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ABSTRACT

This study comprises an investigation of the effusive behavior
of saturated vapors over a range of source pressures from 10-% atm
in the molecular flow region to 1 atm. Measurements such as these
reported have never before been carried out to any comparable extent
for saturated vapors. The experiments, which are unusually precise
for the methods involved, have yielded new information on the effusive
behavior of vapors at source pressures near one atmosphere for the
flow of vapor through long channels They have unequivocally de-
lineated the transition from the molecular to the hydrodynamical
effusive behavior for the flow of vapor through a thin-edged orifice.
Some theoretical aspects of the question of vapor saturation in a
Knudsen cell are considered The impetus tc this investigation is the
importance of the effusion method as a thermodynamic tool

Molecular flow is used extensively in the study of thermo-
dynamic properties of vapor-condensed phase equilibria Viscous
flow under the conditions of small density gradients is used for the
measurement of viscosities. Both of these flow phenomena involve
irreversible processes, but the former represents one limiting aspect
from which one can derive heats and entropies of vaporization and the
latter represents a steady-state process from which cne can extract
information on intermolecular potentials.

Some limited aspects of these phenomena are investigated.

In particular, some aspects of the question of the extent of saturation
within a Knudsen cell at low pressures and aspects of the transition
from molecular to hydrodynamical effusion under conditions similar

to those commonly employed in vapor pressure studies. Specifically,
the purposes of this investigation were to clarify the situation regard-
ing the upper pressure limit to effusive flow, to examine the transition
of effusive flow from molecular to viscous behavior, and to clarify some
limited aspects concerning the guestion of vapor saturation within an

effusion cell.

xiii




The question of vapor saturation is considered theoretically.

It is shown that a simple but entirely consistent and rigorous analysis
from a thermodynamic viewpoint is possible from two assumptions for
a limited system under admittedly restrictive conditions. Simple con-
clusions derivable from this analysis have general applicability within
the bounds of the initial specifications. The problem considers a very
dilute vapor supplied from the condensed phase and contained within
an isothermal enclosure.

The analysis shows the effect of the location of the evaporating
surface on the measurable rate of effusion and the dependence of this
rate on the geometrical arrangement of the enclosure. It is demon-
strated that, aside from thermal restrictions, measurements of the
mass transport by beam condensation methods is a more reliable
measurement of the vapor pressure than is a measurement of the
total rate of effusion. Certain of the irreversible aspects are briefly
considered.

The experimental study consists of the measurement of mass
flow rates of mercury vapor effusing through a thin-edged orifice or
long channels into a vacuum from a region of nearly saturated vapor.
Liguid mercury was contained in steel ovens supported on an espe-
cially designed vacuum balance. A controller maintained a tempera-
ture constancy of 0.25 degree.

The effusion rates of mercury flowing through a thin-edged
orifice of 0.02-cm radius are predictable by the molecular effusion
formula to a pressure of 0.1 mm. Above this pressure the flow be-
havior progresses into the hydrodynamical effusion region The flow
behavior for vapor effusing through a circular channel of 0.03-cm
radius and 3-cm length is similar to the usual viscous flow behavior
but systematically differs from an equation deduced by Knudsen for
bilateral effusive conditions. At source pressures near one atmos-
phere, the flow rate approaches a limiting value corresponding to the

effusion of vapor from a nearly saturated channel.

xiv




ACKNOWLEDGEMENTS

The author acknowledges his indebtedness to Professor Paul W,
Gilles of the University of Kansas and Dr. Robert J. Thorn of the
Argonne National Laboratory. Their advice, encouragement and friend-
ship are sincerely appreciated.

The author expresses his gratitude to the Argonne National
Laboratory for his appointment as Resident Student Associate under the
Participating Institutions program and for the privileges and excellent
services accorded him., In this regard, he wishes to thank the manage-
ment and personnel of the Chemistry Division Shops. Especial thanks
is given to Mr. Peter Ziegelmeier and Mr. Theodore Kavis, who con-
tributed many ideas to the construction of a vacuum balance; to
Mr. Philip O'Hara, who painstakingly constructed the vacuum balance;
and to Mr. Robert Flegel, who constructed the effusion cells.

The author appreciates the advice and help of all his associates
in the Laboratory and, in particular, the aid given him by Mr. Bert
Ercoli and Mr. Robert Sadler. He wishes to thank Dr. George Winslow
for his helpful discussions on computer techniques, and Professor
T. E. Phipps and his students at the University of Illinois for helpful
discussions. He thanks Mrs. Betty Edmunds for assistance in the prep-
aration of the manuscript. These and others have made his residence

especially enjoyable.

xv




CHAPTER 1
INTRODUCTION

This thesis is concerned with an investigation of the effusion be
havior of saturated vapors under conditions leading to the Knudsen mo-
lecular flow phenomena. the hydrodvnamical effusion and viscous flow
phenomena, and as well the transition between these extremes. These
phenomena must be recognized ac irreversible processes with those

attendant consequences which are the result of the chemical structures

il

and molecular interactions of the species involved and the external con
ditions prevailing.

Molecular flow, however. represents one limiting aspect of the
irreversible flow from which one may extract equilibrium data, the in-
formation thereby derivable are heats and entropies and dissociation
energies. On the other hand vigcous flow under certain conditions may
represent a well-defined steady-state process from which one may ex
tract intermolecular potential information. The former encompasses the
behavior of matter governed by energy differences and thereby vields
information related to gross molecular structure and to the depth of an
intermolecular potential well. The latter involves processes which are
related to intermolecular forces acting at various interatomic distances
and thus may vield information related to the form of the potential energv
curve.

Admittedly. these aspects are rather broad, and it is not the in-
tention here to intimate that a combined molecular and viscous flow
study would generally lead to such all-encompassing information inev-
itably. one can explore onlv those phenomena which for a particular
system actually occur under specified conditions. It is rather the pres-
ent intention to illustrate within a general thermodvnamic formalism
both the equilibrium and nonequilibrium aspects of effusive flow.

In this study onlv limited aspects of the flew of saturated vapors

are examined. The impetus to this studv is the importance of molecular



effusion methods as a thermodynamic tool. In particular, it is the pur-
pose here to examine those aspects for which some clarification of
behavior and theory seemed important and of interest in relation to mo-
lecular effusion techniques because, for example, they have been used
extensively for the study of saturated vapors at low pressures.

The molecular effusion methods generally are understood in
principle, but there appeared to be two aspects which required further
study. The first concerns the so-called upper limit, which is the upper
pressure region for which the molecular flow formulas fail to predict
the correct pressure or, conversely, the correct flow rate. The earliest
studies of this limit suggested an answer to this problem. Yet the lit-
erature contains contradictory information. In addition, some of the
early studies were concerned with common gases under bilateral flow
conditions (strictly speaking, under small pressure gradients). Since
these are not the conditions met in the studies of saturated vapors, and
since it seems particularly advantageous to be able to employ the Knudsen
method at higher pressures within the region where measurements by
other methods are not feasible, this aspect of the method is of interest.

A second problem of interest concerns the extent of vapor sat-
uration within the Knudsen cell at small pressures. Previous attempts
to analyze this problem are misleading and not adequately handled,
whereas it is possible to clarify this problem by a simple but consistent
analysis. Consequently, a portion of this thesis is devoted to a theoreti-
cal discussion of this matter.

This study, therefore, is concerned in part with some aspects
of the question of saturation within an effusion cell and in part with the
investigation of some of the effusion problems initially investigated in
the early part of this century by Martin Knudsen. It differs principally
from the latter in that the gas studied is a nearly saturated vapor flow-
ing under unilateral conditions into high vacuum. The immediate aims

are to clarify the situation regarding the upper limit to molecular flow




and to examine the extent of vapor saturation in a Knudsen cell under
the conditions of molecular effusive flow.

A brief review of some of the consequences of hvdrodynamical
theorv of flow and a more extensive survey of the important aspects of
the effusion method with some of its applications and historv are pre-
sented in the first chapters. This survey and review delineate the
problems to be studied and present some of the theory pertinent to an
examination of the experiments. This certainly is not an exhaustive
review. but it is hoped that important contributions which might be
buried in the copious literature and not described in more readily avail-
able sources have not been overlooked.

The analysis of the extent of vapor saturation in a Knudsen cell
is presented after a summaryv of the literature surveyv and a progres-
sive development of the character of the cosine law. It is most con-
venient to do this at that time since the analysis draws upon the theory
previously discussed and furthermore outlines the equations necessary
for a presentation of some recent calculations of the Clausing factors
or transmission coefficients for molecular flow.

Except for some brief concluding discussions. the problem of the
transition from molecular to fluid flow is not theoretically examined in
detail. Although others have made some inifial inquiries into this prob-
lem. it is naturally difficult to treat and would comprise a separate
study in itself.

The equipment used in the experimental work is described in
detail. Not only is this necessarvy but the description should be of value
to others interested in carrying out precision effusion experiments.
The principal component of the equipment which has contributed to the
precision of the data is the temperature controller, for with this unit
it has been possible to maintain temperatures within a constancy of
0.25 degree, which. relative to the experimental methods and heating

equipment used, is exceptionally good. The problems of uniformity



and constancy of temperature generally give the greatest trouble in
vapor pressure measurements by effusion methods.

The experimental data are presented and analyzed both in re-
gard to the observed general features of the effusive behavior of mer-
cury under the conditions of these experiments and in regard to the
previous concepts and observations by others.

Mercury was chosen as a particularly appropriate substance
for study. The flow of saturated mercury vapor contained in a Knudsen
oven having a thin-edged orifice or a long channel of small cross-
sectional area was studied over the pressure range from 10-% atmos-
phere in the molecular flow pressure region to one atmosphere. The
results of this study clearly demonstrate the transition in the effusive
behavior of a vapor flowing through a thin~edged orifice. The experi-
ments on the flow of vapor through narrow channels show an agreement
except in one region with the predictions deduced by Knudsen from less
refined experiments under flow conditions ostensibly different from
those of this research. The experimental conditions in the present
study appear to lead to a new limiting flow rate at source pressures

near one atmosphere.




CHAPTER 2
REVIEW OF SELECTED EXPERIMENTAL AND
THEORETICAL ASPECTS OF GASEOUS FLOW

A fluid description and a molecular description of gaseous flow
are only limiting descriptions which are maintained because of the
mathematical difficulties in manipulating quantitatively the kinetic
theories which in principle describe a gas existing under an arbitrary
set of conditions.

The flow of a gas through a system whose macroscopic dimen-
sions are small compared with the mean free path may be described
with principles which are a consequence of equilibrium theory; the
correspondence of the resulting deductions with experimental observa-
tionsdepends, however, on the validity of such applications of equilib-
rium theory to an irreversible process.

The flow of a gas whose molecular aggregates have a negligible
mean free path is described by the application of dynamical principles
to a continuous body. A gas flowing under a pressure gradient, how-
ever, expands irreversibly by processes which depend both on the
physical boundaries and properties of the gas. A priori theories are
difficult to deduce for this situation, and thus equilibrium considerations
become a part of the description. The extent to which these deductions
represent the flow behavior of normally dense gases is consequently
limited.

In this chapter are reviewed some aspects of the hydrodynami-
cal flow of gases and, in slightly more detail, some of the experimental
and theoretical results of studies on molecular flow and the transition
from molecular to viscous flow.

2.1 Historical Summary

The earliest experiments on the behavior of gases may be traced
back many vears before the organization of a quantitative kinetic theory

of matter. Indeed, these and other experiments furnished a part of the



evidence portending and later confirming a theory of molecular con-
stituency of matter which theretofore remained principally an intuitive
and speculative concept. The notion of a gas being a continuous, homo-
geneous substance, as embodied in fluid mechanics, served adequately
in many circumstances to provide the quantitative description of gas-
eous flow. Yet a number of experiments could not be reconciled with a
description embracing a concept of strict material continuity. Kinetic
theory, on the other hand, yielded the exact description which was
demanded in the explanation of some experimental observations. The
gaseous flow researches of Martin Knudsen, studies which were based
on the simplest consequences of kinetic theory, probably first offered
"the most direct and convincing proof of the correctness of the funda-
mental assumptions of the kinetic theory."(l)

Knudsen's studies represent the beginning of a quantitative
understanding of the behavior of gases at low pressures, partly because
of his critical experiments and partly because of the experimental and
theoretical activities of the scientists then prominent in kinetic theory.
Prior to the work of Knudsen, the understanding of gaseous flow prin-
cipally was centered about three kinds of experiments: the viscous flow
or "transpiration" of gases through narrow tubes, the "diffusive" or
"atmolytic" flow of gases through porous substances, and the "effusive"
flow of gases through thin orifices. For the most part, the descriptive
names appear to have no rigorous, unambiguous definition, but merely
describe the kind of experiment. The word "effusion” commonly is
applied as a general name for the process of a gas flowing through an
orifice from one region to another at a different pressure.

The law discovered by Poiseuille(z) in 1840 to describe the flow
of liquid fluids through narrow tubes was found to be applicable to the
flow of gases under similar circumstances except when the radius of the
tube was so small that its dimensions were less than or equivalent to
the mean free path. Under such conditions the flow rate exceeded that

predicted by Poiseuille's law. Since one of the assumptions necessary




in the hydrodynamical deduction of this law is that the gas near the wall
has zero velocity, as if the layer adjacent to the wall sticks to it, the
increased flow rate can be explained by considering the gas layer as
slipping along the wall boundary.(3) This phenomenon, however, was
not thoroughly examined prior to Knudsen's studies.

The experiments of Graham(4) and others(5) on the flow or "dif-
fusion" gases through porous substances showed quite interesting re-
sults. Some porous substances behaved toward gas flow as if they had
narrow tubes and thus led to viscous flow or "transpiration” effects.
Other substances behaved as if they had narrow slits or collections of
thin orifices of molecular dimensions and led to a different kind of flow
with a rate inversely proportional to the square root of the gas density
or molecular weight. This kind of flow relationship became known as
"Graham's law of diffusion," and this diffusion process was later ex~-
plained in part by the "effusion" formula deduced in 1882 by Hertz(6)
from Maxwell's velocity distribution law. This formula prescribes the
rate at which molecules pass through a small, thin orifice from a

region of uniform pressure p and temperature T into a vacuum. Thus,

= S . (2.1=1)

where m is the mass of one molecule, k is Boltzmann's constant, and S
is the cross-sectional area of the orifice.

Apparently, there were no absolute measurements by which this
effusion formula could be exactly tested. In fact, some of the experi-
mental observations did not show any agreement with this; the results
were transitional between Graham's diffusion law and hydrodynamical
effusion laws.(7) The experiments pertaining to Graham's law applied
to the flow of gases at normal pressures through substances having
pores of microscopic dimensions. The flow of moderately dense gases
through an orifice having visible width but small thickness was known

also to have an inverse relationship to the square root of the density.




In these situations the flow rate was governed by laws of fluid dynamics,
and methods for measuring relative vapor densities by methods based
on these laws were used as far back as 1804,(8)

A critical examination of the various types of flow and devia-
tions and transitions from one to another kind of behavior required the
development of vacuum technology to permit the necessary experiments
to be carried out at densities for which mean free paths were larger
than the dimensions of macroscopic orifices. In the latter part of the
nineteenth century, vacuum methods were reasonably well enough per-
fected to enable Knudsen to carry out a critical and important study of
gaseous flow, the incentives for which study were the "curious" observa-
tions and ideas outlined above.

2.2 The Flow of Continuous Fluids

Fluid dynamics is both physically and mathematically an intricate
science, which in its description of real fluids applies the laws of
physics to the macroscopic manifestations of the total resultant molec-
ular and external forces of the bulk fluid. It generally relies on ther-
modynamic idealizations to handle the rather complicated irreversible
expansions, which for a gas become important enough that this property
cannot be ignored. Such idealizations are probably satisfactory for
small velocity gradients. Turbulence in fluids, however, occurs under
severepressure gradients and large flow velocities, and is mathemati-
cally difficult to describe. Apparently there is no entirely satisfactory
theory for this phenomenon; it depends on a large number of conditions
which are difficult to account for separately.

Problems of fluid flow may be solved by the application of for-
mal equations of motion. continuity, and energy balance. A number of
simple situations, however, may be treated by simple energy-balance
equations, such as Bernoulli's theorem. The flow of a fluid through a
thin orifice from one large reservoir to another may be handled in this
simple manner. If there are no frictional losses, the net force on the

imaginary faces of a small volume element of fluid, which forces are




those arising from the pressure difference and the work of expansion,
is related to the acceleration experienced by the fluid in the direction
of flow over a small distance.

Since the fluid motion through a cross section of a large reser-
voir is negligible compared with the flow rate through an orifice which
is many times smaller in cross section, the fluid may be considered to
be accelerated from zero velocity inside the reservoir to the final ef-
flux velocity outside the orifice. Thus, one may find(g) that the mass

rate of flow is given by the expression

P
dw dp
—_— S 2 P -
at P25, o ) (2.2-1)
2

where p; is the density of the efflux stream, S, is the cross-sectional

area of the vena contracta, and p; and p; are the source and exit pres-

sures, respectively. The integration requires a knowledge of the den-
sity P as a function of the pressure. For a gas, there may be either
isothermal or adiabatic expansions, or a combination of processes.
Generally, if a priori information is lacking, the expansion is taken to
be a reversible expansion by either of these two processes.

If the gas effuses into a vacuum, a curious paradox arises be-
cause the assumption of a zero exit pressure leads to an indeterminate
flow ratea(lo) This problem was resolved by Reynolds(ll) by a consid-
eration which physically has the following significance. The efflux veloc~
ity has a maximum value independent of the external pressure if it is
sufficiently low compared with the reservoir pressure, since the external
vacuum conditions cannot be transferred to the gas within the reservoir
at a rate exceeding the speed of sound in the gas jet. Accordingly, the
efflux rate of a gas into a vacuum or a space of pressure less than

about one-half of the reservoir pressure may be expressed as

v+ 1

2(y - 1)
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for an adiabatic expansion, with vy =CP/CVand p as the reservoir pres-
sure, or

dw m

—_— = | e 2.2-3

dat -\ ekT 2P ( )
for an isothermal expansion, where e is the base number of the natural
logarithms. The symbols m, k and T represent the mass of a molecule,
Boltzmann's constant, and the absolute temperature, respectively, and

S, is the cross-sectional area of the vena contracta. Gaseous flow

through an orifice and in accordance with either of these formulas is
called adiabatic or isothermal effusion, respectively.

If the orifice is a long, narrow circular tube rather than a thin
opening in the reservoir, then viscous effects become important and
must be included in the energy-balance equations. Under these condi-
tions, the fluid moves in layers and each layer exerts a force on its
neighbors. If the fluid velocity v is uniform along the tube but has a
gradient 3v/5r along the normal to the axis of the tube, with r repre-
senting the radial position of a layer, then the force is proportional to
the gradient. This proportionality constant is called the "coefficient of
viscosity" or simply the "viscosity" of the fluid.

Assuming that the fluid has zero velocity at the walls of the
tube, one derives Poiseuille's formula for the mass flow rate of a

viscous fluid:

dw mmR* dp
dt " 8kT Pag (2.2-4)

in which R is the radius, £ is a length variable, and y is the coefficient
of viscosity. The remaining symbols represent previously defined
quantities.

This viscous flow formula is valid for an incompressible fluid
but must be modified for applications to the viscous flow of gases. An
important correction is that to account for the expansion of the gas.(lz)

Again one must idealize the situation by attributing to the gas an




a priori expansion process. If sufficiently long tubes and small pressure
differences are used, this correction, however, becomes negligible. A
second necessary correction is one deduced by Kundt and Warburg(3)
prior to Knudsen's work and having a direct bearing on Knudsen's first
investigation. This correction is one to account for the slipping of the
gas along the wall at low pressures or for extremely narrow tubes. A
factor of 4C/R was included in the Poiseuille formula to satisfy this con-
dition which leads to an increased flow. Here £ is called the ' coefficient
of slip" and is considered to be proportional to the mean free path.<3)
Thus, 42;/R is large when the pressure is low or the tube very narrow.

2.3 The Effusion Studies of Martin Knudsen

(a) The Transition from Molecular to Viscous Flow

In the early part of this century, Martin Knudsen published
a series of important papers having considerable influence on the con-
cepts and development of the theory of the behavior of attenuated gases.
These papers discussed and defined such familiar topics as molecular
effusion, thermal effusion, thermal accommodation, and the cosine law
of molecular reflections. The first two of his papers are discussed in
this section, since they delineate the theory of what Knudsen defined as
"molecular flow" and the conditions for which it obtains.

For his first study(B) Knudsen investigated the flow behav-
ior of a pure gas which flowed through a long and narrow circular tube
under a small pressure difference. The basic experimental system,
constructed of glass, consisted of two large reservoirs separated by a
circular tube of known length L and radius R. A gas at a pressure p,
was contained in one of the reservoirs of volume V;, and the same gas
at a lower pressure p, was contained in the other reservoir of volume
V;. Vacuum pumps, manometers and McLeod gauges were attached to
the reservoirs. The flow behaviors of the three gases, hydrogen,
oxygen, and carbon dioxide were studied.

The gaseous flow rates were obtained indirectly from several

measurements of the change in pressure over a known time period.
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Since these experiments were carried out at constant temperature, the
flow rate was designated by the volume of gas effused per unit pressure
difference, which sometimes is called the "specific flow rate” and
which Knudsen denoted by "T." Thus,

dp, _ 1 dp, 1
Wy - Ly, AL -y, e . (2,3=l
1d‘cp;,,mp,o_ 2dt p; - py :

The description of Knudsen's observations and deductions is given here
in the more readily understood notation of mass flow rate, dw/dt.
Knudsen's "T" function is related to the mass flow rate by the definition

11} 1" _.d_\ﬂ_ 1 lil

= —_— 2.3-2
dt p;-p; m ( )

where m, k and T have their usual definitions.

The flow rates of the various pure gases studied were tested

as to dependence on the average pressure, defined by the expression

P = —___——p%; : EEZVZ : (2.3-3)
as well as dependence on the pressure difference Ap. The average pres-
sure as defined was constant during a series of measurements of the
pressure change in the two reservoirs. It therefore proved to be a use-
ful check on the reliability of the measurements, for example as an
indication on the gas~tightness of the equipment.

The effect of four different tubes was studied. These had
length-to-radius ratios from 1200 to 429. The experiments covered an
average pressure range of about 10~% to 140 mm Hg.

The experimental results showed a behavior which resem-
bled the observation by Graham and others on the "transpiration” of
gases through porous substances. At the lowest pressures, the mass
flow rate was proportional to the pressure difference, inversely pro-
portional to the square root of the density, and independent of the
average pressure. At high average pressures, several mm Hg, the

rate became nearly proportional to the average pressure multiplied by




the pressure difference and inversely proportional to the molecular
density, in agreement with Poiseuille's law for viscous flow. At inter-
mediate pressures the flow rate exceeded the rate predicted by
Poiseuille's law in accordance with Kundt and Warburg“s(3) ideas on
the slippage of the gas along the walls of the tube, and exceeded the
described flow rate at lowest pressure.

The flow rate divided by the pressure difference plotted as
a function of the average pressure showed that, as the average pressure
was decreased from the Poiseuille region of flow, the quantity proceeded
through a minimum which with respect to the average pressure depended
principally on the radius of the tube. At even lower average pressures,
which were always less than twice the pressure p;, the mentioned quan-
tity increased as the pressure decreased and appeared to become nearly
independent of the average pressure, as initially described.

Since Knudsen dealt with tubes having measurable dimen-
sions, he was able to evaluate the observations in terms of absoclute
parameters in relation to some theoretical deductions. For the lowest
pressures he supposed that, since the mean free path was very large
compared with the dimensions of the tube, the molecules rarely collided
with one another but progressed independently through the tube and
made frequent encounters withthe wall. Such a behavior Knudsen called
"molecular flow."

With these described conditions, the entire pressure dif-
ference at the ends of the tube could be related to the momentum
imparted by the molecules to the wall. A quantitative analysis, how-
ever, required an assumption as to the change in momentum of the
molecules on restoration to the gas. Knudsen analyzed this situation
and decided that both complete path reversals and total specular reflec-
tions would be contrary to innumerable experimental observations, but
that a reflection which was completely random, independent of the
incident velocity of the molecule, was in accordance with the concepts

of the size of the molecule in relation to the relatively large surface
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imperfections of the solid boundary. Thus, Knudsen postulated that
molecular emissions were random and that the emission rate of mole-
cules from the wall, similar to the emission of light from radiating
substances, followed the cosine law.

The so=-called molecular flow law was deduced by two meth-
ods which, by accident,(l4) gave identical and "correct" expressions.
The first method employed a momentum balance, as mentioned, in which
the gaseous molecules were assumed to have a Maxwellian average
speed ¢ and a uniform average flow velocity. In the second method a
constant density gradient along t}qe tube was ascribed to the gas and the
cosine law was applied as an expression for the probability of the mo-
lecular flux following an arbitrary path between two surface elements
on the wall of the tube. The net flux of molecules through a cross-
sectional area of the tube could thus be calculated.

These calculations led to the flow rate expression

dw 16R*dp

dt ~ 3mg df ’ (2.3-4)

which Knudsen preferred to write in 2 form similar to the formula

O N2 (p, - py) e (2.3-5)
at _ Vzmkr ‘P17 P 2T

for which W is the "resistance® of the tube and is expressed as
L
1] Gy (e
W=z —2—/ v dl , (2.3-6)
0

where O is the periphery of the tube, S is the cross-sectional area, and
df an element of length. This depends, therefore, upon the geometrical
configuration of the flow tube and, as such, was considered to be a gen-
eral expression applicable to arbitrary shapes.

For a circular tube,’\/TZF/W has the value (TR?) (8R/3L). The first
factor is, of course, the cross-sectional area of the tube and 8R/3L is

variously known today as the transmission coefficient or Clausing




factor for a long tube. Knudsen considered this "resistance” to be ana-
logous to electrical resistance and thus subject to the same kind of laws,
as for example Kirchoff's law. This is, of course, an intriguing idea
and one popularly used in engineering considerations of the vacuum flow
of gases,(15) but for quantitative work it is not a valid rule.

Knudsen decided that the flow rates over the entire avera-

age pressure range could be expressed by an empirical equation of the

form
dw _ 1 +Cip \dp
- Bt 1 R h? s 2.3-
= (ap+bl+cz§)dﬂ ( 7)

which at the high and low-pressure limits would reduce to

dw [ - . c,\dp

rrak (ap +b-——C2>-—-—d£ (2.3-8)
and

dw . dp

= bmdﬁ , (2.3-9)

respectively. Since these were known theoretical limits, the constants
could be assigned partly by correspondence. For example, the first
equation (2.3-8) could be correlated with Kundt and Warburggs(?’) expres-
sion for Poiseuille's law modified for the "slip effect:"

dw 7 mR*% 4¢\ dp
dt © 8 pkT ( * R) al (2.3-10)

for which { was known as the "coefficient" of slip. Kundt and Warburg
found £ to be nearly equivalent tothe mean free path of the gas, and
accordingly Knudsen takes it to be equal to k'., where k' is an unknown
constant of the order of unity or less and A is the mean free path.

From the above correspondence, and using Maxwell's ex-
pression for the relationship between the viscosity u and mean free
path,(16) Knudsen found theoretically that C,/C, = 0.95 k < 0.95. The ex-
perimental data allowed him to make the choice CI/CZ = 0.81. The ab-

solute values C; and C,;, which determine the location of the minimum
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flow rate with respect to the average pressure, were decided upon first
in a theoretical analysis of the effect of gas-phase collisions on the
momentum balance and then, specifically, to fix the value of one unknown
proportionality constant, by relating a theoretical expression for C; - C,

to the previously fixed value of the ratio CI/CZ. This analysis gave

Cy = 2.00 \/f% % ,
(2.3-11)
m R
C, = 2.47 \/kT p ,

with the pressure in cgs units. These values, in accord with the experi-
ments, fixed the minimum at a mean free path of about 2.5 times the
diameter of the tubes. In this region the flow rate is about 5 percent
less than that predicted by the molecular effusion formula.

Therefore, aside from small numerical corrections by
which the experimental data are required to fit the equation, the con-
stants are theoretically determined. Knudsen emphasized, however,
that the equation was empirical because the general structure is arbi-
trary and chosen merely to effect a continuous coupling of two distinctly
different flow laws. Besides, the theory used in these analyses must be
considered in itself as strictly qualitative.

The data appear to adhere to the semi-theoretical formula
in spite of some of the tenuous assumptions used in its derivation.
Knudsen pointed out that more precise experiments, however, would
probably show systematic deviations from the formula. The average
pressure as defined is not that pressure required for Poiseuille's law;
the required value has the form p = %(pl + p;). Since the volumes V),
and V, differ by about 8 percent, the constants then contain a systema-
tic error.

(b) Effusion of Gases through Thin-edged Orifices

In a second paper(l7) Knudsen reported the results of a
study of the flow of dilute gases through thin orifices whose dimensions

could be considered as small compared with the mean free path. It
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could be suspected naturally from the previous study that similarly
simple relations hold true under these conditions. The results con-
firmed this for hydrogen, oxygen, and carbon diaxide.

