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NOMENCLATURE
Aspect ratio defined in Eq. 9b
Fluid-hammer speed
Characteristic length in z coordinate
Vertex of characteristic cone
Pressure
Pressure pulse used as reference pressure
Radial coordinate
Grid size in r coordinate
Characteristic length in r coordinate
Entropy
Time
Time step
Velocity component in r coordinate
Characteristic velocity for both r and z coordinates
Velocity component in z coordinate
Axial coordinate
Grid size in z coordinate
Nonlinearity parameter defined in Eq. 9a
Cartesian if Vv = 0 and cylindrical geometry if v =

Density
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TWO-DIMENSIONAL FLUID-HAMMER ANALYSIS
BY THE METHOD OF NEARCHARACTERISTICS

by

Yong W. Shin and Christian A. Kot

ABSTRACT

A numerical technique based on the method of nearchar-
acteristics is considered for solving propagation of fluid-
hammer waves in a two-dimensgional geometry. The solutionis
constructed by relating flow conditions by compatibility equa-
tions alonglines callednearcharacteristics. Three choices are
considered inthe numerical schemethat are accurate within an
error of the order of magnitude of the time step.

Since the nearcharacteristics lie in the coordinate
planes, the technique provides an efficient method requiring
only simple interpolations in the initial plane. On the other
hand, the nearcharacteristics fall outside the characteristic
cone. Thus the solutionprocedure directly refers to conditions
outside the true domain of dependence. The effect of this is
studied through numerical calculation of a simple example
problem and comparison with results obtained by a bicharac-
teristic method. Comparison is also made with existing ana-
lytical solutions and experiments. Furthermore, the three
solution schemes considered are examined for numerical sta-
bility by the vonNeumann test. Two of the schemes were found
to be unstable; the third yielded a stability criterion equivalent
to that of the bicharacteristic formulation. The stability-
analysis results were confirmed by numerical experimentation.

I. INTRODUCTION

The method of characteristics is an efficient and informative technique
for numerical integration of quasilinear hyperbolic systems of differential
equations. The equations are cast in a form that relates the conditions along
lines that physical disturbances travel. As a result, a close relationship is
maintained between the numerical procedure and the physical phenomena in
which the stability of the numerical scheme is easily controlled. The solution
is thus, in general, more accurate than other direct finite-difference methods.

The method of characteristics, as applied to problems in two indepen-
dent variables (referred to as two-variable method) in particular, possesses



an attractive feature in that the relations holding along characteristics are ‘
ordinary differential equations that can easily be handled numerically. When

more than two independent variables are involved, however, the simplification
is not as great, since the compatibility conditions are still partial differential
equations. The bicharacteristic formulation!™? considers bicharacteristics
selected such that the compatibility conditions, when put in a difference form,
are essentially like ordinary differential equations. Hence the solution can be
constructed without referring directly to conditions outside the physical do-
main of dependence, i.e., the characteristic cone. On the other hand, the for-
mulation procedure itself is extremely difficult, and, basically, the formulation
bears no resemblance to the conventional two-variable method. This is
especially true for four or more independent variables.

¢

Sauer* proposed a technique that, basically, represents a direct exten-
sion of the two-variable method. It considers lines (Sauer called these near-
characteristics) that lie in any plane parallel to the time coordinate. The
formulation procedure is similar to the conventional two-variable method,
and a problem involving four or more variables presents no more diffi-
culties than the three-variable method. Since the nearcharacteristics, geo-
metrically, are outside the characteristic cone, the solution is directly
influenced by conditions outside the true domain of dependence, and it is not
clear how this affects the numerical results. A technique proposed by Coburn
and Dolph,5 further developed by Holt,® involves two bicharacteristics and a
line that falls outside the cone. Werner’ used the nearcharacteristic formu-
lation in combination with extrapolation methods, and observed that the error
in the solution increases as the nearcharacteristic deviates from the
bicharacteristic.

This report considers the three-variable formulation that uses the
nearcharacteristics lying in spatial coordinate planes. Numerical calculations
are carried out for the problem of fluid-hammer wave propagation in a simple
geometry, and the results are compared with the results obtained by a bi-
characteristic formulation. Comparison is also made with existing analytical
solutions and experiments for a plane discontinuity diffracting from a 90° cor-
ner. Acoustic solutions for plane waves and one-dimensional numerical solu-
tions are also presented in support of the numerical results of the
nearcharacteristic method. VonNeumann stability tests are performed for
the three numerical schemes considered.

