A MEASUREMENT OF THE NEUTRON-PROTON DEPOLARIZATION PARAMETER AT 23 MEV

R. B. Perkins and J. E. Simmons, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

The neutron-proton depolarization parameter was determined by comparing the scattered neutron polarization to the neutron polarization before scattering. Neutrons of 23.1 MeV and approximately 50 percent polarization were produced in the T(d, n) reaction and were scattered from protons contained in a plastic scintillator. The scattered neutron polarization was analyzed by scattering in a liquid helium scintillator. A triple coincidence between the recoil proton, the recoil alpha particle, and a final neutron detector served to identify the events and to reduce backgrounds to a low level. The values of the depolarization parameter for center-of-mass scattering angles of 70, 90, and 110 degrees were measured to be $+0.56 \pm 0.20$, $+0.81 \pm 0.17$, and $+0.81 \pm 0.20$, respectively.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
A MEASUREMENT OF THE NEUTRON-PROTON DEPOLARIZATION PARAMETER AT 23 MEV*

R. B. Perkins and J. E. Simmons, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico

Various parameters in the neutron-proton system at 23 MeV are being measured in Los Alamos in an effort to test the validity of several theoretical predictions. A measurement of the differential cross section [1] is presently being refined. The polarization has been measured [2] and preparations are being made to measure the spin correlation parameter $C_{nn}$ by means of scattering polarized neutrons from a polarized proton target. The depolarization measurement is one of a series of experiments in which the change in the polarization of neutrons scattered by unpolarized protons is measured. The depolarization parameter $D$ is measured in a geometry where the incident neutron polarization vector $P_1$ is made normal to the n-p scattering plane, and the normal component of the scattered neutron polarization is observed. Under these conditions, $D$ is related to the observables by the equation:

$$D = \frac{1}{P_1} \left[ \frac{e}{P_3} \left( 1 + P_1 P_2 \right) - P_2 \right]$$

where $e$ is the measured asymmetry in the final scattering, $P_3$ is the analyzing power in the final scattering, $P_2$ is the n-p polarization, and $P_1$ is the source polarization.

Fig. 1 shows a plan view of the experimental setup. The T(d,n) reaction at a deuteron energy of 7.0 MeV produced 23.1 MeV neutrons at $\theta_1 = 30^\circ$ lab. of approx. 50 percent polarization. [3,4]

*Work done under the auspices of the U. S. Atomic Energy Commission.
These were scattered at an angle $\theta_2$ by protons in the plastic scintillator (S1). The normal component of the scattered neutron polarization was analyzed by scattering in a liquid helium scintillator [5] (S2) into a final neutron detector (S3). A spin-precession solenoid rotated the neutron spin vector by $\pm 90^\circ$ to permit asymmetry measurements to be taken without the necessity of moving S3.

The double scattering events were identified by means of a fast triple coincidence between signals generated in the three detectors. A parallel slow system allowed suitable pulse height bounds to be placed on each signal. Additional circuitry permitted simultaneous measurement of the dominant chance coincidence rates, which were subtracted from the in-phase rates before calculating the asymmetry $e$.

The $T(d,n)$ source polarization under the conditions of this experiment was taken to be $P_1 = 0.48 \pm 0.06$. This value was obtained by averaging the angular dependence of $P_1$ over the angular range subtended by S1 and using a recent measurement of the $T(d,n)$ polarization. [4] The value of $P_2$ was taken from our earlier measurements. [2]

The neutron-helium analyzing power $P_3$ was calculated from the Dodder-Gammel-Seagrave phase shifts, [6] to which corrections for angular resolution and neutron multiple scattering were made. The values of $D$ for c.m. scattering angles of $70^\circ$, $90^\circ$, and $110^\circ$ were measured to be $+0.56 \pm 0.20$, $+0.81 \pm 0.17$, and $+0.81 \pm 0.20$, respectively. The listed errors are standard deviations which are dominated by the statistical uncertainties in the asymmetry measurements but also include the uncertainties in the values of $P_1$ and $P_2$. These values are plotted
in Fig. 2 along with two representative theoretical predictions. The curve labeled Breit is an interpolation to 23.1 MeV of an energy dependent set of phase shifts adjusted to best fit existing n-p and p-p data from 10 to 50 MeV. [7] The curve labeled Hamada and Johnston is based upon a linear interpolation to 23.1 MeV of phase shifts calculated from the Hamada and Johnston potential. [8] The datum point at 70° c.m. falls lower than the curves by 1.6 standard deviations. We do not consider the deviation significant, and to the accuracy of this experiment, we consider the data to be consistent with the theoretical predictions.

7. G. Breit (private communication). We thank Prof. Breit for these predictions.
Figure Captions:

Fig. 1: Plan and elevation view of the depolarization experiment.

Fig. 2: The depolarization measurements along with two theoretical predictions at 23.1 MeV as a function of the n-p scattering angle.