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CHAPTER1

INTRODUCTION

The work (iescribed hefé attacks two problems: the lack of agreement on the
_ nature of' certain aspects of nonnumeric computer processing, and the educatipnal
bottleneci«: resulting from the large numbers of people who know little about com-
puters but who wish to see ‘hqw_ they might be used in their work.

The first problem is a generic problem in the nature of nommeric processing.
The essence of numeric calcul_ations and operations has begn known for some time,
and the advent of high speed digital c.omputevrs has solid.iﬁed these concepts. Aimost
all general purpose digital computers have facilities for doing arithmetic, and
depending on the size and cost of the machine, these .facilities can be quite elaborate.
This should not b_e surprising since the first uses tp v‘whichpdibgital éomputers were
put were aimost exclusively numerical caicﬂations. :

The notion that a general purpose digital‘compﬁt‘er can be a very general
symbol manibulatpr began to grow f.rom.the early days of computing gnd is now
an accepted notion throughout most of the computing ccémmymity. As yet, however,
. thelfe has been very little agreement on what constitutes general symbolic manipu-
lation, i.e., nonnumeric calculation. . This lack of agreement can be se.en at the
hardware level by the fact that there has been no unanimous introduction of pieces
of hardware td do nonﬂumeric processing, as opposed, for éxample, to the
existence of adders for numeric processing. On the software level, the great
variety of "list processing” languaées such as LISP (McCarthy [1562]), SNOBOL
(Grlswold [1968]), and L6 (Knowlton [1966]), and "assocm.tlve” langua.ges llke
LEAP (Feldman [1969]) and ASP (Lang [1968]) indicates that there are certamly

divergent opinions on the nature of nonnumeric processing. One of the purposes



of this work, then, is to try to shed some light on a representation and subsequent

manipulation of nonnumeric data.

The second problem with which this work deals is related to the fact that
computers can be very use'ful .tools in many areas, including both méthemati;:al
sciences and nonscientific fields such as history, gbvernnienf, soci"ology;
law, étc. -

The phenomenal growth of accessibility td computers and the xiufnbef of
people anxious to use 'computersl have caused quite a bottleneck in the faciﬁties
" for traihing these people. ]'.ntroductdry programmixig courses in univéréities'
and collegés are alfnost always overcrowded as students in the physical sciénces
and, more and more often now, the social sciences fealize that computers might
be able to help them in their own fields. '

,. These immense numbers of people, who are eager and should learn how to
use and how not to use computers in their own work, require that new methods
of teaching and learning these skills be explored. The traditional university
course, for example, lasting from at least several weeks to a quartér or se-
mester is quickly becoming inadequate to serve the volume of people ea.ge‘x" to
acquire the knowledge of some programming language which might'be useful to
them. The length of time which is required for the'c-zomputer novice to learn
many of the computer languagés and systems, with their in.cfeasing generé]_ity '
and complexity, is usually more than he and his instructor wish to spend.

Kemeny and Kurtz at Dartmouth have attempted to alleviaté. this problem by
désigning and implemehting an interactive computer lanéuage and system called
BASIC (Kemeny [1967]). The simplicity of the system and ease with which ﬁhe |
languége can be learned are evidenced by the fact that a very éhdrt formal lecture

session is usually all that is necessary for the novice to begin writing prograrhs



that are useful to h_1m The interactive nature of the system allows the novice to
use the system at his leisure and to search for answers to questioﬂs which occur
to him about the system by experimentation. The great utility of this approach
to the training and teaching problem is attested to by the great number of BASIC
systems which have been adopted by many computation centers and the wide sup-
port and use these systems are receiving from their users.

There are a number of problems for which the BASIC language and system is
inadequate, but for these problems there are more general and more complex
languages and systems which the novice can learn and use. However, for a
great many common everyday problems, BASIC is entirely adequate, and the
ease with which it can be so used bears sfrong evidence that BASIC's approach
to the computer education bottleneck is a good one.

This work, then, is an attempt to combine partial solutions to these two
problems: to shed further light on the nature of one aspect of nonnumeric proces-
sing, and to aid in reducing the educational bottleneck in that area.

The vehicle for this study is the design and test implementation of a non-
numeric data prdcessing capability suitable for inclusion with a BASIC'system."Jé
It is felt that such an addition would greatly enhance the already great appeal of
BASIC to those nonscientific users who already view BASIC as a useful tool for
the solutions of their numeric problems.

In trying to follow one of the rules for the developmént of BASIC, which was
to find those few primitives which were not only basic and useful, but also of high
pedagogic value, it was decided that the majority of current nonnumeric list-
processing languages were too much data-structure oriented rather than problem-
solving oriented. Hence, while these languages contain almost all the basic
primitives for list processing, they are too difficult to use and of too little pedagogic

valie for those novice users for whom the nonnumeric capability is intended.
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As different in format and applicability as the existing nonnumeric lan-
guages are, there is a common motive that runs through ali of them. In one
form or ahother, all of these Ianguageé emphasize the relationships between.
data as opposed to emphasizing the data themselves. In IPL (IPL [1961]) and
LISP (McCarthy [1962]), for example, the sub.list concept and associated meché.—
" nisms for creating, manipulatii_lg, and destroyi.ng such sublists deals with the
relationships between not ‘only étoms of data but also betWeen other relationships.
Mucil the same can be said for the pointer structuring cababilities in ALGOL w
(Bauer [1969)) and in L6 (Knowlton [1966j), the basis for whicﬁ was Wirth and
Hoare's records and referem.:éS'(Wirth [1966]) and Ross's plex processing
(Ross [1961]). It certainly appears that the ability to specify relatiohships
which exi‘stlaglmong data and to manipulate these relationships are at the heart of
nonnumeric processing. |

Having ascertained the centrality of the concept of relationship s;;eciﬁcation
and rhanipulation to nonnumeric processing, we turn to finding those few primi-
tives which are basic, useful, and of high pedagogic value. More explicitly, when
considering nonnumeric processing and the relationship concept, the problem is
to focus on some hgpefully small subset of all possible relationships in order to
eimplify both the language and the concepts involvéd in teaching. To this end, I
have chosen one type of relationship, the hierarchical relationéhip.‘ Webster
(Webster [19641) defines "hierarchy' as 'the arrangement of objects, elements,
or values in a graduated series." Notice that thg emphasis is on the arrangement
of the objects rather than the objects themselves. The graduated nature of a
hierarchy as d;efined, ‘as well as the intuitive feelings of what constitutes a -
hierarchy,implies the true generality of this relationship: it exists or can easily
be made to exist among data in a great many different kinds of data bases. In

addition, two relationships can be different in their meaning but still be hierarchical.
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In other words, R AB and R BC ¢an both 'be hierarchical relationShips ‘but
havmg deferent semantic content depending on the data A, B, and C. For example
A could desCribe-a'professor‘, B could describe his secretary, and C could des‘cribe
her salary. The exact nature of the r‘elatio'n'ships is somewhat subjective and -

might be interpreted shghtly differently by different users once the data A, B

and C are known nonetheless, both relat10nsh1ps are hierarchical, and th1s fact

-is all that should be required for the user to specify, query, and manipulate the

relationships and the data. More will be said about this and more examples will
be given in later chapters.-

Having limited the type of relationship, it remains to determine-how to specify
that this relationship exists or does not exist between data, how to'(juery the data
base in térms of the relationships which-do or do not exist, and how to ‘manipulate
these relationships and so indirectl& the data. The manner in which these operations
should be specified should be simple and of high pedagogic and mnemonic.value in
order that the goals achieved in BASIC can be achieved here as Well Once these
goals 'are met, the resulting system w111 be able to serve as both a data manage-
ment system and an 1nformat10n retrleval system Wthh is easy to,use and easy

to learn. The following chapters discuss and explain one way that th1s can be done.



CHAPTER II

THE NATURE AND ADDRESSING OF THE DATA STRUCTURE "

o’

A. The Data Structure

The data structure type first chosen to represent the hierarchical relationships
discussed in the previous section was a multirooted 'tﬁult'ibranching tree with the
arcs of the tree oriented awasr from tﬁe ’roots (see Fig. la} . The nodes of the tree
contain the data itemshland a directed path from node X to node Y in the tree indi—'
cates.that node X is in a hierarchically superior relat_ionship to node Y. Stated
) q;fferently, node Y is within the hiera;'chical context of néde X. K no directed
path exists between node X and a node Z, . then no hierarchical relationship exists
between node X and node Z. Notice that node X.and node Y do not have to be
adjacent to one another,. i.e., other nodes may exist alopg the path from node X. .
to node Y.

. .For reasons of generality, the multirooted multibranching tree data structure
was ‘éxtend,ed slightly to directed acyclic graphs. This daﬁ_a structure.-can be .
conveniently visualized as a multirooted muitibranching tree,- some of whose

_branches might have:grown together (see Fig. 1b). - The nodes. of the: directed
acyclic graph still contain the data items, and what was said previously- about -
the-existence or nonexistence of a hierarchical r,elati.onshipbetween two nodes .- .

- still holds. ;

B. AThe Data Item

Vi

'As previously noted, each node of the graph contains a data item. A data

item is 'a.ny semantically meaningful label or set of labels the user chooses.
Syntactically, '

<label>: := < identifier >:| < number >

<data item > : := <label>|< label> <data item>

-6 -
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Directed multirooted multibranching tree.

(a)

Directed acyclic graph

(b)
FIG. 1
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where the syntactic classes <identifier> and <number> are as defined in the
Algol 60 report (Revised Report 1963). Duplicate labels may occur within a data
item.

In some complex retrieval systems, there is a syntactic distinction made
betweén the semantically different concepts'of a category of some kind and a
particular instanée of that category when referring to data items at nodes in a
data stfuc‘ture. For example, "University' can be thought'.of .;.s é. category of
which "Stanford" and ""Texas" are instances. The system does-not distinguish
between labels which can denote categories and labels which can denote instances.
The diétinction between the concepts of category and instance is fairly easy to

Amake for professionals'in the computer field. However, fdr the potential user
of this system, these concepts and their distinction may appear to be somewhat
arbitrary and beside-the-point, complicating rather than simplifying the use of
the system. For this reéson, there is no syntactic distinction made between
category and instance within data items in this system, and whatever semantic
distinction exists between the labels which make up a data item can remain com-

pletely within the mind of the user.

FExamples
Stanford Lawyor Joncs
Stanford University ' Doctor Lawyer Joﬁes
27 | salary »
age 27 salary 375. 60 dollars per month
C. The Range

One of the basic concepts in this system is the manner whereby a subset of

the set of all nodes in the graph, called a range, is referenced. Most of the

%
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pPrimitives operate 6n one‘or more subsets of nédes, or ranges, and each refer-
ence to a range is acconfpiish'ed accofding toa cdmtﬁon set of rules. There is
a general principle, the Px‘-i'nciple of Greater Specifi'cation, which applies when
specifying a_range. This principle "sftat;es that when more infovrmatioh is given
to specify a.' raﬁge-, the cafdinality of the' fange, i.e., the number of nodes ref-
erenced,cannot increase béca_use of the added information; more usualiy, the
cardinality decreases. ' Sihply stated; the more carefully a set of nodes is de-
scribed, the fewer nodes ‘oine is describing since only those nodes whic‘h satisfy
all the descriptions are included in the ra;1ge. As the different methods for
referencing a range are discussed, it’wi:ll be shown how the Principle of Greater
Specification applies. It will also be seen that each method _ijs a special case of
fol_lbwing methods. o
1. Method1I - _ _ .
| The simplest waj of spemfymg é r'aﬁg.e is 'by ey,b_king a label. The set of nodéé
whiqh constitutes the range is then all .thosenodes'ir.l the graph which have the = .
evoked label among the labeis: wh.iléh ;_na_i‘keAup, the data item for that ﬂode.

Examples (see Fig. 2) -

Evoked Llabel o Node numbers in =range
Student . - .{18, 2, 23}' o
Provost {11, 16, 17}
Miller {is, 16}
‘Uni:versity - {‘2,‘3}
‘:.H'is.tory ¢
' Moses Rid

The nodes-in any range always form an pr;oi'dered set.
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Texas Universityl)- mrrl]

Cd.ltech[ ] Stanford Umversxty[z]

SN

Law School[s] School cf Humamtles[] Administration[ﬂ . School of Enginéering[s:l

and Sciences
Communication[sj Computer &ience[lo] Provost L;vma.n[n] \
Department Department
/ . [1 6] Mechanical [12]
/- Assoc. Provost S\ ) : : ‘Engineering
Miller ' .o Department
Professor[la] Chairman[l‘ﬂ : Professor B3] 7 - Electrical[zo]
Parker . . Professor ' Miller" Assoc. Provostt = = . Engineering
Forsythe 7 N\ Moses Department
Secretary [19] »
Grace
Mickelson A - . ‘ .
: Student Ha.rdy[zz:| N Student Laurel[%:I
Student 18] Secl"'eta.ry[2 ]
Sheldon Carla West 5 : : .
Beckgr . _ g _l—— ; : Salary $400[27]
Note: T Sezlary: Clgsslﬁed[z{l Wife [2¢]
: ; Susan
Bracketed numbers beside each node
are for identification purposes only . . .
and are not part of the data item at : ) S ‘ . . . . : . :
. : : , ' ' ‘ : B ‘ ‘1594A2

the node. _
FIG. 2--A Personnel file.

- >
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2. Method I

'Another way of 'specifyir‘ig a range is by evoking one or more labels. The set

of nodes which constitutes the i'éiﬂgé is then the intersection of all those sets of

nodes (ranges) which would arise if ‘each evoked label were evoked alone. The

evoked labels can be in any"éf‘déi". If dniy one labeli is evoked, it is seen that

this method of specifying a fé.nge is identical with Method I.

" Examples (see Fig. 2)
Evoked Labels

Professor Miller
Provost Miller
Assoc. Provost Miller
Engineering Department
Chairman Miller

School of Humanities and
Administration Sciences

; Miller Professor
Student Sheldon Becker

| Student Sheldon
Student Becker
Sheldon Becker

~ Student
Sheldon

Becker

Node numbers in range -

fus}

=

15} .

18}

18}

{
g
 {18fH:

{

{

U

{18, 22, 23}
{18}
)

1

Notice that the Principle of Greater Specification holds here. The evoked

label '"Student' specifies a range consisting of three nodes (see Fig. 2); upon

greater specification, '"Student Hardy’' for example, the range is reduced to one

node.



There is an addition to Method II which can be used when the range which the
.user wishes po specify A_c‘:o'nsis,tAs _of,a sep of nQQes whiche_have precisely the set of
labels, the_.gser.evokes, and in ‘precis'el‘y the sa~r_r_ie oxjder._ In _the‘us'ual_casg,_ the
range consists of the set éf nod:es‘whmh have ét least the_l'set of labels the user
evokes, and in any dier: The‘word "just''. occurring before the evoked ,la;b,els
has pedagogic value in makmg it clear to the user- that only Vthos.e nodes are .séught

which contain precisely the evoked set of labels. "Precisely" or "exactly' might

also be used.

Examples (see Fig. 2)

Evucialion Node numbers in range
just Student g

just Student Hardy {22}

Student Hardy {22}

3. Method Il

A more complex and more powerful method of specifying a range is by
hierarchical context. As was stated at the beginning of this chapter'," since the
data base is a directed acyclic graph, ' between any two nodes in the graph oxnectly
one of the following two relationships holds: |

(1) there is no directed path between the two ﬁbdes

(2) there arc one or more directed paths between the two nodés. |
Node Y is said to be within the h.ier'aréhical context of node X if one or more
directgd pé.ths exist from node X tnA node Y. If no directed path cxiata hétween_
node X and node Y, then neither node is within the hierarc}ﬁcal contéxt 6f the
othér node. Since-the graph is acyclic, node X may never be within its own.

hierarchical context.

- 12 -



Let the symbol 1> indicate that the hierarchical relationship holds, i.e.,
X >Y means that node Y is within the hierarchical context of node X. X ¥ Y means

that node Y is not within the hierarchical context of node X.

. Examples (see Fig. 2)
(8] > [29]
2d * [5)
(8] > [22]
[20] > [22]
20] ¥ [23]
(6] > [1o]
[7] # [o]
71 % [7]

The hierarchical relation is nonreflexive, antisymmetric, and transitive.

The third method of range specification is accomplished by specifying two
ranges in order according to Method II. The range thus specified consists of all
those nodes in the first range which are within the hierarchical context of any
node in the second range. More precisely, if R1 and R2 afe _the two ranges
initially specified, then the range R within the hierarchical context of R1 with
respect to R, is defined by:

R= {yly € Rl/\.g'xeR2 3 x >y4}

In the preceding chapter, it was stressed that simplicity for the user be a
primary goal. Reviewing the second method of specifying ranges, it can be seen
that the data base is being addressed directly in terms of labels which the user
has pléced there (the ways in which this placement occurs will be described in the

next chapter). Since these labels are purely the user's invention, they are semantically

- 13 -



meaningful to him. By allowing him to use these labels to address the data base,
simplicity for him is thereby furthered.

Cont..inuing in this spirit, the following manner of evoking ranges to be
specified by Method III is suggested:

R1 within R,

where Rl and Ré are evocations of the two ranges by Method II, in order. The
word "within’' is used as a delimiter, suggesting the hierarchical contextual
relationship. Depending on hko the user visualizes the data base, delimiters
such as "in'" or "under" might be used.

Examples (see Fig. 2)

Evocation Node numbers in range
Student within Computer Science {18}

Student within Department {18, 22, 23}
Professor within Stanford {13, 14, 15}
Professor within Humanities School {13, 14, 15}
Professor within Communication {13}
Professor within Administration [/}

Miller within Stanford {15, 16}
Miller within Administration {16}
Professor Miller within Administration [}

Provost within Administration {11, 16, 17}
Provost within Provost {16, 17}

A natural and useful extension of specifying ranges by context is to specify
a set of nodes not within a given context. More precisely, if R1 and R g are the

two ranges initially specified, then the range R not within the hierarchical context

- 14 -



of R, with respect to R.z'is defined by:

R={y,yé.RlAVx€.R:2, X }y} ,
The most natural extension for evoking ranges specified in this manner

is to use "not within' as the delimiter between the evocation of ranges R:; and R,,.

Examples (see Fig. 2)

Evocation o - Node numbers in range
S@udent not within Computer Science - {22, 23}

Student not within Department g

Préfessor not within Stanford . [/

Miller nc(>t within Administration | {15}

Professor Miller not within

Administration {15}
Provost not within Administration g
" Provost not within Provost {11}

4. Method IV

As Method II is a generalization of Method I,’ so Method IV is a generalization
of Method III. In the preceding method, a first set of nodes is chosen by specifying
a-second set of nodes as context; the second set of nodes modifies the first set.
Method IV allows a third context to be specified for the second set, a fourth context
to be specified for the third set, etc. |

In the general case, n ranges Rl’ R . Rn in order are specified by

A

Method II; n 2 2. The ranges are associated in the foilowing manner:
‘ (R1: (Rza s (Rn_za (Rn-l’ Rn))--_)
Method III is first applied to the ordered pair of ranges Rn—l and Rn' The

result of this application isa range, call it Rn—l 0 Method III is then applied

- 15 -



to the ordered pair of ranges Rn__2 and Rn-l, n’ resulting in a range Rn-2, n-1,n"

Method III is continually reapplied to successive pairs of ranges until it is finally

applied to the ordered pair of i'anges R, and R,y 3 The result of this

«oo,n=1,n’
final application is either null or a subset of the range specified by R,, a range
'Speciﬁed by successive hierarchical contexts. Notice that for n = 2, Method v
becomes Method III, and for the degenerate case of n= 1, Method II.

The natural extension for evoking ranges by successive hierarchical context

is to evoke the n ranges by Method II, each evocation delimited by "within” or

"not within'':

Ryd) gRydy g Rz -4 ; Ry

where Ri is the evocation of the ith range by Method II and di—l . is either
"'within'' or ""not within.”

Examples (see Fig. 2)

Evocation Node numbers in range

Secretary within Miller within
Administration {21}
Secretary Iwithi n Miller within
Computer Science o {18, 21
Secretary within Miller not within
~ Administration - ' 19, 21}
Secretary within Miller not within .
Computer Seicneo 5 {21}
Student within Mechanical Engineering

not within Humanities within Stanford {22, 23}

- 16 -



Notice that the Principle of Greater Specification holds here. Also notice
that the data base is still being addressed in terms of labels which are semantically -
meaningful to the user and in a manner which is very suggestive of the relationships

which the user visualizes as holding between his data.

D. Total Range Specification

Since Method IV is a generalization of all the preceding methods, and the
distinction between the methods will often not be needed, the combination of all
the methods, i.e., Method IV, will henceforth be called the specification of a
range by hierarchical context. Observe, however, that the contexts which are
given are always hierarchically superior to the nodes which are being specified.

