e d for s i m p l i c i t y . ) The l i f e t i m e of 

the 6 0 - k e V E l t r a n s i t i o n b e t w e e n the 5 / 2 5 / 2 - [ 5 2 3 ] L|;^.^(n = 0) s t a t e 

and the 5 / 2 5/2+ [ 6 4 2 ] ijj . (n^ = 0) s t a t e h a s b e e n d i r e c t l y m e a s u r e d 

and found to be 6.3X10 s e c o n d , c o r r e s p o n d i n g to a B(E1) of 8X10 

s. p . u n i t s . F r o m m y w o r k , it a p p e a r s t ha t t he r e d u c e d r a t e of the 

t r a n s i t i o n 5 / 2 5 / 2 - [ 523] 4^^.^(np ^ 1) S^ 5 /2 5/2+ [ 6 4 2 ] ^^^^{n^ = 0) 

i s a c t u a l l y l a r g e r . Al though t h i s i s u n r e a s o n a b l e if one a s s u m e s a 

v i b r a t i o n a l m o d e l , it shou ld be b o r n e in m i n d tha t the E l m a t r i x 

e l e m e n t s a r e s t i l l v e r y s m a l l , so tha t t he t r a n s i t i o n r a t e s can be a f fec ted 

by v e r y snnall i m p u r i t i e s in the s t a t e s . 

It i s i n t e r e s t i n g to note t ha t D i a m o n d et a l . have r e c e n t l y o b -
159 

s e r v e d " f o r b i d d e n " M i ' s d e - e x c i t i n g g a m m a v i b r a t i o n a l b a n d s of Tb 
169 

and T m . T h e s e a u t h o r s have a l s o no t ed the e x i s t e n c e of a f a i r l y 
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Energy 
(keV) 

Schematic v ibra t ional -model 
represen ta t ion of the s tates 

w 770 

721*5 

103 

60 

33 

0 

K = 5 / 2 - [523]L^^.^(np= 1) 

K = 5 /2- [523]^^.^(np = 0) 

E l , t 2 = 6.3X10"^sec. 

I I K = 5/2+ [642]4.^.^(np = 0) 

Fig. 18. G a m m a - r a y t rans i t ions in Np 
237 
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fas t E l t r a n s i t i o n b e t w e e n one of the g a m m a v i b r a t i o n a l b a n d s of 
165 9 

Ho and a n o t h e r s t a t e of d i f fe ren t i n t r i n s i c s t r u c t u r e . 
239 

L e v e l s of Np 
235 239 

The b e t a v i b r a t i o n a l s t a t e s found in U and Np m a y a l s o 

d e - e x c i t e p a r t l y by M l t r a n s i t i o n s to the b a s e s t a t e s , but in t h e s e 

c a s e s it w a s not d e t e r m i n e d w h e t h e r the t r a n s i t i o n s a r e M l o r E 2 . The 
239 

t r a n s i t i o n s f r o m the b e t a v i b r a t i o n to i t s b a s e s t a t e in Np a r e m u c h 
w e a k e r t h a n the E l t r a n s i t i o n s to the g r o u n d s t a t e , in c o n t r a s t to the 

237 
c o r r e s p o n d i n g b e t a v i b r a t i o n a l s t a t e of Np w h e r e the t r a n s i t i o n s to 

t h e b a s e s t a t e a r e t w i c e a s fas t a s t h e E l ' s t o the g r o u n d s t a t e . 

It would be i n t e r e s t i n g to know w h e t h e r t h i s i s b e c a u s e t r a n s i -
239 

t i ons to the b a s e s t a t e in Np a r e s l o w e r t h a n t h o s e which o c c u r in 
237 239 

Np (poss ib ly b e c a u s e the M l c o m p o n e n t i s l o w e r in Np ), o r 

b e c a u s e the E l t r a n s i t i o n s a r e f a s t e r . In c o n n e c t i o n wi th t h e l a t t e r 

p o s s i b i l i t y , it m a y be w o r t h whi le to note t ha t the l i f e t i m e of the E l 
239 

f r o m the 76 -keV 5 /2 5 / 2 - [ 5 2 3 ] s t a t e to the g r o u n d s t a t e of Np i s 
- 9 88 

« 10 s e c . T h i s r e p r e s e n t s a r e d u c e d t r a n s i t i o n p r o b a b i l i t y m o r e 
237 

t h a n 30 t i m e s tha t of the c o r r e s p o n d i n g 6 0 - k e V E l in Np . T h i s cou ld 
be r e l a t e d to (poss ib ly) e n h a n c e d E l t r a n s i t i o n s f r o m the be t a band of 