II. BASIC DIFFERENTIAL EQUATIONS

The basic equations governing the unsteady, compressible, inviscid
flows are the conservation equations of mass, momentum, and energy. When
the compressibility is small, such as in liquids, the energy equation may be
replaced by an isentropic condition with a constant wave speed. The basic
differential equations describing the fluid-hammer effects characterizing the




. rapid transients in slightly compressible fluids are written for two-
dimensional plane and axisymmetric geometry.

Continuity:

dp 3 pu 9

> +S-;(pu) + vr—+$(pw) = 0. (1)
Momentum:

Ju ou du , 1°p _ .
g%—+u'a—£'+W$+par = 0; (2)

oOw ow dw  190p
——  — ___+____ = .
St +uar +WaZ 532 0 (3)

Isentropic relation:

(—2%)3 = c?. (4)

In these equations, v = 0 for Cartesian and v = 1 for cylindrical geometry.
Because of the small change in density, the derivatives of density are elimi-
nated by combining Eqgs. 1 and 4:

TR PR CFAR R B (8)

op op op + pcz(au u aw) _

Equations 2, 3, and 5 are used instead of the original Eqgs. 1-4. These
equations are first nondimensionalized by using appropriate reference quanti-
ties for each variable so that each term is of order of magnitude unity. Al-
though the selection of reference quantities is not always an easy task, a
proper nondimensionalization provides a group of dimensionless parameters,
physically meaningful, that govern the problem. The nondimensionalized equa-

tions are
du du Ea_u) op _
St +e(u6r+b z) tar = O (6)
Ow ow WaW) 1 9p _
3t T e(“ar *o3z) T, - O (7)

and

3t
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where the dimensionless parameters are

e = CH (9a)
and
b = %. (9b)
The nondimensionalized variables in Eqgs. 6-8 are
u = u¥/U; w = w*/U; p = p¥/pcU; o)
10

t = ct*/R; r r*/R; z = z*/L.

Here, the quantities with an asterisk represent dimensional variables, c is the
wave speed, and R and L are the characteristic length in the r and z coordi-
nates, respectively. The reference pressure change Ap may be expressed in
terms of the reference velocity U as

Ap = pcU. (11)

In the nondimensionalized equations, Eqgs. 6-8, the propagation of fluid-
hammer waves is governed by two dimensionless parameters, ¢ is a measure
of nonlinear effects, and b is a geometry parameter. As ¢ approaches a small
number, the problem tends to a linear problem. The flow becomes one-
dimensional for large values of the aspect ratio b.

III. NEARCHARACTERISTIC FORMULATION
Using the method of nearcharacteristics first proposed by Sauer,* we
look for lines that lie in the coordinate planes along which the solution can be
extended. (Sauer called these lines nearcharacteristics.) Equations 6-8 are
combined linearly to obtain the compatibility conditions that hold along these
nearcharacteristics. As derived in Appendix A, two sets each of three com-
patibility equations are obtained.

In the r-t plane:

_llow  u  ew( dou op )
du - dp = [baz +v3 4 & (‘az + aZ)]df:, (12a)

dr (eu - 1)dt; (12b)

dz = 0; (12¢)




du + dp = -[%2—‘: + vlf-+ e—b‘z(—g%+ gg)]dt; (13a)
dr = (eu + 1)dt; (13b)
dz = 0; (13¢)
dw = ;(:Z + wg‘:>dt; (14a)
dr = eu dt; (14b)
dz = 0. (l4c)

dw - dp = [g—l-:-+v%+ eu<—-§—:_v +:_I:>]dt; (15a)
dr = 0; (15b)
bdz = (ew - 1)dt; (15¢)
dw +dp = -[g—“ + V=4 eu(é—“—’ + a—p>:|dt; (16a)
r r or Or
dr = 0; (16b)
bdz = (ew + 1)d (16c)
du = -<:—I:+ eug—-‘i’)dt; (17a)
dr = 0; (17b)
b dz = ew dt. (17¢)

Here the operator d represents the differential along the respective near-
characteristics. The above formulation represents a simple extension of a
one-dimensional problem, and it may be easily extended to the three-
dimensional case.

