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ABSTRACT

This report surveys the problem of liquid entrainment by a
gas phase. It is written with the purpose of gathering, presenting
and correlating available information which may be useful for pre-
dicting the liquid carry over in a boiling water reactor at high
pressure.

Correlations which predict water carry over as a function of
pressure, of the height of the vapor dome and of the vapor mass
flow rate are presented and discussed. Because entrainment depends
upon the hydrodynamic conditions and upon the expansion of a two-
phase bubbling mixture this report discusses also the transportation
of vapor through such mixtures. Equations which relate the volu-
metric vapor fraction to the reduced (superficial) vapor velocity in
bubbling at high pressures are presented and some inconsistencies are
noted. Experimental data and correlations which predict the loca-
tion of the liquid-vapor interface in bubbling at high pressures
are also given. Experimental data on water carry over at high pres-
sures reported in the literature are summarized in the Appendix.

The problems of drop formation for bursting bubbles and of
drop ballistics are discussed together with some analytical formu-
lations of the entrainmment problem. The bibliography may prove use-
ful as a source of additicnal information on the problems of carry
over, corrosion and on the purity of steam and of water at high

pressures.




ii

NOMENCLATURE

(Dimensions in the MLT System)
A = A' + A" = cross sectional area (L?)
A' = cross sectional area occupied by liquid (Lz)
A" = cross sectional area occupied by vapor L)
Ar = dimensionless group defined by Eq. (V-29-b)
C = drag coefficient (dimensionless)
D = drop diameter (L)
Dj = jet diameter (L)
d = diameter of a contaimer (L)
dy = diameter given by Eq. (VI-13) (L)

E = liquid entrainment (mass flow rate of liguid/mass flow rate
of vapor) (dimensionless)

e = entrainment given by Eq. (VI-10) (dimensionless)

F = drag force (MLT'2)

F,. = Froude number defined by Eq. (V-29-a) (dimensionless)
£ = mass fraction of particles with emergy €; (M~1L-272)
G' = flow rate of liquid leaving the interface (HL‘2T'1)

G™ = vapor mass flow rate (ML‘ZT'l)

G, = dimensionless group defined by Eq. (V-22-a)

g = gravitational acceleration (LT~2)

H = height of the vapor dome (vapor space) in absence of bubbling (L)
Hy, = height of the liquid in absence of bubbling (L)

Hp = height of the two phase bubbling mixture (L)

Hy = height of the vapor space during bubbling (L)

AH = expansion of the two phase bubbling mixture (L)
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Hpp = height of the "transition region" defined in Chapter VI (L)

h = hydrostatic head (L)

h = height of drop trajectory (L)

hpm = maximum height of drop trajectory (L)

hj = maximum height of a jet (L)

K = parameter defined by Eq. (III-36) (L-0.470.6)

K = constant in Eq. (II-3) (L2)

Ko = function defined by Eq. (V-19) (L~0.7570.75)

L = wave length of jet deformation (L)

Lopte= most critical wave length for jet break-up (L)

£ = unbroken length of a jet (L)

m

m

]|

P

mass of liquid drop (M) (Chapters I and IV)

mass of liquid set in motion to fill a crater (M) (Chapter II)
dimensionless group defined by Eg. (V-16)

total number of drops thrown up from the interface per unit
cross sectional area per second (L-27-1)

number of drops of a given size thrown up from the interface
per unit cross sectional area per second (L’2T‘1)

number or weight percentage of a given drop size in total
spectrum (L—-27-1)

pressure (ML-1T-2)

pi = pressure inside a2 bubble (ML-1T-2)

P, = pressure outside a bubble (ML=11-2)
AP = py - P (ML™1T"2)

q = frequency in Eq. (II-15) (T~1)

R1,Rg = principal radii of curvature (L)
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Re = Reynolds number (dimensionless)
r = depression of a bubble crater (L)
Ty & Maximum bubble radius (L)
Peop = critical bubble radius defined in Eq. (I-9) (L)
8 = surface area which can eject drops (Lz)
t = time (T)
T = drop residence time above a given elevation (T)
ty = time to reach the maximum height (T)
Uo = initial velocity of a jet (LT™1)
u' = drop velocity (LT-1)
up = horizontal component of u’ (LT'l)
ul, = vertical component of u' (LT"1)
uj = initial drop velocity (LT~1)
ug = terminal velocity of a liquid drop @wr-1)
uge = terminal velocity of a liquid drop given by Stokes' law
Eq. (III-24) (LT"1)
uy = V'/A = G'/p'A = reduced (superficial)velocity of liquid (LT™1)
up - V*/A = G*/p"A = reduced (superficial) velocity of vapor (LT-1)
V' = volumetric flow rate of liquid (L3T'1)
V" = volumetric flow rate of vapor (L3T'1)
W = total rate of entrainment (MT™1)
Wy .f%%i = entrainment rate under steady conditions for particles
with energy €; (L-2T)
We = Weber number (dimensionless)
“E = yessel inventory of particles with energy Ei (L'2T2)
A" I\

= A A" = A = volumetric vapor fraction (dimensionless)

& = amplitude of the surface disturbance of a jet (L) (Chapter II)

a




8 = reciprocal of average particle energy (H'1L‘2T2)

€ = entrained number of drops per unit volume of gas (L‘3)
€; = escape energy defined by Eq. (IV-13) (ML2T-2)
7 = number of drops per cross-sectional area above a given

elevation (L~2)

A = dimensionless coefficient of conductance in Eq. (IV-20)
g = function given by Eq. (II1I-34) (dimensionless)

Y = kinematic viscosity (L27-1)

p* = viscosity of gas (ML-1T-1)

p' = liquid density (ML=3)

p™ = vapor density (ML=3)

P ™ (1-e¢) p' + ap™ = density of two phase mixture (L=3)
6 = angle in Fig. I1I-1

o = surface tension (MT—2)

Superscripts:

' denotes liguid
® denotes vapor
%* denotes that the data are evaluated at the second transition

point (Point B in Fig. 1)




ON THE PROELEM OF LIQUID ENTRAINMENT

INTRODUCTION

The entrainment is a consequence of dynamic interactions
and may arise wherever two phases are brought into contact and
are in relative motion. The entrainment of a liquid by a gas
phase may occur in technical equipments such as boilers, evapora-
tors, rectification columns, nuclear reactors, etc. The effects
of entrainment are detrimental to the performance of most systems.
In evaporation, distillation, and absorption, it may cause
serious loss or contamination of the products, or it may diminish
the effective separation of liquid components. The presence of
water droplets in the steam may cause water hammer in pipes and
superheaters, or it may cause damage to a reciprocating engine
or a turbine. In direct cycle water boiling reactors droplets
which leave the boiling interface carry volatile substances which
are highly radioactive (Ref. 1), thus, the carry-over of radio-
activity poses an additional problem. It is therefore of consider-
able interest to understand the processes which affect the entrain-
ment and to be able to predict the amount of liquid which is
carried by the gas or vapor phase as function of the design
characteristics and operating conditions of the system.

The problem is complicated because the entrained liquid
drops can result from three different processes: <from bursting
bubbles, from splashing, and from foaming. Each process is in
turn affected, to a different degree, by the design and operating
characteristics of the system, as well as by the physical and

chemical phenomena which occur at the interface between the liquid



and the vapor. Figure 1, which is reproduced from Reference 2 .
shows how, for a given design (cross-sectional area and height
of the dome) and for given operating conditions (pressure,
-initial level of the liquid, salt content), the entrainment E
varies with the reduced vapor velocity* u,". It can be seen from
this figure that the experimental data can be approximated by
power law expressions relating the entrainment to the reduced
vapor velocity
E = c(u,")? (1)

where the comnstant c, and the exponent n, assume different values
for different regions (see Figure 1). It was proposed therefore,
in References 3, 4, 5, and 6, that the carryover problem could
be simplified by considering three different regions, each of
which could be described in terms of the dominant mechanism
governing the entrainment of the liquid. A very idealized des-
cription of these mechanisms is shown on Figure 2, which is repro-
duced from Reference 6.

Consider a vessel (see Figure 2-a) with a liquid level Hy ,
and a vapor space which, in absence of bubbling, has a height H.
Once the process of bubbling starts, i.e., once the vapor volume
fraction @, in the liquid is larger than zero (see Figure 2-Db)
the volume of the two-phase mixture will expand thereby increasing
the height Hy, of the mixture and decreasing the height of the
vapor space Hy. At the liquid vapor interface (at Hy) drops are

generated by bursting bubbles. In order that a drop can be

*The abscissa on this figure is equal to the reduced (superficial) -
vapor velocity ue™, divided by the height H, of the dome measured .
from the level of the liquid in absence of bubbling. For the
data shown on Figure 1, the value of H was constant and equal to
46.5 cm.
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. transported and carried away by the vapor the settling (terminal)
velocity of the drop must be equal to or smaller than the reduced
velocity ug™, of the vapor. For low vapor mass flow rates, i.e.,
for low reduced vapor velocities, only the smallest droplets can
be entrained and carried away (see region I on Figure 2-b). The
liquid entrainment due to these small drops is low, consequently,
in this regime the exponent n in Equation (1) has a value of the
order of unity (see Figure 1). For larger drops, the settling
velocity exceeds the vapor velocity; these drops, which have been
ejected from the liquid vapor interface by bursting bubbles, will
rise to some maximum height and will return subsequently, to the
liqguid. The region of the vapor space in which these returning
drops are mostly present is denoted by II on Figure 2-b. A further
increase in the vapor mass flow rate will result in a decrease of the
vapor height H,, (see Figure 2-c) and in an increase of the reduced
vapor velocity. Consequently, some of the larger ejected drops,
which for lower vapor flow rates were returning to the liguid, will
reach now the exhaust line and will be carried away by the wvapor.
With increasing vapor flow rates the number of bubbles which burst
at the interface increases causing an increase of the number of
ejected drops and of the liquid entrainmment. As a consequence of
these combined effects, the entrainment becomes sensitive to
variations of the vapor flow rate; in this region the exponent n
in Equation (1) takes a value between 3 and 4. A still further
increase of the vapor flow rate results in the interaction between
single bubbles and in the formation of vapor slugs. These vapor

. slugs are ejected from local areas of high vapor velocity or liquid



turbulence (see region III on Figures 2-c¢ and 2-d). The kinetic ‘
energy of the vapor is large, the liquid vapor interface is agitated,
liguid sheets are splashed in the space above. If the expansion of

the two-phase mixture is such that the liquid splashes may reach

the exhaust line, the liquid entrainment will rapidly increase with
-increasing vapor velocities. In this region the exponent n. in
“Equation (1) assumes values which vary between 7 and 20.

It appears from this brief description of the process that
an understanding of the liquid entrainment problem requires an
understanding of the processes which affect the bursting of bubbles,
the formation and the ballistics of drops, as well as the drop size
distribution. Because the rise of bubbles, the agitation of the
liquid vapor interface, and the expansion of the two-phase mixture
depend upon the hydrodynamic characteristics of the two-phase mixture,
an understanding of the problem requires also an understanding of
the mechanisms which govern the transportation of vapor through a
liquid,

This report is a survey of the problem of liguid entrainment
by a gas phase. It is written with the purpose of gathering, pre-
senting, and correlating available information which may be useful
for predicting the liquid carryover in a boiling water reactor at
high pressure. It is hoped also that by correlating available
information, this report will prove useful in outlining areas and
problems which require further investigation.

The problem of drop formation by bursting bubbles is dis-
cussed in Chapter 1. Because experimental data indicate that the

entrainment is primarily due to drops which are ejected by rising ‘l'




liguid jets, Chapter II considers some characteristics of these
jets. The problem of drop ballistics is taken up in Chapter III.

A formulation of the liquid entrainment problem by considering drop
formation, drop trajectories, and drop distribution is outlined

in Chapter IV. Because of insufficient information, the analytical
methods which are discussed in Chapter IV cannot be used at present
for quantitative predictions. Therefore, the semi-theoretical
methods, i.e., dimensional analysis and the theory of similarity
which were used by various investigators in analyzing and correlating
experimental data are discussed in Chapter V. This chapter contains
also the heretofore proposed correlations of liquid carryover for
water at various pressures. The amount of liquid which is carried
away by the vapor depends to a great extent upon the vapor volume
fraction a, and upon the reduced (superficial) vapor velocity ugy"”,
which characterize the hydrodynamic conditions of the two-phase
mixture. In order to use the proposed correlations which are dis-
cussed in Chapter V, it is necessary to relate a to upg”. It is
necessary also to determine the expansion, i.e., the true height of
the two-phase bubbling mixture. Chapter VI considers the semi-
empirical equations which relate the vapor volume fraction a to

the reduced (superficial) vapor velocity ug™. This chapter con-
tains also the correlations which have been claimed to predict the
true location of the liquid vapor interface, i.e., the height of
the two-phase bubbling mixture. Experimental data on liquid carry-
over for water at various pressures which were reported in the

Russian literature are given in Appendix A and Appendix B of this

report.




In addition to the phenomena which have been just described, ‘

the liquid entrainment depends also upon the condensation or eva-

poration of drops as well as upon the presence of impurities and

the foaming propensity of the liquid. These aspects of the pro-

blem are not discussed in this report. The results of a large

number of investigations concerned with the effects of impurities

and of foaming upon the liquid carryover are reported in Reference 7.

The bibliography includes a number of references, mostly foreign,

which may prove useful as a source of additional information




I. DROP FORMATION

It is generally agreed that drops which are entrained by the
rising vapor are formed by three different processes: by the
bursting of bubbles at the liquid interface, by splashing the
disintegration of liquid slugs, and by foaming. In the range of
interest for most systems the formation of drops is due primarily
to bursting bubbles. This aspect of the problem has been investi-
gated, therefore, by a number of researchers. We note Garner,

Ellis and Lacey (Ref. 4), Newitt, Dombrowski and Knelman (Refs.8,9),
and Gleim, Shelomov, and Shidlowskii (Refs.10,11) among others.

