ANL-6373 Physics (TID-4500, 16th Ed.) AEC Research and Development Report

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois

THEORETICAL REACTION CROSS SECTIONS FOR ALPHA PARTICLES WITH AN OPTICAL MODEL

by

J. R. Huizenga* and G. J. Igo**

*Chemistry Division

**Lawrence Radiation Laboratory, Berkeley, California

May 1961

Operated by The University of Chicago under Contract W-31-109-eng-38

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

			Page
ABS	STR.	ACT	3
I.	INT	FRODUCTION	3
II.	RE	SULTS AND DISCUSSION	4
	Α.	Simplified Calculation of Reaction Cross Sections with a Parabolic Approximation of Optical Model Real Potential	19
	Β.	Comparison of Reaction Cross Sections from Various Models	19
	C.	Optical-model Cross-section Dependence on Nuclear Potential	24
	D.	Program Checks	27
III.	AC	KNOWLEDGMENTS	27
REF	ER	ENCES	28

THEORETICAL REACTION CROSS SECTIONS FOR ALPHA PARTICLES WITH AN OPTICAL MODEL

by

J. R. Huizenga and G. J. Igo

ABSTRACT

The transmission coefficients $T_{\underline{\beta}}$ and total reaction cross sections $\sigma_{\underline{R}}$ for alpha particles in the energy range 0-46 Mev interacting with twenty target nuclei with atomic numbers ranging from 10 to 92 are calculated with an optical model program in which a previously determined complex nuclear potential is utilized. The dependence of the $T_{\underline{\beta}}$ values, and hence of $\sigma_{\underline{R}}$, on the Woods-Saxon parameters is investigated as a function of projectile energy. The optical model reaction cross sections are compared with those derived from (1) a square-well potential and (2) a model which approximates the real optical model potential barrier by a parabola and makes use of the Hill-Wheeler penetration formula for a parabolic potential.

I. INTRODUCTION

Shapiro⁽¹⁾ and Blatt and Weisskopf⁽²⁾ have calculated total reaction cross sections for alpha particles with a square-well potential. The total reaction cross section is given by

$$\sigma_{\mathrm{R}} = \pi \, \lambda^2 \, \sum_{\mathcal{U}=0}^{\infty} \, (2\ell+1) \mathrm{T}_{\mathcal{U}}(\epsilon) \quad , \qquad (1)$$

where $\underline{\mathcal{K}}$ is the de Broglie wavelength, $\underline{\ell}$ is the angular momentum of the incident particle in units of \underline{h} , and $\underline{T}_{\underline{\ell}}(\underline{\epsilon})$ is the transmission coefficient of the incident particle of energy $\underline{\epsilon}$. The transmission coefficients (actually $4/\underline{T}\underline{\ell}$ are tabulated) for alpha particles derived from the square-well potential are available⁽³⁾ for target nuclei with Z<40. Igo⁽⁴⁾ has calculated total reaction cross sections with a complex nuclear potential for six target nuclei with alpha-particle projectiles of a few energies. Transmission coefficients calculated with the complex nuclear potential are not available.

Since alpha-particle transmission coefficients for high-Z targets are not available, we have calculated this quantity for a large variety of targets at a number of alpha-particle energies with a complex nuclear potential. For the light-Z targets, the transmission coefficients derived with the complex nuclear potential of the optical model are compared with those previously calculated with the square-well potential. (3)

II. RESULTS AND DISCUSSION

The optical-model potential employed in these calculations is written as

$$V_{k}(r) = V_{c} + \frac{\ell(\ell+1)\hbar^{2}}{2M_{d}r^{2}} + \frac{V}{1 + \exp(\frac{r-r_{0}}{d})} + \frac{iW}{1 + \exp(\frac{r-r_{0}}{d})} , \qquad (2)$$

where V_c is the Coulomb potential, M_{α} the reduced mass of the alpha particle, and the third and fourth terms (in units of Mev) are the real and imaginary parts of the alpha-nucleus potential, respectively, exclusive of the Coulomb and centrifugal potentials. The Coulomb potential of the Hill-Ford⁽⁵⁾ charge distribution was employed in Eq. (2). For alpha particles this is given by

$$V_{c} = \frac{2Ze^{2}}{r_{c}} \left[\frac{1}{n^{2}} + \frac{1}{2} - \frac{x^{2}}{6} + \frac{e^{-n}}{n^{2}} \left(\frac{1 - e^{nx}}{nx} + \frac{e^{nx}}{2} \right) \right] / \left(\frac{1}{3} + \frac{2}{n^{2}} + \frac{e^{-n}}{n^{3}} \right) \text{ (for } x < 1 \text{)}$$
(3)

and

$$V_{c} = \frac{2Ze^{2}}{r_{c}} \left\{ \frac{1}{x} - \left[\frac{\left(\frac{1}{x} + \frac{n}{2}\right)e^{n-nx}}{e^{-n} + 2n + \frac{1}{3}n^{3}} \right] \right\} (\text{for } x > 1) , \qquad (4)$$

where $\underline{\mathbf{x}} = \mathbf{r}/\mathbf{r}_{c}$ and where $\underline{\mathbf{n}}$ is 10 for heavy elements and is proportional to $A^{1/3}$. The quantity \mathbf{r}_{c} is the distance out to the half-value point of the charge distribution. The value $1.17A^{1/3} \times 10^{-13}$ cm for \mathbf{r}_{c} was chosen larger than the value obtained from the electron-scattering experiments(6) to take into account roughly the effect of the finite size of the alphaparticle charge distribution.

,

The parameters V, W, r_0 , and <u>d</u> in the Woods-Saxon potential,⁽⁷⁾

$$(V + iW) / \left[1 + \exp\left(\frac{r - r_0}{d}\right) \right]$$

were chosen to reproduce the nuclear potential given $by^{(4)}$

 $-1100 \exp\left[-\left(\frac{r-1.17A^{1/3}}{0.574}\right)\right] - 45.7 i \exp\left[-\left(\frac{r-1.40A^{1/3}}{0.578}\right)\right]$

for values of \underline{r} where the real part of the nuclear potential is greater than -10 Mev. The Woods-Saxon parameters for the nuclides which we investigated are given in Table I. The depth of the potential for small values of \underline{r} is also fixed when the parameters of Table I are used, although it has been shown that alpha-particle scattering is not sensitive to the potential depth.

The total reaction cross sections σ_R and the transmission coefficients T_{ℓ} calculated with the parameters of Table I are listed in Tables II and III, respectively. It should be emphasized that the alphaparticle energies are given in the laboratory system.

Nuclide	W(Mev)	n	Nuclide	W(Mev)	n
10 ^{Ne²⁰}	- 5.30	4.42	37 Rb ⁸⁵	-13.30	7.16
19 ^{K41}	- 8.70	5.60	41 ^{Nb⁹³}	-13.74	7.37
22 ^{Ti⁴⁸}	- 9.51	5.91	45Rh ¹⁰³	-14.30	7.62
23V ⁵¹	-10.00	6.04	50 ^{Sn119}	-16.20	8.00
24 ^{Cr⁵²}	- 9.90	6.07	60Nd ¹⁴⁴	-18.23	8.53
25Mn ⁵³	- 9.98	6.11	70 ^{Yb¹⁷³}	-20.79	9.07
25 ^{Mn⁵⁵}	-10.25	6.19	78 ^{Pt¹⁹⁵}	-22.10	9.44
26 ^{Fe⁵⁶}	-10.26	6.23	82 ^{Pb²⁰⁶}	-23.00	9.61
27 ^{C0⁵⁵}	-10.17	6.19	90 ^{Th232}	-26.11	10.00
32 ^{Ge⁷²}	-11.85	6.77	92U ²³⁵	-27.00	10.04

Table I WOODS-SAXON POTENTIAL PARAMETERS*

* In all cases,

V (Mev) = -50 r_0 (fermi) = 1.17A^{1/3} + 1.77 r_c (fermi) = 1.17A^{1/3}

and

d (fermi) = 0.576

Table II

THEORETICAL REACTION CROSS SECTIONS (σ_R) MILLIBARNS

			······								
E _{Lab} (Mev)	10 ^{Ne²⁰}	19 ^{K41}	22 ^{Ti⁴⁸}	23V ⁵¹	24 ^{Cr⁵²}	25 ^{Mn⁵³}	25 ^{Mn⁵⁵}	26 ^{Fe⁵⁶}	27 ^{Co⁵⁵}	32 ^{Ge⁷²}	37 ^{Rb⁸⁵}
2 3	0.36 23.1										
4 6	177 608	0.44 70	0.035 16.9	0.016 10.5	0.0059 5.49	0.0022 2.85	0.0026 3.28	0.0010 1.68	0.0003 0.741	0.053	0.0027
7 8	745 862	422	91.5 250	205	40.5 150	24.2 105	116	16.0 79.0	8.05 46.5	8.17	0.91
9 10	1017	744	435 603	562	320 496	257 431	452	216 388	151 307	140	35.0
11 12		961	745 862	834	650 780	589 725	749	551 693	469 614	454	249
13 14	1128	1104	959 1040	1024	888 980	839 935	960	813 914	739 844	736	555
16 18	1175	1280		1159 1259			1112 1224			1108	809 1005
20 22	1170	1376		1334 1393			1310 1377			1329	1278
24 26	1200	1429		1438 1473			1469			1471	1455
28 30	1186	1461		1501 1524			1529			1566	1561
34 38	1140	1482 1495		1559 1581			1570 1599			1633 1681	1663 17 <i>2</i> 7
42 46	1081	1495 1493		1595 1603			1618 1628			1716 1742	1774 1811

E _{Lab} (Mev)	41 ^{ND⁹³}	45 ^{Rh¹⁰³}	50 ^{Sn¹¹⁹}	60 ^{Nd¹⁴⁴}	70 ^{Yb173}	78 ^{Pt195}	82 ^{Pb²⁰⁶}	90 ^{Th²³²}	92 ^{U235}
2 3									
4 6									
7 8	0.13	0.021		0.00001					
9 10	8.03	1.84	0.34	0.0086					
11 12	109	39.2	11.0	0.491	0.026				0.000024
13 14	384	238	111	10.1	0.818	0.10	0.036	0.0048	0.0026
16 18	663 885	525 773	371 646	94.0 324	11.8 93.0	1.96 20.4	0.79 8.75	0.148 1.62	0.091 0.966
20 22	1199	971 1130	873 1058	590 822	310 570	124 350	67.7 249	18.0 106	11.7 76.8
24 26	1405	1365	1333	1015 1176	804 1003	602 829	498 736	312 561	257 501
28 30	1547	1528	1526	1427	1315	1191	1123	996	945
34 38	1649 1724	1647 1735	1666 1772	1611 1752	1547 1724	1461 1669	1413 1636	1328 1584	1286 1550
42 46	1782 1826	1802 1855	1854 1918	1861 1948	1864 1975	1832 1964	1812 1953	1787 1950	1759 1928

ę

ь	TRANSMISSION	COEFFICIENTI FOR	ALPHA	PARTICLES	IN Mey	٥N	THE	LABORATORY	ENERGY	SCALER
. 1										

Table III

		-				10 ^{%e20}	TARGET	NCLEUS>						
L	2	3	4	6	7	8	10	14	16	20	24	30	35	46
0	7 704	7 582	5 551	9 461	9 521	0 <u>491</u>	0 451	9 461	9 471	o 49 <u>1</u>	9 44 <u>1</u>	9 361	9 24]	9 141
1	4.604	3.422	2.591	8.061	9.041	9.481	9.741	9,671	9.601	9,481	9.411	9.33 <u>1</u>	9.241	9.141
2	1.324	1.752	2.411	8.54 <u>1</u>	9.011	9,141	9.201	9.401	9.451	9,47]	9.431	9.341	9.221	°.12 <u>1</u>
3	2.465	2.953	4.342	5.351	7.941	9.251	9.891	9.681	9.561	9.421	9.361	9,301	9,21]	9,101
4	2.986	6.484	1.602	3.541	5.691	7.031	8.371	9.291	9.431	9.47 <u>1</u>	9.401	9.291	9,171	9.681
5		4.755	1.183	6.202	2.281	5.461	9.621	9,481	9.321	9,251	9.27 <u>1</u>	9.241	9.151	9.03 <u>1</u>
6		6.356	2.144	1.302	4.61 <u>2</u>	1.101	4.131	9.17]	9.671	9.571	9.341	9,181	9,081	9.001
7	1		1.445	1.283	6.693	2.842	2.451	7.071	7.911	8.921	9.201	9.221	9.051	8.93 <u>1</u>
8			1.896	1.524	6.944	2.473	2.042	4.921	9.071	9.18 <u>1</u>	8.801	8.971	8.491	8.891
9				2.505	1.254	4.844	4.213	7.242	2.071	7.83 <u>1</u>	9.841	9,101	8.831	8.791
10				4.165	2.145	7.935	6.364	1,76?	7.502	3.201	6,341	9.161	8,981	S,70 <u>1</u>
11					4.286	1.735	1.454	2,053	8.323	8,152	5.611	7.191	8,631	8.75 <u>1</u>
12					l I	o 876	3.6%	7,30 <u>4</u>	2.153	1.112	6.522	1.671	8.101	8.341
13						1 046	9.605	2.214	6.684	2.703	1.402	1.031	9.26 <u>1</u>	8.531
14							2.565	6 825	2.103	6.754	4.613	2.652	2.60]	8.771
15								2.115	6.395	1.564	1,143	8.943	5.672	2.661
16								0.576	1.825	3.275	2,074	3.003	2.152	8,562
17										6.106	7.015	9.374	8,543	3.52 <u>2</u>
18										1.050	1.495	2.664	3.253	1.572
19		1									2.829	6.775	1.143	6.893
20												1,555	3.614	2.833
21							l					3.246	1.634	1/203
22							1					1	2.653	2,54
23													6.156	1.094
24						4							1.316	3.015
25 26														7.506 1.726

