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CHAPTER I 

The work described here attacks two problems: the lack of agreement on the 

nature of certain aspects of nonnumeric computer processing, and the educational 
. . 

bottleneck resulting from the large nuinbers of people who know little about com- 

puters but who wish to see how . . they might be used in their work. , . 

The first  problem is a generic problem in the nature of nonnumeric processing. 

The essence of numeric calculations and operations has been known for some time, 
. . . . 

and the advent of high speed digital computers has solidifiedthese concepts. . . Almost 
. . 

all general purpose digital computers have facilities for doing arithmetic, and 
. . . . . , 

depending on the size and cost of the machine, these facilities can be quite elaborate. 

This should not be surprising since the first uses to which digital computers were 
. . . . 

put were almost exclusively numerical calculations. 
. . 

The notion that a general purpose digital computer can be a very general 

symbol manipulator began to grow from the early days of computing and is  now 

an accepted notion throughout most of the computing community. As yet, however, . . 

there has been very little agreement on what constitutes general symbolic manipu- 

lation, i. e., nonnumeric calculation. This lack of agreement can be seen at the 

hardware level by the fact that there has been no unanimous introduction of pieces 
. , 

of hardware to do nonnumeric processing, as  opposed, for example, to the 

existence of adders for numeric processing. On the software level, the great 

variety of "list processingff languages such a s  LISP (McCarthy [1962]), SNOBOL 

(Griswold El9 68]), and L6 (Knowlton [1966]), and "associativeff languages like 

LEAP (Feldman [1969]) and ASP (Lang [1968]) indicates that there a re  certainly 

divergent opinions on the nature of nonnumeric processing. One of the purposes 



of this work, then, is to t ry  to shed some light on a representation and subsequent 

manipulation of nonnumeric data. 

The second problem with which this work deals is related to the fact that 

computers can be very useful tools in many areas, including both mathematical 
. . 

sciences and nonscientific fields such a s  history, government, sociblogy, 
, . 

law, etc. 

The phenomenal growth of accessibility to computers and the number of 

people anxious to use computers have caused quite a bottleneckin the facilities 

* for training these people. ~n t roduc to r~  programming courses in universities 

and colleges a r e  almost always overcrowded as  students in the physical sciences 

and, more and more often now, the social sciences realizc that computers mj,ght 

be able to help them in their own fields. 
. , 

These immense numbers of people, who are  eager and should learn how to 

use and how not to use computers in their own work, require that new methods 

of teaching and learning these skills be explored. The traditional university 

course, for example, lasting from at least several weeks to a quarter o'r se- 

mester is quickly becoming inadequate toserve the volume of people eager t; ' 
.., 

acquire the knowledge of some programming language which might be useful to 

them. The length of time which is required for the computer novice to learn 

many of the computer languages and systems, with their increasing generality 

and complexity, is usually more than he and his instructor wish to spend. 

Kemeny and Kurtz at' Dartmouth have attcmptcd to alleviate this problem by 

designing and implementing an interactive computer language and system called 
. . 

BASIC (Kemeny [1967]). ' The simplicity of the system and case with which the 

language can be learned are  evidenced by the fact that a very short formal lecture 

session is usually all that is necessary for the novice to begin writing programs 



- 
that a r e  usef* to him. The interactive nature of the system allows the novice 'to 

use the system at  his leisure and to search for answers to questions which occur 

to him about the system by experimentation. The great utility of this approach 

to the training and teaching problem is attested to by the great number of BASIC 

systems which have been adopted by many computation centers and the wide sup- 

port and use these systems a r e  receiving from their users. 

There a r e  a number of problems for which the BASIC language and system is 

inadequate, but for these problems there a r e  more general and more complex 

languages and systems which the novice can learn and use. However, for a 

great many common everyday problems, BASIC is entirely adequate, and the 

ease with which i t  can be so used bears strong evidence that .RASIC1s approach 

to the computer education bottleneck is a good one. 

This work, then, is an attempt to combine partial solutions to these two .. 
problems: to shed further light on the nature of one aspect of nonnumeric proces- 

sing, and to aid in reducing the educational bottleneck in that area. 

The vehicle for this study is the design and test implementation of a non- 
- .- 
..'I 

numeric data prdcessing capability suitable for inclusion with a BASIC' system. 

It i s  felt that such an addition would greatly enhance the already great appeal of 

BASIC to those nonscientific users who already view BASIC a s  a useful tool for 

the solutions of their numeric problems. 

In trying to follow one of the rules for the development of BASIC, which was 

to find those few primitives which were not only basic and useful, but also of high 

pedagogic value, i t  was decided that the majority of current nonnumeric list- 

processing languages were too much data-structure oriented rather than problem- 

solving oriented, Hence, while these languages contain almost all the basic 

primitives for list processing, they a re  too Gfficult to use and of too little pedagogic 

v a l ~ ~ e  fo r  those novice users for whom the nonnumeric capability i s  intended. 



As different in format and applicability as  the existing nonnumeric lan- 

guages are ,  there is a common motive that runs through all of them. In one 

form o r  another, all of these languages emphasize the relationships between 

data as  opposed to emphasizing the data themselves. In IPL (IPL [1961]) and 

'LISP (McCarthy [1962]), for example, the sublist concept and associated mecha- 

nisms for creating, manipulating, and destroying such sublists deals with the 

relationships between not only atoms of data but also between other relationships. 

Much the same can be said for the pointer structuring capabilities in ALGOL W 

(Bauer [1969]) and in L6 (Knowlton [1966]), the basis for which was Wirth and 

Hoarevs records and references(Wirth [1966]) and Rossts plex processing 

(Ross [1961]). It certainly appears that the ability to specify relationships 

which exi'st among data and to manipulate these relationships are at  the heart of 

nonnumeric processing. 

Having ascertained the centrality of the concept of relationship specification 

and manipulation to nonnumeric processing, we turn to finding those few primi- 

tives which a re  basic, useful, and of high pedagogic value. More explicitly, when 

considering nonnumeric processing and the relationship concept, the problem is 

to focus on some hopefully small subset of all possible relationships in order to 

~implify both tho language and thc conccpta involved in teaching. 'To tl~s end, I 

have chosen one type of relationship, the ----. hierarchical - relationship.' Webster 

( Webstcr [1964') defines lrhierarchyfl a s  "the arrangement of objects, elements, 

o r  values in a graduated series. " Notice that the emphasis is on the arrangement 

of the objects rather than the objects themselves. The graduated nature of a 

hierarchy as defined, -as  wcll a s  the intuitive feelings 'of what constitutes a ' 

hierarchy, implies the true generality uof this relationship: it exists o r  can easily 

be made to exist among data in a great many different kinds of data bases. In 

addition, two relationships can be different in their meaning but still be hierarchical. 

I 

- 4 - 



In other wofcls, RAB and RBC can both'be hierarchical relationships but 

having different semantic content depending on the data, A,. B, and C. For example, 

A could describe a.professor, B. could describe his secretary, and C could describe 

her salary.' The exact nature of "the relationships is somewhat .subjec.tive and 

might be interpreted slightly differently by 'different users once the data A, B, 

and C a re  known; noietheless, both relationships a r e  hierarchical, 'and this fact 

i s  all that should be required.for the user to specify,. query, and manipulate the 

relationships and the data. More will be said'about this and more examples wi l l  

. : .  
. . 

be given in later chapters.. 

Having limitedthe' type of relationship, i t  remains to determine.:how..to specify 

* that.this relationship exists 'or does'liot exist between data, how to'query the1data 

base in terms-'of the relationships which.do or  do not exist, and how to 'manipulate 

these relationships and so indirectly the data. The manner in which these operations 

should be specified should be simple and of high pedagogic and mnemonic.value in 

order that the goals achieved in BASIC can be achieved here as  well. Once these 
. .  . . .  . . . . 

goals 'are met, the resulting system w i l l  be able to serve a s  both a data manage- 
. .. 

ment system and an information retrieval system which is easy to,use and easy 
. .  . 

to learn. The following chapters discuss and explain one way that this can be done. 
. . . . . . 

I 



A. The Data Structure 

The data structure type f i rs t  chosen to represent the hierarchical relationships 

discussed in the previous section was. a multirooted 'Adtibranching tree with the 

a rcs  of the t ree oriented away from the roots (see Fig. 1%). The nodes of the tree 

contain the data items and a directed path from node X to node Y in the tree indi- 

cates. that node X is . . in a hierarchically superior relationship . to . n0de.Y. , ,Stated 

differently, node Y is within the hierarchical context of node X., If no .directed 
~ . .  

path exists between node X and a no.de Z ,  . then no hierarchical relationship exists 

between..node. X .and node .Z, ,Notice. that node X?and .node Y do not.,have to be, 
, 

adjacent . to. . one another,.. i..,e., ,.other nodes .may exist along the path frqm node X: 

to node Y. . . . . , . ,  . / .  

. .For reasons of generality, the., multirooted multibranching tree ,data . . .structure 

was .extended slightly t.0 directed acyc,lic graphs. This data structure.can he . , 

conveniently visualized as  a multirooted multibranching t r ee ,  some of whose 
,, 

branches might have,grown together (see Fig. .lb). . The nodes..of the: directed 

acyclic graph still contain the data items, and what was said previously about .. , .  

the.-existence or nonexistence of a hierarchical relationship. between two nodes.. 

. still .holds. : . . , ,  .. . . . , "  . .  . . .  I 

. . . .  . . .  . . . . . . , 

B. The Data Item 
. . . . .  I . .  : . - < .  . 

'AS previously noted, each node of the graph contains a data item. A data 
. . . . .  . . . . .  . . . . . . ,  . 

I . ' '  ' . .. item is any semantically meaningful labkl or bet of labels the user chooses. ' 

. . . .  . . . . 
. . .  . . 

<label > : : = < identifier >'l( number > 

<data item > : : = < label>l< label> <data .itern> 



Directed multirooted multibranching tree. 

(a) 

Directed acyclic graph 

(b) 

FIG. 1. 



where the syntactic classes <identifier > and <number> a re  a s  defined in the 

Algol 60 report (Revised Report 1963). Duplicate labels may occur within a data 

item. 

In some complex retrieval systems, there is a syntactic distinction made 

between the semantically different concepts of a category of some kind and a 

particular instance of that category when referring to data items at nodes in a 
. . 

data structure. For example, uUniversityff can be thought of,as a category of 
-. 

which "Sta .nf~rd~~ and lfTexasfl a r e  instances. The system doess.not distinguish 

between labels which can denote categories and labels which can denote instances. 

The distinction between the concepts of category and instance is fairly easy to 

make for professionals in the computer field. However, for the potential user 

of this system, these concepts and their distinction may appear to be somewhat 

arbitrary and beside-the-point, complicating rather than simplifying the use of 

the system. For this reason, there is no syntactic distinction made between 

category and instance within data items in this system, and whatever semantic 

distinction exists between the labels which make up a data item can remain com- 

pletely within the mind of the user. 
" ~ 

Exn.mp1c.s 

Stanford La~vyor J o n o ~  . 

Stanford U*versity Uootor Lawyer Jones 

27 

age 27 

salary , 

salary 375.60 dollars per month 

C. The Range 

One of the basic concepts in this system is the manner whereby a subset of 

the set  of all nodes in the graph, called a range, is referenced. Most of the 



primitives operate on one or  more subsets of nodes, o r  ranges, and each refer- 

ence to a range is accomplished according to a common set  of rules. There is 

a general principle, the Principle of Greater Specification, which applies when 

specifying a range. This principle 'states that when more information i s  given 
. \ 

to specify a range, the cardinality of the range, i. e.  , the number of nodes ref- 

erenced,cannot increase because of the added information; more usually, the 

cardinality decreases. ' Simply stated, the more carefully a se t  of nodes i s  de- 
. . 

scribed, the fewer nodes one i s  describing since only those nodes which satisfy 

all the descriptions a r e  included in the range. As the different methods for - 
referencing a range a r e  discussed, i twi l l  be shown how the Principle.of Greater 

' .. . ;  
Specification applies. It w i l l  also be seen that each method i s  a special case of 

following methods. . . 

1. Method I .' 
. .  . . . 

, . .  . . .  . . . .  . . 

The simplest way of specifying a range is by evoking a label. The set  of nodes 

which constitutes the range is then all those.nodes in the graph which have the . . a 

. . 
.. , 

evoked label among the h b e l s  which make up the data item for that node. . - , ... .. . 
. . , '  ' 

Examples (see Fig. 2) .. ' , . 
, . . :  . . 

Evoked Label ' . Node numbers in ;range 
. . . . . . . . . .. . 

Student. .' . - ,  . { l ~ ,  22, 23) . . , 

. , 

University 

History 

, . 
The nodes.in any range always form an unordered set. 



Cll Cdtech Stanford University PI Texas lrdversity PI ' C41 - 

Law School [51 School d Humanities c61 Administration . . School of ~ n g & e r i n ~  
C81 

and Sciences , . 

Communication 

Mechanical [121 
Engineering 
Department 

I Professor C nainman 
I-' 

Professor 
~ s s o c .  provost['! 

. Electrical 
Parker Professor o Engineering 

I Forsythe Moees 

Mickelson 

Student Laurel ~231 

Student Secretary [2 13 
Sheldon Carla West 
Becker - S a k y  

Note: Sdary Classified W r y  . Wife 
I251 C261 

$9 00.53 Susan 
Bracketed numbers b e ~ i d e  each node 
are for identification pnrposes .only . - 

and are not part of the data item at 
the node. ' 1594A2 

FIG. 2--A Personnel file.. 



. . . . 

2. Method II 

 noth her way of specifying a range ' isby evoking one or  m&& labels. The set 

of nodes which co&titutds the r&k is  then the intersection of all those sets of 

nodes (ranges) which would arise if 'each 'evoked label were evoked alone.   he' 
. . 

evoked labels canbe in anydrdkir. If only one label is evoked, it is seen that 
\ .  

. . 
this method of specifying.a range is identical with Method I. 

. . 
"~xamples  (see Fig. 2) 

Evoked Labels Node numbers in range 
, 

Professor Miller 1151 

Provost ~ i l l e i  ' { 1 6 I  

ASSOC. P ~ O V O S ~ '  Miller (16 I 
Engineering Department 

Chairman Miller 

School of Humanities and 
Administration Sciences 

Miller . Professor . . . 

Student Sheldon Becker 

Student Sheldon 

Student Becker 

Sheldon Becker 

Student 

Sheldon 

Becker . ,  . . .  . 
. .  . 

Notice that the Principle of Greater Specification holds here. The evoked 

label flStudentff specifies a range consisting of three nodes (see Fig. 2); upon 

greater specification, "Student Hardyff for example, the range is reduced to one 

node. 

- I1 - 



There is an addition to Method I1 which can be used when the range which the 

..user . . 
wishes to specify consists of. a set of nodes which. have precisely the set of 

. . 'I .. . . 
, . .  

labels. t h e  user .  evokes, and inprecisely , .  the same order. , .  I$ . the usiml .case,  . the . 

1' 

range consists of the set  . . .  of nodes, which have .at least the. set of labels the user , 
. . e .  

evokes, and in any order. The word "just", pccurring before the evoked labels 
.. . - ' . .  

has pedagogic value in m*.ng it clear to the user. that :only. those nodes a r e  sought 
_ .  . , : .  , .. . 

which contain precisely the evoked set of labels. llPreciselyll or llexactlylf might 
. . 

also be used. . , 

. . . .. 

Examples (see Fig. 2) . . 

