University of California

Ernest O. Lawrence Radiation Laboratory

VORTEX TUBES, A BIBLIOGRAPHY

Livermore, California
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
VORTEX TUBES, A BIBLIOGRAPHY

Brigitta M. Dobratz

April 1964
THIS PAGE
WAS INTENTIONALLY
LEFT BLANK
INTRODUCTION

Since the issuance of a patent to G. J. Ranque in 1934 for a vortex-tube cooling device, little use was made of this effect until the article by R. Hilsch appeared in the Review of Scientific Instruments in 1947 on "The use of expansion of gases in a centrifugal field as cooling process." In recent years this process has found increasing application with expanding research in space exploration and study of refrigerating systems.

This bibliography contains references on vortex tubes, their construction, application, and operation, as well as theoretical aspects of the Ranque-Hilsch effect. References were compiled from the following abstracts for the years 1950 - 1963:

AMR — Applied Mechanics Reviews
ASTI — Applied Science and Technology Index
CA — Chemical Abstracts
EI — Engineering Index
NSA — Nuclear Science Abstracts

Citations are listed in alphabetical order by title, followed by a personal author listing.

No claim is made for exhaustiveness of this bibliography. Suggestions from readers for inclusion of additional titles will be gratefully received.
1. AMATEUR SCIENTIST, SIMPLE DEVICE TO ATTAIN LOW TEMPERATURES: HILSCH TUBE
C. L. Stong
Scientific American
199, 145-146 (1958)

(ASTI: 1958)

2. ANALYSIS OF FLOW AND ENERGY SEPARATION IN TURBULENT VORTEX
R. G. Deissler and M. Perlmutter
International Journal of Heat and Mass Transfer
1, 173-191 (1960)

(EI: 1960)

3. ANALYSIS OF HILSCH VORTEX TUBE
D. S. Webster
Refrigerating Engineering
58, 163-170 (1950)

(EI: 1950)

4. AN ANALYSIS OF THE ENERGY SEPARATION IN LAMINAR AND TURBULENT COMPRESSIBLE VORTEX FLOWS
R. G. Deissler and M. Perlmutter
1960 pp. 40-53

(AMR. 12: 1490)

5. BEHAVIOR OF VARIOUS GASES AND SEPARATION OF GAS MIXTURES IN A VORTEX TUBE (in German)
Karl Elser and Michael Hoch
Zeitschrift für Naturforschung
6a, 25-31 (1961)

(NSA. 5:2824)

6. A BIBLIOGRAPHY AND SURVEY OF THE VORTEX TUBE
R. Westley
College of Aeronautics, Cranfield, England
1954 38p.
Cranfield Note 9

(AMR. 8:2504)

7. BIBLIOGRAPHY OF VORTEX TUBE
W. Curley and R. MacGee, Jr.
Refrigerating Engineering
59, 166-193 (1951)

(EI: 1951)
8. CHARACTERISTICS OF AND CALCULATIONS FOR A VORTEX REFRIGERATOR (In Russian)
 A. P. Mukulov
 Kuibyshevskii Aviatsionnyi Institut. Trudy
 No. 6, 73-85 (1958)

 (AMR. 13:5348)

9. CHARACTERISTICS OF THE MEAN FLOW PATTERNS AND STRUCTURE OF TURBULENCE IN SPIRAL GAS STREAMS
 W. R. Schowalter and H. F. Johnstone
 American Institute of Chemical Engineers, Journal
 6, 648-655 (1960)

 (ASTI: 1961)

10. COMMENTS ON THE VORTEX TUBE
 C. D. Fulton
 Refrigerating Engineering
 59, 984 (1951)

 (ASTI: 1952)

11. COMMON PHENOMENA ARE NOT SIMPLE: THE HILSCH TUBE
 A. W. Kramer
 Power Engineering
 54, 79-80 (1950)

 (ASTI: 1950)

12. COOLING WITH VORTEX TUBES
 Industrial and Engineering Chemistry
 54, 14 (1962)

 (ASTI: 1962)

13. CORNELL AERONAUTICAL LABORATORY VORTEX FREE AIR THERMOMETER
 J. Beneke
 In: Symposium on the vortex tube as a true free air thermometer, Chicago, Illinois, May 1955, pp. 61-86.
 Armour Research Foundation

 (AMR. 10:1950)