19641 - TAF INT MULTERS)

L	4	6	8	10	12	14	lð	22	20	30	34	58	42	4e
0	1.393	2.451	8.671	9,821	9 951	4,901	9,401	9.971	0,971	9.971	9.901	7,951	0 041	4,931
1	1.043	2.051	8.041	9 571	9.841	9,951	0.94	9,951	9,971	9.991	9.951	0,051	0.941	Q 931
2	4.814	1.221	7.651	9.641	9.391	9 931	9.961	9,971	9,971	9.061	9,051	9,941	0.041	0.931
3	1.864	5.862	5.771	4 101	9.831	9,131	9,991	9,971	0.0 <u>01</u>	9,6n1	ગ.૦51	9.951	a 0.41	9,931
4	4.755	1.942	3.891	8,571	9.591	9.821	9,951	9.981	9.97]	9,901	9,95]	9,941	0,031	9,921
5	1.145	5.113	1.481	0.631	9,351	9 0 <u>11</u>	9, પદ્	9.651	9,951	9.05]	9 951	ə, 74 <u>1</u>	9,931	0 521
6	2.205	1.133	4 752	3.831	7.801	9,331	9.961	0,951	9.901	9,941	0,041	0.031	9 921	4 911
7		2.134	9,493	1.311	5.731	8.771	9.741	9,911	Q.961	9.051	9.941	9.921	9,911	0.001
8		4.425	2.033	2,992	2 621	0.071	9.821	9,921	9,901	9.421	0.031	9,921	9,911	૧,ઠગ
9		9,116	4.154	6 573	5.762	2 641	8.401	9,90 <u>1</u>	9.931	9,931	9.901	9.901	9.891	0.893
10		1.990	2,545	1.363	1.122	6 932	6.311	9.151	9,791	9.941	9,931	4,901	2 281	9,571
11			2 415	3 524	2.653	1.442	2.301	8441	9,591	9.741	9.351	9,891	9,881	2.801
12			6.146	9.775	1.474	3.863	5.592	4.011	9.151	9.921	9.81 <u>1</u>	9.801	9.831	9,841
13			1.595	2.325	2.264	1.143	1,452	1.321	5.201	9.001	0.03]	9,921	9.821	9,701
14				8.160	7.145	3.784	4 083	3.312	2.191	6,181	8.691	9,731	9,921	9,851
15				2.336	2.27 <u>5</u>	1.294	1.273	1.012	5.252	2.671	7.141	8.701	1.411	4.75 <u>1</u>
16					7.065	4.405	3.864	3.59 <u>3</u>	1.752	6.712	2.621	7.441	4 191	9.321
17]		1		1.515	1.094	1.263	6.823	2.442	7.532	2.331	6.431	9.611
18						5.0%	2.805	4.194	2.693	1.032	2.972	7.772	2 001	4.931
19							6.585	1.284	1.013	4.403	1.332	3.302	7.602	1 701
20		1					1.406	3.585	3.534	1.823	6.073	1.552	3 452	7.182
21								9.146	1,134	7.074	2.71 <u>3</u>	7.483	1.692	3,442
22							Į	2.126	3.315	2.534	1.153	3.553	8.503	1 752
23									8.846	8.295	4 484	1.003	4.233	9.133
24										2.485	1.614	6.764	2.023	4.733
25										6.806	5.315	2.634	9.064	2.373
26	:	1					5			1.736	1.605	9.355	3.754	1.123
27												3.055	1.434	4.814
28								1				3.12 <u>0</u>	4 975	1.964
29												Í	1.595	7.225
30													4.656	2.445
31													1.306	7.6 1 6

°The underlined number is the negative exponent of 10 py which the three-digit number is to be multiplied, e.g., the entry 7.704 indicates 7.70 \times 10 $^{-2}$.

l	4	6	7	8	9	10	11	12	13	14
0	1.074	6.612	3.321	6,891	8,791	9.501	9.761	9.801	9.911	9.941
1	8.005	5.142	2.71]	6.15 <u>1</u>	8.371	9,331	9.721	9.891	9.961	9.991
2	4.055	3.002	1.911	5.301	7.961	9.13 <u>1</u>	9.581	9.77 <u>1</u>	9.861	9.911
3	1.645	1.352	9.692	3.461	6.581	8.531	9.411	9.76 <u>1</u>	9.90 <u>1</u>	9.961
4	4.996	4.723	4.042	1.881	4.741	7.301	8.691	9.34]	9.651	9.811
5	1.316	1.303	1.192	6.602	2.341	5.161	7.621	8.951	9.521	9.761
6		3 224	3.183	1.972	8.342	2.421	4.831	7.071	8.511	9.291
7		7.045	6.954	4.53 <u>3</u>	2.192	8.122	2.261	4.531	6.701	8.131
8		1.625	1.594	1.023	4.87 <u>3</u>	1.872	5.992	1.601	3.431	5.72 <u>1</u>
9		3.78g	3.755	2.394	1.153	4.473	1.492	4 282	1.001	2.25]
10			9.176	5.925	2,774	1.043	3.383	9.893	2.672	6.592
11			2.296	1.575	7.505	2.804	8.774	2.42 <u>3</u>	6.133	1.462
12				4.146	2.095	8.095	2.574	7.054	1.743	3.98 <u>3</u>
13				1.076	5.88 <u>6</u>	2.395	7.845	2.194	5.434	1.233
14					1.60 <u>6</u>	7.036	2,435	7.005	1,794	4.104
15						2.036	7.496	2.285	6.025	1.424
16							2.21 <u>e</u>	7.276	2.025	4.935
17									6.756	1.715
18										5.786

E	4	6	8	10	12	14	16	18	20	22	24	26	28	30	34	38	42	40
0	4.725	4.13 <u>2</u>	6.111	9.341	9.83 <u>1</u>	9.941	9,981	10.001	10.001	10 001	10.001	9 991	9,991	9,091	9,091	9.981	9.931	9,981
1	3.525	3.162	5.411	9.211	9.871	9.981	9,991	9.981	3.667	9,991	0,001	9,991	9,691	9,961	9,99]	9,981	9.98]	<i>ચ</i> .08 <u>1</u>
2	1.855	1.87 <u>2</u>	4.47 <u>1</u>	8,891	9.741	9.921	9.97 <u>1</u>	9.99 <u>1</u>	10.001	10.00]	10.001	9.991	9,99 <u>1</u>	9 991	9.991	9,981	9 981	9.98]
3	7.756	8.37 <u>3</u>	2.821	8.27 <u>1</u>	9.711	9,941	9.971	9,98]	9,981	9,99]	4 44]	9.9 J	9,991	9,54	0,001	9,981	9.981	9.98 <u>1</u>
4	2.406	3 02 <u>3</u>	1.451	6.841	9.27 <u>1</u>	9.821	9.961	9,99]	10.001	10,001	વંજા	0 00 J	0 C0I	9,991	9,981	9.981	9,981	9 981
5		8.564	5.14 <u>2</u>	4.691	8.75 <u>1</u>	9.691	<u> </u>	9.94 <u>1</u>	9,971	9,981	9,991	9,99 <u>]</u>	9.991	9.991	9.981	9.98 <u>1</u>	9.981	9 97 <u>1</u>
6		2.214	1 522	2.111	6.871	9.28]	9.861	9,971	9.681	9.981	9.981	9,981	9 931	9,981	9,981	9.981	9.981	9.97 <u>1</u>
7		5.125	3.693	7.072	4.211	7.981	9.381	9,811	9,951	9,99]	10.001	9.991	9.991	9.981	9.981	9.971	9.971	9.971
3		1.215	8.544	1.692	1.531	5.031	8.691	9.571	9,811	9,901	9,941	9,971	9.981	9,991	0.031	9.971	9.971	9,961
9		2.930	2.084	4 103	4 062	2,231	6.031	8.801	9.721	9,921	9,951	9,95 1	9,951	9.96]	9.97]	9,97]	9.97 <u>1</u>	9.961
10			5.295	9,984	9,903	6 652	2.75 <u>1</u>	6.091	8.451	9.511	9,891	0,00]	10.001	0 001	9,961	9.961	9.961	9.961
11			1.425	2.724	2.473	1.552	7.832	2.901	ь 20 <u>1</u>	S 33 <u>1</u>	9,251	9.601	9,861	9 951	9,991	9.971	9.951	9,641
12			3 816	7.975	7.254	4,22 <u>3</u>	1,922	7.512	2.461	5.661	8,291	9.321	9,631	9.761	9.901	9.951	9,961	9.951
13			1.026	2.365	2.284	1.323	5.69 <u>3</u>	2.032	6 76 <u>2</u>	1,911	4.361	7.29]	9,121	9.751	9.881	9.881	9,911	9.931
14				7.150	7.37 <u>5</u>	4.424	1.873	6.453	1.992	5.752	1.511	3,291	5 71]	7.91]	9.831	9,981	9.911	9.891
15				2,156	2.405	1,544	6.724	2.293	6 603	1.732	4.382	2 691	2,491	4 561	8.131	9.671	9,001	9.951
10					7.726	5.385	2.484	8.684	2.523	6.273	1,472	3.262	7.132	1.571	5.531	8.381	9.461	9.871
17							9.195	3.334	1.013	2.443	5,903	1.252	2.492	4.852	1.861	5.921	8,791	9.381
18			I				3,425	1.264	4.054	9.324	2.503	5.293	1.042	1.942	6.182	1.94]	5.57 <u>1</u>	9,081
19								4.655	1.624	3,384	1.093	2.343	4.563	8.603	2.602	7.082	1.881	4.781
20								1.625	6.275	1.154	4.734	1.053	2.003	3.923	1.202	3.132	7.532	1.75]
21								5.376	2.335	3.585	2.074	4,704	8.434	1,763	5.763	1.512	3.502	7.602
22											9.075	2.104	3.354	7.584	2.763	7.513	1.752	3.702
23							l E				3,985	9,195	1.244	3.074	1.293	3.783	8.983	1.912
24														1.164	5.714	1.873	4.693	1.012
25														4.015	2.374	8.904	2.433	5.433
26										1			i I	1.285	9.115	4.004	1.223	2 923
27														-			5.874	1.543
28																		7.77 <u>4</u>
29																		3.714
30								6										1.654
31																		6.765

23V51/TAPGET NUCLEUSI

				2401	TANGET	NOCLEUS)				
l	4	6	7	8	9	10	11	12	13	14
0	1.725	2.182	1.62 <u>1</u>	5.011	7.861	9.12 <u>1</u>	9.601	9.79 <u>1</u>	9.88 <u>1</u>	9.93 <u>1</u>
1	1.29 <u>5</u>	1.67 <u>2</u>	1.29 <u>1</u>	4.31 <u>1</u>	7.361	8.93 <u>1</u>	9.57 <u>1</u>	9.82 <u>1</u>	9.93 <u>1</u>	9.97 <u>1</u>
2	6.786	9.76 <u>3</u>	8.46 <u>2</u>	3.39 <u>1</u>	6.65 <u>1</u>	8.54 <u>1</u>	9.341	9.671	9.821	9.901
3	2.866	4.41 <u>3</u>	4.12 <u>2</u>	1.991	5.06 <u>1</u>	7.711	9.051	9.611	9.83 <u>1</u>	9.92 <u>1</u>
4	9.54 <u>7</u>	1.59 <u>3</u>	1.66 <u>2</u>	9.692	3.19 <u>1</u>	6.08 <u>1</u>	8.08 <u>1</u>	9.08 <u>1</u>	9.55 <u>1</u>	9.77 <u>1</u>
5		4.634	5.04 <u>3</u>	3.302	1.411	3.821	6.591	8.401	9.25 <u>1</u>	9.621
6		1.234	1.39 <u>3</u>	9.76 <u>3</u>	4.692	1.59 <u>1</u>	3.75 <u>1</u>	6.241	8.07 <u>1</u>	9.091
7		2.955	3.33 <u>4</u>	2.403	1.262	5.082	1.57 <u>1</u>	3.541	5.83 <u>1</u>	7.601
8		7.236	8.155	5.73 <u>4</u>	2.95 <u>3</u>	1.212	4.162	1.201	2.781	5.02 <u>1</u>
9		1.786	2.045	1.444	7.364	3.02 <u>3</u>	1.052	3.152	8.23 <u>2</u>	1.861
10			5.196	3.75 <u>5</u>	1.894	7.544	2.56 <u>3</u>	7.743	2.14 <u>2</u>	5.402
11			1.336	1.025	5.29 <u>5</u>	2.104	6.914	1.993	5.20 <u>3</u>	1.282
12				2.746	1.51 <u>5</u>	6.225	2.084	5.944	1.523	3.55 <u>3</u>
13					4.266	1.865	6.47 <u>5</u>	1.894	4.844	1.123
14					1.186	5.606	2.03 <u>5</u>	6.155	1.624	3.814
15						1.606	6.286	2.005	5.485	1.334
16							1.886	6.446	1.865	4.665
17									6.146	1.635
18										5.596