Evwaliun 

just Student 

Node numbers in range 

B . . .  

just Student Hardy @?I . . 
. . 

Student Hardy iz2t 
3.  Method 111 . . . . 

A more complex and d e  powerful method of specifying's range is by 

hierarchical context. As was stated at the beginning of this chapter, iince the 

data base is a directed acyclic graph, ' between any t.wo 1~6des in the grqih ,ox"ct.ly 
i . . 

one of the following two relationships holds: 

(1) there is no directed path between the twg nodes ' ' 

(2) there a rc  one or more directed paths between the two hodes. 

Node Y is said to be withi.n the hierarchical context of node X if one or more 

directed paths exist from node X to n k e  Y .  If no directed path axintn h6tween 

node X and node Y, then neither node is within the hierarchical context bf the 

other node.. '~ ince : the  .graph is.acyclic, node X may never be. within its own 

hierarchical context. . . 
. . 



Let the symbol I'  > l 1  indicate that the hierarchical relationship holds, i. e. , 

X > Y means that node Y is within the hierarchical context of node X. X 3 Y means 

that node Y is not within the hierarchical context of node X. 

, Examples (see Fig. 2) 

The hierarchical relation is nonreflexive, antisymmetric, and transitive. 

The third method of range specification is accomplished by specifying two 

ranges in order according to Method It. The range thus specified consists of all 

those nodes in the first  range which a r e  within the hierarchical context of any 

node in the second range. More precisely, if R1 and R2 are  the two ranges 

initially specified, then the range R within the hierarchical context of R1 with 

respect to R2 i s  defined by: 

E R l ~ S x c R  3 x > y  
2 

In the preceding chapter, i t  was stressed that simplicity for the user be a 

primary goal. Reviewing the second method of specifying ranges, it can be seen 

that the data base is being addressed directly in terms of label's which the user 

has there (the ways in which this placement occurs will be described in the 

next chapter). Since these labels a re  purely the user's invention, they a re  semantically 



meaningful to him. By allowing him to use these labels to address the data base, 

simplicity for him is thereby furthered. 

Continuing in  this spirit,  the following manner of evoking ranges to be 

specified by Method 111 i s  suggested: 

R1. within R2 

where R and R2 a r e  evocations of the two ranges by Method 11, in order. The 1 

word llwithinll is used a s  a delimiter, suggesting the hierarchical contextual 

relationship. Depending on how the user visualizes the data. ,base, delimiters 

such a s  "inI1 or "underr1 might be .used. 

Examples (see Fig. 2) 

Evocation Node numbers in range 

Student within Computer Science 1181 

Student within Department 118, 22, 23) . 

Professor within Stanford {13, 14, 151 

13rofessor within Humanities School. {13, 14, 1.51 

Professor within Communication {I3\ 

P r n f ~ s s o r  within Administration fl 

Miller within Stanford 11% 161 

Miller within Administration 116 I 
Professnr MilS.er within Adrninistration 

Provost within Administration {11, 16, 171 

Provost within Provost {I% 171 

A natural and useful extension of specifying ranges by context is to specify 

a set  of nodes - not within a given context. More precisely, if R1 and H2 a re  the 

two ranges initially specified, then the range R not within the hierarcl~ical context 



of R 1  with respect to R 2 i s  defined by: 

The most natural extension for evoking ranges specified in this manner 

is to use "not within1' a s  the delimiter between the evocation of ranges R and R 2. 

Examples (see Fig. 2) 

. .... . Evocation Node numbers in range 

. . 
Student not within Computer Science 122, 23) 

Student not within Department fl 

Professor not within Stanford 'B 

Miller not within Adminisfration b5 1 
Professor Miller not within 

Administration 

Provost not within Administration 0 

' ' Provost not within Provost bll 

4. Method N 

As Method I1 is a generalization of Method I, so  Method IV is a generalization 

of Method III. In the preceding method, a first set  of nodes is chosen by specifying 

a second set  of nodes a s  context; the second set of nodes modifies the first  set, 

Method N allows a third context to be specified for the second set, a fourth context 

to be specified for the third set, etc. 

In the general case, n ranges R 1' R2, . . . , R in order. a r e  ,specified by 
n 

Method II; n 2 2.  The ranges a r e  associated in the foilowing manner: 

Method 111 is first applied to the ordered pair of ranges Rn - and Rn. The 

result of this application is a range, call i t  Rn - n. , Method III is then applied 
/ 



to the ordered pair  of ranges Rn - and Rn-l, n, resulting in a'range R n-2, n-1, n' 

Method III is continually reapplied to successive pairs of ranges until i t  i s  finally 

applied to  the ordered pair of ranges R1 and R2 , 3 , .  . . ,n-1,no The result of this 

final application is either null o r  a subset of the range specified by R1, a range 

specified by successive hierarchical cokexts. ~ o t i c e  that for n = 2, Method IV 

becomes Method III, and for  the degenerate case of n = 1, Method II. 

The natural extension for  evoking ranges by successive hierarchical context 

is to evoke the n ranges by Method It, each evocation delimited by l1withinl1 or  

"not within1': 

R1 dl,2 :R2 d2,3 R3 ---- dn-l,n R n 

where R is the evocation of the ith range by Method 11 and d. is either 
1-1. i 

llwithinll or  "not within. " 
Examples (see Fig. 2) 

Evocation 

Secretary within Miller within 

Node numbers 'in range 

121) Administration 

, . Secretnry within Miller within 

Computer Science (19, 211 

,.. . 
secretary within Miller not within 

,' . 
~ . d m i & s  tration (19, 21) 

Secretary within Miller not within 

Cornp~~ter finicnnr: 1211 
Student within Mechanical Engfneering 

not within Humanities within stanford 422, 231 

. . . . 



Notice that the Principle of Greater Specification holds here. Also notice 

that the data base is still being addressed in terms of labels which a r e  semantically 

meaningful to the user and in a manner which is very suggestive of the relationships 

which the user visualizes as  holding between his data. 

D. Total Range Specification 

Since Method I '  is a generalization of all the preceding methods, and the 

distinction between the methods will often not be needed, the combination of al l  

the methods, i. e. , Method IV, will henceforth be called the specification of a 

range by hierarchical context. Observe, however, that the contexts which a r e  

given a r e  always hierarchically superior to 'the nodes which a r e  being specified. 

In terms of visualization of the data base a s  drawn, for example, in Fig. 2, the 

contexts a r e  always ltaboveM the nodes which a r e  being specified. Often, i t  is 

useful to be able to further qualify the nodes to be specified by looking at those 

nodes "below" the nodes which a r e  being specified, i. e . ,  those nodes which a r e  

hierarchically inferior to the nodes being specified. 

To specify a range then, a set  of nodes is f i rs t  specified by hierarchical 

context. If i t  is not desired to further qualify the nodes so  chosen by hierarchical 

context, then this set  of nodes is the range. If it  is desired to further qualify the 

nodes thus chosen by hierarchical context by checking for some condition or  

conditions which might exist in nodes hierarchically inferior to the nodes chosen 

by hierarchical context, this specification, to be described shortly and to be 

called specification by subtree context, is then given. It should be noted that 

specification by subtree context is specification by predicate, a well known method 

of naming sets. Specification by subtree context asks whether o r  not some condition 

holds within the subtrees of those nodes chosen by hierarchical context. Every 

node chosen by hierarchical context whose subtree meets the condition (or 



conditions) named by the subtree context specification is retained in the range; 

all nodes which do n i t  meet the condition (or conditions) named are  discarded 

from the range. 

E. Subtree Context S~ecification 

Three conditions have been chosen to be used in the subtree context speci- 

fication. One condition checks for the existence of a node (specified by Method IV) 

within the subtree. A second condition, which is a partial generalization of the 

first ,  checks for the existence of a given number of nodes (specified by Method IV) 

within the subtree. The third condition checks for the existence of a node, one 

of whose labels is numeric ang tt!e value of which is compared to a given number, 

within the subtree. 

' Within the subtree context' specification, ,any of the three conditions can be 

evoked, o r  any combination of the three conditions separated by the logical con- 

nectives AND and OR can be evoked. The unary logical operation N@T is built 

into the conditions and need not be explicitly provided. 

The evocation uf a range, therefore, conaists of a specification by hterarchical 

context optionally followed by a specification by subtree context. If the latter is 

present, the hierarchical and subtree specifications a r e  separated by the delimiter 

"wherever. 
. . 

In BNF: 

<range> : : = <hierarchical context specification> ( 

<hierarchical context specification> 

wherever -subtree context specification> 

1. Condition I 

As stated previously, Condition I allows the user to check for the exis- 

tence of a particular node, or  hierarchical configuration of nodes, one of 



which must be within the subtree *of the node chosen by hierarchical context. 

Method Nc is used to specify a set  N of nodes. Every node which is specified by 

hierarchical context and which has within its proper subtree (i. e . ,  hierarchically 

inferior to it) a t  least one node in N is retained in the range. Every node which is 

specified by hierarchical context but which does not have within i ts  proper subtree 

at least one node in N is not considered to be in the range. 

What is required for Condition I, then, is a specification of a temporary 

range N by Method IVY the nodes of which a re  then sought within. the subtrees of 

the nodes specified by hierarchical context. If the latter set of nodes is called 

M, then the range is given by: 

R,= x x ~ M ~ S y e N 3 x > y  { I 
In the evocation of a range using any of the three conditions (which all use 

Method IV to specify the set  N), i t  is necessary to make clear to the user that a 

condition is sought, the result of which is essentially llyesll or  "nof1, i. e . ,  a 

predicate. To this end, the word "isl1 is inserted before the first occurrence .of 

the word llwithinfl in the Method IV specification used in the subtree context condi- 

tion. Observe that since Method II is a degenerate form of Method IV not involving 

the use of the word "within, the above word insertion is not always able to be 

dc~ne. (Bee the third ailel last example below. ) 

Examples (see Fig. 2) 

Evocation Node numbers in range 

Department within.Humanities 

wherever Secretary Mickelson 

: is within Professor Miller llol 
Provost wherever Carla West 

i s  within Provost 111. 161 

Provost wherever Carla West {1.1, 161 



Assoc. Provost wherever Carla West 

is  within Provost {I6\ 

Department within .Stanford wherever 

Secretary is within Department jl@ 
\ 

Department within Stanford wherever 

Secretary PI 

Ranges including the negation of Condition I can also be specified. In this case, 

every node which is specified by hierarchical context and whlch does not have 

within i ts  proper subtree at least one node in N is retained in the range. Every 

node which is specified by hierarchical context which has within i ts  proper subtree 

a t  least one node in N i s  not considered to be in the range. More formally: 

The evocation of a range using this form of Condition I is accomplished by 

inserting the words "is not1' before the first  occurrence of the word "within1' in 

the Method IV specification in the subtree context condition. The meaning of the 

word "not" following "is1' essentially has the meaning "it is not the case that . . . 
and should not be confused with the use of the word "not" first described in the- 

discussion of Method III. For example, in the first  example below, 

N = 1211 - subtree context 

M = 19, 101 -. hierarchical context 

Examples (see Fig. 2) 

Evocation 

Department within Humanities 

wherever Secretary Wc+st is not 

within Professor within 

Department 

Department within Stanford 

wherever Secretary i s  not 

within Department 

- 20 - 

Node numbers ill range . 



2. ' .Condition. I1 

Condition 11 allows the user .to check for the existence of a given 'number of 

nodes 0f.a certain specification (by Method IV again) within the subtrees of those 

nodes specified by hierarchical context. What is required then is a temporary 
\ 

range N specified by Method IV, a relational operator P(e. g. , =, # , > ), and a 

number, q. Every node in M(i; e . ,  those nodes specified by hierarchical context) 

which has within i ts  subtree a number of nodes in N which stand in the given 

relation P to the given number q is retained in the range. Any node in M which 

does not have within i ts  subtree a number of nodes in N which stands in the given 
. . 

relation to the given number is not considered to be in the range. More formally, 

if C is the set  cardinality operator, P is the given relational operator, and q is 

the given number, then 

The evocation requires some word which denotes that a cardinality is being 

considered; The word "countn has been chosen both because of i ts  inherent 

semantic content and because of i ts  use in one of the primitives which is explained 

in the next chapter. 

Examples (see Fig. 2) 

Evocation Nude numbers in range 

Departlnenl wherever count 

student i 3 {9, 10, 12, 20) 

Department wherever count student 

within Departn~ent = 2 .. 1121 

3.  Condition TtI 

Condition 111 allows the user to check for the existence of a. node, at least' 

one of whose labels is numeric and the value of which stands in a given relation 



P to a given number q. This condition can be used, for  example, to check the 

values of ages o r  salaries in a personnel file. . 

As with the f i rs t  two. conditions, a temporary range N is specified by Method 
Cr 

IV. Every node in M (i. e . ,  those nodes specified by hierarchical context) which 

has within i ts  subtree a node in N which has at least one label which is numeric 

: .  . and whoge value stands in the given relation P to the given number q is retained 

in the range. If a node has more than one numeric label, only the first will be 

considered. Any node in M which does not have within i ts  subtree a node in N 

which has at  least  one label whichis numeric and whose value stands . in l11e given . 

relation P to the given number q is not considered to be in the range. More 

formally, if V is the value operator, i. e. , a function whose argument is a numeric 

label and whose value is the value of the label, and if U is a predicate whose 

argument is a label and whose value is true if and only if the label is numeric, 

then' the range R i s  defined by . . 

: . ~xamples .  (see Fig'. 2) . . ,  

Evocation Node numbers in range 

Studeiit within S ~ ~ I I I U L J  w liesever 

Salary > 250 (22, 23) 

Student within Stanford wherever 

Salary > 350.25 b3\ 
School wherever Salary within 

- .  
d Professor ;. 1 0 U O  

School wherever Salary within 

Student > Y O 0  

. . . . 



. . 
F . Conclusion 

It can now be seen that there a r e  many ways to specifjr a range, and that the 

Principle of Greater Specification applies within each of the methods and conditions 

a s  well a s  over all  of them. The user need only specify a s  little context as  is 

required to choose those nodes toward which he wishes to draw attention. Greater 

specification can only reduce the -number of nodes towards which he is drawing 

, attention. In addition the data base is being addressed by labels which have semantic 

content to the user, in conjunction with English language words and forms which 

appear to have high semantic content with respect to the data base attention 

focusing which occurs. 

Thus far, no attempt has been made to explain how ranges a r e  used once 

they have been specified. The next chapter explains the use of the primitives 

which build and manipulate the data base. These primitives operate on ranges 

a s  specified by the rules explained in this chapter. 



CHqPTER 111 

DESCRIPTION OF THE PRIMITIVES 

The preceding chapter described methods whereby a range, i. e. , a set  of 

nodes in the data base, may be specified. Specifying a range simply focuses 

attention on a particular set  of nodes; no nodes a r e  added or deleted from the 

data base nor a r e  any connections between nodes altered. In this chapter, a set  

of primitives for adding and deleting nodes and altering connections between 

nodes will be explained. Which nodes a r e  , ,  affected by the primitives is determined 

by specifying a s  many ranges a s  each prirqitive requires. 

It was seen in the preceding chapter that attention is focused on a set  of nodes 

by citing labels which the user has specified and therefore have semantic content 

for him along with English words which a re  highly suggestive of the relationships 

which exist among the user's data. Continuing in this vein of making the language 

and system easy for the user  to learn and use, i t  w i l l  be seen that each primitive 

is easily identifiable by an English keyword whch is highly suggeutiire sf thc 

effect the primitive has on the data base. Table 1 lists the primitives by their 

keyword and gives lhe use sf each. 