This chapter summarises the results of these investigations.

I.1 THE MECHANISHM

A bubble of moderate size (say 0.5 cm diameter) rising
through a liquid usually assumes a form having an ellipsoidal
cross-section, and it rocks in a vertical plane about the long
axis. The terminal velocity of ascent is, over a wide range of
sizes nearly independent of size. When the bubble reaches the
surface of the ligquid it usually rebounds back and forth with de-
creasing amplitude until, just before collapse, it comes to rest
with its upper part projecting above the surface in the form of a
hemispherical dome. The walls of the dome are extremely thin at
the apex but thicken towards the base. The time-lag between the
bubble reaching the surface and collapsing will depend on the
state of the interface. If dirt, salts, or other stabilizing
agents are present, the bubble may remain on the surface for an
appreciable time; even in reasonable pure water, the time-lag

before collapse is of the order of 1/100 second.
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V¥hile the bubble is intact the pressure inside it will be
greater than the surrounding pressure by an amount A p, depending
upon the curvature of the liquid envelope (a thin liquid £film
having two parallel surfaces) and its surface tension o¢:

1 1
Ap = 20| — + — (1-1)
R Ry
where Ry and Rg are the principal radii of curvature. Since the

upper dome is nearly hemispherical in shape, R} = Rg and
Ap = 40/Ry (1-2)

The liquid level at the base of the bubble is depressed

below the surrounding surface by an amount r given by
P o= 20/[g(p'~p“)h 4 c] (1=3)

where h is the hydrostatic head of the surrounding liquid, p' is
the liquid density, p" is the vapor density, g is the gravitational
acceleration and ¢ is a constant. For small bubbles r = Ry/2.

The collapse of the bubble is associated with a release of
energy sufficient to impart a comparatively high velocity to any
drops formed and to give rise to a wave disturbance in the sur-
rounding liquid. By using high-speed photographic techniques,
Newitt, Dombrowski and Knelman (Refs. 8,9), and Gleim and his
associates (Refs. 10,11) were able to show that the mechanism of
bubble collapse appears to be as follows (see Fig. I-1 which is
taken from Ref. 8),

The bubble coming to rest at the liquid surface forms the

hemispherical dome (Fig. I-1 b), its internal pressure producing
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Figure I-1.

aw46-822

Mechanism of the Burst of an Air
Bubble on the Surface of Water (Ref. 8).

11
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a depression of the interface. Liquid drains from the dome until ‘
the upper part is so weakened that the internal pressure causes

the formation of a secondary cap (Fig. I-1(c)). This cap then
disintegrates by the initial formation of a number of perforations
which subsequently expand to give a lace-like structure. The liquid
ligaments so formed are unstable and break into small droplets of a
few microns in diameter (Fig. I-1(d)). These droplets, which are
too small to be seen in the photographs, are carried away by the
drag of gas issuing from the perforated dome. The result of these
events is to set up a system of standing waves, shown clearly in

the figures and to leave a well-defined crater (Fig. I~1(e)) in the
interface. As the crater fills in, the momentum of the inflowing
liquid produces a jet (Fig. I-1(f)), which rises at high velocity
and in certain circumstances detaches one or more comparatively
large drops (Fig. I-1(g),(h)) from its apex. It is these drops,
which may have a diameter of the order of 100 g or more, that are
responsible for the greatest amount of entrained liquid. The jet

then retracts and the surface of the liquid returns to rest.

I.2 THE EFFECT OF BUBBLE DIAMETER ON DROP SIZE DISTRIBUTION

It is apparent that a quantitative study of entrainment must

take into account two systems of drops, the one derived from a

disintegrating dome of liquid and consisting of clouds of minute

drops of a few microns in diameter and the other of comparatively

few large drops derived from the breaking up of rising jets of

liquid. There will be a size distribution in each system. References

4, 8, 9, 10, and 11 report experimental data which indicate a

I
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relationship between the bubble diameter and droplet diameter. It
was found in these experiments that liquid jets were formed from
bubbles which had a diameter below 0.5 cm. The liquid jets from
bubbles below 0.3 cm disintegrated into one or more droplets each
of which, depending on its size, was projected to a characteristic
height. The bubbles above 0.3 cm diameter formed a shorter and
thicker jet which broke into a larger droplet. The dimensions of
these droplets varied from 100 g to 1000 p in diameter. As the
bubble diameter approached 0.5 cm, the ratio of the jet length to
its diameter became insufficient to form droplets. Bubbles larger
than 0.5 cm formed droplets entirely by the collapse of the bubble
dome. The majority of these droplets had a diameter below 25 u.
Figure I-2, which is reproduced from Ref. 8 shows the size distri-
bution of large and small drops, and Figure I-3, which is reproduced
from Ref. 4, shows the dependence of the drop size distribution upon
the bubble dimension. It can be seen that as bubbles become larger
droplets formed by liquid jets decrease in number (but increase in
size), whereas those formed by the collapse of the bubble dome
become more numerous.

The effect of bubble dimensions on the drop size has been
estimated by Davies (Ref. 12) for the case of drops generated by
rising jets. For small bubbles having a nearly hemispherical
depression below the free water surface, the hydrostatic head is
negligible compared with the surface tension force. If it is
assumed that the difference between the surface energy of a hemi-
spherical depression (Zwrza) and that of a flat surface (urzc) is

converted into the potential energy of a drop of mass m, it
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follows from an energy balance that

mghm = rlg (1-4)
where h, is the maximum height of ascent. From this equation, Davies

concluded that if drops rise to approximately the same height, the
2/3

drop diameter Dd should be proportional to r or
T
m = p'—Dd3 = Br2 (1I-5)
é

where B is a constant. It was recently reported by Gleim and his
associates (Ref. 11) that, for bubbles with a diameter less than
0.7 cm, Equation (I-5) gives, on the average, the correct relation
between Dy and r. Bubbles larger than 0.7 cm do not generate drops
by the jet mechanism. Thus, for drops formed by rising jets it
appears possible to estimate the drop size from bubble dimensions.
It can be inferred also that factors which affect the dimensions

of a bubble will affect also the size of the drop.

It can be seen from the foregoing that experiments on liquid
entrainment indicate that large bubbles are not effective in
forming drops from ejecting jets, whereas small bubbles are., It
is known from experiments on rising bubbles that large bubbles
have an oblate shape whereas small bubbles are relatively spherical.
It could be surmised them that the formation of drops by the jet
mechanism depends upon the sphericity of a bubble. If this
inference is correct, the maximum diameter of a jet ejecting
bubble (and, consequently that of the drop) could be estimated
by considering the conditions leading to bubble deformation.

Such an estimate can be made using the analysis given in

References 13, 14, and 15.
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Consider a bubble of radius r, rising steadily with velocity
u, the balance between the buoyant force and the drag force is
given by

4w p'u2
5_'r3g<p'-p") =c

7re (1-6)

where C is the drag coefficient. The dynamic pressure %-p‘uz has

a tendency to deform a bubble whereas the pressure due to surface
tension 20/r tends to maintain the spherical shape. A bubble will
deform when the effect of the dynamic pressure exceeds the surface
tension effect. For a given velocity the maximum bubble radius ry
can be estimated by considering the pressure balance at the stagna-
tion point, thus

1 20

—p'u? = const., x — (I-7)

2 Ty
It follows from Equations (I-6) and (I-7), after some rearrange-

ments, that the maximum radius of a rising spherical bubble is

[ ©
r, = const x\/[— (I-8)

glp'-p")

given by

where the value of the constant is of the order of unity. For

water, taking ¢ = 70 dyn./cm, the square root term in Equation

(I-8) has a value of 0.267. Thus, if the formation of drops de-
pends upon the sphericity of a bubble, Equation (I-8) would pre-
dict that drops could not be generated from bubbles larger than
0.534 cm in diameter. This is not in contradiction with the re-
sults of Garner et, al. (Ref. 4) and of Gleim et.al, (Ref. 11) who

observed values of 0.5 cm and 0.7 cm respectively..
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1.3 THE EFFECT OF BUBBLE DIAMETER ON THE MAXIMUM HEIGHT REACHED .
BY AN EJECTED DROP.

The experimental results of Garner et.al. (Ref. 4) and of
Gleim et., al. (Refs. 10,11) provide also information on the effect
of bubble diameter upon the ballistics of drops. It was observed
in these experiments that droplets formed by the collapse of the
bubble dome had a settling velocity (predicted by Stokes' law)
which was less than the velocity of the rising vapor. Consequently,
these minute drops were entrained by the vapor. The dimensions of
drops ejected by rising liquid jets were such that they could become
entrained only at high vapor flow rates. When not entrained, these
drops would rise to a characteristic height (which is a function of
the drop diameter) and fall back into the liquid.

The effect of the bubble diameter on the maximum height
reached by an ejected drop has been estimated by Gleim et.al, (Ref.
11) using energy considerations similar to those of Davies (Ref. 12).
They observed that, since bubbles with a radius larger than a criti-
cal value r.,, are not effective in forming drops by the jet mech-~
anism, not all of the surface energy is transformed into the
potential energy as it is implied by Equation (I-4). According to
Gleim et. al. the fraction of the surface which can eject drops is

given by

2vr2

S = (rcr - 1) (1-9)

Yor

Then they related the energy of the drop to the energy of the

surface S by
27r?2

mghy= K — (rcr - r)o (I-10) .
r
cr
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where the coefficient K is experimentally found to be constant

for each 1iquid(K=1.23xld-%or neutral salts, and water, and.K-0.95x10"2
for alkaline solutions). It is interesting to note that compared

with Eq. (I-10), Eq. (I-4) renders the same result for r = 0.6 r .;

overestimates the drop energy for r 7 0.6 r and underestimates

cr’

the drop energy for r € 0.6 rep(if K=1.23x10-?s used). The experi-

memtal results of Gleim et al. (Refs. 10,11) for water at 25°C are

shown on Table I and on Figure I-4., From these results they con-

cluded that the maximum height reached by a drop can be linearly
TABLE I.

Experimental Data of Gleim, et., al, for Water at 25°C

Bubble Radius Mass of the Drop Maximum Height

r mo e hy,

cm gr x 10 cm

0.105 2.6 17

0.124 3.9 14.5

0.234 9.8 9.5

0.340 25.0 0.8

0.350 ——— 0

related to the bubble radius r, thus
hy= A(rcp-r) (I-11)
where A is a constant. These results indicate also that the
maximum radius of a bubble which can form a drop by the jet mech-
anism is approximately rep = 0.35 cm.
Davies (Ref. 12) estimated also the initial velocity of a
drop by considering the initial kinetic energy and the terminal

potential energy, thus

uy' o=\ 2ghy (1-12)

From observations that ejected drops reached a height of 10 cm,
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he concluded that the initial drep velocity was approximately
140 cm/sec.

1t can be seen that Egqs. (I=11) and (I-10) imply Eq. (I-5);
experimental data shown in Table I give support to this relation.
Thus, as the bubble radius r is increased, the size of a drop
(formed by the jet mechansim) increases but the maximum height
reached by the drop decreases. Consequently, as the droplet
size measuring device is raised in the apparatus, the average

size of droplets becomes gradually smaller.

I.4  THE EFFECT OF BUBBLE DIAMETER ON LIQUID ENTRAINMENT

&

Garner, Ellis, and Lacey (Ref. 4) calculated the liquid
entrainment from the size and the number of droplets which were
collected at a given height above the liquid interface. It was
found that the entrainment decreased with increasing bubble size.
This was due to the decreased formation of droplets from the jet.
in larger bubbles. Because of their small mass, droplets formed
by the collapse of the bubble dome, although large in number, con-
tributed little to the total entrainment.

Garner et.al. (Ref. 4) observed that, although the entrain-
ment in all drop size ranges increases with increasing vapor flow
rates, droplets formed by liquid jets become more numerous at
higher boil-up rates. Consequently, the entrainment increased
rapidly with increasing vapor flow rates. The experimental data
of Garner, Ellis, and Lacey which are plotted on Fig. I-5 show

this effect. It is noted here that, in this experimental range,
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the entrainment can be approximated by a power low expression of
the form of Eq. 1 given in the Introduction. It can be seen that

in this range the value of the exponent is n =~ 4.

I.5 SUMMARY

Experimental results indicate that liquid entrainment is
primarily due to the drops which are broken up from rising liquid
jets., The appearance and the effectiveness of these jets depend
upon the dimensions of the bursting bubbles. They will depend also
upon the agitation of the liquid interface.

Experimental data show that the dimension, the maximum height
of ascent as well as the size distribution of these drops depend upon
the dimension of the bursting bubbles, These results indicated also
that both the diameters and the maximum heights reached by drops
(formed by the jet mechansim) can be related to the diameter of the
bursting bubble through simple expressions which are based on energy

considerations.
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II. THE CHARACTERISTICS OF RISING LIQUID JETS

Because droplets which are generated by the breaking up of
rising liquid jets contribute most to the entrainment we shall
examine in this chapter some characteristics of these jets. It
will be seen that it is possible to estimate the velocity and the
height to which the jet will rise. It will be seen also that if
the dimensions of the jet are known, it is possible to estimate
the dimensions of the drops which are formed by the instability
(break up) of the jet as well as the time of break up.

I1.1 THE PROFILE OF A RISING JET

Referring to Fig. II-1l, the profile of the jet whemn at rest

in its extreme position can be given by

1 1
¢ = pt o G — -
g(p Py c(Rl R2) (I1I-1)

(see, for example, Ref. 8, p. 251, where p" has been neglected as
compared with p') where y is the hydrostatic head and R, and Ry are
the principal radii at any point. The instantaneous values of l/Rl
and 1/R, are 1/x and (d@/dy) sin © respectively. Hence

glp' - pMy = o(i - %g sin ©) (I1-2)

If x can be expressed as a function of y, this equation can be
solved. Assuming the curve to be hyperbolic, i.e., xy = K.