Table Ⅲ (Cont'd.) 24Cr⁵²(TARGET NUCLEUS)

25Mn⁵³(TARGET NUCLEUS)

L	4	6	7	8	9	10	11	12	13	14
0	6.306	1,122	1.001	3.871	7.131	8.811	9.48 <u>1</u>	9.74 <u>1</u>	9.861	9.921
1	4.756	8.683	7.882	3.251	6.54 <u>1</u>	8.55 <u>1</u>	9.41 <u>1</u>	9.761	9.901	9.961
2	2.596	5.03 <u>3</u>	5.032	2.441	5.721	8.081	9.15 <u>1</u>	9.59 <u>1</u>	9.781	9.881
3	1.166	2.303	2.432	1.361	4.071	7.021	8.731	9.47 <u>1</u>	9.77 <u>1</u>	9.901
4	3.437	8.384	9.67 <u>3</u>	6.292	2.39 <u>1</u>	5.241	7.57 <u>1</u>	8.84 <u>1</u>	9.431	9.72 <u>1</u>
5		2.51 <u>4</u>	2.98 <u>3</u>	2.112	9.832	3.001	5.82 <u>1</u>	7.95 <u>1</u>	9.041	9.531
6		6.865	8.374	6.253	3.21 <u>2</u>	1.181	3.05 <u>1</u>	5.551	7.621	8.851
7		1.725	2.08 <u>4</u>	1.57 <u>3</u>	8.57 <u>3</u>	3.622	1.191	2.91 <u>1</u>	5.20 <u>1</u>	7.161
8		4.37 <u>6</u>	5.27 <u>5</u>	3.894	2.083	8.80 <u>3</u>	3.11 <u>2</u>	9.272	2.28 <u>1</u>	4.391
9		1.10 <u>6</u>	1.365	1.014	5.334	2.24 <u>3</u>	7.93 <u>3</u>	2.442	6.572	1.541
10			3.55 <u>6</u>	2.695	1.41 <u>4</u>	5.784	2.00 <u>3</u>	6.12 <u>3</u>	1.712	4.39 <u>2</u>
11				7.46 <u>6</u>	4.01 <u>5</u>	1.65 <u>4</u>	5.554	1.623	4.30 <u>3</u>	1.062
12				2.00 <u>6</u>	1.165	4.94 <u>5</u>	1.694	4.944	1.283	3.033
13					3.266	1.49 <u>5</u>	5.31 <u>5</u>	1.59 <u>4</u>	4.144	9.75 <u>4</u>
14						4.52 <u>6</u>	1.685	5.195	1.394	3.334
15						1.266	5.17 <u>6</u>	1.705	4.755	1.174
16							1.57 <u>6</u>	5.456	1.615	4.115
17									5.306	1.445
18										4.936

۲

	···						22111	I TAKOLI	NUCLEUS							
l	4	6	8	10	12	14	16	18	20	22	26	30	34	38	42	46
0	7.426	1.292	4.13 <u>1</u>	8.87 <u>1</u>	9.75 <u>1</u>	9.931	9.981	10.00 <u>1</u>	10.001	10.001	10.001	9.99 <u>1</u>	9.991	9.991	9.991	9.981
1	5.596	9.903	3.511	8.691	9.781	9.951	9.981	9.991	9.991	9.991	9.991	9.99 <u>1</u>	9.99 <u>1</u>	9.991	9.991	9.981
2	3.066	5.853	2.661	8.191	9.621	9.901	9.971	10.001	10.001	10.001	9.991	9.991	9.991	9.991	9.991	9.981
3	1.406	2.673	1.521	7.291	9.521	9.891	9.961	9.981	9.981	9.991	10.001	9.991	9.991	9.991	9.991	9.981
4	5.227	9.914	7.16 <u>2</u>	5.51 <u>1</u>	8.951	9.77 <u>1</u>	9.95 <u>1</u>	9.99 <u>1</u>	10.00 <u>1</u>	10.001	9.991	9.991	9.991	9.991	9.991	9.981
5		2.984	2.482	3.33 <u>1</u>	8.12 <u>1</u>	9.54 <u>1</u>	9.841	9.93 <u>1</u>	9.97 <u>1</u>	9.99 <u>1</u>	10.00 <u>1</u>	9.99 <u>1</u>	9.99 <u>1</u>	9.991	9.98 <u>1</u>	9.981
6		8.215	7.363	1.341	5.94 <u>1</u>	9.03 <u>1</u>	9.80 <u>1</u>	9.94 <u>1</u>	9.971	9.98 <u>1</u>	9.981	9.99 <u>1</u>	9.991	9.99 <u>1</u>	9.98 <u>1</u>	9.981
7		2.065	1.893	4.302	3.22 <u>1</u>	7.41 <u>1</u>	9.251	9.79 <u>1</u>	9.95 <u>1</u>	10.00 <u>1</u>	9.99 <u>1</u>	9.98 <u>1</u>	9.981	9.981	9.98 <u>1</u>	9.98 <u>1</u>
8		5.206	4.664	1.062	1.111	4.841	8.301	9.45 <u>1</u>	9.781	9.90 <u>1</u>	9.98 <u>1</u>	9.99 <u>1</u>	9.991	9.98 <u>1</u>	9.98 <u>1</u>	9.971
9		1.296	1.214	2.693	2.922	1.81 <u>1</u>	5.561	8.62 <u>1</u>	9.65 <u>1</u>	9.88 <u>1</u>	9.94 <u>1</u>	9.97 <u>1</u>	9.98 <u>1</u>	9.981	9.98 <u>1</u>	9.97 <u>1</u>
10			3.22 <u>5</u>	6.964	7.453	5.292	2.37 <u>1</u>	5.751	8.391	9.531	9.991	9.981	9.97 <u>1</u>	9.971	9.971	9.97 <u>1</u>
11			8.92 <u>6</u>	1.974	1.953	1.302	6.912	2.661	5.901	8.19 <u>1</u>	9.711	9.981	9.991	9.971	9.961	9.961
12			2.386	5.885	5.894	3.643	1.742	7.142	2.441	5.65 <u>1</u>	9.221	9.77 <u>1</u>	9.941	9,981	9.97 <u>1</u>	9.961
13				1.785	1.894	1.163	5.263	1.982	6.682	1.971	7.561	9.701	9.851	9.901	9.941	9.951
14					6.195	3.964	1.76 <u>3</u>	6.133	2.002	5.93 <u>2</u>	3.491	8.33 <u>1</u>	9.891	9.941	9.91 <u>1</u>	9.921
15					2.035	1.394	6.384	2.06 <u>3</u>	6.57 <u>3</u>	1.82 <u>2</u>	1.211	4.831	8.531	9.86 <u>1</u>	10.001	9.94 <u>1</u>
16					6.53 <u>6</u>	4.895	2.374	7.01 <u>4</u>	2.383	6.56 <u>3</u>	3.592	1.87 <u>1</u>	5.89 <u>1</u>	8.61 <u>1</u>	9.681	9.96 <u>1</u>
17						1.715	8.87 <u>5</u>	2.294	8.624	2.53 <u>3</u>	1.282	5.662	2.331	6.61 <u>1</u>	8.821	9.52 <u>1</u>
18						5.886	3.305	6.955	2.974	9.634	4.883	2.162	7.442	2.501	6.741	9.17 <u>1</u>
19								1.955	9.555	3.474	1.803	8.94 <u>3</u>	3.022	8.67 <u>2</u>	2.45 <u>1</u>	6.18 <u>1</u>
20								5.04 <u>6</u>	2.835	1.174	6.234	3.653	1.342	3.732	9.312	2.281
21								1.186	7.746	3.62 <u>5</u>	1.994	1.41 <u>3</u>	5.903	1.752	4.232	9.472
22											5.815	5.034	2.493	8.213	2.072	4.522
23											1.565	1.654	9.764	3.713	1.032	2.302
24												4.985	3.534	1.57 <u>3</u>	4.92 <u>3</u>	1.192
25												1.375	1.184	6.184	2.233	5.983
26												3.496	3.585	2.234	9.344	2.853
27													9.996	7.395	3.624	1.273
28													2.566	2.255	1.294	5.204
29													_	6.286	4.195	1.964
30														1.636	1.265	6.81 <u>5</u>
31															3.516	2.175
32																6.416
33																1.756

Table III (Cont¹d.) 25Mn⁵⁵(TARGET NUCLEUS)

					20. *						
	l	4	6	7	8	9	10	11	12	13	14
	0	2.676	6.563	6.692	3.051	6.451	8.501	9.35 <u>1</u>	9.691	9.841	9.91 <u>1</u>
	1	2.04 <u>6</u>	5.053	5.232	2.531	5.88 <u>1</u>	8.241	9.291	9.71 <u>1</u>	9.87 <u>1</u>	9.941
	2	1.246	2.983	3.332	1.841	4.971	7.641	8.951	9.51 <u>1</u>	9.76 <u>1</u>	9.87 <u>1</u>
	3	4.367	1.383	1.612	1.001	3.421	6.51 <u>1</u>	8.481	9.361	9.72 <u>1</u>	9.86 <u>1</u>
	4		5.17 <u>4</u>	6.49 <u>3</u>	4.57 <u>2</u>	1.911	4.641	7.191	8.67 <u>1</u>	9.37 <u>1</u>	9.70 <u>1</u>
	5		1.604	2.06 <u>3</u>	1.562	7.792	2.561	5.341	7.631	8.871	9.441
	6		4.565	5.944	4.683	2.522	9.782	2.701	5.22 <u>1</u>	7.43 <u>1</u>	8.77 <u>1</u>
	7		1.195	1.544	1.223	6.96 <u>3</u>	3.042	1.03 <u>1</u>	2.621	4.881	6.94 <u>1</u>
	8		3.106	4.035	3.134	1.74 <u>3</u>	7.613	2.782	8.522	2.141	4.211
	9			1.075	8.345	4.584	1.983	7.15 <u>3</u>	2.252	6.192	1.48 <u>1</u>
	10	1		2.846	2.27 <u>5</u>	1.254	5.274	1.863	5.833	1.652	4.27 <u>2</u>
	11	1			6.326	3.595	1.524	5.264	1.583	4.26 <u>3</u>	1.072
	12				1.70 <u>6</u>	1.045	4.615	1.624	4.834	1.283	3.07 <u>3</u>
	13					3.036	1.415	5.135	1.574	4.164	9.964
	14						4.176	1.635	5.17 <u>5</u>	1.414	3.424
	15						1.226	5.01 <u>6</u>	1.695	4.83 <u>5</u>	1.214
	16							1.546	5.506	1.645	4.27 <u>5</u>
	17									5.46 <u>6</u>	1.49 <u>5</u>
	18										5.11 <u>6</u>
_ 1		1			•		•	1		1	

Table III (Cont'd.) 26Fe⁵⁶(TARGET NUCLEUS)