Np 

239 
L e v e l s of Pu 

The a s s i g n m e n t of a new N i l s s o n l e v e l and the f a i l u r e to o b s e r v e 

a b e t a band have a l r e a d y b e e n d i s c u s s e d . T h i s f a i l u r e i s d i s a p p o i n t i n g , 

but not a l a r m i n g ; a b e t a band wi th about the s a m e e n e r g y (above the 

band f a v o r e d in a l p h a d e c a y ) , h i n d r a n c e fac tors and E 0 / E 2 r a t i o a s the 
238 9 4 0 - k e V 00+ s t a t e of P u would fall j u s t b e l o w t h e e x p e r i m e n t a l i n t e n s i t y 

l i m i t s . 

It shou ld be p o s s i b l e to C o u l o m b - e x c i t e a b e t a v i b r a t i o n b a s e d 
239 

on the g r o u n d s t a t e of P u . T h i s shou ld be p a r t i c u l a r l y i n t e r e s t i n g , 
238 

in l ight of the v e r y d i f fe ren t c h a r a c t e r i s t i c s of the 00+ s t a t e s of P u 
240 235 

and P u . C o u l o m b e x c i t a t i o n of the o d d - m a s s n u c l e i U and 
237 

Np a l s o of fe rs i n t e r e s t i n g p o s s i b i l i t i e s . In bo th c a s e s , t h e b e t a 
v i b r a t i o n b a s e d on the g r o u n d s t a t e , wh ich s h o u l d be s t r o n g l y p o p u l a t e d 

in C o u l o m b e x c i t a t i o n , i s not the one o b s e r v e d in a l p h a d e c a y . It m i g h t 
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p r o v e h igh ly en l igh ten ing to c o m p a r e two b e t a b a n d s of the s a m e n u -
237 

c l e u s b a s e d on d i f fe ren t i n t r i n s i c s t a t e s . Np , w h o s e K = 5 / 2 - [ 523] 

b e t a band d i s p l a y s i r r e g u l a r d e - e x c i t a t i o n , would be a good n u c l e u s in 

wh ich to m a k e s u c h a c o m p a r i s o n . 

^ 1 r T3, 2 4 0 
L e v e l s of Pu 

240 The 02+ m e m b e r of the b e t a band in P u i s popu la t ed . F r o m 

the m e a s u r e m e n t s by A s a r o and P e r l m a n R (P/f) = 1.1±0.2. T h i s i s 

m o r e in l ine wi th t h e e x p e c t e d v a l u e « 1, but in m a r k e d c o n t r a s t t o t h e 
, , - rp, 228 , ,232 , , 2 3 4 
low v a l u e s for Th , U , and U 

240 In o t h e r r e s p e c t s , the b e t a band of P u i s h igh ly i r r e g u l a r . 

It d e c a y s p a r t l y by E l t r a n s i t i o n s to the 6 l O - k e V 0 1 - s t a t e . The v a l u e 
3 

of B ( E 1 ) / B ( E 2 ) i s (1,7±0,3)X10" , so t ha t t h e s e E l t r a n s i t i o n s a r e 
_3 

p r o b a b l y on the o r d e r of 10 s . p . u n i t s . C o r r e s p o n d i n g E l t r a n s i t i o n s 
238 

w e r e not o b s e r v e d in the n e i g h b o r i n g n u c l e u s Pu , for wh ich 
- 6 

3 ( E 1 ) / B ( E 2 ) i s l e s s t h a n 7X10 , l o w e r by a f a c t o r of m o r e t h a n 200. 
238 

A m o r e s t r i k i n g d i f f e r ence b e t w e e n the b e t a b a n d s of P u 
240 and P u i s the r e l a t i v e s t r e n g t h of the m o n o p o l e t r a n s i t i o n . T h i s i s 

89 / 
c o n v e n i e n t l y e x p r e s s e d by the p a r a m e t e r |JL ( 0 ' - * 2) = W (EO)/W (E2) , 

•K. K y 
w h e r e the W s a r e the K - e l e c t r o n and g a m m a i n t e n s i t i e s d e - e x c i t i n g 

240 the s t a t e . F o r the b e t a v i b r a t i o n of Pu , |Ji„ = 0 ,1±0 .03 , c o m p a r e d 
238 

to a v a l u e 1.0±0.3 for Pu 
240 In s p i t e of t h i s s t r a n g e b e h a v i o r , t he b e t a band in P u h a s a 

v e r y low h i n d r a n c e f a c t o r . T h i s m a y i n d i c a t e t ha t a low h i n d r a n c e 

f a c t o r i s c h a r a c t e r i s t i c of a b r o a d e r c l a s s of 0+ s t a t e s t h a n " r e g u l a r " 

b e t a v i b r a t i o n s . As m e n t i o n e d in Sec t ion IV,A, it a p p e a r s tha t t he 
234 

1046-keV 0+ s t a t e of U m a y be popu la t ed by a l p h a d e c a y wi th an 
- 8 

i n t e n s i t y s l i g h t l y be low 1X10 , c o r r e s p o n d i n g to a h i n d r a n c e f a c t o r 

of a 10. 