Eq. (1I-2) then becomes

glp' = pMy = a(% - g% sin 6) (I1-3)
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Integrating .
hJ’ 1 1r/2
- Uf y dy = ‘/ﬂ sin @ d®@ (II-4)
o g(p [ pn) }- 4
] =K
whence
2
hj = (II-5)
g(P | pn) _ 1
(e K

where hJ is the maximum height of the Jet. Taking actual values of
X and y from photographic records of Jets an average value of

2 is reported in Ref. 8. For values of ¢ = 73 dynes/cm,

K=1c¢cm
p' =1 gm/cm3 and g = 980 cm/sec? hj is found to be 0.404 cm as
compared with 0.44 cm as recorded on photographs,

We note that because K has a value of approximately K = 1 cmz,
it is by one order of magnitude smaller than the term glp' - p") /o,
The maximum height reached by a rising liquid jet can be approximated

by the following relation

20
he = (II""G)
g(p' asa p")

Comparing Eqs. (II-6) and (I-8) it isi seen that both the maximum
bubble radius ry and the maximum jet height hj are proportional
to the same property group given by the Square root term. From

the definition of the generalized Weber number (Ref, 16):

g(pt - pn .
W, 2 =h e (I11-7)

o Lz
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where L is a characteristic length, in this case either ry or hj,
it appears that for different systems at various pressures the

similarity will be preserved when Wg = constant,

I1.2 THE VELOCITY OF A RISING JET

Davies (Ref. 12) derived an expression for the velocity of a
rising jet by comsidering the relationship between the forces on the
crater. Comnsider the vertical force, P, released at the instant of
disruption of a bubble having a nearly hemispherical depression of
radius r below the liguid-vapor interface. The hydrostatic head is
negligible compared with the surface tension force; therefore, if

pi and p, are the internal and external pressures respectively,
P = wr2(p; - p,) = 27or (11-8)

The mass m of liquid which must be set in motion to £ill in the
crater is m -(?/3)wr3p'. Davies assumed that force P decreases
linearly with time, so the average force applied to the mass m of
the liquid is (1/2)P during the time t which it is active. No
definite value can be assigned to t, but it must be considerably
less than the period of disruption of the dome. Imn a bubble 2 mm
diameter the period of complete disruption of the dome is less than
3.3 x 10™0 sec. Davies concluded, therefore, that the application
of the force P is more in the nature of an impulse. If u' is the
mean velocity acquired by the mass m under the application of the
mean force (1/2)P in time t, then

Pt 3ot

WY =B e =

2m Zp‘rz (11-9)
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Newitt et.al. (Ref. 8) remarked that Davis's Eq. (II-9)
gives results which are too low, and this seems to arise from
the fact that it is not the excess pressure (py - Pg) which
provides the impulse force, but the absolute pressure. At the
ingtant of burst the gases inside the bubble escape with explo-
sive force leaving a partial vacuum in the crater. Substituting
the absolute pressure in Davis's equation, they obtained that

3t(po + 20)

u'? = PR (I11-10)
rp

Employing this equation and assuming t to be equal to the time for
the complete disruption of the dome, i.e., of the order of

3.3 x 10-9sec, the calculated and observed values of u' are in
fair agreement (of the order of 200 cm/sec). Hence, the velocity
of the rising jet computed from Eq. (II-10) and the initial velo-
city of a rising drop computed by Davies for emergy considerations
(see Section 1-3) are of the same order of magnitude.

Eq. (II-10) indicates that the velocity of a rising jet is
inversely proportional to the bubble radius. Thus, it appears
that small bubbles are more effective in projecting drops of liquid
than large bubbles.

The authors note, in closing, that a more exact mathematical
analysis of the jet profile and of the jet velocity can be made
by considering an impulsive pressure applied to the ligquid-vapor

interface and using the analysis developed by Kelvin (Ref. 17).
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1I1.3 THE BREAK-UP OF A JET

Rayleigh (Ref. 18) has shown thac¢ because of surface tension
forces and existing disturbances, a column of liquid will break up
if its length is greater than its circumference. If a rotatiomal
symmetrical deformation exists on a surface and the wave length of
the deformation is L, then, if L is greater than ﬂDj (where Dj is
the jet diameter), the surface temnsion forces will contribute to
further increase in the deformation and finally to jet disruption.

For nonviscous liguids, Weber (Ref. 19) gives the most favorable

wave length for break up of a jet as

and Haenlein's (Ref. 20) experimental value of Lopt = 4.42 Dy
agrees with this.

It is possible to compute the diameter of a drop in terms of
this critical wave length by equating a cylindrical length of jet,
equal to 4.42 DJ with the volume of a drop formed and having a
diameter equal to Dy This gives the following relation between
D, and D_.

J d

Dj = 0.53 D4 (I1-12)

and

Dg = 1.89 D (11-13)

J

Measurements of a number of jets and main drops indicate that
the ratio Dd/Dj is usually less than 1.89. In one instance the drop
diameter as measured from the cine film is about 0.09 cm while the
jet diameter just prior to break up is about 0.06 cm, the ratio

being 1.5. Ratios as high as 1.7 have been measured. It was
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pointed out by Newitt, et.al, (Ref. 8) that if it is assumed that .
the entire hemispherical crater left after a bubble burst forms a
liquid column, the diameter of the liguid column for a crater
0.250 cm diameter will be 0.072 cm and the drop diameter will be
0.136 cm., This 1s the size of the very largest drops formed, If
the ratio 1.5 is used, the drop diameter would be 0.108 cm,

By considering the stabllity of a jet, it is possible to
estimate (following the analysis of Castleman and of Weber) the
time of break up and the unbroken length of the jet. From this
data it is possible to estimate the time required for the forma-
tion of a drop.

Castleman (Ref. 21) gave the following expression, based on
the work of Rayleigh and Weber, for the time of break up of a ligquid

jet or ligament:

1 a
t =~ loge i (11-14)
q e,
wvhere
]
g = Constant = 0,343 (I1-15)
P'st

a = amplitude of the surface disturbance of the
Jet
do = initial surface disturbance = 10-9 cm and

= 0.53 Ry

p' = density of liquid

For water at 20°C, q = 2.6/R33/2, whence

t = 0.115 Dg3/2 log , 26,500 Dy (11-16) @



For a drop diameter 0.09 cm, the calculated break up time is

0.0098 sec. The actual break up time is about 25 milliseconds.
Weber (Ref. 19) has calculated the relationship between

the unbroken length of jet and its velocity, and, in the range

of velocities met in most practical cases, the relatiomship is

linear. Haenlein's (Ref. 20) experimental values confirm this.

That is, the unbroken length increases directly with the velocity.

This distance, 2, is given by the expression

L =U,t (11-17)

where U, is the initial velocity of the jet. If we consider the
unbroken length of jet as the cylindrical portion which precedes

the detached drop, then for a jet velocity of 200 cm/sec (see the
preceding section) and taking the experimental vaiue of t = 0.0025 sec
the unbroken length becomes ﬂ = 0,50 cm, This is of the same order of
magnitude as the height of the jet which was computed in the preceding
section.

A further point of interest in the break up of the jets is the
formation of satellites. These have been included in the average
diameter of the large particles and most of them have diameters
between 0,03 and 0.04 cm. According to Straus (Ref. 22) two sets of
satellites are formed having diameters 1/2.828 and 1/2 of the main

drop respectively.

I1.4 CONCLUSIONS

It appears from the preceding discussion that by considering

the stability of rising liquid jets, it is possible to estimate the
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average drop size in terms of the jet diameter. It appears possible
to estimate also the velocity of a rising jet in terms of the bubble
diameter. We note, again, that the more exact mathematical formula-
tion would relate both the jet velocity and the jet radius to the
bubble radius. Experimental data indicate that the velocity of a
rising jet is of the same order of magnitude as the initial velocity
of a rising drop.

Thus, it appears that by considering the stability of rising
jets it would be possible to estimate both the average drop size and
the initial velocity of a drop in terms of the bubble radius., It

will be seen that these two quantities determine to a great extent

the trajectory of a drop.




III. DROP TRAJECTORIES

For qualitative and quantitative entrainment studies the
dynamic behavior of drops in various environments must be known;
in particular the one-~ and two-dimensional motions in a gravita-
tional field are of importance.

The behavior of small solid particles entrained in a
liquid or gas is of interest to engineers in many branches of
the profession. The term "micromeritics" has been suggested
(Ref. 23) for the technology which treats the general dynamics
of suspended particles. An unexplored branch of micromeritics
is concerned with the behavior of wet saturated vapors. In
the field of wet saturated vapors there is an almost complete
lack of organized knowledge on the dynamical as distinct from
the thermodynamical side, and this arises from the following
major difficulties which seriously impede experimental work.

i. The particles, being liguid globules, have a
transitory existence. The statistical size distribution under
any given set of conditions, a knowledge of which is basic
for any rigorous quantitative treatment, cannot be obtained by
any of the standard methods of particle size determination,
i.e., direct measurement with sieve or microscope, sedimentation,
eluriation or centrifuging.

ii. Size changes can and do occur for both dynamic and
thermodynamic reasons and may take place with extreme rapidity,
particularly with minute globules.

These difficulties are enhanced by irregular behavior
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which occurs when the thermodynamic state is near the phase
boundary. This supersaturation may temporarily inhibit
condensation, and liquid globules may persist for some time in
a superheated atmosphere., With those branches of micromeritics
concerned with mixtures of different substances none of these
difficulties occur,

Fortunately the drops encountered in the liquid entrain-
ment studies are in such a size range that, on account of their
great structural stability, they more or less assume and
preserve a spherical shape and will only abandon it if the
relative velocity u' -u'" reaches a considerable value, It
is possible, therefore, to regard such a drop as a rigid sphere
and thus utilize a vast range of data from existing knowledge
in gas dynamics. With the above limitations and assumptions

in mind, we shall proceed to discuss the drop trajectories.

III.1 GENERAL EQUATIONS OF MOTION

Consider the motion of a single drop in an upward moving
gas stream. The general two-dimensional equations of motion
in the presence of a gravitational field are (see, for example,

(Ref. 24))

duh'

m = - F cos a (I111-1)
dt
duV' LI

m = - F sin a - mg (E-—=L£) (I11-2)
dt p'

where m is the drop mass, uh’ and uv' are the horizontal and




vertical components of the drop velocity u', F is the frictional
drag force, a is the angle between F and uh', g is the accelera-
tion of gravity and p' and p" are the liquid and gas densities
respectively. The last term in Eq. (III-2) represents the
effective drop weight,

The initial drop velocity as it is thrown upward from
the liquid surface by the violent action of bursting bubbles
or rising jets is represented by ui'. However, as soon as it
leaves the liquid surface it immediately enters a gas mass
flowing at a uniform velocity u," representing the superficial
velocity of the rising gas above the liquid surface.

In Egqs. (III-1) and (III-2) the direction of the horizon-
tal component of u,’' is taken as positive for u;,' and the
upward direction is positive for uv'. The following relations

are obvious

2 9 2 (111-3)
cos ¢ = u,_'/u’', sin @ = u,'/u', u® = u,'“ + uy’ and
h// ' v// ’ h v (111-4)
The frictional drag force F can be expressed as
"(u'- u " sin a)z
F = CA E_ (111-5)
2

where A is the projected area of the drop and the drag coefficient

C is a function of the Reynolds number R,, defined as

Re = 20~ [u' - u " sin a (I11I-6)
i

in which D is the drop diameter and p" is the viscosity of the

gas, The C vs. R, plot, first suggested by Lord Rayleigh, has

35
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been determined fairly completely for spheres, disks, cylinders,
and miscellaneous shapes by numerous experimenters., Fig. (III-1)
which is taken from (Ref. 24) presents average curves for
various shaped particles. It has been pointed out (Ref. 23)

that in the case of a sphere the following algebraic equation

gives a fair match for the whole span of the curve:

]
c= {0.63 + 4.8/\/?1';'] (111-7)
Practical evaluation, however, is rendered easier by representing
the curve by means of three expressions corresponding to the
three major regions of the flow:
a, laminar region (0.001l < Re<<2,0) obeying Stokes'
law of motion
C = 24/R, (I11-8)
For shapes other than spheres (except cylinders)
C = k/R, (111-9)
where k is a constant
b. intermediate region (2.0 <Re<500)
C = 0.4 + 40/Rg (II1-10)

(See, for example, (Ref, 25)) or

-0.6
C =18.5 R, (III-11)

(See, for example, (Ref. 8))
c. turbulent region (500<Re<7200,000) obeying Newton's

law of motion

C = 0,44 (II1-12)
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For shapes other than spheres
C =k' (I111-13)
where k' is a constant.

For a spherical drop

A = 7D2/4 (111-14)
and

m = p'wDé/G (III-15)
Substituting Eqs. (III-4), (III-5), (III-14),
and (III-15) into Egs. (I1I=1), and (III-2) we
obtain the two-dimensional equations of motion for

a spherical drop in the presence of a gravitational

field:
du, °’ 9 ?
h 3 p" C \ Up
¢
duv 3 E:'_ C ? 1] 3 ’ uv' ! - p"
at = - 3 57 D u' - u " sin a — - g (E_;T*E—)

In the following two sections of this chapter we shall
apply Eqs. (III-16) and (III-17) to small drop (such as those
which originate from the bubble dome) and to large drops
(such as those which are ejected by rising liquid jets). It
will be shown in Chapter IV how the results from these two
sections can be used for an analytical formulation of the

liquid entrainment problems.