27 Co⁵⁵(TARGET NUCLEUS)

L	4	6	7	8	9	10	11	12	13	14
0	8.057	2.853	3.402	1.941	5.221	7.87 <u>1</u>	9.101	9.58 <u>1</u>	9.79 <u>1</u>	9.881
1	6.567	2.223	2.682	1.58 <u>1</u>	4.581	7.441	8.931	9.551	9.81 <u>1</u>	9.921
2	3.28 <u>7</u>	1.303	1.652	1.09 <u>1</u>	3.691	6.751	8.551	9.331	9.671	9.82 <u>1</u>
3	1.687	6.104	8.023	5.682	2.311	5.31 <u>1</u>	7.791	9.061	9.60 <u>1</u>	9.821
4		2.294	3.17 <u>3</u>	2.492	1.201	3.501	6.271	8.15 <u>1</u>	9.11 <u>1</u>	9.561
5		7.35 <u>5</u>	1.023	8.32 <u>3</u>	4.522	1.691	4.141	6.77 <u>1</u>	8.451	9.251
6		2.155	3.014	2.533	1.452	6.102	1.871	4.101	6.511	8.221
7		5.866	8.07 <u>5</u>	6.704	3.953	1.802	6.552	1.851	3.891	6.11]
8		1.586	2.195	1.794	1.033	4.60 <u>3</u>	1.722	5.462	1.471	3.191
9			5.966	4.935	2.794	1.233	4.55 <u>3</u>	1.462	4.132	1.031
10			1.576	1.375	7.845	3.394	1.223	3.82 <u>3</u>	1.092	2.882
11				3.886	2.295	1.014	3.564	1.083	2.933	7.36 <u>3</u>
12				1.046	6.686	3.095	1.124	3.404	9.084	2.203
13					1.886	9.506	3.585	1.114	3.01 <u>4</u>	7.304
14						2.846	1.135	3.705	1.034	2.544
15							3.496	1.215	3.535	8.995
16							1.036	3.896	1.205	3.185
17									4.016	1.11 <u>5</u>
18										3.826

L	6	8	10	12	14	18	22	26	30	34	38	42	46
0	1.814	3.492	4.871	8.97 <u>1</u>	9.791	9.99 <u>1</u>	10.001	10.001	10.001	10.001	10.001	10.001	10.001
1	1.444	2.822	4.441	8.851	9.761	9.981	10.001	10.001	10.001	10.001	10.001	10.001	10.001
2	9.14 <u>5</u>	1.882	3.56 <u>1</u>	8.461	9.701	9.981	10.001	10.001	10.00 <u>1</u>	10.001	10.001	10.001	10.00 <u>1</u>
3	4.73 <u>5</u>	1.022	2.45 <u>1</u>	7.80 <u>1</u>	9.541	9.961	10.00 <u>1</u>	10.001	10.00]	10.00 <u>1</u>	10.00 <u>1</u>	10.001	10.001
4	2.07 <u>5</u>	4.58 <u>3</u>	1.36 <u>1</u>	6.52 <u>1</u>	9.261	9.95 <u>1</u>	9,991	10.00 <u>1</u>	10.00 <u>1</u>	10.00 <u>1</u>	10.00 <u>1</u>	10.001	10.00 <u>1</u>
5	7.84 <u>6</u>	1.75 <u>3</u>	6.132	4.63 <u>1</u>	8.561	9.91 <u>1</u>	9.99 <u>1</u>	10.001	10.001	10.001	10.00]	10.00 <u>1</u>	10.00 <u>1</u>
6	2.706	5.97 <u>4</u>	2.232	2.51 <u>1</u>	7.281	9.811	9.98 <u>1</u>	10.001	10.00 <u>1</u>	10.001	10.00 <u>1</u>	10.001	10.001
7	8.947	1.904	7.26 <u>3</u>	1.01 <u>1</u>	4.88 <u>1</u>	9.63 <u>1</u>	9.96 <u>1</u>	9.991	10.00 <u>1</u>	10.001	10.001	10.00 <u>1</u>	10.00 <u>1</u>
8		5.86 <u>5</u>	2.17 <u>3</u>	3.32 <u>2</u>	2.40 <u>1</u>	8.961	9.921	10.001	10.001	10.001	10.001	10.00 <u>1</u>	10.00 <u>1</u>
9		1.80 <u>5</u>	6.51 <u>4</u>	9.63 <u>3</u>	8.27 <u>2</u>	7.57 <u>1</u>	9.741	9.96 <u>1</u>	10.001	10.00 <u>1</u>	10.001	9.99 <u>1</u>	9.99 <u>1</u>
10		5.42 <u>6</u>	2.02 <u>4</u>	2.84 <u>3</u>	2.41 <u>2</u>	4.691	9.411	9.91 <u>1</u>	9.97 <u>1</u>	9.99 <u>1</u>	10.001	10.00 <u>1</u>	9.99 <u>1</u>
11		1.57 <u>6</u>	6.39 <u>5</u>	8.694	6.79 <u>3</u>	1.93 <u>1</u>	8.041	9.83 <u>1</u>	9.981	9.98 <u>1</u>	9.99 <u>1</u>	9.99 <u>1</u>	9.99 <u>1</u>
12			2.045	2.77 <u>4</u>	1.93 <u>3</u>	6.062	5.311	9.22 <u>1</u>	9.92 <u>1</u>	10.001	9.99 <u>1</u>	9.99 <u>1</u>	9.99 <u>1</u>
13			6.436	8.865	5.634	1.762	2.251	7.821	9.611	9.93 <u>1</u>	10.001	10.001	9.991
14			1.926	2.75 <u>5</u>	1.61 <u>4</u>	5.633	6.97 <u>2</u>	4.611	9.001	9.78 <u>1</u>	9.93 <u>1</u>	9.981	9.991
15				8.11 <u>6</u>	4.355	1.87 <u>3</u>	2.292	1.711	6.481	9.49 <u>1</u>	9.90 <u>1</u>	9.94 <u>1</u>	9.97 <u>1</u>
16				2.25 <u>6</u>	1.105	6.17 <u>4</u>	8.10 <u>3</u>	5.76 <u>2</u>	3.011	7.54 <u>1</u>	9.67 <u>1</u>	9.971	9.961
17					2.576	1.94 <u>4</u>	3.03 <u>3</u>	2.07 <u>2</u>	1.081	4.27 <u>1</u>	8.091	9.67 <u>1</u>	9.99 <u>1</u>
18						5.685	1.12 <u>3</u>	8.32 <u>3</u>	3.88 <u>2</u>	1.631	5.261	8.431	9.601
19						1.545	3.904	3.43 <u>3</u>	1.632	5.93 <u>2</u>	2.08 <u>1</u>	5.881	8.71 <u>1</u>
20						3.80 <u>6</u>	1.274	1.37 <u>3</u>	7.22 <u>3</u>	2.57 <u>2</u>	7.882	2.371	6.07 <u>1</u>
21							3.825	5.144	3.183	1.202	3.522	9.452	2.481
22							1.065	1.804	1.343	5.67 <u>3</u>	1.712	4.382	1.05 <u>1</u>
23							2.726	5.825	5.29 <u>4</u>	2.613	8.51 <u>3</u>	2.192	5.05 <u>2</u>
24								1.735	1.944	1.14 <u>3</u>	4.17 <u>3</u>	1.132	2.60 <u>2</u>
25								4.766	6.59 <u>5</u>	4.634	1.97 <u>3</u>	5.843	1.392
26								1.236	2.06 <u>5</u>	1.754	8.73 <u>4</u>	2.933	7.443
27								5		6.115	3.61 <u>4</u>	1.403	3.91 <u>3</u>
28										1.975	1.394	6.234	1.973
29										_	4.905	2.584	9.394
30											1.605	9.92 <u>5</u>	4.164
31											4.866	3.51 <u>5</u>	1.714
32												1.15 <u>5</u>	6.52 <u>5</u>
33												3.51 <u>6</u>	2.30 <u>5</u>

Table III (Cont'd.) 32Ge⁷²(TARGET NUCLEUS) Table III (Cont'd,)

~

-

. .

_						37 ^F	≀b ⁸⁵ (TARGE	T NUCLEUS)													41Nb93(T/	ARGET NUC	LEUS)					
l	6	8	10	12	14	16	18	22	26	30	34	38	42	46]	l	8	10	12	14	16	18	22	26	30	34	38	42	46
0	8.036	3.613	1.501	7.081	9.431	9.871	9.961	9.991	10.001	10.001	10.001	10.001	10.001	10.001		0	4.72 <u>4</u>	3.53 <u>2</u>	4.201	8.64 <u>1</u>	9.711	9.931	9.991	10.001	10.001	10.00]	10.001	10.001	10.001
1	6.596	2.973	1.291	6.771	9.351	9.851	9,961	10.001	10.001	10.001	10,001	10.001	10.001	10.001		1	3.944	2.992	3.841	8.471	9.671	9.921	9.99 <u>1</u>	10.001	10.001	10.001	10.001	10.001	10.001
2	4.446	2.023	9.412	6.071	9.18 <u>1</u>	9.821	9.951	9.991	10.001	10.001	10.001	10.001	10.001	10.001		2	2.764	2.152	3.141	8.101	9.601	9.901	9.991	10.001	10.001	10.00 <u>1</u>	10.001	10.001	10.001
3	2.586	1.153	5.822	4.961	8.82 <u>1</u>	9.741	9.931	9,901	10.001	10.001	10.001	10.00]	10.001	10.001		3	1.654	1.312	2.25]	7.401	9.431	9.861	9.991	10.001	10.001	10.001	10.001	10.001	10.001
4	1.276	5.594	3.012	3.481	8.161	9.591	9.891	9,991	10.001	10.00]	10.001	10.001	10.00]	10.001		4	8.595	6.853	1.361	6.261	9,12]	9.781	9.98 <u>1</u>	10.001	10.00 <u>1</u>	10.001	10.001	10.001	10.001
5	5.247	2.394	1,342	2.001	6.911	9.2/1	9.821	9.981	10.601	10.001	10.001	10.001	10.001	10.001		5	3.975	3.153	6.932	4.591	8.501	9.641	9.971	9.991	10.001	10.001	10.001	10.001	10.001
6	1	9.265	5.193	9.232	5.001	8.591	9.641	9,971	19,001	10.001	10.001	10.001	10.001	10.001		6	1.685	1.303	2,972	2.751	7.321	9.311	9.951	9.991	10.001	10.001	10.001	10.001	10.00]
7		3.375	1.853	3.532	2.771	7.211	9.271	9.93 <u>1</u>	9,991	10.001	10.001	10.001	10.00]	10.001		1	6.626	5.044	1.112	1,291	5.371	8.631	9.891	9.99 <u>1</u>	10.001	10.001	10.001	10.001	10.001
8		1.175	6.314	1.212	1,16]	4.851	8.301	9.871	9,981	9,991	10.001	10.601	10.001	10.001		8	2.446	1.884	3.75 <u>3</u>	4.992	3.021	7.151	9.781	9.971	9.991	10.001	10.001	10.001	10.001
9		3.8%	2.134	3.903	3.952	2.391	6.351	9.641	9,97 <u>1</u>	10.001	10.001	10.001	10.601	10.001		9	8,607	6 845	1.173	1.682	1.291	4.761	9.441	9.951	9,991	10.001	10.601	10.001	10.001
10		1.236	7.255	1.273	1.212	8.622	3.561	9.111	9.891	9,981	10.001	10.00]	10.001	10.001		10		2,465	3.504	5.293	4.472	2.301	8.621	9.851	9.981	10.001	10.001	10.001	10.001
11			2.445	4.164	3.593	2.712	1.391	7.641	9,761	9.951	9,991	10.001	10.001	10.001		11		8.506	9,935	1.623	1.432	8.392	6.721	9.641	9.951	9,991	10.001	10.001	10.001
12				1,374	1.063	8.263	4.522	4.79 <u>1</u>	9.21]	9,921	9,981	9,991	10.001	10.001		12			2.705	4.854	4.493	2.752	3.801	8,941	9.891	9.981	9.991	10.001	10.001
13				4.415	3.084	2.543	1.402	2.081	7.661	9.681	9,971	10.001	9,991	9,991		в			6.866	1.404	1.403	8.793	1.541	7.101	9.611	9.961	9.991	9,991	10.001
14				1.365	8.615	7.894	4.533	6.912	4.791	8.991	9.821	9,981	10.001	10.601		14			1.636	3.855	4.314	2.873	5.212	4.161	8 761	9.811	9.981	10.001	10.001
15				3.896	2.265	2.374	1.493	2.312	1.931	7.041	9.511	9,891	9,971	10.001		15				9.946	1.274	9.364	1.782	1.661	6.711	9.421	9.891	9.981	10.001
16				1.065	5.546	6.755	4.784	8.253	6.782	3.501	8.301	9,751	9.931	9.971		16				2.356	3.525	2.944	6.383	5.912	3.441	8.221	9.711	9.921	9.981
17						1,795	1.454	3.013	2.482	1.211	5.241	8,891	9.861	9,971		17					9.036	8.705	2.303	2.202	1.351	5.231	8.951	9.851	9.951
18						4.446	4,135	1.083	9.763	3.542	2.341	6.401	9,141	9,401		18					2.196	2.405	8.024	8.583	5.092	2.361	6.561	9.281	9.911
19								3.654	3.913	1.032	8,802	3.241	7.181	9,251		19							2.644	3.383	2.072	9.172	3.441	7.421	9.421
20	1							1.154	1.523	3.033	3.662	1.251	3,941	7.691		20							8.125	1.283	8.843	3.812	1.381	4.361	7.961
21								3.385	5.574	8.534	1.672	5.342	1.581	4.361		21							2.325	4.564	3.733	1.722	5.842	1.831	5.001
22					1				1.904	2.254	7.753	2.532	6.942	1.821		22							6.116	1.524	1.503	7.823	2.732	7.892	2.181
23									5,995	5.515	3.493	1.242	3,382	8.282		23							1.466	4.665	5.644	3.463	1.322	3.802	9.712
24										1.255	1.493	5.973	1,722	4.152		24									1.984	1.453	6.283	1.922	4.80 <u>2</u>
25										2.596	5.964	2.773	8,793	2.182		25									6.415	5.644	2.863	9.663	2.512
20										4.05/	2.214	1.213	4 353	1.162		26									1.935	2.054	1.223	4.713	1.322
28												4,924	2.045	0.042		27										6.875	4.874	2.173	6.79 <u>3</u>
20												6.465	3.674	1.423		28										2.135	1.804	9.374	3.343
20												0.402	1.00			29											6.165	3.764	1.543
50 31								ļ				2.095	1.394	0.214		30						ļ				ļ	1.965	1.404	6.654
32			1									0.750	1 6.6	0.515		31											5.756	4.835	2.664
33													4.806	3.325		32												1.555	9.865
L		L	L	L	<u> </u>	I	[1	(l	[[L		J	25									1		1	4.610	3.395
																24													1.062
																35								1	1		1	1	3.236

3.236

٠

.