In terms of visualization of the data base as drawn, for example, in Fig. 2, the
contexts are always "above'' the nodes which are being specified. Often, it is
useful to be able to further qualify the nodes to be specified by looking at those
nodes "'below' the nodes which are being specified, i.e., those nodes which are
hierarchically inferior to the nodes being specified.

To specify a range then, a set of nodes ié first specified by hierarchical
context. If it is not desired to further qualify the nodes so chosen by hierarchical
context, then this set of nodes is the range. If it is desired to further qualify the
nodes thus chosen by hierarchical context by checking for some condition or
conditions which might exist in nodes hierarchically inferior to the nodes chosen
by hierarchical context, this specification, to be described shortly and to be
called specification by subtree context, is then given. It should be noted that
specification by subtree context is specification by predicate, a well known method
of naming sets. Specification by subtree context asks whether or not some condition
holds within the subtrees of those nodes chosen by hierarchical context. Every

node chosen by hierarchical context whose subtree meets the condition (or

- 17 -



| conditions) named by the subtree context specification is retained in the range;
all nodes which do not meet the condition (or conditions) named are discarded

from the range.

E. Subtree Context Spéciﬁcation

Three conditions have been chosen to be used in the éubtree context speci-
fication. One condition checks for the existence of a node (specified by Method IV)
within the sﬁbtree. A second conditiop, which is_a partial generalizatién of. the
first, checks for the existence of a given number of nodes (specified by Method IV)
within the subtree. The third condition checks for the existence of a node, one
of whose labels is nqméric. and the value of which ié compared to a given number,
within the subtree.

' Within the subtree cgntext. specification, any of the three conditions can be
evoked, or any combination of th.e three condi_tions separated by the logi’cal con-
nectives AND and @R can be evoked. The unary logical operation NOT is built
into the conditions and need not be explicitly provided.

The evocation of a range, therefore, consists of a specification by hierarchical
context optionally followed by a specification by subtree context. .If the latter' is
preéent, the hierérchical and subtree specifications are separated by the delimiter
"wherever. " | |

In ENF:

<range> ::= <hierarchical context spéc;ﬁcatlon>|

‘ <.hierarchical context specificatipn>
| wherever -subtree context spe‘g:iﬁcation>
| 1. Condition I
As stated previously, Condition I allows the user to check for the exis-

tence of a particular node, or hierarchical configuration of nodes, one of
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which must be within the subtree .of the ﬁode chosen by hierarchical context.
Method IV is used to specify a set N of nodes. Every node which is specified by
hieratrchical contéxt and which hé.s within its proper subtree (i.e., hierarchiéally
inferior to it) at least one node in N is retained in the range. Every node which is
specified by hierarchical context but which dogs not have within its proper subtree
at least one node in N is not considered to be in the range.

" What is required for Condition I, then, is a specification of a temporary
range N by Method IV, the nodes of which are then sought within the subtrees of
the nodes specified by hierarchical context. If the latter set of nodes is called
M, the;n the range is given by: _
R= {xlx eEMAFyeN>x > y}

In the evocation of a range using any of the three conditions (which all use
Method IV to specify the set N), it is necessary to make clear to the user that a
condition is sougilt, the result of which is essentially ''yes' or '"no", i.e., a
predicate. To this end, the word "is' is inserted before the first occurrence of
the word ""within' in the Method IV specification used in the subtree context condi-
tion. Obsérve tﬁat since Method II is a degenerate form of Method IV not involving
the use of thé word ""within, ! the above word insertion is not always able to be
donc. (Bee the third and last example below.)

Examples (see Fig. 2)

Evocation Node numbers in range

Department within Humanities
wherever Secretary Mickelson

is within Professor Miller {10}

Provost wherever Carla Westl
is within Provost - {11, 16}

Provost wherever Carla West {11, 16}
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Assoe. Provost wherever Carla West

is within Provost _ {16}

Department within Stanford wherever

Secretary is within Department {10}
Department within Stanford wherever
Secretary {10}

Ranges including the negation of Condition I can also be specified. In this cése,
every(node which is specified by hierarchical context and which does not have
within its proper subtree at least one node in N is retained in the range. kvery
node which is sbeciﬁe-d by hierarchical context which has within its proper s1:4btree
at least one node i'n N is not consi_dered to be in the range. More formally:

| R= {x[xeM/\VyeN, x';ﬁ y}

The evocation of a range using this form of Condition I is accomplished by
inserting the words ''is not" before the first occurrence of the word "within" in
the Method IV specification in the subtree context condition. The meaning of the
word '"not'" following nign essentially has the meaning "'it is not the case that ..."
and should not be cohfused with the use of the wordA“not" first described in thé“
discussion of Method ITI. For example, in the first example bélow,

N = {21} - subtree context
M = {9, 10} - hierarchical context
Examples (see Fig. 2)

Evocation Node numbers in range

Department within Humanities
wherever Secretury West is not
within Professor within
Department " {o}

Department within Stanford
wherever Secretary is not

within Department {9, 12, 20}
- 20 -



2. " Condition.II

Condition II allows the user to check for the existence of a given number of
"~ nodes of-a certain specificétion ‘(by Method IV again) within the subtrees of those
nodes §pecified by hierarchical context..' What is required then is a temporary
range N specified by Method IV, a relational operator P(e.g., =, #, >), and a
number, q. Every node in M(i.e., those nodes specified by hierafchical context)
which has within its subtree a number of nodes in N which stand in the given
relation P to the given number q is retained in fhe range. Any node in M which
does not have within its subtree a number of nodes in N which stands in the given
relation to the given number is not considered to be in the range. More formally,
fC is the set cardinality operator, P is the given relational operat;)r, and q is
the given number, then '

R= {xlxeMAVy €N, x>y A C(N) Pq}

The evocation requires some word which denotes that a cardinality is being
considered. 'The word "count' has been chosen both because of its inherent
semantic content and because of its use in one of the primitives which is explained
in the next chapter.

Examples (see Fig. 2)

Evocation ) Nude numbers in range

| Department wherever count
student <3 {9, 10, 12, 20}

Department wherever count student
within Department = 2 - {12}

3. Condition OI
Condition I allows the user to check for the existence of & node, at least

one of whose labels is numeric and the value of which stands in a given relation
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P to a given number q. This condition can be used, for example, to check the
values of ages or salaries in a personnel file.

As with the first two conditions, a temporary range N is specified by Method
IV. Every node in M (i.e., those nodes specified by hierarchical context) which
has within its subtree a node in N which has at least one label which is numeric
- and whoge value stands in the given relation P to the given number q is retained
in the range. If a node has more than one numeric label, only the first will be
considered. Any node in M which does not have within its subtree a node in N
which has at least one label whichis numeric and whoée value stunds in the given
~relation P to the given number q is not considered to be in the fénge. . More
formally, if V is the value operator, i.e., a function whose argument is a numeric '
label and whose value is the value of the label, and if U is a predicate whose
argument is a label and whose_ value is true-if and only if the label is numeric,
-then the range R is defined by

o R= {xlxeM/j\ FyeNa(x>y A .@'ﬂcf (U@ A~ V(L) Pq))} : . |
kxamples. (see Fig. 2)

Evocation Node numbers in range

Student within Stanfurd wherever
Salary > 250 {22, 23}

Student within Stanford wherever .
Salary > 350.25 {23

School wherever Salary within
Professor > 1000 g

School wherever Salary within
Student > 300 {8}
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F. Conclusion

It'y can now be seen that there are many ways to sbécif'y a range, and that the
Principle of Greater Specification applies within each of the methods and conditions
as well as over all of them. The user need onl'y‘ specify as little context as is
'. requ.ired to choose those nodes toward which he wishes to draw attent{on. Greater
specification can only reduce the number of nodes towards which he is drawing
attention. In addition the data base is being addressed by labels wlﬁch have semantic
content fo the user, in conjunction with English language words and forms which |
appear to have high semantic content with respect to the data base attention
focusing which occurs.

Thus far, no attempt has been made to explain how ranges are used once
they have been specified. The next chapter explains the use of the primitives
which build and manipulate the data base. These primitives operate on ranges

as speciﬁed by the rules explained in this chapter.
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CHAPTER I1II

DESCRIPTION OF THE PRIMITIVES

The preceding chapter described methods whereby a range, i.e., a set of
nodes ‘in the data base, may be specified. Specifying a range simply focuses
attention on a particular set of nodes; no nodes are added or deleted from the
data base nor are any connections between nodes altered. In this chapter, a set
of primitives for adding and deleting nodes and altering connections between
nodes will be explained. Which nodes are affected by the primitives is determined
by specifying as many ranges as each primitive requires.

It was seen in the preceding chapter that attention is focused on 2 set of nodes
by citing labels which the user has specified and therefore have semantic content
for him along with English words which are highly suggestive of the relationships
which exist among the user's data. Continuing in this vein of making the language
and system easy for the user to learn and use, it will be seen that each primitive
is easily identifiable by an English keyword which is highly suggestive of the
effect the primitive has on the data base. Table 1 lists the primitives by their.
keyword and gives ilie use of each.

The primitives are, of course, not absoliitely primltive. There i3 o continuum
of primitiveness, and a choice of what part of the continuum trom which to chouse
any system's primitives must be made. The choice depends on the use to which
the primitives will be put. If the primitives are too primitive, too many steps
will be necessary to do any useful work. On the other hand, if the primitives
are too general, the control over the structure being.'mahipulate\d by the primitives
will not be fine enough. These considerations have been taken into account when
choosing the point along the continuum from which the primitives given in Table

1 were taken.
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PRIMITIVE

CREATE
LABEL
UNLABEL
WRITE
COUNT
PUT

COPY

SEVER

DELETE
SAVE

RESTORE

TABLE 1

THE PRIMITIVES

USE

Creates new nodes in the data base

Adds labels to nodés in the data base
Removes labels from nodes in the data base
Writes part of the data base

Counts nodes in the data base

Buildé relati'or;ships in the data base

Copies nodes and relationships and builds
relationships in the data base

Destroys relationships in the data base

Destrdys nodes and relationships in the
data base

Saves pé.rt of the data base in secondary
storage

Restores part of the data base from
secondary storage
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A. CREATE

The CREATE primitive adds a new node to the data base by giving the set of
labels which the data item at the new node will contain. At least one label must
be given, and the labels occur within the new data item. in the order in which they
are given. The syntax for the CREATE primitive is:

<create primitive>::= CREATE <data items>
,<data items> ::= <data item> <data items> and <data-.i-tem>

Notice that more than one data iterﬁ may be created with one use of the CREATE
primitive by separating the labels o_f the data items to be created by the word
Mand. " The user may visualize the new nodes which are created as eﬁsting
unattached as new roots of thg graph in the data base. No connections are made
or altered nor are any already existing nodeé within the data base altered.

By this time the reader should observe that cerfa_in words are held in reserve
status and 'reclzogmized by the system as special delimiters, A complete list of
these resefved wérds is given in Table 2. It is often the case that a user may
want one or more of these words to occur as a label within onhe or more dala llewns.
Surrounding any word or set of words within a < data item> with quote marks
causes the system not to treat any words within the quote marks as reserved words.
In this way, any word may be included as a label within a data item.

Examples

CREATE Stanford University

CREATE MIT and Caltech

CREATE "A node containing all these words including the word create"
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ABOVE
AND

AS
BEFORE
BELOW
C@PY
C@UNT
CREATE
DELETE
FRGM
INTQ

IS

JUST

TABLE 2

RESERVED WORD LIST

LABEL
NOT
ONLY
OR

PUT

RESTORE

SAVE

SEVER

TG

VALUE
WIHEREVER
WITHIN
WRITE

UNLABEL

See also Table 3 for the reserved words of BASIC.

All of the abdve words when not enclosed in quotes

should be considered delimitérs, inclﬁdipg an "end -

of line'" character which denotes the.end of a command.
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B. LABEL
| Thé LABEL primitive allows the user to add new labels to already existing ‘
nodés. What is required is the specification of a set of nodes to which the labels
will be added and the An'éw set of labeis. The set of nodes to which the labels will
be added is given by specifying a range as described in the precediﬂg chapter.
The syntax for the LABEL primitive is:
<label primitive > : := LABEL <range> as <data ite£11>

The <data item> is the set of new labels. These new labelé are added after
the last label which existed at the node before the lna'bel primitive was evoked.
The new set of labels is appended to every set of labels at all the nodes specified
by the range.

If it is desired to insert a new set of labels at some point in the existing
data item other than afﬁer the last label in the data item, the following alternative
syntactic construction rhay be used:

<label primitive> : := LABEL <range> as <data item>
before <label> |

The new set of labels given by the <data item> will be inserted beforc the
already ocenrring <label> in all the nodes ‘specified by the <range> . If the
already occurring <label> occurs more than once within some node in the
< range >, the new set of labels given by the <datu item> will be inserted before
the first occurrence of 'the <label> . If the élabel> dpes n‘ét already occur
within some node in the <range> , the hewlset of labels is.-added at the end of the

existing set of labels at that node, as in the previous construction.
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- Example (see Fig. 2)
Evocation:

LABEL Miller within Stanford as William before Miller

.. Effect:
' Assoc. Provost[m;l
William Miller
Professor William(w] : . |
Miller N
Evocation:

LABEL Engineering Department as Electrical

Effect:

‘/ Mechanical Engineering [12]
[2 O] Department Electrical
Electrical

Engineering : /

Department Electrical

C. UNLABEL o

The UNLABEL primitive allows the user to remove labels from existing nodes.
As in the LABEL primitive, a set of nodes, specified by a range, along with the
set of labels to be.removed must be evoked. The syntax for this primitive is:

<unlabel primiti\(e,\:_:é UNLABEL <range> ae <data item> .

'All the nodes in the <range> are first identified, then all the labels. in the
<data item> are removed from each of these nodes. 'i‘he labels in the <data it;em>
are removed one by one and do not have to occur in the same order as they occur

within the nodes inthe <rahge> . Labels in the <data item> which do not already



exist at some node in the <range> cannot, of course, .be removed. In addition,
the last label cannot be removed from a node, thereby leaving a null data item.
Observe that to completely relabel a node, the new labels s,hduld first be added
using the LABEL primitive, then the old labels removed by using the UNLABEL
- primitive. If a label to be removed occurs more than once at some node in the
<range> , only the first occurrence of that label will .be removed. However, if
a label to be removed occurs twice for example, within some hode in the <range>, )
and that label occurs twice in the set of labels to be removed, then both occurrences
will be removed. |

Example (See Fig. 2)

Evneatinn- | " ‘

UNLABEL Sheldon Becker as Stlldent
Effect:‘ ; o | |

Sheldon Beck_er[l 8]

Evocation:
UNLABEL Secretary within Computer Science as Secretary

Effect: | \
[19]

Grace’ N I .[21]
Mickelson Carla West" -

Evocation:
UNLABEL Elé@trical Engineering Department as Department Engineering
Effect: ‘

;Electrical[z 0.] .
AN

s,

N
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Evocation:
- UNLABEL Salary Classified as Salary Classified

Effect: Illegal

: ’I-‘he.prec.ed,ing three pri‘mitives add new unattached nodes to the data base and
add and delete labels from the data items at nodes specified by a range, respebtively.
The data base is altered by:the use of. théée primitives at the data item level: no
relationships between data are altered.

- The following two primitives.are useful for query .pu‘ljposes _only; The data
- base is not a_ltéred An any way by the use of these primit'ives.'4 Rather, an 'immediate

response is typed out at the terminal.

D. COUNT
The COUNT primitive informs the user of the numbéi‘ of nodes in a given
range, i.e., the cardinallity of the ~i'ahge. The.data base is not altered in any
way by thenuse of this primitive; - |
The syntax for this primitive is:
<count primitive> : := COﬁNT <range>
Example (see Fig. 2) ‘
Evocation:
| COUNT Student within Stanford
Response: 3 o
Evocation:
COUNT Depa'rtme:n:t withi'ﬁ Stanford wherever Professor is within Department
Résﬁonse: 2 » |
Evocation:
COUNT Professor, within Engineering School

. Response: 0.:

- 31-



E. WRITE
The WRITE primitive causes a part of the data base to bé printed in an outline
format with proper indentations to denote the various hierarchical levels. For
each node,: the labels. in the data item at the node are printed in the order in which
théy occur within the data item.
The' syntax of the first form of the WRITE primitive-is:
<write primitive> : := WRITE <rangé>
.Every.node in the <range>, with all the subtrees of each: node propeﬂy
‘indented, is printed. The subtrees-at each level are printed in an arbitrary order.
If there are no nodes in the specified range, then an indication of this fact is
printed.
Example (see Fig. 2)
Evocation:
WRITE Department within Humanities
Response:
Communication Department
Professor Parker
Computer Science Department
Student Sheldon Becker
Professor Miller '
Secretary Grace Mickelson
Secretary Carla West
Salary Classified
Chairman Professor Forsythe
Evocation:
WRITE Professor within Elcotrioul Eigineerilg
Response: .

Null range

If the data base has the form of a tree, then an outline, as demonstrated

above, with no duplications within the outline, would always result from the use
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of the WRITE primitive. HoWever, since the data base has the form of a directed
acyclic graph, unnecessary printing of duplicate subtrees could result in
response to one evocation of the WRITE primitive. To alleviate this unnecessary
printing, only the root node of any subtree which would be printed the second or
subsequent time in response to a single evocation of the WRITE primitive, along

with an indication that the entire subtree has already been output, will be printed.

Example (see Fig. 2)
Evocation:

WRITE  Miller - o
‘Response: -

Professor Miller
Secretary Grace Mickelson
Secretary Carla West .
Salary Classified ‘
Assoc. Provost Miller : co
Secretary Carla West <occurs above> .

Evocation:
WRITE School of Engineering
Response:

School of Engineering
Electrical Engineering Department
Student Hardy .
Salary $300.53
Wwife Susan
Mechanical Engineering Department
Student Hardy <occurs above>
Student Laurel
Salary $400

-
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Evocation:
WRITE Provost
Response:
Provost Lyman
Assoc. Provost Moses
Assoc. Provost Miller
Secretary Carla West
4 Salary Classified.
Assoc Provost Moses <occurs above>
Assoc. Provost Miller <occurs above>
It is sometimes desirable to print only the nodes in the range without their
subtrees. The syntax of this second form of the WRITE primitive is:

<write primitive> ::=WRITE only <range>"

Example (see Fig. 2)

Evocation:
WRITE only University
Response:

Texas Uuniversity
Stanford University

© Evocalion:
WRITE only Student within Stanford
Response:
Student. T.aurel
Student Hardy C
- Student Sheldon Becker-
Thus far, the primitives which have been introduced do not alter the relation-

ships between data. The following four primitives build and destroy the hierar-

chical relationships between data.
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F.: PUT
Thé PUT primitive builds hierarchical relationéhips between existing ;1Ao‘des‘. '
Two ranges are specified, and every node in the first range is made to be oﬁe |
level hiérarchically inferior to every node in the second range, subject to two -
restrictions. Thﬁs, if tﬁere are n nodes: iﬁ the first range, and m nodes in the
second range, then n X m hierarchical relationships are formed if none of the
restrictions are violated. The restrictions are:
1) No more than 1 direct (i.e., one lgvel) hierarchical relationship may
exist between any two nodes. That is, the folléwing situation may not
occur:

0

However, the following is legal: {O}
. .

2) No node may be hierarchically inferior (or superior) to itself. That is, .

the following situations may not occur: \(o } : : ,

For every possible pair of nodes in the first-apd.'s.ecc‘)nd ranges, respectively,
a direct hiéra'rchical relationship is built so lo.ng' a.s‘nbn,e- of the restrictions are
violated. Under no conditions are any existing relationships altered in any way.
The syntax for the PUT primitive is: -
o A<put primitive> :':¥ ‘PUT greinge> , into <range> ,
As suggested by the syntax, except when the restrictiqns would be violated,
a direct (one levei) hierarchical relationship is built from every node in <range>

to every node in <range> 1
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Example (see Fig. 2)
Evocation:
PUT Student within Engineering into Law Schoeol

Etfect:

yd
Law Schooll::I

\_\/

Student Laurel[zsj Student Hardy[zzj

PUT Secretary into Provost Miller

Evocation:

Effect:
\ ros 1]
Professor Miller [15) Assoc. Provost
Mlller
Secretary[ ]>< 1]
Grace Mickelson Secretary Carla West

A shorthand combination of the CREATE and PUT primitives is useful
while building data bases. If <range$1 is speciﬁed'l";y Method II of the preceding
chapler, L. e., willivul auy hierarchical or subtrecc contcgtg and if that range ie
nﬁll, then a ﬁode having the given set of labelé will first be implic;itly CREATE'd
and a message output to the user that this creation has occurred. The PUT "
opefation will then probeed as described.