IT1.2 EQUATIONS OF MOTION FOR SMALL DROPS

Due to small sizes and low velocities the motion of the
small drops resulting from breaking of bubble films may be
considered to be in the laminar flow region. Hence Eq. (I1I-8)
may be used for the drag coefficient, C. Substituting Egs.

(I11-8) and (I11-6) into Eqs. (I1I-16)and (11I-17) we have

duy, °*

h L Pt
- 280 13 0 % singlu’ (111-18)
dt 2 u’f h
p'D
duv' y ¥
1 (o} LI, |
T n...:.L_S_E_ (1-_..7_.sina u ' -g (ﬁ__ﬂ_) (I11-19)
ID2 u v p!
u 11
For the special case of —%— sin a << 1 these equations
u
can be further simplified to
duh' "
= ° 18'; uy’ (111-20)
p'D
duv' '
12 2%
=:_!-_§P_u'_g(£’_.:._ﬂ_) (111-21)
dt p'Dz v pl

which indicate that the motion in a given direction is independ-
ent of the motion in a direction perpendicular to the first,
and the net trajectory will be that of one superimposed on the

other. These equations lend themselves to direct integration.
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The solutions have been given in (Ref. 24), For one-dimensional
motion in the presence of a gravitational field Eq. (III-21)

renders the time regquired from initial drop velocity u, to

v
drop velocity u; as
2 u, u',
' -
t, = gD log, ts 1y (111-22)
1] - ]
18p" utg Yy

and the height travelled from t = o to t = tv as

- - 0__ ?
h utétv Uy~ U

iv

2 -‘lsn"t
e 1y . EXP — (111-23)
18u" p'D

where the "terminal velocity” uté is by Stokes' law (see,

for example, (Ref. 26, p. 599))

W =g el = pmp?

s Tou’ (111-24)
p"

For another special case of u' = uv' and a = %
Egqs., (III-18) and (III-14) reduce to one equation
du' 18!I"

at = - 2

ua' - u "
p'D ©

-8 (El;;_ﬂi) (111-25)

whose solutions are corresponding to Egqs. (11I-22) and
(I11-23) as follows:

time is

(II1-26)
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and height is

2 111
ho=ug't - ug'=uy’ D |y - exp =188"t| (111-27)
t h 18un ptDZ

where the terminal (i.e., the steady state) velocity is obtained

from Eq.. (I1I-253), thus

2
|
u, ' = uy" - g {8l = pDD (111-28)
18,.1"
Eqg., (I11-26) expresses time t in terms of the drop

velocity u'., It can be rewritten as

. 18p"t - 18p"t

N2 2
u' = ut’(l - e P D) + ui' e p'D (I11-29)

expressing u' as a function of t. The terminal (steady state)
velocity as given by Eq. (II1I-28) corresponds to u' at t—oo0.
Eq. (II1-28) indicates that a drop will be entrained if

ut’>0. The experimental results which were discussed in the
preceeding chapter indicate that droplets which are formed by
the bubble dome are of the order of 25u in diameter. - It is of
interest to estimate at what reduced (superficial) velocity
uo" will these droplets be entrained., For water at 1 atm

3

(p' = 1 gm /cm3, p" = 0,598 x 10~ gm/cm3 e 0,12 x 10"3gm/cm/sec).

Stokes' equation i.e., Eq. (III-24) gives a value of -2.8 cm/sec.
Thus it appears that if the reduced vapor velocity uo" is larger
than 2,8 cm/sec then utg,a and a drop of 25y in diameter will

be entrained.



42

II1.3 EQUATIONS OF MOTION FOR LARGE DROPS

For large drops resulting from breaking of the jets we
encounter larger sizes and higher velocities. Consider an
average sized water drop of 0.06 cm. in diameter with a
velocity of 140 cm/sec, (as estimated by Davis, (Ref., 12))
traveling vertically in steam (p" = 0.598 x 10-3 gm/cm3,

p' = 0,12 x 10~3 gm/cm/sec.) which has a superficial velocity,

uo" cm/sec. From Eq. (III-6) the Reynolds number is estimated

as:
0,06 x 0,59 x 107>
Re = (140 - uo") = 41.86 - 0.3 u," {I11-30)
0,12 x 10~3
Hence depending upon the magnitude of uo", the flow around

the drop is either in the intermediate region (2.0<:Re<:500)

or in the laminar region (0.0001<:Re<:2.0). Furthermore,

since the jets essentially shoot vertically upwards, it is
sufficient to comsider the vertical motion of such large drops.

A, Laminar Region

For trajectories in the laminar region Egs. (I1I-26),
(I11-27) and (11I-28) directly apply. The maximum height is
evaluated by putting u' = 0 in Egs. (III-26)and (I1I-27).

t = LD 15g (1 - —3_) (111-31)

o2 -18pmt
hm = ut‘ tm = (ut' - ui')%s_u'.'_ 1l = exp —'—'——'—l-)-é—J (111‘32)
[+

where u.' is given by Eq. (II1I-28).
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B, Intermediate Region

For drops having a Reynolds number in the intermediate

region Eq. (III-10) or (III-11) can be used to express the
drag coefficient C in Eg. (III-17). Since the velocity of
the rising drop, and consequently its Reynolds number, varies
with time, the drag coefficient will also vary. Because of
this the first and second integralsof Eq. (I1I-17) become
more complicated so that the results are most easily obtained
by graphical integration and are reported usually in graphical
form.

Substituting Eqs. (III-6)and (III-10) into Eq. (III-17)
and setting u' = uv' and ¢ = w/2 it follows after integration

that: (see, for example, (Refs. 24 and 25))

Rei
3 144
< = 2) t =[ d(Re) 5 (111-33)
4p'D g + 40R, + 0.4Rg
Re |
wiebh
3
g=35 Eolp - p) D (111-34)
2
()

where the drop Reynolds' number R,y is given by Eq. (II1I-6)
with u' = ui' i.e., in terms of the initial drop velocity

ui'. The value of the integral in Eq. (I1I-33) can be obtained

from standard tables. The distance travelled by the drop is

\al
Rep

most easily evaluated by plotting u' = u,' +

i against ¢

p'D
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in Eq. (I11-33) and evaluating graphically h = j'u'dt. This
method has been adopted by Ryley (Ref. 25) who takes also into
account the effect of the drop deformation upon the drag
coefficient C.

Alternatively substituting Egs. (III-11) and (III-6)

into Eq. (1I1I-17) and setting u' = uj and a = 7/2 we have

du' -3 1 -0.6 2 ¢ L At
St < 4 L_ 18,5 Rg (u' -u,") -g (B_;T_B_)

dt p'D
(111-35)
4 . "
= <K (u' - u ") _g(a__'_ﬁ_)
g
where
1.4 0.6
$¢ 11}
K = 13.9 x (p") x (") (111-36)
. 1.6
p' x
For a water drop in steam, at 1 atm we have
3 1.4 3 0.6
g = 13.9 % [0.598 x 10 x 10.12 x 10~
1.6
0.958 x D
(111-37)
1,967 x 1070

D1.6

Newitt, et, al. (Ref. 8) analysed the rise of drops in
still air. For this condition one sets uo" = 0 in Eq. (III-35).
The time for a drop to reach its maximum height is then

tm u, '’

b 8
f dt-[ du ' (I11I-38)

; kbt . g

0
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. and the maximum height reached in the drop is

u ]

b
hn‘L
¢ L]
[ dh = 4 du (111-39)

0

0 K(u')'* + g
( In Egs. (I1I-38) and (III-39) p" has been neglected as compared
with p'). These two equations were graphically integrated
by Newitt, et, al.for various drop diameters (i.e., for
various values of K) and for various initial velocities;
figures showing these results can be found in (Ref. 8). Newitt,
et, al,reported that the results predicted by Egs.(III-38)
and (III-39) are in close agreement with experimental data.
As an example they note that these equations predict that a
drop 0.009 cm in diameter having an initial velocity of
113 cm/sec would rise to a height of 6 cm in 0.104 sec. The
actual values from experiments are 6.4 cm for the height and
0.106 sec. for the time. The authors note that Eq.(I-12)
predicts a maximum of 6.5 cm for an initial velocity of
uj = 113 cm/sec. indicating that, in still air, the effect
of the drag is small and, consequently, that Eq. (I-12) can
be used.

When the reduced (superficial) vapor velocity ug is
not small compared to the drop velocity, i.e., when the effect
of the vapor motion are to be taken into account, Eq. (I1I-35)
must be integrated. Newitt, et, al. (Ref. 8) analyzed this
problem by taking a system of co-ordinates moving upwards with

‘ . a constant velocity uo' relative to the liquid surface. At
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any time, t, the origin will have reached a height uo“t, upward .
movement being taken as positive. The drop will rise until at

its maximum height its relative velocity is zero. But relative

to the moving origin it will have two stages of motion, one

upward and one downward.

For upward motion:

du’

1.4
e €€ [, III-40
It (u') g ( )

and for downward motion:
1.4
du' _ .
- 3 K(u') g (III-41)
where p' has been neglected as compared with p’,

At t = 0, h =0, u' =u'y -u'y. Thus

0 0
t
L '
[ dt = - du (111-42)
5 1.4 .4
K(u") K(u') -g
ui' . uo" uon
and
0 0
h ~
¥ ¢
f dh = - u_du - du’ (111-43)
0 RE 1.4
K(u') + g K(u') - g
ui' - uon uO"
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Since the maximum height

by = h + u_"t (111-44)
we have
0 uO"
h = - u'du’ + u'du’
m
1.4 1.4
K(u*) + g K(u?') -g
uj_ - uon 0
(I111-45)
uOH 9
+ u " du’ - du’
© 1.4 1.4
K(u') - g K(u') + g
0 ui' - uo"

When uo" = 0, these equations reduce to Egqs. (111-38)and
(111-39).

I11.4 SUMMARY

It was seen in this chapter that the trajectories of
drops formed by the bubble dome and of drops formed by rising
liquid jets can be estimated when the size and the initial
velocity of the drop as well as the reduced vapor velocity
are known.

The trajectories of drops formed by the bubble dome can
be estimated by considering the laminar flow region and can

be expressed in terms of simple analytical expressions.
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The trajectories of drops formed by rising liquid jets
are analyzed, depending on the value of the Reynolds number,
by considering either the laminar region or the intermgdiate
region, In the latter case, the solutions are most easily
obtained by graphical integration and reported in graphical
forms. It appears that, for these drops, the effect of
the vapor drag may be small; however, additional experiments
are needed to verify this indication. If this proves to
be the case the drop trajectories can be easily estimated by

neglecting the vapor drag in the equations of motion,
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1V, ANALYTICAL FORMULATIONS OF ENTRAINMENT

In this chapter we shall explore what we can learn on the
gqualitative and quantitive aspects of liquid entrainment from the
understanding of the phenomena which govern drop formation and
drop trajectories.

The entrainment of solid particles from continuously opera-
ting fluidized systems has been investigated both experimentally
and theoretically. Theoretical methods have been recently pro-
posed by Zenz and Weil (Ref. 27) and by Andrews (Ref. 28) which
provide a basis for estimating solid entrainment by a gas phase.
Their techniques can be borrowed for our purpose with certain

modifications and extensions,

IV.1 THE FORMULATION OF ZENZ AND WEIL

Consider the behavior of the liquid drops in a moving gas
stream., The vertical motion of any one such drop with any inter-
drop forces neglected, is described by Egq. (III-25). In what
follows the motions of the drops are assumed to be in the laminar
region, The case of drop motion in the intermediate region can
be formulated by using the corresponding trajectory equations for
the intermediate region.

For drops moving in laminar region the solutions of Eq.
(I1I-25) are given by Egs. (III-26), (IXI-27), and (III-28)
where ui' is the initial drop velocity as it is thrown upward
from the liquid surface by the violent action of bursting bubbles
or breaking jets. As soon as it leaves the interface it immedia-

tely enters a gas mass flowing at a uniform velocity “o"
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representing the reduced superficiai)velocity of the rising gas
above the liquid surface.