(able 🎹 (Cont'd))

45Rh103(TARGET NUCLEUS)

5050119(TARGET NUCL/US)

.

.

l	8	10	12	14	16	18	20	22	26	30	34	38	42	46		l	10	12	14	16	18	20	22	26	30	34	38	42	46
0	6.775	7.703	1.761	7.081	9.391	9.851	9.961	9.991	10.001	10.001	10.001	10.001	10.001	10.00]		0	1 283	4.812	4.271	8.541	9.671	9,911	9.97]	10.001	10.001	10.001	10.001	10.001	10.00]
1	5.785	6,553	1.551	6.791	9.311	9.841	9,961	9,991	10.001	10.001	10.001	10.001	10.001	10.001		1	1.103	4.202	3 961	8.391	9.041	9.901	9.971	10.001	10.001	10.00]	10.001	10.001	10.00]
2	4.225	4.763	1.191	6.201	9.151	9.801	9,941	9,981	10.001	10.001	10.001	10.001	10.001	10.001		2	8.284	3.202	3.361	8.061	9.56]	9.891	9.97 <u>1</u>	10.001	10.001	10.001	10.001	10.001	10.001
3	2.605	2.983	7.942	5.221	8,831	9.731	9.931	9.981	10.001	10.001	10.001	10.00]	10.001	10.001		3	5.454	2 142	2.561	7.471	9.421	9.851	9,961	9.991	10.001	10.001	10.001	10.001	10.001
4	1.495	1.633	4 5 32	3.911	8.261	9.591	9.891	9.971	10.001	10.00]	10.001	10.001	10.001	10.001		4	3.204	1.262	1.701	6.501	9.141	9.781	9.941	9.991	10.001	10.001	10.001	10.001	10.001
5	7.565	7.944	2.232	2.481	7.221	9.331	9.831	9.951	9.991	10.001	10.001	10.001	10.001	10.001		5	1.704	o 583	9.752	5.111	8.04]	9.661	9.901	9.991	10.001	10.001	10.001	10.001	10.001
6	3.456	3.554	9.543	1.301	5.581	8.171	9.681	9.911	9.99 <u>1</u>	10.001	10.001	10.001	10.001	10.001		6	8,345	3,143	4,822	3.421	7.72]	9.411	9.841	9,981	10.001	10.001	10.001	10.001	10.001
7	1.486	1.504	3.643	5.662	3.531	7.691	9. <i>3</i> 81	9.821	9.981	10.001	10.001	10.001	10.001	10.001		7	3.845	1.403	2 082	1.891	6.18 <u>1</u>	8.901	9.701	9.971	10.001	10.001	10.001	10.001	10.001
8	6.117	6 075	1.263	2.152	1.741	5.761	8.701	9.641	9,961	9,991	10,001	10.001	10.00]	10.001		8	1.685	5.994	8.093	8.612	4.091	7.87]	9.401	9.941	9,991	10.001	10.001	10.001	10.001
9		2.395	4.084	7.393	6.922	3.361	7.221	9.161	9.921	9,991	10.001	10.001	10.001	10.00]		9	7.146	2.504	2.893	3.392	2.131	6.031	8,721	9.881	9.981	10.001	10.001	10.001	10.001
10		9.206	1.244	2.393	2.402	1.471	4.831	8.041	9.801	9.981	10.001	10,001	10.001	10.001		10	2.856	1.034	9.644	1.212	8.902	3 6 1 1	7.281	9.731	9.97 <u>1</u>	9,991	10.001	10 001	10.001
11		3.446	3.545	7.464	7.863	5.272	2.331	5.841	9.501	9.941	9,991	10.001	10.001	10.001		11	1.076	4.155	3.054	4.103	3,252	1.671	4.94 <u>1</u>	9.341	9.931	9,991	10.001	10.001	10.00]
12			9.506	2.244	2.513	1.752	8.792	3 061	8.68 <u>1</u>	9.85 <u>1</u>	9,971	9 991	10.001	10.001		12		1.665	9.115	1.333	1.112	6.342	2.491	8.391	9.811	9.971	10.001	10.001	10.001
13			2.406	6.395	7.864	5.733	2.982	1.211	6.661	9.56]	9,951	9,991	10.001	10.001		13		0.476	2.575	4.154	3.713	2.222	9.882	6.341	9.501	9.931	9.991	10.001	10.001
14					2.394	1.873	9.993	4.162	3.761	8.631	9.821	9.981	10.001	10.001		14		2.426	6.776	1 234	1.203	7.573	3.532	3.581	8.61]	9.821	9 971	9.991	10.001
15					6.885	6.004	3.403	1.442	1.521	6.541	9.391	9 901	9,991	10.001		15			1 656	3.465	3.774	2.553	1.242	1.521	6.601	9.441	9.921	9.991	10.001
16			1		1.865	1.844	1.153	5.113	5.472	3,441	8.241	9.701	9.931	9,991		16			3.587	9.086	1.124	8 394	4.343	5.67 <u>2</u>	3.741	8 401	9.741	9,961	10.001
17						5.305	3.724	1,813	2,042	1 3/1	5.461	9.071	9.841	9.951		17			9.798	2.226	3.135	2.634	1.493	2.122	1.591	6.071	9.221	9.861	9.9/]
18					1	1.425	1.134	6.144	7.873	5.242	2.551	6.95 <u>1</u>	9.441	9.911		18					8.176	7.775	4.904	7.993	0.242	3.141	7.681	9.591	9.921
19							3.235	1.974	3.02 <u>3</u>	2.122	1.021	3.851	7.861	9.611		19					1.966	2.145	1.524	2.973	2.492	1.331	4.801	8.581	9.761
20						Į	8.516	5.905	1.123	8.843	4.202	1.631	4.991	8.391		20						5.476	4.405	1.063	1.012	5.512	2.271	6.161	9.051
21					1		2.116	1.645	3.884	3.643	1.862	6.832	2.261	5.851		21						1.286	1.185	3.564	4.023	2.372	9.712	3.27 <u>1</u>	7.12]
22								4.236	1.264	1.433	8.303	3.132	9.652	2.811		22							2.976	1.124	1.523	1.022	4.332	1.461	4.181
23								1.026	3.77 <u>5</u>	5.254	3. 5 93	1.492	4.552	1.231		23								3.265	5.434	4 293	1.992	6.682	1.94]
24										1.804	1.473	6.943	2.262	5.942		24								8.826	1.804	1.703	9.033	3.222	9.132
25										5.705	5 604	3.103	1.122	3.052		25								2.226	5.575	6.304	3.913	1.562	4.562
26										1.675	1,994	1 303	5 363	1.592		26								_	1.605	2.184	1.603	7.263	2.322
27											6.535	5.064	2.433	8 053		27				[6.995	6.074	3.203	1.152
28											1.995	1.844	1.033	3 893		28										2.095	2.154	1.333	5.433
29												6.175	4.064	1,773		29											7.075	5.104	2.413
30												1.935	1.484	7,494		30											2.165	1.834	9,994
31												5.586	5.035	2.954		31				1							6.186	6.085	3.864
32													1.585	1.084		32											-	1.885	1.384
33													4.656	3.655		33											ĺ	5.426	4.615
34			ļ											1.155		34													1.435
35														3,396		35													4.186
L		l		1	Į	L	I	l		l	l]	36											1		1,136

Table 🎞 (Cont'd)
60Nd ¹⁴⁴ (TARGET NUCLEUS)

L	8	10	12	14	16	18	20	22	24	26	30	34	38	42	46
0	4 478	2 605	1 843	4 502	3 7 1 1	8 111	9 561	9 881	9 961	9 991	10 001	10 001	10 001	10 001	10 001
1	5 968	2 315	1 633	4 012	3 461	7 951	9 521	9 871	9 961	9 991	10 001	10 001	10 001	10 001	10 001
2	2 988	1 855	1 293	3 182	2 97 <u>1</u>	7 60 <u>1</u>	9 421	9 85 <u>1</u>	9 95 <u>1</u>	9 98 <u>1</u>	10 001	10 001	10 001	10 001	10 00 <u>1</u>
3	2 988	1 325	9 094	2 25 <u>2</u>	2 321	7 01 <u>1</u>	9 26 <u>1</u>	9 81 <u>1</u>	9 94 <u>1</u>	9 98 <u>1</u>	10 001	10 00]	10 00 <u>1</u>	10 001	10 001
4		8 60 <u>6</u>	5 824	1 43 <u>2</u>	1 63 <u>1</u>	6 09 <u>1</u>	8 96 <u>1</u>	973 <u>1</u>	9 92 <u>1</u>	9 97 <u>1</u>	10 00 <u>1</u>	10 001	10 00 <u>1</u>	10 00<u>1</u>	10 001
5		5 166	3 424	8 153	1 011	4 841	8 441	9 591	9 881	9 961	10 001	10 001	10 001	10 001	10 001
6		2 856	1 874	4 263	5 62 <u>2</u>	3 39 <u>1</u>	7 55 <u>1</u>	9 341	9 81 <u>1</u>	9 941	9 99 <u>1</u>	10 001	10 001	10 001	10 001
7		1 436	9 665	2 073	2 822	2 03 <u>1</u>	6 151	8 85 <u>1</u>	9 68 <u>1</u>	9 90 <u>1</u>	9 99 <u>1</u>	10 001	10 001	10 00 <u>1</u>	10 001
8		7 307	473 <u>5</u>	9 424	1 312	1 051	4 311	7 92 <u>1</u>	9 40 <u>1</u>	9 821	9 98 <u>1</u>	10 001	10 001	10 001	10 001
9			2 22 <u>5</u>	4 074	5 75 <u>3</u>	4 83 <u>2</u>	2 49 <u>1</u>	6 34 <u>1</u>	8 81 <u>1</u>	9 64 <u>1</u>	9 96 <u>1</u>	9 99 <u>1</u>	10 001	10 001	10 00 <u>1</u>
10			1 005	1 674	2 443	2 082	1 211	4 211	7 631	9 251	9 921	9 991	10 001	10 00 <u>1</u>	10 00 <u>1</u>
11			4 37 <u>6</u>	6 515	1 01 <u>3</u>	8 66 <u>3</u>	5 20 <u>2</u>	2 23 <u>1</u>	5 661	8 37 <u>1</u>	9 82 <u>1</u>	9 98 <u>1</u>	10 001	10 001	10 00]
12			1 826	2 395	4 054	3 58 <u>3</u>	2 142	9 952	3 32 <u>1</u>	6 66 <u>1</u>	9 59 <u>1</u>	9 951	9 99 <u>1</u>	10 001	10 00 <u>1</u>
13				8 32 <u>6</u>	1 564	1 46 <u>3</u>	8 823	4 10 <u>2</u>	1 551	4 23 <u>1</u>	9 00 <u>1</u>	9 87 <u>1</u>	9 98 <u>1</u>	10 00 <u>1</u>	10 001
14				2 686	5 7 3 <u>5</u>	5 87 <u>4</u>	3 66 <u>3</u>	1 69 <u>2</u>	6 492	2 091	7 64 <u>1</u>	9 681	9 95 <u>1</u>	9 99 <u>1</u>	10 00 <u>1</u>
15					1 99 <u>5</u>	2 274	1 52 <u>3</u>	7 083	2 67 <u>2</u>	8 872	5 27 <u>1</u>	9 1 41	9 88 <u>1</u>	9 981	10 001
16					6 536	8 405	6 164	3 023	1 142	3 68 <u>2</u>	2 771	7 811	9 661	9 95 <u>1</u>	9 99 <u>1</u>
17					1 996	2 93 <u>5</u>	2 414	1 27 3	4 963	1 582	1 211	5 39 <u>1</u>	9 02 <u>1</u>	9 841	9 97 <u>1</u>
18						9 636	8 93 <u>5</u>	5 234	2 17 <u>3</u>	7 07 <u>3</u>	5 142	2 80 <u>1</u>	7 451	9 53]	9 92 <u>1</u>
19						2 996	3 135	2 054	9 28 <u>4</u>	3 193	2 302	1 24 <u>1</u>	4 78 <u>1</u>	8 62 <u>1</u>	9 75 <u>1</u>
20							1 045	7 61 <u>5</u>	3 824	1 423	1 082	5 50 <u>2</u>	2 3/1	6 50 <u>1</u>	9 211
21							3 195	2 665	1 494	6 094	5 13 <u>3</u>	2 582	1 071	372 <u>1</u>	7 67 <u>1</u>
22								8 72 <u>6</u>	5 495	2 494	2 433	1 27 <u>2</u>	5 002	1 781	5 01 <u>1</u>
23								2 646	1 905	9 605	1 123	o 33 <u>3</u>	2 47 <u>2</u>	8 332	2 57 <u>1</u>
24									6 14 <u>6</u>	3 485	4 914	3 153	1 27 <u>2</u>	4 142	1 23 <u>1</u>
25									1 856	1 195	2 054	1 533	6 63 <u>3</u>	2 162	6 18 <u>2</u>
26										3 786	8 045	7 114	3 433	1 162	3 26 <u>2</u>
27											2 965	3 144	1 733	6 233	1772
28											1 025	1 314	8 434	3 33 <u>3</u>	9 81 <u>3</u>
29													3 904	174 <u>3</u>	5 453
30													1 704	8 7 4 4	2 993
31													6 985	4 184	1 60 <u>3</u>
32														1 884	8 244
33														7 985	4 034
34															1 864
35															8 05 <u>5</u>
36															3 27 <u>5</u>