Example (see Fig. 2)

Evocation:

PUT Student Henry Bauer into Compuler Science
Response:

Student Henry Bauer Created
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Effect:

Computer Science Department O]

/ ‘ Student Henry[ :N

Bauer

G. COPY

It is sometimes desirable to be able to copy part of the data base so that
further processing may be done on the copy without disturbing the original. The
COPY primitive gives the user this capability. This primitive has three syntactic
forms, the first of which is: | )

<copy primitive> : := COPY <range>

A copy of each node in the <range>, along with its entire subtree complete
with all the relationships which exist there, is made. Thesev copied nodes,  with
: their subtrees, are left unattached as roots in the data base. The original nodes
and their subtrees are not altered in any way.

Example (see Fig. 2)

| Evocation:

COPY Provost Miller

Effect:
‘ . 28
Provost:I Lyman 2] Assoc. Prlovost Millex( J
/ [16]\ ' - Secretary Carla Wesl;[29J
Assoc. Provost ry l ,
Miller ,
\\ : Salary C-lassified[SO]
Secretary [2 1]
Carla West

Salary Classified [24]
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Evocation:

COPY Professor within Computer Science within Stanford

Effect: [ ]
: 29
~_[ig)  Chair man ey
Computer Science - Professor
Department ‘ Forsythe
/ ' [30]
Chairman 4 Gy oot
Professor Professor Miller , ace
Y < - Mickelson
Forsylhe [3 1]
4 . Secretary
Y Curla West
Student 18] Secretary[lg] 52)
Sheldon Grace 32
. Salary
_Becker Mickelson Classified
Secretary [" IJ
Carla West

 salary Classified?4

The second form of the COPY primitive allows the user to make a copy and
PUT the copy somewhere into the hierarchy. More specifically, two <range>'s
are specified. A copy of each node in the first range (along with its subtree and

all connections intact) is made and PUT into the hierarchy for each node in the

second <range> . - That is, as many copies of the first range are made as there
are nodes in the second range into which the copies are PUT. This second form
of the COPY primitive is thus a shorthand combination of (possibly) several appli-
cations of the first form of fhe COPY primitive and PUT primitive operating on

the copy.
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The syntax is:
<copy primitive>: := COPY <range> to <range>
Example (see Fig. 2)

Evocation:

COPY Student within Computer Science to Department within School
of Engineering

Effect:

Comput'ér Science Department [10] Electrical[zo:l .. “Mechanical[lz]
Engineering Engineering

/ A ’ : \ Department -Department
Student Sheldon Becker [18]' ; \ . / / r

Student Sheldon[zs] . 'Student[zg]
Becker Sheldon Becker

The third variation of the COPY primitive is, in reality, an addition which
can be made to the first two forms. As suggested by t‘he form of the WRITE
primitive which allows the user to write out only the root nodes of certain subtrees
by including the kéyv'vprd "only'" in the evocation of the primitive, pnly root nodes
of“ spe'ciﬁed subtrees can be copied, and in addition entered in;b fhé hierarchy if
desired. The syntax of this variation of the first two forms of thgv COPY prim_itive

is:

[

<copy primitive>::= COPY only <range>

|

<copy primitive> ::= COPY only ‘<range> to <range>

In the first case, "only the nodes specified by the <range>, without their
subtrees, are copied and the copies are left unattached as roots in the data base.
In the second case, as many copies of the nodes specified by the first <range>

(without their subtrees) as there are nodes in the second <range> are made and



the copies are PUT into the nodes 1n the second <range>. In both cases there
is no alteration of any kind made to the original nodes or their subtrees.
Example (see Fig. 2) .
Evocation:
COPY only Provost Miller
Effect:

Assoc. Provost [16] Assoc. ProvostltZS]
Miller . . Miller

“ ............... l o S—
Secretar Carla West[zlj.
- Salary Classified[24]

Evocation:

COPY only Professor within Computer Science Department witliin

Stanford .
Effect: : L
. E 0]' Chairman[?s].f . Profess;or[zgl
Computer Science Department™ Professor Miller
7 - ." T e o N \ Fors !he B ] w

—
Chairman [1-'4]
Professor Forsythe

Professor Miller[lﬁf-5 ]
Student [118],
She}ldbn Becker.

~ Secretary Carla West[21],

Salary Classiﬁed,[24]_
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- Evocation:

COPY only Student within Computer Science to Department within
' School of Engineering

Effect: Same as a preceding examplé with "only" omitted, since all
students within Computer Science have no subtrees. -
The preceding two primitives, PUT and COPY, build new relationships
between data and, in the latter case, implicitly create new data. The following
two primitives, SEVER and DELETE, destroy relationships between dé.ta, and,

in the latter case, destroys data as well.

H. SEVER
' The SEVER primitive destroys relationships between data but never data
itself. As with the DELETE primitive to follow, tl:1e SEVER primitive has two
forms. In both forms, at least one range is specified. In the first form, aJl
nodes in the specified range are made to have no nodes hierarchically superior
to them; that is, those nodes are SEVER'ed from the tree and become roots of the
tree. The subtrees of the nodes which are so cut off from above are left undisturbed
unless some of the nodes within thgm are also being severed. The syntax of this
'form is:
<sever primitive> ::= SEVER <range>

After this primitive has been evoked: all nodes in the. spéciﬁed <range> are
roots of the tree, there being no nodes in the data base within which they exist.

Example (see Fig. 2)

Evocation:_

SEVER Computer Science withfn Stanford
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Effect:

: | . fio
School of 'Humanities£6] Computer Sc1ence[ ]

and Sciences _ ’ }3§pa_rtm§nt
Communication Department’] pfofessorld]

Assoc. Provost[16] Miller
Miller

\ASe‘c‘retary[2 ] _
A Carla West

Observe that néde [10] is now a root of the tree. Yet, a node in its subtree,

i.e., node [21] remains attached to node [16]. Recall that no relationships within
the subtree of a severed node are alteréd,
Evocation:_

SEVER Student within Engineering Department within Stanford

Effect: .
‘ \ Student[zz] Student[23]
. .(20] . .12
Electrical Mechanical Hardy . Laurel
Engineering Engineering
Department Department
Evocation:

SEVER Carla West_

Effect: N
[1 5] Assoc. {_16] Secretary[‘d 1]
Professor Miller - Provost L Carla West
Miller
[19] .
vecretary Salary C‘lassii:'ied[2 ]

Grace Mickelson

In the first form of the SEVER primitive, all nodes in the range were com-
pletely severed from the tree; that is, all of the relationships which connected

these nodes immediately from above the nodes were severed. The second form
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of the SEVER primitive allows the user to selectively sever some of the relation-
ships which connect the nodes immediately from above the nodes. The selection
is éccomplished by specifying a seéond range. Those connections immediately
above a node in the first range are severed which causes that node to be within
any node in the second range. Thus, nodes in the first range are severed from
‘nodes in the second range. The, syntax for this form is thus:
<sever primitiveS‘: := SEVER <range> from -' <range>
Example (see Fig. 2)
Evocation:
| SEVER Carla West from Aséoc. Provost Miller

Effect:

Lo 16
Professor Miller[15] Assoc. Provost[ ]
. - Miller

| [19]

Secretary (2 1]
Grace Mickelson Secretary Carla West

Notice that only that relationship which causes node (21] to be within node

(16] is broken.
Evoculion:
SEVER Carla West from Stanford

Effect: Same as a previous example whose evocation was:
SEVER Carla West

. since all connections immediately above node [21]

cause node [21, to be within node [2).
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Evocation:

SEVER Student within Computer Science from Electrical
Engineering Department

Effect: No effect since none of the connections above node (18] (the 1st
range) causes node [18] to be within‘ any node of the :sec‘ond rénge.
A unifying concept which may. lessen any difficulty in understanding the dis-
tincition between the two forms of the SEVER primitive is the following. Think
of the first form of the SEVER primitive as having a second range which specifies |
all the roots of the tree. Thé first form is thus a special shorthand version of
the second form, since any node in the tree is either a root of the tree or is

hierarchically inferior t6 some root of the tree.

I. DELETE
The DELETE primitive has two forms, precisely analogous to the SEVER
primitive. The syntax of these forms is:
<delete primitive>: := DELETE <range>
<delete primitive> ::= DELETE <range>, from <mnge>z
As with the two forms of the SEVER primitive, the first f.orm. ofAthe DELETE
primitive is merely a shorthand version of the second fofn with an implicit range
which specifies all the roots of the tree. Thus, in the action of this primitive,
some node is being deleted from a set of nodes. |
If a node x is m the first range and its position in i:he data base is such that
x is also within the second range, thén node x is a candidate for deletién. In
order to understand the manner in which the DELETE primitive operates, scveral
simplifying assumptions concerning the configuration of the data base near node |
x will first be_ made. As the operation of the DELETE primitive becomes clearer,

these assumptions will be removed.
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Consider first the simplifying assumption that node x together with its subtree
is a complete unit, sharing its information with the rést of the data base only
through, at most, node x (if x is a root, the 'informéiéi'on is not shared at all).
More specifically, every node within the subtree of x is not within the subtree
of any other nodes except other nodes within x's subtree or nodes hierarchically
superior to x. Examples of such nodes x from Fig. 2 include [8] [2] (1, [22],

and [21], but not [6] or [10] or [15] or [12] or [20]

Now assume that all connections immediately superior to x cause x to be
within the‘ second range in an evocation of the DELETE primitive. .Tllle action of
the DELETE primitive will then cause the node x and every node within the subtree
of x to be erased from the data base.

- Example (see Fig. 25
Evocé.tion: : |
DELETE School of Engineefing from 'Stahfo.rd

Effecf:

Stanford University[2:|

P

School of Humanities \ A dministration»'?
and Sciences 1

[

Law School[5] g

Evocation:
mr

DELETE Student within Engineering Department from
School of Engineering

Effect:

School of Engineering[s]

P )
Electrical[2 0]/ . \ Mechanical (12)

Engineering ’ Engineering
Department : Department
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Now remove the most recent simplification and assume that not all connections
immediately superior to x cause x to be within the second range in an evocation of
the DELETE primitive. This means that x and its subtree contain information
relevant to some other no:des in the data base besides'the nodes from which x is
to be deleted. It would thus be incorrect to erase x and its subtree from the data
base; raiher, only the connections between x and the nodes froﬁ which x is to be
deleted should be erased. In this case, the DELETE primitive is \seen to operate
precisely as the SEVER primitive. .

kxample (see Fig. 2)

. Evocation: '
DELETE Carla West from Professor Miller

Effect: |

Profess;\r Miller [15] Assoc. Provo/;t Miller Le)

) 24
Secretary Grace 2] Secretary .Carla West[“ 3 ,
Mickelson r )

salary Classified *4

Now remove the original simplification and assume that the subtree of x is
not a conllplete unit and that information withih x's subtree is shared with the rest
of the data base through nodes other than x. More specifically, there exist nodes
within the subtree of x which are within the subtree of nodes other than those within
Xx's subtree or nodes hierarchically superibr to x. Examples of such nodes x from
Fig. 2 include [6], [10), [15], [12], and [20). As before, it would be incorrect to
erase those nodes (and their subtrees) within x's subtree which share common
informatioh with other parts of the data base, i.e., those nodes (and their subtrees)

which are within the subtree of nodes other than those within x's subtree or nodes
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hierarchically superior to x. So, as before, only the connections between these
common nodes and the rest of x's subtree is erased.

Example (see Fig. 2)

Evocation: .

DELETE Provost Lyman from Administration within Stanford

. Effect:
AdminiStrationl”)
\ .
Professor Miller [15]
/ [19 Secretary Carla West[21]
Secretary Grace : 1
Mickelson Salary Classified %)
Evocation:

DELETE Student from Mechanical Engineering’

Effect:
/ [20) Mechanical Engineerin (12]
Electricall Departmect g
Engineering P
Department

Student Hardy[zz]

"{‘he heart of any data base system is the ability of the user to create adatabase, save

it away somewhere (the user should not have to worry about where) and go away
to do something else. At some later time, the user should be able to fetch his

data base, query it or modify it, and save it away again for still further processing.
As background to any implementation, therefore, there should be a file system.
The following two primitives allow the user to interface with the file system in as

easy and simple a manner as should be possible for him.
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J. SAVE

The SAVE primitive allows the user to save parts of his data base in quantities
of complete units as discussed in the preceding éxplanation of the DELETE primi-
tive. The syntax for this prﬁnitive is:

| <save primitive> : := SAVE <range> -

The effect of an evocation of this primitive is to cause each node in the range
' with its entire subtree (nodes and connections) to be removed from the data base
(just as with the DELETE primitive) but saved in such a way so that the structure
which has been removed from the data buse cun be returned (o the data base at
some futurc time in precisely the same form in whiéh it was saved.

The only restriction which applies to the use of this primitive is that the
(sub) tree being saved must be a complete unit and cannot share its information
with other parts of the data base except through its root node. Thus, each node
and its subtree which is being saved must satisfy both Simpliﬁcations mentioned
in the explanation of the DELETE primitive. If part of the data base to be saved
shares its information with other parts of the data base, the part to be saved

must first be COPY'ed and then saved.

K. RESTORE

The RESTORE primitive restores nodes and their subtrees to the data base
in precisely the form in which they were saved. This primitive has two forms,
the second of which is a shorthand form for restoration and placement within the
hierarchy. The syntax pf the first form is:

<restore primitive> : := RESTORE <range>

The <range> in the use of this primitive must be a range specified by Method

II of the preceding chapter. Thus, there may be no hierarchical context of any

kind in the specification of this range. The set of saved nodes is searched and
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the saved nodes having at least the set of labels as that specified in the <range>
are removed (with their subtrees) from the saved area and restored to the working
data base as separate trees with the root nodes of the saved subtrees becoming
roots in the data base.

The second form of this primitive is:

<restore primitive> ::= RESTORE <range> to <range>

The first <range> must satisfy the same requirements as before and the
same action occurs as before in the saved area. However, once the nodes are
removed from the saved area, the action of this pfimitive is equivalent to an
evocation of

PUT <range> within <range>

where the first <range> is the set of nodes just removed from the saved area,
and the second <range> is the same as the second <range> in the evocation of the

second form of the RESTORE primitive.

L. Conclusion

This chapter has described a set of primitives for creating, manipulating,
querying, and destroying relatfonships and data within the data base. It should
be observed that no arithmetic processing nor any programining structure is
possible within the framework of primitives discussed thus far. The next chapter
describes the design of a programming system in which TAXL and a language
such as BASIC are incorporated to yield a system in which both numeric and
nonnumeric data processing capabilities are available both independently and in

a manner in which the numeric and nonnumeric data bases may interact.
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CHAPTER IV

THE TAXL/BASIC SYSTEM

The range specification mechanism and its use in the evocation of the data
base primitives presented thus faf yields a system in which comma;nds are inter-
preted as they enter the system and are executed immediately. In addition, no
arithmetic capabilities have been introduced thus far. As was [;ointed out in the
introduction, the BASIC prougramming language and system (Kemeny []967]),
designed by Keme-ny and Kurtz at Dartmouth, provides an exccllent casy-to-learn-
and-use interaci;ive computer system for arithmetic processing. Rather than
design an arithmetic capability which would be included in TAXL, a design for
merging a version of BASIC and TAXL will be given. The version of BASIC "
most nearly like that Which will be discussed here is tha_t version wriﬁtén at
Hewlett-Packard, a system quite similar to the Dartmouth system. The ‘reader
is expected to be familiar with some EASIC systcm in the discussion which
follows.

The degree of interaction available in this vérsion of BASIC, as in most
versions of BASIC, is different from the immediate interbretation and execution
of the TAXL commands considered thus far. This difference should be well
understood. The key to'determining the degree of interaction of an on-line com-
puter system is the specification of the data which is being manipulated.

Presumably, the data which the user would ultimately want to'ma.m'pulate
is the tree data base itself, along with the values of certain arithmetic variables
and arrays. If the system recognizes commands fo manipulate that collection of
data, then that degrce of interaction should he considered the strongest. Instead,

if the system recognizes commands to manipulate commands which manipulate the
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data base in question, then the degree of interaction is less strong. The Hewleét—
Packard BASIC system is of this second kind. The data'which is immediateiy
manipulated by HP BASIC commands as they are entered via a teletype is a

- program buffer Which contains commands which will manipulate the values of
arithmetic variables and arrays when the program is executed. The commands
found in the program buffer which, when executed, cause the values of variables
and arrays to be manipulated and hereafter called BASIC commands, cannot be
entered and executed directly as are the TAXL commands. It appeers, then,
that TAXL commands, as discussed thus far, are only executable directly as
they are entered into the system, and that BASIC commands are only executable
indirectly after they have been entered in a program buffer.

I feel that both degrees of interaction should be available for both TAXL and
BASIC commands. That is, TAXL commands should be able to be put into a
program buffer for later execution and certain BASIC commands should be able
to be directly executable as they are entered into the system. In keeping with the
spirit of this work, the distinction between which degree of interaction the user -
desires as he types commands into the system should be clear and straightforward.

It should be remembered that every TAXL command, as well as every BASIC
command, begins with some English keyword which strongly suggests the action
the execution of that command will have. Which degree of interaction the user
desires for each command he enters into the system can be i.ndicated by him by
the .presenee or aesence of an integer number preceding the English keyword which
actually begins the command. Thus the following holds for both TAXL and BASIC
commands. If an integer number is not present preceding the English keyword,
the command will be interpreted and immediately executed. If an integer number

is prescnt preceding the English keyword, the command will not be immediately
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executed but will be entered into a program buffer with a sequence number equal

to the value of the integer number which preceded the command. ’

A. Syntax Analysis

In the latter case, the question of when the syntactic structure of the command
is checked is open to debate. While this is basically a question of implementation,
the answer will affect the learning behavior of the naive user. 'Sincé one of the
design goals of the language is ease and speed of learning the language, the question
should be considered herc. Kemeny and Kurtz felt that the syntactic structure of
the commands should be checked immediately to see if a syntactic error occurredinthe
command. This philosophy has been followed in HP BASIC, as in most BASIC
implementations. The authors of some APL systems (TFalkoff [1968]) follow a
different philosophy. Their belief is that the command should be entered into the
program buffer without its syntactic structure being checked, and not until the
execution of the command is about to commence will the user be notified if a
syntactic error has indeed occurred. |

Psychological studies on learning and training behavior (Wolfle [1951:]) indicate
that immediate feedback speeds the learning process. Since one of the requirements
of this system is that it be easily learned, immediate feedback of syntactic errors,
wherever possible, seems preferable to delayed feedback. If the user is not
informed of a syntactic error which occurs in a command as it is entered into the
system, he may mistakenly feel that since the system'has accepted the command,
the cumx_uand is correct. It is at precisely this moment, when the user's attention
is more focused on the one command in question than at any other time in the
program's formation, that the user should be informed if a syntactic error exists
within the command. This concept is not too unlike programmed readers in which

the reader must successfully answer a question before he can proceed. By the
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time the user has given the command to begin execution of the commands in the
program buffer, his attention will usually be more focused on the program as a
whole and on its semantic structure rather than its syntactic correctness. To be
informed of a syntactic error during the execution of the program would be more
of a hindrance to clear thought than a help.

The conclusion of the preceding paragraph seems to be true only when the
goal of the user is to learn the syntax of the language. Once this has been accom-
plished and the goal of the user is to write useful and logically complex programs,
the facility of sketching out logical sections of progralﬁ without having to be con-
cerned with their syntactic correctness at that time seems to be important. Thus,
the goal of the user should be a consideration in deciding whether the synﬁactic
structure of a command is to be checked at command entry' or at command execution.
Since one of the goals of the current implementation is to facilitate learning of the
language rather than writing large progréms, the syntactic structure of a command
is checked at command entry.

From an implementer's point of view, a translation from thé command's
external form to an internal format( which is easier to execute and a syntactic check
of the command can be accomplished at the same time. Rather than do the trans-
lation every time the command is enc_duntered during program execution, it is
more reasonable to do the translatioﬁ once at command entry into the program
buffer. Because a syntactic check may be performed during command translgtion '
with a minimum of extra effort, a syntactic check at command entry time is quite

desirable.