Eq. (II1-29) expresses u' as a function of t. At the point
of maximum vertical rise u' = O, so the time for reaching the top
elevation ty is given by Eq. (I11-31). The height of rise h as
a function of time t is given by Eq. (II1-27) and the maximum
height h, is given by Eq. (III-32) which can be simplified to
read

p' D2 uj '

uj' 4 ug' loge (1 -
18p" ut '

) (1v-1)

hm-

If n represents the number of drops of a given drop size
of diameter D thrown up by the bubble action over an area of
1 cm? of the liquid surface/sec., then N = z:n represents the
average of the total number of all drops emerging from the

2 per second. If the drop velocity is u’

liguid surface per cm
at an arbitrary height, 2 drop having crossed a section will
have travelled a distance of u' cm upward in one second. n
additional drops will have entered the 1 cm? area. Hence, in a

space of 1 cm3 there will be

€, = n/u’ (1v-2)
drops of size D, where € denotes the entrained number of drops
per unit volume of gas continuously carried up by the gas stream,
In addition to the drops which are carried over by the gas
stream, we have to consider also those which are thrust upward
from the liquid surface and are falling back. Let n again repre-

sent the number of rising drops of a given drop size passing a
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‘ 1 cm? section/sec., at any arbitrary elevation h. If at this
elevation their velocity is u', and it takes t sec. for the
drops to complete their rise to the maximum height and to fall
back to the same elevation, then the number of drops above this
elevation will be

7 = nt (1V-3)
However, the difference between the total number of drops exist-
ing above two successive elevations separated by a vertical
distance dh will express the entrainment volumetrically in a

cube of 1 cm? base and a height of dh:
N) - N(h + dn) dan

€2 = W — (I1V=-4)
dh dh
From Eg. (IV-=3)
dn dt
= (I1V=5)
dh dh

which substituted in Eq. (IV-4) gives
€y = -n— (IV-8)

While Egs. (IV-2) and (IV-6) appear relatively simple, the
real problem is to express € as a function of height above the
liguid surface or, in other words, u' and dt/dh as functions of h.
Eqs. (III-29) and (I1I-27) give u' and h as functions of t; it is
also possible to express h solely in terms of u' by substituting
Egq. (I1I-26) into Eg. (I1I-27); thus

p'D2 up' - utg'’

up' - u' + ug' logg (Iv-7)
18p" u' - ug!

h =
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To obtain the u' = u'(h) function would require inverting
Eq. (IV-7). This cannot be done in closed form since this equa-
tion is of a general transcendental form. Hence, corresponding
values of the u' = u'(h) function must either be obtained by
iteration from Eg. (IV-7) or by a cross plotting of Egqs. (III-29)
and (I1I1-27). A similar situation exists with regard to the
guantity dE/dh, which must also be solved by numerical analysis.
In Egs. (IV-2) and (IV-6) n designates the number of
drops of a given size thrust from the liquid surface by burst-
ing bubbles and breaking jets, as averaged out over 1 cm? of
the surface/sec. In this sense N = E:n represents the entrain-
ment value immediately at the liquid surface, This is arbitrarily

taken as 100 times a constant, and so

N = 100k = k) n (IV-8)

where it is understood that

Lh = 100 ; n = n/k (1V-9)
with n representing the number (or weight) percentage of a given
drop size in the total surface spectrum., These considerations
are sufficient to establish an entrainment curve over the height
of a vessel on the basis of 100 drops liberated on the average/

2 of liquid surface) (sec.). This entrainment curve can be

(cm
converted into the actual curve through multiplication by a factor
of k., k must be obtained from one or the other of two boundary
conditions: the actual entrainment at the liquid surface or at
a sufficient height above the liquid surface where entrainment has

become relatively constant.




Finally to convert € in Eqs, (IV-2) and (IV-6) from the
entrained number of drops per unit volume of gas to e, the
entrained weight of liquid per unit weight of gas we have
wDSp'

e =g —

6p" (1vV-10)
The entrainment e is a more relevant quantity for liquid entrain-
ment evaluation,

The numerical calculation procedure proposed by Zenz and
Weil is as follows:

1. Subdivide the drop size distribution into a number of
representative drop sizes as illustrated in Fig. (IV-1(a)).

2. For a given system the values of p", p', and p" are
fixed., Estimate now the initial drop velocity ug leaving the
liquid surface. Davis (Ref. 12), for instance, estimated u;' =
140 cm/sec for large drops (see Eq. (I-12)).

3. Calculate the terminal velocity of each of the repre-
sentative drop sizes by Eg. (I11-28) and separate those drops
carried by the gas stream (ugy' > 0) and those returning to the
liquid surface (uy' < 0).

4, Calculate drop velocities as a function of time from
Eq. (I11-29) and plot them as shown in Fig. (IV-1(b)). Note
that drops D3, Dy, D3 are carried away (ﬁt‘>ke} whereas drops
D4, D5, Dg, and Dy are falling back.

5, Calculate height of rise in terms of time from Eg.
(111-27) and plot as shown in Fig. (IV-1(c)).

6. For drops carried by the gas stream (uy' > 0) a cross
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plot of u' vs. h as shown in Fig. (IV-1(d)) permits calculating
the relative entrainments from €; = n/u’ (see Eq. (IV-2)) at
various heights above the liquid surface,

7. For drops returning to the liquid surface, the resi-
dence times, or chord length t pertaining to given h values,
permit drawing a plot of t vs. h as shown schematically in Fig.
(Iv-1(e)).

8. The tangents drawn at various heights to the curves
of Fig. (IV-1(e)) give values of - dt/dh as a function of h as
shown schematically in Fig. (IV=1(f)). Calculate relative entrain-
ment (€2) through multiplication by a factor of n corresponding
to the various drop sizes (see Eq. (IV-6)).

9. The € entrainment curves corresponding to each of the
various size fractions and to the overall summation are illustra-
ted schematically in Fig. (IV-=1(g)).

10, The e entrainment curves corresponding to each of the
various size fractions and to the overall summation can be con-
structed by using Eq. (IV-10) and Fig. (IV-1(g)).

It was noted by Zenz and Weil (Ref., 27) that this theo-
retical approach to entrainment through drop dynamics describes
the shape of the entrainment curve with height above the liguid
surface as a function of the initial velocity parameter u;' as
well as the physical properties of the operating system. However,
it cannot predict entrainment without prior knowledge of n, ui' or
u,". If sufficient data were available for independent prediction
of n, this method would serve as a tool for correlating the entire

entrainment gradient picture.
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IV.2 THE FORMULATION OF ANDREWS

The formulation of Andrews (Ref, 28) is based on the
assumption that, in steady state, the rate of escape from the
interface is the limiting step for the entrainment. This
assumption was justified by considering that the replacement of
an escaped particle from the demse phase requires only a small
amount of energy whereas the escape from the surface to the top
of the column requires considerably more kinetic energy. Conse-
guently, of all particles which leave the surface only a fraction
will have the necessary energy to escape. The escape energy of
a single particle was determined from energy balance relating kinetic
and potential energy of the particle:

-m u'du’' = mgdh (Iv-11)
whence
u; ' =\ 2ghy (1V-12)
which relates the maximum height hy, reached by the particle to
its initial velocity uy'.

In the context of this report the model can be rephrased
as follows: Of all drops which leave the interface only those
which have an initial velocity (initial kinetic energy or
escape energy) equal or larger than that given by Eq. (IV-12)
(see also Eg. (I-12)) will be able to reach a height h above the
liquid interface. We note that this model can be applied to
drops formed by rising liquid jets (note also that the effect
of the vapor drag is neglected). Because the escape energy is

equivalent to the initial kinetic energy of the drop, it follows
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from the discussion given in Chapter I that the escape energy
can be expressed in terms of the bubble surface energy (see
Eqs. (I-4, 5, 10, 11, and 12)).

The weight fraction £y of particles (drops) which have the

required energy €i to escape
€ =— (1V-13)

was estimated by Andrews assuming that the energy distribution
of particles at the interface follows the Maxwell Boltzmann

distribution law, thus

=B €i
= Be (Iv-14)

i
where B is the reciprocal of average particle energy. The con-
ditions which must be satisfied for this assumption to be valid
were given by Andrews as follows: Steady state must be maintained,
The total energy of particles at the surface must remain constant,
The movement of particles must be sufficiently unrestricted to
follow the laws of probability. The number of particles in the
system must remain unchanged. Particles must be identical or
indistinguishable from each other,

The entrainment rate of escaping particles is equivalent
to their escaping wvelocity. The decrease of i'th fraction of
particles with initial surface kinetic energy equivalent to or
larger than that required to reach a height h can be calculated
from flow rates by considering the equipartition of energy. Let

A be the cross sectional area of the vessel, let wj be the vessel

inventory of particles with energy é-i it follows that from Eq. (IV-14)
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Ap'ui' Ap'ui'Be-B €i

£, dt = -
B &

dwy = - dt (IV-15)

The factor of 1/6 was introduced by Andrews on the assumption that
only 1/6 of the total number of particles present in a cubic
volume at the interface will have a positive velocity in the

vertical direction. Defining the steady state entrainment rate

for the i'th fraction by Wji it follows from Eq. (IV-15)
that
dwy Ap'uy' - .
wi =5 = oew Be B €1 (IV"16)
dt 6

The total rate of entrainment W, i.e., for all fractions with
more than the required energy to reach a height h, is obtained
by integrating from the minimum to escaping energy to infinite
energy :
00 (o's) -B €
W -[ W, afj = - — f 1 d€y (1V-17)
i
Substituting Eq. (IV-13) and (IV-12) into Eq. (IV-17) it follows
that

Ap' 00 -
W =—/2g mgB [ Vn e FmEb 4 (1V-18)
6

Where the integration can be carried out in terms of the error

integral } :

00 1 T Vh e-Bmgh
/h‘ Vh e Bmeh 4 o \,—- [ f(\/emgh ] (IV-19)

28mg \ Bmg Bmg

If h in the above equation represents the height from the inter-

face to the outlet of the vessel, the number of particles in the
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outlet line will be affected by the shape of the vessel, Con-
sequently the right hand side of Eq. (IV-18) should be multiplied
by a "conductance coefficient”™ A to be determined from experiments.
If it is assumed that in a mixture of different particle
(drop) sizes there is no interaction between different sizes,

the rate of entrainment for all particle sizes is
® 3/2
B (Zg) \2g)” p° ﬁnngh
w=ay [ Bm TV 7 (1V-20)
J J

where the summation is over the particle diameters and By is

the mass fraction of particles with diameters equal to j.

It has been noted by Andrews that if a weighted mean
particle mass is employed, Eg. (IV-20) becomes approximately
equal to Eg. (IV-18), provided B is independent of particle mass.

In order to make use of Eg. (IV-20) and to be able to

predict, for a given operating condition, the rate of entrain-

ment or fraction of the height h, above the interface it is
necessary to evaluate the constant B, i.e., the value of the
reciprocal of average particle energy. This entrainment rate

constant B depends upon the physical and operating character-
istics of the system. At present, as discussed by Andrews, it
can be only determined from experimental data. This can be done
in the following way. Differentiating Eq. (IV-18) and divid-

ing by the negative square root of h it follows that

1 3w PkBmg Vag

= e~Bmgh (IV-21)

—\/F' Jh 8

For a given operating condition (i.e., for steady state conditions
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at the interface) the values of W as function of height h can

be used to compute the value of the left hand side of Egq. (IV-21),

1 oW
A plot of=—— — vys h when plotted on semi-log coordinates should
h oh

be linear and the value of B can be determined from the slope of
this line. It can be expected that a change of operating con-
ditions, i.e., increasing the vapor flow rate will change both

the drop size distribution and the entrainment constant.

1V.3 CONCLUSIONS

It appears from the foregoing discussion that the liquid
entrainment problem can be formulated; this in principle pro-
vides a basis for estimating the entrainment as function of
operating characteristics and of the height in the vapor space,
The information which is needed in order to obtain quantitative
estimates are the drop size distribution n, the initial velocity
u;' of the drop., i.e., the initial kinetic energy of the drop,
and the reduced (superficial) velocity u," of the vapor. Of
these three guantities only the value of the last one is known
from operating conditions; whereas the values of the first two
can be, at present, only determined from experiments. Conse-
quently, at present, the problem can be formulated only in terms

of constants which have to be evaluated from experimental data.
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V. SEMI-EMPIRICAL APPROACH TO LIQUID ENTRAINMENT

It was discussed in Chapter IV that the liquid entrainment
could be predicted if the information on drop size distribution
and on initial drop velocities was available, It was noted that
both the size and the initial velocity of a drop can be related
to the dimensions of a bursting bubble. Thus, in principle, these
quantities could be computed if data on bursting bubbles were
available. Such data can be obtained only under very idealized
conditions. In practice neither the bubble size distributiom and
interactions nor the hydrodynamic conditions at the interface are
known. Consequently, at present, a purely analytical approach can-
not be used for predicting, qguantitatively, the liquid entrainment.
The system of equations which describe the processes leading to
drop formation and entrainment can be used, however, for obtaining
dimensionless groups which in turn can be used for correlating
experimental data., In this chapter we shall discuss these semi-
empirical methods of analysis and the proposed correlations for

liquid carry over from water boilers.

V.1 THE CORRELATION OF KRUZHILIN

One of the proposed correlations for the carry over of water
drops from a boiling interface is due to Kruzhilin (Refs. 29, 30).
His derivation is based on two assumptions. It was assumed that
droplets which are transported by the vapor (like those which
originate from the disintegration of the bubble dome) contribute

little to the entrainment; consequently, their effect was neglected.
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According to his second assumption, the entrainment was due to
dropse which are ejected from the interface by the actiomn of the
kinetic energy of the vapor (p"uo"z). In other words, entrain-
ment is due to the dynamic effects of the vapor in disintegrating
liquid filaments and ejecting droplets from the interface. Postu-
lating that the amount of ligquid G'(Kg/m2 sec) leaving the inter-
face and reaching a given height Hy, depends upon the following
parameters

P"uonzr pty O, F"' (V-1)

Kruzhilin obtained, using dimensional analysis, the following

groups:
s'oe P (V-2)
Ty = S V-
(pnuoer) 2uo,, P"
“vzpnuonz
Ty = (V-3)
oZp'
pru w2
Tg = % é Froude Number (V=4)
gp 'Hy
o A
T4 = ———= = Weber Number (V=5)
gP'Hvz

Because the effects of drop disintegration or coalescence in the
vapor space can be considered small Kruzhilin omitted the Weber
number from further consideration. From the definition of the
entrainment

G P'uo'

E = == (v“‘G)

A1 14 £ 9
P Yo ™




and Eq. (V-2) the entrainment was expressed as a function of wg

¢ % 4 VT r 12 9t "2 " "2
pra "= ‘p L' p'u
E=—2—\|— F [ 2 - ’ —_— V-7
og pc o Pi SP'HV

Kruzhilin considered the function F as a correction factor which,

and 73 thus

as a first approximation, was taken as constant, hence

pnuon4 P"
E = Cl (V-8)
og p'

where the value of the constant C; has to be determined from
experiments.

It can be seen that the exponent of the reduced vapor velocity
is n = 4, consequently, Eq. (V-8) should correlate the experimental
data in the second region shown on Fig. 1 in the Introduction (see
also Fig. I-5). It must be noted, however, that the height Hy above
the interface does not appear in the above equatiomn. Consequently,
it can be expected that Eq. (V-8) can correlate only data taken at
the same height above the interface.