•

.

,

Table 🎹 (Cont'd)

70Yb173(TARGET NUCLLUS)

						70 ^{Yb¹⁷³(}	TARGET NU	CLEUS)												78Pt	195(TARGE	T NUCLEUS	5)				
l	12	14	16	18	20	22	24	26	30	34	38	42	46] [l	14	16	18	20	22	24	26	30	34	38	42	46
0	8.075	3 063	5.212	3.651	7.921	9.481	9.861	9.961	9,991	10.001	10.001	10.001	10.001	1 [0	3.344	1.593	9.032	4.57]	8,311	9.561	9.871	9.901	10.001	10.001	10.001	10.001
1	7.325	2.763	4.722	3.421	7.771	9 441	9.851	9.951	9,991	10.001	10.001	10.001	10.001		1	3 064	6.933	8.292	4,361	8,191	9.531	9.871	9.981	10.001	10.001	10.00]	10.001
2	6.045	2.263	3.872	3 001	7,451	9.351	9.821	9.951	9,991	10.001	10.001	10.001	10.001		2	2.584	5.783	6.982	3.931	7.941	9.451	9.851	9.98 <u>1</u>	10.00]	10.001	10.001	10.001
3	4.545	1.683	2.872	2.431	6.901	9.181	9.781	9.931	9.90]	10.001	10.001	10.001	10.001		3	2.004	4 433	5.392	3 331	7.511	9.33 <u>1</u>	9,811	9.981	10.001	10.001	10.001	10.001
4	3 145	1 153	1.942	1.791	6.091	8.901	9.701	9.911	9,991	10.001	10.001	10,001	10,001		4	1.434	3.133	3.812	2.011	0 801	9.111	9.751	9.97	10,001	10.001	10.001	10.001
5	2.025	7.264	1.202	1,191	4.991	8.421	9.571	9.871	9,991	10.001	10.001	10.001	10.001		5	9.575	2.063	2.472	1.861	5.931	8.761	9.651	9.961	9.991	10.001	10.001	10.001
0 7	1.205	4.504	0.793	7.202	3.691	6.441	9.341	9.811	9.981	10.001	10.001	10.001	10.001		7	3 555	1.202	1.40 <u>4</u> 8.283	/ 182	4.7 21 3 201	0.10 <u>1</u> 7.261	9,401	9.951	9.991	10.001	10.001	10.001
8	3,536	1.294	1.773	2.022	1.371	4.831	8.151	9.451	9.941	9,991	10.001	10.001	10.001		8	2.015	4.214	4.353	3.922	2 151	5.911	8.631	9.871	9 981	10.001	10.001	10.001
9	1.816	6.595	8.304	9.683	7.032	3.101	6.851	8 991	9.901	9,991	10.001	10.001	10.001		9	1.075	2.284	2.163	2.002	1.211	4.251	7.671	9.771	9.971	10.001	10.001	10.001
10		3.265	3.694	4.453	3.332	1.691	5.011	8.081	9.801	9.971	10.001	10.001	, 10.001		10	5.476	1.194	1.023	9.753	6.192	2.621	6,181	9.571	9.951	9,991	10.001	10.001
11		1.545	1.564	1.983	1.512	8.182	3 041	6.521	9,591	9.951	9,991	10.001	10 001		11	2 62 <u>6</u>	6.055	4.584	4.563	2.982	1 411	4.281	9 151	9.901	9.991	10.001	10.001
12		7.186	6.215	8.474	6.653	3 692	1.551	4.401	9,131	9 891	9.981	10.001	10.001		12	1.246	2 975	1.964	2.063	1.392	6 84 <u>2</u>	2,491	8.311	9.801	9.971	10.001	10.001
13		3.126	2.335	3.494	2.883	1.622	7.092	2.411	8.121	9.761	9.971	9.991	10.001		13		1.425	7.925	9.004	6.283	3.172	1.261	6.791	9.571	9.941	9.991	10.001
14		1.330	8.296	1.374	1.223	7.073	3.122	1.141	6.281	9.441	9.921	9,091	10.001		14			3 035	3.774	2.783	1.442	5 872	4.661	9.041	9.871	9.981	10.001
15			2.736	5.125	5.004	3 06 <u>3</u>	1.372	5.022	3.911	8.6/1	9.811	9.971	9.991		15			1.095	1.504	1.203	6.463	2.672	2.621	7.921	9,701	9.951	9,991
16				1.805	1.964	1.303	6.033	2.222	1,971	7.061	9.521	9.931	9.991		16			3.716	5.685	4.974	2.863	1.212	1.281	5.981	9.281	9.891	9.981
17				5.956	7.295	5.324	2.643	9.933	8.932	4.641	8.771	9.811	9.971		11			1.100	2.035	1.9/4	1,233	5.48 <u>3</u>	5.912	3.651	8.311 6.451	9.731	9.961
18				1.8/0	2.502	2.084	4 614	4.41.2	4.012	2.431	4 641	9.471	9.911		19				0.020	2 615	1.994	1.043	1.282	8.782	4.031	8.281	9.691
20						2.605	1 704	0 494	0.752	6 212	2 421	6 671	0.271		20					8 706	7 385	A 264	6.003	4 172	2 001	6311	9 171
20						8.876	6.605	0.424 3.434	4 113	2 502	1 141	4.091	8.021		21					2,706	2.595	1.664	2.753	2.022	1.011	3.851	7.911
22						0.0.0	2.285	1.324	1.883	1.232	5.472	2.081	5.711		22						8,546	6.085	1.213	9.913	4.952	1.991	5.681
23							7.446	4.805	8.244	6 06 <u>3</u>	2.742	1.011	3.221		23						2.676	2,105	5.084	4.783	2 492	9.852	3.291
24								1.645	3.444	2.933	1.402	5.042	1.621		24							6.836	2.024	2.243	1 272	5.002	1.691
25								5.226	1.354	1.363	7.233	2.632	8.152		25							2.0%	7.575	9.994	6.413	2.612	8.612
26								1.576	5.005	6.044	3.653	1.402	4 292		26								2.675	4.234	3.14 <u>3</u>	1.382	4.552
27									1.745	2.534	1.783	7.483	2.332		27									1.694	1.473	7.243	2.472
28									5.666	9.985	8.264	3.913	1.282		28									0.305	0.5/4 2.764	3.085	1.352
29											5.054	1.902	1.022		29										2,704	1.005	1,270
30 21											1,504	9.514	3.793		30 21										1.094	8.314	3.813
32 32											2.842	4 224	9 704		32										4.012	1.494	9.104
33												7.505	4 544		33											5.775	4.094
34												_	2.004		34												1.734
35													8.265		35								1				6.875
36													3.215		36												2.575

Table 🎞 (Cont'd.)

82Pb²⁰⁶(TARGET NUCLEUS)

-

90Th²³²(TARGET NUCLELS)

•

L	14	16	18	20	22	24	26	30	34	38	42	46		L	14	16	18	20	22	24	26	30	34	38	42	46
0	1.134	2.883	3.872	2.781	7.121	9.221	9.781	9.981	10.001	10.001	10.001	10.001		0	1.425	4.834	6 973	7.872	3 971	7.841	9.401	9.941	9.991	10.001	10.001	10.001
1	1.044	2.643	3.542	2.611	6.951	9.16 <u>1</u>	9.771	9.981	10.001	10.001	10.001	10.001		1	1 325	4 454	6.403	7.302	3.791	7.721	9.361	9.941	9,991	10.001	10.001	10.001
2	8.835	2.23 <u>3</u>	2.982	2.291	6.601	9.041	9.741	9.971	10.001	10.001	10.001	10.001		2	1.145	3.664	5 403	6.28 <u>2</u>	3.441	7.461	9.271	9.931	9 991	10.001	10.001	10.001
3	6.945	1.743	2.292	1.871	6.051	8.831	9.681	9.971	10.001	10.001	10.001	10.00]		3	9.096	3 104	4 203	5.002	2.941	7.031	9.131	9,921	9.991	10.001	10.001	10.001
4	5.075	1.263	1.622	1.411	5.261	8.491	9.581	9.961	0.00Ĵ	10.001	10.001	10.001		4	6 806	2.324	3 013	3.632	2.351	6.401	8.891	9.901	9.991	10.001	10.001	10.001
5	3.405	8.494	1.062	9.732	4.271	7.951	9.421	9.941	9,991	10.001	10.001	10.001		5	4 746	1.644	2 003	2.522	1.741	5 541	8,521	9.861	9.981	10.001	10.001	10.001
6	2.205	5.414	6,423	6,182	3.171	7.131	9.141	9.921	9,991	10.001	10.001	10.001		6	3 066	1.094	1.233	1.692	1.191	4 481	7,931	9.811	9,981	10.001	10.001	10.001
7	1.335	3.274	3.633	3.632	2,121	5,961	8.671	9.871	9.981	10.001	10.001	10.001		7	1.886	b 875	7.094	9 533	7.482	3.311	7.061	9.711	9.961	9.991	10.001	10.001
8	7.566	1.894	1.933	1.992	1.281	4.49]	7.881	9.801	9.971	10.001	10.001	10.001		8	1.106	4.115	3.814	5.323	4.382	2.211	5.841	9.541	9.951	9.991	10.001	10.001
9	4.086	1.054	9.674	1.032	7.002	2.981	0.641	9.041	9.961	0,031	10.001	10.001		9		2.355	1.924	2 813	2.402	1.341	4 371	9.231	9.911	9,991	10.001	10.001
10	2.076	5.605	4.584	5.033	3.582	1.731	4.971	9.35 <u>1</u>	9 921	9,991	10.001	10.001		10		1 295	9.075	1.413	1.252	1,422	2.881	8 671	9.851	9.981	10.001	10.001
11	1.056	2.885	2.064	2.403	1.742	9.012	3.181	8 771	9.861	9,981	10.001	10.001		11		6.6/6	4.035	6.674	6 223	3 852	1.691	7.711	9.731	9.961	9.991	10.001
12		1.435	8.735	1.093	8.203	4.392	1.761	7.681	9.721	9.961	9,991	10 001		12		3.366	1.685	3.004	2.963	1.912	8 962	6.211	9,481	9.931	9.991	10.001
13		6.846	3.505	4 7 3 4	3.753	2.062	8.732	5.931	9.411	9.921	9,901	10.001		13		1.606	6,606	1.201	1.353	9.143	4.472	4.341	8.971	9.861	9.981	10.001
14			1.325	1,964	1.663	9.463	4.112	3.831	8.731	9,831	9,971	10.001		14				5.165	5.914	4 233	2.152	2.591	8.001	9.721	9.901	9.991
15			4.676	7.685	7.094	4.263	1.902	2.071	7 411	9.611	9.911	0,601		15				1.965	2 464	1.893	1.012	1.361	6.381	9.401	9.911	9.981
16			1.586	2.855	2 894	1.873	8.673	1.011	5.341	9,101	9 871	9,981		16				7.036	9 725	8,114	4 583	6.712	4.311	8.721	9.801	9.971
17				10.006	1.124	7.924	3.903	4712	3.141	7.981	9 671	9,951		17					3 635	3 324	2.023	3.212	2.461	7.391	9.551	9.931
18				3.276	4.125	3.214	1.713	2.212	1.591	6.021	9,191	98/1		18				1	1.235	1.294	8.584	1.522	1.261	5.3/1	8.971	9.831
19		}			1,459	1,254	1.184	1.0%	7.602	5.081	8.0/1	9 001		19						4,702	5,4/4	1.055	0.192	~291	1.151	9,201
20					4 6/6	4.485	2.884	4 / 95	3.652	1.911	0 051	7 7 11		20						1.605	1,354 4 0.4E	3.173	3.012	0 479	2.551	8.981
21					1,410	1.945	2 025	0.324	8.643	9 332	1 011	112		22						2,420	4 642	5.684	6 023	A 352	1 011	5.621
23						4.940	1 325	9.324 3.824	4 113	2 332	0.572	2.751 3.251		23							5 376	2 224	3 183	2 192	9.862	3 421
24							4.206	1.484	1,893	1,182	4.892	1 641		24							2.210	8.255	1.403	1.082	5.102	1 851
25					:		1.276	5.135	8 244	5.883	2,562	8 712		25								2.885	5.854	5.233	2.652	9.752
26								1.875	3.414	2.833	1.352	4 622		26								9,506	2,314	2.423	1.372	5.202
27								6 055	1.334	1.303	6.963	2.512		27								2 966	8.625	1.073	6.863	2.802
28								1,849	4 905	5.674	3 483	1 362		28									3.035	4.444	3.313	1.492
29									1.695	2.334	1.673	7 ?63		29										1.754	1.523	7.723
30									5 480	9.025	7 554	3 743		30										6 475	6.594	3.843
31									1.686	3 285	3 234	1.843		31				1				1		2 265	2,704	1.823
32										1 125	1 304	8.591		32											1.044	8,144
33										3.616	4.925	3.781		33											3.795	3.444
34												1,574		34											1.305	1.374
35												6 105		35											4.176	5.135
36												2 245	L	36											1.296	1 815