14. ON EFFECT OF CENTRIFUGAL FIELD STRENGTH UPON THERMAL CONDITION OF GASES. EXPLANATION OF RANQUE EFFECT (In Hungarian)
 J. Erdelyi
 Energia es Atomtechnica
 14, 1-7 (1961)

 (AMR. 14:4365)
15. THE EFFECT OF THE VORTEX TEMPERATURE SEPARATION OF SUPERHEATED VAPORS AND AN EXPERIMENTAL VERIFICATION OF THE HILSCH-FULTON HYPOTHESIS
V. P. Alekseev and V. S. Martynovskii
Izvestiya Akademii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk
1956, 71-79

(CA 50:6843g)

16. EFFECTS OF A CENTRIFUGAL FIELD ON THE HEAT CONDITION OF GASES, EXPLANATION OF THE RANQUE PHENOMENON
J. Erdelyi
Forschungsarbeiten auf dem Gebiete des Ingenieurwesens
28, 181-186 (1962)

(AMR. 16:7)

17. THE EFFICIENCY OF THE RANQUE VORTEX TUBE AT LOW PRESSURE (In Russian)
V. S. Martinovsky and A. M. Voytko
Teploenergetica
No. 2, 80-85 (1961)

(AMR. 14:5576)

18. ELECTRIC DEW POINT METER COOLED BY VORTEX TUBE
F. C. Hooper and I. S. Juhasz
Refrigerating Engineering
60, 1196-1197 (1952)

(EIF: 1953)

19. ENERGY FLOWS IN VORTEX TUBE
A. J. Reynolds
Zeitschrift fü r Angewandte Mathematik und Physik
12, 343-357 (1961)

(EIF: 1962)

20. AN EXPERIMENTAL AND ANALYTICAL STUDY OF VORTEX FLOW TEMPERATURE SEPARATION BY SUPERPOSITION OF SPIRAL AND AXIAL FLOWS
J. E. Lay
American Society of Mechanical Engineers
Paper No. 58-SA-71

(AMR. 11:5043)
21. AN EXPERIMENTAL AND ANALYTICAL STUDY OF VORTEX FLOW TEMPERATURE SEPARATION BY SUPERPOSITION OF SPIRAL AND AXIAL FLOWS. PART II.
 J. E. Lay

 (AMR. 13:3051)

22. AN EXPERIMENTAL INVESTIGATION OF AN IMPROVED VORTEX COOLING DEVICE
 Thomas A. Blatt and R. B. Trusch
 American Society of Mechanical Engineers 1962 8 p.
 Paper No. 62-WA-200

 (EI: 1963).

23. AN EXPERIMENTAL INVESTIGATION OF THE VORTEX EFFECT IN SMALL-BORE TUBES (In Russian)
 N. S. Torochesnikov and Zh. A. Koval
 Nauchnyi Doklady Vysshei Shkoly, Khimiya i Khimicheskaya Tekhnologiya No. 3, 603-606, 1958

 (AMR. 14:6856)

24. AN EXPERIMENTAL INVESTIGATION OF THE WORKING PROCESS OF AN AIR VORTEX COOLING INSTALLATION (In Russian)
 V. Metenin
 Kholodil'n Tekhnika No. 4, 15-20 (1959)

 (AMR. 15:2843)

25. EXPERIMENTAL STUDY OF FLOW AND SEPARATION IN VORTEX TUBES WITH APPLICATION TO GASEOUS FISSION HEATING
 J. J. Keyes, Jr.

 (EI: 1961)

26. EXPERIMENTAL STUDY OF GAS DYNAMICS IN HIGH VELOCITY VORTEX FLOW
 J. J. Keyes, Jr.

 (EI: 1961)
27. AN EXPERIMENTAL STUDY OF VORTEX TUBES
H. Takahama and V. I. Kowashima
Nagoya Univ. Memoirs of the Faculty of Engineering
12, 227-245 (1960)

(AMR. 16:2842)

28. EXTENSION OF THOMSON'S LAW OF CIRCULATION TO
VISCOUS FLUIDS (In German)
W. Kaufmann
Zeitschrift für Flugwissenschaften
7, 103-106 (1959)

(AMR. 13:3458)

29. FEASIBILITY OF TURBULENT VORTEX CONTAINMENT
IN GASEOUS FISSION ROCKET
M. L. Rosenzweig, H. C. Hottel, and G. C. Williams
American Rocket Society. Journal
31, 1873-1883 (1961)