The experimental system was essentially identical to that
used in the earlier study, except that the long tube was replaced by a
tube of wider dimensgions, at the end of which a thin platinum disk
pierced with a small hole was attached. The same type of measure-
ment and the same quantities were measured. These were ostensibly
constant temperature measurements. The effects of two nearly cir-
cular orifices were studied. These had areas of about 5.21 x 10-¢ and
66.0 x 107% cm?, respectively. The ratio of thickness to radius appears
to have been less than 0.25.

The values of flow rate measured for pressures of about
0.25 mm Hg or less corresponded within about 3 percent with those
calculated from the molecular effusion expression (2.3-5) for an infin-
itesimally thick orifice for which the "resistance" W was given the value
/\i’_ZTT-r/S, where S is the area of the orifice. The results at low pressures
were stated to be independent of the average pressure and depended only
on the pressure difference, whether small or nearly equal to the source
pressure. At average pressures of the order of 1 to 3 mm Hg, the flow
rate became dependent on both the average pressure, and on the rela-
tive values of p; and p,. At even higher pressures, for the condition
that the source pressure p; was larger than about one-half the exit
pressure p;, the flow was exactly that predicted for isothermal effusion
of a gaseous fluid without beam contraction, that is. the flow agreed with
the formula (2.2-3) in which S, is given the value of the orifice area.

These results for the first time confirmed and "explained®
the transition from one kind of flow behavior, molecular flow, to an~
other kind of flow behavior, the then well-known isothermal effusion be~
havior. The reason for the occurrence of these distinctly different
processes was considered to be related to the length of the mean free

path of the gas in comparison with the orifice dimension.
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For large free paths, the gas equilibrium was considered
by Knudsen to be unaffected by the occasional disappearance of a mole=
cule through the orifice; molecules in their random motions in the gas
escape independently of one another because they occasionally are

knocked randomly into paths having collision-free trﬁajectories leading

through the orifice. At high pressures, collisions would occur in and
near the orifice and set up a mass movement of the gas in the direction
of the orifice. Such conditions led to the bulk effusion of the gas accord-
ing to the laws of fluid behavior.

Using an approximate expression for the mean free path,
A{cm) = 75 x 10“5/1“0(cm) , (2.3-12)

Knudsensummarized his data for oxygen in a manner equivalent to the

following:

Py >2p; ; A2ReK1/100

for the flow rate calculable from the isothermal effusion formula, and
0< p,< py ;  AJ2R 210 ,

for the flow rate calculable from the molecular effusion formula. At
intermediate ratios of the mean free path to diameter, the flow rate was
intermediate between the prescribed limits.

These experiments were considered by Knudsen to be an
excellent confirmation of Maxwell's velocity distribution law. Because
of the direct and simple relationships of the various parameters in the
molecular effusion expression, he suggested its application to the meas-
urement of low vapor pressures and dissociation pressures.

2.4 §0m§ Additional Studies

Several others{18,19,20) nave taken up the problem of the transi-
tion from molecular to viscous flow in long tubes. The experimental
studies principally substantiate the results obtained by Knudsen.
Gaeda,(ls) however. with longer tubes than Knudsen used found the

minimum value of the ratio of the flow rate to pressure difference to




occur at low pressure for hydrogen corresponding tc a mean free path
of about 50 times the tube diameter. The occurrence of this minimum
at a pressure of an order of magnitude lower than that observed by
Knudsen presented quite an interesting problem which could not be at-
tributed entirely to experimental error. This problem recently re=
cieved some attention both theoretically and experimentallyo(u’zz)
Before mention is made of the results of these recent investi-
gations, it is appropriate to present some brief comments on the mean
free path concepts., This is a convenient and physically satisfying pic-
ture of the collisional behavior of a gas. Mathematically, it leads to
easily handled equations, but clearly at the sacrifice of rigor. The
mean free path, in fact, has limited quantitative meaning for a gas at
equilibrium and is subject to nearly complete ambiguity for a gas in
flow, especially when the various gradients are large. Therefore, when
one discusses some phenomenon on the basis of the mean free path
picture, he describes only a qualitative behavior, which, admittedly is
easily visualized without cumbersome reference to detailed mathemat=
ical expressions. Moreover, the mean free path description of some
aspects of gaseous flow has been adapted with reasonable success to a
study of the onset of the departure from Knudsen's molecular flow.
Such theoretical analyses of this problem have dealt with the
effect of the development of a drift velocity as a result of gas-phase

(21,22) and the effect of gas density on the

(14)

collisions at low pressures
rate of transport of molecules by self-diffusion, The conclusions
drawn from these studies have some bearing on the occurrence of the
minimum flow between the molecular and Poiseuille flow limits,

If the mean free path is much larger than the length of the tube,
which in turn is larger than the radius, then the molecules travel
through the tube along paths interrupted only by collision with the walls
of the tube, DeMarcus,(Z3) for example, has shown that on the average

a typical molecule makes about (L/R)Z/lZ collisions with the wall in

unit time for a long tube.
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If the density of the gas is increased to a value for which the
mean free path is intermediate between the length and radius of the
tube, the molecules collide in the gas phase as well as with the walls.
This would decrease the number of molecules by interrupting those
having trajectories of lengths equivalent to the mean free path; but on
the other hand there would be a gain in momentum in the direction of
flow. There occur, then, two competing effects whose relative magni=-
tudes should depend on the length of the tube compared with the radius
for a fixed pressure. The longer the tube the lower need be the density
to produce the initial decrease in the flow rate. For a short tube, the
effect of the gain in momentum in the direction of flow would be ex-
pected to predominate and therefore a minimum may not occur. This
conclusion seems to be borne out by various experiments.(24)

These comments and ideas apply principally to the flow of gases
through tubes of length greater than their radius under small pressure
differences. The discussion of the problem of unilateral flow has not
been studied, as far as this author is aware. And there is yvet no kinet-
ic theory which considers the entire transition from molecular to

Poiseuille flow.




CHAPTER 3
THE COSINE LAW AND MOLECULAR FLOW

It was not long after Knudsen published his first paper that the
molecular effusion phenomenon was employed to produce molecular
beams for the study of molecular and atomic properties, as for ex=
ample it was notably used by Stern and his group. The phenomenon
has been and continues to be used for the measurement of very low
vapor pressures and in this respect has proved to be an invaluable tool
for thermodynamic investigations.

In this chapter a brief examination is made of the flow of gases
and vapors through thin orifices and of the cosine law distribution of
the effusing molecules., Particular attention is directed to the cosine
law because of its fundamental importance to many applications of
molecular flow and its bearing on the studies reviewed here., The co=
sine law is a geometrical expression of the spatial distribution of
molecular flux in an equilibrium system. It is derivable from the
second law of thermodynamics. The cosine law, however, has been
applied to some aspects of irreversible flow, and such applications are
described here and in the next chapter,

3.1 The Cosine Law of "Molecular Radiation"

According to the second law of thermodynamics, the entropy of
an isolated system can only increase; given enough time, it reaches a
sensibly constant maximum value. This maximum defines the equilib=
rium state,

Kinetic theory postulates that a gas is composed of molecules
continually in motion, and there is a degree of randomness about
these motions which, statistically, is a measure of the configurational
entropy, In the equilibrium state, however, provided there are no ex=
ternal forces acting on the molecules, all directions of motion are

egually probable; if this were not so, then one could devise methods of

showing that the entropy will continue to increase,.
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The statement that all directions of motion are equal probable
may be reduced easily to a mathematical statement which expresses
the probability of directions as a ratio of an arbitrary direction to all
directions. Thus, the probability that a molecule with speed ¢, or even
a group of molecules with average speed c, has a trajectory whose di-
rection lies within an arbitrary solid angle dw is simply dd)/47T. The
cosine law may now be derived from this probability in the process of
deducing the flux of molecules from some arbitrary surface.

If there are vV molecules per unit volume in the gas at equilib-
rium, then the number of these having trajectories located within an
elemental solid angle dw; and inclined at any angle e ij measured, for
convenience, from the normal to a face of a random volume element
is v da)j/él‘rrc The rate at which these pass through this face of area
ds; and in the specified direction is the rate at which they generate the
volume element ¢ cosf ijdsijdt. Consequently, the flux of molecules

from the surface ds; in the direction of dw; is

Ve
Zijdsj ol cosfjjdw; dsj . (3.1=1)

This is the cosine law of "molecular radiation,® so called in the early
German literature because of its analogy with Lambert's law for
light radiation from glowing solids. The cosine law has a particularly
simple interpretation: the probability that a molecule leaves a surface
ds; in a direction specified by dcbj is dwj/47r; the probable frequency of
this event is vC cos 6 jjdsj,

The above method of deducing the cosine law is not rigorous.
A number of questions on soundness might come to mind, but these
may be avoided by starting a derivation from the viewpoint of a Max-

25)

wellian velocity distribution.( The present description, however,

yields a satisfactory physical picture, and most importantly delineates




23

the relationship between the idea of equal probabilities of motion and
the cosine law derived therefrom, a relationship which is easily over=-
looked and possibly at times misunderstood.

The application of the cosine law to molecular effusions prob~
lems is direct but depends on the one assumption that a small hole
with negligible thickness pierced in the wall of a container having
initially a gas at equilibrium does not disturb the equilibrium state.
Knudsen presumably verified within his precision that this was a real-
izable situation. The cosine law may now be applied to the orifice,
since, as the law is derived, the element ds; in equation (3.1=1) repre-
sents any real or mathematical surface arbitrarily located. In fact,

6) the law applies

by the statistical principle of detailed balancing,(z
also to reflections from an elemental area located on the wall of a
containing vessel. We will return to this point, however, in the sub-
sequent chapter.

Provided the gas densities in both the container in question and
the recipient vessel are sufficiently low, according to Knudsen's ex-
periments collisions will not occur in the region of the orifice to in-
terrupt the trajectory of a molecule passing through the orifice.
Consequently, the molecules leaving the orifice will travel in any of
the solid angles a distance nearly equivalent to a mean free path before
they are knocked out of that particular beam. Since the solid angle
widens, the beam is increasingly attenuated and, by the definition of
the solid angle, has a density proportional to 1/4%, where / is the
length of the trajectory within the solid angle dw measured from the
orifice to a location at which a sampling of the beam is made. The
more highly evacuated is the recipient vessel, the longer becomes the
collision-free trajectory. It is thus convenient that a good vacuum be
maintained in the recipient vessel. Unless otherwise specified, this

will be an assumed condition,
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For total flow measurements, the efflux rate is the total
molecular flux in the total 2 solid angle above the orifice. An in-

tegration of the cosine law gives the value,
ve/4 = Zg (3.1=2)

for the total rate at which molecules leave the container, If v and ¢
may be uniquely defined by the above-mentioned assumption of equi-
librium, then the ideal gas law and the Maxwellian average velocity
are used to transcribe (3.1=2) into the effusion formula (2.1=1).

Since the cosine law prescribes a measurable geometrical re=-
lationship between the total efflux rate Z, and a part of the flux in some
arbitrary direction, it is presumably possible to sample only this
directional flux and from it obtain the total. Such is the case in the
production of molecular beams. A portion of the flux may be totally
condensed on a cooled intercepting target in the forward direction,
The mass condensed per unit time may be considered as the intensity
of the beam in the forward direction, and it is by formula (3.1-1)
proportional to the pressure in the container, which pressure is called
the source pressure. The container is often referred to as a Knudsen
cell or oven. The question of realizable maximum beam intensity and
therefore of the realizable maximum pressure, for molecular effusion
and the validity of the cosine law of effusion are more detailed ques-
tions related to the problem of the upper limit initially studied by
Knudsen for total flow,

3.2 Experiments on Molecular Beam Intensities

Professor Stern(27) writes that the characteristic features of
the molecular beam method are "its directness and (in principle at
least) its primitiveness.” These arise from the fact that the beam de=
fines a collection of virtually isolated molecules capable of directly
exhibiting absolute molecular properties without an aura of statistical

obscurity.




Many of the problems in the study of material structure require
as intense a beam as possible with a narrow cross section. The latter
condition is easily achieved by a collimation of the beam in the forward
direction with narrow "image" slits and the use of slit-shaped rather
than circular orifices., The former becomes a problem of ensuring
that the highest source pressure used does not produce a fluid jet in-
stead of a collision-free beam. The jet, of course, may produce dis=~
tributions not in accordance with the cosine law but more in the
character of turbulent interactions. The transition between the two
behaviors, though, is not sharp, and it becomes of importance then
that the necessary conditions for the maximum beam production be~
come known,

(a) Some Experiments by Knauer and Stern

An analysis of the conditions for the realization of intense
beams was reported in 1926 by Knauer and Sterno(ZS) These investi=-
gators studied experimentally the effects of changes in exit pressure,
vapor pressure, and slit width on the quantitative detection of molec-
ular beams by visible deposits or visible traces arising from the
chemical activity between the beam molecules and a substance de-
posited on an intercepting target. This required some intensive study
because a theoretical analysis was not possible, The minimum time
tm required for the appearance of the trace multiplied by the source
pressure p was used as a definitive parameter. As may be seen
from formula (2.1-1), with assumptions that all molecules impinging
on the collector condense, that the deposit always becomes visible at
the same layer thickness, and that the pressure in the recipient vessel
is zero, the product pty,, is constant for a fixed geometrical arrange-
ment under molecular flow conditions,

A number of experimental difficulties arise in this type of

examination, and each was studied as far as possible. Scattered

molecules due to reflection of peripheral parts of the beam from the
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vacuum apparatus, and any gas evolution would cause a decrease in the
beam intensity. The reflection problem proved more severe than gas
evolution, but a detailed test satisfied Knauer and Stern that they could
achieve sufficient cooling with a large cold-finger to condense the
peripheral molecules.

They proceeded to study the influence of the source pres-
sure and slit width, and the nature of the deposit on the detector
efficiency, and the limit of the occurrence of molecular flow. The in-
fluence of these various effects could not be experimentally separated,
although it was presumably possible to accumulate evidence allowing
these to be understood independently, We are concerned principally
with their analysis of the effect of the source pressure on the extent
of molecular flow. One might expect this to be done in terms of the
mean free path concept, but these investigators placed no great re~
liance on such a treatment because their studies in other connections
indicated, as they state, that the kinetic theory atomic diameters are
not definitive for molecular beam studies and that mean free paths
found from gas kinetics are very inexact.

The results of the vapor pressure and trace character-
istics effects for both water and mercury vapor supplied from the
condensed phase were outlined. Qualitatively, the experiments dem-
onstrated that departures from molecular flow occurred as the source
pressure becameé larger, although the investigators were led to deduce
that at higher and higher pressures collision between molecules in the
region of the orifice or slit resulted in congestion in the orifice and a
consequent cloud formation above the slits. Thus scattering of the
beam in a region in and above the slit caused a decrease in the beam
intensity over that predicted by the theory.

For rectangular slits of dimensions of 6 x 0.022 mm, the
pressure at which this effect became significant occurred at about

0.5 mm Hg, for which they attribute a mean free path of 0.06 mm.




This is deduced principally from the observations of the effusion of
the water which, with no great precision, showed nearly a constant
value of the pressure~time product at low pressures up to 0.5 mm and
then above this pressure an unmistakable increase in the product
arising from increase in the appearance time and thus an intensity
decrease. The mercury experiments were ambiguous, since no real
constancy of the pt,, product was observed at low pressures; a plau-
sible explanation for this could be devised on the hypothesis of re=-
evaporation of the condensate and surface migration effects occurring
at rates which exceeded the arrival rate of the beam molecules.

One may have in mind here innumerable effects which
might negate the conclusions and interpretations cited. One must not,
however, discount these workers entirely, because it is apparent from
their descriptions of the study that they devoted considerable attention
to detail, with the recognition that the detection scheme was subject to
large errors; they estimated these errors to be about 10 percent. It
is important to keep in mind, however, that source pressures were
calculated from the measured source temperatures and may be in
error. Therefore, an estimate of the mean free paths may be inerror.
The question whether the "congestion" postulated occurred in the re-
gion of the same transition from molecular to hydrodynamic flow noted
by Knudsen cannot be equivocally answered, since only a part of the
total flow was measured.

One may deduce by inference, however, that molecular
effusion occurred down to a mean free path of about 3 times the width
of the slit; this is less than but of the order of magnitude of the mean
free path-to-orifice diameter ratio cited by Knudsen. Further, one
might infer from all evidence that, at smaller mean free paths, the
total flow rate increases, but that at least in the direction normal to
the orifice the molecules are strongly scattered and lead to a de-
creasing beam intensity at several centimeters distance from the

orifice. These conclusions are subject to question by the inferences
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drawn from the later results of at least two other investigators,
Knauer and Stern, however, have subsequently criticized these in-~
ferences.

(b) The Molecular Beam Experiments of T. H, Johnson
(29)

Some experiments by Johanson on the applicability of
an ionization gauge for the detection of molecular beam intensities
were reported shortly after the above-mentioned investigation by
Knauer and Stern. This study was ostensibly an examination of a de-
tection method rather than that of the upper limit of molecular effu~
sion, but the results have bearing on this problem and on the
interpretation of Knauer and Stern's observations,

Molecular beams of mercury vapor effusing from an oven
were detected in a direction normal to the plane of the orifice, which
was a slit of dimension 0.1 x 1 mm. An ionization detector was sus=-
pended several centimeters above the slits and consisted of a chamber
containing the usual electrodes of such a gauge. The mercury effusing
from the oven slit passed through an image slit into the gauge chamber.
Liquid nitrogen completely surrounded the walls of the space between
the slits, an arrangement which must have been more efficient than
the cold-finger condensation surface used by Knauer and Stern.

The gas pressure within the ionization chamber for steady-
state processes may be related to the beam intensity, and therefore to
the source pressure, provided that outgassing of the detector parts was
nearly eliminated and that the beam intensity is proportional to the
source pressure, The ratio of the ionization and electron currents
may be simply related to the source pressure, as shown by Johnson,(29>
The measurement of the currents for various mercury saturation

pressures calculated from the measured temperature of the condensed

mercury extended over a range of pressures from 0.2 to 143 mm Hg.
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The data were presented only in graphical form, with a
current ratio plotted against the source pressure., The plot showed a
linear increase of current ratio with increasing pressure up to
35 mm Hg, and above this showed a gradual decrease of slope until at
100 mm Hg the current ratio began to decrease with increasing pres-
sure,

According to the interpretation of Knauer and Stern, one
would expect a decrease in the current ratio beginning at only a frac-
tion of one mm Hg pressure due to the formation of a diffuse cloud
arising from frequent collisions of the molecules in the orifice region,
The data here, however, showed a continuous increase of intensity up
to 100 mm Hg pressure. Examination of the intensity at some distance
to the side of the beam showed that scattered molecules at these higher
pressures were significantly detectable,

A plausible explanation of these latter observations in re=
lation to those of Knauer and Stern, as Johnson suggested, is that the
beam passing through the region between the two collimating slits de=-
creased in intensity due to collisions with molecules reflected from the
uncooled portions of the walls and the scattered molecules from the
beam. More efficient cooling between the slits would explain the oc=-
currence of a maximum beam intensity at higher source pressures.
The decrease above the 35 mm Hg source pressure could be attributed
to saturation and adsorption effects in the ion guage, as well as to the
scattered molecules.

The pressure range from 0.2 to 35 mm Hg covers approxi-
mately the range of mean free paths of 0.2 to 0.0002 mm, and thus
ratios of mean free paths to slit width from 2.0 to 0.002., That over
this range of numbers the flow is molecular may be drawn by inference,
although the results do not give positive confirmation. In the hydro-

dynamical flow and even in the transitional regions, the beam intensity
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in the forward direction may be a linear function of the source pres-
sure. In fact, the measurements themselves may not be precise
enough nor sufficient in themselves to offer detectable differences
which would be apparent in total flow measurements or total distri-
bution measurements. Consequently, there is little information which
can be unequivocally drawn from Johnson's study except that it is con=-
tradictory to previous observations. This, of course, leads one to
question the fundamental validity of the cosine law itself,

3.3 Mayer's Confirmation of the Cosine Law of "Molecular Radiation"

The most sensitive test of the validity of the molecular effusion
cosine law should be the measurement of the distribution of the molec-
ular flux from a Knudsen cell, Measurements of this kind, however,
were not made until after numerous other applications of the effusion
method were devised. The previously described molecular beam
studies constituted only a minor examination of the distribution and
were generally limited to regions normal to the orifice.

The experiments of Herbert Mayer(?’o’z’l) in 1928 are the first
direct test of the distribution of molecularly effusing molecules
through a variety of orifice shapes. The question of the effect of an
appreciably thick orifice, the nonideal orifice, was not well understood
except for long, cylindrical tubes as a result of Knudsen's early in~
vestigation and Smoluchowski’s(?’z) theoretical analysis. Thus, Mayer's
investigation of the flow through tubes of length comparable with or
greater than the radius were particularly appropriate.

Maver reported in a series of two papers on a torsion method
for measuring the momentum of molecules effusing at an arbitrarily
selected angle measured from the normal to the orifice. Since the
cosine law is easily and directly transformed into a momentum dis-
tribution expression, the measurements could be used to test the
cosine law. As Mayer points out, his study regarding the validity of
the cosine law was of especial significance in regard to questions

arising from the previously discussed molecular beam investigations.




The apparatus consisted of the usual vacuum components, a
source chamber containing one of the experimental gases (air, hydro-
gen, carbon dioxide, and oxygen), the orifice (which was of prescribed
dimensions and shape, depending on the particular experiment), and a
chamber into which the gas effused from the orifice., In this recipient
chamber, a small aluminum foil, of 0,01l-mm thickness and about
3-mm diameter, was suspended from a long, thin quartz fiber in such
a way that molecules colliding with the vane caused a torsional dis-
placement against the restoring force of the twisting fiber, Conse=
quently, this deflection was a measure of the molecular impulse on
the small vane. It is easy to deduce the impulse given this vane if the
effusing molecules obey the cosine law,

In a collision-free beam the molecules travel straight-line
trajectories ending only at a physical boundary which may be con-
sidered to be a small element of area dsj. This area projected in the
(arbitrary) direction of the trajectory may be written as dsj coseji s
where 6;; is the angle between the normal to the surface dsj and the
trajectory of length Jgij . The projected area and trajectory length de-

fine a solid angle

#

doj = dsicoseji/ﬂzij . (3.3=1)

If the flux of molecules in this solid angle is that prescribed by the
cosine law, then the collision rate at the intercepting surface dsj of
the molecules leaving the surface'dsj‘is given by the required substi=~
tution. ; |

If the molecules on collision with the surface dsj rebound
randomly, then the change in momentum at the surface dsj is simply
mc cos eji » where these symbols represent the usual quantities. Thus,
the impulse given the elemental surface dsj becomes
cos?6j; costjjdsids;

Ezij

ve -
dl = Tx ™C (3.3=2)
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In Mayer's experiments the surface dsj represents an elemental sur-
face on the detector vane and the source surface ds; represents the
orifice, which is assumed to be small compared with £ ije

The detector was constructed so that an integral impulse both
parallel with and normal to the orifice axis could be measured at
varying distance from the orifice. This is necessary since the im-~
pulse, being proportional to the square of the cosine of the angle, falls
off more rapidly at large angles, even more than does the intensity or
flux, Thus, the momentum component in a direction normal to the axis
of the orifice is greater at the high angles than is the component
parallel with the axis, and at small angles the reverse is true.

In his first paper,(SO) Mayer described the results of trial ex-
periments with the apparatus. The orifice in these studies was nearly
circular, with a diameter of 0.3 mm and a thickness of 0,01 mym. This
was sealed to a I-cm diameter tube, which appeared in a drawing to
be about 10 cm in length. This tube was fused to a larger spherical
chamber which, including the tube up to the orifice, was considered the
source chamber I. The vane in the recipient chamber II was located
at variable distances of several mm from the orifice. The trial ex-
periments demonstrated that the deflection is independent of the nature
of the gas and is rigorously proportional to the pressure difference.

The impulse observed at various distances from the orifice
gave excellent agreement with that predicted by the cosine law, Indi-
vidual measurements of the deflection appear to be within 10 percent
of the theoretical, but the overall precision must be judged in reference
to the extent to which the distributions agree with the predictions. On
this basis, the precision and agreement are probably of the order of
4 percent, These results therefore experimentally confirm within
small limits the cosine law of molecular effusion through very thin

orifices,




In his second paper,<3l) Mayer reported on his studies of the
effect of the increased pressure p; in chamber II, to the extent that
gas~phase collisions come to have a significant influence, the effect of
increased source pressures under high vacuum in chamber II, and the
distribution of molecules through channels of various lengths. Air,
oxygen, and argon were used in these experiments.

The observations demonstrated that even at pressures of about
4.5 mm Hg under conditions of high vacuum in the recipient chamber,
the cosine law holds for a thin slit, 0,01 by 0.05 mm. This pressure
would correspond to a mean free path of slightly less than 0.01 mm,
which is comparable with slit width. As the pressure p, became com-=-
parable with the source pressure p;, the intensity in the forward
direction decreased from that predicted by the cosine law. These ob=-
servations confirmed those of Johnson that inefficient pumping or
condensation in the recipient chamber leads to scattering of the beam
rather than, at least at the higher measured pressures, a congestion
in the orifice.

The experimentally observed distributions for orifices of
various thicknesses showed a more pronounced beam formation in the
forward direction. For a circular orifice of thickness equal to the
diameter, the cosine distribution appeared to hold up to angles of
about 45° to the sides of the normal, but a decreased intensity over
that predicted by the cosine law occurred at larger angles. For cir=
cular orifices of thickness-to-~diameter ratios greater than about &,
the shape of the heam was found to be nearly independent of the
capillary length., The data confirmed Knudsen's observations of the
dependence of the flow resistance on R?”/L,,

Mayer's and Johnson's observations appear to contradict the
conclusions of Knauer and Stern regarding the upper pressure limit
to molecular flow., Both seem to indicate that the decrease in beam
intensity noted by Knauer and Stern was due to insufficient cooling of

the walls of the recipient chamber. Knauer and Stern, however,
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(33) that a cloud formation, as postulated for their experi-

suggested
ments, would be more unlikely with a slit of smaller length than their
own, Moreover, since Mayer's detector measured a rather large por=-
tion of the beam in contrast to the narrow, collimated beam sampled

by Knauer and Stern, the impulse corresponded to a total intensity of

the postulated cloud; that is, the detector responded to the momenta

of the molecules arriving from all points throughout the volume of the
cloud. In their estimation, the possibility of finding a cosine law dis=~
tribution in the cloud is not excluded.

The first suggestion is plausible; the second is rather weak, It
would be very unlikely that a diffuse cloud above the orifice and supplied
by the gas effusing only from the orifice would lead to a cosine distri=-
bution. A more plausible explanation would be that the cloud, if it
existed, contributed only a negligible number of molecules to the vane
and that the integral impulse was more representative of the flux di-
rectly from the orifice. This, however, would suggest that Knauer and
Sternfs detector was more sensitive to the missing molecules; but
their data do not yield support to such a conclusion. That the large
area of the vane detector might have contributed some ambiguity,
however, is suggested by the disagreement of one of the measured
distributions with a theoretical calculation by Clausing,(34> derived

from an application of the cosine law,




CHAPTER 4
THE COSINE LAW OF DIFFUSE REFLECTIONS

We now briefly discuss an extended application of the cosine law,
an application which is fundamental to the solution of boundary value
problems in the kinetic theory of rarefied gases. Specifically, this is
an application of the cosine law as a law of reflection of molecules
from condensed surfaces under irreversible conditions, as Knudsen
first suggested.

It is quite important, of course, that one have available some
kind of law for handling the effect of gas-boundary interactions in the
flow of dilute gases, because their behavior, in contrast to that of dense
gases, depends markedly on the boundary conditions. In fact, this situa-
tion decidedly led to the perplexing conflicts prior to Knudsen's studies
and most unfortunately still plagues a number of more recent experi-
ments. The geometrical arrangement of a particular apparatus and the
conditions of the surfaces of the apparatus and experimental sample
(for example, the extent of cleanliness or the effect of surface temper-
atures) become as much variables in the execution of a gas theory ex-
periment as do the parameters unique to the gas itself. Consequently,
generalizations of experimental results may lead to contradictory con-
clusions, and one can cite here as an example the difficulties arising in
measurements of thermal accommodation.(35)

4.1 Application of the Cosine Law to Reflections

The deduction of a law of gas-solid interactions from basic
principles indeed is a formidable task. As a result, there is no com-
pletely satisfactory theoretical deduction from this approach, so that it
is not particularly fruitful to undertake here a more fundamental exam-
ination of the problem. There are, however, a number of interesting

discussions available elsewhere for this point of view.(36,37)
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The only a priori reflection law which may be deduced from
considerations of the gas-phase alone is the cosine law. This is
deduced again from equilibrium consideration, but given justification
for application to an irreversible process. The cosine law represents
the flux of molecules through an arbitrary area in an equilibrium gas.
Necessarily, it represents at equilibrium the rate at which molecules
collide with the wall of the container at an arbitrary surface element.
Therefore, it represents the rate at which molecules leave that sur-
face, since conditions are time invariant. Thus, for the equilibrium
state, the cosine law represents the directional emission rate of
molecules from any kind of a surface, whether it be an inert surface or
a surface made up of the condensed phase of the gas in question.