The primitives are,  of course, not absolutely prlmlllve. There is a oontinuum 

of primitiveness, and a choice of what part of the continuum irom tiihlch to chuuse 

any system's primitives must be made. The choice depends on the use to which 

the grimitives will be put. If the primitives a r e  loo primitive, too many steps 

will be necessary to do any useful work. 0 1 1  the other hand, if the primitives 

a r e  too general, the control over the structure being manipulated by the primitives 

will not be fine enough. These considerations have been taken into account when 

choosing the point along the conlinuum from which the primitives given in Table 

1 were taken. 



PRIMITIVE 

' CREATE 

LABEL 

UNLABEL 
. . 

WRITE 

COUNT 

PUT 

COPY 

SEVER 

DELETE 

SAVE 

RESTORE 

TABLE 1 

THE PRIMITIVES 

USE - 

Creates new nodes in the data base 

Adds labels to nodes in the data base 

Removes labels from nodes in the data base 

Writes part of the data ,base 

Counts nodes in the data base 

Builds relationships in the data base 

Copies nodes and relatio~iships and builds 
relationships in the data base 

Destroys relationships in the data base 

Destroys nodes and relationships in the 
data base 

Saves part of the data base in secondary 
storage 

Restores part of the data base from 
secondary storage 



A. CREATE 

The CREATE primitive adds a new node to the data base by giving the set of 

labels which the data item at  the new node will contain. At least one label must - 
be given, and the labels occur within the new data item in the order in which they 

a r e  given. The syntax for  the CREATE primitive is :  

<create primitive > : : = CREATE <data items> 
, . 

<data items > : : = <data item> I <data items> apd <data item> 

\~ Nati.ce that more than one data Item may be created with one use of the CREATE 

primitive by separating the labels of the data items to be created by the word 

"and. l 1  The user may visualize thk new hqdes which a re  created as  existing 

~~nat tached as new roots of the graph in the data base. No connections a re  made 

or  altered nor a r e  any already existing nodes within the data base altered. 

By this time the reader should observe that certain words a re  held in reserve 

status and recognized by the system a s  special delimiters, A complete list of 

these reserved words is given in Table 2. It is often the case that a user may 

want one or more of these words to pccur a s  a labei wlthii one OF more &ah lle~irs. 

Surrounding any word or  set oT wurds , ~ i t l ~ i a  a .: data item> with quote marks 

causes the system not to treat any words within the quote marks as reserved UiOPds. 

In this way, any word may be included as  a label within a data item. 

CREATE Stanford University 

CREATE MI'I' and Caleech 

CREATE "A. node containing all  these words including the word createM 



TABLE 2 

RESERVED WORD LIST 

BEFORE 

BELOW 

CREATE 

DELETE 

FROM 

JUST 

NOT 

PUT 

RESTORE 

SAVE 

SEVER 

TQI 

VALUE 1 

WLIEREVER 

WITHIN 

WRITE 

UNLABEL 

See also Table 3 for the reserved words of BASIC. 

All  of the above words when not enclosed in quotes 

should be considered delirnitkrs, including . . an "ehd 

of line" character which denotes the.end of a command. 

. . .  



B. LABEL 

The LA.BEL primitive allows the user to add new labels to already existing 

nodes. What i s  required i s  the specification of a set  of nodes to which the labels 

will be added and the new set  of labels. The set  of nodes towhich the labels will 

be added is given by specifying a range as  described in the preceding chapter. 

The syntax for the LABEL primitive is: 

<label primitive > : : = LABEL < range> a s  <data item> 

The (data item> is the set  of new labels. These new labels are  added after 

the last label which existed a t  the node before the label primitive was evoked. 

The new set  of labels i s  appended to every set  of labels at  all the nodes specified 

by the range. 

If i t  is desired to insert a new set  of labels at some point in the existing 

data item other than after the last label in the data item, the following alternative 
. . 

syntactic construction may be used: 

<la.bel primitive> : : = LABEL <range> as <data item> 

before <label> 

The new set of labels given by the <data item> w i l l  be inserted beforc the 

already ocnl~rring: <label> in dl the nodes specified by the <range> . If the 

already occurring <label> occurs more than once within some node in the 

< range > , the new set  of labels given by the Cdntu ltcr11;. w i l l  be ii~serted bcborc 

the f i r s t  occurrence of the <label> . If the <label> does dot already occur 

within some node in the <range> , the new set of labels is.added at- the elid of the " 

, , 

existing set  of labels at that node, a s  in the previous construction. 



Example (see ,Fig. 2) 

Evocation: 

LABEL Miller within St,anford a s  William before Miller 

Effect: 
/ 61 

Assoc. Provost 

\ ' 

William Miller 

Professor William ~151 . .I I 

Evocation: 

LABEL Engineering Department a s  Electrical 

Effect: I . . . . 1 .  . . 

1 Mechanical Engineering El21 

Electrical c2 01 
Engineering 

Department Electrical 
\ 

Department Electrical ' 
/. 

C. UNLABEL . . .  

The UNLABEL primitive allows the user to remove .labels from existing nodes. 

A.s in the LABEL primitive, a set  of nodes, specified by a range, along with the 

set  of labels to be.removed must be evoked. The syntax for . . this primitive is: 

<unlabel primitive> :.: = UNLABEL .= range> as <data item> , .  

All the nodes in the <range> a re  first  identified, then all  the labels in the 

<data item> a re  removed from each of these nodes. The labels in the <data item\ 

a r e  removed one by one and do not have to occur in the same order as  they occur 

within the nodes in the <range> . Labels in the <data item> which do not already 



exist at  some node in the <range> cannot, of course, be removed. In addition, 

the last label cannot be removed from a node, thereby leaving a null data item. 

Observe that to completely relabel a node, the new labels should first  be added 

using the LABEL primitive, then the old labels removed by using the UNLABEL 

primitive. If a label to be removed occurs more than once at some node in the 

<range> , only the f i rs t  occurrence of that label will be-removed. However, if 

a label to be removed occurs twice for example, within some node in the <range>, 

and that label occurs twice in the set of labels to be removed, then both o.ccurrences 

will ,be removed. 
. . 

Example (See Fig. 2) 
. .  . .  

UNLABEL Sheldon Becker as  ~ k d e n t  
. .  . 

Effect:. 
. I 

Sheldon Recker [l81 
. , 

Evocation: 

UNLABEL Secretary within Comput,er Science a s  Secretary 

Effect: 

Grace 
Mickelson Carla West c2 11 

UNLABEL Electrical Engineering Department as Department Engineering 

Effect: I 



Evocation: 

. . . UNLABEL Salary Classified a s  Salary Classified . . . .' 

Effect : Illegal 

The prec,eding three primitives add new unattached nodes to the data base and 

add and delete labels from the data items at  nodes. specified by a range, respectively. 

The data base is altered by.the use.of. these primitives a t  the data item level: no 

relationships between data a r e  .altered. . -  ;.. . 

, .The following two primitives ,are useful for query purposes . . . only. . ,The data 

.. % base is not al teredin any way ,by the use .of these primitives. . Rather, an immediate 

response is typed out a t  the terminal. 

D. COUNT . . 

The COUNT primitive informs the user of the number of nodes'in a given 

range, i. e .  , the cardinality of the .range. The data base is not altered in any 

way by the use of this primitive. 

, 
The syntax for this primitive is:  

<count primitive> : := COUNT <range> . . .  . 
. , . .  . 

Example (see Fig. 2) 

Evocation: . . 

COUNT Student within Stanford 
. . 

, ,. . .  . 
Response: 3 

Evocation: 
. . 

COUNT ~ e ~ a r t m e k t  within Stanford wherever Professor is within Department 

. . 
. . 

Response: ' 2 . . 
. , 

Evocation: 

. COUNT Professor,,within Engineering . Schopl . 



\ 

E . WRITE 

The WRITE primifi$e causes a part of the data base to be printed in an outline 

format with proper indentations to denote the various hierarchical levels.. For 

each node, the labels in the data item at the node a re  printed in the order in which 

.they occur within the data.item. 

Theasyntax of the first  form of the WRITE primitive is: 

<write primitive> : := WRITE <range> 

Every node in the-<range>, with all the subtrees of each node properly 

indented, is printed. The subtrees at  each level a r e  printed in an arbitrary order. 

If there a r e  no nodes in the specified range, then an indication of this fact is 

printed. 

Example (see Fig. 2) 
. . , . 

Evocation: 

WRITE Department within Humanities 

Response : 
I 

Communication Department 
Professor Parker  

Computer Science Department 
Student Sheldon Becker 
Professor Miller 

Secretary Grace Mickelson 
Secretary Carla West 

Salary Classified 
Chairman Professor Forsythe 

Evocation: 

WiU1I'E Professor within Eloulriual Ei1gia6ePfkig 
. . . . . ., , .  ,. . . . .  . . .  . . . 

Response: 

Null range 

If the data base has the form of a tree, then an outline, as  demonstrated 

above, with no duplications within the outline, would always result from the use 



of the WRITE primitive. However, since the data base has the form of a directed 

acyclic graph, unnecessary printing of duplicate subtrees could result in 

response to one evocation of the WRITE primitive. To  alleviate this unnecessary 

printing, only the root node of any subtree which would be printed the second o r  

subsequent time in response to a single evocation of the WRITE primitive, along 

with an indication that the entire subtree has already been output, will be printed. 

Examp1.e (see Fig. 2) 

Evocation: 

WRITE ' Miller 

. . 
'Response: 

Professor Miller 
Secretary Grace Mickelson 
Secretary Carla West 

Salary Classified 
Assoc. Provost Miller 

Secretary Carla West <occurs above> 

Evocation: 

WRITE School of Engineering 

Response: 

School of Engineering 
Electrical Engineering Department 

Student Hardy . . 

Salary $300.53 
Wife Susan 

Mechanical Engineering Department 
Student Hardy <occurs above> 
Student Laurel 

. .. Salary$4QO 



Evocation: 

WRITE Provost 

Response: 
. . 

. ,Provost Lyman . . 
,. . . 

Assoc. provost Moses 
Assoc. Provost Miller 

secretary Carla West 
Salary Classified. 

, . . . 
Assoc. Provost Moses <occurs above> 
Assoc. Provost Miller <occurs above> 

It is sometimes desirable to print only the nodes in the range without their 

subtrees. The syntax of this second form of the WRITE primitive is: 

<write primitive> : : = WRITE only <range> ' 

Example (see Fig. 2) 

Evocation: 

WRITE only University 

Response: 

Texas Ulriversity 
Stanford University 

WRITE only Student wjthin Stanford 

Response: 

Sti~dent. T,snrsl 
Student Hardy . , 

Student Sheldon Becker . . 

Thus far ,  the primitives which have been introduced.do not alter the relation- 

ships between data. The following four primitives build and destroy the hierar- 

chical relationships between data. 



F.. PUT - ,  
. . 

., ' . . 
The PUT primitive builds hierarchical relationships between existing nodes. 

Two ranges a r e  specified, and every node in the first  range is made td be one 

level hierarchically inferior tb every node in the second range; subject to two ' 

restrictions. Thus, if there a r e  n nodes in the f i rs t  range, and m nodes in the 

second range, then n x m hierarchical relationships a r e  formed if none of the 

restrictions a r e  violated. The restrictions are:  

1) No more than 1 direct (i. e . ,  one level) hierarchical relationship may 

exist between any two nodes. That is ,  the following s i tbt ion may not 

2) No node may be hierarchically inferior (or superior) to itself. That is, 

For every possible pair of nodes in the first  and second ranges, respectively, 

a direct hierarchical relationship is built so  10,ng as none. of the restrictions a re  

vidlated. Under no conditions a r e  any existing relationships altered in any way. 

The syntax for the PUT primitive is : 
. . 

<put primitive> :' : = PUT <range> into <range > 2 

AS suggested by the syntax, except when the restrictions would be violated, 

a direct (one level) hierarchicalrelationship i s  built from every node in <range> 

to every node in <range > l. 



Example (see Fig. 2) 

Evocation: 

.PUT Student within Engineering into Law School 

Effect : 

' C51 Law School 

1 
Dl Student Laurel 

Evocation: . 
PUT Secretary into Provost Miller 

Effect: 

\ 
Professor Miller Cl53 ~ s s o c .  Provost P I  

Miller 

\ 
Professor Miller ~151 

~ s s o c .  Provost P I  

Secretary 1 c91]Mi1:" 
Grace Mickelson Secretary Carla West I2 11 

I 

A shorthand combination of the CREATE and PUT primJtJvss is useful 

while building data bases. If is specifiedk$ Method II of the preceding 

cllapler, 1. e. , will~uul .ally l i i e ~ a r c l ~ c a l  or S U ~ ~ P C C  contcxt, and if that ran@ i~ 

null, then a node having the given set of labels wi l l  f irst  implicitly CREATEtd 

and a message output to the user that this creation has occurred. The YU'l' 

operation will then proceed a s  described. 

Example (see Fig. 2) 

Evocation: 

PUT Student Henry Bauer into Cor~lputer Science 1 

Response : 

Student Hcnry Bauer Created 



Effect : 

' / 1 Student Henry 
Bauer \ 

G. COPY 

It is sometimes desirable to be able to copy part of the data base so  that 

further processing may be done on the copy without disturbing the original. The 

COPY primitive gives the user  this capability. This primitive has three syntactic 

forms, the first  of which is: I 

<copy primitive> : : = COPY <range> 

A, copy of each node in the <range>, along with i ts  entire subtree complete 

with all the relationships which exist there, is made. These copied nodes,. with 

their subtrees, a r e  left unattached a s  roots in the data base. The original nodes 

and their subtrees a r e  not altered in any way. 

Example (see Fig. 2) 

Evocation: 

COPY Provost Miller 

Effect: 
I D. 11 

Provost Lvman . 

1 t6b Assoc. Provost 
Miller 

I , ,  Secretary 

A.asoc. Provost Miller [z 81 
I 

I 
Secretary Carla West ~291 

I 
I 

Salary-Classified L3 01 

I 
Salary Classified C24I 



Evocation: 

COPY Professor within Computer Science within Stanford 

Secretarv F!I 

Effect: . 

/ Chairman 
C28I Professor 1291 

Computer Science 01 Professor 
Department F ors-ythe 

Carla. west 

/ 
Chairman [GI 

Professor 
Forsy tile 

I 
Salary Classified 1241 

Secretary 

Professor Miller [l51 Grace 

Secretary ~3 11 
Carla West 

The second form of the COPY primitive allows the user to make a copy and 

PUT the copy somewhere into the hierarchy.   ore specifically, two <range>'s 

Student Secretary 
Sheldon Grace 
Becker Mickelso~l Salary 

Classified 

a r e  specified. A copy of each node in the first  range (along with i ts  subtree and 

all connections intact) is made and PUT into the hierarchy for each node in the 

second <range> . That is, as many copies of the first  range are  made a s  there 

a r e  nodes in the second range into which the copies a re  PUT. This second form 

of the COPY primitive is thus a shorthand combination of (possibly) several appli- 
. . 

cations bf the first  form of the COPY primitive and PUT primitive operating on 

the copy. 



The syntax is: 

<copy primitive > : : = COPY <range> to <range> 

Example (see Fig. 2) . , 

Evocation: 

COPY Student within Computer Science to Department within School 

of Engineering 

Effect: 
. . .  