Nuc le i h e a v i e r t h a n P u 

Since the b e t a v i b r a t i o n a l s t a t e s a p p e a r to be popu la t ed s t r o n g l y 

in m o s t of the nuc l e i s t u d i e d , it i s s u r p r i s i n g tha t none w e r e found in 

the v e r y h e a v y n u c l e i . " R e g u l a r " b e t a b a n d s , a s def ined n e a r the 
246 beg inn ing of Sec t ion V, do not ex i s t be low 940 keV in C m , 830 
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keV in Cm^^^, 1280 keV in Bk^'^^, or 1150 keV in Cf^^°. Therefore , 

the ene rg ies , the hindrance factorsj or both a r e higher in these nu­

c l ides . Neither have 1- s ta tes been observed in nuclei heavier than 

Although it would be in teres t ing to invest igate the heaviest nu­

clides more thoroughly, it is general ly difficult to produce thenn in suf-
246 

ficient quantity. Cm is available in sufficient amounts , but it must 
244 249 

be i so tope-separa ted from large quantities of Cm . Pure Cf is 
246 now avai lable, or will be soon. Cf probably offers the best hope. 

This isotope can be p repa red r a the r easi ly by an (a, 2n]> react ion on 
^ 244 
Cm 

Other l ighter alpha emi t t e r s 

A number of l ighter alpha emi t t e r s reamin to be studied by this 
240 technique. Cm can be produced in good yield by the bombardment of 

239 241 
Pu with a pa r t i c l e s , although the Cm also produced emi ts in­
tense y rays which may in ter fere ser ious ly with coincidence s tudies , 

234 233 234 
Pu can be produced by the react ion U (a, 3n)Pi:^ , but i ts smal l 
alpha branching is a drawback. Pu and U m.ay be profitably 

230 . J , . 

studied in spite of thei r low specific ac t iv i t ies . Th is a good candi­

date for study. Among the isotopes l ighter than th is , se r ious difficulties 

often develop from the growth of daughter act ivi t ies into the sample . Of 

course , more information about the alpha emi t t e r s a l ready studied may 

be obtained by this technique. Time and t e m p o r a r y exper imenta l l i m i ­

tations were important factors in defining the scope of the exper iments 

repor ted he r e . 
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VI. SUMMARY AND CONCLUSIONS 

Most of the new information presented in this paper concerns 

the 00+ s ta tes and analogous s tates in th ree odd-mass nuclei , the 

"beta v ibra t ions . " No gamma vibrat ions have been observed in alpha 
244 decay. In one case , the alpha decay of Cm , the hindrance factor 

for decay to the 22+ state must be l a rge r than 100. 

Some new knowledge of octupole vibrat ions has been obtained. 

This includes possible observat ion of alpha decay to a 0 1 - s tate of 
234 

U with a r a the r low hindrance factor, and the observat ion of a s tate 
235 

in U which is probably an octupole vibration of the same cha rac t e r , 
218 

also with a low hindrance factor. In Rn , a probable 1- state has 

been observed whose E l branching ra t ios give the f irs t indication of a 

breakdown in the K quantum number . Most in teres t ing is the obse rva -
236 

tion of a possible K = 2- octupole band in U 

The energies and known hindrance factors for the lowest m e m ­

be r s of the octupole bands a r e shown in Fig. 19, The smooth t rends in 

the 1- s ta tes a r e quite obvious. 

The energies and hindrance factors for the beta vibrat ions a r e 
232 238 

shown in Fig. 20. The energies of the 0+ s ta tes in Th and U 
83 a re taken from the work of Stephens and Diamond, All other points 

a r e taken from my work. 

Both the energies and the hindrance factors show smal l v a r i a ­

tions which cannot be explained by a s imple vibrat ional model . The 

hindrance factors appear to dec rease somewhat with increas ing m a s s 

number , and the energy plot seems to have a broad min imum around 

m a s s number 230. The par t icu la r ly low energies of the beta vibrat ions 

in the neptunium isotopes may be caused by coupling to the odd proton, 
235 

The effect of the odd neutron in U appears to be sma l l e r . 