(EI: 1961)

30. FISSION-FRAGMENT ENERGY LOSS FROM VORTEX TUBES
Henry J. Stumpf
California Inst. of Tech., Pasadena Jet Propulsion Lab.
JPL-TR-32-188 (AD-274 313)

(NSA. 17:4239)

31. FLOW IN VISCOUS VORTEX
C. D. Pengelley
Journal of Applied Physics
28, 86-92 (1957)

(EI: 1957)

32. FLUID ACTION IN THE VORTEX TUBE
R. Mac Gée
Refrigerating Engineering
58, 974-975 (1950)

(ASTI: 1950)

33. GAS AND ISOTROPE SEPARATION IN A VORTEX TUBE
V. Bornkessel and J. Pilot
Zeitschrift für Physikalische Chemie
221, 177 (1962)

(Chem. Titles. 2:1963)
34. HEAD LOSS IN FLOW THROUGH CYCLONE DUST SEPARATOR OR VORTEX CHAMBER
 H. E. Weber and J. H. Keenan
 American Society Mechanical Engineers, Transactions. Journal of Applied Mechanics
 24, 16-21 (1957)
 (EI: 1957)

35. HIGH-SPEED DRYING OF AMMONIUM IN A VORTEX CHAMBER
 P. Z. Shubeko and S. K. Khmelevoi
 Koks i Khimiya
 No. 1, 38 (1963)
 (Chem. Titles 6:1963)

36. THE HILSCH TUBE: LOW-PRESSURE EFFECTS
 Philip J. Lorenz, Gerald D. Ericson, and James D. Hayes
 Iowa Academy of Science, Proceedings
 68, 443-451 (1961)
 (CA 56:13987a)

37. HOW THE RANQUE-HILSCH-VORTEX TUBE OPERATES
 F. Schultz-Grunow
 Refrigerating Engineering
 59, 52-53 (1951)
 (ASTI: 1951)

38. IMPROVEMENT OF HEAT TRANSFER IN BOILING WATER REACTORS
 C. Foure
 Société Nationale d'Etude et de Construction de Moteur d'Aviation
 Quarterly report no. 2, July-Sept. 1960
 1960 17 p.
 EURAEC-34
 (NSA. 16:17793)

39. THE INTERNAL CHARACTERISTICS AND PROBE VARIABLES OF THE NRL AXIAL-FLOW VORTEX THERMOMETER
 R. M. Schecter and R. E. Ruskin
 In: Symposium on the vortex tube as a true free air thermometer, Chicago, Illinois
 May 1955, pp. 118-126
 Armour Research Foundation
 (AMR. 10:1952)
40. INTERNAL FLOW DATA AND HEAT TRANSFER THEORY FOR VORTEX REFRIGERATING TUBE
 G. W. Scheper, Jr.
 Heat Transfer and Fluid Mechanics Institute
 Preprints of papers
 Stanford, Stanford University Press, 1951
 (EI: 1951)

41. INVESTIGATION OF PRESSURE, TEMPERATURE, VELOCITY AND DENSITY DISTRIBUTION IN HILSCH-VORTEX TUBE
 J. E. Bock
 South African Mechanical Engineer
 6, 95-103 (1956)
 (EI: 1956)

42. INVESTIGATION OF THE ENERGY DISTRIBUTION IN A HIGH VELOCITY VORTEX TYPE FLOW
 E. R. G. Eckert and J. P. Hartnett
 In: Symposium on the vortex tube as a true free air thermometer, Chicago, Illinois
 May 1955, pp. 25-60
 Armour Research Foundation
 (AMR. 10:1620)

43. INVESTIGATION OF VORTEX AIR CLEANER
 T. C. Daniels
 Engineer
 203, 358-362 (1957)
 (EI: 1957)

44. INVESTIGATION OF VORTEX TEMPERATURE TYPE COMPRESSED GAS SEPARATORS
 V. I. Metenin
 Soviet Physics - Technical Physics
 5, 1025-1032 (1961)
 (AMR. 14:6260)

45. INVESTIGATION ON THE RANQUE-HILSCH (VORTEX) TUBE
 P. S. Baker and W. R. Rathkamp
 Oak Ridge National Lab., Tennessee
 1954 47 p.
 ORNL-1659
 (NSA. 8:6762)
46. MAGIC COLD: RANQUE-HILSCH TUBE
Gas
38, 124-125 (1962)