Electrical r2 ' , Mechanical C121 
Engineering Engineering 

Student Sheldon Bcclcer 
I 

Student Sheldon C281 - Student ~291 
Becker ~hefdon Becker 

The third variation of the COPY primitive is, in reality, an addition which 

can be made to. the first two forms. As suggested by the form of the WRITE 

primitive which allows the user to write out only the root nodes of certain subtrees 
. . 

by including the keyword "onlyM in the evocation of the primitive, only root nodes 
. . 

of specified subtrees can be copied, and in addition entered into the hierarchy if 

desired. The syntax of this variation of the first two forms of the COPY primitive 

i s  : 

<copy primitive> : : = COPY only <range> : ' " 

<copy primitive> : : = COPY only %range> to <range> 

In the first  case, :only the nodes specified by the <range>, without their 

subtrees, a re  copied and the copies a re  left unattached a s  roots in the data base. 

In the se.cond case, a s  many copies of the nodes specified by the first <range> 

(without their subtrees) as  there a re  nodes in the second <range> a re  made and 



the copies are  PUT into the nodes in the second<range> . In both cases there . , 

is no alteration of any kind made tcj . the . > ,  original nodes or  q e i r  subtrees. 

Example (see Fig. 2) 

Evocation.: 

COPY only Provost Miller 

Effect: 

/ C161 
Assoc. Provost 

Miller 
.,.,,..,.,,.,.. "~ ,--*. " . ? , A . .  *,...", ,-.. -.-- 

A S S ~ ~ ,  Provost C2 81 
Mi.ll.er 

_ I ,  . . 

I 
C241 Salary C l a s s i f i c .  

Evocation: 

COPY only Professor w i t m  Computer Science Department witgin 

Stanford. 

/ CBairlnarl L2 81 

Professor 
Forsythe 

Chairman 
Professor Forsythe Professor Miller [353 . ..- ,c 

1 Es] Student 
Sheldon Becker 

I 
Seoretary Carla West C2 lI 

I 
Salary Classified PI 



Evocation: 

COPY only Student within ~ o m ~ u t e r s c i e n c e  to Department within 

School of Engineering 

Effect: Same as  a preceding example with "only" omitted, since all 

students within Computer Science have no subtrees. 

The preceding two primitives, PUT and COPY, build new relationships 

between data and, in the latter case, implicitly create new data. The following 

two primitives, SEVER and DELETE, destroy relationships between data, and, 

in the latter case, destroys data a s  well. , 

H. SEVER 

The SEVER primitive destroys relationships between data but never data 

L itself. As with the DELETE primitive to follow, the SEVER primitive has two 

for,ms. In both forms, at least one range is specified. In the first form, all 
< 

nodes in the specified range a re  made to have no nodes hierarchically superior 

to them; that is, those nodes a re  SEVERted from the tree and become roots of the 

tree. The subtrees of the nodes which a re  s o  cut off from above a r e  left undisturbed 

unless some of the nodes within them a r e  also being severed. The syntax of this 

form is: 

<sever primitive> : : = SEVER <range> 

After this primitive has been evoked, all nodes in the  specified <range> are  

roots of the tree, there being no nodes in the data base within which they exist. 

Example (see Fig. 2) 
, , 

Evocation: 
. . 

SEVER Computer Science within Stanford 
. . . . .  . 



Effect: 

I' 
School of /Humanities L61 Computer Science r101 

De artment 

Communication Department ~ 9 3  T 5 1  I?Gofessor 
Assoc. Provost 61 Miller 

Miller 

Carla West 

Observe that n6de [lo] is now a root ofthe tree. Yet, a node in its subtree, 

i. e., node [21] remains attached to node [16]. Recall that no relationships within 

the subtree of a severed node a r e  altered, . . 

Evocation: 

SEVER Student within Engineering Department within Stanford 

Effect: 

Student r221 Student 
Electrical Hardy . Laurel 
Engineering Engineering 
Department Department 

Evocation: 

SEVER Carla West 

\ P63 
Cl51 

Assoc. 
Professor Miller Provost . , 

1 Miller 

I P I  Secretary 
Grace Gckelson 

Secretary 
p2 11 

Carla West 
I 
I 

Salary Classified [24 

. , 

In the first form of the SEVER primitive, all nodes in the range were com- 

pletely severed from the tree; that is, all of the relationships which connected 

these nodes immediately from above the nodes were severed. The second form 



of the SEVER primitive allows the user to selectively sever some of the relation- 

ships which connect the nodes immediately from above the nodes. The selection 
. . 

is accomplished by specifying a second range. Those connections immediately 

above a node in the f i r s t  range a r e  severed which causes that node to be within 

any node in the second range., Thus, nodes in the first  range a r e  severed from 

.nodes in the second range. The, syntax for this forni is tllus: 

<sever primitive> : : = SEVER <range> f rom. .  <range> 

. .  . . 
Example (see Fig. 2) 

Evocation: . . . , 
\ 

SEVER Carla West from Assoc. Provost Miller 

Effect: 

\ 
Professor Miller ci5] ' [IS] Assoc. Provost 

Miller 

' ~191 Secretary 
Grace Mickelson 

\ .  

Notice that only that relationship which causes node [21] to be within node 

(161 i s  broken. 

SEVER Carla West 'from Stanford 

Effect: Same a s  a previous example whose evocation was: 

SEVER Carla West 

, since all connections immediately above node [21] 

cause iiode [2 $ to be within node [2]. 



Evocation: 

SEVER Student within Computer Science from ~ l e c t r i c a l  

Engineering Department 

Effect: No effect since none of the connections aboire aode [18] (thk 1st 
. - 

range) cause's node [18] to be within any node of the sec'ond range. 

A unifying concept which may lessen any difficulty in understanding the dis- 

tincition between the two forms of the SEVER primitive,is the following. ~ h n k  

of the first  form of the SEVER primitive a s  having a second range which specifies 

all the roots of the tree. The first  form is thus a special shorthand version of 

the second form, since any node in the tree is either a root of the tree or is 

hierarchically inferior t8 some root of the tree. 

The DELETE primitive has two fornis, precisely analogous to the SEVER 

primitive. The syntax of these forms is: 

<delete primitive> : : = DELETE <range> 

<delete primitive> : : =. DELETE <range> from <range> Z 

As with the two forms of the SEVER primitive, the first form of the DET,ETE 

primitive is merely a shorthand vsr'sion nf the second fob with an implicit rang'o 

which specifies all the roots of the tree. Thus, in the action of this primitive, 

some node is being deleted - from a set  of nodes. 

It' a node x is in the first  range and its position in the data base is such that 

x is also within the second range, then node x is a candidate for deletion. In 

order toxnderstand the. manner in which the DELETE primitive operates, several 
2 

simplifyik assumptions concerning the configuration of the data base near node 

x will first be made. As the operation of the DELETE primitive becomes clearer, 

these assumptions will be removed. , 



Consider f irst  the simplifying assumption that node x together with i ts  subtree 

is a complete unit, sharing its information with the rest  of the data base only 

through, a t  most, node x (if x is a root, the information is not shared a t  all). 

More specifically, every node within the' subtree of x is not within the subtree 

of any other nodes except other nodes within x's subfree o r  nodes hierarchically 

superior to x. Examples of such nodes x from Fig. 2 include [8], [2], [I], [22], 
. . . . . . . . . . ., . .  

and [2l], bit not [6] or  [lo] o r  [15] o r  [12] or [20]. 

Now assume that - all connections immediately superior to x cause x to be 

within the second range in an evocation of the DELETE primitive. The action of 

the DELETE primitive will then cause the node x and every node within the subtree 

of x to be erased from the data base. 
I 

Example (see Fig. 2) 

Evocation: 
. .  . . .  . 

DELETE School of ~ngineer ing from 'stanford 

Effect: , 
Stanford UniversityC2] 
/ I \ 

/ I 

Law School c51 ' School of Humanities Administration and S c i e r e s  . -I 71 

Evocation: 
n 

DELETE Student within Engineering Department from 

Effect : 

Electrical c2 01/ 

~ c h o o l  of Engineering 

, \  . . 

School of Engineerid8] 
/ / \ 

\ Mechanical [12] 
Engineering 

Department 
Engineering 

Department 



Now remove the most recent simplification and assume that not all connections 

immediately superior to x cause x to be. within the second range in an evocation of 

the DELETE primitive. This means that x.and its  subtree contain' information 

relevant to some other nddes in the data base besidesthe nodes from which x is 

to be deleted. It would thus be incorrect to erase x and its subtree from the data 

base; rather, only the connections between x and the nodes from which x is to be 

deleted should be erased. In this case, the DELETE primitive is 'seen to operate 

precisely as, the SEVEK primitive. , 

:Example (see Fig. ,2) 

Evocation: 

DELE'I'E Carla West from Professor Miller 
4 

Effect: 

\ Professor Miller 
[15] 

I 
I 

Secretary Grace E91 
Miakels on 

/ 
ASSOC~ Prrost Miller P61 

I 

Secretary .Carla West t2 11 

' [241 Salary Classified ... .- 

Now remove the original simplification and assume that the subtree of x, is 

1 not a complete unit and that information within x's sibtree is shared with the rest 

of the data base through nodes other than x. More specifically, there exi.et nodes 

within the subtree of x which a r e  within the subtree of nodes other than those within 

x's subtree or nodes hierarchically superior to x. Examples of such nodes x from 

Fig. 2 include [6], GO), [15], [12], and [20]. As before, it would be incorrect to 

erase those nodes (and their subtrees) within x's subtree which share common 

information with other parts of the data base, i. e., those nodes (and their subtrees) 

which.are within the subtree of nodes other than those within x's subtree or nodcs 



hierarchically superior to x. So, a s  before, only the connections between these 

common nodes and the res t  of x's subtree is erased. 

Example (see Fig. 2) 

Evocation: 

DELETE Provost Lyman from Administration within Stanford 

. Effect: 

\ 
Administration C71 

\ 
Professor Miller b51 

/ 'i 

/ \ Secretary Carla West C2 l] 
Secretary Grace L19 I - - 

Mickelson Salarv Classified ~241 

Evocation: 

DELETE Student from Mechanical Engineering ' 

Effect: 

[20] Electrical 
Engineering 

Department 
I 

\ 
Mechanical Engineering @I 

Department 

The heart of any data base system is the ability of the user to create a database, save 

i t  away somewhere (the user should not have to worry about where) and go away 

to do something else. At some later time, the user should be able to fetch his 

data base, query i t  o r  modify it, and save it away again for still further processing. 

As background to any implementation, therefore, there should be a file system. 

The following two primitives allow the user to interface with the file system in a s  

easy and simple a manner a s  should be possible for him. 



SAVE J* - 
The SAVE primitive allows the user to save parts of his data base in quantities 

of complete units a s  discussed i n  the preceding explanation of the DELETE primi- 

tive. The syntax for this primitive is: 

<save primitive> : : = SAVE <range> 

The effect of an evocation of this primitive is to cause each node in the range 

with its entire subtree (nodes and connections) to be removed from the data base 

(just a s  with the DELETE primitive) but saved in such a way so that the structure 

which has been removed from the data base can be rel;ur~red lo the data base at 

I some futurc time in precisely the same form in wh.jch it was saved. 

The only restriction which applies to the use of this primitive is that the 

(sub) tree being savedmust be a complete unit and cannot share its information 

with other parts of the data base except through its root node. Thus, each node 

and its subtree which is being saved must satisfy both simplifications mentioned 

in the explanation of the DELETE primitive. If part of the data base to be saved 

shares its information with other parts of the data base, the part to be saved 

must f i rs t  be COPY 'ed and then saved. 
/ 

K. RESTORE 

. , The RESTORE primitive restores nodes and their subtrees to the .data base 

in precisely the form in which they were saved. This primitive has two forms, 

. . the second of which is a shorthand form for restoration and placement within the 

hierarchy. The syntax of the first form is: 

<restore primitive> : : = RESTORE <range> 

The <range> in the use of this primitive must be a range specified by Method 

II of the preceding chapter. Thus, there may be no hierarchical context of any 

kind in the specification of this range. The set of saved nodes is searched and 



the saved nodes having at  least the set of labels a s  that specified in the <range> 

a r e  removed (with their subtrees) from the saved area and restored to the working 

data base a s  separate trees with the root nodes of the saved subtrees becoming 

roots in the data base. 

The second form of this primitive is: 

Crestore primitive> : : = RESTORE <range> to <.range> 

The f i rs t  <range> must satisfy the same requirements as  before and the 

same action occurs a s  before in the saved area. However, once the nodes a r e  
. ~ 

removed from the saved area, the action of this primitive is equivalent to an 

evocation of 

PUT <range> within <range> 

where the first <range> is the set  of nodes just removed from the saved area, 

and the second <range> i s  the same a s  the second <range> in the evocation of the 

second form of the RESTORE primitive. 

L. Conclusion 

This chapter has described a set of primitives for creating, manipulating, 

querying, and destroying relationships and data within the data base. It should 

be observed that no arit11met;io procetssing nor any programming structure i s  

possible within the framework of primitives discussed thus far.  The next chapter 

describes the design of a programming system in which TAXL and a language 

such as BASIC are  incorporated to yield a system in which both numeric and 

nonnumeric data processing capabilities a r e  available both independently and in 

a manner in which the numeric and nonnumeric data bases may interact. 



CHAPTER IV 

THE TAXL/BASIC SYSTEM 

The range specification mechanism and i ts  use in the evocation of the data 

base primitives presented thus far  yields a system in which commands a r e  inter- 

preted a s  they enter the system and a re  executed immediately. In addition, no 

arithmetic capabilities have been introduced thus far. A.s was pointed out in the 

introduction, the BASIC prugranltuiilg lalgungc and oyotom (Kemeny [I 967]), 

designed by Kemeny and KWti  at Dartmoutlx, pruvides an exccllcnt oasy-to-learn- 

and-use interactive computer system for arithmetic prucessi~lg. Rather than 

design an arithmetic capability which would be included in TAXL, a design for  

merging a version of BASIC and TAXL will be given. The version of BASIC 
.4 

. . 

most nearly like that which w i l l  be .discussed here is that version written at 

Hewlett-Packard, a system quite similar to the,.Dartmouth system. The 'reader 

is  expected to be familiar with some BASIC systcm in the discussion which 

follows . 
T h e  degree of interaction available in this version of BASIC, a s  in most 

versions of BASIC, i s  different from the immediate interpretation and execution 

of the TAXL commands considered thus iar .  This difference should be well 

understood. The key to determining the degree of interaction of drl on-line cum- 

puter system is the specification of the data which is being manipulated. 

Presumably, the data which the user would ultimately want to manipulate 

is the t ree  data base itself, along with the values of certain arithmetic variables 

and arrays. If the system recognizes commands to manipulate that collection of 

data, then that degrcc of interaction shonld he considered the strongest. Instead, 

if the system recognizes commands to manipulate commands which manipulate the 



data base in question, then the degree of interaction is  less strong. The Hewlett- 

Packard BASIC system is of this second kind. The data which i s  immediately 

manipulated by HP BASIC commands as  they a re  enteredvia a teletype is a 

program buffer which contains commands which will manipulate the values of 

arithmetic variables and arrays when the program is executed. The commands' 

found in the program buffer which, when executed, cause the values of variables 

and arrays to be manipulated and hereafter called BASIC commands, cannot be 

entered and execulied directly as  a re  the TAXL commands. It appears, then, 

I that TAXL commands, a s  discussed thus far,  a re  only executable directly as  

they a re  entered into the system, and that BASIC commands a re  only executable 

indirectly after they have been entered in a program buffer. 