B. Command Classification

A summary of BASIC and TAXL commands will now be given (see Table

3). Each command is placed in one of three categories whichgives that command's
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TABLE 3

COMMAND CLASSIFICATION

- 54 -

:TAXL/BASIC Command Classification Use

,CREATE BOTH Creates new nodes

LABEL BOTH Adds labcls to nodes

UNLABEL BOTH Removes labels from nodes

WRITE BOTH Writes part of the data base

COUNT BOTH Counts nodes in the data base

pUuT BOTH Builds relationships in the data base

COPY BOTH Copies nodes and'felatiohships and

builds relationships in the data base

SEVER BOTH Destroys relationships in the data base

-DELETE | BOTH Destroys nodes and relationships in the
' ‘data base ’

SAVE BOTH Saves part of the data base in secondary

_ storage

RESTURE BOTH Restores part of the daty base from

‘ ' secondary storage

READ BOTH | Reads numeric data from data block

DATA BOTH Enters numeric data into a data block

PRINT BOTH Types values of variables and arrays

LET BOTH Computes and assigns values to variables

DEF BOTH Defines an arithmetic function

DIM BOTH . Declares dimensions of arrays

MAT--- BOTH The 2-dimensional array instructions

GQ@ TY PROGRAM  Transfers control

IF PROGRAM  Conditional transfer

FOR PROGRAM Sels up and operates a loop

NEXT ’ PROGRAM Closes a loop

FOREACH PROGRAM  Sets up and operates a loop to sequence

B ‘ through nodes in a range

GOSUB PROGRAM  Transfers to a subroutine

RETURN PROGRAM Returns from a subroutine

gTonr PROGRAM = Gtops a program

LIST SBS Lists commands in the program buffer

CLEAR SBS | Rcmoves commands from the program buffer

\(RUN SBS Initiates execution of commands in the

program buffer



permitted degree of interaction. Some commands will be restricted to less than
the highest degree of interaction. Commands classified by the sign PROGRAM
are only alloWed to be entered into the program buffer for later execution,and so
must always be preceded by an integer number when e;ltered into the system.
Commands which control program flow would make no sense if they were executed
immediately upon entry fo the systefn since they require a program to give them
meaning. Other commands, the numeric data and data base manipulation commands,
vclassiﬁed by the sign BOTH, may be executed immediately upon entry to the
system or may be entéred into the program buffer for later execution. Hence,
these commands may have BOTH degrees of interacfion with respect to i:he
system. |

A: further set of commands will now be introduced which manipulate the pro-
gram buffer. These are classified by the sign SBS (statement-by-statement)
.indicating that these commands must be entered into the system to be executed
Aimmediately and cannot be entered into the program buffer for later execution.
Systems such as LISP 1.5 and most assembly languages allow such program
manipulatioh commands to be programmable. However, this somewhat advanced
concept is not essential for TAXL/BASIC.

Entry of a éomlnaxld into the program buffer is implicit and is indicated
by preceding the command by an integer number. The command then has
a sequence number equal to the value of the integer number. If a command
is enfe_red ihto the b,rogram buffer with a sequence number equal to the
sequence number of a command already in the buffer, the new command

replaces the old command.
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LIST .- Classification: SBS

The LIST command has three syntactic forms.

<list command> ::= LIST
<list command> ::= LIST <integ‘er number>. \
<list command> ::= LIST <integer number> / <integer number >

The first; form causes the listing of all commands in fhe program buffer,
along with the sequence nﬁmber of each, .arranged in ascending numerical order.
Commands may he entered into the pfograrﬁ buffer in any order but Will always
be listed in ascending sequence order. The second form qﬁusef_}‘ only the listing
of the command in the prograni buffer having the given seéueﬁce nulmber; if such
a command exists within the buffer. The third form causes the ‘1isting, in
ascending numerical sequence ordexj, of all the commands having a sequence
number whose value is equal to or greater than the first integer number givén

and is equal to or less than the second integer number given.

CLEAR - Classification: SBS
The CLEAR command removes commands from the program buffer, and has

three syntactic forms, analogous to the LIST command:

<clear command> ::= CLEAR
<clear command> ::= CLEAR <integer number>
<clear command> ::= CLEAR <integer number> / <intéger number>

The first form causes the erasing of all commands in the program huffer.
The second form causes only the erasing of the command in the program butfer
having the given sequence number, if such a command exists. | The third form
causes the erasing of all the commands in the program buffer having sequence

numbers whose values lie between (and including) the given integer numbers.
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RUN - Classification: SBS
The RUN command causes the program in the program buffer to begin
execution. This command has two forms: |
<run command> 1= RUN

<run command> ::= RUN <integer number>

The first fo_rm causes the execution of the program in the program buffer to
begin with tﬁe command having the algebraically smallest sequence number. The
second form causes the execution of the program in the program buffer to begin
with the command having ‘a sequence number equal. to the value of the given integer

number. If no such command exists, the user is notified.

Commands in the program buffer are normally executed in ascending numerical

sequence unless this sequence is altered by the execﬁtion of a command having the
classification PRGGRAM. The program stops executing either when a STOl‘3 com—'
, mand is executed, when control is transferred to a nonexisting command, ér when
the next command to be executed should be the command with the next highes\ﬁ se-

qﬁence numbe;' and no such\command exists. In any case, the user is notified

where (by sequence number) the execution of the program is terminated.

C. Interface Between TAXI and BASIC

The commands of both TAXL and BASIC have now been presented. The control
commands of BASIC have been adopted to properly organize program flow, and
several commands for manip‘mlating the program buffer have been given. Thus
far, however, the only interface between'TAXL and BASIC is at the program level.
Cémmands from both languages may be evoked interchangeably for immediate
execution and commands from bothlanguages may oceur in thel program buffer.

' What is needed to make the system more useful is an interface at the data level.
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The data for TAXL are the numeric and nonnumeric labels at nodes and
the hierarchical relationships of the directed acyclic graph data base, while
the data for BASIC are the numeric values of variables ar;d array elements.
Some BAS"ICisystems include a limited string processing capability; hox‘zvever,'
such a capability varies so widely in the relatively few BASIC systems (e. g ,
Stanford [1968]) which possess one that this work will not concern itself with
sﬁch a capability.

Recall now the kind éf user for. whom this syslem is inlended. The main
emphasis of his use of tlﬁs system will be in handling nonnumeric dala, the
opcrations for whioh aro 'ava,ila,ble frorﬁ the TAXL primitives and data hase.
The reasons for including BASIC are thc presence Of, the ”programming control
commands and the arithmetic proAc.ess.ing capabilities which BASIC possesses.
At the data level, BASIC operates only on numeric data. Thus, if an interface
Between BASIC and TAXL is t‘o be made at the data level, it,- must be é.t the nu-
méric data level. Recalling that labels at the nodes in TAXL's data base can -
be numeric, it becomes clearexf that the data interface must'e.xist at the numeric
level, the only data type which the two systems have in common. The interface
must thus concern itself with the convenient retrieval of numeric values from
TAXL's numeric labels which can éhen be used in computation and assignment
in BASIC commands, and also in the conversion and placing of the values of
BASIC variables into TAXL's data base in the form of numeric labels. In ad-
dition, since the COUNT primitive in TAXL results in a number being output,
the value thus obtained should also be able to be used in computation and assign-
ment within BASIC.

The discussion of this data interface will now proceed in four steps: the
extension of the use of one form of the subtree context specification for referencing

values, a solution to the problem of whether an identifier which occurs in a
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'i‘AXL/ BASiC command is a BASIC variable or a TAXL label, the introduction
of a VALUE operator and an extension of the use of the COUNT primitive, apd'
the introduction of a new sequencing statement pair, analogous lto BASIC's FOR-
NEXT sequencing pair, for sequencing through the nodes in a range. |

Recall that in Condition III of the subtree context specification of ranges, the
.values of numeric labels were compared with given numbers. The values were
retrieved by evoking a range and considering the values of any numeric labels
which occurred in any of the data items of the nodes in that range. This same
mechanism éan now be used outside the subtree context specification of ranges,
particularly in arithmetic expressions in LET state/ments of BASIC. Use of this
mechanism in a BASIC construct, which retrieves more than one value, is not
allowed and will be considered a semantic error. Admittedly, a construct which
WOuld allow the assignment or computation on a vector of values would be useful;
however, this somewhat advanced c'oncept.would not add to the simplicity of the
language. Since extensions and complications in other areas of the language
would have to be made in order for this construct to have consistent application
throughout the language, and since there will be alternate methods of performing
the same compﬁtation, this construct is, therefore, not allowed.

Examples (see Kig. 2)

Evocation: '

LET S = Salary within Laurel
Effect: The BASIC var;able S is assigned the value 400
Evocation: |
LET S = Salary within Stanford R

Effect: Illegal, since the range yields more than one value.
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Since there is no keyword which indicates that a value is being retrieved
from the tree, confusion can arise over whether an identifier is a BASIC variable
or a TAXL label. | |

For example, in the command

LET S=X
is X a BASIC variable whose value is to be assigned to §, or is X a TAXL label
being used to reference a range consisting of one node with a numeric la}bel, the
value of which is to be assigned to S? This problem is solved by requiring that
at any given moment, the set of BASiC variables and the set of active (not in the
saved area) TAXL labels be disjoint. TAXL labels are created by evocafions of
the CREATE primitive (or by implicit creation in evocations of the PUT primitive),
and are destroyed by evocations of the DELETE primitive. Once an identifier which
was uséd as a TAXL label no longer occurs in the tree, it may be used as a BASIC
variable. BASIC variables are created implicitly by their first occurrence on
the left-hand side of LET statements; Aprior to this creation, their value is
undefined and cannot be used. BASIC variables may be destroyed by their use
on the left-hand side of a LET statement having an empty right-hand side. For
example,
LET X =

destroys X as a BASIC variable and allows its subsequent use as a TAXL label.

With the mechanism described thus far, values may be retrieved from the
TAXL data base and used in BASIC contexts. In order to allow the values of
BASIC variables to be placed in the TAXL tree or removed from it, an operator
which, when applied to a BASIC variable, returns its value is needed.. This
operation is automatic when a BASIC variable is used in any arithmetic context.

However, in TAXL's LABEL or UNLABEL commands, for example, evoked
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labels stand for themsélves. In such a context,' to fox;ce efraluation of the BASiC
variable name to obtain ’its, \}alue which is then to be put into or'remoyed from the
label set of some node in the tree, the VALUE operator must be used. |
Example (see Fig. 2) “
Evocation: | ‘
LET S = Salary within Student Hard& within Engineering
Effect: The BASIC variable § is assigned the value 300.53
.Evocatiop: ' | .
UNLABEL salary within Student Hardy as value S
Effect: |
Studént Hardy22)

/oy

Salary $ Wife' Suéan[%]

Notice in the latter example, that a label S does not occur within any node
in the specified range, and thus the VALUE operator must be uséd in order to
rer;love the numeric label 300.53, the value of S, frogh the node. ‘

The COUNT construct, which appears in the subtree context specifica}:ion of
ranges and is also a TAXL primitive, is extended only in the sense of where the

construct can occur; it may now occur within any BASIC numeric expression

and yields the number of nodes in the specified range.

Example (see Fig. 2)
Evocation: ’
LET N = COUNT Salary within Stanford

Effect: The BASIC variable N is given the value 3
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FOREACH,NEXT - Classification: PROGRAM

The FOREACH and NEXT statements are loop control statements very similar
to the FOR and NEXT statements of BASIC. Recall that the FOR Statemenf causes
a BASIC control variable to take on successive arithmetic vaiues over a set of
statements. Every reference to the control variable within the set of statements
delimited by the FOR and NEXT statement has the value which is the current
value of the control variable. The FOR sfafement gives the initial value, the
final value, and the incrcment for the oontrol variable. The execution of the NEXT
statement causes the control variable to take on its next value and execution resumes
following the FOR statemenig. When the control variable has taken on all of its
prescribed values, execution resumes following the NEXT statement.

The syhtax of the FOREACH statement isA:

<foreach statemeﬁt> ::= FOREACH <range>

Recall that evéry <range>' must begin wifh a data item consisting of one or
more labels. This data item then becomes the control datd iFem which will take
on successive values over the set of statements delimited by the FOREACH state-
ment and its paired NEXT statement. The values which tile contfol data .iteAm will
take on are the nodes in the data base specified by the <range>. Every reference

- to the control data item within the set of ‘statements withiﬁ the FOREA(')H.loop ha,s-
the value which is the current value of the control data item, i.e., a node in the
<range>. The execution of the NEXT statement causes the control data ite_rﬁ to
take on its next value and execution resumes following the FOREACH slatement.
When the control data item has taken on the value of all the nodes in the <range>,
execution resumes following the NEXT statement. Because the nodes in a range

are unordered, the control data item assumes its values in an arbitrary order.
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~ The syntax of this version of the NEXT statement is:

<next statement> ::= NEXT <data item>

The rules for nesting of FOREACH statements follow the rules for nesting

of FOR statements.

Examples (see Fig. 2)

Problem: increase the salaries of all secretaries in the School of

Humanities and Sciences by 10 percent.

Program: ‘
FOREACH Salary within Secretary within Humanities School

LET S = Salary

UNLABEL Salary as value S
LET S=S + .1*S

LABEL Salary as value S

NEXT Salary

D. Responses Following the Execution of Commands

Everyone who has ever worked at a terminal using a system which has com-
mands which are executed immediately upon entry to the system (having classification
SBS in TAXL/BASIC) occasionally has the feeling that the command last entered
might not have been executed at all or might have been executed incorrectly. This
phenomenon occurs particularly among novice computer users, the intended users
of TAXL/BASIC. Often, as seen by direct observation, quite a bit of output might
be requested by the novice user to assure hiﬂlself that the command in question
was indeed executed correctly. It has also been observed that almost any short .
response by the system after the execution of any command in SBS mode informing
the user that everything is 'all right' and that the system 'understood' and
executed his command properly gives the user added confidence and almost com-

pletely obviates his need for the assurance oulpul mentioned above.
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Commands which inherently cause output at the terminal, PRINT , WRITE,
and LIST, obviously need no assurance output. Commands being executed in
PROGRAM mode, other than PRINT and WRITE, should have no assurance output
because of the possible volume of such output and subsequent slowing of execution.
Attention can thus be turned to commands being entered into the system for im- |
mediate execution. |

If a syntax error occurs in the comﬁand, then proper notification of this ’

- fact is sufficient to convince the user that the system is paying attention to him.
ﬁ there are no syntax errors, ther_} execution of the command will com_mence;
and if there are no semantic errors w'hic'h..océur while the command is being
executed, then output as simple as

OK |
is enough to assure the user that ev.erything is in fact okay. Semantic errors
such as null ranges in TAXL command?, illegal tree structuring arising from an
improper use of the PUT commﬁnd, illegal label manipulation in the UNLABEL
command,BASIC variables withogt values occurring in an arithmetic expreésion,
illegal seciuence numbers occurring in the RUN, LIST, or CLEAR communils,
and others should be repurted to thve' uscr ap olearly as poésihle and the GK

message should be suppressed.

E. Conclusion

In this chaptcr, a design for t,he amalgamation of some variant of a BASIC
system as suggested by Kemeny and Kurtz, and the TAXL language as déscrlbcd
in preceding chapters, has heen described and given the name TAXL/BASIC. The
i;nplementation of BASIC systems has been documented elsewhere. A subsequent
chapter will describe a test implementation of TAX1L./BASIC, with just enough of

BASIC included to test the feasibility of such a ,systerﬁ.
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CHAPTER V

- AN IMPLEMENTATION AND ITS ANALYSIS -

This chapter deseribesa data structure and some algorithms used to imple-
ment a'partial TAXL/BASIC system. Since implementations of BASIC systems
have been described eisewhere (Braden [1968]), only the TAXL data structure
and algorithms will be discussed here. The implementation is written in LISP 1.5
and is currently operating under the Stanford Campus Facility ®RVYL time-
sharing monitor. . |

Because of the nature of interpreted_ LISP 1.5, the fact that IAXL/ BASIC
is written as an interpreter itself, and the time required tn do thé extensive page
swapping which time-shared LISP requires,: the current TAXL/BASIC system is
too slow and too expensive for large scale operation. In addition,. 'the central
purpose of this work was to.develop a user-system interface rather than a large
operating system. Thus, the internal data structure and subsequent algorithms
were not éesigned with speed and efficiency in mmd If a’large scale implementa-
tion of TAXL/ BASIC is attempted‘,' it is sugg.e'st‘ed that the current implementation
be studied to see what is required, and that ‘at least the algorithms, if not the

data structure itself, should be redesigned. A full implementation of the current -

" data structure and algorithms, even if written in machine language, would probably

fail to give adeqnate service in terms of response time and cost once the data
structure exceeds the size which can be contained in prim_ary'sto‘rage.

In order to fellow the listing of the interpreter in Appendix- I, the reader must
be familiar with LISPvl. 5 (McCarthy [1962]), and with preperty list manipulation

and list-structure alteration operations in particular. For those readers not so

‘interested in the fine details, an outline flowchart of the interpreter is given in

Appendix TI. Initial entry to the interpreter is at A with the RUN FLAG reset.

(
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‘The flowchart describes the logical flow of control and does not exactly parallel
the programmed interpreter given in Appendix I. Most of the semantic error
checking is absent from the flowchart, as are some of the various forms of some

of the primitives.

A. Node and Dictionary Formats

The format for a node in th',e"qata base is given in Fig. 3. Thus, what is
given at a node is a list of the labels that make up the data item at the node, a
list of pointers to all immediately hierarchically superior nodes, and a list of
pointers to all immediately hierarchically inferior nodes.

The format for the property list of an atom which is used as a label in the
data base is given in Fig. 4. The atom USES indicates a following list of pointers
to all nodes within which the atom in question is used as a label. The essential
structure is that of a dictionary. For every label which occurs in the data base,
there is an entry in the dictionary giving all usés of that label within the data
base.

Most of the computation time required for the execution of a primitive is
consumed in the computation of ranges. Hence, refinements in this computation
or modifications in the data structure allowing such refinements will decrease
the execution time significantly. Since the object of this study is not the design
of such refinements, the algorithm presented for the computation of ranges was

chosen for its programming simplicity. Once lists of the nodes in as many ranges
| as are réquired for the execution of a primitive are obtained, thé execution of the
primitive is fairly straightforward, as shown in the fiowcharts in Appendix II.

More will be said about computation time later in this chapter.
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B. The Computation of Ranges

The computation of a range by Method II of the chapter discussing the evoca-
tion of ranges. is essentially a set intersection operation. Suppose the range
Secretary Carla West
is to be computed. The property list of the atom label "Seéretary" contains a
list of pointers to all uses of this label, as do the property lists of the atom labels
"Carla' and ""West. n The intersection of these lists is, by definition, a list of
nodes which incorporates the range. A straightforward intersection of unordered
sets as programmed in'the current impiementation given in Appendix I is the
easiest to program but has a computatioh time on thé order of the product of the
number of elements in the sets. The computation time can be reduced to the
order of the sum of the number of elements in the sets by ordering the sets ac-
cording to any arbitrary but well defined ordering.

The computation of a range épeciﬁed iay hierarchical context is a inore com-
plicated operation. Given two lists of pointers to a set of nodes X and a set of
nodes Y, it must be determined for which xeX,

| X within Y
is true. Those x'é fér which the ébéve is true are retained in the range; those
x's for which it is not true are not retained in the range.

There are two principal ways of 'determ'ining which nodes xeX are within some
node yeY. One method is to start at each x, and by following the chain of father
pointers beginning at node x, check each node éncountered on the path from node
x to the roots of the tree. .If one of the nodeé encountered ié a y node, then the
search can be terminated since it has been ascertained that x is within Y. If no
y node is encountered on any path, then x is not within Y. Since ail nodes on all
pé.t:hs must be checked, the case in which x is not within Y involves the maximum

number of checks.
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Another method for determining which x is within some set of nodes Y is:,to
étart at each node y€Y, in tﬁrn, and by following the chain of son p.ointe'rs begin-
ning at node y, check each nodé encoﬁntered on the path from y to the leaves of |
the tree. If one of thé nodeé encountered is an xeX, thép this x is an x which is
within Y. However, thé search cannot be téfrnihated since tﬁere may be an x'eX
which is hiérarchically inferior to y, and hierarchically inferior to all nodes in
Y only through the node x. 'L'hus, if the search were lerminated upon encountering
X, it would niever bé ascertained that,' in tact, x' is within Y. |

Thus, in the general case, it'is m.ore‘ advantageous to search from the x's
upwards along the fathevr chains thah from the sr's downward along the son chains.
In addition, :there will usﬁally be more sons thun fulhers if Wi entive dafa basc io
' considered, implying that to search down\:;vard would entail searching along many
more paths than searching upwards.

In order to analyze quantitafively the implerﬁent:ation of the range finding
mechanism, the maximum number of nodes accessed in order to determine which
x's are within Y will be used as a measure of tire com’putatio_n required. As
mentioned previously, the case in which x is not wifhin Y involves the maximum
number of node accesses since every node on every path from each x upward to
the roots of the data base must be accessed.

Assume first that the data base has the form of a true tree rather than an
acyclic directed graph. Effectively, this means that each node has, at most, one
father.. Thus, assigning level 0 to each root node énd defining the level of a node
to be numerically one greater than the level of its father, each node has precisely
one well defined level. With this formulation; n node accesses are required to

traverse the path from a node x at level n upward to a root.
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The assumption that the data base has the form of a tree will now be removed.
Thus, there may exist a node z at level m, m<n which has two fathers, where z

_is the first encountered node above x for which this is true.