At equilibrium the rate at which molecules from all parts of the

gas collide with the element of wall ds; is
(vE/4) dsj = Zeds; (4.1-1)

molecules per second, which is the same as the total molecular effu-
sion rate. Also at equilibrium, the rate at which molecules leave the
surface dsj in the direction specified by cosGijda)j is the previously

deduced cosine law expression:

Zijdsj = Zg (l/ﬂ) cos@ijda)jdsi . (4.1-2)

This last formula is easily interpretable as an emission rate
expression, for Ze has the proper dimensions to be called a collision
density or flux per unit area; and indeed this is exactly what it is. In
the steady state, of course, to satisfy material balance, it is likewise
the total emission density. Therefore Z ds; may be taken as the total
emission flux and the factor (l/ﬂ) cos@ijdw-, which is dimensionless,
represents the fraction of the total flux having the specified direction.
It consequently may be taken naturally to be an emission rate probabil-
ity, which, as easily seen, is already normalized to unity with respect

to total spatial integration. It must be especially noted, however, that




here we have merely re-defined terms and have not violated the condi=
tion originally discussed that all directions of motion are equally
probable. We have only emphasized that the flux probability is propor-
tional to the cosine of the specified angle.

The cosine law as an emission or evaporationlawis merely the
result of the application of the statistical principle of detailed bal-
ancing; concerning the real mechanism of reflections, nothing mav be
deduced. Therefore, whether a fraction £ condenses and is re-
evaporated randomly and the fraction £ is reflected specularly. the
sum (€ + {) is unity in all directions of molecular restitution There-
fore, the cosine law makes no distinction on detailed occurrences, and
this is the immediate difficulty incurred in its application to an irrever-
sible process.

One now removes the restriction of equilibrium, but in doing
this it is supposed that the reflection mechanisms, whether the gas be
at equilibrium with the wall or not, are the same. This is only a plau-
sible assumption and not a unique consequence of the equilibrium
reasoning; the only condition really required is that the reflection
mechanisms have a continuous transition from a nonequilibrium state
to the cosine law for the equilibrium state. This is satisfied certainlv
if a fraction € of all molecules arriving at a surface element dsj are
reflected randomly with the probability dwj//Z’ITQ with the cosine fre-
quency, and with the temperature of the wall as would be specified by ¢,
the average Maxwellian molecular speed. The remaining molecules
may reflect specularly to the extent only that at equilibrium the sum of
all emissions from the wall add up to the cosine law with a coefficient
of unity.

The cosine law of diffuse reflections, therefore. 1s a postulate
that of all the molecules leaving an element of solid surface a fraction
€ is randomly emitted as a Maxwellian distribution characterized by
the temperature of the surface. The question as to the reflection law

for a nonisothermal system will not be discussed, for it is a problem
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requiring more detailed analysis than is presently necessary. Further-
more, since it is impossible to decide a E_l;i_(_)_r_i_ on the extent of the
various possible reflection mechanisms, we shall assume that all re-
flections are diffuse., As justification for this, one takes the experi-
mental verifications of this law by others.(38:39)

For a steady-state process, the cosine law for the transport of
matter from one surface dsj to another surface dsj in unit time, as

represented in Figure 4.1, may be written as
Zjj dsj = Z(dsi) {(1/’7{') cos@ijdwjdsi} (4.1-3)

molecules per second, where Z(dsj) is the emission density of the area
dsj and Zjjdsj is the arrival rate at dsj. The quantity Z(dsi) may be
expressed equivalently by V(dSi)E/4:3 where v(dsi) is an "effective"
gas density. Thus cosine law emission behaves as if it were emission
from a surface in equilibrium with a gas of density v (ds;) and with an
average molecular speed of €.

4.2 Clausing's Integral Equation

When the orifice of a Knudsen cell is of appreciable length com-
pared with the cross-sectional dimensions of the orifice, some of the
molecules passing into the tube are returned again to the gas within the
cell as a result of collisions with the walls of the tube and with other
gas molecules. Knudsen tried to take this into account by attributing to
the tube a conductance which, by the application of the cosine law of
reflection and under the assumption that gas-phase collisions are en-
tirely negligible, he deduced to be proportional to (8R /SL)(WRZ),

Smoluchowski(32) deduced the above factor by a similar but
more accurate application of the cosine law of reflection and the choice
of a uniform pressure gradient. A rigorous formulation of the so-called
conductance is possible, however, in which the only assumptions re-
quired are the cosine law and the absence of molecular gas-phase col-
lisions. The problem then reduces to one involving a solution of an

integral equation for the emission density rate at the walls of the tube.




Fig. 4.1 Projected Surfaces
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As DeMarcus(40) has recently shown, this formulation is a strict
solution of the distribution function F(¥,7,t) of Boltzmann's integro-
differential equation with the gas-phase collision frequency taken as
zero. Thus, by its definition, once the distribution function is known,
all the properties of the gas may be deduced.

Peter Clausing(4l) was the first to consider this exact formula-
tion of the molecular flow problem on the basis of Knudsen's theory of
diffuse reflections. The approach taken by Clausing is, as far as the
author is aware, the only approach by which angular distributions, as
for example those measured by Mayer's methods, may be computed
theoretically.

The molecules which finally escape the end of a tube considered
as a channeled orifice of a large reservoir are those which have had
their last collision with a portion of the walls of the tube or with another
molecule in the gas and subsequently have followed collision-free paths
to the exit into a recipient vessel. The rate at which a typical molecule
executes this collision-free step depends on its velocity from the point
of its last encounter. The total effusion rate is a time average of all
such occurrences.

If the gas is of such a low density that gas-phase collisions are
virtually absent, then the molecules which leave the tube have had their
last encounters with the walls or somewhere in the reservoir, which is
considered as a source of equilibrium gas at the same uniform temper-
ature as the walls. The gas or vapor in the reservoir under these con-
ditions, provided the density and temperature are known, is in a known,
presumably equilibrium, state. Thus, as a result of the prescribed
conditions, the gas in the reservoir emits molecules into the tube
according to the cosine law at each elemental area dsj in the cross sec-
tion of its entrance. This cross section of area S; is taken as the
source of the molecules. At each of these elements of the area in ques-

tion the gas density is known and identical. Furthermore, the average




speed is Maxwellian and, as a consequence of the cosine law. subsequent
collisions of molecules with the wall destroy only the character of the
incident directions but not the Maxwellian speeds. Consequently, in
principle at least, since we assume a steady state, whereby statistically
all processes in any small unit of time occur simultaneously, we have
knowledge enough to trace out the probable paths of each molecule and
combine these to give the total effusion rate or the total collision rate
at an elemental area of the wall. This is easily formulated by an inte-
gral equation.

At a small element of area ds, located arbitrarily on the wall of
the tube, the total collision or arrival rate, Z(ds,) ds,, at this area is
the sum of the numbers of molecules which arrive in unit time at ds,
from every other part of the flow system, namely, the source and walls.
The contribution from the source, by application of the equilibrium co-

sine law, is

1
Zyp dsp = ZeJIQI ;T-cosemdwzdsl , (4.2-1)

in which the integration is taken over the entire area S; of the entrance
cross section of the tube, eij is the angle between the normal to the
area ds, and the trajectory of length £,, of a molecule between the two
surfaces ds; and ds,. The solid angle dw; is easily prescribed by the

projection of the area ds, in the direction of the trajectory; thus

cosf,; ds
Ao, =—2—2 (4.2-2)

12
as is represented pictorially in Figure 4 1.

The only other molecules arriving at ds; on the wall, provided
that the recipient vessel is completely evacuated, are those arriving
from all other portions of the wall in accordance with the cosine law.
Thus, from another typical area of the wall. ds;, the contribution to ds,

may be written as
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Z,', ds, = Z(ds}) (1/7) cosf,', dw, ds . (4.2-3)

Of course, in evaluating the contribution from the source the emission

density Z, is known. In the last expression, Z(ds}) is unknown at pres-
ent, but its contribution to another surface may be formally expressed.
It is now easy to add in the contributions to ds, from other portions of

the wall to give the formal total collision density Z(ds;) and thus the

total emission density at the area in question. Therefore,
Z(dsz) ds2 = le dsz + ZZ'Z dsz + Zz'”z dsy + -,

Zyp ds, + ). Zy', ds, ) (4.2-4)
Si

where S; represents the total wall surface of the flow boundary. This

equation may be expressed equivalently as

1
Z,(ds;) ds, = Zef p cosBy, dw, ds,
S1

o o (ds2)
st 7

Other equations could be written for the elements dsj, ds}', and so

Cosezvz d(l)z dSzl (4.2-’5)

forth, but formally these are all similar. Hence, the solution to the
above integral equation, if possible, as a continuous function of the
surface variables and geometrical parameters would give an expression
for the emission density at an arbitrary surface element.

As to whether the equation has a solution, one can say this. The
equation represents a physical situation which has a solution. More-
over, the equation may be disintegrated term by term into an iterative
equation which is exactly the sum of all the single, double, and multiple
collisions a molecule makes after it has left the source and finally col-
lides at the elemental area ds,. The cosine terms will not contribute

here any indeterminate or infinite terms.
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Once the prescription of the wall emission density Z (ds;) is
known, the total rate of effusion is easily deduced. Thus, if the exit
opening of the tube is denoted by an area Sy, then, as before. one writes
that the arrival rate and thus the leaving rate into the recipient vessel

at an elemental area in the opening is

1
Z (dsg) dsg = Ze/ ~ cosB;y dwg ds;
S

1
+/ Z(ds,) —cos8,p ddsg ds, (4.2-6)
Sz m
which expresses the rate as a flux contribution directly from the source
and contributions directly from the wall. The total effusion rate is
simply obtained by an integration over the exit area Sy; thus,
dn
~—— = Z(Sq) So =/ Z(dsg) dsg . (4 2-7)
dt
So
These equations (4.2-5), (4.2-6) and (4.2-7), comprise Clausing's
formulation of molecular flow through tubes of arbitrary shape

4.3 The Clausing Factors

The rate of molecular effusion of a gas from a reservolr into a
vacuum through a thin orifice of arbitrary cross-sectional area Sy may

be expressed as

dn
a—t-Z ZeSO . (4:3*1)

If the cross-sectional shape is maintained but given an extension so
that the orifice is a tube of appreciable length, the effusion rate is less
than the above value by a fraction which may be denoted as W.

This factor W is variously known as the Clausing factor or
transmission coefficient and is derivable from the equations just pre-
sented. The effusion rate in terms of the cosine functions is expressed

as



o
Z(So) So = Ze f — COSGIO d(bo dS]_
S v

1
+ Z(ds,) = cosB, dwy ds, . (4.3-2)
So Sz

By equating this to the expression (4.3-1) multiplied by W, one obtains

the definition

1 1
W = Z{S)So . = co0s80;4 dwg ds;
ZeSo So i
SeYS
1 1
+ = n(ds;) = cos8, dwy, ds; , (4.3-3)
So (s
S0vS;

in which the ratio Z(ds,z)/Ze is denoted as n(ds;); this ratio may be con~
sidered a normalized emission density.

The wall emission density equation also may be expressed
simply in terms of n(ds,) by the above definition. In this way, the
Clausing equations may be reduced to probability equations with known
kernels which depend only on the geometrical arrangement of the flow
system.

Exact solutions to the integral equation have not been found, but
by various methods Clausing obtained approximate solutions which
allowed him to calculate values of W for certain geometrical arrange-
ments. For tubes of circular cross section, W is a function only of the
ratio of the length L to radius R of the tube. Values of W for various
L/R ratios have been tabulated in a number of available sources.(15)
Recently, DeMarcus(42) has re-investigated the problem of molecular
flow on the theoretical basis described. He was able to obtain values
of these functions more accurate than those Clausing calculated.

Once an expression is known for the wall emission density, the
cosine law may be applied to derive the distribution of flux of molecules
emitted from the end of the flow tube with reference to the polar

variables of the 27 solid angle above the exit of the tube. Mavyer's
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reported observations on the impulse distributions of molecules effusing
from a circular orifice of length L. = 2R induced Clausing to publish a
paper(34) in which the flux distribution was theoretically calculated by
the methods described above.

For a circular orifice with length L. = 0, the flux is the cosine
law value given by

4
%(9) =f7;e- cosB dwds. (4.3-4)

In contrast, Clausing demonstrated that for a circular tube the flux

becomes

—an(G) =~Z—;-cosedwds - T(6.,L,R) . (4.3-5)
where T(6,L,R) is unity normal to the orifice and decreases with in-
crease in the angle ©. He evaluated T(6.L,R) for the case L = 2R.

A comparative graph of the flux given by each of the expressions
showed that the effect of the channeling was to produce a more pro-
nounced beam in the forward direction. This agrees qualitatively with
Mayer's observations. However, at an angle of 45°, the departure from
the cosine law value given by (4.3-5) amounted to about 40 percent,
whereas Mayer detected no appreciable departure at this angle.

In so far as the writer is aware, this discrepancy has never
been explained. But as Clausing suggested, one could understand 1t 1f a
significant number of molecules had been specularly reflected Another
possibility is that the wall collision density used by Clausing in his der-
ivation was not accurate enough to reproduce faithfully the angular
dependence of the molecular beam This possibility is plausible be-
cause a very crude estimation of the wall emission density will give
the nearly correct total flow value. For example, a simple two-
parameter density equation may be used to deduce reasonably good

transmission coefficients for all values of the L/R ra,tio.(42)
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Nevertheless, this is only a possible source of discrepancy and would
require further detailed analysis. The evidence for a variety of ex-
periments is in favor of diffuse scattering at solid boundaries, with
only negligible, if any, specular reflections occurring.

4.4 Geometry Factors and Probability Interpretation of the Cosine Law

Some useful and important distinctions and definitional inter-
pretations of the various factors in the cosine law have been emphasized
in the previous discussions. It is useful now to review certain of these
and extend the concepts to encompass a probability formalism amenable
to a subsequent analysis. A probability interpretation allows one to use
the cosine law without detailed and cumbersome mathematics, at least
up to the point at which numerical computations are required.

(a) The Geometry Factors

A probability prescription of the cosine law begins most
naturally with a description of the geometrical quantities explicitly con-
tained in the cosine law. This so-called law has been expressed as a
product of the total emission flux Z(dsj)dsj from a surface element
multiplied by the flux probability (da)j/'rr cos Qij)- Another interpreta-
tion, and one which emphasizes the equal probabiiity of an emission di-
rection, is expressed as the product of the random probability of a
direction, d(Dj/Z’JT, multiplied by the number frequency of the event,
2Z(ds;)ds;€ cos Qijc The form of the first factor arises from the physi-
cal limitation to a reflection through the boundary surface dsj, that is,
a solid boundary eliminates the remaining 27 directions otherwise
possible. This second interpretation would be useful in those applica-
tions where a boundary value problem is solved by random walk pro-
cedures. The first interpretation, however, leads directly to the
amenable formulations useful in an analytical prescription.

One may write the cosine law in the form

Z(dsj)g(ij)dsids; . (4.4-1)




in which the factor g(ij) is defined by the expression
1) = .. o h 2 4.4.2
glij) = cos8;; cos 033/ mhij . (4.4-2)

One will notice that g(ij) is totally symmetrical with respect to the
choice of the source and receiving surfaces and that it is purely a geo-
metrical expression. As such, the quantity g(ij)dside is often referred
to as the emission geometry factor, both for effusion and light radiation
problems. More generally, since real problems deal ultimately with
macroscopic surfaces and their total emission densities an integral

geometry factor is employed. Thus,
G(SiSj) = ff g(ij)dside s (4 4=3)

where the integration may be carried out partially or totally over the
surfaces as might be required.

As an example of the use of such a quantity, we may consider
the problem of determining the fraction of the total effusate which might
arrive in a measured time at a condensation target intercepting a mo-
lecular beam some distance above an orifice of a Knudsen cell This is
a typical problem encountered in vapor pressure measurements by the
effusion method.(43) We assume that the vapor in the oven is saturated
so that the orifice, considered as a mathematically thin. circular open-
ing of area Sy = 7R, is a source having uniformly the cosine law flux at
each of its elements dsy. The total rate of emission or effusion is
ZeSq = Soveé/éla If a circular disk of area S; = mR? 1s placed parallel
to and coaxially with the orifice at a perpendicular distance L. then it
is easily derived that the appropriate geometry factor is expressed by

the symmetrical quantity

G(S¢Sy) = ;—T {LZ + R% + R} »’\/(LZ + R% + R%)? - 4R} R} } (4.4-4)

This result may be found in texts on light radiation theorv;(44) for com-

pleteness it is derived in Appendix 1. If L and R; are large compared

with Ry, the expression above may be expanded in powers of
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4RZRZ/(L? + RZ + R?)? to vield the familiar result
G(S¢S1) ¥ 8o RY/(L? + RY) (4.4-5)

in which the higher terms have been neglected.

The total rate of effusion in molecular units is Z,Sp and the
condensation rate at the receiver, if it is sufficiently cooled to effect a
total condensation of all intercepted molecules, is ZgG(S(S;). Conse-
quently, the fraction intercepted is G(SDSI)/S()@ A probability interpre-
tation of this fraction now follows directly, for the probability that a
molecule in unit time arrives at S; a distance L away is precisely
G(S051)/So.

(b} A Probability Interpretation

A variety of useful geometry factors may be derived accord-
ing to the definition (4.4-3), and each of these may be reduced similarly
to an easily interpretable probability. It is convenient to define these
probabilities by some unique notation. Accordingly, for any surface dsj
having an emission density Z(ds;i), the probability that a molecule leaving
this surface will in unit time arrive at a macroscopic or elemental sur-

face Sj is simply

K(dsis;) =f Z(dsj)g(ij)dsids; /Z(dsi)dsi =f g(ij)dsj , (4.4-6)

S / S
J J

and the probability that a molecule leaving the surface S; will in unit

time arrive at the surface S may be expressed as

K(S5;) ff Z(ds;)g(ij)ds;ds; / Z(ds;) (4.4-7)
Sq

In these, the convention has been used that the first symbol
S; in K represents the source and S; the recipient surfaces, respectively.
This convention is necessary in this case because, whereas the geom-
etry factor is symmetrical with respect to the two surfaces in question,
the probability factor is not. In all the situations hereinafter in which a

probability interpretation is used, the emission density will be
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independent of the variables of the surface over which a partial or total
integration is carried out. Thus, under this restriction, for example,

the probability K(S; S above becomes

1
J :g—-/ f g(ij)ds; dS . (4.4-8)

Consequently, the probability appropriate to the effusion problem pre-

viously outlined becomes
K(SeS1) = (1/50) G(SeSy) . (4.4-9)

Now to illustrate the nonsymmetry of the probability function, we may
consider that the surface S;, which previously was the recipient surface,
is the source and Sy the receiver. The probability that a molecule

leaving S; will in unit time arrive at S; is
So) = (1/8;) G(S:S¢) . (4.4-10)
However, since G(S;Sg) = G(SS;), then
) = (So/S1) K(SeSy) - (4.4-11)

Especial attention will now be devoted to this probability
K(5;S¢) since it plays a leading role in applications of the cosine law to
reflections from cylindrical surfaces, and we shall subsequently make
extensive use of it in discussing the molecular effusion kinetics of a
cylindrical cell. In particular, it is of interest to demonstrate that
certain probabilities are derivable from K(S;S) by differentiation of
its related geometry factor. We consider in illustration that a large
circular disk of area S; = 7TR:1'7 is located parallel to and coaxial with a
disk of area Sg = WR% at distance L above 5;, as diagrammed in
Figure 4.4.

If the disk Sy is considered as a uniform source of particles
having a cosine law emission rate, which in total is ZgSg, then the flux
at S; is ZgG{S¢S;). But it is convenient explicitly to state the fact that

the geometry factor (4.4-4) is a continuous function of the three
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parameters L, Ry and R;, and thus we express the flux at S; as
ZeG(L,RgR;). The flux at S; accordingly would become Z G(L +AL,R;Rp)
if the recipient surface S; were moved down along the axis a distance
AL. Since G(L,R¢R;) decreases in value for an increase in the length
parameter, the second flux is slightly less than the first. It now must
be emphasized that the geometry factor applies to a rate process such
that the first and second fluxes represent arrival rates at either of the
disks S; from Sy in the same unit of time. Consequently, the difference

in the two fluxes.
G(L,RoR;) - G(L. + AL,R¢R;) , (4.4-12)

must be the flux at the ring element 27TR;AL. Because of the symmetry
of the geometry factors, it might be supposed that the flux at Sy from
the ring element 2mR;AL would be given by the same difference. How-
ever, in the event that the emission density at an elemental surface ds
in this ring might vary with the small change in distance L% but be in-
dependent of the location about the circumference, one may proceed to
take the limiting differences. Thus, as AL is reduced to an infinitesi-

mal, the difference (4.4-12) becomes

d

- 5T, G(L.RoRy) dL.

Therefore, if the disk Sy were the source and the ring
ZTR;dL, were the receiver, or if the ring 27R;dL were the source and
So the receiver, the geometry factor applicable to both under the con-

dition that either source has uniformly the cosine emission rate is

0
G(2mR1dL,So) = - 5T G(L,RoR;)dL = G(So,2 TR, dL). (4.4-13)

Hence, the probability that a molecule leaving the ring 2mR;dL will in

unit time arrive at Sg is

K(27R,;dL,S,)= -

ST G(L.RoRy) = - S+ 5T K(SiS0) - (4.4-14)
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In illustration, the above geometry factor is derived by
integration in Appendix 1. Later we shall find it convenient to define

and use the probability

L Re R;) 1 G(L,ReRy)
28 My L ZANHe 0 4,415
K(Rf R;’ RI) z Sy ( 15)

to eliminate the factor ;— arising in probabilities similar to (4.4-14) and
state the explicit parametric dependence of the probability.

Another probability function could be derived by a second
differentiation of (4.4-13) with respect to Ry to obtain the geometry
factor applicable to radiation between the ring 27R;dL: and an annular
surface 2mMRgdRy at the disk Sy. Again, only the limiting difference is
required, and the limiting operations are permissible because the
factor G(L,R;,Rq) is continuous and well behaved in all defined regions

of the parameters.




CHAPTER 5
VAPOR SATURATION IN A KNUDSEN CELL

The effusion of vapor from a Knudsen cell is an irreversible
process. Consequently, the question regarding the extent of departure
from vapor saturation within the cell is a question of the unique defini-
tion of the pressure p in the molecular effusion formula if it is to be an
accurate prediction of the rate of effusion. It is this problem which is
discussed in this chapter. The problem is intimately associated with
the question of the flux distribution of molecules, for only under the
condition of complete vapor saturation is the orifice a source having at
each of its surface elements an equilibrium cosine law emission rate
which a priori is applicable both to the prediction of the flux intensity
at an arbitrary location outside the cell and to the usual calculation of
the transmission coefficient or Clausing factor of an orifice of appreci-
able thickness.

In the fifty years since Knudsen first examined the molecular
flow behavior of gases, evidence has been accumulated to demonstrate
within the precision of innumerable experimental measurements that
the vapor within a properly designed cell is practically saturated.
Equivalently, this means that the precision of effusion experiments
heretofore performed is insufficient to attribute real discrepancies to
undersaturation effects arising from normal density gradients in the
gas phase, for it is the more general occurrence of thermal gradients
and depletion effects at evaporating surfaces(45) which predominantly
lead to the majority of difficulties and experimental errors. Yet it is of
interest both for the practical application and for the design and execu-

tion of precision effusion experiments, and of interest in connection with

the extent of the validity of flux distribution calculations and experiments

dependent upon the assumption of saturation at the orifice, that the
question of undersaturation effects be examined rigorously. A number

of inadequate previous discussions(46,47,48,49,50) of this problem,
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however, indicate that the fundamental aspects of the kinetics of effu-
sion either are not clearly understood, or not properly employed. It is
the intention here not to condemn these previous discussions, but rather
to examine the problem from a more reliable, consistent, and complete
viewpoint in order to clarify the misconceptions which have been unfor-
tunately promulgated. For example, the rate of effusion appears to
have been viewed in terms of supposedly known flow "impedances" of
the cell wall and orifice in a manner similar to the popular, but entire-
ly qualitative, treatment of vacuum system design. But apparently it is
not entirely understood that such a concept has only limited generality,
is inaccurate, and, most seriously, is not strictly applicable without a
rigorous justification to provide a priori corrections to experimental
data.(48,51)

The problem of deducing under an arbitrary set of conditions
the extent of vapor saturation in a Knudsen cell from basic principles
is a naturally difficult task, first because basic principles of gas-solid
interaction phenomena are not well understood and, secondly ,because
density conditions leading to molecular flow may be appreciably differ-
ent. The effusion process may occur under conditions in which gas-
phase collisions are negligible and also under conditions in which
gas-phase collisions are frequent. A complete formulation of the prob-
lem would prescribe the behavior of the gas under either of these limit-
ing conditions and be capable of predicting the departure at higher
pressures from molecular flow. The present examination considers
the problem only for the low-density limit in which gas-phase collisions
are negligible. This is not ar}lnimportangsituation, however, for the ef-
fusion method is used extensively in the pressure region of 10™* mm Hg
and lower, and at this pressure one may deduce from a simple mean
free path treatment that less than five percent of the molecules leaving

the orifice of a Knudsen cell have been involved in a gas-phase




collision.(52) Furthermore, previous treatments ostensibly have been
limited to this pressure region, and the problem is formidable enough
even under this density specification.

It is the present intention that only limited aspects of the kinet-
ics of effusion at low densities be discussed in relation to the extent of
departure from vapor saturation to show within the framework of a few
simple consistent assumptions and conditions that a formal expression
for this departure may be deduced rigorously. The equations developed
herein permit certain valid conclusions of general applicability to be
deduced by inspection. The results of this treatment are briefly com-
pared with those of previous treatments to assess their reliability.
Only those aspects derived from the steady-state application of the
conservation laws and statistical thermodynamical principles to aniso-
thermal enclosure are included here. Some consequences of a noniso-
thermal enclosure and concentration gradients at interfacial boundaries
have been discussed by others elsewhere.(45,53)

5.1 Previous Analyses of the Extent of Vapor Saturation

Before the rigorous treatment of the problem of vapor satura-
tion in a Knudsen cell is presented, the assumptions and results of two
previous descriptions of the extent of vapor saturation are outlined here
for a model in which the vapor within the cell is supplied by the mole-
cules evaporating in the steady state from a condensed phase. The
analysis here conveniently allows one to assess a part of the limitations
of these treatments and outline questions of a general nature which a
more detailed and rigorous formulation might hope to answer.

(a) A Classical Derivation(54)

Assuming explicitly only a conservation of mass, one can
write that the rate of effusion in the steady state equals the rate of evap-
oration minus the rate of condensation. Furthermore, if one assumes
that the three rates are described by the classical kinetic expressions

and that the pressure p(0) throughout the cell is uniform but less than
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the equilibrium pressure pg, then the conservation statement may be
expressed by the equation,

p(0)Sy _ %peS; _ ap(0)s,

\2amkT \ermkT  V2TmkT

; (5.1-1)

in which Sy and S; are the orifice area and evaporation areas, respec-
tively, and a is the vaporization coefficient. From this equation one

finds that
Sp
p(0) = pe/<1 +5§1) : (5.1-2)

The validity of this expression, of course, depends on the
validity of the assumption of a uniform pressure throughout the gas
phase; as will be shown indirectly in subsequent discussions, this is
not generally valid for a cell of an arbitrary shape. The assessment of
its validity, moreover, requires certainly a more detailed analysis.

(b) The Analysis by Whitman and Motzfeldt,

There have been reported(46,48) at least two attempts to
derive an expression for the extent of undersaturation on the basis of
the explicit assumption of a conservation of mass and a pressure gra-
dient of a presumably unspecified nature. Whitman(46) and Motzfeldt(48)
consider a cylindrical effusion cell with an evaporating sample located
at the base of the cell and an orifice located coaxially at the top of the
cell. The effect of gas-phase collisions is considered to be negligible.
Whitman's analysis consists of summing the numbers of molecules
which leave the evaporating surface and finally escape from the orifice
after all possible reflections, but the method of accounting for these
reflections, however, leads to the same result as Motzfeldt's more
amenable analysis.

Motzfeldt considers the equations derivable from four rate
processes. First, he writes that the rate of evaporation equals the rate
of condensation plus the rate of effusion; the latter is assumed to be

equal to the total collision frequency at the top of the effusion cell




multiplied by the ratio of the orifice area to the cross-sectional area of
the cell, SO/SI. The second equation is a valid one in which the total
emission rate from the evaporation surface is expressed as the sum of
the rate of direct evaporation plus the rate at which molecules are re-
flected from the same surface without condensation. A third equation
expresses the assumption that the reflection rate of molecules at the
top of the cell equals the collision rate at the top surface minus the
assumed rate of effusion. The fourth equation assumes that the colli-
sion frequency at the top of the cell is given by the emission rate from

the evaporation surface multiplied by a probability W minus the re-

flection rate at the top of the cell multiplied by the probability (1 - Wy).