I feel that both degrees of interaction should be available for both TAXL and 

BASIC commands. That is ,  TAXL commands should be able to be put into a 

program buffer for later execution and certain BASIC commands should be able 

to be directly executable a s  they a r e  entered into the system. In keeping with the 

spirit of this work, the distinction between which degree of interaction tLe user 

desires a s  he types commands into the system should be clear and straightforward. 

It should be remembered that every TAXL command, a s  well a s  every BASIC 

command, begins with some English keyword which strongly suggests the action 

the execution of that command will have. Which degree of interaction the user 

desires for each command he enters into the system can be indicated by him by 

the presence or  absence of an integer number prkceding the English keyword which 
. . 

actually begins the command. Thus the following holds for both TAXL and BASIC 
\ 

commands. If an integer number is not present preceding the English keyword, . 

the command will be interpreted and immediately executed. If an integer number 

is preacnt preceding the English keyword, the command will not be immediately 



executed but w i l l  be entered into a program buffer with a sequence number equal 

to the value of the integer number which preceded the command. / 

A. Syntax Analysis . .  

In the latter case, the question of when the syntactic structure of the command 

is checked is open to debate. While this is basically a question of implementation, 

the answer wili affect the learning behavior of the naive user. . Since one of the 

design goals of the language is ease and speed of learning the language, the question 

shodd be considered hcrc. Kemeny and Kurtz felt that the syntactic structure of 

the commands should be checked immediately to see if a syntactic e r ror  occurred in the 

command. This philosophy has been followed in H P  BASIC, a.s in most BASIC 

implementations. The authors of some APL systems (Falkoff [1968]) follow a 

different philosophy. Their belief is that the command should be entered into the 

program buffer without i ts  syntactic structure being checked, and not until the 

execution of the command is about to commence will the user he. notified if a 

syntactic error  has indeed occurred. 

Psychological studies on learning and training behavior (Wolfle [1951]) indicate 

that immediate feedback speeds the learning process. Since one of the requirements 

of this system is that it be easily learned, immediate feedback of syntactic errors ,  

wherever possible, seems preferable to delayed feedback. If the user is not 

informed of a syntactic e r ror  which occurs in a command as  it is  entered into the 

system, he may mistakenly feel that since the system h a s  accepted the command, 

the cummand is correct. It is at precisely this moment, when the user's attention 

is more focused on the one command in question than at  any other time in the 

program's formation, that the user should be informed if a syntactic error  exists 

within the command. This concept is not too unlike programmed readers in which 

the reader must successfully answer a question before he can proceed. By the 

- 52 - 



time the user has given the command to begin execution of the commands in the 

program buffer, his attention will usually be more focused on the program a s  a 

whole and on its semantic structure rather than its  syntactic correctness. To be 
' 

informed of a syntactic error  during the execution of the program would be more 

of a hindrance to clear thought than a help. 

The conclusion of the preceding paragraph seems to be true only when the 

goal of the user is to learn the syntax of the language. Once this has been accom- 

plished and the goal of the user is to write useful and logically complex programs, 

the facility of sketching out logical sections of program without having to be con- 

cerned with their syntactic correctness at that time seems to be important. Thus, 

the goal of the user should be a consideration in deciding whether the syntactic 

structure of a command is to be checked at command entry or at command execution. 

Since one of the goals of the current implementation is to facilitate learning of the 

language rather than writing large programs, the syntactic structure of a command 

is checked at command entry, , 

From an implementerls point of view, a translation from the commandls 

external form to an internal format which is easier to execute and a syntactic check 

of the command can be accomplished at the same time. Rather than do the trans- 

lation every time the command is encountered during program execution, it is 

more reasonable to do the translation once at  command entry into the program 

buffer. Because a syntactic check may be performed during command translation 

with a minimum of extra effort, a syntactic check at  command entry time is quite 

desirable. 

B . Command Classification 

A. summary of BASIC and TAXL commands will now be given (see Table 

3).  Each command i s  placed in one of three categories which gives that command1 s 



TABLE 3 

COMMAND CLASSIFICATION 

TAXL/BASIC Command Classification Use 

,CRJ3ATE BOTH Creates new nodes 

LABEL BOTH Adds labcls to nodcs 

UNLABEL BOTH Removes labels from nodes 

WRITE BOTH Writes part of the data base 

COUNT BOTH Counts nodes in the data base 

PUT 

COPY 

BOTH 

BOTH 

Builds relationships in the data base 

Copies nodes andrelationships and 

builds relationships in the data base 

SEVER BOTH , B s t r o y s  relationships in the data base 
I .  

. - 
.UE LJi'l' E BUl'l-1 Uestro-ys nodes and relationshps in the 
. . 

' ' data base 

SAVE HO'I'H Saves part of the data base in secondary 

storage 
: ~ ~ s ~ ~ I ( - J H E  BOTH Restores part of the data base from 

READ 

DATA 

PRINT 

LET 

DEF 

DIM 

MAT--- 

GO TQI 

TF 

FOR 
NEXT 

GOSUB 

RETURN 

STOP 

LIST 

CLEAR 

RUN 

secondary storage 

BOTH Reads numeric data from data block 

BOTH Enters numeric data into a data block 

BOTH Types values of variables and arrays , 

BOTH Computes and assigns values to variables 

BOTH Defines an arithmetic function 

BOTH Ueclares dimensions of arrays 

BOTH The 2-dimensional array instructions 

PROGRA.M' Transfers control 

P:H.(iK:;:KA.M Condi ti.onal transfer 

PRCGWA,M Sel;s rq arid ulrerales a l u i ~ l ~  

PROGRAM Closes a loop 

PROGRAM Sets up and operates a loop to seauence 

through nodes in a range 

PROGRAM Transfers to a subroutine 

PR0GRA.M Returns from a subroutine 

I?ROGRAM, Glops apragranl 

S BS Lists commands in the program buffer 

SBS Rcmovcs commands from. the program buffer 

SBS 'Iilitiates execution of cumman& in the 

program buffer 



permitted degree of interaction. Some commands w i l l  be restricted to less than 

the highest degree of interaction. Commands classified by the sign PROGRAM 

a r e  only allowed to be entered into the program buffer for later execut io~and so  

must always be preceded by an integer number when entered into the system. 

Commands which control program flow would make no sense if they were executed 

immediately upon entry to the system since they require a program to give them 

meaning. Other commands, the numeric data and data base manipulation commands, 

classified by the sign BOTH, may be executed immediately upon entry to the 

system o r  ,may be entered into the program buffer for later execution. Hence, 

these commands may have BOTH degrees of interac'tion with respect to the 

system. , 

A. further set  of commands will now be introduced which manipulate the pro- 

gram buffer. These a r e  classified by the sign SBS (statement-by-statement) 

indicating that these commands must be entered into the system to be executed 

immediately and cannot be entered into the program buffer for later execution. 

Systems such a s  LISP 1.5 and most assembly languages allow such program 

manipulation commands to be programmable. However, this somewhat advanced 

concept is not essential for TAXL/BASIC. 

Entry of a corninand int;rj the program buffer is implicit and i s  indicated 
I 

by preceding the command by an integer number. The command then has 

a sequence number equal to the value of the' integer number. If a command 

is entered into the program buffer with a sdquence number equal to the 

sequence number of a command already in the buffer, the new command 

replaces the old command. 



LIST . - Classification: SBS - 
The LIST command has three syntactic forms. 

<list command> : : = LIST 

<list command> : := LIST <integer number> 

<list command> : : = LIST <integer number> / <integer number > 

The first  form causes the listing of all'commands in the program buffer, 

along with the seqyence number of each, arranged in ascending numerical order. 

Commands may he entered i ~ t o  the program buffer in any order but will always 

be listed in ascending sequence order. ' The second form causes o d y  the listing 
, . 

of the command in the program buffer having the given sequence number, if such 

a comma.nd exists within the buffer. The third form causes the listing, in . 

ascending numerical sequence order, of all the commands having a sequence 

number whose value is equal to o r  greater than the first  integer number given 

and is equal to o r  less than the second integer number given., 

CLEAR - Classification: SBS 

The  CLEAR command removes commands from the program buffer, and has 

three syntactic forms, analogous to the LIST command: 

<clear command> : := CLEAR 

<clear command> : : = CLEAR <integer number> 

(clear command> : : = CLEAR (integer number > / t integer number> 

The first form causes the erasing uf all commando in the program buffer. 

The second form causes only the erasing of the command in the program buffer 

having the given sequence number, il: such a command exists. The third form 

causes the erasing of all the cornmaads in the prugram buffer h.o.ving sequence 

numbers whose values lie between (and including) the given integer numbers. 



RUN - Classification: SBS - 
The RUN command causes the program in the program buffer to begin 

execution. This command has two forms: 

<run command> : : = RUN 

<run command> : : = RUN <integer number> 

The first  form causes the executior? of the program ir? the program buffer to 

begin with the command having the algebraically smallest sequence number. The 

second form causes the execution of the program in the program buffer to begin 

with the command having a sequence number equal to the value of the given integer 

number. If no such command exists, the user is notified. 

Commands in the program buffer a re  .normally executed in ascending numerical 
. .  . 

sequence unless this sequence i s  altered by the execution of a command having the 

classification PROGRAM. The program stops executing either when a STOP com- 

mand i s  executed, when control is transferred to a nonexisting command, or  when 

the next command to be executed should be the command with the next highest se- 

quence number and no such command exists. In any case, the user i s  notified 

where (by sequence number) the execution of the program is terminated. 

C. Interface Between TAXL and BASIC 

The commands of both TAXL and BASIC have now been presented. The control 

commands of BASIC have been adopted to properly organize program flow, and 

several commands for manipulating the program buffer have been given. Thus 

far,  however, the3nly interface between TAXL and BASIC i s  at the program level. 

Commands from both languages may be evoked interchangeably for immediate 

execution and commands from bothlanguages may occur in the program buffer. 

What is  needed to make the system more useful is an interface at the data level. 



The data f o r  TAXL a r e  the numeric and nonnumeric labels a t  nodes and 

the hierarchical relationships of the directed acyclic graph data base, while 

the data fo r  BASIC a r e  the numeric values of variables and a r r a y  elements. 

Some BASIC sys tems include a limited str ing processing capability; however, 

such a capability var ies  s o  widely in the relatively few BASIC systems (e.g. , 

Stanford [1968]) which possess  one that this workwil l  not concern itself with 
' 

such a capability. 

Hecall now the kind of u s e r  for  whom 1Ns s y s l e ~ n  is inle~~deil .  Tllc l i l a i ~ r  

emphasis of his use of this system will be in handling nonnumeric dala, lhe 

opcrntiono for whioh a r o  available from the TAXL primitives and d a t a  h s ~ .  

The reasons for  including BASIC a r c  thc prcsence of the programming control 

commands and the arithmetic processing capabilities which BASIC pussesses . 
At the data level, BASIC operates only on numeric data. Thus, if an interface 

between BASIC and TAXL is to be made a t  the data level, i t  must be a t  the nu- 

mer ic  data level. Hecalling that labels a t  the nodes in TAXLts data base car1 

be numeric, i t  becomes c lea re r  that the data interface must exist a t  the numeric 

level, the only data type which the two systems have in common. The interface 

must thus concern itself with the convenient retrieval of.numeric values from 

TAXLt s numeric labels which can then be used in computation and assignment 

in BASIC commands, and also in the conversion and placing of the values of 

BASIC variables into'TAXLts data base in the form of numeric labels. In ad- 

dition, since the COUNT primitive in TAXL results in a number being output, 

the value thus obtained should also be able to be used in computation and assign- 

mcnt within BASIC. 

The discussion of this data irite.rface will now proceed i n  four steps: the 

extension of the use of one fo rm of the subtree context specification for  referencing 

values, a solution to the problem of whether an identifier which occurs in a 



T ~ L / B A S I C  command i s  a BASIC variable or  a TAXL label, the introduction 

of a VALUE operator and an extension of the use of the COUNT primitive, and 

the introduction of a new sequencing statement pair, analogous t o  BASIC's FOR- 

NEXT sequencing pair, for sequencing through the nodes in a range. 

Recall that in Condition l3I of the subtree context specification of ranges, the 

. values of numeric labels were compared with given numbers. The values were 

retrieved by evoking a range and considering the values of any numeric labels 

which occurred in any of the data items of the nodes in that range. This same 

mechanism can now be used outside the subtree context specification of ranges, 

particularly in arithmetic expressions .in LET statements of BASIC; Use of this 
/ 

mechanism in a BASIC construct, which retrieves more than one value, is not 

allowed and will be considered a semantic error.  Admittedly, a construct which 

would allow the assignment or  computation on a vector of values would be useful; 

however, th i s  somewhat advanced c'oncept would not add to the simplicity of the 

language. Since extensions and complications in other areas 'of the language 

would have to be made in order for this construct to have consistent application 

throughout the language, and since there will be alternate methods of performing 

the same computation, this construct is, therefore, not allowed. 

Examples (see Fig. 2) 

Evocation: 

LET S = Salary within Laurel. 

Effect: The BqSIC variable S is assigned the value 400 

Evocation: 

LET S = Salary within Stanford . 

Effect: Illegal, since the range yields more than one value. 



1 Since there is no keyword which indicates that a value is being retrieved 

from the tree, confusion can arise ,over whether an identifier is a BASIC variable 

o r  a TAXL label. 

For  example, in the command 

LET S = X  

is X a BASIC variable whose value is  to be assigned to S, or is X  a TAXL label 

being used to reference a range consisting of one node with a numeric label, the 

value of which is to be assigned to S? Tlrls problem is solved by requiring that 

at  any given moment, the set  of BASIC variables and the set of active (not in the 

s&ed area) TAXL labels be disjoint. TAXL labels a re  created by evocations of 

the CREATE primitive (or by implicit creation in evocations of the PUT primitive), 

and a r e  destroyed by evocations of the DELETE primitive. Once an identifier which 
dl 

was used as a TAXL label no longer occurs in the tree, it may be used a s  a BASIC , 

variable. BASIC variables a r e  created implicitly by their f irst  occurrence on 

the left-hand side of LET statements; prior to this creation, their value is 

undefined and calulot be used. DASIC variables may be destroyed by their use 

on the left-hand side of a LET statement having an empty right-hand side. For 

example, 

LET X = 

destroys X as a BASIC variable and allows its subsequent use a s  a TAXE label. 

With the mechanism describcd thus far, values may be retrieved from the 

TAXL data base and used in BASIC contexts. II+I order to allow the values of 

BASIC variables to be placed in the TAXL tree or removed from it, an operator 

which, when applied to a BASIC variable, returns i ts  value is needed. This 

operation is automatic when a BASIC variable is used in any arithmetic context. 

However, in TAXL's LABEL or UNLABEL commands, for example, evoked 



0 

labels stand for themselves. In such a context, to force evaluation of the BASIC 
I 

variable name to obtain i ts  value which is then to be put into or removed from the 

label set  of some node in the tree, the VALUE operator must be used. . 

Example (see Fig. 2) 
. . 

Evocation: . \ 

LET S = Salary within Student Hardy within Engineering 

Effect: The BASIC variable S is assigned the value 300.53 

-Evocation: 
I 

UNLABEL salary within Student Hardy as  value S 

\ 1 yc21 Student Hard 

/ 
salary $ lZ5I 

\ 
C263 Wife Susan 

Notice in the latter example, that a label S does not occur within any node 
C 

in the specifi'ed range, and thus the VALUE operator must be used in order to 

remove the numeric labe1'300.53, the value'of 'S, from the node. 