(ASTI: 1962)

47. MYSTERIOUS HILSCH TUBE
A. D. Kafadar and O. E. Teichmann
Petroleum Processing
7, 572 (1952)

(ASTI: 1952)

48. NRL VORTEX THERMOMETER INSTALLATION AND
RELIABILITY EXPERIENCE
C. A. Stiefelmaier
In: Symposium on the vortex tube as a true free air
thermometer, Chicago, Illinois
May 1955, pp. 151-167
Armour Research Foundation

(AMR. 10:2300)

49. NOTE ON VORTEX-TUBE FLOWS
A. J. Reynolds
Journal of Fluid Mechanics
14 pt. 1, 18-20 (1962)

(EI: 1963)

50. NOVEL REFRIGERATION CYCLES. IV THE HILSCH
VORTEX COOLER
A. G. Monroe
Institute of Refrigeration (London), Proceedings
49, 148-151

(CA 49:678c)

51. OBSERVATIONS ON VORTEX TUBES (In German)
H. Sprenger
Zeitschrift für Angewandte Mathematik und Physik
7, 293-330 (1951)

(AMR. 5:893)

52. ON A STATIONARY TEMPERATURE SEPARATING DEVICE
USED AS A MEASURING AND COOLING HEATING
APPARATUS
P. H. Savet
ASME-ARS Joint Aviation Conference, March 1958
Dallas, Texas

(AMR. 12:4088)
53. ON THE ORIGIN AND MECHANISM OF VORTEX MOTION AT THE INLET OF INTAKES PLACED NEAR A FLAT SURFACE
 J. R. Weske
 Maryland Univ. Inst. of Fluid Dynamics and Applied Math.
 AFOSR-TN-58-863 (AD-203 672)
 (AMR. 13:804)

54. ON THE THEORY OF THE RANQUE-HILSCH COOLING EFFECT
 J. J. Van Deemter
 Applied Scientific Research, Section A
 3, 174-196 (1952)
 (AMR. 5:3559)

55. OPERATION CIRRUS USES PRINCIPLE OF HILSCH TUBE TO MEASURE TEMPERATURES
 B. Vonnegut
 Refrigerating Engineering
 58, 267 (1950)
 (ASTI: 1950)

56. OPERATIONAL CHARACTERISTICS OF THE NRL AXIAL-FLOW VORTEX THERMOMETER
 R. H. Ruskin and R. M. Schecter
 In: Symposium on the vortex tube as a true free air thermometer, Chicago, Illinois
 May 1955, pp. 118-126
 Armour Research Foundation
 (AMR. 10:1953)

57. OPTIMUM DESIGN OF A VORTEX TUBE FOR ACHIEVING LARGE TEMPERATURE DROP RATIOS
 R. Westley
 College of Aeronautics; Cranfield, England
 1955 20p.
 Cranfield Note 30
 (AMR. 9:4062)

58. PERFORMANCE CHARACTERISTICS OF A VORTEX STABILIZED PLASMA GENERATOR USING ARGON
 R. H. Clark, et al
 McDonnell Aircraft Corporation, St. Louis, Missouri
 1960 93p.
 NP-9788
 (NSA 15:10211)
59. PERFORMANCE CHARACTERISTICS OF WATER-JACKETED VORTEX TUBE
 F. E. Heffner
 American Society of Heating, Refrigeration and Airconditioning Engineers. Journal
 1, 44-47 (1959)
 (EI: 1959)

60. PERFORMANCE OF SHORT VORTEX TUBE
 B. B. Parulekar
 Institution of Engineers, India. Journal
 40, 409-418 (1960)
 (AMR. 14:3771)

61. PERFORMANCE OF THE AR VORTEX FREE AIR THERMOMETER AT SUBSONIC AND SUPERSONIC VELOCITIES
 J. C. Hedge
 In: Symposium on the vortex tube as a true free air thermometer, Chicago, Illinois, May 1955, pp. 127-150
 Armour Research Foundation
 (AMR. 10:2299)

62. A PRELIMINARY EXPERIMENTAL STUDY OF VORTEX TUBES FOR GAS-PHASE FISSION HEATING
 J. L. Kerrebrock and J. J. Keyes, Jr.
 Oak Ridge National Laboratory, Tennessee
 1959 54p.
 ORNL-2660
 (NSA.15: 8269)