Kruzhilin used Eq. (V-8) to evaluate the effect of pressure on
the permissible vapor flow rate at a constant entrainment. At a con-

stant entrainment it follows from Eq. (V-8) that

4 v ITTY | o8 )
pru ' P p"ug p
¢ §
cg P 1 atm og P P
which permits an estimate of the reduced vapor velocity for the
system operating at a pressure P, in terms of the data taken at
atmospheric pressure. It was stated in Refs. (299and(30) that

this method of estimating the pressure effect gives satisfactory

results.
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Ref. (8) gives a summary and conclusions of a series of .
rather spirited discussions (Refs. 31 through 38) on the problem
of liquid carry over from water boilers. These conclusions give
support to the analysis of Kruzhilin and to Eq. (V-9). The limita-
tion of the analysis which is caused by omitting the effect of the

vapor height was noted also.

V-2 THE CORRELATION OF PANASENKO AND ANTONOV

For design purposes it is of interest to determine the value
of the entrainment at the second transition point (Point B, Fig. 1
in the Introduction). It was noted that, in the second region,
the entrainment seems to be determined by drops ejected from bursting
bubbles whereas the entrainment in the third region is apparently
caused by large splashes of liquid which are thrown out and disinte-
grated in the vapor space. We note here the similarity of this
region with the "flooding' in bubble bed apparatus.

In the region of "ejected drops", i.e., in the second region
the equation of Kruzhilin can be used to express the dependence of
the entrainment (at a constant height) upon the reduced vapor velo-
city. However, this equation cannot provide any information per-
taining to the transition from regiom II to regiom 1iI. In parti-
cular, it cannot answer the question at what vapor flow rate this
change will occur. An investigation and a correlation of liguid
entrainment at the transition point was reported recently by

Panasenko and Antonov (Refs. 6 and 39).




Panasenko and Antonov reasoned that since the second transi-
tion point (Point B in Fig. 1) means the end of the second region,
it should be possible to correlate the data at this point in terms
of the dimensionless groups proposed by Kruzhilin for the second
region, i.e., for the region of "ejected drops.” The entrainment
at the transition point (referred by Russian investigators as the
"critical point') was expressed therefore in terms of Eq. (V-8)
(modified to include w4 as well as wg and w3), where the function

F was approximated by a power law relation, thus

1 ™
E¥ = C [ﬁ— 2_ u0"4] ToH 3P ﬂ4£ (V-10)
og p’
where the constant C and the exponent m, n, and £ were determined
from experimental results reported in Refs. (2), (40), (41) and (42)?
The values thus determined were: C = 1.96 x 107, m=0,9 n=-1,92,
A = 1.55. The correlation of the entrainment at the second transi-
tion point can then be expressed as

ey 0,48, ¢11.8 nky 1,96
(p"8) (B*) (ug"™)

E* = 1,96 x 107 (V-11)

The stars in Egs. (V-10) and (V-11) denote that the data are evalu-
ated at the second transition point. It can be seen that the
entrainment E* given by Eq. (V-=11) depends upon the height above

the interface, i.e., upon the height of the vapor space. It can

*'Data on these and other experiments are given in Appendix A and

Appendix B of this report.
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be seen also that, in order to predict E¥*, it is necessary to know
the values of the reduced vapor velocity ug"*, and of the height
Hy*, at the transition point.

In general, the height of the vapor space (if it is measured
from the interface to the top of the vessel, see Fig. 2 in the
Introduction) can be estimated if the initial height of the vapor
space (in the absence of bubbling) H, and the expansionAH of the
two-phase bubbling mixture are known, thus

a

Hy = H -AH = H - Hg, (V-12)

l ~-a
where Hy, is the liquid level (in the absence of bubbling) and ¢ is
the vapor volume fraction. The corrections which must be intro-
duced in Eq. (V~12) for an estimate of the true height are discussed
in Chapter VI. It follows from Eq. (V=12) that, in order to esti-
mate Hy*, it is necessary to kmow the vapor volume fraction a* at
the transition point. Because g depends upon the reduced vapor
velocity ug'", this is equivalent to requiring the value of uoh*
which corresponds to a*.

It is important to note here that, in Refs. (2), (40), (41),
and (42), the values of a are not reported. A statement is made in
Ref. (42) to the effect that a, and therefore the height of the
vapor space Hy, were computed from pressure drop measurements. How-
ever, the figure which depicts the apparatus does not show provi-
sions (pressure taps and connections) which would provide pressure
measurements for these computations. 1In Refs. (2), (6), (39) and

(41) statements are made to the effect that e can be computed from
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the correlations proposed by Kurbatov (Ref. 43), Margulova (Ref. 44)
and by Sterman (Ref. 45) which relate the volumetric vapor fraction a
to the reduced vapor velocity uo"*. Thus, it is not clear whether
the values of a were measured in these experiments or if they were
computed from the correlations.

In order to relate a to uy" Panasenko and Antonov used the

equation proposed by Kurbatov (Ref. 43) which is given by

uonz 1/3 p ? ‘P" ‘-1/3 U' 2/9 d "“1/6 (v-lg)
a = 0,67 — S
5 p ¥ v re]
N /B | -
g(pt_pn) g(p'_pn)
3

The volumetric vapor fraction o  was computed by substituting in
the above equation the experimental values of uo"* reported in
Ref. (46). (Data on these experiments are tabulated in Table I,
Appendix A.) It was found from these computations that in the
pressure range from 16.8 atm to 92.5 atm the value of «* remained
approximately constant (a* #0.43). Similar results were obtained
using the experimental data reported in Refs, (40) and (47).
Antonov and Panasenko (Ref. 39) concluded from the experiments

that the height Hy* above the interface can be related to a* by

the following expression

Hy* = 8a*3 (V-14)
where HV* is measured in meters. Since the sharp increase of the

liquid entrainment beyond the transition point is attributed to

*These equations and their limitations are discussed in Chapter VI.
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liquid splashes reaching the vapor exhaust line,according to
Panasenko and Antonov, the vapor height Hy* corresponds to the
height (above the interface) which is reached by the splashes
as they are thrown up in the vapor space. It was therefore
denoted as the *‘critical vapor height™ or the "front of liquid
splashes.”

Egs. (V-11), (V-13), and (V-14) give a relation between
the entrainment E* and the variables By*, a* and uy"*. In the
discussion of their paper Panasenko and Antonov (Ref. 6) sug-

gest that their analysis can be used to solve two kinds of

problems.
a) For a given reduced vapor velocity uy" Eq. (V=13)
can be used to determine the value of ¢ whence
BEg. (V-14) can be used to compute the "critical
vapor height."
b) For angiven Y"eritical vapor hg;ghﬁ'ﬂv* (i.e., for

a given design) Eq. QV-14) can be used to compute
a* and Eq. (V-13) to compute the "critical vapor
fiow rate” uo"*. Tﬁe corresponding value of the
entrainment can be evaluated by means of Eq. (V-=11).
When the reduced vapor velocity is lower than the
"critical," one, i.e., uy" < uy"¥*, the entrainment E
can be evaluated from Eq. (V-8), provided that the
height above the liquid interface is kept comnstant.
Several remarks and closing comments seem appropriate at

this point. It was noted by the editor of the Jourmal in a
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footnote of Ref. (39) .that the analysis and the method of relating
the "'critical vapor height® HV$ to the vapor volume fraction a* is
both novel and controversial. The question as to how ¢ was
determined in these experiments (was it measured or was it com-
puted) is still left opem. This and the scatter of the experi-
mental data on liquid entrainment make the validity of Eq. (V-14)
questionable.

Panasenko and Antonov found that for the experiments of
Blinov and Sterman (Ref. 46) the value of a* was o*= 0,43, When
this value is inserted into Eq. (V-14) the computed value of Hy*
becomes Hy* = 0.64 m which is identical with the initial height
(in the absemnce of bubbling) of the vapor space (see‘Appendix A).
Consequently, instead of representing a "critical height' in the
vapor space, HV* may actually represent the maximum expansion of

the bubbling mixtures (AH) thus from Eqg. (V-12)

max?®

@ \
= Hy, / = H (V-15)

\1 - o¢max

as HV = 0, Because all of the necessary information was not

<éH>m@g

reported and because of the scatter of the data which are re-
ported in Ref. (39), the authors were not able to prove or dis-
prove this inference. If this inference proves to be correct,
it would be possible to make an estimate of a¥ = Gpax by using
Eq. V-15 and knowing H and Hy,. This value of a could be then
used in conjunction with Eg. (V-13) (or with some other corre-
lation) to determine the mazimum permissible vapor flow rate
(u,") which can then be used in Eq. (V-11), to determine the

entrainment,
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Although in the work of Panasenko and Antonov many questions
are left open, this work points to some aspects of the problem
worthy of further investigation. The reader will recall that in
region II (region of "ejected drops"”) the entrainment is primarily
caused by drops which are ejected from bursting bubbles. The
entrainment depends, therefore, upon the conditions which affect
the bubbling process in a two-phase mixture. It is known that,
under certain conditions which depend upon the vapor volume frac-
tion @ and upon the reduced vapor velocity uy', the flow pattern
in a bubbling mixture will change due to the interaction and the
coalescence of smaller bubbles and the formation of larger vapor
slugs. The rising and bursting slugs of vapor cause an oscilla-
tion of the liquid interface; the amplitude of these oscillatioms
increase with increasing slug size and increasing vapor flow rates.
The agitation of the interface and the rising vapor slugs generate
liquid splashes that are thrown up and disintegrate in the vapor
space. This phenomenon is ofter referred to as "flooding."” Be-
cause region II is characterized by ejected drops, whereas re-
gion III by liquid splashes, the transition point could be re-
garded as a "flooding point" which will be determined by a hydro-
dynamic instability. Since instabilities occur at some critical
flow conditions, this inference would imply that, at the transi-
tion point, there exists a limiting functiomal relation between
a and ug". In other words, it could be surmised that if the
transition point is regarded as a "flooding point," the change
from region II to region III will occur when ¢ and uy" attain

some characteristic values.



The results of Panasenko and Antonov are not comtradictory
with this point of view., Their vresults, if correct, imply that
the transition from regiom II to regiun III occurs at charag-
teristic values of g* and u,"*. If it is assumed that the initial
velocity of the splashes is approximately equal to the reduced
vapor velocity ug', then, upon eliminating a«* between Eqs. (V-14)
and (V-13), it can be seen that the '"critical vapor height" is

proportional to the initial kinetic energy of the liquid,
HV* ~pt (uon*)z

The above relation can be interpreted by saying that liguid
splashes reach a characteristic height under the action of an
initial characteristic velocity uo"*. By considering the effect
of Taylor instability upon disintegrating liguid sheets a rela-
tively uniform drop distribution could be expected and computed.
In conclusion, the validity and the implications of the
work of Panasenko and Antonov still remain to be verified. An
apalysis of the transition from the "region of ejected drops”
to the "region of liguid splashes'" can be conducted by considering
the hydrodynamic effects and instabilities. To conduct such an
investigation and to evaluate the proposed correlations good ex-

perimental data are needed.

V-3 THE CORRELATION OF STERMAN, ANTONOV AND SURNOWV

The results of 2 large number of experiments performed with
the purpose of investigating the effects of pressure and of the
initial height in the vapor dome upon the liguid entrainment is

reported in Refs. (2), (40), (41), (42), and (44). In these

71
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experiments with water the pressure was varied from 17 atm to
185 atm and the initial height H, i.e., the height in absence
of bubbling from 0.4 m to 0.8 m,

Fig, (V-1) which is reproduced from Ref. (42) shows the
effect of different initial heights upon the entraimment at a
pressure of 36 atm. In terms of the nomenclature of this report,
the ordinate on this figure is the eantrainment, i.e., W < E,
whereas the abscissa is the reduced (superficial) velocity ug"
divided by the initial height H, i.e., D 4 u,"/H (m3/m3 nr).

The values of H for the indicated lines on this figure are, 1:
H=0.,852 - 0.860 m, 2: H= 0.470 - 0,478 m, 3: H = 0,657 - 0.665 m.
It can be seen from Fig. (V-1) that as the value of H increases
higher reduced vapor velocities are required to produce the same
entrainment.

It is reported in Refs. (2), (41), and (42) that at a con-
stant pressure the effect of various initial heights upon the
entrainment can be correlated by plotting the eptrainment E
versus the following dimensionless group.

uo|1 2
N =

(V=-16)
agHv

where Hy is the height from the interface to the vapor exhaust

line (or to the measuriﬁg device) and is given by Eq. (V-12).

Fig. (V-=-2) which is reproduced from Ref. (41) shows the experi-

mental data plotted in this fashion; the lines indicate various

pressures, i.e., 1: P = 17 atm, 2;: P = 36 atm, 3: P = 91 atm,
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Figure V-1 The Effect of the Reduced (Superficial) Vapor Velocity U,"
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trainment of Water at 36 atm. (Ref. 42)
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0.852m - 0.860m; 2:H = 0.470m - 0.478m;

13
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4;: P = 110 atm, 5;: P = 185 atm. It is important to note here again
that in these references it is not made clear whether the values of
o were measured in these experiments or computed from calculations,
Additional data on these experiments are given in Appendix A.