Figure 1 depicts the projection of nearcharacteristics and the charac-
teristic cone on the current time plane. Also shown is a bicharacteristic,
which is a line joining a point on the base circle (with center at Q andradius At)
and the cone vertex P. The four nearcharacteristics--1P, 2P, 3P, and 4P--
approach bicharacteristics; the remaining two nearcharacteristics approach

11



the streamline as the parameter ¢ tends to zero. Hence, in the linear limit, .
the two sets of compatibility relations of the nearcharacteristic method reduce

to those of the bicharacteristic formulation, except for the form of the rela-

tion along the particle path.

Fig. 1

Projection on r~z Plane of Characteristic
Cone and Nearcharacteristics (lines con—
necting P with points 1, 2, 3, 4, 5,

2 and 6). ANL Neg. No. 113-5630.
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IV. BOUNDARY AND AXIAL-POINT CONDITION

On boundaries, some nearcharacteristics fall outside the computational
domain. The corresponding compatibility conditions on these nearcharacter-
istics become unavailable and are replaced by appropriate boundary condi-
tions. The boundary conditions used here are consistent with the inviscid
flows. The velocity component normal to rigid boundaries is set to zero,
whereas the tangential component is left free. On the axis of symmetry (for
v = 1), i.e., at the axial point, the radial velocity component is zero and the
term u/r is replaced by au/ar.

V. NUMERICAL PROCEDURE

For numerical treatment, the differential equations, Eqs. 12-17, are
written as finite-difference relations. Since the right-hand side of the com-
patibility equations contains partial derivatives of all dependent variables, a
noniterative second-order scheme cannot be derived. Three first-order
schemes are considered here in which the solution is obtained within an error
of the order of magnitude of the time step. The first scheme uses equations
in the r-t plane, the second scheme uses equations in the z-t plane, and the
third scheme uses the leveling technique, in which the above two solutions
are averaged with equal weights.

The difference relations in the r-t plane are ‘

v

1 ow u ew( du  °P
u—p—ul—p1+baz+vr+-g-(—£+a—£ At; (18a)
1



r - r; = (eu; - 1)At; (18b)
1w u , ewfdu Bp)
= Ry T AL Ty ; 1
u+tp =u;+p; [baz+vr+b<az+az]3m (19a)
r - r; = (eus + 1)At; (19b)
- 1{°p ow\ ...
W = Wg - b<:z + ewaz)sAt, (20a)
r - rs = eught. (20b)

The difference relations in the z-t plane are

d dw _ °P
w - p =wz-pz+|:-a—‘:—+v%+eu(-£ +a—r):|2At; (21a)
b(z - z;) = (ew, - 1)At; (21b)
N du u Ow op
w+p—w4+p4—5—r-+\)?+eu§-r-+$ 4At,‘ (22a)
bz - z4) = (ewyg + 1)At; (22b)
op 8u>
u = ug - <—+ eus—) At; (23a)
or or/,
b(z - zg) = ewght. (23b)

Here the variables without subscripts represent the values at the cone vertexP
(the unknown point), and the subscripts refer to the intersections of respective
nearcharacteristics with the current time plane (see Fig. 1). The coordinates
r;, rs, rs, 2, Z4, and zg can be explicitly determined when the nearcharacter-
istic relations are combined with interpolation formulas. Hence, the schemes
discussed above are truly explicit schemes and require no iterative procedure.

VI. NUMERICAL STABILITY

The Courant-Friedrichs-Lewy (CFL) criterion® provides the necessary
condition for convergence and stability for hyperbolic problems. This condi-
tion requires the domain of dependence of the approximate-difference system
to contain the domain of dependence of the exact differential system. For the
finite-difference grid network shown in Fig. 2, this implies that the time step
must be chosen such that all the nearcharacteristics fall inside the rectangle
BCED. (No disturbance should traverse more than one grid spacing during
one time step.)