This presumes a symmetrical system in which the fraction (1 - Wa) of
the molecules heading toward the bottom of the cell are reflected by the
walls of the cell back to the top. These four rate processes lead to

the equation,

(0) =
SR Y LY (5.1-3)

in which the symbols represent already defined quantities. Since p(0)
represents the pressure which is contained in the molecular effusion
formula, then the expression (5.1-3) presumably uniquely defines this
pressure provided W p is known.

Both Whitman and Motzfeldt apparently accept Wy to be
the usual Clausing factor calculated for a right circular cylinder of the
same radius R and length L as the Knudsen cell in question, but both
realize that this rests on the strictly erroneous assumption that the
collision densities are independent of the radial variables of the sur-
faces. Whitman tried to assess the limitations of this assumption by
returning to an examination of Clausing's derivation. In doing this he
had to make additional assumptions to evaluate the errors in the de-

nominator of expression (5.1-3). His analysis indicated that errors of
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two to seven percent might arise from the invalid assumptions in the
derivation, but since the undersaturation effect calculable from the de-
rived equation amounts to only a percent for a Knudsen cell of normal
dimensions, the derivation becomes decidedly superficial and of ques-
tionable quantitative value. Whitman's analysis of the derivational
errors should have shown him that it is necessary to return to basic
principles from which only a rigorous formulation is capable of quan-
titatively treating the problem he wished to attack.

(c) Limitations and Questions

The foregoing treatments have the virtue of apparent sim-
plicity at the sacrifice of rigor. They serve qualitatively to illustrate
the degree of saturation in a Knudsen cell and its dependence on the
geometrical parameters of the cell. But because they are of a rather
superficial nature they can be of little or no value in answering quanti-
tatively the questions on flux distribution and the consequent validity of
the cosine distribution at the orifice of a Knudsen cell. There are re-
lated additional questions of interest:

1. What errors occur and what is the spatial distribution of the
effusate when the walls of the cell are a sink for the vapor?

2. What is the effect of the location of the evaporation surface?

3. Which is the more reliable measurement of the equilibrium
pressure, that of the total rate of effusion or that of the rate
measured in the forward direction?

4. What are the effects of the cell shape and dimensions on the
rate of effusion?

5. What is the most important limitation to the orifice
dimensions ¢

These and others are questions to which one using the effu-
sion method must seek an answer. Therefore, a rigorous derivation
which yields an expression permitting even a semiquantitative discus-
sion of these is of value. Because all the theoretical framework for

such a treatment exists, at least for limited conditions, one feels




especially compelled to present such an analysis, even though it ap-
pears elementary and in part redundant,

The principal difficulty which must be properly circum-~
vented can be easily illustrated. Certainly for a mass conservation,
one may state that the rate of effusion must be equal to the rate of
evaporation minus the rate of condensation. Further, one may define
the pressure p(0) as the unique pressure contained in the formula for

the rate of effusion, so that this may be written as

dn - p(0) S¢ . (5.1-4)

dt N2 TmkT

Probably there is no serious error in accepting that the rate of evap-

oration as given by the classical cosine law expression:

A pad
dn _ Pev1 , (5.1-5)
dtvap 2TmkT

especially since any error may be absorbed in the nebulous quantity a,
which is usually thought of as the vaporization coefficient. However, it
is not possible to write a similar expression for the condensation rate,
especially in terms of p(0), without having a knowledge of the depend~
ence of the vapor density upon the coordinates within the cell. What
one assumes for this will determine the final expression. In the
classical derivation the vapor density was assumed to be a constant
corresponding to p(0). In the derivation by Whitman and Motzfeldt it
was assumed to have certain values at the top and bottom of the cell,
and these were related to each other by the factor W, and the ratio of
areas, So/Sl.

It is the purpose of the subsequent analysis to derive the
correct density dependence, although indirectly, for a simple set of
consistent, basic assumptions and conditionsg, in fact the same ones
which tacitly were taken in the analysis by Whitman and Motzfeldt,

These basic prescriptions, which are derivable from kinetic theory
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and were used rigorously by Clausing in his problem, are sufficient to
effect a formal solution without accepting additional and more tenuous
assumptions.

5.2 Assumptions Necessary for a Limited but Consistent Analysis
of the Kinetics of Molecular Effusion

Although it may at first appear redundant to return to a dis-
cussion of the basic assumptions necessary for the analysis of the
kinetics of effusion = and these are the assumptions which have been
carefully outlined in the foregoing chapters = one can cite two reasons
for doing this. First, one must emphasize that a complete set of as~-
sumptions must be consistent with and contain all the laws of thermo=
dynamics, Second, one must remember that if all directions of
evaporation and reflection are assumed a priori to be equally
probable, then the cosine law follows as a consequence and must be
used consistently, This consistency, however, has been violated at the
outset of the previous treatments, with the result that errors incurred
in the derivations can be assessed only by returning to an initially con-
sistent formulation. For example, the Clausing factors for circular
cylinders are derived under the assumption of equally probable direc=-
tions of reflection applied to a geometrical arrangement of surfaces
in which the added reflecting surface corresponding to the lid of an
effusion cell is not included. To take these factors so calculated to
be applicable to a foreign geometrical arrangement without adequately
compensating for this new arrangement leads to the inconsistency. As
will become apparent, the 1lid surface of the cell changes the complexion
of the problem to such an extent that the usual Clausing factor has no
direct bearing on the problem whatever, and in fact the solution to the
problem may be thought of as one of evaluating a new Clausing factor
for a geometrical arrangement different from those heretofore con=-

sidered,




For completeness, we cite here the two assumptions and their
consequences which enable one to effect a complete and consistent
analysis of the vapor saturation problem under an admittedly limited
condition to a restricted system.

Assumptions: (1) We assume that all direction of gas=-phase

motion, reflection and evaporation are equally probable in an
isothermal enclosure. (2) We assume that the conservation
laws, i.e., conservation of mass and energy, are applicable.

Consequences: From these assumptions one can derive all of

the consequences of kinetic theory of interest to the problem
under consideration: These are (1) that the average thermal
speed ¢ of the molecules is (8 kT/’iTm)%, (2) that the pressure
at a physical boundary is VokT, where v, is the uniform
molecular density, (3) that the directional rate of evaporation
is the cosine law expression, o (VeE/ék M) cos 6;jdw;, which
gives a total rate of « VeE/4, both per unit area of evaporating
surface with o representing an indeterminate factor having a
value between zero and unity, and (4) that the directional rate
of emission from a wall surface of the enclosure or the di-
rectional flux at a mathematical surface in the gas phase is the
cosine law expression (Ve3/47T) cosf jjdw;, which gives a total
unilateral flux of ve'é/ oth per unit area,

We now wish to apply these assumptions and their con-
sequences under one limited condition to a restrictive system,
as follows.

Condition: Gas-phase collisions are absent, and molecules
move and behave independently.

System: We consider a totally closed, isolated, and isothermal
container, whose shape will be specified in terms of amenable
geometrical parameters, filled with a noninteracting gas
specified in the above condition and in equilibrium with its

condensed phase.
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These three specifications allow one to proceed with an anal=-
ysis which is thermodynamically consistent. The statement of the
assumptions applied to the closed system under consideration ensures
complete thermal accommodation of the gas with the reflecting and
evaporating surfaces and, in so far as the physical analysis is con=-
cerned, avoids the troubles associated with heat losses in an open
system. The quantity &, which one will recognize as a so~called
vaporization coefficient, with the present system becomes a quantity
having no thermal dependence, a situation which may or may not have
an equivalence for the real vaporization coefficient. The nature of the
explicit assumptions is to preclude the occurrence of other than ran-
dom reflections, This is done first for simplicity and second because
there is no a priori knowledge as to the extent of other possible types
of reflections. The consideration of a noninteracting gas is cited here
as a condition rather than an assumption because it appears to be
within one's ability to attain this as an experimental condition at low
vapor pressures.

One now may ask how this admittedly limited system pertains
to the loss of vapor in an effusion experiment even in accepting the
other restrictive consequences of the closed system. It does, however,
correspond exactly to this situation if one proceeds with the correct
bookkeeping, for, since the system is in the steady state and the gas
molecules are considered to be independent particles, then it is pos=~
sible to effect a scheme whereby one separately accounts for those
molecules which in a unit of time arrive by all possible single and
multiple reflections and by direct evaporation at a preselected area
which would correspond to the orifice in an open system, without hav=-
ing been reflected previously at this area. We take the trouble to pro=
ceed in this manner only for the sake of complete thermodynamic
consistency, although the analysis would proceed identically if the

statement had been made that we consider an open system under the
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assumption that the reflection mechanism and isothermal properties of
the system are identically those of the closed system. However, the
scheme chosen allows one at the outset to prescribe exactly those con~
ditions which one must evaluate in transferring this analysis to a real
and thus irreversible effusion process.

5.3 Mathematical Formulation

The necessary assumptions, condition, and specification of the
nature of the system under consideration have been prescribed in such
a way that the analysis to be effected follows identically the logical
steps which Clausing considered in his special problem of the trans-
mission coefficient of an orifice of appreciable extent. It is possible
to proceed, then, on this basis to modify his formulation to include the
additional reflecting surface of a lid with a small and now imaginary
orifice, and to make immediate use of the probability interpretation
of the cosine law, It is felt that such an attack, however, obscures
some of the interesting and important aspects of the derivation, so
that the procedure chosen here follows a more detailed, but descrip=
tive, path which relies on the concepts outlined in section 4.4.

First, it is desirable that we explicitly define the problem
again and as much as possible prescribe the form of solution and at
the outset define a few symbols and shorthand designations which are
convenient. These may be defined generally quite independently of the
shape of the cell. Secondly, the variables specific to a cylindrical
Knudsen cell are defined and employed in deriving the equations to
effect a formal solution of the initial prescription. It will become
readily apparent, if it is not so already, that the problem numerically
becomes more formidable than that studied by Clausing. It is not the
intention at present to obtain exact numerical information, but rather
to exploit the formalism to answer some of the questions initially

posed.
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(a) An Explicit Statement of the Problem and Its Solution,
and Some Definitions

Principally, we wish to obtain a unique definition for the
pressure p occurring in the effusion formula, and this pressure
shall be defined as p(0). Itis of use to determine this pressure only
if it may be related to the equilibrium pressure, pe, of an isothermal
enclosure, and this will depend generally on the geometrical param-
eters of the Knudsen cell. If the orifice of the cell is sufficiently
small, the pressure p(0) would be expected to be nearly the equilibrium
value pe, so that in effect one would wish to derive a quantity A, which
is nearly zero and dependent, if necessary, on the cell geometry.
Therefore, we shall try to define the value of A consistent with the
previously stated restrictions and applicable to a hypothetical effusion
process in which the effective pressure may be defined in terms of p,

by the relation

p(0) = pe (1-4) . (5.3-1)

As a result of the previously stated assumptions, restric=
tion, and condition, the total {equilibrium) wall collision density and
emission density in units of number per unit time per unit area is
Ze = ve?:'/4 , and these are the only density quantities of direct interest.
We shall formally account separately for the emission or collision
density at an element of area ds; on the physical boundaries by con~
sidering (1) the density Z(dsj) due to those molecules which in a unit
of time arrive at an area under consideration from the evaporating
sample by all possible reflections without having at any time previously
collided at a specified area, Sy, equivalent in the open system to the
orifice of the enclosure, and (2) the density Z(dsj), due to those mole~
cules which have collided with the orifice and returned to the area ds;
without having been condensed and re-evaporated at the evaporation
surface S;. In effect if this were an open system, these definitions

would be equivalent in the first case to considering the evaporating




surface as the real source and the orifice as the real orifice, and in
the second case to considering the orifice as the real source and the
evaporation surface as the real orifice. For S; much less than S;, the
value of Z(ds;), should be much less than that of Z(ds;). Since these

two emission densities are uncoupled by definition, then at all times

Ze = Z(dsi) + Z(dsi)g ,
and

1 = n(ds;) + 6(dsy)o , (5.3-2)

in which the latter equation is derived from the former by division by
Ze. The quantities n and & may be considered normalized emission
or collision densities, and since both are positive, they have values
only between zero and unity, and vary in general from one to another
surface element. It should be apparent by analogy with Clausing's
problem that the only important quantities are the emission densities
at the physical boundaries, so that gas densities are immaterial but
may be derived if desired.

The geometry factor representing the geometrical variables
of the surfaces for a particular coordinate system is employed as pre-

viously defined. Thus,

. 1 cosb ijcos0 ji
glij) = = , (5.3=3)

for which the symbols will be taken to specify generally defined sur-
face elements, It must be remembered that the emission rate from

one to another surface element in the same plane perpendicular to

"both surface normals is zero because both cosines are zero. The

first symbol in the quantity g(ij), namely i, defines the general loca-
tion of the "source" surface and the second, j, defines the terminal
surface. This is only a convenience, however, since g(ij) is symmet-

rical with respect to these surfaces.
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(b) Derivation of the Kinetic Equations for a Cylindrical Cell

We shall consider a circularly cylindrical enclosure as
specified in the Figure 5.3, The evaporating material is distributed
uniformly over the surface S; at the base of the cylinder. A hypothet~
ical circular orifice of area S; is located coaxially at the top of the
cylinder. The remaining area of the top is denoted as S; = Sy = S5;',
and the walls of the cylinder are defined as the area S,. At arbitrary
"points" on the various boundaries, the surface area elements ds,, ds;’,
ds, and ds,' are selected, and it should be noted that ds,' represents an
area equivalent to ds, but at another arbitrary location. The length of
the cylinder measured from the base is denoted by L, the radius of the
cylinder by R;, and the radius of the hypothetical orifice by Rg. A
cylindrical coordinate system allows one to define the surface variables
conveniently as follows, with r taken as a radial variable, § as an
angular variable, and 4 as a length variable measured from an origin

on the axis at the base of the cylinder:

dsg = rodfedrg
ds; = r;df,dr;
dsy' = ry'df,;'dr,’
ds, = R;dB,d4
ds,' = Rydp,'ds!

The "vaporization coefficient" & is taken as unity, so that the nor-
malized rate of evaporation is unity at every element on the surface
S;.

The molecules which arrive in unit time at the hypothetical
orifice Sy without having previously been reflected at this surface have
had their last encounter with the wall elements ds, or have evaporated
from the surfaces ds;, and in a unit of time have followed a collision-
free trajectory whose extremes intersect the surfaces ds,;, dsg and ds,,
dsg, respectively, The emission rate from one to another surface both

at the top of the cylinder is zero since the applicable cosines are




Fig. 5.3 Geometrical Variables of a Cylindrical Knudsen Cell
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identically zero. Consequently, the normalized rate of arrival at an
element dsy may be expressed in generalized cosine law variables by

the definitional equation,

[
n(dsg)dsg =f g(10)ds,dsy +| n(ds,) g(20)ds,ds, . (5.3=5)
5 Sz

Therefore, an integration over the surface Sy defines the total arrival

rate or hypothetical effusion rate,

7

S 2 2(s)Sy = Ze | nldsods,
at Jg
0
[
= Ze j g(10)ds,dsy + Ze n(ds,)g(20)ds,dsy. (5.3-6)
So 7S, So”S,

This equation can be evaluated only if n(ds,) is known as a function of
the cylindrical variables, and it should be especially noted that once the
wall emission density is known the problem is solved without resorting
to an artifical mass balance relation in which the effusion rate is
equated to the net rate of evaporation. A mass and energy-balance
relationship is accounted for at the outset by the steady~-state equiva-
lence of the emission and collision densities at all elemental surfaces.

The wall emission density is derived similarly by equating
the collision density due to those molecules which have had their last
encounters with all but the elements of the hypothetical orifice area S;.
It should be remembered, incidentally, that a molecule arriving at the
evaporation surface is considered to condense and on re-evaporation
be unidentifiable as anything other than one of many evaporating

molecules. Thus one may write,
P

/
n(dSZ)dSZ = f g(lZ)dsldSZ

J’SI
L
+ [ n(ds,")g(2'2)ds,'ds,
4S,!
t n(ds;")g(l'2)ds,'ds, . (5.3=7)
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The first term in the above equation represents the density due to di-
rectly evaporated molecules, and the second term represents the con-
tribution of single and multiple reflections from other parts of the
wall. The last integral term represents the contribution to the wall
density due to the presence of the top reflecting surface S;-Sy, which
is the "lid" of the enclosure. If this last term were absent, the equa-
tion would exactly represent Clausing's problem, and it is easily

seen that the inclusion of the last term ensures a more nearly
saturated enclosure and simultaneously vastly modifies the Clausing
formulation.

Another equation is now demanded by the presence of the
top surface emission density, n(ds;'). Its form follows immediately
by similarity with equation (5.3-5). Thus,

n(ds,')ds,’ =f g(11') ds;ds;' +J[ n(ds,)g(21*)ds,ds;' . (5.3-8)
S; S,
These comprise a complete set of equations consisting of two simul-
taneous equations (5.3=7) and (5.3=8), which prescribe the emission
densities at the reflecting surfaces, and an equation (5.3-6) repre-
senting the total arrival rate at the hypothetical orifice S;.

It is now possible to make considerable simplifications by
exploiting the rigid symmetry of the system. A moment's considera-
tion will show that the normalized surface emission densities are inde~-
pendent of the angular coordinates, so that, for example, n(ds;) has
identical values at every element ds; in the cylindrical ring element
2TR,d 4 because the geometrical environment of each of such elements
in this ring is identical. This is a situation which would not be true if
the hypothetical orifice were located asymmetrically. Identical rea=-
soning also demonstrates that the emission density n(ds;') has
identical values in the annular element 2 7iry'dr,' located at the top of

the cell, and the reasoning extends naturally to the quantity n(ds,').
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One may explicitly express this angular independence of
the surface emission densities by defining them as a function of £

or r alone., Thus, we write

n(ds;) = n(f)
n(ds,') = n(f)
n(ds,') = n(xr;") (5.3-9)

We may now carry out the angular partial integrations
over the surfaces. For the n(4) and n(r;') equations, these operations
consist of integrating over the angular variables of both surfaces ds,
and ds,' and as well of the surface ds;'. For example, the integration

of the left side of the n(f) equation (5.3~7) yields the result

f n(f) ds, = n(f) 2mR, d4 . (5.3-10)
Bz

For the equation (5.3=6) expressing the total arrival rate at Sy, a
single partial integration is made over the angular variable of ds; in
the second term; the first term in the equation is presumably known,
so that we need not be concerned here with its detailed integration,
However, it should be noted that the first term, if divided by S; = 7TR12,
represents exactly the probability that a molecule leaving any point on
the evaporating surface will arrive in unit time at any point on the
surface Sy without having previously been reflected at this surface.
Consequently it is completely analogous to the similar probability
(4.4-9). This suggests that the three kinetic equations of interest,
(5.3-6), (5.3=7), and (5.3-8) be divided through by the area S;,. The
angular partial integrations and the division by S; yield the following
set of equations:

SO)SO - (L,Ro, Rl

7S,
=1 f g(10) dslds()}
Sy S

0

2 1




71

g(lZ)dsldBZdﬁ}

g {Bf [ qwnsransat o

2ry' R
+f n(r’)-——l—{—-——i/f g(l'Z)dﬁzdﬁldE} dry' , (5.3-12)
r' Ra* AT, Jpy

{ f g(ll')dsldﬁl'drl'}
Bl
+£n ﬁ%-{ - fﬁ'gzvdﬁzdﬁl'drl}dﬂ (5.3-13)

Bz2"p1

Some of the terms in the above equations may be divided
out, of course, but the form chosen here is the most convenient be=
cause the bracket terms may be demonstrated to be related to one
another in a most simple way. Consider the first equation (5.3=11) of
the last set. In it ZgS; represents the total rate of evaporation and
Z(Sy)Sy represents the total rate of effusion. The ratio of these must
represent the previously described probability. Accordingly, this
ratio is analogous to the usual Clausing factor and would be identical
to it if the hypothetical orifice had the area of S,.

The second term in equation (5.3=11) is as easily inter=
preted. Since Z(dS,)2mR;df represents the total flux, exclusive of the
hypothetical orifice contribution, at the ring element 27TR;df and
ZeTR;? represents the total rate of evaporation, then the ratio
n .Z)(Z/Rl) d/ of these fluxes represents the probability that a mole-
cule evaporating from the surface S, will arrive in unit time at the

ring surface 2nR;d£ by all possible reflections, exclusive of those
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involving the hypothetical orifice Sy, and the surface element in
question., The bracket term in the integral consequently must repre-
sent the probability that in a unit time a molecule emitted from the
wall element 27MR;d 4 will arrive by a collision-free path at the
hypothetical orifice S5. Thus, the W(L,Rq,R;) equation (5.3-11)
merely expresses the proper addition of continuous, independent
probabilities. It is easy to verify these statements by considerations
analogous to those presented in section 4.4, In fact, these considera~
tions lead directly to the idea that the bracket terms in all three of
the equations are related by differentiation to the geometry factor
G(SpS;) as defined by equation (4.4-4), because the present equations
define differences in the flux, for example, at S; from two hypothetical
emitting disks of area wR,” located a distance df apart, which flux
difference is that attributable to the ring element 2rR;df . Similarly,
the annular element 27r;'dr,' is merely the difference in the coaxial
disks of radii r;' and r;' + dr;', respectively, so that the geometry
factor in question is readily deduced by a differentiation of G(S,;S;).
The bracketed terms involving two elemental surfaces, for example
the elements 27r;'dr;', 2nRydl and 27R;d 4, 27R,d£, involve two
partial differentiations of the geometry factor. .

The considerations outlined above enable one to proceed
in a straightforwardfashion to arrive at more useful but entirely
equivalent relationships without the necessity of carrying out the
tedious indicated integrations. However, because the general form of
the integration requirements has been established at the outset, it is
not difficult mathematically to verify these relationships. Before
these are presented, however, it is convenient first to exploit the fact
that the equations and functions developed are all presentable in terms
of the ratios RO/RI, rl'/Rl, ﬂ/Rl, RI/RI, and so forth, a result whichmeans

that it is very natural to reduce the variables and parameters by
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appropriate symbols to represent these dimensionless quantities.

Thus, we define the reduced variables

- _ 4f
T)_Rl! dT) - R1 ]

, (5.3-14)

and let the equivalent capital Greek letters represent the appropriate

cell parameters:

H = L/R, ,
P = R¢/R, . (5.3-15)

With these definitions, it follows that

G(S:80)/S; = % { H2+ P 41 - J(EZ + P2+ 1)%- 4sz

2 K(H,P,1) ) (5.3-16)

Since all of the probabilities may be related to an equivalent expres-

sion, we may state the general definition

1
K(h,a,b) = & [hz +a%+p%- ﬂhz + a% + b)? - 4a? bZ:I (5.3-17)

and assign to the symbols h, a, and b the appropriate, specific sig-

nificance required.
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Accordingly, one finds,

/ g(10)ds,ds, = 2K(H,P,1)
S

R - O -
5o s, LZ g(20)dsedf, = ST K(H-1, P, 1)
(5.3~18)
1 f >
g(lz)dsldﬁzd’e = -2 = K(T),l»l)dn
7TR.1 Sl ﬁz 6n

5|7

3

B
Ry
Z‘TF‘B

r'
! f f g(11')ds,dB,'dr," = 2 —ai‘- K(H, p',1 )dp'
S; “B P

2
f g(2'2)dB,dBydl = + —O— K(| n-n']|,1,1)dn
B, dnom

2 2

' ' = _1._ - !

138

7TR,12 Il
and
rl' 82
P g(21")dBdB,'dry"' = - K(H~n, p',1)dp" .
m Bz 7By anop

These exactly represent a consistent set of probabilities. The nega-
tive sign arises in these terms only because the flux from one surface
to another decreases as the distance / or 7 increases. Each of the
terms, however, is -~ and must be = positive with the sign included.
The absolute term, l n -7 ’ , in the fourth equation of this set
arises because the difference in the two variables may change signs
depending on their respective relative positions,

The differential functions may now be replaced in the
kinetic equations, the excess terms divided out (for example, Zdﬂ/Rl),

and the remaining variables and parameters reduced according to the




previous prescriptions (5.3-14) and Zfﬁ.ﬁ;%iﬁ) to yield the following
simplified equations representing the kinetic aspects of effusion. In

these equations, however, we have taken the following definitions:

7(dsy")/Ze = n(p")
z(ds;)/Ze = n(n) (5.3-19)
Thus, we obtain
H 3
W(H,P,1) = 2K(H,P,1) + 2 f n(n) 5 K(H-n,P,1)dn, (5.3-20)
0

3 H >
n(n) = - <2 K(n,1,1) f n(n) ~E— K(| men¢ [,1,0)dn!
0 onom

1 2
+f n( ;O') ““_B"f_ K(H-'f), plsl)d IO‘ s (5°3"21)

H
4
n( p') S - K(H, p',1) + -—1~—f n(n) —8—';}%,;'_°K(H- M, p',1)dn, (5.3-22)
0
and

-g? = ZeS,W(H,P,1) . (5.3-23)

If P- =1, thenn(p')- -0, and the equations reduce to
the Clausing problem for a circularly cylindrical tube. These equa-
tions do not appear to give the desirable result initially stated. This
result, however, is conveniently found from the fact that the normalized
wall emission density is unity if the total equilibrium flux is considered.

5.4 The Extent of Saturation anglm”S‘(})me General Conclusions

(a) A Formal Solution

In the foregoing analysis we have considered only those as=~
pects of molecular behavior attributable to reflection processes at all
surfaces of the enclosure except the hypothetical orifice of area S,.

The neglect of part of the reflections within the equilibrium enclosure
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required no detailed analysis, for the scheme involved merely a formal
accounting of the emission densities, which in total are unity at every
surface element, A consideration of only a part of these densities
attributes to them necessarily a dependence on the geometrical var-
iables of the enclosure unless it may be proved otherwise, and one may
easily demonstrate that a constant value for each of the densities n(7)
and n( p') exists only for P =0,

We now wish to exploit the fact that an equilibrium en-
closure has at its boundaries normalized emission densities of unity,
If the development has been entirely consistent, the equations appro=-
priate for those molecules interacting at the hypothetical orifice of
area S, are derivable from the present equations by a substitution of

the quantities

n(n) =1- 8&(n) ,
n(p') =1~ 6(p") , (5.4-1)

which are the same as those given by (5.3-2). For the transmission

coefficient W(H,P,1), one obtains the result

H
W(H,P,1) = 2 K(0,P,1) = zf &(n) _6?7— K(H=-7,P,1)dn . (5.4=-2)
0
An examination of the function (5.3-16) shows that

K(0,P,1) =% P? = % So/Sy , (5.4-3)

since the positive root is that required. Hence,

H
S
W(H,P,1) =2 . 2 o(m) —i K(H-n,P,1)dn , (5.4-4)
Sl 0 BT)
and thus
—j% = Z.S, W(H,P,1)

H

.

S

= ZeS, {1 - Zs—(l, 8(n) S% K(H-n,P,l)dn} . (5.4-5)
0




77

Consequently, it follows directly from the formula (2.1-1) that
p(0) = pe (1 = 4) (5.4-6)

if one defines the positive function

A = A(H,P) = Z% fH 6(n) —BBT)_ K(H-n,P,1)dn . (5.4=7)
Therefore, we have a formal consistent solution to the problem of the
unique definition of the quantity p(0) occurring in the "molecular effu-
sion formula" under admittedly restrictive conditions, A numerical
answer, however, rests on a solution for the quantity 8(m).

The transformations of the emission density equations are
easily made. In evaluating the integrals, one makes use of the fol-

lowing values of the functions:
K(0,0',1) = p'/2 :

K(H, p',0) = 0 , (5.4-8)

H 2
/ —9 k(] l1,0dn = 1+ <2 K(1,1,1)- < K(H-n,1,1)
Jo  dmdm on on

The last integral function is evaluated by splitting it into an integral
from 0 to 7 and an integral from 7 to H. An indefinite integration is
made, the derivatives of K(7=1',1,1) and K(7n'~1n,1,1) are taken with
respect to 7, and then the result is evaluated for the limits of 7' to
yield the stated result,

The transformations yield the following equations, which
one will observe to be those derived assuming the hypothetical orifice
to be the source and the evaporation surface to be the hypothetical
orifice:

5(m) 9 ( ) f 5(n) & (1 | )
= K(H=-7,P,1 ' K(|n=-n'|,1,1)dn"
N on n t 0 N onon ' n=1 N

1
1 52 - g 1 -
+fp 8( p') vy K(H-7, p',1) dp (5.4-9)
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5(p") =-ler 8(n) == K(H-m,p'1)dn : (5.4~10)
P Uy aMdp
Although the collision density at the evaporation surface does not enter
into the problem, it is possible to deduce the equation defining this rate
simply by analogy with the foregoing development. Thus, for this
collision density defined by n(p) + 8(p) = 1, one obtains
H

- 1 o°
n(p) = -—% A n(n) S5 K(n,1,p)dn
1 [ F 3?2
+ —‘5IP n(p') Soop K(H, p', p)dp . (5.4-11)

For the transformed equation, one has

H

1y 1 3%
5 = KH,P, - 5 K :]-J d
(p) 530 ( p) A (n) S50 (n.1,0)dn
1 2
1 ‘ ol , x -
+ ‘0]1; o( p") 035" K(H, p',p)dp . (5.4~12)

where p is the reduced radial variable at the surfaces S;.