It is stated in Refs., (2) and (41) that, for a given entrain-
ment E and a constant height H, their results permit one to determine
the corresponding values of the reduced vapor velocity as a func-
tion of pressure. The procedure is as follows. Solving Eq. (V-16)
for up", the reduced vapor velocity can be expressed as a function

of ¢ and of N. Thus

ug" = VegHyN (V-17)

To relate a to u," Sterman et.al. (Refs. 2 and 41) used the empirical

equation of Margulova (Ref. 44) which is given by
a = (0.576 + 0,00414 P) (uym)9-75 (V-18)

where the pressure P is measured in atmospheres and uo" ir meters
per second. This equation and a possible inaccuracy are discussed
in Chapter VI,

Defining

Ko = 0.576 + 0.00414 P (V=19)
it follows fromEgs. (V-19), (V-18), and (V-17) that
uy" = (KogHyN) 98 (V-20)

whence, for a given Hy, the reduced vapor velocity ugp" becomes a

function of pressure (K,;) and of N. For a chosen value of the



76

entrainment E the corresponding values of N as a fusmetion of pres- ‘
sure can be read from Fig. (V-2). Substituting these values of

K, into Eq. (V=20) permits one to compute the reduced vapor velocity

(o}
as a function of pressure for the chosen values of E and of Hy.

Table V-1, which is reproduced from Refs. (2) and (41l), shows the
results of such computations for the chosen values of E = 0,05 o/0

and Hy = 0.60 m,

Table V-1
The Computed Values of ugy" as a Function of Pressure for

E = 0.05 9/, and By = 0.60 m

P Ko N ug"
atm computed from from m/sec., (computed from
Eq. (V=19) Fig. (V-2) Eq. V-20)
17 0.640 0.137 0.588
36 0.725 0.0835 0.436
91 0.953 0.038 0.290
110 1.031 0.029 0.251
185 1.342 0.0068 0.0978

Fig., (V=3) which is reproduced from Refs. (2) and (41l) shows
the computed reduced vapor velocity and vapor mass flow rate as a
function of pressure. The ordinates are normalized with respect

to the data at 17 atm. Thus
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Figure V-3 The Effect of Pressure on the Reduced Vapor Velocity and
on the Vapor Mass Flow Rate at a Constant Entrainment
(E = 0.05%) and for a Constant Height in the Vapor Space
(HV = 0.600m). (Ref. 41)
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(uo")p

(W5") 17 atm

f . (pﬂuoﬂ)p

(p"16") 17 atm

It can be seen from this figure that, for a given height of the
vapor space, as the pressure increases lower vapor velocities

are required to induce the same entrainment. For a given entrain-
ment and vapor height as the pressure increases the reduced vapor
velocity decreases whereas the vapor mass flow rate G"(Kg/m2 sec)
goes through a maximum at about 130 atms.

It can be seen from the foregoing that this method appears
potentially useful for estimating the effects of pressure, dome
height and of the reduced vapor velocity upon the liquid entrain-
ment. However, two cautionary remarks should be made, The first
is concerned with the values of ¢ which were used in correlating
and plotting the data shown on Fig. (V-2). It is not clear how
these values were obtained, from experiments or from some corre-
lation. The second remark is concerned with the accuracy of

Eq. (V-19), which will be taken up in Chapter VI.

V-4 THE CORRELATIONS OF STERMAN

1t was stated in Refs. (2), (41), and (42) that the effects
of different initial heights in the vapor space upon the entrain-
ment can be correlated by plotting the entrainment E versus
the dimensionless group N given by Egq. (V=16). It can be

seen from Fig. (V-2) that a plot of this kind does not
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correlate the effect of pressure. A correlation which takes this
effect into account was recently proposed by Sterman (Ref. 48).
Sterman reasoned that since the dimensionless group N given
by Eq. (V-16) correlates the effect of height it should be corrected
by other dimensionless groups to take into account the effect of
pressure., By considering the equations of motion and of energy
discussed in Chapter IV, he derived several dimensionless groups:
the Reynolds, Froude, Weber group, etc.; for the correlation, all
but three groups were neglected. The entrainment was approximated

by a power law relation, thus

E = Cl(Gaie " cgvﬂé—gw)n (V-21)
where c 3/2
g
G (g(p' _ p")) (V=22~a)
= = s =R
& (Y2

N and Hy are given by Eqgs. (V-16) and (V-12), respectively, i.e.,

by 2
ug'
N= (V-22-b)
o gHV
a
Hy = H - Hy, — (V~22=c)
l-a

The values of the constant Cl and of the exponents f, m and n were
determined from the data shown on Fig. (V-2). For region II, i.e,,
for the region of "ejected drops" the values thus determined were:
c,= 2.75 x 108, £ = -~ 1.1, m = 2.3, n = 0.25, Thus, for region II

the correlation of liquid entrainment becomes
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N203
E=2.75 x 108 (V-23)

p" 0.25

pt = p"

On Fig. (V-=-4), which is reproduced from Ref. (48), Eq. (V-23) is
compared with the experimental data shown omn Fig. (V-2). In
terms of the notation of this report the symbols on this figure
are W= E and y' = gp", y" = gp".

Sterman proposed also a correlation of the entrainment at
the transition from the region of "ejected drops" (regiom II) to
the "region of splashes"” (region III). From the data reported in
Refs. (2), (40), (41), (42), and (47) he obtained a correlation
giving the value of N (at the transition point) in terms of the
dengity group and of G,, thus

u. & pn
N* = || =4.2x1070¢6,0.55 [
agHv p LI P T

0.35
) (V=24)
As in Sec., V-2, the star in the above equation means that the

value of N corresponds to the tramnsition point i.e. to the
"critical conditions.” The entrainment E* at this point can be
computed by substituting Eq. (V-24) into Eq. (V-23), hence

w  \0.555
p"
E* = 1,16 x 1074 ¢,0-16° (———--) (V-25)

P. - P"
Fig. (V=5) which is reproduced from Ref. (48) shows a plot of the
data in region II and region III together with the tramsition
(critical) point in terms of the normalized coordinates E/E¥ versus

N/N*,
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It can be seenirom EBq. (V-23) and from Eqs. (V-22-b,c)
that in order to evaluate the entrainment it is necessary to
have a relation between a and uy,". It will be recalled that
in order to express this relation Panasenko and Antonov (Ref. 6)
used Eq. (V-13), whereas Sterman et.al., (Refs. 2, 41, and 42)
used Eg. (V=18). In Ref. (48) Sterman uses still another equa-

tion; it was derived in Ref. (45), and is of the form

g2 0.4 ot \0.12

g = 0,26 P (V=26)
G p' - p"
g
glp' - p"

This equation is valid provided that

-0.2

d p"
> 260

e ] p' - p"
Jg(p! - pn)

where d is the diameter of the container. The accuracy of this

equation is discussed in Chapter VI. Substituting Eq. (V-22) and

(V=-26) into Eq. (V=23), the entrainment can be expressed as

\J———T;—“— 0.92
uonz 1.38 g(Pl - pu)

g \EHy Hy /

o 3 1.1 p'_p" 10124
g
g(p| - P") pn

V!Z

E=6.1x 10 (V-27)
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or with approximation

\J————E' 0.92
Fr1‘38 glp'=p")

E = 6.1 x 10°

Arl.l Hy
h
where uonz
Fp = = Froude Number (V=-29-a)
gHy
g 3/2
g T S T B st T R L PR )
g(pt - P") P' - P"
Ay = e (V-29-b)
v:z P"
a
Hy = H - Hy,
l -a

It appears from the foregoing that the correlations of Sterman

may be useful for estimating the effects of pressure, dome height
and of the vapor load upon the liguid entrainment. However, the
same cautionary remarks which were made at the end of the pre-
ceding section are appropriate here. Because Sterman used for his
correlation the experimental data shown on Fig. (V-2) the uncer-
tainty concerning the values of a applies to this case also., The
second remark is concerned with the accuracy of Eq. (V-26); this

guestion is takenm up in Chapter VI.

V-5 CONCLUSIONS

The correlations which have been discussed in this chapter
permit one to evaluate the effects of pressure, of the vapor dome

height and of the vapor load upon the water carry over. The

(V-28)

(V-29=c)
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validity and the limitations of these correlations still must be
determined. The questions which arise in evaluating their accuracy
stems from the fact the experimental procedure, the accuracy of the
data and other information on the experiments are not reported in
more detail in the published literature, Additional experimental

results are needed to evaluate the proposed correlations.
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VI. THE TRANSPORTATION OF STEAM IN
A BUBBLING TWO PHASE MIXTURE

Liguid entrainment depends upon the hydrodynamic conditions
of a two phase bubbling mixture not only because these affect the
formation of drops or of liquid splashes but also because the
expansion of the mixture and, therefore, the true height of the
interface depends upon the hydrodynamic process. In bubbling,
the two phase flow process depends upon the volumetric vapor
fraction @« and upon the reduced vapor velocity uy". Conse-
quently, the liquid entrainment will depend also upon these
two parameters; this dependence is reflected in the correlations
which have been discussed in the chapter..

The hydrodynamics of a bubbling mixture will be analyzed
and discussed in more detail in a separate report. In this
chapter we shall discuss this problem only in relatiom to the
equations which have been used for correlating the data on liquid
entrainment, i.e., in relation to Egs. (V-13), (V-18), and (V-26).
We shall do this only to the extent of pointing out some
inaccuracies and inconsistancies which must be considered when
the correlations of liquid entrainment discussed in the preced-
ing chapter are used.

The equations of Kurbatov (Eg. (V-13)), of Margulova
(Eg. (V-18)), and of Sterman (Eg., (V-26)) give relations between
the volumetric vapor fraction @ and the reduced vapor velocity
u,". It is noted that these three equations show three different

functional relations between & and up", i.e., the exponent of u,"
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has three different values, 8Since these correlations were
derived by using the same experimental data, it is this point

which we wish to discuss in this chapter.

Vi.1 THE CORRELATION OF KURBATOV

From dimensional analysis Kurbatov (Ref, 43) derived the

following relation between a and uy"

k , Q2

uonz P ""P" y'

@ = C (Vi-1)

o] " [+]
e\| = p' 4 —_—
g(p'—p") g(pv_pn)

The coefficient ¢ and the exponents k, f, m, and n, were deter-

m d n

mined from the experimental data of Behringer (Ref., 49) and of
Margulova (Ref. 44). The values thus determined were ¢ = 0,67,
k=1/3, { = -1/3, m = 2/9, and n = -1/6. The correlation then

becomes

_ /3 -1/3 _ 2/9 -1/6
u°n2 P"'P" ”' = d -
a= 0,67 e —— — | (VI-2)
\ , c l O
g, | s p' 9 —————
g(p'=p™) 4 g(p'=p")
. - s, pa— S - . [

Behringer's experiments were performed with water in a
pressure range from 1.07 atmto 40 atm. The effect of geometry
was tested by using three different pipe diameters, i.e.,
d=5,7cm, 6.9 cm, and 8.25 cm. Vapor was generated from an
electric heater which was located at the bottom of the 6.1 cm
long test section. Pressure measurements were taken from six
pressure taps located along the test section, The vapor volume

fraction @« was computed from these pressure measurements., The



88

reduced vapor velocity was determined from an energy balance.

On Figure Vi-1 the authors have plotted & as a function
of uy"; the values were computed from the data shown on Fig. 11
(pipe diameter d = 6.9 cm) in Behringer's paper. Behringer's
data are reported as a plot of up"/a versus py = (1 - a) p'+ap"”.
Therefore it is possible that on Figure Vi-1 some scatter has
been introduced during the process of the reproductions, i.e.,
first by Behringer in reducing and plotting his data and then
by authors in reading and recomputing the data from Behringer's
figure.

The reader will note from Fig. VI-1 that, at a constant
pressure, @ can be related to ug" by a power low expression.
Although there is a question which exponent n gives the best
approximation to the data, it appears that n = 2/3 gives a
satisfactory relation. This is also the relation given by the
equation of Kurbatov, i.e., by Eq. (VI-2). 1In addition to the
experimental data of Behringer, Kurbatov, in deriving Eg. (VI-2),
used also the data of Margulova. Her experiments are discussed

in the next section,

Vi.2 THE CORRELATION OF MARGULOVA

Margulova (Ref., 44) performed her experiments with water
at three different pressures, i.e., at P= 91 atm, P = 150 atm,
and P = 190 atm. Vapor was introduced through a perforated
plate located 21 cm. below the liquid surface in the absence
of bubbling. The test section was a circular tube 23.8 cm,

in diameter. The vapor volume fraction & was computed from

a3
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the pressure drop between two taps located 25 cm. apart.
Margulova's data are tabulated in Appendix B and are
plotted on Figure VI-2, From these data she proposed the

following relation between g and up’

0.75

a = (0.576 + 0.00414 P) u," (Vi-3)

where the pressure P is measured in atmospheres and the velo-
city up" in meters per second,

It is not clear why she proposed the exponent n = 0,75
because, as indicated by Fig. VI-2, her data can be approxi-
mated more closely by an exponent n = 2/3, which is in agreement

with the correlation of Kurbatov.

Vi.3 THE CORRELATION OF STERMAN

Applying the theory of similarity to the equations which
describe a two phase flow process (Ref. 50), Sterman (Ref. 48)
derived several dimensionless groups which appear significant
in describing the bubbling process. The vapor volume fraction
@ was approximated by a power law relation and expressed as a

function of three groups,, thus
e —/e— o -t == 1k

u0"2 P"
g (P L] "P")
a=c (Vi-4)

(o)
g d Pv_Pn
g(p'-p")

In evaluating the coefficient ¢, and the exponents,[, m, and n,

Sterman used the experimental data of Behringer, and of Margulova,

in addition to his data taken at 17 atm and 91 atm. The values
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thus determined were ¢ = 1.07,_j = 0.4, m= 0.25, n= 0,17,

hence the correlation is given by

— a2 -4 - 5 =025 — —P.17
g(pv_pu) P"
a= 1,07 —— (VI-5)
o
g D d pl_p"
g( Tegtt)
| P ﬂ__ o ] i

It is important to note that the majority of E;ta used
in deriving this equation were those of Behringer and of
Margulova, i.e., the same data which Kurbatov used in deriving
Eq. (VI-2). The reader will note that, whereas Kurbatov pro-
posed n = 2/3 for the exponent of u,", Eq. (VI-5) gives a value
of n = 0.8, By examining the original data plotted on Figs.
Vi-1 and VI-2, it would appear that the value of n = 2/3 approxi-
mates somewhat better the data. However, it was reported
recently by Dementiev, et. al. (Ref. 51) that Eq. (VI-5) corre-
lates their experimental results. Since their original data
are not reported, it is not possible to evaluate this statement,

their experiments are discussed in the next section.