The COUNT construct, which appears in the subtree context specification of 

ranges and is also a TAXL primitive, is extended only in the sense of where the 

construct can occur; i t  may now occur within any BASIC numeric expression 

and yields the number of nodes in the specified range. 

Example (see Fig. 2) 

Evocation: 

LET N = COUNT Salary within Stanford 

Effect: The BASIC variable N is given the value 3 

. . 



FOREACH, NEXT - Classification: PROGRAM 

The FOREACH and NEXT statements a re  loop control statements very similar 

to  the FOR and NEXT statements of BASIC. Recall that the FOR statement causes 

a BASIC control variable to take on successive arithmetic vaiues over a set of 

statements. Every reference to the control variable within the set of statements 

delimited by the FOR and NEXT statement has the value which is the current 

value of the control variable. The FOR statement gives the initial value, the 

final value, and thc incrcmcnt for tho oontrol variable. The execution of the N E W  

statement causes the control variable to take on its  next value and execution resumes 

following the FOR statement. When the control variable has taken on all of its 

prescribed values, execution resumes following the NEXT statement. 

The syntax of the FOREACH statement is: 

<foreach statement> : : = FOREACH <range> 

Recall that every <range> must begin with a data item consisting of one or 

more labels. This data item then becomes the control data item which w i l l  take 

on successive values over the set of statements delimited by the FOREACH state- 

ment and its  paired NEXT statement. The values which the control data item will 

take on a re  the nodes in the data base specified by the <range>.. Every reference 

to the control data item within the set  of statements within the FOREACH loop hag 

the value which is the current value of the control data item, i. e., a node in the 

<range>. The execution of the NEXT statement causes the control data item to 

take on its next value and execution resumes following the FOREACH slal;einent. 

When the control data item has taken on the value of all the nodes in the <range>, 

execution resumes following the NEXT statement. Because the nodes in a range 

a r e  unordered, the control data item assumes its values in an arbitrary order. 



The syntax of this version of the NEXT statement is: 

(next statement> : : = NEXT t data item> 

The rules for nesting of FOREACH statements follow the rules for nesting 

of FOR statements. 

Examples (see Fig. 2) 

Problem: increase the salaries of al l  secretaries in the School of 

Humanities and Sciences by 10 percent. 

Program: 

FOREACH Salary within Secretary within Humanities School 

LET S = Salary 

UNLABEL Salary as  value S 

LET S = S + . l*S 

LABEL Salary as  value S 

NEXT Sa.la.ry 

D. Responses Following the Execution of Commands 

Everyone who has ever worked a t  a terminal using a system which has com- 

mands which a re  executed immediately upon entry to the system (having classification 

SBS in TAxL/BASIC) occasionally has the feeling that the command last entered 

might not have been executed at  all or  might have been executed incorrectly. This 

phenomenon occurs particularly among novice computer users, the intended users 

of TAXL/BASIC. Often, as  seen by direct observation, quite a bit of output might 

be requested by the novice user to assure himself that the command in question 

was indeed execul;ed correctly. It has also been observed that almost any short . 
response by the system after the execution of any command in SBS mode informing 

the user that everything i s  "all right'' and that the system "understood1' and 

executed his command properly gives the user added confidence and almost com- 

pletely obviates his need for  the assii'liallce vulpul r~lentioned above. 



Commands which inherently cause output at  the terminal, PRINT, WRITE, 

and LIST, obviously need no assurance output. Commands being executed in 

PROGUM mode, other than PRINT and WRITE, should have no assurance output 

because of the possible volume of such output and subscquent slowing of execution. 

Attention can thus be turned to commands being entered into the system for im- 

mediate execution. 

If a syntax e r ro r  occurs in the command, then proper notification of this 

fact is sufficient to convince the user that the system is paying attention. to him. 

If there a r e  no syntax errors ,  then execution of the command will commence, 

and if there are  no semantic errors  which,occur whl'le the co~nmnnd is boing 

executed, then output a s  simple as 

@K 

is enough to assure the user that everything is in fact okay. Semantic e r rors  

such as null ranges in TAXL commands, illegal tree structuring arising from an 

improper use of the PUT command, illegal label mallipulation in the UNLABEL 

comrnand,BASIC variables without values occurring in an arithmetic expression, 

illegal sequence numbers occurring in the RUN, LIST, or  CLEAR comman~.ls, 
. . 

and others Shou161 be repurled to the w c r  ao oloarly as gossihle and the G% . . 

messa.e;e. should be suppressed. 

E . Conclusion . . 

In this chaptcr, a design for the amalgamation of some variant of a BASIC 

system a s  suggested by Kemeny and Kurtz, and the T A S  language as described 

in preceding chapters, has been described and given the name TAXL/BASIC. The 
- 

implementation of BASIC systems has been documented elsewhere. A subsequent 

chapter will describe a test implementation of TAXL/BASIC, with justenougll of 

BASIC included to test the feasibility of such a system. 



CHAPTER V 

AN IMPLEMENTATION AND ITS ANALYSIS . 

This chapter describes a data structure and some algorithms used to imple- 

ment a partial TAxL/BASIC system. Since implementations of BASIC systems 

have been described elsewhere (Braden [1968]), only the TAXL data structure 

and algorithms will be discussed hefe. The implementation is written in LISP 1.5 

and i s  currently operating under the Stanford Campus Facility ~ R V Y L  time- 

sharing monitor. 

Because of the nature of interpreted LISP 1.5, the fact that TAXL/BASIC 

is written a s  an interpreter itself, and the time,required to do the extensive page 

swapping which time-shared LISP requires, the current TAXL/BASIC system i s  

i too slow *and too expensive for large scale operation. In addition, the central 

purpose of this work was to develop a user-system interface rather than a large 

operating system. Thus, the internal data structure and subsequent algorithms 

were not designed with speed and efficiency 'in mind. If a 'large scale implementa- 

( tion of TAXL/BASIC is attempted, i t  is suggested that the current implementation 

be studied to see what is required, and that'at least the algorithms, if not the 

data structure itself, should be. redesigned.' -A full implementation of the current 

data structure and algorithms, even if written in machine language, would probably 

fail to give adequate service in terms of response time and cost once the data 

structure exceeds the size which can be contained in primary storage. 

' : In order to follow the listing of the interpreter in ~ppend ix  I, the reader must 

. be familiar with LISP 1.5 (McCarthy [1962]), and with property list manipulation 

and list-structure alteration operations in particular. For those readers not so 

interested in the fine details, an outline flowchart of the interpreter i s  given in 

Appendix II. Initial entry to the interpreter is  at  A with the RUN FLAG reset. 



p 1st label atom p 2nd label - atom r, last label - atom 

; F86. %-Format. of a node in fie data base. 

I 

I 

a3 
3, 

3 1st father node last father - node 

e 

1 T I  a 

V ' "7- , u -  

1st son node 2rd son - node last son node 



The atom 
USES' 

A 

Lisp system atom 
informatiansuchas 
type, print name, etc. 

having this atom 
a s  a label . 

I 

.3, 
4. 

2nd node having this atom 

11 
. as a label 

last node having this atom 

!&- 
as  a label 

1594811 

FIG. ¶-Format' af an atam t m d  as a hhl .m.&e.data b e .  



The flowchart describes the logical flow of control and does not exactly parallel 

the programmed interpreter given in Appendix I. Most of the semantic e r ro r  

checking is absent from the flowchart, a s  a r e  some of the various forms of some 

of the primitives. 

A.. Node and Dictionary Formats 

The format for a node in the data base is given in Fig. 3. Thus, what i s  . .. , 

given at  a node is a list of the labels that make up the data item at  the node, a 

List of pointers to all immediately hierarchically superior nodes, and a list of 

pointers, to all immediately hierarchically inferior nodes. 

The format for the property list of an atom which is w e d  as  a label in the 

data base is  given in Fig. 4. The atom USES indicates a following list of pointers 

to all  nodes within which the atom in question is used as a label. The essential 

structure is that of a dictionary. For every label which occurs in the data base, 

there i s  an entry in the dictionary giving all uses of that label within the data 

base. 

Most of the computation time required for the execution of a primitive i s  

consumed in the computation of ranges. Hence, refinements in this computation 

o r  modifications in the data structure allowing such refinements w i l l  decrease 

the execution time significantly. Since the object of this study i s  not the design 

of such refinements, the algorithm presented for the computation of ranges was 

chosen for its programming simplicity. Once lists of the nodes in as many ranges 

a s  a r e  required for the execution of a primitive a r e  obtained, the execution of the 

primitive is fairly straightforward, as shown in the flowcharts in Appendix 11. 

More will be said about computation time later in this chapter. 



B. The Computation of Ranges 

The computation of a range by'Method II of the chapter discussing the evoca- 

tion of ranges is essentially a se t  intersection operation. Suppose the range 

Secretary Carla West 

' 

is to be computed. The property l is t  of the atom label lfSecretarylf contains a 

list of pointers to a l l  uses of this label, a s  do the property l is ts  of the atom labels 

lfCarlavt and "West. l t  The intersection of these l is ts  i s ,  by definition, a list of. 

nodes which incorporates the range. A straightforward intersection of unordered 

se ts  a s  programmed in1 the current implementation given in Appendix I is the 

easiest to program but has a computation time on the order of the product of the 

number of elements in the sets. The computation time can be reduced to the 

order  of the sum of the number of elements in the se ts  by ordering the se ts  ac- 

cording to any arbitrary but well defined ordering. 

The computation of a range specified by hierarchical context is a more com- 

plicated operation. Given two l is ts  of pointers to a set  of nodes X and a set  of 

nodes Y ,  it must be determined for which xeX, 

X within Y 

is true. Those x's for  which the above is true a r e  retained in the range; those 

x's for which i t  is not true a r e  not retained in the range. 

There a r e  two principal ways of determining which nodes xeX are within some 

node yeY. One method is to s tar t  at  each x, and by following the chain of father 

pointers beginning at  node x, check each node encountered on the path from node 

x. to the roots of the tree. If one of the nodes encountered is a y node, then the 

search can be terminated since it has been ascertained that x is within Y .  If no 

y node is encountered on any path, then x is not within Y. Since all nodes on all 

paths must be checked, the case in which x is not within Y involves the maximum 

number of checks. 



: Another method for  determining which x is within some se t  of nodes Y is',to 

s t a r t  at each node yeY, in turn, and by following the chain of son pointers begin- 

ning at node y; check each node encountered on the path from y to the leaves of 

the tree.  If one of the nodes encountered is an xcX, then this x is an x which is 

within Y.  However, the search cannot be terminated since there may be an x l c X  

which is hierarchically inferior to y, and hierarchically inferior to all  nodes in 

Y only through the node x. 'l'hus, if the search were Ler~~l i~la led upoil ellcountering 

x, i t  would never be ascertained that, in tact, xi is within Y. 

Thus, in the general case,  it :is moTe advantageous to search from the x's 

upwards along the father chains than from the y t s  downward along the son chains. 

In addition, there will usuaily be 'more sons thxi Zalhers il 111e entire data biac ia 

considered, implying that to search downward would entail searching along many 

more paths than searching upwards. 

In order to analyze quantitatively the .implemenktion of the range finding 

mechanism, the maximum number of nodes accessed in order to determine which 

x's a r e  within Y w i l l  be used a s  a measure of the conlpulation required. A3 

mentioned previously, the case  in which x is not within Y involves the maximum 

number of node accesses since every node on every path from each x upward to 

the roots of the data base must be accessed. 

Assume firs1 that the data base has the form of a true t ree  rather than a.n 

acyclic directed graph. Effectively, this means that each node has, . at most, one 

father. Thus, assigning level 0 to each root node and defining the level of a node 

to be rlulnerically one greater  than the level of i ts  father, each node has precisely 

one well defined level. With thie formulationj n node accesses are required to 

t raverse  the path from a node x at level n upward to a root. 



The assumption that the data base has the form of a tree will now be removed. 

Thus, there may exist a node z at level m, m< n which has two fathers, where z 

, is the first  encountered node ab0ve.x for which this is  true. 

Indeed, node z may be at level ml with respect to one path from a root and 
. . . . 

at level m2 with respect to the other path. Thus, node x may be at two levels at 

once, depending on which path through node z is  being considered. . . 

Let nl b e  the level of node x with respect to the path which makes node z at 

level ml, and let n2 be the level of node x with respect td the path which makes 
\ 

node z at level m2. ~ h u s ;  

and nl - ml is the number of node accesses to travekse from node x upward to 

node z. From node z, ml + m2 node accesses a r e  required to traverse both paths 

from node z upward to a root. 

Total: (nl - ml) + ml + m = n + m = n + m 2 1 2 2  1 
' .  . . 

Now generalize the preceding casedand assume that node z has p fathers, 
. . . . 

p 2 1. Thus, node z may be at a s  many a s  p levels ml, m2, . . . , m Therefore, 
P' 

node x may be at  as many as  p levels n 1' "2, .:, . , $2 
where node x is at level ni 

, , 

with respect to the path which causes node z to be a level mi, 15 i i p .  
. . 



A.s before, 

and n. - m. is the number of node accesses to traverse from node x upward to 
1 1 

node z. From node z, ml + m + . . . + m node accesses a r e  required to traverse 
2 .  . P 

the p paths from node z upwards to the roots. 

Total: 
/ 

(ni-  m . ) + m l + m Z +  ... + m  = n .  + m  + m  + ... + m , i - l + m i + l +  ... + m  
1 p 1. 2 P 

w11el.e a. is the nunbcr  of nodc aooooooa required to traverse from node x upward 
L 

to node z and thence to a root by the ith father path from node z, and 

is the number of node accesses required to traverse from node z upward l o  lhe 

roots.by the p-1 remaining father paths from node z. 

The above total may be rewritten as 

( n i - m . ) + m l + m  + ... + m  
P 

1 L i L p  
I 2 

where ni - m. i s  the number of node accesses-required to traverse from node x 
I. 

upward to node z, and 

. m l + m  + ' . ,  + m  2 P 

is the number of node accesses required to traverse from node z upward to the 

roots along the p father paths from node z. 

None, all, u r  some of these p paths from node z might thcmselves split 

further .at levels closer to t.he soots. Jf the j.th path, 15 j .< g ,  so splits, then m. 
J 

is not the true number of node accesses from node.2 along this path to a root, but 

must be c o d u t e d  by the above treatment, recursively. 

In the worst case, the superstructure 'from node x upward toward the data 

base roots forms a tree. Assuming that the average upward branching factor is  

- 72 - 



b, b >l, and there a r e  L levels from node x up to the roots (counting the roots 

a s  level zero), ,then the maximum number of nodes to traverse is the number of 

nodes in this tree. Including node x, the number of nodes is given by 

The specification of ranges by subtree context proceeds in much the same 

manner, with the nodes specified by hierarchical context used where tne roots. 

of the t ree  were used in the previous discussion. In one variant, the number of 

nodes obtained a r e  counted and compared to the result of some numeric computa- 

tion. In another variant, the labels in the nodes so  obtained a r e  individually 

checked to see  if they a r e  numeric, and if so, their value is compared to the 

result of some numeric computation. Nodes specified by hierarchical context 

having subtrees obeying the required conditions a r e  included in the range, a s  

described in a preceding chapter. 