13
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NEARCHARACTERISTICS P

t=t + A

Fig. 2

Finite-difference Network.
ANL Neg. No. 113-5627.

bz

The vonNeumann analysis? !! is performed here to find more specific
conditions for stability for the three schemes considered. In general, the
vonNeumann condition is again a necessary condition. In many instances,
however, it is also a sufficient condition. For these solution schemes, ex-
plicit expressions are obtained by linear combinations of the compatibility

relations. The first scheme (considering the r-t plane) yields, from Eqs. 18a,
19a, and 20a,

1 1ow u ew/ du ©°p
u = —{ul +u3 - p; +ps +[Egz—+v;+_g_<.5;+5—z-)]lAt

2
10w , u ﬂ(é& ?.2) :
- [baz tvot b \3, t3, 3At ; (24a)
_ 1{9p ow .
W = Wg - g(a—z + ewaz)sAt, (24Db)

1 ow u ew(au Bp>]
=== = 4 = —
{baz tvot TS, s, 3At . (24c)

The second scheme (considering the z-t plane) is obtained from Egs. 21la, 22a,
and 23a:

op du
u = ug - (a—lj + eua—r>6At; (ZSa)

g
1]
N =
g
™~
+
<
N
1
o)
™~
+
=]
'y
+
| ]
Q/
5|8
+
<
|
+
®
[
/I'\
[e 7] R &%)
H g
+
OJIO/
H
o
~
[
=S

ou u dw OP .
- [—a—r- tvo eu(é—; + a—;):LAt}, (25b)
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) 1 au u aW aP)

P=73 -WZ+W4+pz+P4‘['aT”r”“(‘a’r +ar]zm
[a_u_+v9-+ <§-V2 +é£)] At (25¢)
dr | SYM\ar or/l, '

The vonNeumann tests revealed that these two schemes are numeri-
cally unstable for all time steps for any fixed grid sizes. However, the third
scheme that yields the solution by averaging the above two unstable schemes
is proven stable. The stability condition for the third scheme is found to be

by bxy e bu 6)
Ar Ar Az Az

where Ar; = lr - r1|, Ar; = Ir - r3|, etc., and Ar and Az are the grid sizes.

This condition is equivalent to the stability requirement determined for the

bicharacteristic method.? Numerical calculations, which are discussed in the

next section, confirm the findings of the stability analysis. In particular,

Eq. 26 is found to be a sufficient condition for the stability of the averaging

scheme. Details of the vonNeumann stability analysis are given in Appendix B.

ViI. NUMERICAL CALCULATIONS

To test the numerical scheme (scheme 3 that uses the leveling tech-

nique) based on the method of nearcharacteristics, an acoustic problem of a
plane pressure discontinuity diffracting

from a 90° sharp corner is considered.
An analytical solution of this problem was
obtained by Keller,'? and a comparison
was made with the experiment of White
and Blea.kney.13 In Fig. 3, the numerical
solution of the nearcharacteristic method
is plotted along with the analytical solu-
tion and the experiment. Also given in
Fig. 3 is the numerical solution obtained
by a bicharacteristic method.” The com-
parison indicates a generally good agree-
ment, except that, near the wave front,

—— ANALYTICAL SOLUTION . some discrepancy appears between the
=== EXPERIMENT [13] numerical results and the analytical solu-
® © © NEARCHARACTERISTIC METHOD { tion due to the numerical dispersion re-
s 44t BICHARACTERISTIC METHOD 9 sulting from the restrictive time steps
L required in both numerical methods for
(7[0 ofs - stability and convergence. The discrep-

ancy observed between the experiment

and both the analytical and numerical re-

Fig. 3. Diffraction of Plane Acoustic Wave from sults near the corner is attributed to the
90° Sharp Wedge. ANLNeg.No.113-5788.  viscous vortex effects. The technique

X
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used in Keller's analytical solution is Busemann's conical flow method!* by
which the wave equation is transformed into the Laplace's equation. The
potential problem in the circular sector
is then solved by a conformal mapping to
a unit circle. The experiment of White
and Bleakney used a 12% excess pressure.

A close examination of the near-
characteristic result in Fig. 3 reveals an
oscillatory nature when compared to the
other solutions. To examine this more
closely, pressure-time histories are given
in Fig. 4, in which the pressure at points G
and F (located on the wedge faces, dis-
tance "a'" apart from the corner as shown
in Fig. 4) are plotted. Also shown in
Fig. 4 for comparison are Keller's ana-
lytical solution and the numerical solution
based on the bicharacteristic method.