Indeed, node z may be at level m., with respect to one path from a root and

1

at level m, with respeét .to the othér paﬁh. Thus, node x may be élt two levels at
once, depending on which path through node z is being cohsidered.

Let ny be-the level of node x with ;‘espect to tﬁe path which makes node z at
level mi, and let n, be the level of node x with respéct to the path which makes
node z at level m,. Thus,

1- M T My
and n, - my is the number of node accésses to traverse from node x upwafd to

node z. From node z, ml + mz node accesses are required to traverse both paths

from node z upward to a root.

1+m2=n1+m2=n2+m1

Total: (n - ml) +m
Now generalize the preceding case and assume that ndde z has p fathers,
~p >1. Thus, node z may be at as many as p levels my, My, ..., mp. Therefore,

node x may be at as many as p levels nl, Ny, -, np, where node x is at level n,

with respect to the path which causes node z to be a level m,, 1<i<p.
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As before, -

and n, - m, is the number of node accesses to traverse from node x upward to

2

the p paths from node z upwards to the roots.

node z. From node z, m, +m, +... + mp node accesses are required to traverse

Total:

.- m.)+ +m, + ...+ =n, +
(ny ml_) m, 2 mp ;tm

+m, + ... +m, + m, +... +
2 i-1 7 My rnp

1
where i is the number of node accessen required to traverse from node x upward
to node z and thence to a root by the ith father path from node z, and

+ 4+ ... + . + . + ... +
m, +m, My Ty T m

is the number of node accesses required to tiraverse from node z upward Lo Lthe
roots by the p-1 remaining father paths from node z.
The above total may be rewritten as
- S < i<
(ni mj_)+ml+mz+...+.mp 1<i<p
where n, - mi is the number of node accesses required to traverse from node x

upward to node z, and

+ + .., +
m, +m, ™y

is the number of node accesses required.’to traverse from node z upward to the
roots along the p father paths from node z.

None, all, or some of these p pé.ths from'noae z might themselves split
further .at levels closer to the roots. Tf the jth haﬁh, 1=j<p, so splits, then mj
is not the true number of node accesses fro'm'nodez along this path io a root, but
must be computed by the ab&ve tfeafment, rec'ursively.

In the worst case, the superstructure 'from» node x uanrd toward the data

base roots forms a tree. Assuming that the Aav‘erage upward branching factor is
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b, b>1, and there are L levels from node x up to the roots (counting the roots
as level zero), then the maximum number of nodes to traverse is the number of
nodes in this tree. Including node x, the number of nodes is given by

br-1

-1

The specification of ranges by subtree context proceeds in much thé same
manner, with the nodes specified by hierarchicai context used where the rootis
of the tree were used in the previous discussion. In one variant, the number of
nodes obtained are counted and compared to the result of sorhe numeric computa-
tion. In another variant, the labels in the nodes so obtained are individually
checked to see if they are numeric, and if so, their value is compared to the
result of some numeric computation. Nodes specified by hierarchical context
having subtrees obeying the required conditions are included in the range, as

described in a preceding c¢hapter.

C. Reducing Range Computation Time

The method which has been considered in analyzing the range finding mecha~-
nism consists of a traverse upward to the roots of the data base. In this method,
the search is terminated when a root of the data base is encountered. In addition,
- a downward search along the son chain toward the leaves of the data base, as
described previously, might be more efficient in certain particular cases. In
such situations, the user should be able to take advantage of his particular data
structuring to reduce the amount of computation required to determine a range.
The following mechanism allows fhe user to specify whether an upward or downward
searchis to be made, and atthe same time, to specifya terminating condition foran -

upward search other than the occurrence of a root or a terminating condition for
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a downward search other than a leaf. The mechanism can only be used in con-
junction with specifying a range by hierarchical context or subtree context re-
quiring that searching be done. -

The first form allows the user to denote thét the usual upward search is to
be performed and to specify a terminating condition other than the §ccurrence of ‘
a root. The terminating search condition is a set of nodes T specified by Methoci
II. Thus, when sea;rching for a i‘ange |

x within y below T

the search upward is terminated successfully by an occurrence of a y node and
’ 4

terminated unsuccessfully by an occurrence of a root or a member of the termina- -

ting set T. To imply to the user that the search is earried on only below (and
including) the nodes which are in the set T, the delimiter "below’ is used to
separate the end of the range specification by Method IV and the specification of
the set T.

A portion of a data base shown in Fig. 5 demonstrates how this feature can
be used to advantage. The range evokéd by |

Professor within Reading Committee within Student Y
is identical to the range evoked by

Professor within Reading Commit'tee within Student Y below Department.

In the former case, however, it is not detérminéd that Professors W and X
are not included in the range until all the paths from Professors W and X upward
to the roots of the data base have been traversed. In the later case, the seérch
is terminated upon encountering the node .Computer Science Department. This
early termination can save quite a bit of computation, particularly if the portion |

of the data base shown in Fig. 5 occurs many levels down from the roots.

- 74 -



Computer Science Department

Professor W Professor X
Student Y Student Z
Reading Committee Reading Committee

N

Professor A Professor B Professor C

FIG. 5~-A portion of a data base demonstrating the utility of below and above



The second form allows the user to denote that a downward search is to be
performed and to specify a terminating condition other than the occurrence of
a leaf. As suggested by the previous construction, a terminating set T of nodes,
specified by Method II is separated from the end of the range specification by
‘Method IV by the delimiter "above, ' or equivalently so as not to introduce another
reserved word, the delimiter pair "not below. "

Example (see Fig. 5)

Professor within Computer Science not below Student
‘ !
An analysis of the implementation will now be made. The amount of memory
rcquircd for a data basc implemented in this way will be considered, as well as

the factors that affect the time required to access the data base.

D. Memory Usage

In order to gain some sort of perspective on the_ amount of memory required
to contain a complete data base, a formulation bf data base requirements will be
made. A fairly representative data base configuration will then be described and
the amount of memory required to represent this hypothetical data base will be
combuted. Throughout the formulation and computation, Figs. 3 and 4 should be
consulted.

Assume that throughout the data base there is an average branching factor
s(s >1). That is, on an average, each node has s sons. Let L be the number of
levels of the tree, numbering the level of the root nodes as zero'. Then the number

of nodes in the tree is given by
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If we let - N !
m, = the number of labels at node i

fi = the number of fathers at node i

8, = the number of sons of node i,

then the amount of storage required to represent node i in this implementation
(see Fig. 3) is given by |
Labells: . 8+8 mi
. Fathers: 8 +8 fi
'.Sons: 8 S

TOTAL: 8(2 + m, +f +s)

Note that 8 bytes are required to store a pair of pointers. Thus, for the nodal
structure of the data base, the total amount of storage is given by
N o
8 iZ=:1(2 +m; +f +s.)

Now consider the possible dictionary structures. Each label which occurs
anywhere within the data base has a dictionary entry. As seen in Fig. 4, 4there-
is a list of pointers associated wii;h this entry to every node in the -data base in
which that label occurs. Thus, there are as many pointeré out _ofv the dictionary

as there are (not necessarily distinct) labels at nodes in the data base, given in

this formulation by

N
'mi
i=1

Since eight bytes are required to store a pair of pointers in the current imple-

mentation, the amount of storage required for the pointers is giveﬁ by
N
8
2 ™
i=1
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The only other significant contribution to memory utilization arises from the
sEorage of the labels themselves. Since each label occurs only once in the dic-
tionary, independently of its usé.ge' within the nddal structure, the amount of -
storage required for thesé labels depends upon the numbe;' of di'stinct labels. At
a minimum, these can be only one distinct label which occurs as-the only label
at every node in the data base. Theoretically, there is no mé.ximum number of
distinct labels since the number of labels occurring at any nade is not limited.
However, since we have assumed that there are m, labels at node i, then a maxi-
mum will be achieved by further assuming that all the labels across the data base

are different. Thus, the maximum total number of distinct labels is given by
N
E m,
=1 !

Assuming an average of q characters per label, the amount of storage required

for the labels themselves is given by

N
q), m
=l
Thus, there are .three constitutents of memory usage:
N N
Nodal structire: 8 :2;1 (2+m, +t, + s;) )
. N | ‘.
Dictionary pointers: 8 E mi
: i=1
N
Label storage: a2 m;
i=1
TOTAL: 8y 2+m +f +s)+(Q+8) ) m
o o i =1 ‘ o i=1
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A hypothetical data base will now be described. The parameters of this data
‘base are not complefely'random b}1t are based on a small sample of data bases
built by students learning to use TAXL (see the conclusion of this chapter).

Assume that the data base has an avgfag’e depth of seven levels and that each
node has an average of four sons, i.e.,

L=é‘oa.nds=si =4
and, therefore, the number of nodes in the data base is

47—1

4-1

N= = 5461

Now assume that each node has an average of three labels and two fathers,

m =3,f =2, ands, =4
i i i

Thus, the storage requirements for an average node are given by
Labels: 8 + 8(3) = 32 bytes
Fathers: 8 + 8(2) = 24 bytes
Sons: 8(4) = 32 bytes
TOTAL: 88 bytes/node-
Hence, to represent the nodal stméture of the data base requires
88 bytes/node - 5461 nudes = 480, 568 bytes

The amount of storage required for the dictionary pointers is

5461
8 Y, 3 =131,064 bytes
i=1 o

As indicated in the formulation, the maximum total number of distinct labels

‘ ‘could be calculated as

5461
z 3 =16, 383 labels
i=1 ' ’

However, a more realistic estimate can be made by the following assumptions.
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It will be assumed that at each level there is a common label which serves
as an é.ttribute, and that at every node at that level, thére are two other labels,
the set of which are disjoint across the level and the entiré data base. These
" two other labels at each node serve as a value for the cominon attribute. Thus,
since there are four sons for each node, at level i, there are-

2x4l+1
distinct labels, counting the root level as level zero. Therefore, over seven
levels, there are

6 .
> @x4'+1) = 10,926
i=0

distinct labels and hence
6 x 10,926 = 65, 556 bytes
required to store all the labels in the data base. It is assumed that these. afe
an average of six characters per label.
Table 4 summarizes the storage requirements of this hypothetical data base

and gives the percentage of storage required for each data base component.

E. Access__ A’I_‘i“me“

In the discussion of the time required to compute the rangé x within y, the
particular configuration of the data base and I;he manner in which both the nodes,
named by x and the nodes named by y, are distributed throughout the configuration
are the most important factors to consider. Because the particular distribution
of x's and y's are such an important consideration, - to hypothesize a particular
data configuration and then analyze this particular configuration as before would
not accurately enough characterize access time in general. However, therAe are

several important observations Which can be made.
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TABLE 4

) .
- STORAGE REQUIREMENTS FOR A HYPOTHETICAL DATA BASE

Node Structure
Dictionary Pointers

Labels

TOTAL

Bytes
480, 568

131, 064

65, 556

677, 188

3 labels per node
2 fathers per node
4 sons per node

6 characters per label

7 levels

- 81 -

Percentage

of Total"

71.0
19.4

9.6

100.0



As described previously, in the computation of the range
X within Y
the maximum time required occurs when there are no nodes xeX within any nodes
yeY. . In this case, a search has to be performed beginning at each node x along
the chain of father pointers to the roots of the data base. At each.node z encountered’
along a path toward the roots, an identity test must be made to see if z is identical
with any of the nodes yeY. If we take the total number of comparisons for identity
as a measure of access time, then it can be seen that the number of nodes yeY
times.the total number of nodes élong the path(s) from a parti?uiar x'eX to. the
data base roots characterizes the maximum acc‘ess time required to determine
if X' belongs in the range. Since this computation must be performed for each
xeX, the maximum number of comparisons required to determine the range
X within Y |
is given by o . .
Y, C(Y) P = C(Y) Y., P
x€X . xeX

where C is the cardinality operator and P(x) is-the total number of nodes encountered
along all paths from a node x along the chain of father pointers to the roots of the
data base (see Section B of this chapter).

There are two other factors, mentioned brieﬂy earlier in this chapter, which
contribute to access time. Both of these factors arise in the computation of the
sets X and Y.

As described in Chapter II, the sets X and Y are épeci’fied by Method II. Thus,
in order to specify the set X, n labels Xy, Xy, -ev, X ar€ specified and the set X
is comprised of all those nodes in'the data base which have at least tbe n labels

mentioned above. A parallel argument can be made for the set Y. The contribution
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to access time thus arises from:
1) finding each of the n labels in the dictionary
2) forming tne interse'efion of the n sets“of pointers, the ith set being
associated with the label x1 and point:in',gr to all those nodes in the data base
which contain X, as d label.
In the current inipiementetion, the operation of finding each of the n labels
xl, Xgs «+es X is perfermed automafically by the LISP system. ‘This snould be
accomphshed by a hash addressmg scheme. o
The USE-lists assoc1ated with each d1ct10nary entry are unordered in the
current 1mp1ementat10n and hence each of the n-1 intersections wh1ch must be
' performed.requires a number of operations proportional to the product of the
number of -peinters which occur in the sets to ne intersected. | |
If the hashing function used to find the appropriate entries in tne drctionary
is a good one, the ‘time required to f‘ind the n labels :which constitufe the set X
is proportional to n. Assuming that m labels constitute the set Y, the time
required to look up the n + m labels is given by k(n+m), where k is some constant
. dependent on the hashing function.
As explained previously the time required to perform the n-1 intersections
Qlucll deflne the set X .und the m-1 interSections which define the set Y is given by
(n-1)Ki+(m—1)K)2, |
where Kx is the average number of pointers asseciated with each of the n labels
which constitute the set X, and Ky is the average number of pdinters .associated
‘with each of the m labels which eonstitute the set Y.
| Thus the total access‘time is given by |

km+my+m DK-Mm nK +CW)Z:Hm
- xeX
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F. Operation Time

Once all the ranges required for a given command have been computed the
time requ1red to complete the operat1on called for by the given command generally
depends only on the cardmahty of the range(s) upon which the command will operate.
For all those commands which require only one range the time required to com-~
plete the operation is proportional to the number of nodes in that range. For
those -commands vuhich require two ranges; the tlme required is proportional to
the product of the number of nodes in each range It should be noted that the
operation time for all those commands Wthh requlre add1t1onal tree searchmg

'. for their operatlon ". WRITE and DELETE are 1nﬂuenced by the subtree
structure.below the nodes in the computed range(s) Also, the operation of the
SAVE and RESTORE commands depends on the structure and extent of the sec-

ondary storage dlctmnary.

G. System Measures

In Table 5 measures of significant TAXL system functions in the current
implementation are summarized. The formulae given in the table show the nature:
of the dependence of the system's functions upon the parameters involved. Pro-
portionality factors are not given. Except for the memory utilization, all of the
systems functions give a measure of access time in terms of the cardinalities,
denoted by the operator C, of certain sets which are involved in the particular
system function. Such sets include sets of nodes sets of labels, sets of fathers
at a node and sets of sons at a node. |

The measures for memory utilization and the time to compute X w1th1n Y
have been derived prev1ous1y’ in th1s chapter Since the USE- hsts are un-
ordered in the current 1mplementat1on the time requlred to perform the

intersection of two such lists is proportmnal to the product of their cardinalities.
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TABLE 5

SYSTEM MEASURES

Memory Utilization

Time to perform intersection of.
USE-lists Wand Z

Time to compute X within Y (the
sets X and Y are already defined)

Time to add a label to a node in the.
data base

Time to remove a label 1 from a
node q in the data base

Time to add a node q to the
data base

Time to remove a node q from the

N - N
8]{_:1@ + m, + fi + Si) +(q+8) 1=Z:1 m,
C(W) - C(2)

C(Y) Y, P(x)
2%

CONSTANT

m +1
q u

C(neﬁv fathers (q))

data base ' C(sons (fathers (q))) + C(fathers (sons (q)))

N,: number of nodes in the data base

m, : " number of labels at node i |

fi: number of fathers of node i

éi: number of sons of node ,i
q: average number of characters per label

C: cardinality opqrator

P(x): total number of ancestors of node x
lu: number of uses of the label 1 in the data base
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In order to add a label to a node in the data base the following operations
must be performed:
1) Add a node pointer to the USE-list associated with the label.
2) Add a dictionary pointer to the label list at the node.
Since'the. USEQ list‘ is unordered, the node pointer may be added to the front of the
USE-list, an operation not depending on the cardinalities of any sets. \ Since the
usual option for adding a label to a node requires that the label be added at the
end of the lubel lst, the label Lst al the node -ums(,.b'e searﬁheil tu ﬂud Is end.
However, if the label list is stored in reverse order, the new label can be added
to the front of the list, an operation not Adepervlding' on the cardina.lity of the label
list. Thus, the time required to add a label to a node is a constant.
In order to remove a label 1 from a node q in the data base, the following.:,r
operations must be performed:
1) Remove the node pointer from the USE-list‘ass.oci_at_ed with thé iabel'.
’ 2)' Remove the dictionary pointer from the label list at the node. |
Since the USE-list must be searched in order to remove the node pointer, time
Aproportional to lu’ the number of uses of the label 1 in the data base (i.e., the
cardinality, of the USE-list), is required. In addition, since the label list at the
node must be searched for the dictionary pointer, time proportional to mq, the
number of labels at node q is also required.' Thus, in order to remove a label
from a node in thé data base, time proportional to mq + lu is required.
In order to add a node q to the data base, the foildWing operations are required:
1) Add the new father poi.nters‘ to the father list of q.
2) Adde p'ointe'r to q to the so_ﬁ list of each new father of q.
Since the father and son lists at nodes are unordered, the new father pointers

may be added to the front of the father list of q, requiring time proportional to
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the number of new fathers of q. Thus, the total time required is proportional
to C(new fathers (q)). . |
- In order to remove a node q from the data base, the following operations .

must be performed:

1). Remove the son pointers to q from each of the fathers of q.

2) Remove the father pointers to q from each of the sons of q.’
:The father and son lists must, therefore, be searched for the pointers to be
removed, and this operation must be performed for each father and -son of q.

Thus, the time required to remove the son pointers to q from the_féf.hers of q

. is.proportional to -

.C(sons (fathers (q)))
. In a similar manner, the time required to remove the father pointers to q from
each of the sohs of q is.proportipnal to - |
. " C(fathers (sons (q)))
Thus, the total time required to remove a node q from the data base is proportjonal
to the sum of the two cardinalities givén above.
A useful refinement to make in the implementation is to keep the USE-list
- ordered. The system function measurement which would be improved by this
‘refinement would be the time required to' perform the intersection of two USE-lists.
Since the lists would be ordered, the time required would be proportional to the
- sum of the cardinalities of the lists rather th'an\‘the product. However, the time
required to add a label to the data base would increase since the node pointer
“could no longer be added to the front of the USE-1list but would have to be added
" at its appropriate place in the ordered list. Thus, the time required to add a
label 1 to the data base would depend on 1, the cardinality of the USE-list of 1.

It is felt that this refinement would be a useful addition to the implementation, _
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_ since USE-lists are intersected for almost every range definition. The operé.t‘iom
occurs much more frequently than the addition of a label to the data base.

A better refinement would be to keep the USE-lists not only ordered, but
‘ordered in the form of a balanced tree (Knuth [1970]). The advantages of
storing a USE-list of cardinality n in this fashion arise from the ~f.act that the
time required to insert a new element, to delete an old element, and-to find the
smallest element in such a tree, each requires time proportional: to logzn. (The

algorithms for performing these furictions will appear in The Art of Computer '

- Programming, Volume 3, by D. E. Knﬁth).

Thus, labels -may be added and deleted from the data base with a logarithmic
dependence on lu rather than a linear dependence. The additional storage required
for structuring the USE-lists in this fashion affects only the multiplicative constant
in the formula for the dictionary pointer storage, the formula for which would

now be

since one father and two sons pointers would. be fequi_red for each entry.
Additional rcfincmento,’ and possibly the best refinements iw the representa-
~ tion and algorithn;s for addressing and manipulating the nodal structure, might
well be in the direction of hash, or scatter storage techniques (Morris [1968)).
In };he LEAP system (Feldman [1969]), a hash addressing scheme based on a hash
of two elements of an Bbject—at,tributejva_l,ue triple provides a convenient and useful
methqd for the retrieval of information concefning the uscr-defined relationships
among a universe of items.
Hash coding is the simu}aft'ion‘of an associative memory, and since TAXL

is an associative semantic processor, it is felt that research into new methods
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of using hash coding techniques might well uncover more efficient ways of imple-

menting a system such as TAXL.

H. Conclusion

A test implementation and analysis of a limited TAXL/BASIC system has
been described. Several comments can be made conceming the analysis.

The factor of eight which appears in the formula for total memory usage arises
from the fact that in the version of LISP 1.5, in which the TAXL interpreter is
written, eight bytes are required.to store one LISP element (a pair of pointers).
This factor can be reduced by writing TAXL in some other list processing language
system (Hanéen [1969]) or by using special data structures designed for TAXL in
particular, and embedded in some assembly language system.