It should be clear from this development that the function
A (H,P) has the significance that if the area S; were open, but of
mathematical thinness, and the thermal restrictions for a closed sys-~
tem were applicable to the open system, then the extent of under=~
saturation is due entirely to the molecules which otherwise would have
been reflected from S, back to other parts of the wall,

(b) Simple Conclusions Derivable from the Kinetic Equations

It is not the intention here that extensive numerical re-
sults be presented, for such would require a more detailed examina=~
tion of the collision density equations with respect to methods involved
in treating integral equations. These additional more detailed re-

(55)

marks will be presented elsewhere. It is possible, however, by

inspection of the equations and the initially stated assumptions,



condition, and specification of the nature of the system to demonstrate
certain valid conclusions of a general nature. In addition, a slightly
more detailed evaluation is possible from simple considerations on the
properties of the integral equations,

(1) Some General Conclusions

The equations necessary for the complete description
of the restricted system make no direct use of the mass balance re-~
lationship in which the arrival rate at the hypothetical orifice is
equated to the net rate of evaporation. It is, of course, possible to
state this equivalence from the equations developed, but it would be of
little value in solving the equations, Yet, all necessary mass and en-
ergy balances are accounted for by the equivalence of the emission and
collision densities at the reflecting surfaces, and the collision density
n(p) at the surface of the condensed phase bears no simple relationship
to the arrival rate at the hypothetical orifice of area S;. Consequently,
the classical derivation of the extent of saturation in a cylindrical
oven is entirely qualitative,

One may easily demonstrate that the wall collision
densities are necessarily functions of the height and radial variables,
7 and p', since if constants are substituted in the right-hand members
of the density equations, the result generally is not a constant. On the
other hand, it follows that there is a unique solution to these equations
for Sy = 0 in which the densities are unity at all surface elements, and
this is a necessary requirement for a set of valid equations. Two of
the assumptions necessary to the derivation by Whitman and Motzfeldt
require that n( p') be a constant: (1) the assumption that the rate of
effusion is the fraction SO/SI of the total arrival rate at the top of the
lid, and (2) the assumption that of the molecules moving toward the
bottom the fraction [1 - W(H,1,1)] are reflected back to the top.

These are assumptions which are true only for the trivial case that

the orifice were of zero area. It follows then that the extent of
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saturation calculable from their equation is either less than or greater
than the rigorous value calculable from the present equations.

One will notice that the foregoing equations are appli-
cable to the Clausing problem when S; is given the value S;. Conse-
quently, the Clausing factor is W(H,P,l)le;OL:l, and it bears no direct
relation to the problem under consideration. Indeed the present
problem involves that of deducing the quantity W(H,P,1) for general
values of H and P including, in a broad sense, the value P = 1,
Therefore, a derivation based upon the use of W(H,1,1) totally ob=-
scures the real problem.

The first four of the questions posed earlier may be
answered by simple considerations. First, if the walls are a sink for
the vapor molecules, the emission densities are zero, whereas the
collision densities are due only to those molecules which evaporate
and proceed directly to the area under consideration. Consequently,
the molecules arriving in unit time at the orifice come directly from
the evaporation surface S;, and by equation (5.3-20) the arrival rate
at the orifice becomes

dn

T ZeS; - 2K(H,P,1)

= ZoG(S,So) . (5.4-13)

This result illustrates the fact that the location of the evaporation sur-
face with respect to the orifice influences the directional arrival rate
at the orifice, for the normalized emission densities in general are
less than unity except, by assumption, at the evaporation surface.
Therefore, with the particular geometrical arrangement considered

in the present analysis, in the directions of molecules having trajec~
tories intersecting the orifice and evaporation surface, the vapor be-
haves as if it were saturated, but in all other directions at the orifice

the vapor would behave as if it were undersaturated.




The effect of the location of the evaporation surface
may be illustrated in another way. If the entire enclosure were
covered uniformly with the evaporating substance, then n(7) would be
unity. Consequently, 4 =0, and p(0) = pe. For this reason, it is
advisable that the evaporation surface in a Knudsen cell cover as
large an area as possible,

If we consider for a moment that the orifice were
real but that all other specifications of the problem were unchanged,
then it follows from the previous considerations that a measurement
of the vapor pressure of the evaporating substance by a sampling of
the molecular beam in directions normal to the orifice would corre=~
spond more directly to a measure of a saturation pressure than would
a measurement of the total rate of effusion. For example, if the con~
densation receiver above the orifice, as discussed in section 4.4, were
arranged such that it had a direct view only of the evaporating sample,
then the source of saturated molecules could be taken as the orifice,
and the cosine law could be applied to the orifice - receiver geomet-
rical arrangement to yield the correct flux at the receiver and conse=
quently, the correct value for p,, despite the fact that the vapor in cell
is undersaturated. On this basis, one could state that the sampling of
the molecular beam in directions normal to the orifice gives a more
reliable measure of the saturation pressure than does a total rate of
effusion measurements,

It is not difficult to demonstrate the effect of the geo-
metrical parameters H and P. For example, the leading term in the
equation (5.3=21) for n(n) comes close to zero for large values of 7.
The integral term compensates considerably for this decrease, but
nevertheless n(m) probably departs most significantly in the upper
regions of the enclosure. The combined effect of the various functions
leads one to the natural conclusion that the larger is H the more
undersaturated the vapor becomes and the greater the value of

A(H,P) becomes. The 6 equations illustrate most clearly the effect
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of P. Because each of the terms in the equation (5.4-9) for 6(7) is

positive, the leading term is a minimum contribution:

&(n) 2 o K(H-n,P,1) . (5.4-14)
on

This function is nearly zero for small values of P and the behavior of

this function may be considered as a strictly qualitative picture of the

variation of the depletion of the emission density. In general, &(7) in-
creases as P increases,

(2) A Minimum Value for the Extent of Saturation

It is instructive and admittedly more satisfying that
we obtain now a direct indication of the extent of saturation, and it is
possible to do this without detailed numerical considerations by em-
ploying some simple properties of the integral equations., One will

remember that the emission density equations are bounded, so that

0 < s(n) <1 )

and

o < §p) <1 . (5.4-15)

Consequently it should be possible to find a solution, within these de~
fined regions, which we know to be a maximum value for the function
5(m). We wish to consider, in fact, the iterate properties of the
equations in order to construct such a function, and it is most con=
venient to search for a constant value, &(H,P)2 &(n) over
0l n<n

The iterate, I {f('r))} , of the arbitrary function £(7)
is defined by the equation

I {f(n)} =§n— K(H-7,P,1)

|7 52
¢ §(n) 9 K(| n-n'|,1,1)dn
0 onom [n=m'|

s () —2 K-, pn1)dp, (5.4-16)
P andp




where

H
1) = e 1 ......._.._az_.... - 1 -
£(p') fo €A Snop K(H-7,p',1)dn . (5.4-17)

From this definition, it follows that

I {5(77)} = &(n) . (5.4-18)

I {fm)}s £(n) (5.4-19)

is satisfied, then

6(m) < I {f(n)} < () (5.4-20)

over the range O_<_ 7 SH We may employ this to construct a constant

function 8(H,P) which satisfies the condition
s§(n) < &(EH,P) for 05 n <H (5.4-21)

to obtain a minimum value for the extent of saturation,

First, we assume that

I {6(H,P)}§ §(H,P) |, (5.4=22)

and determine then the conditions necessary numerically to satisfy
this requirement. From the equations (5.4~9) and (5.4-10), and the

above assumption, one obtains the equations,

8 (H,P)”> 1 {(5(H,P)}

OZ 1 - 5(H,P)]a—?)'K(H-T],P,1) + 8(H,P) -a—an-“ K(n,1,1)

d f 1oy >
- OlH,P)— — = K(H, p',1) — K (H-n,p',1)dpo" , 5.4=23
and it is only necessary to maximize this to find a value for &6(H,P)

which ensures that the condition (5.4=21) be true. The integral term
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presents little difficulty if one does not require an exact procedure

for maximizing. It is easily demonstrated that

1 o 1 H

b5 KE i o = 3 [t Vi v 4 ]
L%k, p',l)} = G(H1) . (5.4-24)
p' a,O' pl = l

Thus, the integral term in equation (5.4-23) is greater than

G(H,1) {% K(H-1,1,1) - ﬁ K(H-n,P,l)} ) (5.4-25)

The second term of (5.4-25) goes through a maximum in the region of
H -1 <1 so that a choice in the minimum value becomes difficult. How-
ever, if we restrict our consideration to values of H greater than unity,

we may take

1
=l L O K(H, p',1) <2 K(H-7,p',1
fp 5 3o KE.p41) $o KEH-n,p01)

on
2 G(H,1)[F(H,1) - FH,P)] , (5.4-26)
where
F(H,1) = {3% K(H=-7,1 l)}'n= ,
- o)
F(H,P) = {-a—— K(H-n,P 1>}n-0 - (5.4-27)

Also, we may take

- Y < B2
3 KH-nP,1) 2 5
0
-~ (H"'f?,l,l)
on 2 {;—K(H’-n,l,l% = F(H1) . (5.4-28)
- ga"K( 7),1,1) n TI=0
We then have
PZ

< <
An) > 8(HP) 2 2F(H,1) + 2G(H,1)[F(H,1) - F(HP)] + P?

for

0< 9 < HandH 2 1




This value for §(m) is, therefore, the maximum value
of the extent of undersaturation; that is, the wall emission density n(n)
is greater than 1 - 6(H,P) at each elemental surface area.

This function &(H,P) faithfully, although not accurately,
reproduces the effect of the geometrical parameters. The term multi-
plied by G(H,1) represents part of the contribution of the "1id" to the
saturation. For Knudsen cells of normal dimensions, reasonable

values for the geometrical parameters would be

P 0.1 ,
H =2 .

"

Thus, from the Figure 5.4, in which is represented the parametric de-

pendence of the functions (5.4~24) and (5.4~27), we obtain

F(H,1) = 0.0607 ,

F(H,P) = 0.0008 ,

G(H,1) = 0.1465
Consequently,

5(H,P) = 0.067 .

From the formula (5.3-16), we find for the above parameters
K(0,P,1) = 4P%2= 0.005 ,
K(H,P,1) = 0.001 .

These vield
A(H,P) = 0.054

Therefore, the extent of saturation is at least 94 percent of the equi-

librium value. It should be emphasized that in this analysis we have

not accrued unknown numerical errors to the extent of 6 per cent, put we

know on the basis of the initial specification of the problem that
94 percent is a minimum value for the extent of saturation in a cell
of the above dimensions. A value of P equal to 0.01 leads to a

saturation of 99 percent for the same value of H.
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(c) The Open Cell

We have demonstrated that, beginning with a consistent
formulation, one may deduce certain kinetic aspects of the behavior
of molecules in an equilibrium enclosure. Admittedly, the formal
results appear to be mathematically cumbersome with respect to
numerical results, but a direct analysis of the properties of the
equations enables one to retain the initial consistency in obtaining a
result having known limitations, We now inquire into the applica-
bility of this analysis to the real effusion process. Immediately we
are confronted with the fact that the present analysis is based entirely
on equilibrium considerations of the gas phase whereas the real effu-
sion process is irreversible, and there are no rigorous principles
presently known to permit one to make a valid transformation from
the equilibrium to the general steady state.

One must recognize two general limitations in the applica=
tion of the equilibrium analysis to a description of the irreversible
processes. First, the thermal characteristics of the equilibrium en-
closure are decidedly not those of an open system. Second, considera=-
tions of the equilibrium gas phase alone do not permit one to choose
a priori the complete description of reflection and evaporation
phenomena. Moreover, these limitations are not entirely separable
since our present knowledge of irreversible phenomena indicate that
the thermal and gas~solid interaction characteristics are coupled for
the open system. The thermal properties of an open cell depend prin-
cipally on the experimental conditions, but one cannot entirely avoid
the occurrence of thermal gradients in the cell, for the orifice is a
heat sink. Consequently, in answer to the last question posed in
section 5.1, the most important limitation to the orifice dimensions
is the tolerable extent of temperature inhomogeneity. The reflection
and evaporation processes in the open cell depend on the thermal

characteristics of the enclosure, and this should be obvious from the
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details of the mathematical analysis, since the thermal speeds of the
molecules are an intimate part of the cosine law. One may illustrate
this in a manner which emphasizes the coupling of the thermal and
reflection processes for an arbitrary value of the quantity &, which is
known generally as the vaporization coefficient,

In the foregoing analysis the quantity & was taken as unity,
so that the normalized emission rate at the evaporation surface was
unity. The equations developed as a result of this specification are
easily modified for an unspecified value of &, which in a closed system
necessarily equals the condensation coefficient. Thus, in addition to
taking the normalized emission density as & for the directly evaporated
molecules, one must add to each of the equations a term accounting for
the fraction (1 = o) of the molecules reflected without condensation,
Since the collision density at the evaporation surface is n(p), then
presumably (1 = a) of these reflect. Consequently, the total emission
density from surface S; is o + (1 = an(p) at each elemental area. The
equations then may be developed similarly to the present analysis, but
the numerical evaluation of the wall emission density depends on the
solution of three simultaneous equations, for the collision density
n(p) directly enters the problem. The quantity &, moreover, does not
simply factor out of the equations, but becomes a complicated part of
the prescription of the emission densities. Now, an analysis on this
basis if transferred to the description of the real effusion process
leaves this question to be answered: if a fraction (1 =a) of the mole~-
cules does not condense, is this fraction thermally accommodated or
not ? If it is not, then the equilibrium cosine law is certainly not ap-
plicable and the nature of the problem becomes more complicated.

It must be argued further for the sake of consistency that,
if one attributes a vaporization coefficient to the evaporating material,
then he should probably attribute a vaporization coefficient, although

not necessarily the same one, to the wall emission densities, for an
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initially clean surface exposed to a vapor condenses at least a mono=-

56)

layer of the vapor molecules.( Since one of the mechanisms which
may lead to the phenomenon of random reflections is the condensation-
evaporation mechanism, it therefore follows that if a fraction of mole~-
cules reflects without condensation one must inquire whether reflec=-
tions are random or according to some other specification, and whether
thermal accommodation is nevertheless obtained. The complications
arising here are due to the fact that considerations of the equilibrium
gas phase alone permit only general aspects to be deduced. Specifically,
there can be placed no more importance from these equilibrium con-
siderations alone on the arbitrary coefficient o than there can be
placed on the arbitrary selection of totally random directions of re=-
flection. Since at equilibrium reflected and evaporated molecules
cannot be distinguished one from the other, & cannot be measured
under true equilibrium conditions. Therefore & has no useful sig-
nificance for an equilibrium system. Only under the conditions of an
irreversible process can G be measured, but then & necessarily is
dependent upon the irreversible conditions. These are the conditions
which must be scrutinized before a useful, generally applicable sig=-
nificance may be attributed to the quantity 0 and to the assumption of
equal probabilities of reflection in an open system.

In spite of the difficulties associated with the application of
this analysis to a real effusion process, one nevertheless may take the
analysis to be a qualitative indication of the extent of saturation at-
tributable to the size and shape of the Knudsen cell for very low gas
densities. The limitations, however, must be recognized, so that a
rigorous solution of the kinetic equations should not and clearly cannot
be used to deduce a priori corrections to measured values of the vapor
pressure of the condensed substance. Nor can meaningful vaporiza-
tion coefficients be measured by the effusion method, since there is

no justification for believing that the aspects of the problem are those
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used in these deductions, It is these last two remarks which the writer

(37)

wishes to emphasize in particular, for as Priger has remarked,
only an analysis which begins with the fundamental aspects of the con-
densed state is capable of yielding a rigorous and unique concept of
the vaporization coefficient and the mechanism of gas~solid inter=
actions. The present analysis clearly demonstrates this fact because

an arbitrarily unique concept was necessarily assumed in the initial

specification of the problem.




g1

CHAPTER 6
INTRODUCTION TO THE EXPERIMENTAL STUDY

This chapter concludes the review of the -published experimental
stu&feg of effusion behavior, some of its basic theory, and an analysis of the
Knudsen cell.

The discussions in the previous chapters have been given in
slightly more detail than usual. This was done not only because of
their bearing on the present study, but because of their importance to
an understanding of the effusion methods of measuring physico-chemical
properties. These topics have been reported only piecemeal in sources
other than the original papers. The particular emphasis on the cosine
law was given in part as an introduction to its application in the analy-
sis of vapor saturation.

The experimental aspects of effusion are briefly summarized in
the following pages. Also, some additional remarks are made which
seem particularly appropriate at this time. Following this summary, a
brief prospectus of the experimental work is outlined to coordinate the
background material and present experimental work. A description of
the principal experiments of the present study are presented, and
finally the results of some preliminary experiments are reviewed.

6.1 Summary Aspects of Effusion

At very low pressures the flow of a gas through a thin orifice
from one reservoir to another presumably is given by the molecular
flow formula (2.1-1), derivable from equilibrium kinetic theory. Under
these same pressure conditions but with an orifice of appreciable
length, the flow is reduced by a factor which, on the basis of diffuse
scattering of molecules from the wall, is calculable under isothermal

conditions from the geometrical configuration of the orifice.
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As the source pressure is increased, the flow progresses
through some kind of a transitional behavior into a fluid behavior which
depends again on the geometrical aspects of the orifice and the expan-
sion processes of the gas in question. For flow into a vacuum through
a thin orifice, the rate presumably is predictable by the usual hydro-
dynamic formula, for example, the so-called isothermal effusion for-
mula (2.2-3) such as Knudsen applied in his studies. The flow through
orifices of appreciable extent depends on frictional and viscous effects.
For long circular tubes the flow is viscous and predictable from
Poiseuille's law with appropriate corrections for slip and expansion of
the gas.

(a) Flow through Thin-edged Orifices

From the various experiments reported, one finds no
definitive evidence concerning the conditions leading to the transition
from molecular flow to viscous flow. Knudsen, on the one hand, indi-
cated that for flow through thin orifices the transition sets in at an
average pressure corresponding to a mean free path-to-diameter ratio
of about 10 for an average pressure. This corresponds to a ratio of 5
for unilateral (vacuum) flow. The studies of Knauer and Stern and of
Mayer lead to comparative ratios in order-of-magnitude agreement
with Knudsen, whereas Johnson brings evidence to support an argument
in favor of molecular flow occurring at a mean free path-to-diameter
ratios much less than a tenth, which is well within the region of gas
densities at which Knudsen observed isothermal effusion.

Knudsen was the only one of these experimenters to study
the total flow behavior of gases. Knauer and Stern, and Johnson meas-
ured beam intensities in a direction normal to the orifice. Mayer
measured the distribution of momentum up to angles of 80° from the
normal and at a pressure of 4.5 mm Hg he observed a distribution
corresponding to the cosine law value. If all of these observations

except those of Johnson are taken to be in agreement within an order
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of magnitude, one then concludes that molecular effusion occurs at least
up to a pressure corresponding to a mean free path comparable with the
orifice dimensions. Beyond this pressure the evidence is decidedly con-
tradictory. The data for permanent gases in Knudsen's studies indicate
the occurrence of hydrodynamical flow at a much lower source pressure
than those pressures which for mercury, according to Johnson, yielded a
beam apparently in accordance with the cosine law. Even accepting the
the fact that classical mean free path calculations may not be definitive
for molecular beam studies, it is difficult to reconcile these data. We
shall return again to this problem after the present experimental data
are presented,.

It should be said here that vapor pressure measurements by
methods of molecular effusion are carried out both with total flow
measurements and by molecular beam procedures, whereby a portion of
the vapor beam in a direction normal to the orifice is condensed
and weighted by appropriate methods. Molecular beam methods such
as this may be plagued, however, by the transition of the flow from
the known molecular effusion behavior. It is quite useful to extend
vapor pressure measurement to the highest possible pressures by
these methods, since at high temperatures, and thus at higher vapor
pressures, ordinarily minor vapor species may occur in measureable
quantities. Thus the "upper limit" becomes important in the design of
such experiments.

Therefore the upper limit problem has two aspects; not only
that concerning the vapor density conditions at which the transition sets
in, but the problem concerning the effect of this occurrence on the in-
tensity or flux of the molecular beam. For example, Ackermann, Gilles,
and Thorn(43) recently have carried out vapor pressure measurements
with uranium dioxide by these methods up to pressures correspond-
ing to a mean free path of about one-tenth of the orifice diameter.

They observed an increase in the measured pressure from that
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attributable to a vapor corresponding to a single molecular species.
They attributed this to the existence of additional vapor species having
a larger sublimation heat. These conclusions, however, have subse-
quently proved to be incorrect, and other thermodynamical reasoning
has not proved to offer satisfactory explanations°(57) These investi-
gators had analyzed the evidence concerning the upper limit and con-
cluded that the evidence, principally Johnson's experiments, seems to
favor the idea that a transitional flow region did not occur at least at
pressures well within the region of their measured pressure increase.

(b) Flow of Gases through Orifices of Appreciable Length

The effect of an orifice having appreciable length on the
molecular flow behavior of a gas or vapor presumably is correctly
taken into account by the so-called Clausing factor, which is dependent
only on the macroscopic geometrical arrangement of the orifice. The
experimental evidence predominantly seems to favor a totally diffuse
reflection behavior, so that it has been a general practice to use
Clausing's factors, which are based on this assumption. In a few
experiments there has been evidence for the occurrence of specular
reflections. One may cite here the suggestion by Clausing(34) that
some of Mayer's results are explainable on this basis.

Some recent work by I—Iuggil(58) and by Berman and Lund(59)
seems to indicate that path-reversal reflections occur. Berman and
Liund present what they claim to be evidence that the transmission
coefficient for molecular flow is gas dependent and offer a graphical
representation of various flow measurements in support of this claim.
The flow data were obtained from experiments similar to those of
Knudsen. A transmission coefficient was calculated on the basis of the
molecular flow formula from their measurements of the pressure
change with time as gas flowed from one to another reservoir through

an orifice., These calculated coefficients were plotted against a function




of the pressure which is, on the basis of classical kinetic theory, pro-
portional to the reciprocal of the mean free path. The coefficients were
then extrapolated to zero pressure.

A diffuse reflection mechanism of gas-solid interactions
should have shown at low pressures an independence of the gas and pres-
sure. Berman and Lund's data, on the other hand, at average pressures
from several mm Hg down to values corresponding to mean free paths of
about 10 times the orifice diameter showed a nearly linear dependence of
the calculated transmission coefficient Witljl the average pressure for both
a thin-edged orifice and an orifice having a length equal to about three
times the radius. No pressure-independent values were obtained. The
straight lines were extrapolated to zero pressure and the intersection
at the ordinate was taken as the zero-pressure transmission coefficient.

For the thin-edged orifice, the data all fell on the same line.
For the above-mentioned tube, the various gases defined different lines
and thus had different intersections, some of which, if not all, lay below
Clausing's value of the transmission coefficient. Even if one assumes
that this coefficient may be gas dependent, it is difficult to see how it
might be pressure dependent at very low pressures in the same way that
it is under effusive conditions at higher pressure. It is more plausible
to suppose that their lowest pressure data were not in the molecular flow
region and that extrapolation to zero pressure was not justifiable. The
dependence of the extrapolated coefficients on the gas could easily be a
result of viscous flow effects and thus indicate nothing fundamental in
regard to the molecular reflection mechanism at the wall. Indeed, vis-
cous effects on the flow of gases become quite important for tubes of
appreciable length, and for very long tubes, as Knudsen and others have
shown, there is a continuous change from molecular flow to Poiseuille
flow. At very low pressures Knudsen observed a flow dependent on dif-

fuse reflection within the limit of his precision of about 3 percent.
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6.2 Prospectus

The experimental study to be reported is concerned now with
the aspects reviewed in the previous discussion, principally the depar-
ture from molecular effusion and the study of the transition flow of
vapor through tubes of appreciable length. The experiments are de-
signed so that, as much as possible, data of good precision may be ob-
tained to answer unequivocally some of the questions concerning these
aspects and to demonstrate the possibilities of carrying out precision
effusion measurements.

The experimental substance used for this study was mercury,
and it was chosen principally because the requisite physical properties
are reasonably well established, as is discussed subsequently. But it
is of interest that mercury be studied because it was the substance used
by Johnson in his molecular beam investigation which yielded results
having considerable discrepancies with those of others. The present in-
vestigation is concerned only with total effusion rates, so that all of the
questions related to the upper limit may not be answered. But even this
limited aspect has not been answered unequivocally, and thus a partial
understanding is of value. The experiments and equipment were de-
signed so that the measurements could be extended well into and beyond
the transitional regions, so that an adequate picture may be drawn of
these aspects. A study of the unilateral flow of mercury vapor through
channels of appreciable extent has some interest in relation to whether
at least an estimation of the viscosity of the effusing vapor might be ob-
tained by such a technique. Methods of measuring vapor viscosities at
temperatures above 1000°C are quite limited, but information of this
nature is of value. Effusion techniques, although subject to limitations,
are easily carried out in principle, so that conditions might be found
which enable one to determine the vapor viscosity of the effusing

substance.
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In spite of the criticism that the writer may appear to be incon-
sistent, the question of saturation of vapor within the effusion cells used
in the subsequent study is not examined with respect to the formalism
described in Chapter 5. The data probably do not extend to low enough
vapor densities to ensure the requisite pressure condition specified in
the analysis, and besides, more detailed numerical computations would
be necessary to make the analysis of sufficient precision to permit
adequate conclusions to be drawn. In addition, there are those men-
tioned aspects of the correspondence of the theoretical analysis to a
real process which without some serious, detailed considerations would
vield precisely those inconsistencies which we tried to avoid at the out-
set of the discussion by the acceptance of a rigidly limited system.

6.3 Design of the Principal Experiments

The principal experiments were similar to those used to meas-
ure vapor pressure by molecular flow methods. A condensed substance,
in these experiments mercury, is maintained at a constant temperature,
and its presumably saturated vapor is allowed to effuse from a reser-
voir through an orifice of known dimensions into a highly evacuated
chamber. The weight loss of material from the reservoir in a measured
period of time is determined by appropriate methods.

These experiments differ from those with unsaturated gases
principally in that the pressure in the source reservoir is determined
by the temperature with the advantage that, in principle. a virtual steady-
state flow is easily obtained by the maintenance of a constant tempera-
ture. Other advantages and disadvantages, too, are common to this
method, but the interest in this kind of experiment is its direct relation-
ship with the effusion methods for the study of the vapors of condensable
substances.

The experimental variables in the flow measurements are weight
loss, time, and temperature. The flow rate parameters are derived

from these variables. Since the experiments were directed to the
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measurement with high precision of both the molecular and fluid flow
behaviors, and as well the transition between them, it was necessary to
design the equipment and methods consistent with the following
requirements:
(1) A reliable, sensitive, and absolute technique for measuring
flow rates over several orders of magnitude;
(2) A good vacuum system;
(3) A constant, uniform temperature of the source reservoir or
oven;
(4) An experimental substance whose vapor is monatomic and

has well established equilibrium and transport properties.

(a) Mercury as the Experimental Substance

Mercury was chosen as the experimental substance because
as a metal and as a substance having vapor pressures up to one atmos-
phere at moderate temperatures, heating requirements would be no
severe problem and temperature gradients would be relatively minor
compared with those possibly incurred with the use of substances of low
thermal conductivity., The vapor pressure and vapor viscosity of mer-
cury are reasonably well established; mercury, in fact, is the only metal
whose vapor viscosity has been measured over a reasonably extended
temperature range. There is a small amount of viscosity data for zinc
and cadmium(60) and no measured viscosity data for other metals,

The vapor pressure and viscosity data and appropriate
equations are summarized in Appendix 2. The vapor pressure equation
used in the analysis of the flow data is derived from the data of Busey
and Giauque:(él)

3322.183

log p(mm Hg) =10.80644 - T

-0.957681log T +0.073859x10~° T2,
(6.3-1)

Mercury vapor at one atmosphere has gas imperfections of less than
2 percent, so that dimerization has an entirely negligible effect in these

experiments. The reliability of the vapor pressures derived from the
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equation (6.3-1) may be taken as about 2 per cent over the temperature
range of the present experiments.
The vapor viscosity equation is taken from the data of

Braune, Basch, and Wentzel:(60)
w(1077 poise) = -43.7883, /T + 11.472 T. (6.3-2)

Unfortunately, values derived from this equation have rather large un-
certainties for the various reasons outlined in Appendix 2. However,
one may assume a reliability of about 10 percent over the temperature
range of the present experiments.