Vi.4 THE EXPERIMENTS AND THE CORRELATION OF DEMENTIEV, LEPILIN,
AND LOGINOV

The experiments of Dementiev, et al, (Ref. 51) were per-
formed with water at 33 atm. The test vessel was 7.9 m. long,
37.7 cm. in diameter., Vapor was introduced through a perforated
plate (45% open area, 0.6 cm. hole diameter). The volumetric
vapor fraction @ was determined from the attenuation of y rays.
The reduced velocity of the vapor was varied from 0.20 m/sec

to 1.5 m/sec,




Dementiev, et,al.(Ref, 51) plotted their data on Fig. VI-3,
which is reproduced from their report. The coordinates on this
figure are those which are obtained from Sterman's correlation
i.e.:

& d 0.25 uo"

p" >0.17 \J“‘T?"‘ versus l c 1/2
g e B |
pv_pn g(pv__np) g(P"'P")

In addition to their data (symbol +), Dementiev, et, aly plotted

on Fig. VI-3 also the data of Behringer ( O ), of Margulova (A ),

of Sterman ( @ ), and of Dementiev ( ¥V ). It can be seen that
on this figure the data can be approximated by two lines, From
these results Dementiev, et, al, (Ref. 51) concluded that Eq. (VI-5)

correlates the experimental data when

uo"

\l'_o_ 1/2 < 3.7 (VI-6)
g\l ————

g(p'-—p"

and

S PR p 5 <z e —

uo"2 0.17 \, 0.25 p" 0.17
g(p'-p")
a= 1.9 ee———— (Vi-7)
\J“‘E“‘
g e ————— d p'_pn

g(P"’P")

= — - — |

correlates the data when

“o"
O 1/2 ? 3.7 (VI-—S)
g \l
g (P' _pn
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The reader will note that, at a particular reduced vapor
velocity u,", the data plotted on Fig. VI-3 show a sharp change
of slope. In two phase flow such break points, i.e., discon-
tinuities mark a change of the flow regime. It was surmised in
Sect. V.2 that the change of liguid entrainment from the ‘region
of ejected drops" to the "regionm of liguid splashes" could be
related to a change of flow regime in the bubbling two phase
mixture. It would be of considerable interest to investigate
whether the transition point in the liquid entrainment actually
corresponds to the discontinuity shown on Fig. Vi-3. To con-
duct such an investigation experimental data, taken simultan-
eously, on ligquid entrainment and on the hydrodynamic conditions

of a bubbling mixture are needed.

V1.5 THE EXPANSION OF A BUBBLING MIXTURE AND THE TRUE LOCATION
OF THE LIQUID INTERFACE

The amount of liquid entrained depends upon the distance
between the interface (where drops or splashes are generated)
and the vapor exhaust line. For a given design, because of the
expansion of the bubbling mixture, this height will decrease as
the vapor flow rate is increased (See Fig. 2 in the Introduction).
It was stated in Section V.2 that, when the initial height of
the liquid Hj, (initial meaning in the absence of bubbling) and
the expansion A H are known, the location of the interface of

the mixture Hy can be estimated from Eg.(V-12), i.e., from

Hy,

Hy = H, + AH= (VI-9)

l - a
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This equation can be used if @ does not vary along the axis of
the vessel. 1In general, in a bubbling mixture, e will vary in
the radial direction as well as in the axial direction. The
results of a series of experiments designed to investigate the
radial and the axial distribution of @ are reported in Ref, 52.
It was found in these experiments that the radial distribution
of the vapor volume fraction @ has a maximum at the axis of
the vessel, and it can be approximated by a power law expression.
This radial effect is similar in nature to the radial distri-
bution of @& in a forced, two phase flow system which has been
analyzed by Bankoff (Ref. 53) and discussed in Ref. 54 .

In the axial direction it is possible to consider two
regions, one in which &« remains constant and the second in
which & varies, Figure VI-4, which is reproduced from Ref. 52,
shows the variation of @ along the axis, The region of con-
stant @ was referred by these investigators as the "stable
region'" whereas the second was referred to as the "transition
region'. The experimental apparatus used in the experiments
reported in Ref. 52 was described in the preceding section,

It was stated in Refs. 52 and 55 that. in the region where
a remains constant, the value of @& can be computed from the
correlations which have been discussed in the preceding sec-
tions. When the reduced vapor velocity uy" is below 0.2 m/sec,
the effect of the "transition region"™ can be neglected and the
location 6f the interface can be estimated from Eg, (VI-5), As

the reduced vapor velocity ug" is increased, the height Hpp of

-
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the "transition region" increases; this effect is shown on Figs,
Vi-§ and VI-6, which are reproduced from Ref, 52. The coordinates
on these figures are Hpp (in meters) versus u," (in meters per
second), For the data shown of Fig., VI-5, the diameter of the
test vessel was d = 0,353 cm, whereas for the data shown of
Fig, VIi-6, it was d = 0,238 cm., As indicated on these figures,
the experiments were performed in the pressure range from 4 atm
to 92.2 atm.

From these data Dementiev, et al, (Ref. 52), derived the

following correlation for the height of the transition region

0.52

= " -
H.o = 0.15 P U, (VI-10)

where P is measured in atmosphere and uo" in meter/second.. For

estimating the total height of the bubbling mixture (the stable

plus the transition region), Dementiev, et K al, (Ref. 52), re-

commended the following expression

Hy, Hrp  Hp
H, = + = + 0,075 p°* 52 ug" (VI-11)
l-gz 2 l-a

where & is computed from the correlations which were discussed
in the preceding sections,

Sterman and Lepilin (Ref. 55) using the same experimental
data, i.e., the data shown on Figs. VI-5 and VI-6, proposed the

£ Wi elatio
ollowing corr n . —1/4
o

H uo" \\s(p'-p")
R - 1.4 x 103

4 [N 1]
\J"‘E“‘ ,,ogfp o) d
g(p'-p™) pn2

(Vi-12)
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(where d is the diameter of the vessel measured in meters) if

p" -0.2 o
d g dp = 260 —— \,————— (VI-13)
P""P" g{p'-p")

If, however, d >d, then d,, given by Eq. (VI-13) is substi-

tuted in place of d in Eq.(VI-lz). For estimating the maximum

height of the bubbling mixture Sterman and Lepilin recommended

HL L 3 AHL 1l
1l -a 2

where Hj, is the height indicated by a manometer and ZSHL is the
maximum amplitude of oscillation of the meniscus in the manometer.
The value of @ is computed from the correlations which were dis-

cussed in the preceding sections,

Vi.6 SUMMARY
The correlations which have been briefly discussed in
this chapter permit one to estimate the volumetric vapor fraction
@ in a bubbling mixture in terms of the reduced vapor velocity
uo". It is noted, however, that these correlations are in
disagreement with each other in regard to the functional re=-
lation between @& and uy". Additional experimental data are needed
to establish the validity and the limitations of these equations.
Experimental data on bubbling mixtures indicate that the
volumetric vapor fraction « varies in the radial as well as in
the axial direction. The expansion of the mixture (and there-

fore the liquid entrainment) is affected by the axial distri-

bution of @. Two available correlations have been cited which,
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as claimed, permit one to estimate both the expansion of the
mixture and the true location of the interface in a bubbling
mixture., Additional experimental data are required to establish

the validity and the limitations of these correlations.
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APPENDIX A

EXPERIMENTAL DATA ON WATER CARRY-OVER
FROM BOILERS AT HIGH PRESSURES

A large number of experimental investigations concerned
with water carry-over were conducted in Russia. The results
of these experiments, which were performed over a wide pressure
range, are reported and summarized in Refs. 2, 40, 41, 42, 46,
47, and 56. In the experiments reported in Ref. 46, the liquid
entrainment was determined from calorimetric measurements;
whereas for the experiments reported in Refs. 2, 41, 42, and 56
the entrainment was determined from the decay of isotope 832.
The experimental apparatus consisted of a circular vessel;
steam was introduced through a perforated plate which, in the
absence of bubbling, was immersed to a depth Hy below the liquid
interface. The dimensions of the eguipment together with the
experimental conditions, i.e., pressure, initial liquid level
Hy, above the perforated plate and the initial height H of the
vapor space (vapor dome) are tabulated on Table I, which is
based on the data reported in Refs. 2, 6, 39, 41, 42, and 56.
On the same table are shown the values of the entrainment E,
of the reduced vapor velocity uo", and of the vapor mass flow
rate G', which correspond to the transition from the region of
"ejected drops" to the "region of liquid splashes", i.e.,, to the
transition point B shown on Fig. 1 of the Introduction. The

values of the exponent n in Eg. 1 of the Introduction, which

correspond to these two regiomns, are shown also.
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Figure A-1l, which is reproduced £ Ref. 56, shows the
entrainment E at two pressures (P = 110 atm and P = 185 atm)
for three different initial heights H in the vapor space., In
terms of the nomenclature in this report, the coordinates on

Fig. A-1 are

W=E (%)

uO" m3
Rv =B

H mShr

where the values of H (H = 650 mm, H = 890 mm, and H = 1220 mm)

are indicated on the figure.




Table I
Investigator d HL B P u," G n, ng
m m atm % m/sec Kg/m2 sec
V. A. Kolokoltzev] 0.3 0.25 0.4 1.25 0.158 | 0,763 0.545 5 13.3
(Ref. 47) 0.3 0.25 0.6 1.25 10.132] 0.95 0.680 5 15
0.3 0.15 0.6 1.26 (0.166 | 1.015 0.728 5 15
0.3 0.15 0.3 1.25 |0.150 | 0.615 0.440 5 15.45
0.3 0.25 0,57 1.25 |0.125| 0.784 0.560 5 14.5
L. S. Sterman 0.64 16.8 0.555
and
K. A. Blinov 0,64 31 0.467
0.64 36 0.464
{Ref, 46)
0.64 40 0.450
0.64 46 0,458
0.64 61 0.395
0.64 74.5 0.333
0.64 92.5 0.292
L. 8. Sterman 0.238 0.13 0.67 17 0.035 | 0,56 4.7 3.64 |12
(Ref. 40) 0.238 | 0.13 0.67 36 0.12 | 0.56 9.88 3.44 | 12
0.238 0.13 0.442 36 0.25 0.45 7.95 4 7
©.238 | 0.13 0.82 91 0.08 ]0.35 16.85 4 12.5

€1l




Table I (continued)

Investigator d HL " P ] “o" G" ny ng
n m n atm % m/sec Kg/m2 sec
L. 8. Sterman 0.238 0,13 Q.67 91 0.045 0.27 13.05 4.3 12
(Ref. 40) (Cont.})| 0.238 | 0.13 0.442 91 0.10 0.215 16.4 4.16; 10

L. 8. Sterman, 0.255 0,17-0.2 0.45 185 0.06 0.075 10.95 3.8 15.2

A. Antonov and

A, V. Surnov 0.255 0.14-0.175 | 0,81-0.645 151 0.12 0.166 15.72 4 15
(Refs, 2, 41)

H.A. Styrikovich,| 0.238 0.165-0,18 | 0.650~-0,.665 36 0,1 0.524-0.538 9.24-9.45 3.7 | ~9

L, S, Sterman

A, V. Surnov 0.238 | 0.165-0.18 | 0.650-0,665 91 0.04 0.260-0.266 | 12,55~12.65 3.5 10
(Ref. 42) 0.238 0.165-0.18 | 0.650-0.665| 110 3.3

PI1
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Figure A-1 The Entrainment E(®/0) as Function of the Reduced Vapor

Velocity at High Pressures (P = 110 atm and P = 185 atm)
and for Different Heights of the Vapor Dome. (Ref. 56)

uon .
cozeo 5 ry= ()

(where the values of H are indicated on the Figure;
H= 650 mm, H - 890 mun, H = 1120 mm)




APPENDIX B

VOLUMETRIC VAPOR FRACTION @ AS FUNCTION OF THE
REDUCED VAPOR VELOCITY ug' AT HIGH PRESSURES

Experimental data of Margulova (Ref, 44) (Diameter of the vessel
d = 20.0 cm),

Pressure 91 atm

Ugp @ ug' a
m/Sec % m/Sec %
0,.0872 0.121 0.0433 0.090
0.0644 0.120 0.0403 0.087
0.0611 0.113 0.0352 0.078
0.0586 0.111 0.0335 0.075
0.0564 0.108 0.0324 0.072
0.0527 0.105 0.0311 0.0708
0.0501 0.099 0.0283 0.0663
0.0480 0.0965 0.0261 0.0630
0.0458 0.0940 0.0244 0.060

0.0225 0.053

Pressure 150 atm
uo® a uO" @
m/Sec % m/Sec %
0.0580 0.127 0.0234 0.0698
0.05627 0.122 0.0210 0.0638
0.0422 0.104 0.0200 0.062
0,0397 0.099 0.0193 0.0605
0.0311 0.08s6 0.0185 0.058
0.030 0.0835 0.0165 0.054
0.0276 0.076
0.0243 0.0705
Pressure 190 atm

u’O" @ uo" @
m/Sec _&_ m/Sec _ﬁ_
0.0424 0.128 0.0222 0,0796
0.0391 0.121 0.0197 0.0745
0.0383 0.119 0.0179 0,.0683
0.0316 0.105 0.0161 0.0642
0.0297 0.099
0.0268 0.091

0.0255 0.0885