63. PREVENTING CONDENSATION INSIDE VORTEX TUBES
 Willem U. Auer, et al
 US Patent 2, 894,371. 1959
 (CA. 53:18568i)

64. PRODUCING COLD AIR
 E. H. Otten
 Engineering
 186, 154-156 (1958)
 (EI: 1958)

65. RANQUE-HILSCH TUBE
 Review of Scientific Instruments
 22, 803 (1951)
 (ASTI: 1952)
66. RANQUE-HILSCH TUBE
C. H. Vivian
Compressed Air Magazine
68, 26-28 (1963)

(ASTI: 1963)

67. RANQUE-HILSCH VORTEX TUBE
W. A. Scheller and G. M. Brown
Industrial and Engineering Chemistry
49, 947-1025 (1957)

(EI: 1957)

68. RANQUE'S TUBE
C. D. Fulton
Refrigerating Engineering
58, 473-479 (1950)

(ASTI: 1950)

69. RELATIONS BETWEEN THE VALUE OF THE RANQUE EFFECT AND THE PROPERTIES OF REAL GASES
V. M. Brodyanskii and I. L. Leites
Inzhenerno-Fizicheskii Zhurnal, Akademiia Nauk Belorusskoi, SSR
5, 38-41 (1962)

(CA. 57:14447c)

70. REQUIREMENTS FOR VORTEX THERMOMETERS
J. C. Bellamy
In: Symposium on the vortex tube as a true free air thermometer, Chicago, Illinois, May 1955, pp. 1-11
Armour Research Foundation

(AMR. 10:1618)

71. RESEARCH SUMMARY NO. 36-39, VOLUME I FOR THE PERIOD APRIL 1, 1961 TO JUNE 1, 1961 (ON SPACE-RELATED RESEARCH)
1961 104p.
NP-10642

(NSA. 15: 28869)

72. SECONDARY FLOWS IN JET-DRIVEN VORTEX TUBES
M. L. Rosenzweig, D. H. Ross, and W. S. Lewellen
Journal of the Aerospace Sciences
29, 1142-1143 (1962)

(ASTI: 1962)
73. SHORT VORTEX TUBE
B. B. Parulekar
Journal of Refrigeration
4, 74-80 (1961)

(EI: 1961)

74. SIMPLY CONSTRUCTED VORTEX TUBE FOR PRODUCING HOT AND COLD AIR STREAMS
M. P. Blaber
Journal of Scientific Instruments
27, 168-169 (1950)

(EI: 1950)

75. SKY INFORMATION MAY SAVE FUEL
Midwest Engineering
8, 32 (1955)

(ASTI: 1955)

76. MINGLING OF STREAMS IN CHANNELS OF VARYING CROSS SECTIONS...
O. V. Yakovlevskii
Akademiia Nauk SSSR, Izvestia, Otdelenie Tekhnicheskikh Nauk Mekhanika i Mekhanostroenie No. 1, 66-72 (1962)

(EI: 1962)

77. SOME TEMPERATURE AND PRESSURE MEASUREMENTS IN CONFINED VORTEX FIELDS
J. M. Savino and R. G. Ragsdale

(AMR. 14:4968)

78. A STUDY OF THE EFFECT OF TEMPERATURE SEPARATION OF AIR IN A DIRECT-FLOW VORTEX
N. S. Torocheshnikov, I. L. Leites, and V. Brodyanskii
Soviet Physics-Technical Physics 3, 1144-1150 (1959)

(AMR. 12:6271)
79. STUDY OF VORTEX FLOW-TEMPERATURE SEPARATION
BY SUPER-POSITION OF SPIRAL AND AXIAL FLOWS
J. E. Lay
American Society of Mechanical Engineers
1958; 13 p.
Paper no. 58-SA-71

(EI: 1958)

80. TEMPERATURE REVERSAL IN A VORTEX TUBE
V. S. Martynovskii and V. P. Alekseev
Doklady ot S. S. S. R. 9 - tomu (Devyatoma)
Mezhaduranodnom Kongressu Kholáda
1957, 74-79

(CA. 55:6057c)