17

l	12	14	16	18	20	22	24	26	30	34	38	42	46
0	1.197	7.816	2.894	4.133	5.132	3.051	7.161	9.181	9.92 <u>1</u>	9.991	10.001	10.001	10.001
1	1.197	7.236	2.694	3.79 <u>3</u>	4.752	2.891	7.011	9.121	9.92 <u>1</u>	9.99 <u>1</u>	10.00 <u>1</u>	10.001	10.001
2	2.988	6.27 <u>6</u>	2.334	3.21 <u>3</u>	4.07 <u>2</u>	2.581	6.70 <u>1</u>	9.01 <u>1</u>	9.911	9.99 <u>1</u>	10.00 <u>1</u>	10.001	10.00 <u>1</u>
3		5.016	1.884	2.503	3.24 <u>2</u>	2.17 <u>1</u>	6.21 <u>1</u>	8.82 <u>1</u>	9.89 <u>1</u>	9.99 <u>1</u>	10.001	10.001	10.00 <u>1</u>
4		3.766	1.424	1.803	2.382	1.70 <u>1</u>	5.52 <u>1</u>	8.521	9.86 <u>1</u>	9.98 <u>1</u>	10.001	10.001	10.001
5		2.616	1.014	1.203	1.632	1.241	4.641	8.041	9.821	9.981	10.001	10.001	10.001
6		1.69 <u>6</u>	6.76 <u>5</u>	7.394	1.042	8.342	3.611	7.331	9.74 <u>1</u>	9.971	10.001	10.001	10.001
7		1.05 <u>6</u>	4.285	4.264	6.213	5.22 <u>2</u>	2.581	6.331	9.61 <u>1</u>	9.95 <u>1</u>	9.991	10.001	10.00 <u>1</u>
8			2.585	2.294	3.48 <u>3</u>	3.052	1.671	5.041	9.391	9.93 <u>1</u>	9.991	10.001	10.001
9			1.48 <u>5</u>	1.154	1.84 <u>3</u>	1.682	9.932	3.611	9.001	9.89 <u>1</u>	9.98 <u>1</u>	10.00 <u>1</u>	10.001
10			8.116	5.445	9.224	8.763	5.472	2.291	8.311	9.811	9.97 <u>1</u>	10.001	10.001
11			4.246	2.415	4.374	4.37 <u>3</u>	2.84 <u>2</u>	1.311	7.181	9.651	9.951	9.991	10.001
12			2.116	9.97 <u>6</u>	1.96 <u>4</u>	2.083	1.422	6.912	5.571	9.341	9.911	9.991	10.001
13				3.906	8.335	9.504	6.78 <u>3</u>	3.452	3.731	8.731	9.83 <u>1</u>	9.97 <u>1</u>	10.001
14					3.345	4.134	3.14 <u>3</u>	1.67 <u>2</u>	2.16 <u>1</u>	7.60 <u>1</u>	9.65 <u>1</u>	9.951	9.99 <u>1</u>
15					1.265	1.714	1.403	7.813	1.131	5.851	9.27 <u>1</u>	9.891	9.981
16					4.536	6.705	5.974	3.56 <u>3</u>	5.542	3.821	8.47 <u>1</u>	9.761	9.961
17						2.485	2.424	1.563	2.662	2.14 <u>1</u>	7.00 <u>1</u>	9.46 <u>1</u>	9.91 <u>1</u>
18						8.666	9.34 <u>5</u>	6.574	1.262	1.091	4.931	8.79 <u>1</u>	9.791
19							3.415	2.634	5.83 <u>3</u>	5.382	2.921	7.441	9.50 <u>1</u>
20							1.175	10.005	2.613	2.632	1.541	5.391	8.821
21							3.766	3.595	1.123	1.272	7.792	3.271	7.431
22							-	1.225	4.584	5.993	3.932	1.761	5.321
23								3.886	1.784	2.733	1.972	9.102	3.201
24									6.50 <u>5</u>	1.19 <u>3</u>	9.74 <u>3</u>	4.73 <u>2</u>	1.73 <u>1</u>
25									2.255	4.914	4.663	2.462	9.202
26									7.316	1.924	2.133	1.262	4.932
27									-	7.075	9.294	6.283	2.652
28]]]		J	J			2.465	3.834	3.003	1.402
29										-	1.494	1.363	7.223
30											5.455	5.844	3,563
31											1,885	2.374	1,673
32												9.045	7.384
33												3.255	3.084
34												1.105	- 1.214
35												3 5 2 6	- 1 505
36												1 056	1 575
1		1										1.020	

Table Ⅲ (Cont'd.) 92U²³⁵ (TARGET NUCLEUS)

.

.

Several calculations were made in which all the parameters were fixed, except <u>n</u>, in the Hill-Ford charge distribution. The results showed that the reaction cross section is rather insensitive to changes in the charge distribution. For a fixed set of Woods-Saxon parameters, the relative cross sections for 22-Mev alpha particles on silver were in the ratio 1.000:1.000:1.043 for <u>n</u> = 20, 7.75 and 3, respectively.

A. <u>Simplified Calculation of Reaction Cross Sections with a Parabolic</u> Approximation of Optical Model Real Potential

Values of T_{ℓ} and σ_R have also been calculated with a model⁽⁸⁾ which embraces some simplifying assumptions and as a result greatly reduces the computational problem. The potential function given by

$$V_{\ell}(r) = \frac{2Ze^2}{r} + \frac{\ell(\ell+1)\hbar^2}{2M\alpha r^2} - 1100 \exp\left[-\left(\frac{r-1.17A^{1/3}}{0.574}\right)\right] , \qquad (5)$$

which describes the real part of the barrier [Eq. (5)], is approximated by a parabola. The transmission coefficients T_{ℓ} for a parabolic potential⁽⁹⁾ are given by

$$T_{\ell} = \frac{1}{1 + \exp\left[\frac{2(B_{\ell} - E)}{\hbar\omega_{\ell}}\right]} , \qquad (6)$$

where B_{ℓ} is the height of the barrier for angular momentum $\underline{\ell}$, \underline{E} is the center of mass energy, and ω_{ℓ} is the vibrational frequency of the harmonic oscillator having a potential energy function given by the negative of the potential energy function describing the barrier.

The quantity $\hbar \omega_{\ell}$ in Eq. (6) is fixed by the curvature of the top of the barrier and the reduced mass of the system, and is given by

$$h\omega_{\ell} = \left| \frac{\hbar^2}{M_{\alpha}} \frac{d^2 V_{\ell}}{dr^2} \right|^{1/2}$$
(7)

where $d^2 V_{\ell} / dr^2$ is the second derivative of the real part of the barrier (Eq. 5) evaluated for the value of <u>r</u> for which $V_{\ell}(r)$ is a maximum.

B. Comparison of Reaction Cross Sections from Various Models

The alpha-particle barriers of U²³⁵ for the square-well potential, optical-model potential, and the parabolic approximation to the real part of

the optical-model potential are plotted in Fig. 1 for $\ell = 0$ and in Fig. 2 for $\ell = 25$. The square-well potential (curve a) includes the Coulomb and centrifugal barriers and a constant nuclear potential of -50 Mev for $r < (1.50A^{1/3} + 1.21)$ fermi and 0 for $r > (1.50A^{1/3} + 1.21)$ fermi.

Fig. 1

Potential barriers for the reaction ${}_{92}U^{235} + {}_{2}He^4$ for angular momentum $\ell = 0$. (a) square-well potential for radius equal to $(1.50A^{1/3} + 1.21)$ fermi and a constant nuclear potential of V = -50 Mev for $r < (1.50A^{1/3} + 1.21)$ fermi and V = 0 for $r > (1.50A^{1/3} + 1.21)$ fermi. (b) Opticalmodel potential (real part) given by Eq. (2) with a nuclear potential equal to

$$-50 / \left[1 + \exp\left(\frac{r - 1.17A^{1/3} - 1.77}{0.576}\right) \right].$$

(c) Parabolic approximation of the real part of the optical-model potential [see Eqs. (5), (6), and (7) in text]. (d) Imaginary part of the optical-model potential which is given by

$$-27i / \left[1 + \exp\left(\frac{r - 1.17A^{1/3} - 1.77}{0.576}\right) \right].$$

Potential barriers for the reaction $_{92}U^{235} + _{2}He^{4}$ for angular momentum $\ell = 25$. See caption of Fig. 1 for description.

The real part of the optical-model potential for uranium (curve b) is calculated from Eq. (2) where the nuclear potential is given by

$$-50 / \left[1 + \exp\left(\frac{r - 1.17 A^{1/3} - 1.77}{0.576}\right) \right].$$

The imaginary part of the optical model potential for uranium (curve d) is given by

$$-27i / \left[1 + \exp\left(\frac{r - 1.17A^{1/3} - 1.77}{0.576}\right) \right]$$

and these calculated values are also plotted in the above figures. The parabolic approximation to the real part of the optical-model potential (curve c) is calculated from Eqs. (5) and (7).

The maximum in the real part of the optical-model potential moves to smaller radii for increasing values of the angular momentum, whereas the imaginary part of the optical-model potential is independent of angular momentum. Due to this effect and the strong alpha-particle absorption, the waves with larger $\underline{\ell}$ values experience a smaller fraction of the width of the barrier than do the waves with small $\underline{\ell}$ values. This means that the alpha particle is absorbed in some cases before it traverses the entire real part of the optical-model potential, i.e., absorption occurs in the barrier and the alpha particle does not reach the radius corresponding to the inner turning point of the barrier. Such a model leads to $T\ell$ values which may be larger than those calculated from models in which it is assumed that the alpha particle is not absorbed in the barrier region.

The reaction cross sections obtained with Eq. (1) for the squarewell potential, (1,2) the optical-model potential, and the parabolic approximation to the real part of the optical model potential are plotted for comparison in Fig. 3 for a ${}_{23}V^{51}$ target and in Fig. 4 for a ${}_{92}U^{235}$ target. The square-well potential with $r = (1.5A^{1/3} + 1.21)$ fermi gives reaction cross sections which are smaller by a factor of two than the opticalmodel values. Approximate agreement between the square-well and optical-model cross sections can be obtained for larger values of the square-well radius. If the value of Δ in the square-well radius, $r = r_0 A^{1/3} + \Delta$, is 1.2 fermi, then r_0 must be equal to 1.63 fermi for uranium and 1.9 fermi for vanadium in order to give agreement. Stated in another way, if r_0 in the square-well radius is 1.5 fermi, then Δ must be equal to 2.0 fermi for uranium and 2.7 fermi for vanadium in order that the square-well model gives cross sections as large as the optical model.