The nearcharacteristic result exhibits

"overshoots” as well as oscillations about
‘o the exact analytical solution, whereas the

A:' I i ! bicharacteristic result appears to follow

0 10 20 30 40 . . . . .
STEP NUMBER the analytical solution without oscillations.

020202020284

ANALYTICAL SOLUTION
® ® © NEARCHARACTERISTIC METHOD
A A A BICHARACTERISTIC METHOD

0.5—

»

Fig. 4. Pressure-Time History of Points Fixed on Numerical calculations are further .
Wedge Faces (cAt/a = 0.095; cAt/Ar = carried out for a problem with a simple
0.475;Ar = Az). ANL Neg.No.113-5789.  geometry involving a sudden expansion

and contraction with an axial symmetry.

Figure 5 depicts the geometric configuration. Two different cases with vary-

ing aspect ratios (0.572 and 2) are considered in examining the varying two -

dimensionality. Step-pressure pulses are imposed far upstream of the system,
which is initially at zero pressure and assumed to be filled with stationary
water. Also, the parameter ¢ is varied (0, 0.0033, and 0.1) to study the effect
of nonlinearity on the numerical results (¢ = 0.0033 and 0.1 correspond to
pressure pulses of 1000 and 30,000 psi, respectively).

PRESSURE ¢
Flg 5 PULSE
< 2 H
Sample Problem, ANL [a-aa2n 8 “2’{'27.66: e facd42n? e

Neg. No. 113-5580.

f——15 iIn—f——27 in

For computational efficiency, the domain is divided into two separate re-
gions. The two-dimensional region comprises the central part including expan-
sion and contraction, and the rest of the system is treated as one-dimensional.
The nearcharacteristic formulation, in the one -dimensional domain, reduces
to the more familiar two-variable method (one space coordinate and time).
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At the interfaces that divide the two regions, the simplified conditions u =
du/dr = dw/dr = ap/ar = 0 are considered. Square grids (Ar = bAz) are
employed (with nine radial nodes for the central region for b = 2) using the
time step chosen to meet the vonNeumann condition (Eq. 26).

Figure 6 shows the pressure results at point G (of Fig. 5), in which
the three numerical schemes, all using the same time step as determined by
Eq. 26, are compared. This and additional calculations, using smaller time
steps, revealed that schemes 1 and 2 were unstable for all time steps, while
Eq. 26 was the sufficient condition for stability of scheme 3.

12
LSCHEME I(r—1 PLANE)
! f
10 ’
|
> SCHEME 3(LEVELING TECHNIQUE)
@ 08 Nondimensional Pressure at Point G
a”
& Obtained by Three Numerical
0al Schemes (¢ = 0.0033; b = 2), ANL
Neg. No. 113-5631.
-1 PLANE)
o2l | SCHEME 2(z
|
|
00 ! 1 { |
00 05 10 15 20 25 i30
TIME, msec

Figures 7-9 compare the results of scheme 3 with the results obtained
by a bicharacteristic formulation.” The two solutions differ most when large

12
NEARCHAR METHOD

10~ ———— BICHAR METHOD

08

Fig. 7

Nondimensional Pressure at Point G 06

Comparing Nearcharacteristic with
Bicharacteristic Solution (e = 0.0033). 04
ANL Neg. No. 113-5628.

PRESSURE

b =2 (radws ratio 2)

b=0572 (radis ratio 7)

020

00 05 10 15 20 25 30

TIME, msec
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1.2
NEARCHAR. METHOD
10~ ———-—BICHAR. METHOD
08—
w Flg. 8
s
g 05 Nondimensional Pressure at Point K
& Comparing Nearcharacteristic with
04l Bicharacteristic Solution (& = 0.0033).
ANL Neg. No. 113-5629,
02
/
/
/
00 21
00 05

TIME, msec

NEARCHAR. METHOD

10 ———— BICHAR. METHOD

-~

06 b = 2 (radius ratio 2}

PRESSURE

04~ b=0572 (radius ratio 7}

0.2

00 I |/
00 05 10 15 20 25 30

TIME, msec

Fig. 9. Nondimensional Pressure at Point H Comparing
Nearcharacteristic with Bicharacteristic Solution
(¢ = 0.0033). ANL Neg. No. 113-5632.

gradients exist in the solution. As can be seen in Fig. 7, the largest difference
occurs at point G during passage of the wave front. Otherwise, the two solu-

tions are in fair agreement. (See, in particular, points K and H in Figs. 8

and 9.) The nearcharacteristic solutions, in general, exhibited an oscillation

about the bicharacteristic solution (the same trend as shown in Figs. 3 and 4). .