81. THEORETICAL ANALYSIS OF RANQUE-HILSCH TUBE
C. Arora
In: Congress of Theoretical and Applied Mechanics,
7th. Proceedings, Bombay, India, Dec. 23-26, 1961,
pp. 241-248
Kharipur Indian Society of Theoretical and Applied
Mechanics, Indian Institute of Technology, 1961

(AMR. 16:7230)

82. THEORETICAL AND EXPERIMENTAL STUDIES ON
VORTEX TUBE
M. Suzuki
Institute of Physical and Chemical Research (Tokyo) -
Scientific Papers
54, 42-87 (1960)

(EI: 1960)

83. THERMAL CHARACTERISTICS OF ENERGY SEPARATION
IN TURBULENT VORTEX
J. B. Clampett
Australian Chemical Engineering
3, 9-13 (1962)

(EI: 1963)

84. THERMODYNAMIC ANALYSIS OF THE EFFECT OF GAS
AND VAPOR SEPARATION IN A VORTEX TUBE (In Russian)
V. S. Martynovskii, and V. P. Alekseev
Teploenergetica
2, 31-34 (1955)

(AMR. 10:1228)
85. TURBULENT HEAT TRANSFER IN STRATIFIED FLOW
F. Schultz-Grunow
In: Theory and Fundamental Research in Heat Transfer, Annual Meeting of the American Society of Mechanical Engineers, Nov. 1960, pp. 87-103
New York, Pergamon Press, 1963
(CA. 59:10999c)

86. UNSTEADY, VISCOUS, CIRCULAR FLOW Part 3
M. Sibulkin
(EI: 1962)

87. THE VORTEX THERMAL SEPARATION EFFECT FOR GASES AND VAPORS
V. S. Martynovskii and V. P. Alekseev
Soviet Physics-Technical Physics 1, 2233-2243 (1957)
(CA. 52:13329i)

88. VORTEX THERMOMETER FOR MEASURING TRUE AIR TEMPERATURES AND TRUE AIR SPEEDS IN FLIGHT
B. Vonnegut
Review of Scientific Instruments 21, 136-141 (1950)
(EI: 1950)

89. VORTEX TUBE
S. Comassar
American Society of Naval Engineers. Journal 63, 99-108 (1951)
(EI: 1951)

90. VORTEX TUBE AS A THERMOMETER FOR HIGH-SPEED PLANES. (Abstract)
A. D. Kafadar and O. E. Teichmann
Refrigerating Engineering 60, 490 (1952)
(ASTI: 1952)

91. THE VORTEX TUBE AS AN ACOUSTIC GENERATOR WITH APPLICATION TO TRUE AIRSPEED MEASUREMENT
J. P. Nicklas
In: Symposium on the vortex tube as a true free air thermometer, Chicago, Illinois, May 1955, pp. 87-105
Armour Research Foundation
(AMR. 10:1951)
92. VORTEX TUBE COOLING FOR SUPersonic CRAFT

(EI: 1961)

93. VORTEX-TUBE FREE-AIR THERMOMETER
L. S. Packer and H. C. Box
Paper no. 55-A-22

(EI: 1956)

94. VORTEX TUBE – INTERNAL FLOW DATA AND HEAT TRANSFER THEORY
G. W. Scheper, Jr.
Refrigerating Engineering 59, 985-989 (1951)

(EI: 1951)

95. VORTEX TUBE PERFORMANCE DATA SHEETS
R. Westley
College of Aeronautics, Cranfield, England
1957, 7p.
Cranfield note 67

(AMR. 12:1491)

96. VORTEX TUBE PRINCIPLE USED BY NAVY IN THERMOMETER FOR HIGH SPEED PLANES
Refrigerating Engineering 60, 379 (1952)

(ASTI: 1952)

97. VORTEX TUBE SAND TRAPS
A. R. Robinson
American Society of Civil Engineers. Proceedings 86, 1-34 (1960)

(ASTI: 1961)

98. VORTEX TUBE TODAY
R. C. Mac Gee, Jr.
Power Engineering 55, 82-83 (1951)

(EI: 1951)
99. WATER FLOW IN TUBES
C. Foure
Société Nationale d'Etude et de Construction de Moteurs d'Aviation
1st quarterly report April-June 1960, 14 p.
TID-12470 (AEC-202/Euratom 86)

(NSA. 15:18193)

100. WATER FLOW IN TUBES
C. Foure
Société Nationale d'Etude et de Construction de Moteurs d'Aviation
TID-12475 (AEC-202/Euratom 86)