(b) Outline of the Basic Experiments

The mercury was contained in especially designed effusion
ovens constructed of stainless steel. The orifices of these ovens were
either knife-edged, circular small holes, or circularly cylindrical chan-
nels cut from steel hypodermic needles and welded to the oven. Except
for the orifices, these ovens were welded vacuum-tight,

Several methods of measuring the mass flow rate of mercury
were initially considered before a final choice was made. There are two
principal types of methods available. The first and more direct method
is the measurement of the loss in weight of the effusion oven. The
second consists of condensing the effusate and determining the mass by
direct weighing or chemical assay. The latter is a method having con-
siderable problems, however, for if the distribution of the effusate is
not known it is necessary that the total effusate be condensed. For
these experiments the first method seemed most appropriate because
of its directness.

Consequently, the first two mentioned requirements on the
equipment were reasonably well satisfied by the use of a semimicro
vacuum balance designed for measuring losses of weight in vacuum
from one milligram to 100 grams. The balance, which was an ordinary

chainomatic-type, simply modified for these experiments, was maintained
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in a vacuum system as an integral part of the experimental apparatus.
The effusion oven was suspended on long rods supported from the stir-
rup of one arm of the beam and centered within a liquid nitrogen-cooled,
evacuated glass envelope.

The oven was heated by induction-heating equipment con-
trolled by a thermocouple fused to the effusion oven and maintained by
a control circuit to within 0.25°C. The temperature controller, which
basically was a null balance potentiometer device, behaved sufficiently
reproducible to allow the oven to be taken rapidly to a predetermined
temperature and then maintained at this temperature with the above pre-
cision for a long period of time.

The details of these various components are described in
subsequent chapters.

6.4 Some Preliminary Studies

Prior to a final decision on the specific design of the primary
apparatus, a number of preliminary studies were made to answer ques-
tions on techniques, procedures, and design. These were concerned
with the problems of eliminating temperature gradients, measuring re~
liable temperatures, and avoiding clogging of the orifice. Three series
of experiments were carried out in these studies with equipment which
was not used for the primary sets of experiments. The designs of this
equipment and results of these studies are outlined in this section.

(a) Series 1

The most troublesome problem associated with measure-
ments on saturated vapors is that of ensuring uniformity, reliability,
and precision of temperature measurements. Gradients and errors in
temperature yield large uncertainties in the vapor pressure calculated
from an erroneously measured temperature. The first problem studied
in this regard was that of temperature uniformity. The series 1 experi-

ments and associated equipment were designed for this study.




Specifically, the problem of concern was whether the orifice
as a long, narrow tube could be heated uniformly to the same tempera-
ture as that of the body of the oven and the contained mercury sample to
avoid troublesome condensation of the effusing vapor in this channeled
orifice. An effusion oven was therefore designed so that the orifice
could be heated independently of the body of the oven.

(1) The Apparatus

Figure 6.4 illustrates the principal features of the
apparatus, which, except for the oven, was constructed initially from
existing components. The oven was constructed of welded stainless
steel in the same way as subsequent ovens which are later described.
Itwas circular with a diameter and length of about 14 inches. The ori-
fice consisted of a hypodermic needle of 0.03-mm radius and 3-cm
length welded slightly off-set along the diameter of the front face of the
effusion oven. On the opposite face of the oven a kovar-glass window
fused to a kovar metal ring of about 4-inch diameter was welded coaxi-
ally with the cylindrical orifice.

The oven and orifice were wrapped separately with in-
sulated nichrome heating wires having a common junction with an outer
steel jacket supported at the end of a steel rod, as shown in the figure.
Chromel-alumel thermocouples of 0.003-inch diameter were spot-welded,

one to the oven body and the other to the orifice near its outer end. The

heating wires and thermocouples were led to a brass plate to which the

oven support rod was silver soldered and out of the vacuum system
through Stupakoff seals. The heating power was supplied from two
variable-voltage isolation transformers. The thermocouple voltages
were measured with a potentiometer.

The brass plate containing the oven-support rod was
sealed by an "O'" ring to a brass collar which was sealed with Apiezon
wax w to a lip on the pyrex glass vacuum chamber. This plate could

be rotated to align the orifice with the optical window on the sight tube
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and the beam of light from a 6-volt lamp. The vacuum chamber was
evacuated with the usual pumping equipment and immersed in liquid
nitrogen nearly up to the evacuation tube.

The liquid nitrogen was contained in a styrofoam Dewar.
The sight tube projected out of the Dewar and was sealed to it by an ice
layer. The optical window on the sight tube was warmed by a blast of
air to prevent condensation there of the effusing mercury.

(2) Methods and Results

Eleven experiments were made with the apparatus de-
scribed. Five of these comprised trial heatings and temperature cali-
brations, and six consisted of actual flow measurements. Some effort
was made to obtain quantitative data by weighing the entire support rod,
oven, and associated parts before and after an experiment, but these
efforts were futile and only the temperature information, for which
these experiments were actually designed, was useful. The methods
and results are descriptively summarized here.

The oven was filled with pure mercury through the ori-
fice with a syringe and hypodermic needle and assembled in the vacuum
system. The orifice was aligned with the window of the sight tube and
the small lamp so that a beam of light illuminated the interior of the
orifice channel, which could then be viewed from the window of the
sight tube.

Various methods of heating the oven to a constant tem-
perature were tried. In one experiment, the power to both the orifice
and body was slowly increased to maintain a uniform temperature; in
the others, the power to both was rapidly applied. In all cases the in-
terior of the orifice was continually observed for the occurrence of
adverse condensation effects. No untoward behavior, however, was
noted, even for orifice temperatures of about 1°C less than the body

temperature and at a vapor pressure of nearly 30 mmm Hg.
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The mercury condensed on the liquid nitrogen-cooled
walls of the vacuum chamber was in appearance nearly uniform up to
90° measured from the axis of the cylindrical orifice. At 90° there was
a sharp drop in the deposit thickness and beyond this the walls of the
vessel were fairly clean. Thus it was concluded that the mercury was
satisfactorily condensed on the walls with negligible occurrence of
scattering.

A final experiment in this series showed that even with
the cylindrical orifice being 50°C cooler than the body, the condensation
in the channel was negligible at a source pressure of 20 mm. There
appeared to be an occasional rapid decrease in the intensity of the light
as viewed through the orifice, and it was inferred that this was due to
the formation of small droplets which after formation fell back into the
liquid mercury. At no time was the orifice completely clogged.

After the oven had attained a constant temperature,
helium was rapidly admitted to the vacuum system to a pressure of
400 mm Hg. The oven cooled from 200°C to 0°C in about one minute,
but the effusion of vapor was stopped almost immediately and no mer-
cury froze in the orifice. This appeared to be an excellent procedure
for quickly stopping an experiment. A vacuum of 107%mm Hg could be
attained again in about 20 minutes after the oven was cooled.

Several disturbing occurrences were noted in these
experiments, and these ultimately led to the final design of the ovens
and heating procedures. First, there was a severe heat lag in the oven
assembly and this caused considerable warm-up troubles. For example,
it required nearly a half-hour to attain a constant, uniform temperature.
Second, it was found that however desirable in principle it was to heat
the orifice separately, in practice the adjustment problems became so
cumbersome as to negate its usefulness. However, these experiments
seemed to indicate that the vapor itself effected some warming of the

orifice, and that effect along with thermal conduction decreased the
external power requirements for the orifice.




Based on the knowledge gained from these experiments
an oven of a different design was constructed.
(b) Series 2

It was apparent that an induction-heating procedure would
be advisable, because with a properly designed oven it would allow for
increased heating response and cumbersome radiation shielding could
be eliminated to reduce much of the heat lag which occurred with the
previous heating method. Moreover, the induction method appeared to
be quite amenable to an oven designed on the basis of experience gained
from the initial series. In addition to the heating problem, there were
those of weighing the oven and measuring its temperature. Although
these might appear to be separate problems, they were at first depend-

ent on one another. Since it was necessary to condense out the effused

mercury vapor, the oven could not be placed in an isothermal enclosure.

After some consideration, feasible procedures were devised
for the use of a vacuum balance in the flow studies. The experiments
comprising the series 2 set were designed for testing these procedures
to enable a vacuum balance to be adapted to the principal investigation
with a minimum of trouble.

(1) The Apparatus

The oven was similar to that previously described, but
it had a re-entrant tube orifice. The tube was of the same length and
diameter as the one previously described, but in this new design it
projected into the oven, and its exit was welded into the face of the oven
coaxially with the cylinder walls. The oven was about 1%— inches in
height and about 4 inch in diameter.

The oven was supported on long tungsten rods from a
vacuum balance which had been used previously in this laboratory for a
number of volatility experiments. The oven and vacuum balance and the
experimental methods used in this series are basically identical with
those to be discussed in subsequent chapters, so the details of these

are not outlined here. The oven was oriented so that the orifice opened
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downward, and inside the oven it projected about $cm above the mercury
sample. In this way the mercury served as a warming bath which, in
principle at least, ensured that the channel would be as warm as the
mercury and therefore at the same temperature as the presumably
saturated vapor.

A single thermocouple was spot-welded to the rear of
the oven and brought up along side the support rods and taken across
the balance by special contactors which made contact during the heating
and disengaged the thermocouple leads during the weighing operations.
This procedure, which will be described later in detail, proved quite
successful and eliminated a potential problem in adapting a vacuum
balance to these studies.

(2) Summary of the Results

The experimental results of this second set of experi-
ments were similar to, but less refined than,those of a later series 6
group carried out with the final apparatus., The experiments demon-
strated that the vacuum balance with a few new features was adaptable
to this investigation and was potentially capable of yielding precision
data. The experience gained from these experiments, however, demon-
strated the need for a temperature controller and one additional refine-
ment in the design of the oven.

It was discovered that a thermocouple spot welded to
the oven did not respond repraducibly for these experiments., It re-
quired extremely careful handling after its preparation and offered no
assurance of reliability until much time had been invested in carrying
out a series of experiments concerned with this problem. The rapid
heating and cooling of the oven often caused enough thermal strain at
the oven—couplejunction to loosen the weld. Consequently, the oven
used in series 2 was modified by the additionof a deep thermocouple
well which was adequately immersed in the mercury sample. The

modified oven was experimentally examined in the series 3 study.
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(c) Series 3

The use of thermocouples to measure temperatures of mate-
rials heated in vacuum may lead to grave problems, for radiation and
conduction losses of heat occur in the region of the couple junction. The
previously outlined experiments delineated some of the temperature
problems to be solved. The oven modified by the addition of a deep
thermocouple well proved to be successful only after an experimental
investigation demonstrated the need for especial attention to the place-
ment of the couple in the well.

It was pointed out that a couple spot-welded to the oven was
found not to be reliably reproducible and, in fact, proved to be rather
fragile as a result of frequent thermal stresses. Therefore, a thermo-
couple well was designed for the oven; but in a study comprising the
series 3 experiments it was found that even under the most nearly ideal
conditions the lag in thermal response and the large conduction losses
were more severe than anticipated. Although the well was over 1} inches
in depth and the oven was presumably at uniform temperature, the couple
placed in the oven measured a temperature about 20°C too low.

Several techniques to improve the thermal response of the
couple were tried, but only one proved to be successful. This technique
consisted of plac‘ing the junction of the thermocouple into a pool of
molten silver at the bottom of the well and then allowing the silver to
freeze. The frozen silver stuck tightly to both the couple junction and

the walls of the well and provided an adequate stable, thermal conductor.
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CHAPTER 7
EXPERIMENTAL APPARATUS AND EQUIPMENT

The principal components of the apparatus and equipment used
in this experimental study consisted of a specially designed vacuum
balance and a temperature controller capable of maintaining tempera-
ture constant within 0.25°C. Measurements were made of the rate of
effusion of mercury vapor supplied from the liquid contained in stain-
less steel ovens. These various components are described in detail in
this chapter.

7.1 The Vacuum Balance

The basic design of the vacuum balance was taken from an
original design proposed by Ackermann, Rauh, and Thorn of this labo-
ratory and constructed in the Argonne Shops. The principal modifica-
tions consisted of additional components which allowed for the use of
thermocouples, a wider range in measurable weight changes, and
zero-load referencing. Only recently have vacuum balances become
commercially available, but none at present will handle the weight
range of the present balance nor have its versatility.

(a) General Description

(1) The Balance and Associated Components

A Christian Becker semimicro chainomatic balance,
style 16, cleaned of all paint and lacquer, was mounted on a brass plat-
form cut to accommodate the beam-rest lowering mechanism. This
platform was centrally anchored to an 18-inch diameter, one-inch thick
brass plate, grooved for an "O" ring on which rested a bell jar having
a 12-inch diameter base and a height of 18 inches. A chain-weight scale
runner was mounted on a similar platform anchored to the base plate
in a position nearly relative to that it occupies in a normal case-mounted

analytical balance.




These platforms corresponded to the base plate of a
case-mounted balance, and, similarly, the gears translating the neces-
sary motions to the beam-rest lowering mechanism and sliding vernier
scale of the chain weight were mounted below the platforms. The vari-
ous gears were fixed to i—-inch shafts which passed through the base
plate with "O" ring seals. The beam was lowered and the chain weight
set manually for the weighing operations by a rotation of the shafts
under the base plate. Except for the removal of paint and lacquer,
the balance proper was not modified.

The right-hand end of the beam supported an ordinary
balance pan to which was attached a rack for holding Ainsworth wire
weights. Ordinary pan weights from 0 to 200 grams could be added to
the pan by a simple rack and pinion device. The left-hand stirrup of
the beam supported a hanger arrangement which held the rods leading
up from the oven. The hanger was designed so that the oven, oven
support rods, and associated parts could be disengaged from the beam
so that a zero-load rest could be determined. This operation was
essential to realizing the semi-micro capabilities of the balance. The
mechanism which removed the load was a simply constructed lift
operated through "O" ring seals by a shaft projected below the base
plate.

The usual kind of pan rest pads was not used. There
was no rest pad for the weight pan. A rest mechanism on the oven
hanger, however, served a double purpose: it maintained the oven
motionless during the heating and quenching operations, and made
electrical contact between the thermocouple leads from the oven and
the external leads from the temperature-measuring and controlling
circuitry. This rest and contactor arrangement was operated from the

beam-rest release mechanism.
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(2) The Vacuum System

A schematic representation of the balance and vacuum

system is given in Figure 7.1-1. The glassware was attached to the

balance base plate by machined brass, standard-taper joints bolted to
the plate and sealed with "O" rings. The glass-to-metal joints were
sealed with Apiezon wax W.

The oven hung from the left arm of the beam into a
Pyrex vacuum jacket which served as a condenser. This jacket was
immersed in liquid nitrogen to condense the mercury vapor effusing
from the oven. Below the right-hand pan was mounted a liquid nitrogen-
cooled vapor trap. This had a high conductance compared with usual
re-entrant tube traps, but had their pumping efficiency. The vacuum
pressure was found to be quite insensitive to the nitrogen level over
wide limits since there was no direct path that a molecule from the
diffusion pump could follow without striking a cooled surface.

Directly below the trap was an air-cooled Eimac three-
stage oil diffusion pump. Oil was used rather than mercury because of
the tendency of the latter to "bump" during its heating and thus to jar
the balance during a weighing operation. The diffusion pump was
backed by a Welch Duo Seal mechanical pump.

The pyrex tubing joined at one end to the condenser
union just below the balance and to the stopcock leading to the mechani-
cal pump at the other end was used to admit purified helium to the
vacuum system. Attached to this were a mercury manometer and inlet
tube. The effusion experiment could be stopped by admitting the helium
to the high vacuum side through the condenser union with the stopcocks
to the mechanical pump closed. In this way the vacuum system could
be flooded with helium without transporting hot oil from the diffusion
pump. The liquid nitrogen-cooled re-entrant tube trap condensed out
most of the mercury vapor from the manometer, which was used to gauge

reproducibly the amount of helium admitted to the system.
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The balance base plate, vacuum system glassware and
other associated parts were supported from a table constructed of
Unistrut steel beams. This table had leveling screws for adjusting
the level of the balance.

The figure illustrates the salient features of the vacuum
system. The high vacuum pressure gauge, however, is not shown. This
gauge was an ordinary Phillips ionization gauge attached to the base
plate behind the balance by a standard tapered brass joint bolted on
the underside and sealed with an "O" ring.

(b) The Weight-moving Mechanism

The weight-moving mechanism was a very simple, although
versatile apparatus designed to add or subtract ordinary pan weights
on the right-hand pan of the balance. The mechanism consisted of a
rack-and-pinion-operated fork which slipped under the knobs of the
class S pan weights located in pockets machined into brass blocks, as
shown in Figure 7.1-2,

The device has three degrees of freedom. Horizontal mo-
tion was accomplished with the rack-and-pinion and vertical and
rotary motion by the movement of a shaft through greased ring seals
from beneath the base plate. The rotaryand horizontal movements
did not affect the vacuum of about 10~° mm, but the vertical motion
caused an order of magnitude pressure increase for about four seconds.

The "L"-shaped piece at the inner end of the fork was used
to raise or lower any one of the lever arms of the wire weight holder..
This holder was taken from an Ainsworth keyboard balance and fitted
with a shaft attached to the balance column. A nickel saw-tooth rack
was supported on the pan rods. When the lever on the weight holder
was raised by the "L"-shaped piece on the mover, the selected wire

weight was transferred to the rack.
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(c) The Zero-load Reference Apparatus

Figure 7.1-2 shows the zero-load reference apparatus with
the load disengaged from the balance. The apparatus consisted of a
flat brass paddle, as shown in Figure 7.1-3, fixed to a steel shaft which
traveled through the base plate of the balance., On being lifted, the
paddle engaged the lower brass support bar to which was attached two
steel shafts having tapered stops at the top ends. These stops slipped
into corresponding tapered holes in the top brass support bar. The
taper on the stops and holes served as a semikinematic positioning
device,

When the stops were moved out of the positioning holes,
the beam of the balance was free to swing independently of the lower
support bar and attached load. Consequently this allowed a rest to be
determined for a constant reference load.

The aluminum cup hanging under the arch served to con-
tain various tare weights so that a reference load would give a rest
point occurring at about the zero point on the scale.

(d) Load Rest and Thermocouple Contactors

The load rest and thermocouple contactors consisted of
insulated copper cylinders having finely machined flat surfaces for
maximum surface area of contact. The arrangement of the mechanism
is shown in Figure 7.1-3. It was screwed to the base plate of the bal-
ance below the left extremity of the beam.

A brass T-shaped piece fixed to the forward oven support
rod held the two cylindrical contactors to which were attached the ends
of the thermocouple leads from the oven. These leads, not shown in the
figure, were 32 gauge chromel and alumel wires, each held tightly to
a polished side of the contactor with a brass screw. Each contactor
was anchored to the T-shaped piece by a nylon screw and was insulated
from the piece by a nylon washer, as shown in the inset diagram of

Figure 7.1-3.
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The immobile mate contactors were similarly insulated
and fixed to a plate which was screwed to the end of an "L"-shaped
support attached to the platform of a spring-loaded plunger. Copper
wire of 20 gauge was screwed to polished sides on these contactors
and was threaded through and soldered to Stupakoff hollow-core in-
sulators sealed to the balance base plate.

The oven and associated parts supported on the left side
of the beam normally hung so that the movable contactors cleared
their mates by about 2 mm during the weighing operations. An arm
having attached at its extremity a strip of phosphor bronze spring was
bolted to the rotary gear which operated the beam-arrest mechanism.
When the shaft was rotated to arrest the beam, the arm swung up to
the plunger and forced the plunger to press the movable contactors
firmly against their mates. When the beam was lowered for weighing,
the arm moved back and the spring within the cylinder forced the shaft
of the plunger away from the contactor to break the electrical contact.

This arrangement of the contactors has proved to be quite
satisfactory and apparently sclved the biggest problem connected with
the use of a vacuum balance for this investigation. The possibility
was considered initially that the contactors could be machined from
chromel and alumel metals. However, it would still have been neces-
sary to join these to copper leads to reduce the impedance of the
thermocouple circuitry.

Admittedly there are several aspects to be criticized and
and questioned. For example, contact potentials and uneven heating of
the contactors could lead to serious problems; but these are points
which may be answered only by the experimental work.

Uneven heating of the contactors was reduced in several
ways. First, the natural arrangement of the oven and liquid nitrogen
coolant placed these at a considerable distance from the contactors.
Since the closest radiating surfaces contribute the majority of radiant

energy to the contactors, it appeared to be desirable that a radiation
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shield of large surface area be placed under the contactors. Conse-
quently, such a shield was constructed of copper sheet and placed under
the contactors and supported above the circular opening in the base
plate in such a way that the pumping rate of residual gases within the
condenser was not unduly reduced.

7.2 Effusion Ovens

Several ovens were used in this investigation, but the basic
design of each was the same. The ovens were designated as 2-A, 3, 7,
and 9. Except for the oven used in series 1, which will not be further
described, these differed principally in the length-to-radius ratio of
the cylindrical orifice. Diagrams of typical ovens are shown in
Figure 7.2.

The oven and thermocouple well were fabricated from 304 stain-
less steel, and the cylindrical orifice was made from a section of a
rustless steel hypodermic needle. Stainless steel #304 is not the best
material for use with mercury, but it is more easily machined and
welded than other types of stainless steels. The first oven constructed
and tested showed no visible corrosion damage, and analysis of the
mercury sample after use showed only traces of impurities. Insofar
as the writer is aware, no trouble was encountered except possibly
in series 8, as will be mentioned later.

The cylindrical bodies, 7/8 inch in diameter, were machined
from tubing to an approximate length of 2 inches and a wall thickness
of 1/16 inch. The ends were constructed to accommodate the circular
end plates which were machined from flat stock to avoid the micro-
scopic fissures common to cylindrical stock. A circular groove whose
outer edge was inset 1/32 inch from the periphery of the end plate was
machined to a depth of 1/16 inch. This groove and the machined end
of the cylindrical body formed lips, as shown in the figure, which sub-

sequently were heliarc welded together.
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Welding lips for the orifice and thermocouple well were ma-
chined as shown in the figure, and had wall thicknesses of slightly less
than twice the wall thickness of the orifice and thermocouple well tub-
ing, respectively.

The cylindrical orifices made from the hypodermic needles
appeared to have a fairly uniform cross section. A length was cut
from the needle, the ends were filed smooth, and after cleaning it was
placed in a cylindrical channel in the center of the end plate so that it
protruded about 0.005 inch above the outer end of the channel. The fit
was snug but not so tight that the needle was distorted. The tip was
then heliarc welded to the channel,

With the first ovens constructed there was no evidence that the
welded seam at the orifice tip constricted the opening. However, after
the series 5 experiments with oven #3, it was discovered that there was
a severe constriction at the welded end of the orifice. If these ovens
were to be re-designed, it would be best to have the end flared out
slightly to avoid this problem, although the original intention was to
construct the orifices so that they would have no distortion.

The end of the cylindrical orifice tube protruded slightly above
the plane of the peripheral lips to avoid having the vapor beam inter-
cepted by these lips and also to allow the placement, if necessary, of
radiation shields in front of the end plate. Although such a protrusion
is not good from a heating standpoint, apparently the arrangement gave
no troubles and radiation shielding proved to be unnecessary.

The orifice radius and length were measured after the needle
had been welded to the front plate. In the assembling of the oven each
piece after welding was tested with a helium-sensitive mass spectro-
metric leak detector. This continual check assured that the orifice
was the only opening in the oven.

The thermocouple well was cut from a length of steel tubing of
1/8—inch outer diameter. The one end was crimped, heliarc welded,

and leak tested. The other end was then welded into the end plate in
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wes
the same manner as @ the orifice. The bottom of the well during an

experiment was adequately immersed in the mercury sample which had
an initial depth of about two centimeters.

The support tabs were either machined as a part of the cylin-
drical body or cut from l/S-inch diameter rod and welded to the
cylinder. These tabs had holes of 0.05-inch diameter aligned along
the plane of the diameter of the oven. These tabs held the
tungsten support rods hanging from the balance arm.

7.3 Temperature Controller

The control and measurement of the temperature was accom-
plished with the same equipment. This simplified the thermocouple
circuitry and, more importantly, eliminated the added weight on the
balance due to another thermocouple and associated contactor
components.

The thermocouple in the well of the oven had insulated leads
extending to the balance contactors. From the mate contactors copper
wires led through Stupakoff seals in the base plate.

One wire ran to a chromel-alumel 18 gauge thermocouple which
was immersed to a depth of 8 inches in an ice-water bath. The lead
from this couple and the second lead wire from the Stupakoff seal
joined with shielded two-conductor wire connected with the control
circuitry. The junction of the couple was grounded through the metal
support rods to the balance base plate when the beam was arrested.

The temperature control and measurement circuitry, shown in
Figure 7.3, essentially comprised a potentiometer device. The various
units were purchased from the Wheelco Instruments Division of the
Barber Coleman Company. The circuit consisted of a stable millivolt
reference source (Model 350), a capacitrol stepless control galvanom-
eter and amplifier chassis (Model 417), a magnetically modulated cur-
rent output amplifier (Model MMC), and another magnetic amplifier
(Model 610A) which controlled a 4-KVA saturable-core reactor. The

saturable reactor was used to vary the output of a 4-KVA induction heater.




SRl= o
c/a I 2
9 v 3
Copper conftactors Iy E
on balance o o S = =
in vacuum o o o N - §
O .:; [ g'ﬂ g
o] o ~
o] = o]
Q’e Saturablle Rleactor
Stupokoff Seols © i Hg 0° v
® o} 0%
o L ©
@ © = o3
= Ground to o 540 ke RFC
i balance O— DG pMognetic
oS o Silver Amplifier
= Effusion Oven S oL
29 and Thermocouple 115 vac |(stabilized) 610 A
=2 Potentiometer f SL2
o © + - ¢+ -
55 : 11119
§3 E' 1@ —
& Shielded Cable + L
s Gonstant ?
bl - 1 |voltage
+ T (reference
.8
L[ W -—1—‘-—J
Shielded Connectors Mt350
Galvanometer
. I doh
Cold Junction, 0°C J ] I Lelo
Lee-
M/417 P MMC
+
& e oLy, &
@ re — ® @-

Fig. 7.3 Schematic Diagram of the Temperature Controller and Heating Equipment

121




12

The millivolt reference source was a zener diode stabilized,
line-powered EMF -reference wired to oppose the thermocouple sig-
nal. The unit had a 0 to 80-millivolt adjustable range and a stability
of at least two microvolts over a 48-hour period after warm-up. As a
general practice, the power to the instrument was maintained continu-
ously to retain its stability.

An output signal from the EMF reference source was selected
prior to an experiment. The unbalanced signal due to the difference
in the thermocouple and reference voltages was fed to the galvanometer,
which had a 3-mv range each side of zero-center and a sensitivity of
about 1/10°C for a chromel-alumel couple. The scale of the galvanom-
eter was calibrated over a 20° range about the zero-center in divisions
of 0.04 mv per mm.

The galvanometer carried a vane which moved between two
pancake oscillator coils and thereby continuously changed the funing
of an oscillator circuit fed by the Model 417 amplifier chassis. The
change in the unbalanced thermocouple signal in the range of -0.20 mv
to + 0.20 mv caused the output of the amplifier to change from a
maximum of 10 volts direct current to zero. With further amplifica-
tion, this changed the power input to the oven from the induction
heater from maximum to minimum power. This, along with the other
components, caused the heat input to the oven to attain a steady-state
value such that there was a null balance of the thermocouple and
reference voltages. The range of the unbalanced signal effective in
varying the heat input was referred to as the "proportional band,”
which signified that the heat input was proportional to the unbalanced
signal in this band. On either side of the band, the heat input was
constant and independent of the signal.

The 10 to 0-volt output of the Model 417 chassis was fed to the
MMC unit, which further amplified the signal and, by various feedback
features, added to or subtracted from the signal in anticipation of un-

desired changes of the heat input to the original source, that is, the oven.




Thus, occasional fluctuations in the temperature of the oven were
rapidly compensated to maintain a nearly continuous null balance and
therefore a reasonably constant temperature.

The 610A amplifier boosted the MMC output to that voltage re-
quired to control the impedance of the 4-KVA saturable-core reactor.
This reactor was a variable choke with an impedance that was con-
tinuously variable over ranges sufficient to change the line voltage to
the primary transformer of the induction heater from about 5 to
200 AC volts. The reactor was wired in series with the primary of
the power transformer of the induction oscillator.

The line power input to the induction heater-reactor circuit
was fed from a 220-volt Variac. This was used to adjust the maximum
heating power so that the MMC unit operated at about 50 percent of its
output at null balance. At this output value, it had been found that the
oven heating and cooling recovery times were about equal, which con-
ditions ensured the most sensitive control.

This equipment has performed most satisfactorily and has given
control of the temperature often within better than 0.25°C. Since the
unbalanced signal was nearly zero within small limits, the tempera-
ture in terms of chromel-alumel voltages may be taken as the poten-
tial of the reference source. The output of this source was measured
before and after an experiment with a Leeds and Northrup type 8662
Potentiometer. A more detailed description of the use and operation
of the controller is described in Chapter 8.