Otherwise, it can be seen that the total memory usage depends linearly on
the number of nodes in the data base, as well as on the number of labels at those
nodes and on the interconnections between those nodes. Upon considering the
formula for access time, it can be seen that the access time depends linearly on
each of the cardinalities of the sets X and Y and on the dépth and number of paths
to the roots of each xeX. |

Operation time for vz;.rious of the primitives could be decreased by imposing
an order on the lists of fathers and sons at the nodes in the data base. The
ordering of the labels is defined by the user, and hence an internal ordering could
not be imposed on them without complicating the algorithms which manipulate the
labels. An ordering ir’nposéd on the fathers and sons would allow a faster retrieval
of specific fathers or sons. However, the time requifed to insert new fathers
and sons into an ordered list would consume more time than if the list wére not

ordered.
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On the basis of classroom utilization, the feasibility of su;ch a system, as
described in this work, from the user's point of view with respect to the goals
discussed in the introduction has been ascertained as affirmative. On two sepa-
rate occasions, lectures were given to the type of potential user of TAXL/ BASIC
as described in the introduction to this work. One such groﬁp waé cdmposéd of
students enrolled in a graduate course in comrﬁum‘cations. Their oﬁly previous
computer experience was a limited introduction to terminal processing via a
BASIC system. The other group was composed of summér scﬁool studenﬁ's and
i:eachers‘enrollred in an introductory course for computing in the hl;manities and
social sciences. Their only previous computer expgrience was a four—wéek ex-
posure to Algol W with no terminal processing. Evén though fhé.tvs;o grouﬁs were
at different levels in their educational experiencgs and 'their limited computér ‘
experi-ences wére of a different nature, their ability to grasp and learn how to use
the TAXL/BASIC system was Afairly uniforﬁl. Aftér oniy twbvhours of class-room
lecture and ten minutes of terminal usage instruction (which included log-én, log-
off, and other non-TAXL/BASIC procedures), almost all the students, Working
in groups of two or three, were able to use the system with a‘ fairly high degree
of assurance in at least an experimental mode to answer most 6f their re.maining
yueslions, -

The students were asked to build and manipulate data bases which wbuld be
of interest to them in their work. Political cross affiliations between méinbers
of the United States Senate and House of Represehtativeé , @ bartender's guide of
ingredients for different drinks, and an inventory of an army supply depot were
some of the examples for which the students found TAXL/BASIC useful and

interesting.
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From this preliminary survey of the utility of TAXL/BASIC with respect to
its iﬁtended goals, it appears that the system meets its infended requirements.
Experimentation with more economical, more complete systems able to handle

larger data bases is requiréd before more complete results can be obtained.
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CHAPTER VI

FUTURE WORK AND SUMMARY

Throughout the course of this work, severai topics have arisen which tend to
complement the present state of the work as described in this paper. |

In order to better test how easily‘ the systerﬁ can be learned and used by com-
puter novices, a well written user's manual could be compiled with its prospective
audience well in mind. Graduated exercises on which the student could work while
using TAXL/BASIC at a terminal could be provided.

The interface between TAXL and BASIC could be made more complete. By
defining a good string manipulation facility for BASIC, this string vmanipulati(')n
facility could be interfaced with TAXL's label structure. As mentioned previously
entire 1-dimensional arrays of numeric values could be retrieved from a range,
each of whose nodes contain numeric labels. In addition, the LABEL and UNLABEL
commands could be extended so that with one command evocation, the set of numeric
labels, whose values reside in a 1-dimensional BASIC array, could be added to or
removed from a range of nodes in thé TAXL data base. Finally, a good external
encoding for the data base could be designed and tht;: READ and DATA statements
of BASIC could.be extended to allow ﬁhe reading of portions of the TAX]I, data base.

Currently, the TAXL addressing structure is semantic and associative. The
range specification mechanism could be expandea by':fa.lllowing syntactic addressing.
Thus, constructs such as SON OF ... and FATHER OF ... and compounds of
these would be allowed. e

A facility for labcling arcs, which might stand for attributes whose values
could be found as the labels at the nodes which terminate the arcs, could be intro-

duced. This might allow a more concise and more easily manipulable data
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repvresentat'ion in those cases in which there are many attribute-value pairs
describing a hierarchically superior node. Multiple arcs ‘be't'ween'two nodes
could also be introduced.

Currently, intersections and unions of ranges may be specified by the suc;—
cessive application of se'veral of the primitives obefating on the ranges, tﬁe
intersections or unions of which are being sought. An explicit facility for Speci—
fying intersections and unions of ranges would be useful in those contexts where
they are required frequently.

By allowing a dynamié macro facility, the user could define his own primitives

as successive applicationé of the TAXL primitives or other user defined primitives.

The macro could have the form of a tree which the user can create in the data
base. The root node of this tree could contain the keyword which would cause
the tree fo be scanned and evaluated when a command beginning with the same
keyword is ‘evoked. The macro tree would be required to have a certain form so
that in scanning the tree in some predetermined order, the system could fill in
the templates occuring in the macro tree with the range specifications occurr_ing
in the calling command and initiate execution of the commands found in the tree
in a proper order.

The suggestions ‘made in the concluding sections of the previous chapter con-
cerning memory utilization, access time, and operation time could be carefully

worked out to improve the speed and efficiency of the TAXL system.

In summary, this paper has presented an easy to learn and use data manage-

- ment and manipulation system for computer novices.

Chapter I outlined the need for such systems and suggested the uses to which

they could be put.
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Chapter II discussed the format of the data base and the mechanism for
addressing such a data base in semantic and associative terms.

Chapter I introduced eleven primitives for constructing, destroying, and
otherwise manipulating and querying the data base. The primitives are designed
to operate on portions of the data base addressed by the range mechanism dis-
cussed in the second chapter. In this Qay, the addressing mechanism .and the

\ operational primitives are clearly separated.

In Chapter 1V, the design of a system in which TAXL and a numeric processing
system possessing logical programming capabilities was introduced. Additional
primitives for managing the programmiﬁg structure were introduced.

Chapter V discusséd a current implementation of TAXL and gave measures
of memory utilization and access time in terms of natural parameters of the
system.

The current chapter outlined possible future work and summarized this paper.
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APPENDIX I

LISTING OF THE INTERPRETER

VERBOS(NIL)

CSET

CSET
CSET
CSET
CSET
CSeT
CSET
CsSET
CSET
CSET
CSET
CSET
CSeT

CSET

CSET
CSET
CSET
CSET

CSET
CSET
CSeT
CSET
CSET
CSeT
C3ET
CSET
CSET
CSET
CSET
CHET
CSET
CSET
CseT
CSET
CseT
CSET
CSET
CSET
CSET
CSET
CSET

(OPSP ( (+ o« 3) (- <« 3) (* . 4) (/ « 4) (NEG o 4) (%% o 5)
' (SUB . 6) )

(STAK NIL)

(OUTP NIL)

(AXP NIL)

(CHK NIL)

{RELS (EQ NEW GR GE LS LE))

(RUN NIL)

(SYNTAX NIL)

(S8S T)

(SLB SuUB) -

(LINE NIULIJ

(LINES WIL)

(TRISLINE NIL)

(UNLQ NIL)

(ISNF NIL)

(NLRG $$$NULL RANues)

{QUOT $335"%)

(CLIM ($$$CARRIAGE KETURNS NOT ‘IN WHEREVER IS INTJ WITHIN
UNCER TO FRGM AS BY ANC BEFORE EQ NEQ GR GE LS LE))

(ONLF NILJ

(CELT NIL)

(IMPROLIM $33IMPROPER DelIMITER.«s $)

(IAE $$3ILLEGAL ARITHMETIC EXPKESSICNS) .

{AVCS $$SARITHMETIC VARIABLE CANNOT HAVE A SUSBSCRIPT... $)

{AIMS $$HARRAY [DENT IFIER MUST HAVE A SUBSCRIPT... %) ’

(LNMI $$SLINEF NUMBER MUST BE INTEGERS)

(NCTN (NOT IN)) )

(PLTF NIL)

(ELSL NILJ

{OK OK)

(NXTW NIL)

(INTO (INTO WITHIN UNDEKR TC))

(CFLG NIL)

(KFLG NIL)

{wHCREVEK hHEREV:R)

(APVAL APVAL)

(PVAL PVAL)

(LSES ULsSES)

(XTUP NILI)

(PMg NIL)

(UMRK $$535CARRIAGE RcTURNs)

(BYas (BY AS))

DEFINE ((
(MAIN (LAMBDA NIL (PRCG (X) .
M1 (CONU (CHK {PKRUG2 (PRUGZ2 (PRINL SBS) (PRINL SYNTAX))(PRINT RUN)II)

(CCND (RUN (CUND ((CDR THISLINE) (PROGZ
‘ ’ (CSETw TRISLINE (CLR THISLINE))
. (CSETQ LINE (CUAR THISLINE))))
: : (T (STPP WNILII))
(T (TREAD O} M)

M2 (COUNT 306G00G) -~ (CSETJ NXTW (TREED)) (CSETQ KFLG NIL)

(SETE X (FTCH))
(CCAD ((NYMBERP X) (PRGG NIL
(COND ((NGT(FIXP XJ)IMESS (QLUTE $$SLINE NUMBER MUST BE INTEGERS)
. BLARNK NIL))) )
(CCND ((EC NXTw EMRK) (PRGG2 (LINESRCH X NIL)
{BEGIN (QUOTE MAIV) NIL))))
(CSETQ SYNTAX T) (CSETQ 58S NIL)

'
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(CO&%SETQ LINE (CUNS X NIL)) (SETQ X (FTCH)) ) ))
X (QUOTE DELEIE)) (DELE T))
(QUOTE 'SEVER)) (DELE NIL))
{QULOTE CUPY)) (PUCP NIL))
(QUOTE PUT)) (PUCP T
(GLOTE wRITE)) (WRITI}
(QUUTE LABELI) (MAKE T))
(QUUTE UNLABEL)) (MAKE NIL))
(GUOTE CCUNT)I (COuT) )
(QUOTE CREATE)) (CRETH) -
(CUOTE LET)) (LETT)) -
AND (NOT SB8S) (EQ X (QUGCTE GGC))) (PROGZ2 (GUTU)
(COND (RUN (GO M22) (T NILIM)
((AND SBS (E@ X (QUGTE LIST))) (LIS)) .
(LAND SBS (EQ X (QUOTE CLEAR))I)(CSETQ KFLG (CSETQ LINES NIL)I)
({AND SES (EQ X (QUCTE RUN)I)) (PRGGZ (RNN) (GU M2)))
(LEQ (GLOTE STUPI) (CCAD (RUN (STPP T)i))
( (Eq (QUUTE SHUWU)) (SHOmU (TREAD NILY))
((cQ (QUUTE TRACE)) (TRACE (TREAD NIL)I)
((EQ (QUUTE UNTRACEJ) (UNTRACE (TREAD NIL) I
((EQ (JUUTE PRINT)) (PRYNI)
((EQ (QUOGTE xTOP)) (PRINT (CCR (QUATE XTOP)I) )
(T (MES5S (QUOTE $%41LLEGAL COMMANDses #) X NIL)I))
(CCND (SYNTAX (PKUGZ2 (PROG2 (CSETG SYNTAX NIL) (CSETQ SBS 1))
(LINESRCH (CAR LINE) THINI
(CCND ((AND KFLG S8S) (PRINT CK) ) ’
(GC Ml>
DEFINE ((
C(ITM (LAMBDA NIL (PRUG (Y L LT NEWFI
(CSETQ UNIG NIL) ’
(CCND ((MEMB NXTW OLIM) (MESSCP))
((EQ NXTw (QUOTE CUNIQUELY)) (CSETQ UNIQ (FTCH))))
Il (SETG L (CONC ((ATOM (SETY LT (FTCH)J)) (APPEND L (CUNS LT NIL)))
(T (APPEND L LT)2})
(CUNU ((MEMB NXTw DLIM) (SETQ LT L)) (T (GO I1)))
(CONG (SYNTAX (RETURN NIL)))
I (SETQ NEwF (OR NEWF ¥}
(SETQ ¥ (NINUS (CAK LT)1})
(CEND ((MEMB {(CAR LT) (CCR LT)) (SETQ L lEFFALE (LAK LI) LID)
CCSETS LT (COR LTY) (GG 1))
(SETQC L (CCNS L NIL)) :
(CUND {LAND PUTE (UR NEAF YD) INUD LELLI) LUREALE L NILJ)
(T (RETURN L))
(CSETQ XTOP (CONS L XTGOP))
(CGND {RLN (RETURN L))
(MESSN L NIL) (PRINT (QUOTE $$% CREATEDS))
{RETLRN L2> ’
DEFINE ((
(NInUS (L AMBDA (X)
(CCND (fOr CFLG (GET X USES)) NIL)
(CAND PLTF (NOT (GET X LSESI)) T i
{T (MESS (QUUTE $$3SNOT IN USE.es 3) X T2

MMM Mo Mmm T om
[N S PN W N R
XK X 3 X X o X o> X

e e o Rl e Rl
P g g P e e A e e
[N ol

XK XK ¥ X X W

DEFINE
(ITMS (LAMBDA NIL (PRGCG (RES)
I (SETw RES (CGNS (ITM) RES)H)
(CCND ((EC NATW (QUOTE ANL)) (PROG2 (FTCH) (GO 1))))
~ (RETURN RESD
DEFINE ((
(FICH (LAMBCA NIL (PRGG (TEMP)
(SETQ TEMP NXTw)
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CsE {g SXT? (gcg? ((CCND (RUN (NULL LINE)) (T (EOL))) EMRK (T
(COND ( (NOT (ATOM (SETGC A (TREED))))
(CCND (AXP (RETURN A}) (T

(MESS (QUOTE $$S$SLISTS NOT ALLOWEDS) BLANK NIiL)} )1

((AND (NUMBERP A) (NOT (FIXP Ad))
(CONC ((SETQ [ (MEMBER A NUMS)) (RETURN D))
(T (PROG2 (CSETQ NUMS (CUNS A NUMS))
(RETURN A)))))
((NOT (EQ (CAR (SETQ B (EXPLODE A))) QUUT))
’ {RETUKN Aj))
((SETQ 8 {CLR B} (GO LSMY)
L2 (CGND ( (CCND (RUN (NULL LINE)) (T (EOL)))
" (MESS (QUCTE $$$MISSING QUOTES$) BLANK NIL))
((AND (NUMBERP (SETQ A (TREEU)II)} (NOT (FIXP A)))
(PRUGZ (COND ((SETQ B (MEMBER A NUM3 I
{SETQ O (CONS 8 D11}

(T (PRUGZ2 (CSETG NUMS (CUNS A NUMS))

. (SETQ U (CONS A DI#)))
(GO L2)))
{ (ATCM A ) (SETG B (EXPLOCE A)))
(AXP (RETURN A))

(T (MESS (QUOTE $$$LISTS NOT ALLOWEDS) BLANK NIL)))

(COND ( (EQ (CAR B) QUOT) (RETURN 0 })
L4 (COND ((EQ (CAR B) WLGT) (RETURN(APPENDL D (MKATCGM)))))
' (RLIT (CAR B))
(CGND( (SETQ 8 (CCR B)) (GU L41})))
(SETQ C (APPENDL D (MKATOM}))
(GC L2}
LS (RLIT (CAR B))

{CUND ( (NULL (SETW B (CDR B)))(SETQ D (APPENDL D (MKATCM))))

((EQ (CAR B) QUUT J(RETURN(APPENDL D (MKATUOM))))
( T (Gu L5 h)
(GO L2) )))) .
(CCND (SYNTAX (CGND ((OR AXP (ATCM TEMP)) (APPEND1 L INE TEMP))
v (T (CSETW LINE (APPEND LINE

(RETURN TEMP>

DEFINE ((

(TREEC (LAMBUA NIL (PROG (X)
(RETURN (CUNC (RUN (PRGG2 (PKCG2 (SETQ X (CAR LINE)}
(CSETG LINE (COR LINE)2I) X))
(T (TREAD NIL> ' .

DeFINE ((

(RANGE (LAMBUA (FLG) (PRUG (RNGE)
{CCNC ({NULL FLG) . - ' ‘
(CONC ((EQ NXTW WHEREVER) (SETQ RNGE (WHEREPRT XTOP) )}
(T (PROG2 (SETG RNGE (INPT)) .
(CCND " ((cQ NXTW WHEREVER)
(SETQ RNGE (WHEKEPRT RNGE)))
(T NILJ)IDI) .
{ (NUMBERP FLG} (SETW RNGE (INPTH)))
(RETURN RNGE> ' ' 5

DEFINE ((

(WRIT (LAMBOA NIL (PRUG (xak
(CSETE GNLF NIL) .. . ) )
(CCND ((Ew NXTw (GUOTE GCNLYJ) (PKOG2 (CSETQ@ CNLF T) (FTCH)I))
(CCNC ((EQ NXTw EMKK) (SETG X XTOP))

’ (ONGLL (SETQ X (RANGE NIL))}) {(MES5 NLRG BLANK T)))
{CCNDC(NOT(EQ NXTW EMRK)} (MESS IMPRUUIM NXTw NILIZ)
(CCAD (SYNTAX (RETURM NIL)))
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(

(
W
{
DEFI
(L

A

VEFI
(c

CSETQ ELSL NIL) :
CCND " ((NULL X) (RETURN (PRINT (QUOTE $$$NOTHING TU WRITES$)))))
CCNB (X (LEVEL (CCNS (CAR X) NIL) 21}
(T (RETURN NiL)J)

SETQ X (COR X)) (GO w>
NE (( .
EVEL (LAMBDA (Q SP) (PRUG (X)

(COND ((NULL Q) (RETURN. NIL)))

(TTAB SP) (SETC X (CAAR €))
B (PRINL (CAR X)) =

(CCND ((SETQ X (COR X)) (PROGZ (PRINL BLANK) (GO 8))))

(CGND ((MEMB (CAR Q) ELSL) (PROGZ  (PRINT (QUOTE

$3%  <OCCURS ABOVE>S)) :

. . (PRUG2 (SETQ Q (CLUR Q) (GO A)) 3 ))
(TERPRI) (CSETQ ELSL (CCNS (CAR ) ELSLII
(COND (ONLF (RETURN NIL))) =
(LEVEL (CDUR (CAR Q1) (PLUS SP 3))

(SETQ Q (COK Q))
(GU A>
NE (C
REATE (LAMBCA (X FAT) (PROG (Y -2)
(SETQ Z (GENSYM1 (QUOTE FATH}))
(CSET Z (CUND (FAT (CINS FAT NIL)) (T NILID)

"(RPLACD X (CUNS Z NIL))

Cl

DEFI
(N

N1l

N3

N&

NS

(SETQ Y (GAR X)) ,
(CEFLIST (LIST (LIST (CAR Y) (CONS X (GET (CAR Y) USES))I) LSES)
(CUND ((SETQ Y (CDR Y)i (GO CLad) o '
(RETURN X> _ /
NE (L :
CMN (LAMBDA (X) (PROG (Y RES LSEL uUSE2)
(SETw Y (SETG X (CAR X})))
(SETQ RES (GET (CAR X) USES))
(COND ((SETG X (CDR XJ) (SETW USE2 NIL))
(UNIC (GU N3))-
. (T (RETURN RES)))
" (SETQ USEL (GET (CAR X) LSES))
(CONC ( (MEME (CAR USC1) RLS5)(SLTQ USEZ (CONS (CAR USEL) USE21))I
(CCND ((3ETQ LSEL (COK USEL)) (50 N2JI))
(3ETQ KES USE2) (GO Ni)
(CCNUG (RES (SETQ USEZ (CAAR RES)))
{1 (RETUKN USEL) )
{CGND {(MEMB (CAR USEZ) Y) NIL)
(T (GG N51))
(CCNO ((SETW USE2 (CDR USE2)) (GC N&)))
(SETQ USEL (CCNS (CAR RES) USELD)
(SETG RES (CCR RES)) (GC N3>

UDEFINE (( . .
(PUCP (LAMBDA (FLb) APRUG (RNGL RNGZ2)

Pl

(CCNC ((EQ NXTwWw EMRK) (MESSCP)))
(CSETQ PUTF HLL) (CSETQ CGMNLF NIUL)
(CCAD (lEd NXTm (QUUTE ONLY D)) .
(CCND (PUTF (MESS IMPROLIM NXTWw NIL))
(T (PRKGG2 (FTCH) (CSETq CNLF T
(SETQ RNGLl (RANGES NIL))
(COND ((MEMB NXTWw INTO) (FTCH))
((ANC (NCT PUTF) (EQ NXTw EMRK))} (PROGZ
(SETS RiNG2 (CONS XTUP NIL)) (GU PLI )}
(T (PRGGZ (MESSOP)  (RETURN NILID D))
(SETQ RNG2 (RANGES NIL))
(CCND ((NOT "CEG NXTW EMRK)) (MESS IMPROLIM NXTW NIL}))
(COND™ (SYNTAX (PROG2 (CSETW PUTF NIL) (RETURN NIL)I)))
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(COIT (QUGTE PUTL) RNGL RNG2) (CSETQ PUTF NIL>

VEFIANE (!