(NSA. 15:18194)

Addendum

AXIAL FLOW IN A VORTEX
J. B. Nuttall
Nature
172, 582-583 (1953)
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alekseev, V. P.</td>
<td>15, 80, 84, 87</td>
</tr>
<tr>
<td>Arora, C.</td>
<td>81</td>
</tr>
<tr>
<td>Auer, Willem U.</td>
<td>63</td>
</tr>
<tr>
<td>Baker, P. S.</td>
<td>45</td>
</tr>
<tr>
<td>Bellamy, J. C.</td>
<td>70</td>
</tr>
<tr>
<td>Beneke, J.</td>
<td>13</td>
</tr>
<tr>
<td>Blaber, M. P.</td>
<td>74</td>
</tr>
<tr>
<td>Blatt, Thomas A.</td>
<td>22</td>
</tr>
<tr>
<td>Bock, J. E.</td>
<td>41</td>
</tr>
<tr>
<td>Bornkessel, V.</td>
<td>33</td>
</tr>
<tr>
<td>Box, H. C.</td>
<td>93</td>
</tr>
<tr>
<td>Brodyanskiǐ, V. M.</td>
<td>69, 78</td>
</tr>
<tr>
<td>Brown, G. M.</td>
<td>67</td>
</tr>
<tr>
<td>Clampett, J. B.</td>
<td>83</td>
</tr>
<tr>
<td>Clark, R. H.</td>
<td>58</td>
</tr>
<tr>
<td>Comassar, S.</td>
<td>89</td>
</tr>
<tr>
<td>Curley, W.</td>
<td>7</td>
</tr>
<tr>
<td>Daniels, T. C.</td>
<td>43</td>
</tr>
<tr>
<td>Deissler, R. G.</td>
<td>2, 4</td>
</tr>
<tr>
<td>Eckert, E. R. G.</td>
<td>42</td>
</tr>
<tr>
<td>Elser, Karl</td>
<td>5</td>
</tr>
<tr>
<td>Erdelyi, J.</td>
<td>14, 16</td>
</tr>
<tr>
<td>Ericson, Gerald D.</td>
<td>36</td>
</tr>
<tr>
<td>Foure, C.</td>
<td>38, 99, 100</td>
</tr>
<tr>
<td>Fulton, C. D.</td>
<td>10, 68</td>
</tr>
<tr>
<td>Hartnett, J. P.</td>
<td>42</td>
</tr>
<tr>
<td>Hayes, James D.</td>
<td>36</td>
</tr>
<tr>
<td>Hedge, J. C.</td>
<td>61</td>
</tr>
<tr>
<td>Heffner, F. E.</td>
<td>59</td>
</tr>
<tr>
<td>Hoch, Michael</td>
<td>5</td>
</tr>
<tr>
<td>Hooper, F. C.</td>
<td>18</td>
</tr>
<tr>
<td>Hottel, H. C.</td>
<td>29</td>
</tr>
<tr>
<td>Johnstone, H. F.</td>
<td>9</td>
</tr>
<tr>
<td>Juhasz, I. S.</td>
<td>18</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Kafadar, A. D.</td>
<td>47, 90</td>
</tr>
<tr>
<td>Kaufmann, W.</td>
<td>28</td>
</tr>
<tr>
<td>Keenan, J. H.</td>
<td>34</td>
</tr>
<tr>
<td>Kerrebrock, J. L.</td>
<td>62</td>
</tr>
<tr>
<td>Keyes, J. J., Jr</td>
<td>25, 26, 62</td>
</tr>
<tr>
<td>Khmelevoi, S. K.</td>
<td>35</td>
</tr>
<tr>
<td>Koval, Zh. A.</td>
<td>23</td>
</tr>
<tr>
<td>Kowashima, V. I.</td>
<td>27</td>
</tr>
<tr>
<td>Kramer, A. W.</td>
<td>11</td>
</tr>
<tr>
<td>Lay, J. E.</td>
<td>20, 21, 79</td>
</tr>
<tr>
<td>Leites, I. L.</td>
<td>69, 78</td>
</tr>
<tr>
<td>Lewellen, W. S.</td>
<td>72</td>
</tr>
<tr>
<td>Lorenz, Philip J.</td>
<td>36</td>
</tr>
<tr>
<td>Mac Gee, R., Jr.</td>
<td>7, 32</td>