The effect of nonlinearity is shown in Fig. 10, which compares the non-
linear results to the solution of linearized equations (Eqgs. 6-8 with ¢ = 0).



The result for ¢ = 0.0033 (Ap = 1000 psi) was essentially identical to that for
the linear solution and hence not plotted. As the nonlinearity parameter in-
creases to 0.1, a noticeable difference (up to 18%) occurs at points of large
gradients. The nonlinear result predicts pressures that exceed the upper-
limiting pressure of the linear analysis, i.e., the imposed pressure (non-
dimensional pressure of 1.0).

12

Fig. 10

Nondimensional Pressure at Point G
Comparing Nonlinear with Linear
Solution (b = 2). ANL Neg.

PRESSURE
o
N
[

04
NONLINEAR (€=0 1) No. 113-5635.
—~—-—— LINEAR(€:=0)
02
00 | | |
00 05 10 15 20 25 30

TIME, msec

Figures 11 and 12 compare the two-dimensional nearcharacteristic
solutions with the one-dimensional acoustic solution!® and the numerical solu-
tion based on a one-dimensional treatment for the entire region. The two-
dimensional result, in general, follows the one-dimensional result for both
aspect ratios considered. However, a large discrepancy appears in the ex-
pansion region, i.e., at point G for b = 0.572 (radius ratio 7), as the two-

dimensionality increases (see Fig. 11). At points away from the central region,

e.g., at point H, the two-dimensionality is not as large (see Fig. 12).
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Fig. 11 b= 2(radis ratio 2)
Nearcharacteristic Solution at
Points G and K in Comparison
with One-dimensional Acoustic
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Fig. 12. Nearcharacteristic Solution at Point H in Comparison
with One-dimensional Acoustic and Numerical
Solutions. ANL Neg. No. 113-5633.

VIII. DISCUSSIONS AND CONCLUSION

This report discusses the numerical aspects of the nearcharacteristic
integration technique through the application of the method to two-dimensional
fluid-hammer problems. The nearcharacteristics, along which the numerical
solutions are integrated, fell slightly outside the characteristic cone; hence,

a direct reference was made to the conditions that have no physical influence
on the solution. This is in contrast to the bicharacteristic method, in which
only indirect reference is made to regions outside the true domain of depen-
dence due to interpolation requirements. Nevertheless, the nearcharacteris-
tics are admissible directions along which an efficient numerical technique
can be formulated. Three numerical schemes were considered. The
vonNeumann stability test revealed that schemes that consider nearcharac-

. teristics in any one spatial-coordinate plane, either the r-t or z-t plane, are
always unstable, while the scheme that constructs the solution by averaging
the unstable schemes is stable. Using the leveling technique, the latter scheme
requires the same stability restrictions as the bicharacteristic formulation.
The time-step limitation is more stringent than the one dictated by the CFL
(Courant-Friedricks-Lewy) criterion.

The numerical results obtained by the nearcharacteristic method ex- .
hibited an oscillatory solution about the analytical solution and the bicharac-
teristic result, the amplitude of oscillation increasing with steepness in the '
gradient of the solution. The oscillation resembles those that appear in the ’




numerical results of direct finite-difference schemes, which are often sup-
pressed by use of artificial viscosity. The method, nevertheless, proved its
efficiency, and the accuracy, in general, is demonstrated by comparison with
analytical solutions and experiments and also with one-dimensional acoustic
solutions in which essentially one-dimensional behavior is expected. The
basic technique of treating the entire domain by two separate regions is es-
pecially suited to problems involving complex networks in which only limited
regions require two-dimensional treatment. For such problems, the technique
provides needed resolution in areas of primary interest and, by a smooth
transition to the conventional two-variable method, enables the remaining
region to be treated one-dimensionally with great reduction in computation
time.
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APPENDIX A ”‘