C. Reducing Range Computation Time 

The method which has been considered in analyzing the range finding mecha- 

nism consists of a traverse upward to the roots of the data base. In this method, 

the search is terminated when a root of the data base is encountered. In addition, 

, a downward search along the son chain toward the leaves of the data base, a s  

described previously, might be more efficient in certain particular cases. In 

such situations, the user  should be able to take advantage of his particular data 

structuring to reduce the amount of computation required to determine a range. 

The following mechanism allows the user to specify whether an upward o r  downward 

search is to be made, and a t  the same time, to specify a terminating condition for an ' 

upward search other than the occurrence of a root o r  a terminating condition for 



a downward search other than a leaf. The mechanism can only be used in con- 

junction with specifying a range by hierarchical context or  subtree context re- 

quiring that searching be done. 

The first  form allows the user to denote that the usual upward search is to 

be performed and to specify a terminating condition other than the occurrence of 

a root. The terminating search conditior, is. a set  ~f nodes T specified .by Method 

11. Thus, when searching for a range 

the search upward is terminated successfully by an occurrence of a y node and 
/ 

terminated unsuccessfully by an occurrence of a root o r  a member of the termina- 

ting set  T .  To imply to the user that the search i s  carried on only below (and 

including) the nodes which a re  in the set  T ,  the delimiter l1below1' i s  used to 

separate the end of th'e range specification by Method IV and the specification of 

the set  T.  

A portion of a data base shown in Fig. 5 demonstrates how this feature can 

be used to advantage. The range evolred by 

Professor within Reading Committee within Student Y 

is identical to the range evoked by 

professor within Reading ~ o m m i k e e  within Student Y below Department. 

In the former case, however, it is not determined that Professors W and X 

a r e  not included in the range until all the paths from Professors W and X upward 

to the roots of the data base have been traversed. In the later case, the search 

is terminated upon encountering the node Computer Science Department. This 

early termination caa save quite a bit of computation, particularly if the portion 

of the data base shown in Fig. 5 occurs many levels down from the roots. 



Computer Science Department 

student Y Student z 
I 

~ r n f e s s n r  A professor B Profes! 

FIG. 5--A portion of a data base demonstrating the utility of below and above 



The second form allows the user to denote that a downward search is to be 

performed and to specify a terminating condition other than the occurrence of 

a leaf. As suggested by the previous construction, a terminating set  T of nodes, 

specified by Method Il is separated from the end of the range specification by 

Method IV by the delimiter "above, l1 or equivalently so  a s  not to introduce another 

reserved word, the delimiter pair "not below. l1 

Example (see Fig. 5) 

Professor within Computer Science not below Student 
I 

An analysis of the implementation will now be made. The amount of memory 

rcquircd for a data basc implemented in this way will be considered, as  well a s  

the factors that affect the time required to access the data base. 

D. Memory Usage 

In order to gain some sort  of perspective on the amount of memory required 

to contain a complete data base, a formulation of data base requirements will be 

made. A fairly representative d a p  base configuration will then be described and 

the amount of m-emory required to represent this hypothetical data base will be 

computed. Throughout the formulation and computation, Figs. 3 and 4 should be 

consulted. 

Assume that throughout the data base there is an average branching factor 

s(s > 1). That is, on an average, each node has s sons. Let L be the number of 

levels of the tree, numbering the level of the root nodes as  zero. Then the number 

of nodes in the tree is given by 



If we let 

m. = the number of labels at  node i 
1 

f .  = ,the number of fathers at  node i 
1 

s. = ,the number of sons of node i ,  
1 

then the amount of storage required to represent node i in this implementation 

(see Fig. 3) is given by 

Labels: 8 + 8 mi 

Fathers: 8 + 8 fi 

Sons : 8 si . 

TOTAL: 8(2 + mi + f i  + si) 

Note that 8 bytes a r e  required to store a pair of pointers. Thus, for the nodal 

structure of the data base, the total amount of storage is given by 

Now consider the possible diictionary structures. Each label which occurs 
f 

anywhere within the data base has a dictionary entry. As seen in Fig. 4, there. 

is a list of pointers associated with this entry to every node in the data base .in 

which that label occurs. Thus, there a re  a s  many pointers out of the dictionary 

as  there a r e  (not necessarily distinct) labels at nodes in the data'base, given in 

this formulation by , 

N 

Since eight bytes a r e  required to store a pair of pointers in the current imple- 

mentation, the amount of storage requi'red for the pointers is given by 
\ 



The only other significant contribution to memory utilization .arises from the 

storage of the labels themselves. since each label 06curs only once in the dic- 

tionary, independentlyof its usage within the nodal structure, the amount of , 

storage required for these labels depends upon the number of distinct labels. At 
. . 

a minimum, these can be only one distinct label which occurs as.the only label 

at every node in the data base. Theoretically, there is no maximum number of 

distinct labels since the number of labels occurring at  any node is not limited. 

However, since we have assumed that there a re  mi labels at node i ,  then a maxi- 

mum will be achieved by further assuming that all the labels across the data base 

a r e  different. Thus, the maximum totai number of distinct labels is  given by 

N 
C I l l  i i= 1 

Assuming an average of q characters per label, the amount of storage reqtiiked 

for the labels themselves is given by 

Thus, 'there are  .three constitutents of memory usage: 

' N 
Dictionary pointers : ' 8 mi ' 

i= 3, 

N 
Label storage; qx mi 

i= 1 

. . ;. , , '  .: . . . ' N  . N 
TOTAL: 
. . ' 8 x  i=1 ( 2 + m . + f .  1 I , !  + ~ . ) + ( ~ + 8 ) z  i.. 1 mi 



A hypothetical data base will now be described. The parameters of this data 

base a r e  not completely random but are  based on a small sample of data bases 

built by students learning to use TAXL (see the conclusion of this chapter). 

Assume that tfie data base has an average L depth of seven levels and that each 

node has an average of four sons, i. e. , 

and, therefore, the number of nodes in the data base is 

Now assume that each node has an average of three labels and two fathers, 

m. = 3, f.  = 2, and s. = 4 
1 1 1 

Thus, the storage requirements for an average node a re  given by 

Labels: 8 + 8(3) = 32 bytes 

Fathers: 8 + 8(2) = 24 bytes 

Sons : 8(4) = 32 bytes 

TOTAL: 88 bytes/node. 

Hence, to represent the nodal structure of the data base requires 

88 bytes/node 5461 ~ l u d e ~  = 480, GG8 bytes 

The amount of storage required for the dictionary pointers is 

546 1 
8 3 = 131,064 bytes 

i i  1 

As indicated in the formulation, the maximum total number of distinct labels 

.could be calculated as  

However, a more realistic estimate can be made by tho following assumptions. 



It will be assumed that a t  each level therc i s  a common label which serves 

a s  an attribute, and that a t  every node at  that level, there a r e  two other labels, 

the s e t  of which a re  disjoint across the level and the entire data base.' ~ h e s e  

two other labels at  each node serve as a value for the cominon'at'tribute. Thus, 

since there a re  four sons for each node, at  level i, there a r e  

2 x q i + l  

distinct labels, counting the root level a s  level zero. Therefore, over seven 

levels, there are 

distinct labels and hence 

6 x 10,926 = 65,556 bytes 

required to store all the labels in the data base. It is assumed that these a r e  

an average of six characters per  label. 

Table 4 summarizes the storage requirements of'this hypothetical data base 

and gives the percentage of storage required for each data base component. 

E. Access Time 
. .. d .. 

In the discussion of the time required to compute the range x within y, the 

particular configuration of the data base and the manner in which both the nodes, 

named by x and the nodes named by y, a r e  distributed throughout the configuration 

a r e  the most important factors to consider. Because the particular distribution 

of x 's  and yls  a r e  such an important consideration, to hypothesize a particular 

data configuration and then analyze this particular configuration a s  before would 

not accurately enough characterize access time in general. However, there a re  

several important observations which can be made. 



TABLE 4 

STORAGE REQUIREMENTS FOR A HYPOTHETICAL D ~ . T A  BASE 

Bytes 
Percentage 

of Total 

, Node Structure 480,568 7 1 . 0  

, Dictionary Pointers 131,064 '19..4 

Labels 65,556 9 . 6  

TOTAL 

3 labels per node 
/ 

2 fathers per node 

4 sons per node 

6 characters per label 

7 levels  



As described previously, in the computation: of the range 

X within Y . ., 

the maximum time required occurs when there a r e  no nodes xcX within any nodes 

ycY. . In this case, a search has to be performed beginning at  each node x along 

the chain of father pointers to the roots of the data base. At each.node z encountered' 

along a path toward the roots, an identity test must be made .to see..if z is  identical 

with any of the nodes ycY. If we.take.the, total number of comparisons for identity 

a s  a measure of access time, then i t  can be seen that the number of nodes yrY 

times the total number of nodes along the path(s) from a   articular x l rX to. the 

data base roots characterizes the maximum access time required to determine 

if x' belongs in the range. Since this computation must be performed for each 

xeX, the maximum number of comparisons required to determine the range 

is given by 

where C is the cardinality operator and P(x) . . i sa the total number of nodes encountered 

dong all paths from a node x along the chain of father pointers to the roots of the 

data base (see Section B of this chapter). 

There a re  two other factors, mentioned briefly earlier in this chapter, which 

contribute to access time. Both of these factors arise in the computation of the 

sets X and Y 

As described in Chapter 11, the sets X and Y a re  SpecBied by 'Method 11. Thus, 

in order to specify the set  X, n labels xl, x2, . . . , xn are  specified and the set  X 

is comprised of all those nodes in'the data base which have a t  least the n labels 

mentioned above. A parallel argument can be made for the set Y. The contribution 



to access time thus arises from: 

1) finding each of the n labels in the dictionary 

2) forming the intersection of the n sets of pointers, the ith set  being 

associated with the label xi and pointing to all those nodes in the data base 

which'contairi x. a s  a label. 
- 

1 
.. . 

In the current implementation, the operation of finding each of the n labels 

xl, x2, . . . , xn is performed automatically by the LISP system. This should be 

accomplished by a hash addressing scheme. 

The USE-lists associated with each dictionary entry a re  unordered in the 
. . 

current implementation, and hence each of the n-1 intersections which must be 

performed.requires a number of operations proportional to the product of the 

number of .pointers which occur in the sets to be intersected. 

If the hashing function used to find the appropriate entries in the dictionary 
. . 

is a' good one, the time required to find the n labels which constitute the set  X 

is proportional to n. Assuming that m labels coLstitute the set  Y, the time 

required to look up the n + m labels i s  given by k(n+m); where k i s  some constant 

dependent on the hashing function. 

As explained previously the time required to perform the n-1 intersections 

wlduh dyf11ie the set X.aaeI the m-1 iiiceri.sectionS which define the set  Y is  given by 

2 
(n-  l )Kx + (m-  l ) K  

2 
Y 

where K is the average number of pointers associated with each of the n labels 
X 

which constitute the set X, and K is the average number of pointers associated 
Y 

with each of the m labels which coiistitufe the set  Y .  

Thus the total access time is given by 



F . Operation Time 
. . 

Once all the ranges required for a given command have been computed, the 
. , 

time required to complete the operation called for by the given command generally 
1 

depends only on the cardinality of the range(s) upon which the command will operate. 

For  all those commands which require only one range, the time required to com- 

plete the operation is proportional to the num,ber of nodes in that range. For 

those commands which require two ranges, the time required i s  proportional to 

the product of the number of nodes in each range. It should be noted that the 
. . . . 

operation time for all  those commands which require additional tree searching 
. , . , 

for their operation, i. e. , WRITE and DEL,ETE, a r e  influenced by the subtree 
. . . .  . - .  

structure below the nodes in the computed range(s). Also, the operation of the 
, . '  . . 

' , . . 

SAVE and RESTORE commands depends on the structure and extent of the sec- 

ondary storage dictionary . 
. . .  , . . . .  . . 

G. System ,Measures . 

In Table 5 measures of significant TAXL system functions in the current 

implementation a r e  summarized. The formulae given in the table,show the nature' 

of the dependence of the system's functions .upon the parameters involved. Pro- 

portionality factors a r e  not given. Except for the memory utilization, all of the 

systems functions give a measure of access time in terms of the cardinalities, 

denoted by the operator C', of certain sets which a re  involved in the particular 

system function. Such sets include sets of nodes, sets of labels, sets of fathers 

at  a node, and sets of sons at a node. 
. . 

The measures for memory utilization and the time to compute X within Y 
. . 

have been derived previously. in this chapter. Since the USE-lists a r e  un- 
. .. 

ordered in the current implementation, the time required to perform the 

intersection of two such lists. is proportional to the product of their cardinalities. 



Memory Utilization 

TABLE 5 

SYSTEM MEASURES 

Time to perform intersection of. 
USE-lists W and Z c(w)  C(Z) 

Time to compute X within Y (the 
sets X and Y a r e  already defined) C(Y) P(x) 

-- 

Time to add a label to a node in the. . 

data base CONSTANT 

Time to remove a label 1 from a 
node q in the data base m + lu 

q 
Time to add a node q to the 

data base C(new fathers (q)) 

Time to remove a node q from the 
data base C(sons (fathers (q))) + C(fathers (sons (q))) 

N: number of nodes in the data base 

m. : ' number of labels at node i 
1 

f.: number of fathers of node i 
1 

s.: number of sons of node i 
1 

q: average number of characters per label 

C: cardinality operator . 

P(x): total number of ancestors of node x ' 



In order to add a label to a node in the data base the following operations 

must be performed: 

1) Add a node pointer to the USE-list associated with the label. 

2) Add a dictionary pointer to the label l ist  a t  the node. 

Sincethe USE-list is unordered, the node pointer may be added to the  front of the 
\ 

USE-list, an operation not depending on the cardinalities of any sets. Since the 

usual option for adding a label to a node requires that the label be added at  the 

~ l l d  @ Ule l a b 1  llsl, Ule  lalxl llsl ill Ule rlude mus lbe  searulleh iu Nild lls elrd. 
. . .  

However, if the label List i s  stored in reverse order, the new label can be added 

to the front of the list, an operation not depend;ng on the cardinality of the label 

list. Thus, the time required to add a label to a node i s  a constant. 

In order to remove a label 1 from a node q in the data base, the following 

operations must be performed: 

1) Remove the node pointer from tlle USE-list 'associated with the label. 
. . ' . .  

' 2) ' ~ e m o v e  the dictionary pointer from the. label list at the node. 

Since the USE-list must be searched in order to remove the node pointer, time 

proportional to 1 the number of uses of the label 1 in the data base (i.  e . ,  the 
u ' 

cardinality,of the USE-list), is required. In addition, since the label list at the 

node must be searched for the dictionary pointer, time proportional to m the 
Y' 

number of labels at node q i s  also required. Thus, in order to remove a label 

from a node in the data base, time proportional to m + 1 i s  required. 
u 

In order to add a node q to the data base, the following operations a r e  required: 

1 )  Add the new father pojnters to the father l i s t  of q. 

2) Add n pointcr to q to thc Eon l i ~ t  of each now fathor of rl. 

Since the father and son lists at  nodes a r e  unordered, the new father pointers 

may be added to the front of the father list of q, requiring time proportional to 



the number of new fathers,of q. Thus, the total time required is proportional 

to C(new fathers (q)). 

In order to remove a node q from.the data base, the following operations , 

must be performed: . . 

1). Remove the son pointers to q from each of the fathers, of q. 

2) Remove the father pointers to q from each of the sons .of .q.' . . 