7.4 Heating Equipment

As mentioned, the ovens were heated by induction. The induc-
tion oscillator was a General Electric Model 4F 5A12 electronic
heater having a maximum output of about 4 KVA. Although an old
model, it served quite well and had more than sufficient power

necessary to meet the heating requirements for this investigation.
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The induction coil of 27 turns of l/4-inch diameter copper tub-
ing had a diameter of 5 inches and a length of 10 inches. To ensure
the most uniform heating of the oven, the coil should have been longer,
but, since the diameter was fixed by the dimensions of the Dewar
flask for the liquid nitrogen, the length was somewhat restricted by
the efficiency desired and the requisite impedance match to the
oscillator circuitry, This work coil, however, appeared to be entirely

adequate.
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CHAPTER 8
EXPERIMENTAL METHODS

The methods, procedures, and techniques used in the primary
experiments were the same for each of the four series to be reported,
and these are summarized in this chapter. The first section on tech-
niques outlines the preparational procedures prior to the execution of
an experimental series or set of experiments. The second section
describes measurements and methods used in deriving the basic flow
rate quantities from the experimental measurements. The third sec-
tion summarizes the standardizatiors of various components of the
apparatus and some miscellaneous details.

8.1 Techniques

(a) Treatment of the Oven and Thermocouple

The oven just prior to use was outgassed at 1000°C for
about one hour. This was more than sufficient to remove any of the
impurities volatile in the temperature region of the effusion experi-
ments, about 0 to 300°C. The oven was then checked for vacuum-
tightness with a helium-sensitive mass spectrometric leak detector.
All the ovens used were found to be tight. The oven was then again
briefly outgassed prior to the fusing of the thermocouple into the well.

A small slug of silver having a diameter slightly less than
that of the thermocouple well, 2 mm, and a length of 5 mm, was pre-
pared by melting and solidifyirg a weighed amount of silver in a thin,
round-bottomed, fused silica tube of the desired inner diameter. The
gilver slug when cooled was broken out of the tube, rinsed with acetone
and dried, and then dropped into the well of the oven.

A thermocouple was prepared of 32 gauge chromel-P and
alumel wires of about one meter in length. The couple junction was
fused in a flame with a fluoride flux to form a clean spherical tip. The

wires were threaded through an eight-inch length of "il—é—inch diameter,
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two-conductor ceramic insulator which extended to within T36' -inch of
the junction.

The oven was supported in an outgassing vacuum chamber.
The thermocouple was placed in the well so that the tip of the junction
rested on top of the silver slug. The leads of the couple were fastened
to leads coming into the vacuum chamber from a potentiometer, andthe
top end of the insulator was clipped to a magnetically operated shaft.
The chamber was evacuated and the oven heated to about 25° above the
silver melting point of 960.8°C. The movable shaft clipped to the
thermocouple insulator was forced down with a magnet until the couple
junction tip rested on the bottom of the well. The silver was then
allowed to freeze.

After the cooled oven had been removed from the vacuum
system, the continuity of the couple was checked. The insulator was
broken off at the top of the well and the excess piece was discarded.
The remaining portion of the insulator in the well was broken at the
midpoint to reduce heat losses by conductivity. It was easy to deter-
mine from the performance of the couple in subsequent heatings
whether or not the leads had shorted in the well, and such an occur-
rence rarely happened.

(b} Support of the Oven and Thermocouple on the Vacuum
Balance

The ends of two tungsten rods of 0.05-inch diameter and
28-inch length were arc melted to form small spherical tips on which
the oven support tabs would rest. These were slipped through the sup-
port tabs on the sides of the oven and anchored to a brass bar above
the thermocouple contactors, as shown in Figure 7.1-3. Very thin-
walled silica sheaths drawn from larger tubing were slipped over the
thermocouple leads to insulate them from the support rods. The ends
of the leads were cut to a desired length and screwed tightly to the

polished sides of the contactors. It would have been more satisfactory




to have spot-welded these to the contactor, but so many adjustments and
interchanges of ovens with their couples were required that it would
have been too restrictive.

The contactors were polished to rid the surfaces of oxide.
The oven with 1ts assembled components was placed into the condenser
by lowering it through the hole in the base plate and then was attached
to the semikinematic support from the balance. The balance post could
be rotated on its base to locate the oven 1n the center of the condenser.

(c) Design and Construction of the Condenser-Vacuum Jacket

The long channeled orifice of the oven opened downward
into the condenser-vacuum jacket. and thus only a minmimum of vapor
could reach the balance chamber since the mercury was adequately
condensed on the liquid nitrogen~cooled surfaces of the condenser. The
condenser used for the ovens with these channeled orifices consisted
of a Pyrex tube 18 ¢m long rounded at the bottom, and sealed at the
top to a 50/50 standard taper joint. With the oven having a thin-edged
orifice, which necessarily opened upwards, a different condenser having
a side arm Dewar was used. The Dewar fitted between the supporting
rods and thermocouple leads without rubbing them. This Dewar was
kept filled with liquid nitrogen. Occasionally between experiments the
condensed mercury on this Dewar was allowed to warm and drip off
a spout at its end to prevent the mercurv from falling on the oven.

Cooling rates in vacuum of heated substances below red
heat are very slight and as a consequence, temperature control be-
comes difficult because of the slow approach to a steady-state temper-
ature. The temperature controller was essential in alleviating most of
this difficulty. But it was found in the preliminary series 2 that the
cooling rates could be slightly increased by using a blackened conden-
ser. A colloidal dispersion of graphite was prepared by mixing about
one cc of Aquadag. obtained from the Acheson Colloids Company, with

about 40 cc of distilled water and 10 cc of sodium silicate solution.
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The proportions are not critical, but the dilution of the Aquadag must be
done slowly with constant stirring to avoid destroying the colloidal
dispersion.

The solution was then painted on the outside of the cleaned
condenser while it was continuously rotated on a glass lathe. The
layer was air dried and then baked with a heat lamp. About two coats
of solution were found to be sufficient without giving a layer so thick
that it flaked off with repeated immersions in liquid nitrogen.

(d) Procedures Preparatory to an Experimental Series

The oven with its associated parts was fixed on the balance
and was outgassed at 600°C in vacuum to age the thermocouple and
test its performance. The oven assembly was removed then from the
balance and the oven was filled with a measured quantity of triply
distilled mercury manufactured by F. W. Berk and Company. This
filling was done without having to disturb the thermocouple and support
assembly by causing the liquid mercury to flow into the oven through the
orifice from a syringe and hypodermic needle.

The oven assembly was again supported on the vacuum bal-
ance, the proper tares were added to the tare cup, and the radiation
shield below the contactors was set in place. One or two trial heatings
were carried out to test and adjust the weighing apparatus and tempera-
ture controller.

8.2 Measurements, Methods, and Calculations of the Flow Parameters

(a) Experimental Requirements

Each experiment was carried out in a pattern similar except
for minor modifications to the description given below. Many of the
techniques, however, which finally vielded precision data were developed
only by trial and error methods based on the requisite procedures de-
manded by the kind of experiment carried out and the equipment used.

The temperature controller performed quite well, but it

was initially somewhat tricky to induce it to operate exactly in the
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Go
desired way. It was necessary to measure,steady-state constant-

temperature mass flow rate, and this required a procedure for rapidly
warming up the oven to the desired temperature, maintaining it at this
temperature for a given period of time, and then quenching the flow
processes. Weighings could be made before and after the heating. For
several reasons this could not be generally accomplished by attaining
the steady-state temperature and then weighing the oven periodically

at temperature. First, some of the mass flow rates measured amounted
to several milligrams per minute or more, and the balance was not
constructed for rapid or continuous weighings. Secondly, the reason
that the balance was not so constructed is that the magnetic field effects
and static charges were known to severely affect such weighings with
substances heated by induction, at least at high power inputs. Also, the
thermocouple contactors had to be closed during the heating of the oven.

The problem with rapid warm-ups at relatively low tem-
peratures is that the cooling rate is not sufficient to prevent an over-
shoot of the temperature and rapid attainment of the steady state. The
temperature controller, however, led to a sufficiently reproducible
warm-up pattern that it could be used to duplicate the warm-up cycle
of an initial experiment. Therefore, initial weight loss corrections
could be experimentally determined, and this is illustrated in the de-
scription below.

It was discovered during one of the experimental series
that the temperature controller was sufficiently stable that contact to
the couple during the heating could be broken, and consequently
weighings could be made at temperature while the effusion process
was occurring without having the temperature drop outside the normal
small fluctuations. Several tests, as described later, showed only
negligible, if any, effect of the induction field at the low power inputs.
This ability to weigh at temperature and to avoid the additional troubles
of measuring a correction was discovered too late to be used for all of

the experiments, but it was fully exploited in series 8.
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The flow processes were quenched by the admission of
helium to the vacuum system while the oven and diffusion pump oil
were hot. This necessitated purification of the helium, which was very
simply done by allowing the helium stream to flow over clean uranium
chips heated to about 500°C.

(b) Experimental Procedures

The vacuum system was evacuated to a pressure of 10" mm
and liquid nitrogen was placed in the Dewar surrounding the condenser.
The level of this liquid was maintained to within about four to six centi-
meters from the top of the Dewar flask. The reference millivolt source
was set at an approximately desired value, and, with the thermocouple
contactors open, its EMF was accurately measured with a potentiom-
eter. The galvanometer of the control unit was adjusted to correspond
closely to zero millivolt on the scale. The oven was then weighed. A
check on the reference load rest was made if the weight loss was to be
small enough to warrant a rest~point correction.

The thermocouple contactors were closed, and with the
power to the induction heater off the Variac was set at a high voltage
sufficient to warm the oven to temperature in about three to six minutes.
the galvanometer needle with the contactors closed was against the
stop at the left-hand end of the scale, which corresponded to about
=3.0 mv, althoughthe temperature of the oven was generallylower than
indicated by this differential value.

The power to an electrical timer and the oscillator was
turned on by the activation of a relay system. Whenthe unbalanced
signal reached about ~3.0 mv, the galvanometer needle began to move
up the scale. The time t; at which this movement began was recorded.
As the needle moved into the lower region of the proportional band, fre-
quent time and millivolt readings were recorded. At a reading of
-0.20 mv, the Variac was adjusted to a lower voltage sufficient to
maintain, as previously described, a moderate balance in the heating

and cooling rates at the steady state. The controlunit took full control
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at this point, and after about two cycles of over and under-shooting by
a few degrees brought the heating process to a nearly steady state at
which the needle registered about zero millivolt. When the steady state
was achieved, the time t; was recorded.

Time, millivolt, and vacuum pressure readings were re-
corded at intervals of two to thirty minutes, depending on the length
of the heating period. The cantroller continuously adjusted the heat-
ing power over small limits and, consequently, a slight periodic cycling
of the temperature occurred over about% to 1§°C about the null point.
The periodicity of this cycle was frequently altered as true power
fluctuations demanded automatic compensations. This required the
frequent but random recording of the galvanometer readings so that
reasonably accurate averages of the temperature could be obtained.

After a sufficient heating period the steady-state flow
process was quenched by the rapid admission of purified helium to the
vacuum system to a pressure of about 400 mm Hg. This caused the
ionization gauge to trip a relay when the vacuum pressure exceeded
10™* mm Hg and cut the power to the induction heater and diffusion
pump and stop the timer. This time was recorded as the final time
tf. The oven was allowed to cool for about 3 minutes before the diffu-
sion pump was again started.

The operating vacuum of 1078 mm Hg was attained again
after about 15 to 20 minutes, and the oven was then weighed. The initial
warm-up procedure was repeated up to the time at which the steady-
state process set in. The flow was then quenched by the admission of
helium. The time registered on the stopped timer was recorded as
‘c,'f. A weighing was again made. This second heating was carried out
to obtain an experimental warm-up weight loss correction.

In so far as possible the various manipulations involved in
these experiments were carried out with reproducible procedures. For

example, the time allowed for the cooling of the oven after the quenching
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operation was the same for both the primary and warm-up correction
experiments. If the apparatus had remained inactive for any extensive
period of time, the oven was heated up and then quenched prior to the
flow experiment.

The warm-up corrections appeared to be reproducible to
within 25 percent and since the actual warm-up weight loss correction
amounted to about 5 to 10 percent of the total loss in weight in the pri-
mary experiment, the corrected loss had a precision of about 2 to
3 per cent.

For those experiments for which it was found possible to
weigh the oven at temperature during the heating, either the flow rate
was slight enough that a weighing easily could be made before percep-
tible changes in the rest point of the balance could be noted, or for
slightly higher flow rates the weight pan could be overloaded and the
time at which the indicator needle passed zero on the index scale could
be measured. Both procedures were found to be reproducible. The
cooling rate was sufficiently slight that the oven temperature did not
change by more than:ij degree during the weighing operation. Several
tests indicated that the induction field gave no problem in weighing.

(c) Calculation of the Flow Parameters and Mass Flow Rate

Figure 8.2 gives a schematic representation of a typical
experiment. In this figure, w represents a weighing, and its position
at the top of the graph represents the time in the heating sequence with
which it is associated. The symbol t denotes time as registered on a
timer. The subscripts i and f refer to initial and final values of the
respective variables, and ty represents the time at which the steady-
state heating sets in. The primed symbols represent the variables of
the secondary experiment which measured the warm-up corrections;
the unprimed symbols represent the variables measured in the pri-

mary experiment.
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From these experimental variables, the constant-
temperature weight loss was derived as follows. For the primary

experiment, the heating period and total weight loss were given by

ty = tf - ti, minutes
(8.2-1)
w; = w; - wf, milligrams;
and for the secondary experiment,
i i
t, =t - t5,
i . (8.2-2)
Wa = Wi = Wf .
Therefore
dw wp - W, . a1
= , mg min . (8.2-3)

dt  ty - t,

The quantity t; does not directly enter these expressions but is used
merely as a check on the duplication agreement in the coupled
experiments.

The apparent temperature of the oven in millivolts was de~
rived as the sum of three quantities: the galvanometer zero reading Eg,
the EMF of the reference source E;, and the EMF of the average gal-

vanometer readings, E5;. Thus

E =E.+E, -Eg , (8.2-4)

&Ijeéﬂgo‘@
where all values are millivolt readings. The EMF of the ref-

apparent

erence source was measured both before and after an experiment.
Examination of all the data showed this EMF to be constant within the
precision of the potentiometer, ¥ 0.002 mv. The galvanometer rest at
zero-input signal, that is, the galvanometer zero reading, was
measured both before and after the experiment, and these agreed with-

in better than a deviation of £ 0.003 mv.




The EMF of the thermocouple during an experiment was
taken as the group average of all the recorded, ostensibly steady-state
millivolt readings, which were about ten or more in number. Some
kind of a weighted time average would appear to have been better.
However, the fluctuations were small enough certainly that this would
have been wasteful of time and effort. The fluctuations were rather
taken as a measure of the error so that account is taken of the fact
that real but small fluctuations occurred.

The apparent temperature was obtained from the apparent
EMF for a corresponding voltage listed in a standard conversion
table.(62) The true temperature was taken as the apparent tempera-
ture plus a correction term obtained from a plot of correction values
vs apparent temperature, as discussed in the next section.

8.3 Mercury Analysis, Standardizations, and Orifice Dimensions

(a) Mercury Analysis

The same stocks of mercury and materials for the con-
struction of the ovens were used in all the effusion experiments. A
test of the purity of the mercury both before and after a series of ex-
periments should be indicative of the purity for all experiments. After
the preliminary series 1. the mercurv was removed from the oven and
analyzed spectroscopically for trace elements, Both the initial and
residual mercury had detectable traces of cobalt, nickel and manganese
of the order of less than 0.00002 percent Accordingly, no further puri-
ficiation prior to the principal experiments was deemed necessary.

(b) Standardization of the Temperature Controller and
Thermocouples

(1) The Galvanometer

Since the galvanometer indicator of the temperature
controller was used for the measurement of the temperature as well as
for control purposes, the scale was standardized against a potentiom-
eter. It was found that a scale division of one millimeter corresponded

to 0.04 millivolt over the usable range of the galvanometer scale under
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a circuit impedance identical to that of the thermocouple circuit.
Consequently, the scale calibrations were taken as 0.04 millivolt per
millimeter. The voltage of the reference source was directly measured
with a potentiameter prior to and at the completion of every experiment.

(2) Reliability Tests, Experiments 60 and 61.

Because of the method used in transferring the oven's ther-
mocouple signal through contactors to the external detectors, it seemed
desirable that some direct test be made of the reliability of the meas-
ured temperatures. Experiments 60 and 61 were carried out for this
purpose at the completion of a set of experiments denoted as series 5.
For experiment 60, two thermocouples were fused into silver in a well
drilled into a steel cylinder having dimensions similar to those of the
effusion ovens. The leads of one couple were joined with the contactors
and the leads of the other were takenthrough a side arm in the condenser
and directlyto a reference junction and potentiometer. Thetemperatures
of the two couples were compared at several steady-state temperatures.
The leads and reference junctions were then reversed and similar com-
parisons made so that the combined results would be independent of the
standardization corrections. The results were not definitive for sever-
al reasons, however., Kinks and bends in the leads taken through the
side arm were difficult to avoid because of the limited space available
for manipulations required in the assembling of the cylinder and asso-
ciated parts in the condenser. In one case the contact between the silver
and junction changed enough to affect the comparison during the experi-
ment. The results indicated that the measurement of the temperature by
the controller was reliable at least within 0.40 degree. A more detailed
experiment would have been necessary to determine whether the relia-
bility was better. The series 8 set of the experiments, however, would
indicate that absolute errors were less than 0.40 degree. Since the
thermocouple circuitry effectively had additional hot and cold junctions
due to the junctions between the chromel-to-copper and alumel-to-

copper connections, an error equaltothe temperature difference between
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the contactors and external connections will occur. This should have
been corrected, but these experiments just described indicate that no
serious trouble occurred. The present experiments indicate that if
the error is real, it is such that the apparent temperature is too low
in the low-temperature regions around 50°C.

In experiment 61 a test was made of the effect of both the
radiated energy from the heated oven and the radiofrequency field of
the induction coil on the thermocouple signal. Various radiation
shields were placed below the contactors to shield them from the
thermal radiation of the oven, but no changes in the signal were detect-
able. Measurements of a steady-state temperature of the oven, both
with the heating power on and momentarily off, showed no differences
at various values of the input power. One must conclude that these
effects were negligible for the experimental conditions prevailing in
the present experiments and that temperatures measured by the con-
trol units were reliable within 0.40 degree or better. .

(3) Thermocouples

The thermocouples were standardized in situ by intercom-
parison with a platinum-platinum, 10 percent rhodium couple which was
standardized against the freezing points of metal samples certified by
the National Bureau of Standards. After all experiments had been com-
pleted, the oven with its thermocouple and the standard couple was
placed in the cavity of a thick cylinder of copper, which was heated
under a hydrogen atmosphere in a controlled tube furnace. Intercom-
parisons of the thermocouple voltages were made at three temperatures
over the temperature range of the experiments. Direct measurements
at the ice point gave a fourth standardization point for each of the
thermocouples. Corrections to the apparent temperature as taken from
a table(62) of standard voltage versus temperature on the International
Centigrade Scale, 1948, were obtained from a smooth curve of the cor-

rection values plotted against the apparent temperature.
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The cavity of the copper cylinder initially was found to have
a temperature change of no greater than 0.25 degree from one to the
other end, a length of about four inches. The junction of the standard
thermocouple was placed on the outside of the oven at a position cor-
responding to that of the junction of the oven couple. The data for the
four ovens are cited in Table 8.3-1. The two sets reported for oven 9
correspond to two different positions of the standard couple: set 1 for
the standard couple placed on the outside of the oven, as was done in
the other measurements, and set 2 for the standard couple placed with-
in the oven. The orifice of oven 9 was drilled out so that the standard
couple could be placedwithinthe oven. The two sets agreed substantially
in the low~temperature regions but disagreed at the highest tempera-
ture. The data show that the furnace was changing temperature fairly
rapidly in this last measurement of set 2, so that this measurement
may be invalid. The smoothed curve was drawn as an average of these,
however. For the most part, the reported corrections are an aver-
age of three groups of three measurements of the comparative

TABLE 8 3-1

Thermocouple Standardization Data

True minus True minus True minus
Th;rmoc’ouple Experimental Apparent Appar Temp Appar Temp Appar Temp
or Cven Temperature ° 5 o
Number Series c) (°C){(Measured by | {°C) (smooth | (°*C){Freezing-Point
Intercomparison) Values) Standardization)
2-A 6 -0 20 020 016 020
73 034 023 020
163 038 0 49 026
329 147 140 080
3 5 -0 15 015 010
59 015 017
162 058 058
318 181 181
7 7 -0 08 008 008
59 023 023
162 074 076
317 216 215
9 (Set 1) 8 -0 15 015 014
61 019 020
168 0 55 059
303 175 2 04
(Set 2) 8 58 017 018
157 052 052
263 175 1 46~
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temperatures. The precision of these averages is between 0.05 and
0.15 degree. It is believed that the reliability of the smoothed correc-
tions is about 0.25degree or better at the lower temperatures andabout
0.5 degree or better at the higher temperatures in the region of 300 de-
grees. The residual voltage at the ice point appears to be due to a
slight composition difference between the oven couple and reference
junction.

After the thermocouple of oven 2-A was standardized by
intercomparison, it was removed from the well by melting the silver
in vacuum; the junction was removed free of silver. The couple was
then standardized with freezing point sikml?les° The resulting stand-
ardization gave values from which are ined those reported in the
penultimate column of the data for oven 2-A. These values are lower
than those resulting from the intercomparison. The latter, however,
are applicable to the couple junction as it existed in the silver within
the well, and thus the intercomparison in situ is probably the more
applicable to the conditions unique to the effusion experiments. It
would have been more satisfactory, admittedly, if the standardization
could have been carried out in the vacuum balance under conditions
similar to those of the effusion experiments, Most of the freezing-
point standards, however, are corrosive to stainless steel. Bismuth
appeared to have some chance of success, but since the orifice dimen-
sions needed to be measured and since large quantities of solidified
metal surrounding the orifice would have made this difficult, this
line of investigation was not pursued.

(c) Standardization of the Balance Weights

The class S pan weights, class 2-S wire weights, and chain
were compared with a set of weights recently standardized by the Na-
tional Bureau of Standards. The small differences in the weights were
combined appropriately with buoyanct' corrections to obtain the re-
quired corrections. Some of the small weights and the chain and a few

of the pan weights were checked at the end of each series of experiments



140

to determine whether they had reacted withtraces of mercury vapor in the
vacuum system. No appreciable changes were detected. The chain weight
gave some difficulties in calibration attempts since the balance was not
sufficiently sensitive nor stable to provide the small corrections neces-
sary for precisionmeasurements of the smallest changes inweight. Con-
sequently, for series 7and subsequent experiments the balance was tared
so that both the zero and ten-milligram scale readings of the chain could
be compared in vacuum with the ten-milligram wire weight. This proved
to be quite satisfactory since the balance stability and its sensitivity
under vacuum conditions were good. The chain thencould be calibrated
in vacuum at any time before or after an experiment.

(d) Orifice Dimensions and Clausing Factors

The dimensions of the cylindrical orifices were measured
by various techniques, but only one of these yielded the precision reqg-
uisite to this study. Measurements of the cross-sectional diameter of
the ends of the orifice appeared to give unreliable results because of
apparent distortions. The method which gave reproducible results in-
volved the measurement of the volume of the cylinder and from this
could be directly calculated the average square of the radius. The
orifices were cut out of the oven and weighed both with and without
mercury, and the volume of the orifice was determined from avolume-
temperature equation(él) for liquid mercury.

One end of the orifice was sealed with a small piece of

- Ha

masking tape, and then the orifice cylinder was filled a fine hypo-
dermic needle. Great care was taken to ensure that air bubbles were
not trapped in the cylinder. Before each weighing and after the filling
with mercury, the ends were microscopically examined for the extent
of the meniscus. In only one determination was it necessary to correct
for a meniscus, and this correction was less than 0.5 percent of the
total weight. Several determinations of the volume gave excellent

mutual agreement. The lengths of the cylindrical orifices were meas-

ured with a micrometer. The results of the measurements and some




derived quantities are recorded in Table 8.3-2. The errors cited are

standard deviations converted to percentage values. Only the largest
errors in these measurements are listed; several of the determinations
gave even smaller errors, but since these merely are statistical errors,

one must acknowledge possible absolute errors of perhaps twice these

values. The absolute error, however, certainly must be less than one
percent.
TABLE 8.3-2
Orifice Dimensions and Clausing Factors
Derived from Volume Measurements
Crc?ss- Length | Radius | Length: | Clausing
) sectional .
Oven | Series Area (cm?) (cm), (cm), Radius, | Factor,
c o+ +
£0.2% T0.2% 10.1% t0.3% 10.3%
3 5 0.001296 2.495 0.02031 | 122.8 0.02077
2=-A 6 0.002849 2.997 0.03011 99.54 0.02540
7 7 0.002953 2.036 0.03066 66.41 0.03726
9 8 0.001440 0.00156 | 0.02141 0.0729 | 0.965
(0.6%) (£20%) (£0.3%) (£20%) (t2%)

ured microscopically with a standardized scale located in the eye-piece

The dimensions of the thin-edged orifice were meas-

of the microscope, and these measurements indicated that the opening

was quite circular.

The thickness of the orifice was measured at an

angle of forty-five degrees and then converted to the value of the true

length. Because of its extreme thinness, the length corresponded to

only one-third of the smallest scale division, so that there is uncertainty
of perhaps twenty percent in the measured value. The Clausing factor

or transmission coefficient derived from the length to radius ratio, how-
ever, varies only about three percent over these limits, so that a stand-
ard deviation of about two percent appears to be a reasonable choice in

the error for this quantity. It was planned that the length would be more
accurately measured subsequent to the experiments, but the orifice was

irreparably damaged before this could be done. Apparently the

141
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mercury so affected the grain structure in the thin portions of the
orifice that it became brittle and soft, and in the refilling of the oven
for a second set of experiments, the hypodermic needle bent the edges
of the orifice. The flow rate measurements, however, were carried
out in such a way that the data support the contention that the orifice
was not significantly injured, if at all, during the effusion experiments.

The Clausing factors listed in the table were calculated
from the equation deduced by DeMarcus(42) and reported in this thesis
in Appendix 1. It should be noted that the expression 8R/3L is not
applicable as the transmission coefficient for the long channels used
in this study. The above expression yields coefficients several per-
cent too high, and as DeMarcus has shown,(42) 8R/3L is correct only
for an infinite value of the length-to-radius ratio.

The orifice radii listed in Table 8.3-2 are applicable, of
course, only as a measure of an average cross section of the orifice.
There is, then, the question of the uniformity of the channels and the
extent of the effect of nonuniformity on the interpretation of the sub-
sequent measurements of flow rates particularly under molecular flow
conditions. The Clausing factor is a function principally of the square
of the radius, so that a measure of the average of the cross-sectional
area would appear to be the most meaningful measurement. The prob-
lems arising from a nonuniform channel are common to all experiments
such as the present ones, and they are most troublesome for extremely
thin channels.

Various measurements of the radii showed that these chan-
neled orifices were of uniform cross section to an extent of one or
two percent, and the orifice of oven 2-A appeared to be the least uni-
form of the three channeled orifices. The orifices of ovens 2-A and
7 were made of sections of a 20 gauge hypodermic needle and the ori-
fice of oven 3 was made from a length of a 22 gauge needle. A micro-

scopic measurement of the radius of two such needles randomly selected
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gave reasonable agreement with the orifices of ovens 7 and 3, but
s.howed that the average radius of that of oven 2-A was several per-
cent smaller. These observations are summarized in Table 8.3-3,

A microscopic examination of the welded ends of the orifices showed
that there was not constriction in the end of the orifice of oven 2-A, a
possible constriction of much less than one percent of the area for the
orifice of oven 7, and a severe constriction in the welded end of the

orifice of oven 3. These constrictions would tend to lower the theo-

retical molecular flow limits

Comparison of

TABLE 8.3-3

Radii for Channeled Qrifices

Oven or Radius (cm) Radius {cm) Exft:_er}t:f Cg)n— Cr?ss-‘l
Needle Series by Volume by Diameter striction by sectiona
Percent of Area Area of
Number Measurement Measurement N .
by Volume Constricted
of Welded End 2
Measurement End (cm?)
Oven 2-A 6 0.03011(£0.1%) 0.0%
Oven 7 7 0.03066(10.1%) <1.0%
Oven 3 5 0.02031(£0.1%) | 0.01788(%0.84%) ~22.5% 0.001004
Needle 20 0.03084(X1.47%)
Needle 22 0.02032(+1.47%)

For the comparisons of theoretical predictions employing

the orifice dimensions with the experimentally measured quantities,

the thermal expansion of the orifices has not been accounted for.

Neglect of the expansion leads to errors no larger than one percent

in series 8 and no larger than two percent in the other series of ex-

periments.