Compatibility Conditions along Nearcharacteristics

Following the procedures given in Refs. 4 and 16, Eqs. 6-8 are linearly
combined:

du du | w 5\1) op ow ( dw  w BW) 1 3p
dl[at+€(uar+baz+ar + o, at+€uar+g-§"z" +—67

d ) w 3 du u 1 ow
+Q’3[a—f+€(u—§+-g—§)+—a?+\)-r-+gg]:O. (Al)

Consider first the r-t plane. Equation A.l is rearranged so that the
left-hand side is in a characteristic form, with the characteristics lying in
the r-t plane:

u ou ow ow d ) w du
al—a—t-+(aleu+ora)$+az—a—t- +Q’zeug +Ol3gtR +(Q‘3eu+dl)g§ = -Olleg 3o
1 dw BE) u l(aw Bp)
- Q’Zb (ew_az + - - Q’3[\)—; + -6 3z + €W$ . (A.Z)

It follows that

dr 1 1 1
I - &I(gleu+ o) = Eazeu = a—3(cv3€u+ a,), (A.3)

where the operator d denotes the differential along a nearcharacteristic in the
r-t plane. Equation A.3 yields three equations that are homogeneous in the &'s.
The existence of real characteristics requires the coefficient determinant
(called the characteristic determinant) to vanish:

dr
. — 1
U T
dr
0 - = 0 = 0.
eu e 0 (A.4)
dr
1 0 - -
eu T

This yields three nearcharacteristic equations:

dr

3 - eu-l, (A.5a)



dr

— = €

It u+1,
and

=,

dt

(A.5b)

(A.5¢)

Substitution of these equations into Eq. A.3 determines three sets of values

for the ¢'s.

The corresponding compatibility equations are then determined

from Eq. A.1:
du du op dp _ 1 B_W u €W< du ap)
5; Fleu- 5o -55-(eu-Uso = g5 +vo+ 557 *t35;) (aba)
3u du , op % _ l3w |u i}ﬁ(a_u ?.E)
ot +(eut 1)3_ 2t t(eut l)ar "bdz 'r b \dz * dz/’ (A.6b)
and

dW ow _ 1 9p ew Ow

5t Ty T B3 T B 3z (4.6c)

A similar procedure determines
equations in the z-t plane:

ow 1 dW  dp 1 dp
5c T plew - lgs - 55 - plew - D
ow 1 ow op 1 op
5t + b(ew+ 1)aZ + 50 + E(ew+ 1)5
and

du ew ou _ Op du

3t T b 3z - “3r - °Ysr

the following three compatibility

(A.7c)
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APPENDIX B

Fourier Stability Analysis of vonNeumann

Since the Fourier analysis can only be performed for linear systems,
the numerical schemes described by Egs. 24 and 25 are first linearized by
assuming small convective terms (i.e., € - 0 in the equations). This brings
forth further simplifications that

|r - rl‘ = r - r3| = b‘z - z2| = b\z - z4l = bAr, (B.1a)
and
Ir - r5| = blz - Zél = 0, (B.1b)

where Ar = bAz is also assumed and & is defined by Eq. B.la. The procedure
outlined in the following is limited to the plane two-dimensional case (v = 0).
The axisymmetric case can be treated essentially in the same manner, and
the results obtained for the plane case apply equally to the axisymmetric case.

The dependent variables are written as Fourier series, and each com-
ponent is examined as to its growth with time. A Fourier component of the
variable u, for example, at the advanced and current time level and at location

r = jAr, z = klz, can be written as

u(jAr, kAz, t + At) = u(fl""leis-j[h'eiYkAZ (B.2a)
and

u(jAr,kAz,t) = uéleiBjAreiYkAz, (B.2b)

where B and Y are the wave numbers associated with the r and z coordi-
nates, and u0n+1 and ul’ are the time factors at the advanced and current time
level, respectively. Similar expressions are considered for the other two
variables. The substitution of these expressions into the linearized version
of the numerical schemes and simplification yields linear systems of the time
factors in the form

u0n+1 u(x)‘x

watt | = A(BAr, Yoz, At)| wi |, (B.3)
+1

Py Py

where A is a matrix called the amplification matrix. Following vonNeumann
(as given in Refs. 9-11), the numerical stability requires the spectral radius
of the amplification matrix (i.e., the maximum of the absolute value of the
eigenvalues) not to exceed unity.