,. .The father and son l ists  must, therefore, be 'searched.for the pointers to be 

removed, and. this operation must be performed for each father and.son of q. 

Thus, the time required to remove the son pointers to q from the fathers of q . . .  

is4proportional to, . . . .  . . . . . - 

. C(sons (fathers (q))) 7 ' . . . . . . . - .  

i . : In a similar . . manner, the,time required to remove, the father pointers to q from 

each of the sons of q is.proportipna1 to . . . 

C(fathers (sons (q))) * .  , 

Thus, the total time required to remove a node q from the data base i s  proportional 

to the sum of the two cardinalities given above. 

A useful refinement to make in.the implementation is  to keep the U S E - ~ ~ S ~  

order&!. The system f i c t i o n  measurement which would be improved by' this 

.refinement would be the 'time req&red to. perform the intersection of two USE-lists. 

Since the lists would'be ordered, 'the time' required' would be proportional to the 

. ^  - sum of the cardinalities of the l ists  rather than the product. However, the time 

' 
'required1 to add a label to the .data base would increase since the node pointer 

. . 
'could no longer be added to the front of the USE-list but would have to be added 

at  its appropriate place in the .ordered list. Thus, the time required to add a 

label 1 to the data base would depend on lU, t he  cardinality of the USE-list of 1. 

It i s  felt that this refinemelit would .be a useful 'addition tb the implementation,'. , 



since USE-lists a r e  intersected for  almost every range definition. The operation 

occurs much more frequently than the addition of a label to the data base. 

A better refinement would be to keep the USE-lists not only ordered, but 

ordered in the form of a balanced tree (Knuth [1970]). The advantages of 

storing a USE-list of cardinality n in this fashion arise from the fact that the 

time required to insert a new element, to delete an old element, and to find the 

smallest element in such a tree, each requires time proportional to log n. (The 2 

algorithms for performing these furictions will appear in The. Art of Computer 

Programming, 'Volume 3,  'by D. E.. Knuth). 

Thus, labels may be addehand deleted from the data basc+ with a logarithmic 

dependence on leu rather than a linear dependence. The additional storage required 

for  structuring the USE-lists in this fashion affects only the multiplicative constant 

in  the formula for the dictionary pointer storage, the formula for whibh would 

now be 

since one father and two sons pointers would be required for  each entry. 

Additional rcfincmcnto, and possibly the best rtffi.lcinel3s i lr  Llle represellla- 

tion and algorithms for addressing and manipulating the nodal structure,,. might 

wcll bc in thc direction of hash, o,r scatter storage techniques (Morris 11968)). 

In the LEAP system (Feldman [1969]), a hash addressing scheme based on a hash 

of two elements of an object-attribute-value triple provides a convenient and usefill 

method for the retrieval of information concerning the uscr-defined relationships ' 

among a universe of items. . . .  . 

Hash coding is the simulation'of an associathe memory, and since TAXL 
. . 

is an assqciative semantic processor, it is, felt that research into new methods & 



of using hash coding techniques might well uncover more efficient ways of imple- 

menting a system such a s  TAXL. 

H. Conclusion 

A test implementation and analysis of a limited TAXL/BASIC system has 

been described. Several comments can be made concerning the analysis. ' 

The factor of eight which appears in the form-& for t o b l  memory usage ar ises  

from the fact that in  the version of LISP 1.5, in which the TAXL interpreter i s  

written, eight bytes a r e  requiredto store one LISP element (a  pair bf pointers). 

This factor can be reduced by writing TAXL in some other list processing language 

system (Hansen [1969]) or by using special data structures designed for TAXL in 

particular, and embedded in some assembly language system. 

Otherwise, it can be seen that the total memory usage depends linearly on 

the number of nodes in the data base, a s  well as on the kurnber of labels a t  those 

nodes and on the interconnections between those nodes. Upon considering the 

formula for access time, it can be seen that the access time depends linearly on 

each of the cardinalities of the sets X and Y and on thi depth and number of paths 

to the roots of each xeX. 

Operation time for various of the primitives could be decreased by imposing 

an order on the lists of fathers and sons a t  the nodes in the data base. The 

ordering of the labels i s  defined by the user, and hence an iaternal ordering could 

not be imposed on them without complicating the algorithms which manipulate the 
, 

labels. An  ordering imposed on the fathers and sons would allow a faster retrieval 

of specific fathers or sons. However, the time required to insert new fathers 

and sons into an ordered list would consume more time than if the list were not 

ordered. 



On the basis of classroom utilization, the feasibility of such a system, as  

described in this work, from the user's point of view with respect to the goals 

discussed in the introduction has been ascertained as  affirmative. On two sepa- 
, . 

rate occasions, lectures were given to the type of potential user of TAXL/BASIC 

a s  described in the introduction to this work. One such group was composed of 
. . 

students enrolled in a graduate course in communications. Their only previous 

computer . . .  experience was a limited introduction to terminal processing via a 

BASIC system, The other group was composed of summer school students and 

teachers enrolled in an introductory course for computing in the humanities and 

social sciences. Their only previous computer experience was a four-week ex- 
. . . .  

posure to Algol W with no terminal processing. Even though the two groups were 

a t  different levels in their educational experiences and their limited computer 

experiences w i r e  of a different nature, their ability to grasp and learn how to use 

the TAXL/BASIC system was fairly uniform. After only two hours of classroom 

lecture and ten minutes of terminal usage instruction (which included log-on, log- 

off, and other ~o~-TAXL/BASIC procedures), almost a l l  the students, working 

in groups of two o r  three, were able to use the system with a fairly high degree 

of assurance in a t  least an experimental mode to answer most of their remaining 

The students were asked to build and manipulate data bases which would be 

of interest to them in their work. Political cross affiliations between members 

of the United States Senate and House of ~ e ~ r e s e h t a t i v e s ,  a bartender's guide of 
. . 

ingredients for different drinks, and an inventory of an army supply depot were 

some of the examples for which the students found TAXL/BASIC useful and 

interesting. 



From this preliminary survey of the utility of TAxL/BASIC with respect to 

i ts  intended goals, i t  appears that the system meets, i ts  intended requirements. 

Experimentation with more'economical, more complete systems able to handle 

larger data bases i s  required before more bomplete results can be obtained. 
. .  . . a 

. . ... . . . \ . . 



CHAPTER VI 

FUTURE WORK AND SUMMAFtY 

Throughout the course of this work, several ,topics have arisen which tend to 

complement the present state of the work as described in this paper. 

In order to better test how easily the system can be learned and used by com- 

puter novices, a well written userf  s manual could be compiled with its prospective 

audience well in mind. Graduated exercises on which the student could work while 

using TAXL/BASIC a t  a terminal could be provided. 

The interface between TAXL and BASIC could be made more complete. By 

defining a good string manipulation facility for BASIC, this string manipulation 

facility could be interfaced with TAXLfs label structure. As mentioned previously 

entire 1-dimensional arrays  of numeric values could be retrieved from a range, 

each of whose nodes contain numeric labels. In addition, the LABEL and UNLABEL 

commands could be extended so  that with one command evocation, the set  of numeric 

labels, whose values reside in a 1-dimensional BASIC array, could be added to or  

removed from a range of nodes in the TAXL data base. Finally, a good external 

encoding for the data basc could be designed and the READ and DATA statements 

of BASIC could be extended to allow the reading of portions of the TAXL data base. 

Currently, the TAXL addressing structure i s  semantic and associative. The 

range specification mechanism could be expanded by allowing syntactic addressing. 

Thus, constructs such a s  SON OF . . . and FATHER OF . . . and compounds of 

these would be allowed. 

A facility for labcling arcs ,  which might stand for attributes whose values 

could be found as the labels at the nodes which terminate the arcs,  could be intro- 

duced. This might allow a more concise and more easily manipulable data 



representation in those cases in which there a re  many attribute-value pairs 

describing a hierarchically superior node. Multiple a rcs  ,between two nodes 

could also be introduced. ' 

Currently, intersections and unions of ranges may be specified by the suc- 
, . 

cessive application of several of the primitives operating on the ranges, the 

intersections o r  unions of which a re  being sought. An explicit facility for speci- 

fying intersections and unions of ranges would .be useful in those contexts where 

they a re  required frequently. 

By allowing a dynamic macro facility, the user could define his own primitives 

a s  successive applications of the TAXL primitives o r  other user defined primitives. 

Themacro could have the form of a tree which the user can create in the data 

base. The root' node of this tree could contain the keyword which would cause 

the tree to be scanned and evaluated when a command beginning with the same 

keyword is'evoked. The macro tree would be required to have a certain form so  

that in scanning the tree in some predetermined order, the system could fill in 

the templates occuring in the macro tree with the range specifications occurring 

in the calling command and initiate execution of the commands found in the tree 

in a proper order. 

The suggestionsmade in the concluding sections of the previous chapter con- 

cerning memory utilization, access time, and operation time could be carefully 

worked out to improve the speed and efficiency of the TAXL system. 

In summary, this paper has presente.d an easy to learn and use data manage- 
. . 

ment and manipulation system for computer novices. . . 

Chapter I outlined the need for such systems and suggested the uses to which 

they could be put. 



Chapter I1 discussed the format of the data base and the mechanism for 

addressing such a data base in semantic and associative terms. 

Chapter ITI introduced eleven primitives for constructing, destroying, and 

otherwise manipulating and querying the data base. The primitives a re  designed 

to operate on portions of the data base addressed by the range mechanism dis- 

cussed in the second chapter. Ln this way, the addressing mechanism and the 

operational primitives a r e  clearly separated. 

In Chapter 1V, the design oi a system in which 'I'AXL and a numeric processing 

system possessing logical programming capabilities was introduced. Additional 

primitives for managing the programming structure were introduced. 

Chapter V discussed a current implementation of TAXL and gave measures 

of memory utilization and access time in terms of natural parameters of the 

system. 

The current chapter outlined possible future work and summarized this paper. 
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APPENDIX I . . 

L I ( I T ~ G o F  THE INTERPRETER 

V E R B O S ( N 1 L )  
C S E T  ( O P S P  ( ( +  . 3 )  ( -  . ' 3 )  ( k '  . 4 )  ( /  . 4 )  ( N E G  41, (*! 5 J 

( S U B  6 )  1 )  
C S E T  ( S T A K  N I L ) .  
C S E T  ( O U T P  N I L )  
C S E T  ( P X P  N I L )  
C S E T  ( C H K  N I L )  
C S t T  ( K E L S  ( E U N i O  GR GE L S  L E I )  
C S E T  ( R U N  N I L )  
C S E T  ( S Y N T A X  h I L I  
C S E T  ( S B S  T 
C S E T  ( S L B  S U B )  B 
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APPENDIX n 

LOGICAL FLOWCHART OF THE TAXL . ~ ~ T E R P R E T E R  

+ 
Fetch 

Place Previous Commanc Yes Command.with Sequence 
in Comu.and Buffer with Nunber given by instruc- 
Recorded Sequence N u m b  -+ tior coupter from command 

bufkr 
Fetch From 
T~rmiIIal 
ma 

Set [nstruction cokte; , 

to Squence Number of 
Next Command in Command 

Sequence 

, 
Sequence 1;: 1 
Record 
Sequence 
Number 

Reset 
Sequence 

1 Switch on 
Key word 

' (+e)&b,,&&b COUNT 1 



For  Each Label 
in Data Item: 

I 

Create Node with ' 

no Labels, no 
Father, no Sons 

For Each 
Data Item: 

Add Pointer to Label 
onto Label List 

a t  Node 

Add Pointer to Node 
onto List of Uses 
on Label's Property 

List 

Get Data 
Items 

Get Data (-1 
Add Data Item 

to List 

Return List 

Get Data cl;, 

Add Word 
to List 

(See Table 2) e 
Return- List  

of Words 
In Data Item 



Error  P- Error  i.c'--@ 
Fcr  Each' Iabe l  

in Data Item: 

> 
i 

Add Pointer to 
. LEbel onto Label 

List al Nodb 

Add P ~ i n t e r  to Node 
onta List of Uses on 
Lab l ' s  P,roperty 
List, if not P-lready 
there 

f L 

. 

ForEach Label 
in Data Item: 

., 
Remove Pointer to 
Label from Label 
List at Node 

Remove Pointer to 
Node from List of 
Uses on Label's 
Property List, 
unless Label occurs 
Again a t  Node . 



For 'Each Node M 
in Range2: 

Add Pointer to M 
onto List of Fathers 

of N 

Add Pointer to N 
onto List of Sons 

of M 
, A 

I 

w 
P 
W 
I 

Create a copy of the 

every ,node in range, . 
.downward (along lists 
of sons) toward leaves 
of tree. Redefine range, 
as the root nodes of this 
copy. For each node in 
(the new) range, make the 
list of fathers null 

159486 - 



F3r E . x h  Frther M 
of the Node N: 

IZemo-;e .the pointer 
to the son N from 
the list d s m  of M 

Make the List of 
Fatbers d ' N  Null 

from Rangsl to RangeZ 

For Each Node N 

For each father 
f of the Node N 
Through which N 
is Within M: 

Remove the Pointer 
to the Sm N Fmm, 
the List of Son€ of f 

Remove the Pointer to 
the Father f from the 
List of Fathers d N 

. 

For Each Node M 
in. Rangea : 

a 

159487  



Get Rangel (5 
The Remainder 
of this 
Algorithm is 
Recursive and 
will be Stated 
in Words. 

The accompanying 
Diagram will Help 

No to Clarify the 
Algorithm 

Let nodes n . 
and f be Range 1 
and Range2 
.respectively 

No 

1 
Define Range to 
be all the ~ o & s  
of the Tree 

Get 

-b 1. Remove Hierarchical Connections 
from Rangel to Range2 

2. I£ n now has a t  least one 
father remaining, then quit 
(A nonclosed subtree has 
been encountered) 

Otherwise, 

3.  Remove al l  labels from n 
(See flowchart for unlabel) 

4. ' Check each of the sons of n 
(i. e. , al l  nodes p) 

If p has on1 one father 
(i.e., n), &en, recursively, ' 

go.to Step 3 with argument p. 
(The algorithm remains in 
this recursive l q '  a s  long 
as a ponclosed.subtree is 
not encountered. 

I€ p has more than one father 
(i. e:, th.ere is a node q in 
addition to n), then reoursively, 
go to Step 1 removing con- 
nections from p to n. 



Get Range 

 ode and 
Subtzee ro Secondan 
Storage 

Copy Laage Mormatizn 
for Each Label i n  the . 
Subtree into an Exterul 
Dictiocary, .Itself Sav~d 
on Secondary Storage 

Restore 0 For Each Node 
In Range: 

For E&A Node 
In Range : 

Secondall Storage 

Secondary Storage 

Remwe Node 
(and Subtree) 
From Secondary 
Storage C 

Secondary Storage 
in the Same Manner 
Ranges are Identified 

I 

mation for each 
Label in the Sub- 
tree on Secondary 
St.orage from the 
External Dictionary 
to the Internal 
Dictionary (the use- 

Copy Subtree to . 
Primary Storage 



w 

For Each Node 
in .Range: 

Print Latels 
at the Node 

Recursive"ty, 
Visit the Sons 

Get Range 9 
Print Number 
d Nodes 
in Range 

Set Instruction Set Instruction 
Counter to Counter to Sequence 
Value of Number - number of first . 

Command in Command 
Buffer 

v 
Set Run 
Flag 

I 

I 

Reset Run Fl 