</tr>
<tr>
<td>Mac Gee, R. C., Jr.</td>
<td>98</td>
</tr>
<tr>
<td>Martinovsky, V. S.</td>
<td>17</td>
</tr>
<tr>
<td>Martynovskii, V. S.</td>
<td>15, 80, 84, 87</td>
</tr>
<tr>
<td>Metenin, V.</td>
<td>24, 44</td>
</tr>
<tr>
<td>Monroe, A. G.</td>
<td>50</td>
</tr>
<tr>
<td>Mukulov, A. P.</td>
<td>8</td>
</tr>
<tr>
<td>Nicklas, J. P.</td>
<td>91</td>
</tr>
<tr>
<td>Otten, E. H.</td>
<td>64</td>
</tr>
<tr>
<td>Packer, L. S.</td>
<td>93</td>
</tr>
<tr>
<td>Parulekar, B. B.</td>
<td>60, 73</td>
</tr>
<tr>
<td>Pengelley, C. D.</td>
<td>31</td>
</tr>
<tr>
<td>Perlmutter, M.</td>
<td>2, 4</td>
</tr>
<tr>
<td>Pilot, J.</td>
<td>33</td>
</tr>
<tr>
<td>Ragsdale, R. G.</td>
<td>77</td>
</tr>
<tr>
<td>Rathkanap, W. R.</td>
<td>45</td>
</tr>
<tr>
<td>Reynolds, A. J.</td>
<td>19, 49</td>
</tr>
<tr>
<td>Robinson, A. R.</td>
<td>97</td>
</tr>
<tr>
<td>Rosenzweig, M. L.</td>
<td>29, 72</td>
</tr>
<tr>
<td>Ross, D. H.</td>
<td>72</td>
</tr>
<tr>
<td>Ruskin, R. E.</td>
<td>39, 56</td>
</tr>
<tr>
<td>Savet, P. H.</td>
<td>52</td>
</tr>
<tr>
<td>Savino, J. M.</td>
<td>77</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Schecter, R. M.</td>
<td>39, 56</td>
</tr>
<tr>
<td>Scheller, W. A.</td>
<td>67</td>
</tr>
<tr>
<td>Scheper, G. W., Jr.</td>
<td>40, 94</td>
</tr>
<tr>
<td>Schowalter, W. R.</td>
<td>9</td>
</tr>
<tr>
<td>Schultz-Grunow, F.</td>
<td>37, 85</td>
</tr>
<tr>
<td>Shubeko, P. Z.</td>
<td>35</td>
</tr>
<tr>
<td>Sibulkin, M.</td>
<td>86</td>
</tr>
<tr>
<td>Sprenger, H.</td>
<td>51</td>
</tr>
<tr>
<td>Stiefelmaier, C. A.</td>
<td>48</td>
</tr>
<tr>
<td>Stong, C. L.</td>
<td>1</td>
</tr>
<tr>
<td>Stumpf, Henry J.</td>
<td>30</td>
</tr>
<tr>
<td>Suzuki, M.</td>
<td>82</td>
</tr>
<tr>
<td>Takahama, H.</td>
<td>27</td>
</tr>
<tr>
<td>Teichmann, O. E.</td>
<td>47, 90</td>
</tr>
<tr>
<td>Torochesnikov, N. S.</td>
<td>23, 78</td>
</tr>
<tr>
<td>Trusch, R. B.</td>
<td>22</td>
</tr>
<tr>
<td>Van Deemter, J. J.</td>
<td>54</td>
</tr>
<tr>
<td>Vivian, C. H.</td>
<td>66</td>
</tr>
<tr>
<td>Vonnegut, B.</td>
<td>55, 88</td>
</tr>
<tr>
<td>Voytko, A. M.</td>
<td>17</td>
</tr>
<tr>
<td>Weber, H. E.</td>
<td>34</td>
</tr>
<tr>
<td>Webster, D. S.</td>
<td>3</td>
</tr>
<tr>
<td>Weske, J. R.</td>
<td>53</td>
</tr>
<tr>
<td>Westley, R.</td>
<td>6, 57, 95</td>
</tr>
<tr>
<td>Williams, G. C.</td>
<td>29</td>
</tr>
<tr>
<td>Yakovlevskii, O. V.</td>
<td>76</td>
</tr>
</tbody>
</table>
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.