(M
v

DEF1

EMB  (LAMBDA (X L) (PROG NIL
(CCND ((NULL L) (RETURN NILJ)
(CEW X (CAR L)) (RETURN X))}
(SETQ L (COR LI} (GO M>
NE ((

(MENVMBER (LAMBDA (X L) (PRUG NIL

M

(COND ((NULL L) (RETURN NIL)}
((EQUAL X (CAR L)) (RETURN (CAR L))

(SETQ L (CDR L)) (GO M>

VEFINE (( ,
(PUTL (LAMBCA (TBPL WHRE) (PRLG (TBCM Q CARQ)

(SETQ TBCM TBPL)

P2 (CUNU ((NULL TBCM) (RETURN WHRE}))
{SETQ TBPL (CAR TBCM)) (SETG Q wHRE)
Pl (SETQ CARQ (CAR )
{CCND ((NGT PUTF) (PRUGZ (CSETQ ELSL NIL)
(SET¢ TBPL (COPY THPL NILJIII)
((EQ TBPL CAKu) (PROG2 (COND (SBS(PRGG2 (PRINL (QUOTE
$$$NIDE CANNOT BE PLACED IN 1TSELFe.. $J)(MESSN CARQ T)I) (GO Q2)))
({ISIN CARG TBPL) (PRCG2(CCND (SBS(PRGG. (PROG2(MESSN CARQ NIL)J
(PRINL1 (QUOTE $$% IS ALREADY IN $))) (MESSN TBPL T)))) (GU Q2)))
' ((MEMB CARW {CAR (GET (CADR TBPL) APVAL))) :
© (PRUG2 (COND (SBS (PROG2 (PRUG2 (MESSN TBPL NIL)
(PRINL (QUOTE $%$ IS ALREADY IN $))) (MESSN CARQ T)))) (GO Q2)))
(T (CSETG XTOP (EFFACE TBPL XTOP))))
(CSETQ KFLG 1)
{CGNL ((BEW Q XTOP) (PRUOG2 (NCCNC XTOP (CUNS TBPL NIL)) (GG Ql)))
(T (PKCG2 '
{NCCNC CARQ  (CUNS TBPL NILJ)
_ (CSET(CADR TBPLJ)(CUNS CARQICAR(GET(CADR TBPL) APVALII}II))
Q2 (CCOND ((SETE Q@ (CDR §)) (GC PL)) (T NIL))
el (SETQ TBLM (CDR TBCMI) {66 P2>
DEFINE (¢

(EFFACE (LAMBDA (X L) (PROG (Y L)

3

(COND ((NULL L) (RETURN NILJ))
((EQ X (CAR L)) (RETURN (COR L))

(SETQ HL L)

(SETQ Y L) (SeETQ L (CDR L))

(CUnD ((NULL L) (ReTulth HL) } .
((EQ X (CAR L)) (PRUG2 (RPLACD Y (CDR L)) (RETURN HLII)
(T (GO B> :

OEFINE (U
(CGFY (LAMEDA (X FAT) (PRGG (Y Z)

(SETQ Y (CONS (COPT (CAR X)) NIL))
(CSETQ ELSL (CGNS (CONS X Y ) ELSL))

(SETQ FAT (CKEATE Y FAT)) (CCNO (ONLF (RtTURN Y,

SETQ X (CODR X)) ,
C (CCNG ((AULL X1 (RETURN Y))) : :
(NCGNC Y (COND ((SETQ Z (ASCC (CAR X ELSL)) (CONS Z NILJ)
. (T (CUNS (COPY (CAR X) FAT) NILIJD)
(SETG X (CDR X)) . (GC C>
DEFINE (I .
(ASCC (LAMBCA (X Y) (PRUG NIL .
A (CCND ((EG (CAAR Y) X) (KETURN (CDAR Y)))
((SETQ ¥ (CDK Y2) (GC A)D) - (RETURN NIL>.
DEFINE ((

(C
c

CPT (LAMEDA (X) (PRCG (Y}
(LOND ((NULL X) (RETURN Y)))
(SETQ Y (NCCNC Y (CUNS (CAR X) NILII)
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(SETG X (CDK X)) (606 C>
DEFINE ((
(MESS (LAMBLA (X Y ) (PRUG NIL
(COND ((UR (AND £ (NOT SBS)) (AND RUN (NOT 222 (RETURN NILJ))
(PRIN1 X) {(PRINT Y) -
(RESET) “{BEGIN (QUUTE MAIN} NIL>
DEFINE ((
(MESSOP (LAMBCA NIL (PROG NIL
(PRINT (QUUTE $$$MISSING CFERANDS))
(RESET) {BEGIN (GUUTE MAIN) MNIL>
DEFINE (( - :
(MESC {LAMBDA (X Y) (PRCG NIL
(COND (5BS (MESS X Y T)))
(FRINL X) (PKINL Y) (PKINL (QUINTE $%& LINE $))
(FRINT (CaAR THISLINE))
(RESET) (BEGIN (QUOTE MAIN) NIL>
DEFINE ((
(RESET {(LAMBDA NIL (PRUG NIL :
(CSETQ CFLG NIL) (CSETG SYNTAX NIL) (CSETQ RUN NIL) (CSETE SBS T)
(CSETW AXP NIL) (CSETQ PUTE NILD>
DEFINE (( ‘ :
{SHOWU (LAMBDA (X) (PROG LY)
A (CONC ((NULL XJ (RETURN NIL)M
CADRINT (CAR X))
(PRINT (SETW Y (CUND ((AND (NUMBERP (CAR X))} (NUT (FIXP (CAR X))))
o (GET (MEMBER (CAR X) NUMS) USES))
(T (GET (CAR X) USES)III)) ‘

2

(CLND (Y (PROG (20
(SETQ 2 Y}
P (PRINT (CAK (GET (CADR (CAR Z)) APVAL)))
(COND ((MEMB (CAR ZMCDR Z)) (MESS (QUOTE BDUPLICATES)

(CAR 21101
(COND ((NULL (SETQ Z (CCR Z))) (RETURN NIL)))
(GO P ) '
(SETQ X (COR X)) (GO A>
DEFINE ((

CISIN (LAMECA (Ul B) (PRUG (X))
(COCND ((NULL (SETQ X (CAK(GET (CADR UI ) APVAL)I}) (KETURN NILIJ)
I (COND ((UR (EQ (CAR X) B) (ISIN (CAK X) B)) (RETURN yl))
LESETQ X {CLR X)) (6L 120
{RETURN NIL>
OEFINE (U
(CELE (LAMBLA (X) (PROG (RNCE)
(COND (TEQ EMRK NXTw) (MESSCPI})
(CSETQ DELT X) .
(CUNC ((BEGQ NXTW (QUCTE CNE)) (PROG2 (FTCH) (SETG RNGE Ti)))
(SCTQ % (RANGES NIL))
(CLNL (RNGE (PRUG NIL
(SETL RNGE X))
£ (RPLACL (CAR RNGE) NIL)
(COND ((SETy ANGE (CDR RNGE)} (GU Z2)1))
{RETURN NIL) )))
(CCND ((EQ NXTW (QUUTE FRCM)) (PKOG2 (FTCH)(SETY RNGE (RANGES NIL})))
(T (SETG RNGE (CONS XTUP NIL})))
(CCNG ((NGT (CQ NXTw CMRK)) (MESS IMPRDLIM NXFw NIL)))
(CUND (SYNTAX (KETURN NIL3))
(CGIT (QUOTE CELL) X RNGE>
DEFINE {(( '
(DELLl (LAMBDA (x RNG) (PRGG (TEML FL TEMR)
Dl (CUNC((SETQ FLISETQ TEMK(CAK(GET (CADR(SETQ TEML (CAR X)))APVAL))))
{CUNL LIPROG (FLG XKRNG) DS2 (SETG XRNG RNG)
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i

DS1 (CUND((UR!E?(CAR TEMR) (CAR_XRNG)I(ISIN (CAR TE
(PROGZ (PRUGZ2 (EFFACE TEML (CAR TEMR)) (S

(SETG FL (EFFACE (CAR TEMR) FL))
. (({SETQ XRNG (CDR XRNG)) (GC DS11)))
(CONC ((SETQ TEMR (LCR TEMR)) (GO DS2))
(T (CSET (CADR TEMl ) FLI))
(RETURN FLG)) NIL)
{T (PRUG2 (COND (35BS (PKOG2 (MESSN (CAR Xx) NIL)
(PRINT(QUOTE $83 NOT IN RANGE TO SEVER/DELETESIIIII
’ (GO D2)i1 )
((NCT (EQ RNG XTOUP) MHIPROGZ (COND (SBS(PROG2 (MESSN (CAR X) NIL)
(PRINT (QUOTE $8% HAS NC FATHERSS)I)I ) (GO C2ii))

..mrr!

(CCRD (FL NIL)

(DELT (PRGCG2 (LUND ((AND (EQ XTUP RNG) (EQ TEML (CAR XTOP)))
(CSETQ XTOP (SETW RNG (CCR XTOPAI )2 ]
s ) (T (CSETw XTOP (EFFACE TEML XTOP))))
{DISC TEML) D)

(ONULL (MEMB TEMI XTOF)) (CSETQ XTOP (CONS TEML1 XTOP)II)

(CSETQ KFLG T)

D2 (CCND ((SeTQ X (CDR X)) (GG D1)) (T NIL))

(RETURN T>
DEFINE ((
(DISC (LAMBODA (X) (PRUG (Y LBLS)

(SETQ LBLS (CAR X)) (SETC Y (CLDK X))
C2 (CEFLIST (LIST (LIST (CAR LBLS) .
(EFFACE X (GET (CAR LBLS) USES2)I)) USES) oo
(CGND ({SETQ LBLS (COR LBLS)I) (GO 0v2))) ' :
Cl (CCND ((NULL Y) (RETURN NIL)) ,
( (GREATEKP (NMEM (CAR(GET (CACR{CAR YJ))APVAL))} 1)
(PROG2 {DELL Y (CONS X NILJ)(RETURN NIL)}))
(CISC -(CAR Y))
(SET4 Y (CDR Y))
{GO C1>
DEFINE ((
(MAKE (LAMBDA (X) (PRGG (CIDS KNGS RNGE £IDS IDS ID ¢ Y)
(CONC ((EQ NXTw EMKK) (MESSUP)})
(CSETQ ELSL NIL) ) :
({3ETQ RNGS (RANGES NIL)) (SETQ ICS (CAR ELSL))
(COND ((MEMB NXTw BYAS) (FTCH)) '
( (ANC "(NULL X3 (EQ EMRK NXTw))
(CGND (SYNTAX (RETURN NIL)) (T (GO UN5II)
(T (MESSUDP)D)
(CONG ((EQ NXTw EMRK) (MESSOP)))
(CSETW CFLG T) .
(SETQ 10S (CAR (ITM))) (CSETQ CFLG NIL)
(CCND (SYNTAX (RETURN NIL)))
(CLND (X {60 LB} )
" (CUNC({NOT(EQ NXTW EMRK)) (MESS IMPRDLIM NXTwW NIL)))
UNS (CCND ( (NULL (SETQ@ RNGE (CAR RNGS)) ) (PRUGZ (CUND ((NJT RUN)
(PRINT NLRGII) (LD UN4I2}I :
UN3 (SETW Y (COPT (CAR' (SETQ X (CAR RNGE)))))
(SETQ Z 1DS) _ :
UN1 (CUND ((MEMB (CAK z» ACAK X)) (SETQ Y (EFFACE (CAR £) Y)))
(T (PRCG2(COND (SB8S (PROG2 (PRUG2
(PRINL (CAR Z)) (PKINL (GUOTE $$% DUES NOT LABEL $)) )
(MESSN X T)))) (GC UNZ2)Y)))
(CCNC ((SETQ Z (CLR Z)) (GU UNLD)
((NLLL Y) (PROG2 (CGND ($8S5S (PRUGZ
(PRIN1 (QUUTE $$$CANNUT REMCVE ALL LABtLS FROM $))
(MESSN X T30 (GH uUN2)ID)
(RPLACA X Y) (SETQ z 1DS)
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uN6
UN2
UN 4

LE

LB6

Lus
LEl

LES

L83

LES

Le2
LC4

(CEFLIST (LIST (LIS
(CCND ((SETG 2 (CDR
(CSETQ KFLG T)
(CCND ((SETG RNGE (CDR RNGEDD (GO UN3)I(T NIL))
(CGND ((SETw RNGS (CDR 'RNGS) ) (o0 UNSI))
(RETURN NIL)
A(SETw IC NIL) (SETQ CIts (COPT 1DS))
(COND ((EQ NXTw (QUUTE BEFCKEI 4 {(PROGZ (FTCHJ) (SETQ 10 NXTwad )i
LCUNT ({Ed 1D EMRK) (MESSOP))
{T (FTCH)))
(CONDCUNUT(UEG NXTw EMRK) ) (MESS IMPKDLIM NXTW NILID)
(CUNU ((NULL (SETRQR RNGE (CRk RNGSIIY (PRUGGZ (COND ((NOT RUN)
(PRINT NLRGIDI) (GO LB4dI)) ,
{50TQ ¥ {(CAAR RMGED) (SETW LUS tbkld £ LLUPT CL0SI))
(CUNC ((MEMB (CAR Z) Y) (PkUG2 (CGND (SBS (PROGZ (PRUG2 i
(PRINL (CAR Z)) (PRINL {QUGTE $3$3% ALRLCADY LADELS $3) )
(MESSN (CAIL RNGLI T9 )23 (GO LBZ)))
((SETQ Z (CLR Zd) (GU LEL) )
(SETQ 2 Cieks)
(CUND ({NULL IC) (SETQ EIDS Y))
(T (SETQ EIDS 10S)))
{CUND ({NULL (CDR EIDS)) NIL) ,
(T (PRUG2 (SETQ EIDS (CUR EIUSI) (GU LB9IIN)
(CENC ((NULL IC) {(PRCG2 (RPLACD EILS 10S ) (GO LBBII))
(COND ((EQ ID (CAR Y)) (PRCG2 (PRGG2 (RPLACD ELIDS Y)
(RPLACA (CAR KNGE) IDS )) (LU LBB))))
(SETQ X (CDR Y1)
(COND (({NULL X) (PRUG NIL
(CGAD ((NOT SBS) (RETURIN NILI))
(PRINL BU) (PRINL (QUCTE %3t LOLS NOT LABEL %))
(MESSN (CAR KNGEJ NIL) (PKINL (QUOTE $$% -- %))
{(MESSN (CONS 105 NIL) NIL) '
(PRINT (GQUOTE $%% AUQUED AT ENDS))
{RPLACD Y IDS ) }) ‘ ,

((EQ iC (CAK X))I(PRUGZ(RPLACD Y 1DS J(RPLACD EILS X11))

(T (PKCGZ (PROG2 (SLTG Y X} (SETW X (CDR X3)) (GU LB3II}I
(OEFLIST(LIST(LIST(CAR £) (CCNS(CAR RNGE) (GET(CAK /) MSES)))IIUSES)
(CONC ((SETQ Z (CDR Z)) (GC LEB) ) .

(CSETG KFLG T) ,
{(COND ((SETQ RNGE (CUR KRNGEY) (GU LES)) (T NIL))
(COND ((SETQ RANGS (COUK KNGS)) (GO LBED)) :
{RETURN NI L>

) (gff?CE X (GET (CAR Z) USES) ) IIUSES)

HEFINE 41 ,
(CCLT (LAMBLA NIL (PRCS (X)

(SETW x (RANGE NIL))

{CONL (INUT(EQ NXTw EMRK)) (MESS IMPROLIM NXTw NILIDY

(CCND (SYNTAX (RETURN NIL)YY)
(PRINT (NMEM X>

DEFINF (¢
CNMENM (LAMBUA (X) (PRUG (K)
(SETQ K 0)
N (CCND ((AULL X) (RETURI K)))
{SETQ K (ADOL K)) (SETG X (COR X¥)  (GU N>
DEFINE ((

(CRIT (LAMUCA NIL (PRUG (X))

c

(CSETQ CFLG T¥

(COND ((EQ (CAAR (SETG X (ITMS))) EMKK) iMESSUP))
CONCT (EQ NXTw EMRK))ICMESS IMPRULIM NXTW NIL))

(CCND (SYNTAX (KETURN WNILJ)))

(COUND (X (CREATE (CAR X) NIL)) €T (GO CL)))
(CSETE XTGP (CUNS (CAR X) XTOP)) (SETQ@ X (CDR X1})
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QC
Cl
DEFINE ((
(WFHEREPR
(FTCH
(CUOND
{COND

W

{ SETQ
(RETU
DEFINE ((

(KEEP (L
{CCNC
(CGND

1. (SETQ
({CCNC

K2 (COND

(SETQ
DEFINE ((
AKEEPCHT
(SETQ
(CCND

(CCND
(CUND
(SETG
(CUND
(SETQ
{CCiND

Kl

K2

(SETQ
(CCND
(SETQ
DEFINE ((
(KEEFVAL
(CUND

K3

(COND
(SETW
(COND
(SETQ
(CCND
K2 (COND

K1l

(SETQ.
DEFINE ((

(NRELUPM

(RETLEF

‘ (CUGN

RN

GU C)
(RETURN NILD>
(LAMBCA (RNGE) (PROG (X W)
(CSETGC ISNF T)

(SYNTAX NIL) ((NULL RNGE) (RETURN NILJI))

((Ed NXTw (QUOTE CGUNT)) (PRUG2 (FTCLH)
(SETQ w (QUUTE KEEPCNT))))

((EQ NXTw (QUOTE VALUE)) (PROG2
(SETQ W (QUUTE KEEPVAL) D))

(T (SETG W (QUUTE KEEP) 1))

X (RANGE 0))

(W X RNGE>

T
)

(FTCHi

AMBOA (TSTNODES NGODES) (PROG (X H)
(SYNTAX (RETURN N1L)))

((NULL TSTNGOES) (KETURN (CONG (ISNF NIL) (T NUDES)IINI)

H TSTNODES)

((NULL NGDES) (RETURN X11})

(ENULL ,H) (CUND (ISNF NIL)(T (SETQ X (CONS (CAR NUDES) X))21)
( (UR (EQ. (CAR H) (CAKR NUDES)) (ISIN (CAR H) (CAR NUCES))) -

(CCNC (ISNF (SETQ X (CONS (CAR NUDES) XJ))) (T NILD))

(T (PRUG2 (SETQ H (CLKk H)) (GG K2))i)

NOUES (CDR NUDES)) (GO K1>

(LAMBDA (TSTNUUES NUDBES) (PROC (X REL NUM CNT H)

REL (FTCH)) (SETQ NUM (FTCH)) .
CONCT (NUMBERP NUM) ) (MESS(QUOTE $$$NDT A NUMBER.+s $) NUM NIL))

(INUT (MEMB REL KELS)) (MESS (QUGTE
$$SNGT A RELATIUNAL UPERATOR...

(SYNTAX (RETUKN NIL}I}) v

((NULL TSTNODES) (RETUKN NIL)))

H TSTNGCES)

{ {NULL NCDES)

CNT 0)

( (NULL

$) REL NIL))) : '

(RETURN X1}i)

H) (GC K3))

tCISIN (CAR H) (CAK NODES))

H (COR H)) (GU K2)
(CNRELCFM CNT REL NuM) (SETQ X

NOUES (CLR NODES)) (G0 K1>

(SETG CNT (ADDL CNTI)))

(CONS (CAR NODES) Xx))))

(TSTNODES NCUES) (PRCG (X Y KEL NUM H)

{ (INOT{NUMBEKP HUM) J (MESS(QUUTE $$3NOT A NUMBER...
( (NOT (MEMB REL RELS)) (MESS (QUOTE

$$SNUT A RELATICNAL CPERATGReaa

(SYNTAX (RETURN NIL)))

REL (FTCH)) (SETw NUM (FTCH) )

{(NULL TSTNUODES) (RETULRN NIL)))

K TSTNGDES) ’ o
((NULL NCUES) (RETURN X))

(UNULL H) NIL)

(CAND (SETQ Y (FNUM

(LAMBLA

$) NUM NIiL))

$) REL NIL) )

(CAK H) (CAR NODES))
(NRELCPM ¥ REL NUM))

(CAAR H))}) (UR (EQ

(ISIN (LAR R) (CAR NODES)))
(SETW X (CGNS (CAR NLOLSH X))
(PRUGZ (SETQ b (COR F)) (GG K21 ))-
(CUOK NULES)) (GU K1>

(T
NODES
(LAMBDA (N KELP M) (PRJOG NIiL
N
D (EQuAL N M)
(NGT (EQUAL

(wJOTE EW))
(WUUTE NEQI))

((EQ RELP

((EQd RELP N M)))
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((EQ RELP (QUUTE GR)) (GREATERP_N M))
({EQ RELP (QUUTE uk)) (OR (GREATERP N M) (EWUAL N ¥)))
((EQ RELP {(QUCTE LS)) (LESSP N M)) / e
((EQ RELP (WUCTE LE}} (CR (LESSP N M) (EQUAL N M>
DEFINE ({ ) , v )
(MESSN (LAMBLA (X FLG) (PRCG NIL .