°

v
/‘
t

v
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In deriving the finite-difference form of the solution schemes, Eqgs. 24
and 25, the values of the dependent variables (ul, Uy, ees etc.) and their deriva-
tives (d3u/dr,dw/3r, ..., etc.) in the current time plane are evaluated by linear
interpolations. For example, u; = Sug + (1 - 8)up, ..., (du/dr), = 8(ug - uC)/
20r + (1 - 8)(ug - up)/2Ar, ..., etc., where the subscripts refer to specific
grid points in the current time plane as shown in Fig. 2. The amplification
matrix A, of the linearized version of the first scheme is thus obtained:

1 0 -id sin BAr
A, = -8%(sin BAr)(sin YAz) 1 - 8(1 - cos YAz) -18 sin YAz . (B.4)
-i8(sin BATr) -i8 sin YAz 1 - &(1 - cos YAz)

[1 - &(1 - cos YAz)]

The eigenvalues A of this matrix are determined by the following cubic
equation:
(1 - N)[(1 - 8+ 8 cos YAz - A\)% + 82 sin® vAz] + 8%(sin® BAr)[82 sin? YAz

+ (1 -8+ 8 cos vYAz)(l - 84+ & cos YAz - \)] = O. (B.5)

It is difficult to solve Eq. B.5 for all possible values of BAr and YAz.
Nevertheless, it is possible to show that, for some particular choice of these
values, the eigenvalue takes on a number that is greater than unity. Indeed,
for the choice of sin YAz = 0 and cos YAz = 1,

A = 14+1id sin BAr.

Hence,

I\ = V1 + 6% sin? BAT, (B.6)

which clearly indicates that the eigenvalue exceeds unity for all values of
6 > 0. This is a sufficient proof that scheme 1 is unconditionally unstable.

From the complete symmetry of the two schemes, Eqs. 24 and 25, the
result for the linearized system of scheme 2 can immediately be written down:

I = V1 + 82 sin? yAz, (B.7)
which again proves the instability of scheme 2.
A procedure similar to the above is applied to scheme 3 (that uses the

averaging technique), from which the following results are obtained: the
amplification matrix,
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2 - &(1 - cos BAr) -8%(sin BAr)(sin vAz) -i26 sin BAr
1 -8%(sin BAr)(sin YAz 2 - 8(l - cos YA -i28 sin YA
NIV ) ) ( 2) N I
-i8(sin BATr) -i8(sin YAz) 2 - 8(2 - cos BAr
[2 - 8(1 - cos YAz)] [2 - 6(1 - cos BATr)]| - cos YAz)

and the third-order polynomial for the eigenvalues,
[2(1 - A) - 8(1 - cos BAr)]{[2(L - A) - 8(1 - cos yAz)][2(1 - A)

§(2 - cos BAr - cos YAz)] + 26% sin® YAz[2 - 8(1 - cos BAr)]}

+ 8*(sin? BAr)(sin® YAz){2[2 - (1 - cos 8Az)] + 2[2 - 8(1 - cos BAr)]

[2(1 - ) - 8(2 - cos BAr - cos YAz)]} + 282%(sin® BAr){[2 - 8(1

cos YAz)][2(1 - A) - &(1 - cos YAz)]} = O. (B.9)

The general solution of this polynomaial again is extremely difficult;
hence, various specific values of BAr and YAz were considered. It was indi-
cated that the most stringent condition on 0 results from the choice fAr = 0
(so that sin BAr = 0 and cos BAr = 1). Thus,

8
A= l:l - E(l - cos 'YAZ)] +id sin YAz. (B.10)
Finally, the requirement I)\l < 1 yields the condition for stability of the third
scheme:

26 < 1. (B.11)

If the simplifications, Eqs. B.1, were not made, the above procedure
would involve a more complicated algebra. Nevertheless, it can be shown
that the stability condition of the third scheme that accounts for the nonlinear
characteristic equations is indeed the one described by Eq. 26.
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