Fig. 3

Reaction cross sections for ${}_{23}V^{51} + {}_{2}He^4$ are plotted versus the alpha-particle energy in the laboratory system.

Reaction cross sections for $_{92}U^{235} + _{2}He^{4}$ are plotted versus the alpha-particle energy in the laboratory system.

A square-well radius of $(1.5A^{1/3} + 2.2)$ fermi will give reaction cross sections which agree reasonably well with optical-model cross sections for a number of elements.

The agreement between the reaction cross sections derived from the optical model and from a model which approximates the real part of the optical-model potential by a parabola and utilizes the transmission coefficients for a parabolic potential is very good for energies exceeding the classical barrier height ($\ell = 0$). The degree of agreement in cross sections for vanadium with alpha-particle bombarding energies greater than 8 Mev and for uranium with energies greater than 20 Mev can be seen in Figs. 3 and 4, respectively. At energies below the classical barrier, the agreement between the transmission coefficients and reaction cross sections derived from the two models is unsatisfactory. The merit of the model which utilizes the parabolic approximation of the real part of the optical-model potential lies, of course, in the relatively simple mathematical computation which is necessary for calculating rather accurate reaction cross sections.

The ratios of the reaction cross section for angular momentum $\frac{\ell}{2}$ to the total reaction cross section, $\sigma_R^{\prime}/\sigma_R^{\prime}$, are plotted against $\frac{\ell}{2}$ in Fig. 5 for 12-Mev (Lab) alpha particles on ${}_{23}V^{51}$ for the three models discussed above. Reasonably good agreement is obtained between the optical- and parabolic-potential models. This results from the fact that the cross sections and the individual transmission coefficients are approximately equal for these two models at all energies greater than the classical barrier.

Fig. 5

The ratios of the reaction cross section for angular momentum ℓ to the total reaction cross section, σ_R/σ_R , are plotted versus ℓ for 12-Mev (Lab) alpha particles on ${}_{23}V^{51}$ for the three models discussed in the text.

The square-well model (r = $1.5A^{1/3} + 1.2$) gives considerably smaller average angular momentum deposited in that the reaction cross sections are less by a factor of two. If the square-well radius is increased to give agreement between the square-well and optical-model cross sections, then the average angular momentum deposited in the square-well model is greater than in the optical model. The square-well model leads to considerable reflection from the spike in the potential barrier and, in order to reproduce the magnitude of the optical-model cross sections, more $\frac{1}{2}$ waves are required in the square-well model.

C. Optical-model Cross-section Dependence on Nuclear Potential

This section is concerned with an investigation of the dependence of the reaction cross section on the nuclear potential in the optical-model calculation.

The first comparison of reaction cross sections in this section are for different sets of Woods-Saxon parameters which give equally good fits to the complex nuclear potential of Eq. (2) for values of \underline{r} where the real part of the nuclear potential is greater than -10 Mev. The relevant data are summarized in Table IV. The two sets of parameters for uranium (1) V = -50 Mev, W = -27 Mev, and r = 8.99 fermi, and (2) V = -25 Mev, W = -13.9 Mev and r = 9.39 fermi, give approximately the same complex nuclear potential for values of the radius greater than 10 fermi. The reaction cross sections for these two different sets of Woods-Saxon parameters agree very well at both 22 and 38 Mev. Similar cross-section comparisons are made for vanadium. The two sets of Woods-Saxon parameters in Table IV do not give quite as good agreement in the reaction cross-section values for the lighter nucleus, vanadium.

Table IV

REACTION CROSS-SECTION DEPENDENCE ON VARIOUS SETS OF WOODS-SAXON PARAMETERS WHICH GIVE APPROXIMATELY THE SAME COMPLEX NUCLEAR POTENTIALS FOR r VALUES WHERE THE REAL PART OF THE NUCLEAR POTENTIAL IS GREATER THAN -10 MEV.*

Nuclide	E Lab (Mev)	V(Mev)	W(Mev)	r ₀ (fermi)	n	σ _R (mb)
23V ⁵¹	6 6	- 50 - 25	-10 - 5.2	$\frac{1.17A^{1/3} + 1.77}{1.17A^{1/3} + 2.17}$	0.04 6.04	10.5 10.6
	34 34	-50 -25	-10 - 5.2	$\frac{1.17A^{1/3} + 1.77}{1.17A^{1/3} + 2.17}$	$\substack{\textbf{6.04}\\\textbf{6.04}}$	1559 1492
92U ²³⁵	22 22	-50 -25	-27 -13.9	$1.17A^{1/3} + 1.77$ $1.17A^{1/3} + 2.17$	$\begin{array}{c} 10.04 \\ 10.04 \end{array}$	76.8 77.2
	38 38	-50 -25	-27 -13.9	$\frac{1.17A^{1/3} + 1.77}{1.17A^{1/3} + 2.17}$	$10.04\\10.04$	1550 1552

*In all cases

and

 $r_{c}(fermi) = 1.17A^{1/3}$

The result of comparisons in Table IV confirms earlier suggestions that the depth of the potential for small <u>r</u> values is unimportant in analyzing alpha-particle elastic scattering and total reaction cross-section data as long as the set of parameters in the Woods-Saxon potential accurately reproduces the complex potential near the nuclear surface.

Whereas the cross-section comparisons in Table IV are for sets of optical-model parameters which give approximately the same complex potential at r values larger than the nuclear radius (although considerably different complex potentials at small values of r), the comparisons in Table V are for sets of optical-model parameters which give different complex nuclear potentials for large values of r.

				_	
Nuclide	E Lab (Mev)	V(Mev)	W(Mex)	n	³ R(mb)
23V ⁵¹	6 6 6 6 8 8 4 34 31	- 50 0 - 55 - 100 - 50 - 50 - 50 - 50 0 - 53	$ \begin{array}{r} -10 \\ -10 \\ -10 \\ -10 \\ -2 \\ -11 \\ -20 \\ -10 \\ -10 \\ 10 \\ \end{array} $	0.04 0.04 0.04 0.01 0.04 0.04 0.04 0.04 0.04 0.04	10.5 3.1 11.0 18.8 5.9 10.6 12.5 1559 1165
0.1T ^{2 35}	34 34 34 34 34	- 55 -100 - 50 - 50 - 50 - 50	-10 -10 -2 -11 -20 -27	0.04 0.04 0.04 0.04 0.04	1571 1722 1119 1566 1612
	16 18 22 22 22 22 22 22 22 22 22 2	- 50 - 50 - 53 - 100 - 50 - 50 - 50	-54 -27 -27 -27 -27 -27 -30 -54	$10.04 \\ 10.04 \\ 10.04 \\ 10.04 \\ 10.04 \\ 10.04 \\ 10.04 \\ 10.04 \\ 10.04 \\ 10.04 $	1.75 76.8 43.0 79.5 122.2 48.8 50.2 104.5
	38 38 28 28 28	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-27 -27 -27 -27 -4 -50	$10.04 \\ 10.04 \\ 10.04 \\ 10.01 \\ 10.04 \\ 10.0$	1550 1272 1562 1705 1438 1560 1630

REACTION CROSS-SEC FION DEPENDENCE ON THE COMPLEX NUCLEAR POTENTIAL*

Table V

*In all cases

 $r_0(\text{ferm}) = 1.17A^{1/3} + 1.77$ d(ferm) = 0.576 $r_0(\text{ferm}) = 1.17A^{1/3}$ The first entry for each energy in Table V gives the appropriate cross section for the Woods-Saxon parameters of Table I, which are based on the experimental nuclear potential (4)

$$-1100 \, \exp\left[-\left(\frac{r-1.17A^{1/3}}{0.574}\right)\right] - 45.7 \, i \, \exp\left[-\left(\frac{r-1.40A^{1/3}}{0.578}\right)\right]$$

for large <u>r</u> values (i.e., values of <u>r</u> where the real part of the potential is greater than -10 Mev). The remainder of the entries for each energy are for various values of the complex nuclear potential. The parameters <u>V</u> and <u>W</u> are varied separately with the other Woods-Saxon parameters fixed such that the change in the complex nuclear potential at large values of <u>r</u> is proportional to the change in <u>V</u> or <u>W</u>. For example, the set of Woods-Saxon parameters for U^{235} (V = -100 Mev, W = -27 Mev, $r_0 - 1.17A^{1/3} + 1.77$, etc.) correspond to a complex nuclear potential equal to

$$-2200 \exp\left[-\left(\frac{r-1.17A^{1/3}}{0.574}\right)\right] - 45.7 i \exp\left[-\left(\frac{r-1.40A^{1/3}}{0.578}\right)\right]$$

for large values of the radius, or a change of a factor of two in the real part of the nuclear potential. Since the uncertainty in the real part of the nuclear potential as determined by analyses⁽⁴⁾ of the elastic-scattering data is thought to be approximately 50%, the above value of the real potential is outside the limit of this error.

The uncertainty in the imaginary part of the nuclear potential as determined by alpha-particle elastic scattering is, however, considerably larger than the uncertainty in the real part of the nuclear potential, and may be as much as 100% or even larger. The set of parameters for U^{235} (V = -50 Mev, W = -54 Mev, $r_0 = 1.17A^{1/3} + 1.77$, etc.) corresponds to a complex nuclear potential equal to

$$-1100 \exp\left[-\left(\frac{r-1.17A^{1/3}}{0.574}\right)\right] - 91.4 i \exp\left[-\left(\frac{r-1.40A^{1/3}}{0.578}\right)\right]$$

at the nuclear surface, which represents a change of a factor of 2 in the imaginary part of the nuclear potential from the average value⁽⁴⁾ deduced from elastic scattering.

At energies considerably larger than the classical barrier, the cross sections vary only slightly with large variations in either the real or imaginary part of the nuclear potential. Variation of either the real or imaginary potential by a factor of 2 at large values of <u>r</u> changes the reaction cross section by only 10% or less. In the region of the Coulomb barrier, however, the reaction cross sections vary considerably with large changes in the complex nuclear potential. The strong dependence of the reaction cross section on the real and imaginary potentials at large values of <u>r</u> for energies near the Coulomb barrier can be seen from the data of Table V. For the target nucleus U^{235} a change in <u>W</u> from -27 to -54 Mev increases the reaction cross section by 36% for 22-Mev alpha particles and by 80% for 18-Mev alpha particles. Since reaction crosssection values are very sensitive to the complex nuclear potential at energies below the classical barrier, accurate experimental measurements of the reaction cross sections for alpha particles at these energies in conjunction with the alpha-particle elastic-scattering data would be useful in the determination of the complex nuclear potential.

D. Program Checks

The results of our program were checked with data published by Glassgold for 10-Mev protons⁽¹⁰⁾ on argon and copper and for 22-Mev helium ions on silver.⁽¹¹⁾ Some of the other quantities recorded in our program are the Coulomb functions and the real and imaginary parts of the nuclear phase shifts for each $\underline{\ell}$. The authors will supply any of this information to those interested on request.

III. ACKNOWLEDGMENTS

One of the authors (JRH) wishes to thank Professors I. Perlman and J. O. Rasmussen for their hospitality during his summer visit at the Lawrence Radiation Laboratory in Berkeley. We also wish to thank J. O. Rasmussen, R. Griffioen, and R. Vandenbosch for several helpful discussions.

References

- 1. M. M. Shapiro, Phys. Rev. <u>90</u>, 171 (1953).
- J. M. Blatt and V. F. Weisskopf, <u>Theoretical Nuclear Physics</u> (John Wiley and Sons, Inc., New York, 1952), p. 352.
- 3. H. Feshbach, M. M. Shapiro, and V. F. Weisskopf, NYO-3077, unpublished.
- 4. G. Igo, Phys. Rev. 115, 1665 (1959).
- 5. K. W. Ford and D. L. Hill, Phys. Rev. <u>94</u>, 1617 (1954).
- R. Hofstadter, <u>Annual Review of Nuclear Science</u> (Annual Reviews, Inc., Palo Alto, California, 1957), Vol. 7, p. 231.
- 7. R. D. Woods and D. S. Saxon, Phys. Rev. <u>95</u>, 577 (1954).
- Suggested by J. O. Rasmussen and programmed by T. D. Thomas, Phys. Rev. <u>116</u>, 703 (1959).
- D. L. Hill and J. A. Wheeler, Phys. Rev. <u>89</u>, 1102 (1953), in particular, p. 1140.
- A. E. Glassgold, W. B. Cheston, M. L. Stein, S. B. Schuldt, and G. W. Erickson, Phys. Rev. <u>106</u>, 1207 (1957).
- 11. W. B. Cheston and A. E. Glassgold, Phys. Rev. 106, 1215 (1957).