{CGND ((NUT SBSI (KETUKN NIL) )
(SETQ X (CAR X)) :
A (FRINL {(CAR X)) .
(CUND ((SETQ X (CDR X)) (PRCG2 (PRINL BLANK) (GU A})II
(CGND (FLG (TERPRI> .
DEFINE (L
CINPT (LAMBUOA NIL (PRUG (INPL NUOTF X XH Y YH}
(CSETQ ELSL (ITM)) ‘ ¢
(CCND (SYNTAX {GO S1)) ,
CONULL (SETG YH (NCMN ELSLI) (RETURN NIL)))
C(SETWY INPL (CCAS YH NIL))
S1 (CGNU {(cQ NXTw (GUGTE IS)) (PRCG2 (FTCR) (CSETW [SNF
(LUND LLER NXIw lwbUiE NUTH) {PRULZ (FTUH) NILIYUT TH3DIDY) .
23 (CCND ((MEMB NXTw NOTN) NIL) (SYNTAX (RETURN NIL)) (T (G3 Z0)))
(COND ((Ew NXTW {(QUUTE NGT))
(PRUGZ (SETQ INPL (CONS NIL INPLI) (FTCH)))
(T (SETG INPL (CCNS T INPLIJ))
(CUND ((EW NXTw (QUOTE IN)) (FTCH))
{T (MESS IMPKDLIM NXTwW NIL)))
(SETG X (ITM))
{CCND (SYNTAX (GO 23)) . ’ _
(INULL (SETW YH (NCMN X))) (RETURN NIL))) .

(SETQ INPL (CLENS YH I_NPL))
(GU 23) S _
20 (SETQ YH (SETQ Y (CAR INPLI))) {SETQ "INPL (COKk INPL))
L4 (CCONU ((NULL INPLI (RETURN YH))) e .

(CSETG NOTF (CAR INPL)) (SETG X (CADR INPL)) ISETW XA NIL)
(SETQ INPL (CCCR INPL ) ‘
Z1 (CCND ((ISIN (CAR X) (CAR Y})} (PRCG2
(CUND (NUTF (SETJ .XH {CGNS (CAR X) XH))) (T NIL))
(GG 221)1))
(COND C4SETE v (CLR 'Y)) (GG Z1)h) ‘
(COND (MOTF NIL)Y (T (SETQ XH (CUNS (CAR X) XH))))
12 (SETQ Y Ynr) 4 ’
(CUND ((SETY X (COR Xi) (GC Z11))
(COND ((SETQ Y (SETQ YH XH)) (GO Z4)))
(KETURN NILD> .
DEFINE (( ,
(RANGES (LAMHBDA (FLG) (PROG (X)
R (SETG X (CCNS (RANGE FLG) X)) :
(COND ((EQ NXTw {QUUTE ANC) ) (PROG2 (FTCH) (GG R
(RETURN X> '
DEFINE (( .
(DOIT (LAMBDA (F XH YH) (PROG (X}
(SETW X AH) .
D3 (CCND ((NULL (CAR YHJ)} (PROG2 (PRINT ALRG) (GU D4)2))
D1l (CCOND C(NULL (CAK X)) (PRUG2 (PRINT NLRG) (GU 02))))
(F (CAR X) (CAR YH)) ’ ..
D2 (COND ((SETq & (COR X)) (GG LL))) _ !
(SETQ X XH) , ¢
U4 (LLAL LESETY Yh (CLR YH)) (GO U3)))
(RETURN NIL>
OEFINE ((
(FANUM (LAMRDA (X) (PRUG NIL
N (COND ( (NUMBERP (CAR X)) (RETURN (CAR X)))
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o

( fIQ X (CLR X)) (GO NI

) (RETuR& ﬁ >
DEFINE (( ' :
(LIS (LAMBDA NIL (PRUG (Y X)
(CCND ((EG NXTw EMRK)
I (COND ((SETw X LINES) (RETURN (PRUG NIL
L (PRINT (CAR X)) :
{CCND ((SETQ X (CDR X)) (GO LN
(T (MESS (QUGTE $5SNCTHING TC LIST$) BLANK T)))))
(CCND ((NOT (AND (NUMBEKP (SETQ X (FTCH))) (FIXP X))
{MESS (QUUTE $$5L INE NUMBER MUST Bt INTEGERS$) BLANK NIL))
(T '
(COND ((NUT (ANC. {SETW Y (LINESRCH X 0)) (EQ (CAAR Y} .X)))
C(MESS (JUOTE $$SNOTHING TO LISTS) BLANK T))
‘ (T (RETUKN (PKINT (CAR Y)))) 1))} >
ODEFINE (( : ' : .
(LINESRCH (LAMBLA (L FLG) (PRCG (Y Z)
(COND ((OR (NULL -L INES) (GREATERP (CAAR LINES) L))
(RETURN (COND ((OR (NULL FLG) (NUMBERP FLG)) NIL)
. (T (CSETG LINES (CCNS LINE LINES)III))
. L(EQ (CAAR LINES) L) ’
(RETURN (COND ({iNULL FLG) (CSETQ LINES (COR LINES)))
( (CNUMBERP FLG) LINES) ’
(T (RPLACA LINES LINE))))))
(SETQ Z LINES) . {SETQ Y (CCR LINES)}
M (CCHD ( (UK (NULL Y) (GKEATERP (CAAR Y) L))
(RETURN (CUND ({.OR (NULL FLGJ (NUMBERP FLG)) NIL)
{T (RPLACD Z (CONS LINE Y)))3)))
((EQ (CAAR Y ) L) ‘
(RETURN (CUND ((NULL FLG) (RPLACD Z (COR Y))}
( (NUMBERP FLG) Y)
_ (T (RPLACA Y LINE)IID))
(SETQ £ Y) (SETQ. Y (CUR Y)) (GO M>
DEFINE ((
“(RNN (LAMBDA NIL (PROG (X Y)
(CGNC ((Eg NXTW EMRK) (SETQ Y LINES))
(ECNUT (AND (NUMEERP (SETW X (FTCh))}) (FIXP X))
{MESS LNMI BLANK NILJJ
((NOT (AND (SETQ Y (LINESRCH X 0)) (EQ (CAAR Y) X)))
(MESS (QUUTE $$$NU SUCH LINE NUMBERS$) BLANK NIL)))
(CSETQ THISLINE Y) (CSETQ LINE (CUAR THISLINE))

{CSETG 58S NIL) (CSETQ RUN T2
DEFINE (!
(STFP (LAMECA (X) (PRUG NIL .
(FRINT BLANK) (PRINL (QUUTE STOP))

(PRINL1 (COND (X (QUOTE $3% AT LINE $))0(T (WUCTE $%3% AFTER LINE $)1))
(PRINT (CAAR THISLINE))
(CSETQ THISLINE NIL) {(CSETE 58S T) (CSETQ RUN NIL)
{BEGIN (JUOUTE MAIN) NIL> :
DEFINE (( "
(LETT (LAMBDA NIL (PRUOG (W Z X Y}
(CGND ({NUT (ATOM NXTW)) (MESS . .
(QUGTEC $$%ILLEGAL ALGEBRAIC VARIABLES)
BLANK NIL)))
(CSETY AXP T) (SETY X (FTCHI)
(SETQ w (GET X PVAL))
{COND (({NOT (ATCM NXTwd) (PRGG NIL
{CGND ((NUMBERP W) (MESC AVCS XJ))
(SETQ X (CLAS x NIL)) .
(CSETQ OUTP (CUNS NIL NIL)) {PPOP (FTCHI)
(CSETQ GUTP (CDR LUTP)) )
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{COND (SYNTAX {(RETURN CUTP)))
(SETQ 2 (eviL gutP)) 1))

{ (0GR (NULL W) (NUMBERP wW)) NIL)
(T (MESC ALMS X))) :
(CCGNC ((EQ NXTW EQSIGN) (FTCH))
(T (MESS IMPRDLIM RAXTW NIL)))
(COGND {((EQ NXTW EMRK) (MESSCPI))
(SETQ Y (CUNS NIL NIL))
D (CCND {((EG NXTw EMKK) NIL)
- AT (PRGG2 CAPPENDL Y (FTCH)) (GO DI
(CSETGQ AXP 'NIL) (CSETQ UUTP (CONS NIL NIL))
{PPUP (CDR Y)) {CSETQ CLTP (CLK CUTP))
(CCND (SYNTAX (RETURN OUTP)I )
(SETQ Y (EVLL OuTP)) o ;
{LUND LTAIUM R) (CUND " CLEhUNM ¥) (DEFLIST (LIST (LIST A Y)) PVALY)
AT NILDY)
((SETG W (SASS £ W)) (RPLACD W Y))
(T (DEFLIST (LIST (LIST (CAR XJ) (CGNS (CONS Z VY)
: (GET (LAR X) PVAL)))) PvAaL)))
(GESETE KFLG T) (RCTUAN ¥
DEFINE (( ,
(AEXP (LAMBDA (INP) (PROG (FLG INC X) .
(CGND ((EQ (CAR INP) PLUS3) (SETQ INP (CDR INP)}))
{(EY (CAR INP} DASH) (PRUGZ2
(CSETw STAK (CONS (CUNS (QULOTE NEG) 4) S1AK))
{SETC INP (CDR INPIII))
A (COND ({NULL INP) (CGNB (FLG (RETUKRN CUTP)) : .
‘ (T (MESS IAE BLANK NILI))) ‘ »
((ATCM INP) (SETG INP (CCNS INP NILI)))
(SETY X (CAK INP)) :
{COND ((ATCM X) ,
(COND ((SETQ INC (SASSGC % OPSP NIL)) (PRUG NIL
(CUND ( (NULL FLG) (MLSS TAC BLANK NIL)))
C (COND {(LESSP (CCAR STAK) (CDR INC))
(CSETq 3TAK {CONS INC STAK)))
(T (PROGZ (PRUG2 (CCND ((NULL  (CAAR 51AKJJ
{RETURN (SETW FLG NlL)))
(T (APPENDL OUTP (CAAR STAK) )}
(CSETQ STAK (CDR STAKI) (GO C)11i))
(T (PROG2 (PRGCG2 (CEND (FLG (MESS TAF RiANK NILD)I))
- (APPENDL CuTP X)) '
(COND ({AND (CDR INPJ (NOT (ATUOM (CAUR INP)))
(NUT (NUMBERP X)) )
(PRObZ (PP(P (CAR {SETU INP (CDR INP))))

(LWPPENUL GUTP SUBJI))) 1))
(T (PPLP X}))

(SETQ FLG (NOT FLG)) (SETQ INP (CUR INP)) (GO A>
DEFINE ((
(PPCP (LAMBUA (X) (PRUG NIL . :
CSETQ STAK (CONS (CONS LPAR 0) STAK)) {AEXP X)

£ (CCND ((tu (CAAR STAK )} LPAR) (RETURN (CSETQ STAK (COR STAK)))I)
(APPENDL UUTP (CAAR STAK) ) (CSETQ STAK (CDR STAK)) (GO P>
VEFINE ((
(CALM (LAMBCA (X)
(COND ((NUMBERP X) X) o
, (T (MESC ALIMS BLANK> ;
DEFINE ({
(CARY (LAMBDA (Xx)
(CCND ((NOT (ATCM X)) X) (T (MESC AVCS BLANK>
UEFINE (( ,
(EVLL (LAMBDA (X)} (PROG (Y VAL)
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AK NIL) : :
ASSUC (CAak X) OPSP NIL) (PRUG NIL

(SETQ Y {CAK X)) ,
: (SETC VAL
(COND ((EW PLUSS) (PLUS (CNUM (CADR STAKI) ) (CiWUM (CAR STAK) )}
((EG DASH) (DIFFERENCE(CNUMICADR STAK) ) (CNUM(CAR STAK)I)))
((EG STARY (TIMES (CNUMICADR STAK)) (CNUM (CAR STAKI)) D))
(LEY SLASH) (UIVIUE (CNUM(CADR STAK)) {(CNUM (CAR STAK))}))
(CEQ Y {QUGTE =%)) (Caho ({MINUSP {CWNUM {LADR STAKI))
{MESC (GQUOTE $$SBASE IN EXPUNENTIATION CANNUT DE NEGATIVES)
BLANK)) (T (EXPT (CADR STAK) (CNUM (CAR 3TAK)I)IID))
((EG Y SUBE) (CUND ((SETQ VAL (SASS
“{CNUM (Car STAK) ) (CARY (CADR STAK)))} (CDR vaAL))
(T (MESC (QuUOTe
$$$ARRAY VARIAELE RAS NU VALUES) BLANK)I}D)I
(T (MINUS (CNUM (CAr STAKIIIII :
(COND ((BEQ Y {(QUOTE NEG)) (CSETQ STAK (CDk STAK)})
(T (CSETQ STAK (CCLUR STAK))})
t (CSETw STAK (CUNS vAaL STAK))} )}
((NUMBERP (CAR X)) (CS5&ETa STAK (CUNS (CAR X) STAK)))
((SETQ Y (GET (CAR X) PVAL)) (CSETG STAK (CONS Y STAK)))
(T(MESC(GQUUTE $$SARITHMETIC OK ARRAY VARIABLE HAS NU VALUE... $)

-t

< < < <

(CAR X)) ))) -
- (COND ((SeTQ A (CDR X)) (GC £
(RETURN {CAR STAK>

OEFINE (L
(GOTC (LAMBODA NIL (PRUG (Y KX)
(CCNLC ((EQ NXTwWw (QUOTE Tul) (FTCH))
(T (MESS LIMPRDLIM NXTw NIL)))
(CGND ((NOT (AND (NUMBERP (SETG X (FTCH))) (FIXP X))
: (MESS LNMI BLANK NIiL))
(SYNTAX (KETURNN NIL)) )
CONCT (AKD (SETW ¥ (LINESRCE X 0)) (£Q (CAAR Y) X)))
' (MESC (WUUTE $$$NUG SUCH LINE NUMBER... . 3) X)))
(CSETiw THISLINE Y) (CSETG LIivE (CUAR THISLINED
VEFINE (( -
(SASS (LAMBDA (Xx Y) (PRGG NIL
S, (CCNL ((NULL Y) (RETUKRN NIL))
. ((EQUAL (CAAR Y) X) (RETURN (CAR Y)I)))
(SETQ v (CDR Y1) (GO S>

&

VEFINE (|
R (GETVAL (LAMEBDA (Y) (PRGCG NIL
(CSETQ OUTP (CUNS NIL NILYY (PPUP Y)

{CSETJ LUTP (COR OuTP)) _
(CCWND (SYNTAX (RETUKN QUTKI))
(RETURN (EVLL LUTP>
VEFINE ({
(PRYN (LAMBDA NIL (PRCG {(X)
(CUND ((cid NXTW EMRK) (MESSGP)))
P (CSETE AXP T) " {SETL X (FTCH)) (CSETQ AXP NIL)
{COND ((NUT (ATOM NXTwid (SETE X (CLNS X (CUNS (FTCh) NIL D)
(CUNU (SYNTAX NIL) (T (PRINT (GLETVAL X}))) .
(CCNC ((EG NXTw EMRK) (RETURN NILD)) (T (GU P>
MAIN NIL '

o

%
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APPENDIX II

LOGICAL FLOWCHART OF THE TAXL INTERPRETER

Place Previous Commanc
in Comm.and Buffer with
Recorded Sequence Number |

-\

Tes

Fetch From
Terminal

Set
Sequence
Flaz

Y

Record

Sequence
Number

Reset
Sequence

Flag

Fetch )
Command with Sequence
Number given by instruc-
tior: counter from command

buffer

Set Instruction Counter

to Sequence Number: of
Next Command in Command
’ Buffer

Switch on
Key word

! )
1 A ) . :

y

N

COUNT )

v

CL

N

S E5ESE
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Get Data
Items

Sequence
Flag Set

For Each Label
in Data Item:

Create Node with
no Labels, no
Father, no Sons

v

For Each
Data Item:

v

Get Data
Item

Add Data Item
to List

Add Pointer to Label
onto Label List
at Node

v

Add Pointer to Node
onto List of Uses
on Label's Property

List

Return List
of Data
Items

Get
Word

v

Add Word
to List

Delimiter

Yes
No

(See Table 2)

Return List
of Words
In Data Item
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Fcr Lach'Node
in Range:

For Each Label
in Data Item:

v

Add Pointer-to-
. Lzbel onto Label
List at Node

v

Add Pointer to Node
onta List of Uses on
Labz1's Property
List, if not Already
there :

=

Sequence

Flag Set

No N No )
—P1{ Error —‘>® —p{ Error —@

For Each Node-
in Range:

For'Each Label
in Data Item:

S

Remove Pointer to
Label from Label
List at Node

v

Remove Pointer to
Node from List of
Uses on Label's
Property List,
unless Label occurs
Again at Node
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Error

For Each Node N
-in Rangel:

Sequence
Flag Set

For Each Node M
in Rangezz

Add Pointer to M
onto List of Fathers
of N

y

Add Pointer to N
onto List of Sons
of M

Create a copy of the
complete structure from
every node in range,
-downward (along lists

of sons) toward leaves

of tree. Redefine range,
as the root nodes of this ~ -
copy. For each node in
(the new) range, make the
list of fathers null

159486
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'Remove Hierarchical
Connections from

2

Rangel' to Range

Remove Hierarchical Connections
. from Rangs, to Range2

For Each Node N
in Rzmgel:

For Each Node M
in.Range'z:

For E:ch Fether M

of the Node N:

v

Remgo-e the pointer

to the son N from
the list of sons of M

For Each Node N
in Rangel:

For each father
f of the Node N | Yes No
Through which N
is Within M:

v

Mak=2 the List of
Fathers of N Null

Remove the Pointer
to the Son N From
the Lis{. of Sons. of f

T |

1 List of Fathers of N

Remove the Pointer to
the Father f from the

o

*

159487°
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Sequence
Flag Set

The Remainder
of this
Algorithm is
Recursive and
will be Stated
in Words.

The accompanying
Diagram will Help
to Clarify the
Algorithm

Let nodes n

and f be Range,
and Ranges

-respectively

Define Range,, to
be all the Roots
of the Tree

&/

Remove Hierarchical Connections
from Range1 to Ral.n,ge2

If n now has at least one
father remaining, then quit
(A nonclosed subtree has
been encountered)

Otherwise,

Remove all labels from n

(See flowchart for unlabel)

" Check each of the sons of n

(i.e., all nodes p)

If p has only one father -
(i.e., n), tKen, recursively,
go.to Step 3 with argument p.
(The algorithm remains in
this recursive loop as long
as a nonclosed.subtree is
not encountered.

If p has more than one father
(i.e.;, there is a node q in
addition to n), then recursively,
go to Step 1 removing con-
nections from p to n.
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For Each Node
im Range:

N ode and

Subt-ee io Secondary
Storage

v

Cepy Usage Informatizn
for Each Label in the .

Subtree into an Exteramal
Dictiorary, ‘Itself Saved

_ on Secondary Storage

!

Node

‘lliiiiiill"

Sequence

Flag Set

For Each Node
In Range:

(and Subtree) from

Secondary Storage

Remove Node
(and Subtree)
From Secondary

Storage

v

Identify Range on
Secondary Storage

in the Same Manner
Ranges are Identified
in Primary Storage

For Each Node
In Range:

v

EomorDnoe

(and Subtree) from
Secondary Storage

¥

Copy Usage Infor-
mation for each
Label in the Sub-
tree on Secondary
Storage from the
External Dictionary
to the Internal
Dictionary (the use-

C2ut Dyode

into I&inge2

list).
v

Copy Subtree to -
Primary Storage

v’

v

Remove Subtree from
Secondary Storage
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No

For Each Node
in Range:

!

Print Number
cf Nodes
in Range

Set Instrﬁction
Counter to
Value of Number

Print Lakels
at the Node

I

Recursively,
Visit the Sons

v

<

Set Instruction

Counter to Sequence

number of first

Command in Command

Buffer

Set Run
Flag

<
4

Reset Run

Flag
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