It is su rp r i s ing that the energies of the beta vibrat ions a r e not 

much lower in the l ightest nuclides studied. These nuclei a r e supposedly 

very "soft " t o P deformat ions , those which p r e s e r v e axial symmet ry , 
228 Th is supposed to be par t i cu la r ly deformable, but i ts beta vibrat ion 

226 222 
occurs at r a the r high energy. The 0+ states of Th and Ra probably 
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1 1 1 r 

• U^^^,K=^- state 

A U ^ ^ ^ 22-state(?y 

224 232 240 

Mass number 

19, (a) Energies of the "octupole" s ta tes . Many of the 
points a re taken from other l i t e ra tu re , 

(b) Hindrance factors for alpha t rans i t ions to the 
"octupole" s ta tes . The hindrance factor for the state 
assigned K = l / 2 - in u235 has been divided by 2.5, 
the hindrance factor for the favored t rans i t ion. 
Many of the points a re taken from other l i t e r a tu re . 
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Fig. 20. (a) Energies of the "beta v ibra t iona l" s t a tes . 
(b) Hindrance factors for alpha t rans i t ions to the 

"beta v ibra t iona l" s t a tes . Values for odd-mass nuclei 
a r e re la t ive to the least hindered t rans i t ion . 



lie even higher. Although not enough is known about the 0+ s ta tes in 

the m a s s region 220 to 230, it a l ready appears that the cur ren t ideas 

about deformation energies may not be ent i rely co r rec t . It should also 

be noted that the "softness " toward odd-pari ty deformations, as indicated 

by the low energies of the 1- s ta tes in this region, has not been s a t i s ­

factorily explained. 

Figure 21 shows the observed ra t ios of K e lec t rons to E2(+M1) 

y rays de-exci t ing the first m e m b e r s of the beta bands. For even-even 

nucl ides , conservat ion of angular momentum forbids Ml t r ans i t ions , so 

this ra t io is equal to H-T^(0' -• 2). For odd-mass nucl ides , the quantity 
237 plotted can be lower than |J. if M i ' s occur . In the case of Np , 

K 
M i ' s have actually been shown to de-exci te the beta band. Points for 

232 238 

Th and U a re again taken from the work of Stephens and 

Diamond. 

Similar values of [l.-^^ a re observed in Th , Th , U , 
234 238 

U , and Pu . The value of J-L is lower for the beta vibra t ions of 
232 238 

Th and U , observed in Coulomb excitation, and it is especial ly 

low in Pu . It may be low for the 00+ state of U , but this point 

is based on questionable observat ions . 

On the bas is of a vibrat ional model |J. should depend mainly 

on P, the equilibriumi deformation of the nucleus, which va r i e s only 
90 89 slightly over most of the m a s s region studied, ' The observed 238 fluctuations of |Ji„, par t icu lar ly the sharp drop between Pu and 240 Pu , a r e evidence for some noncoUective cha rac te r in the 0+ s ta tes . 89 Vibrat ional-model calculations ' actually show |J.-, to be slightly higher 

. ^ 240 ,̂ • o, 238 ^ 
m Pu than in Pu 

91 Recent theore t ica l calculations by Marshalek show the energies 240 of the beta vibrat ions approaching the energy gap at Pu and heavier 240 nucl ides . This may be re la ted to the low value of |Ji-̂  in Pu , as well 
246 248 249 

as the failure to observe beta vibrat ions in Cm , Cm , Bk and 
250 Cf . A descr ipt ion of the "beta vibrat ions "as par t ic le s ta tes might shed 

some light on the behavior of these s ta tes in the heaviest nucl ides , and 

could also explain anomalies such as occur in the de-exci ta t ion of the beta 
237 

vibrat ion in Np . Voros et al. have calculated that two quas i -pa r t i c l e 
240 244 92 

0+ s ta tes should lie as low as 1.2 MeV in Pu and Cm 
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|i2^(0' -*• 2). For odd-mass nucl ides , the quantity may be 
lower than (JLK if the "beta v ib ra t iona l" state de-exci tes 
par t ia l ly by Ml t rans i t ions . This is actually known to 
occur in Np237_ 
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The s imi la r i t i e s between a naajority of the "beta v i b r a t i o n s " 

must never the less be accounted for. Perhaps the s tates can best be 

descr ibed as a naixture of vibrat ions with one or severa l quasi = par t ic le 

s t a tes . 
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