These are errors within the precision of the measure-

ments of the mass flow rates.
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CHAPTER 9
MASS FLOW RATE DATA

In this chapter the data obtained in the experiments comprising
four series are reported. The basic data including a priori estimates
of the statistical errors are presented in the first section. The meas-
urements extend over a temperature range of 300° and a flow rate range
of a factor of ten million! A discussion of some preliminary experi-
ments is given in a second section. A third section outlines the methods
used in deriving the a priori statistical errors.

9.1 Tables of Basic Data

(a) Description of the Table Format

Four tables of data on the weight losses and temperatures
measured in the experimental series 5,6,7 and 8 are reported here.
The few experimental results comprising a series 4 are not reported
since they were obtained with an oven having a severe leak in the ther-
mocouple well. When the leak was discovered, these experiments were
discontinued.

A single constant-temperature mass flow rate value is ob-
tained generally from two experiments: the primary total weight loss
experiment and the secondary warm-up weight loss experiment. These
are combined as previously described to give the steady-state flow
rate. These data are assembled in the tables of this section. In the
first column the number of the experiment is cited. The primary and
associated secondary or warm-up correction experiments are grouped
together with the experimental number enclosed in parentheses repre-
senting the secondary experiment. Also, it should be noted that there
are a few groups of experiments for which the secondary experiment
was made prior to the primary one.

The faulty series 4 experiments ended with experiment 28.

Experiment 29 of set A, series 5, begins the listing of the results ofthe




principal experiments which end finally with experiment 158 of Series &.
Some of the experiments between these numbers are not cited in the
four tables in this section because either they require some detailed
comment or are not flow experiments. These missing experiments

are described later. In those cases where the heating period was suf-
ficiently long, within the precision of the data, no warm-up correction
was necessary, so that a secondary experiment was not carried out.

Its absence for this circumstance is denoted by a dash in place of an
experiment number. In other cases where weighings at temperature
during the flow process were made, no warm-up correction, of course,
was necessary. But to distinguish these from the previous ones, for
which the helium quench method was used before the weighing opera-
tions, an appropriate symbol, as will be mentioned, denotes these 1n

the second column under "remarks."” These latter experiments allowed
for several weighings at temperature within a single experiment. Data
for each of these are denoted by a dash and sequential number. The
quantities for the total experiment are distinguished by the symbol"-T"
following the experiment number.

The total group of experiments within a series was carried
out with a single oven, and thus each of these experiments is unique to
a given orifice. Within a series, the experiments are groupedin alpha-
betically denoted sets comprising natural divisions arising from some
feature unique to that set. For example, several experiments could be
carried out with one filling of the oven and these may define a set. or
for some of the large flow rate experiments a set was carried out in
which the oven was filled prior to each experiment.

The third, fourth, and fifth columns contain the basic data
on the weight losses w; or w, and heating times t; or tz, as described,
and the steady-state mass flow rate, dw,dt, calculated {rom these
data. The last two columns present the temperatures derived as pre-
viously prescribed. Errors are listed along with these data, and the

basis of the calculation of these is described later.
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The symbol codes listed in the "Remarks" column are de-

fined in Table 9.1-1. These comprise certain a priori predictions and
TABLE 9.1-1
Definition of the Symbols used in the Tables 9.1-2.

Distinguishing Notations:

MVe o 6 0 o0 0 o o Millivolts
C/A ......... Chrornel/Alumel Thermocouple
D R Secondary Experiment
F.o.....c.0.. Oven filled prior to the experiment
B Oven weighed at temperature
R.o...oooo . Temperature recorded overnight
[ 1......... Enclosed remark or datum uncertain.
OFL......... Overflow of mercury occurred,

} ...... Mass flow rate in error due to overflow

A Priori Prediction Notations:

HHH. ..... Weight loss much too large
HH....... Weight loss too large
H........ Weight loss slightly too large
Lo Weight loss slightly too low

L. ...... Weight loss too low low
LLL...... Weight loss much too
IND...... Conflicting events make choice in

predictions indeterminable.

distinguishing remarks which will be useful in discussing the data. An
examination of the originally recorded data shows that although the du-
plication of the initial warm-up behavior in the secondary experiment
is generally satisfactory, it is possible to judge in some cases whether
the measured weight loss is too small or too large because of over or
under shooting in the temperature. For example, if the weight loss

correction is too large, the calculated steady-state mass flow rate




would be too low. In some cases conflicting events made a predication
impossible and in other cases, in so far as they can be judged, the du-
plication is completely satisfactory.

These a priori predictions, however, are not to be construed
as indicating necessarily any failure or unreliability in the associated
data, but merely represent qualitative information. The "overflow"
notation will be described later in detail. In some of the experiments,
the progress of the temperature overnight was monitored by recording
the MMC input voltage (0-10 volts, DC). Nothing unusual was noted in
these measurements, however.

(b) Basic Data Tables

The data presented in the following tables are given with
more significant digits than the precision appears to warrant. This is
done, first, to retain accuracy in the derived quantities and, second,
because these data are taken from the intermediate output of a pro-
grammed series of calculations with the IBM 610 digital computer,
which handles internally more than 15 significant digits. As a result
of the rounding off in the reported data, some of the derived quantities
may disagree slightly with such quantities derived from the recorded
data, but these discrepancies should be negligible.

The weight loss and time data are measured data and con-
sequently are given to the smallest measured decimal fraction rather
than being rounded to the extent demanded by the magnitude of the cited
errors.

9.2 Incidental Experiments and Preliminary Inquiries

Following experiment 56 at the end of the series 5, set A group,
five additional experiments not directly concerned with the measure-
ment of flow rates were carried out. The last two of these, experi-
ments 60 and 61, have been discussed in connection with the
standardization of the temperature control unit; the remaining three
have bearing on the interpretation and reliability of the flow measure-

ments and consequently are outlined in this section. In addition to these,



TABLE 9.1-2A

Basic Data for Series 5 (Oven 3)

Experi- Weight Loss Heat.mg Mass Flow Rate Apparent True
nt Remarks (w, mg) Period (dw/dt m /min) Temperature Temperature
me g (t, min) ) e (mv, C/A) (T, °K)
Set A

29 F 30.90 123.88 : .

(30) Z2.42 11.79 | 0.25407% 0.0061 6.036 1 0.012 421.3 1 0.3
31 31.78 124.51

(32) L 2.06 11.65 | 0.2633 T 0.0052 6.040 T 0.008 421.4%0.2
33 4.46 279.24

(34) HH 0.53 28.81 | 0.01570 1 0.00083 4.047 £ 0.005 372.3 1 0.1
35 548.94 118.29

(36) 27.46 9.90 | 4.811 t0.071 8.031 T 0.005 471.4 1 0.1
37 4424.45 77.50

(38) H 316.61 7.71 58.86 T 1.3 10.025 1 0.016 521.4 1 0.4
39 11.75 208.15

(40) 0.68 15.79 | 0.05755 T 0.0011 5.034 1 0.008 396.4 £ 0.2
41 1786.17 99.41

(42) 95.29 7.26 | 18.35 1 0.29 9.029 t 0.004 496.6 ¥ 0.1
43 162.57 146.57

(44) HH 10.08 10.57 | 1.121 T 0.024 7.035 1 0.004 446.4 T 0.1

A,

8¥1




TABLE 9.1-2A (Cont'd.)

Basic Data for Series 5 (Oven 3)

Experi- Weight Loss Heat.mg Mass Flow Rate Apparent True
¢ Remarks ( ) Peried (dw/dt " /min) Temperature Temperature

men W, mg (t, min) ) 08 (mv, C/A) (T, °K)
45 10695.12 67.84

(46) 672.15 6.39 | 163.1 t 3.1 11.030 t 0.005 546,0 T .1
47 642.76 128.28

(48) H 29.88 8.01 | 5.096 £ 0.070 8.034 1 0.013 471.5 1 0.3
49 2.51 2879.63
- - - 0.0008699 1 0.00003C | 2.043 T 0.005 3289 to0.1
50 4.23 254.69

(51) LL 0.37 12.14 | 0.01590 T 0.00056 4.042 ¥ 0.009 372.2 Y 0.2
52 2 45 604.11
- - - 0.00405210.00012 3.040 t 0.007 348.1 1 0.2
53 4669.24 78.75

(54) L 211 05 760 | 62.66 T 083 10.027 ¥ 0.006 521 510.2
55 12678.56 50.72

{56) L 834.89 556 | 2623156 11 635 £ 0.004 561.0 T0 1

o671



TABLE 9.1-2A (Cont'd.)

Basic Data for Series 5 (Oven 3)

Experi- Weight Loss Heat.mg Mass Flow Rate Apparent True
t Remarks (w, mg) Period (dw/dt mg/min) Temperature | Temperature
men » N8 (t, min) ’ (mv, C/A) (T, °K)
| Set B
130-1 F, RT 1.37 1495.51 | 0.000916110.000020 - -
130-2 R, T 0.67 716.31 | 0.000935310.000042 - -
130-T R, T 2.05 2211.82 | 0.000926810.000014 | 2.048 1 0.004 324.0 T 0.1
131-1 T 1.50 371.56 | 0.004037 T 0.000081 - -
131-2 T 0.90 226.53 | 0.003973 1 0.00013 - -
131-T T 2.40 598.09 | 0.004013 * 0.000050 | 3.046 T 0.006 348.3 1 0.2
132-1 R, T 0.55 1403.40 | 0.000391910.000021 - -
132-2 R, T 0.41 1159.55 | 0.0003536%0.000026 - -
132-T R, T 0.95 2562.95 | 0.000371810.000012 { 1.524 1 0.009 311.4 1 0.2
Set C

133 [OFL] 29759.23 37.60

(134) (H) 745.48 1.84 | ( {811.3 t 3,6}) 13.034 T 0.029 594.9 £ 0.6
135 F,[OFL] 58377.63 29.99

(136) (H) 2055.83 2.12 | ( {20210 o 76.} ) 14.512 T 0.017 631.0 t 0.4
137 F,[OFL] 55934.34 28.38

(138) (L) 1704.56 1.64 | ( {2028, * zo,}) 14.556 T 0.017 632.0 £ 0.4

091



Basic Data for Series 6 (Oven 2-A)

TABLE 9.1-2B

Experi- Weight Loss Hea,t.mg Mass Flow Rate Apparent True

ment Remarks (w, mg) Period (dw/dt m /rnin) Temperature Temperature

;M8 (t, min) ;8 (mv, C/A) (T, °K)
Set A

62 F 109.45 132.17

(63) HH 9.95 14.00 | 0.8420 T 0.025 6.050 * 0.011 421.6 T 0.

64 2530.48 137.30

(65) L 58.62 6.29 | 18.87 1 0.13 8.038 T 0.006 471.5 T 0.

66 5326.11 84.41

(67) HH 301.97 7.48 | 65.3 t 1.1 9.040 t 0.035 496.7 T 0.

68 38.83 210.27

(69) [H] 1.50 13.03 | 0 18931 t 0.0022 5.049 * 0.006 396.8 T 0.

70 48651.06 49.96

(71) HHH 2476.62 10.16 | 1160. T 22, 12.056 1 0.069 570.7 T 1

Set B

72 F, OFL 55451.97 49.31

(73) L 3972.16 534 | 1171. T 28. 12,032 1 0.013 570.1 T 0

74 577.29 135.74

(75) 41.71 11.85 | 4323 10,094 7.046 T 0.005 446.6 T 0,

76 7.77 614 40 | 0 0126570 000079 3.048 T 0011 348.4 T o,

o




TABLE 9.1-2B (Cont'd.)
Basic Data for Series 6 (Oven 2-A)

Experi- Weight Loss Heat'mg Mass Flow Rate Apparent True
t Remarks (w ) Period (dw/dt m /min) Temperature Temperature
men ) 08 (t, min) » T8 (mv, C/A) (T, °K)
77 9.39 202.92
(78) 0.27 11.83 | 0.04773 T 0.00047 4.044 T 0,006 372.2 0.
79 62.06 153.09
(80) 4.92 14.15 [0.4113 Y 0.010 5.542 1 0.007 408.9 T 0
81 LL 3.62 3034.75
- - - 0.001193+0.000012 | 1.535 T 0.031 311.7 %o
82 H 3.58 1267.80
- - - 0.002824 1 0.000051 | 2.055 1 0.005 324.2 10
84 17449.26 86.38
(85) IND 1535.28 10.03 | 208.4 T 6.0 10.050 T 0.011 521.8 t 0
86 1113.95 136.17
(87) 19.27 4.59 |8.320 t 0.041 7.529 1 0.023 458.7 10
Set C
88 F,T 6.67 1106.84 | 0.006026+0.000036 | 2.547 T 0.006 336.3 T 0
89 T, (L) 14.32 563.51 0.02541 T 0.00012 3.535 1 0.026 360.2 10

291




TABLE 9.1-2B (Cont'd.)
Basic Data for Series 6 (Oven 2-A)

Experi- Weight Loss Heat'lng Mass Flow Rate Apparent True
¢ Remarks (w, mg) Period (dw/dt m /min) Temperature Temperature

men ) 8 (t, min) » Me (mv, C/A) (T, °K)
90 T.R,[L] 3.88 2450.31 | 0.001583 70.000014 | 1.730 Y 0.014 316.4 1 0.4
91 63.65 315.50

(92) H 0.81 8.51 | 0.2047 ¥ 0.00082 5.043 1 0.010 396.6 £ 0.2
93 26.15 258.81

(94) L 0.93 13,97 | 0.1030 * 0.0011 4.545 T 0.007 384.4 1 0.2
95 517.45 227.00
(96) LL 12,14 9.16 | 2.320 t 0.021 6.604 1 0.010 435,51 0.2
97 3527.20 99.93

(98) 240.76 9.66 | 36.41 T 0.75 8.541 t 0.005 484.1 1 0.1
99 7681.07 65.48

(100) 387.60 5.25 | 121.1 T 1.8 9.538 T 0.005 508.9 1 0.1
101 20213.38 66.08

(102) HH 1036.51 5.13 | 314.6 T 5.3 10.495 to.022 532.7 0.5

Sct D
(103) F, OFL 14245.97 4.50
104 HH 40451 61 21.95 {15020 * 2900} 13.019 T 0.022 594.0 T 0.5

€49l




TABLE 9.1-2B (Cont'd.)
Basic Data for Series 6 (Oven 2-A)

Experi- Weight Loss Heat‘lng Mass Flow Rate Apparent True

ment Remarks (w, mg) Period (dvv/dt m /min) Temperature Temperature
;e (t, min) ;T8 (mv, C/A) (T, °K)
105 F, OFL 37971.38 55.00
(106) [LL] 1726.52 4.57 {718.7 + 13.} 11.259 T 0.017 551.5 T 0.4
107 F, OFL 92115.10 40.47
(108) L 6057.39 3.95 {2356. t 50.} 13.037 T 0.071 594.4 £ 1.6
Set E

140 55000. 27.05
(141) 2050. 1.66 2085. t 17, 13.021 1 0.024 594.1 1 0.5
145 50710.30 12.08
(147) 6764.60 2.09 4399, T 140. 14.539 1 0.025 630.9 1 0.6

Experiments 83, 139, 142, 143, and 144 presented later.

Fal




TABLE 9.1-2C
Basic Data for Series 7 (Oven 7)

i A t T
Experi- Weight Loss Heat.mg Mass Flow Rate pparen rue
Remarks (w, mg) Period (dw/dt m /min) Temperature Temperature
ment » Mg (t, min) » Mg (mv, C/A) (T, °K)
109 F 28.16 98.46
(110) L 2.70 11.84 | 0.2939 £ 0.0094 5.037 1 0.014 396.6 1 0.4
111 1966.20 71.28
(112) IND 210.68 10.01 | 28.65 % 1.0 8.044  0.013 472.1 1 0.3
113 186.98 129.81
(114) 8.93 8.46 | 1.467 T 0.018 6.054 0,005 4219 to.1
115 6705.62 70.30 4 . , : : _
(116) [H] 462.90 7.07 | 98.73 T 2.1 9.051 T 0.011 497.4 1 0.3
117 603.72 93.24
(118) 50.09 9.29 | 6.595 t 0.15 7.049 T 0.012 447.0 1 0.3
119 12561.17 47.82
(120) 876.82 5.49 | 276.0 T 5.2 10.051 £ 0.011 522.4 1 0.3
121 T, [L] 6.15 332.11 | 0.01852 T 0.00012 3.048 1 0.009 348.4 1 0.2
122 T 12.32 166.05 | 0.07419 T 0.00042 4,043 T o.018 372.3 1 0.4
123 T. R 5.34 1244.69 | 0.00429010.000028 | 2.051 *0.013 324.1%1 0.3

§G1



TABLE 9.1-2C (Cont'd.)
Basic Data for Series 7 (Oven 7)

] A t T
Experi- Weight Loss Heatilng Mass Flow Rate pparen rue
¢ Remarks ( ) Period (dw/dt m /min) Temperature Temperature
men W, me (t, min) » 8 (mv, C/A) (T, °K)
124 T, R 3.91 2592.98 | 0.00150870.000013 | 1.451 T 0.008 309.6 T 0.2
125 T 6.47 333.76 | 0.01939 T 0.00012 3.036 T 0.011 348.1 T 0.3
126 T 6.56 333.83 | 0.01965 T 0.00011 3.044 T 0.009 348.3 1 0.2
127 T [L] 36.55 121.76 | 0.3002 * 0.00051 5.053 T 0.013 397.0 1 0.3
128 3136.47 59.32
(129) L 311.05 7.50 | 54.52 t 1.7 8.554 T 0.013 484.9 T 0.3

9¢1




TABLE 9.1-2D
Basic Data for Series 8 (Oven 9)

; A t T
Experi- Weight Loss Heat'lng Mass Flow Rate pparen rue
¢ Remarks ( ) Period (dw/dt m /min) Temperature Temperature

men W, g (t, min) » Mg (mv, C/A) (T, °K)
148-1 F,T 1.74 30.87 | 0.05637 1 0.0011 2,049 1 0.004 324.1 T 0.1
148-2 T 2.32 40.41 | 0.05741 t 0.00087 2.048 t 0.004 324.0 T 0.1
148-3 T 1.74 32.18 | 0.05407 * 0.0011 2.048 T 0.005 324.0 1 0.1
148-T T 5.80 103.46 | 0.05606 t 0.00034 2.049 1 0.005 324.1 t 0.1
149-1 T 35.48 31.69 1.120 T 0.0051 4,046 T 0.005 372.2 T 0.1
149-2 T 35,17 30.68 1.146 £ 0.0054 4.045 T 0.004 372.2 to.
149-T T 70.62 62.37 1.132 1 0.0026 4.046 t 0.004 372.2 t 0.
1501 T 1.65 160.06 0.01031 * 0.00022 1.125 £ 0.009 301.4t0.2
150-2 T 1.75 168.30 | 0.01040 % 0.00021 1.124 £ 0.009 301.4 T 0.2
150-T T 3.43 328,36 | 0.01045 T 0.00011 1.124 T 0.010 301.4 1 0.2
151-1 T 7.83 31.04 | 0.2523 t0.0016 3.046 T 0.006 348.3 T 0.
151-2 T 8.40 31.94 | 0.2630 T 0.0017 3.048 T 0.005 348.3 T 0.1
151-T T 16.22 62.98 0.2575 * 0.00087 3.047 t 0.005 348.3 1 0.1
152-1 T 1380.00 34.68 | 39.79 1 0.81 7.109 Tt 0.014 448.3 1 0.4
152-2 T 1500.00 36,76 | 40.81 1t 0.79 7.108 1 0.010 448.2 Tt 0.2
152-T T 2880.00 71.44 | 40.31 1 0.40 7.109 * 0.009 448.3 t 0.2
153-1 T 227.04 32.573 6.979 T 0 060 5.438 7% 0.010 406.3 t 0.2
153-2 T 210.53 30 27 6.955 T 0 064 5.439 ¥ 0,005 406.3 1 0.1
153-T T 437.57 62,80 6.968 1T 0.031 5.439 1 0.008 466.3 T 0 2

LSl



TABLE 9.1-2D (Cont'd.)

Basic Data for Series 8 (Oven 9)

i A

Experi- Weight Loss Heat'mg Mass Flow Rate pparent True

ment Remarks (w, mg) Period (dw/dt m /min) Temperature Temperature
) 8 (t, min) ) 8 (mv, C/A) (T, °K)

154-1 T 4.15 31.94 0.1299 t 0.0012 2.575 1 0.019 337.0 1 0.5
154-2 T 4.03 30.88 0.1305 1 0.0013 2.573 t 0.011 337.0 £ 0.3
154-T T 8.19 62.82 | 0.1304 * 0.00063 2.574 1 0.011 337.0 1 0.3
155 25738.14 38.71

(156) 887.56 2.88 693.6 t 7.2 11.132 1 0.024 548.8 1 0.6
157 8491.12 45.61

(158) H 270.64 3.14 193.6 T 1.8 9,131 t 0.009 499.2 t 0.2

[




159

mention is made of the result of experiment 83, which was carried out
toward the end of the series 6, set B group. These various experiments
comprise a study of two broad questions, the one concerned with some
aspects of the reliability of the weight loss measurements, and the other
bearing on the question of the occurrence of thermal effects during the
effusion process. Therefore, these experimentsin questionare described
in this framework.

(a) Some Questions Concerning the Flow Rate Measurements

The kind of experiments presented in the previous sections
and the techniques used suggest five questions on the reliability of the
weight loss measurements:

(1) Has progressive oxidation of the mercury in the oven
occurred to introduce some systematic error?

(2) Do the helium quench experiments agree with those in
which the oven was measured at temperature ?

(3) Has a transpiration effect due to the evacuation of the
helium from the oven introduced some error ¢

(4) Were there volatile impurities from the oven and asso-
ciated parts which invalidate the small flow rate

measurements I

(5) Has the radiofréquency induction field interfered with the
weighings?

The first question is most easily answered in an examina-
tion of the entire group of experiments. However, it should be noted
that the experiments in a given series were carried out somewhat ran-
domly; that is, especially in the first two series, a large flow rate and
a small flow rate were usually measured in succession, so that some
trend should appear on examination of the data. Also, several sets be-
ginning with fresh mercury were carried out. As mentioned, the helium
was purified by passing it over hot uranium chips and through a liquid
nitrogen-cooled trap. This should have been quite an efficient purifica-

tion. It was noted, incidentally, that the oven, after removal from the
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vacuum system at the completion of set C of series 6, was as clean as
it initially appeared after its outgassing. Severe oxidation would have
visibly tarnished the steel oven after repeated quenchings. The experi-
ments of set B, series 5, and the first three of set C, series 6, were
carried out specifically to investigate the present question; the latter
three will be examined later, and the former set are cited below.

The second question is related, of course, to the first. To
test for the agreement between the helium quench experiments and
those in which weighings at temperature were made, one can compare
the three pairs of experiments cited in Table 9.2-1 which should agree

because of their close temperature correspondence.

TABLE 9.2-1

Comparison of the Two Techniques for the Measurement
of Mass Flow Rates

Series-Set | Experiment | Temperature Mass Flow Rate Technique % Deviation
°K) {mg min)
5-A 49 328.9 8.699x107%(£4.1%) | He Quench 3.2
5-B 130-T 324.0 9.268x 10"*(*1.5%) | At Temperature :
5-A 52 348.1 14.052%1073(£3.0%) | He Quench {05
5-B 131-T 348.3 4.013x1073(£1.3%) | At Temperature )
7 109 (110} 396.6 2.939x10-1{+3.2%) | He Quench o1
7 127-T 397.0 3.002x 1071 (£0.2%) | At Temperature ’

The percent deviations were calculated as the percent ratio
of the difference between the measurements and the average in a pair
to the mean value, with the positive sign taken if the first member is
the larger. Since the deviations are within the cited errors, which are
discussed later, one must conclude that the two techniques give identi-
cal values within the precision of the measurements. Incidentally, it is
seen that the second technique, involving the weighings at temperature,
gives more precise values. This is due to refined techniques in weigh-

ing operations and a reduction of the warm-up correction error.




The third question may be answered experimentally. Ex-
periment 83 was carried out to see if a transpiration effect produced a
noticeable decrease in the weight of the oven. The oven was weighed,
helium was admitted to the system, then the oven was re-weighed after
the vacuum pressure of 107 mm Hg was regained. The two weighings
gave agreement within the balance sensitivity and stability, $0.025mg.
Therefore, one concludes that this effect presented no problem.

In connection with this question, however, it should be re-
marked that the quenching and re-evacuation procedures were carried
out reproducibly. The manometer was used to gauge the amount of he-
lium put into the system, and a timer was used to gauge and reproduce
the cooling period and the time elapsed before the weighing in vacuum
was made. Thus, any unsuspected errors should have been common to
both the initial and final weighings and consequently should have can-
celled in the difference. However, the method of weighing at tempera-
ture should have been much more satisfactory, provided, of course,
that the induction field of the work coil caused no trouble, and thus
when this method was found to be satisfactory it was used exclusively
for the low volatility experiments.

Question four was answered experimentally by the result of
experiment 59 of series 5. The oven was previously emptied of mercury
by total evaporation and used in experiments 57 and 58 with some un-
avoidable manual handling. The oven was heated to 600°C for 3 hours
and found to have lost no weight. Consequently, the weight loss meas-
urements may be assumed to be unique to the mercury volatilization.

In three of the flow rate experiments, 127 of series 7. and
150-T and 154-T of series 8, the weighings were checked both with the
heating power on and off. In the first two experiments no difference was
detected; in the third the difference was less than 0.02mg., which is well
within the sensitivity of the balance. Apparently the weighings at tem-

perature are reliable.
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(b) A Study of the Thermal Effects Occurring during Effusion

Experiments 57 and 58 comprise a brief study of the
thermal effects occurring during the effusion process at various tem-
peratures for the series 5 measurements. In these experiments a
thermocouple of 32 gauge chromel-P and alumel wires was spot-welded
to the top end of the oven 3 used in series 5. This is the end of the
oven opposite the orifice, which opens downward into the condenser-
vacuum jacket. In experiment 57 the welded couple obviously was not
adequately welded to the oven, in comparison with the results of experi-
ment 58, for the top temperature measured from 4 to 10 degrees colder
than the well temperature. This couple was replaced by another and
especial care was devoted to the welding of the couple firmly to the
oven. Microscopic examination indicated it to be fairly well anchored.

The oven was filled with mercury, and the thermocouple
leads from the well were brought out of a side arm of the condenser to
a potentiometer, and the spot-welded couple leads were connected to
the balance thermocouple contactors and thus to the control unit. This
arrangement was used because several measurements with the oven
empty were to be carried out, and it had been found that the heat lag in
the well is too severe with an empty oven for the controller to operate
properly with its natural fluctuations. This effect made it easy to
determine whether mercury was still in the oven during the principal
experiments. The oven was brought to a steady-state temperature at
about 50-degree increasing intervals, and at each of these temperatures
the temperature difference between the rear and well was measured
during the steady-state effusion. At the highest of these temperature
intervals the oven was taken rapidly to the desired temperature, and
after a slight settling-out period the difference in the two temperatures
was measured as a function of time as the mercury completely effused
from the oven. Then with the oven empty, temperature differences for
similar temperatures at decreasing intervals were measured. These

data are summarized in Figures 9.2-1 and 9.2-2.
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The fact that the well measured a temperature lower than
the rear plate with an empty oven, as shown in Figure 9.2-1, was a
frustrating effect which was noticed in some of the earliest preliminary
experiments. It seems to be common to the low temperatures used in
this experimental investigation. Apparently it is due to conduction
losses from the well which cannot be compensated by radiation to the
well from the interior walls of the empty oven. Especial care had been
taken to keep these conduction losses to a minimum without introducing
other troubles. Smaller thermocouple wires would have been more sat-
isfactory, of course, but they are subject to strain and in use proved to
be too fragile for the manipulations required in assembling the oven in
the apparatus. With the oven filled with mercury, the well measures
apparently a more reliable temperature. Aside from possible calibra-
tion error differences, the only way the well temperature of the couple
immersed indirectly in the mercury can be in error is by measuring
a temperature which is too low. The fact that it is greater than the top
temperature at the lower temperatures seems to indicate that the ther-
mal conductivity of the mercury is sufficient to compensate for the con-
duction heat losses.

Figure 9.2-2 shows that the temperature difference de-
creases at about 220°C, becomes negative above this, and reaches a
value of -5 degrees at the highest temperature of 297°C. This indicates
that a significant heat effect arises from the mass transport at the
large mass flow rates, which is in agreement with such concepts of
mass transport phenomenao(é?’)

Figure 9.2-2 shows an interesting behavior. The difference
in the two temperatures negatively increases for about 50 minutes, be-
comes constant during the effusion for about 250 minutes, and then
decreases to another steady-state value for the empty oven. The "per-
cent of maximum power" value is that indicated by the MMC control

unit. In principle, this quantity is the percent of the maximum power
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available to heat the oven and therefore is proportional to the power in-
put to the oven. This power input appears to follow the trend in the tem-
perature difference. The power requirement falls off fairly sharply to
a lower value for the empty oven. Again, this is evidence that some of
the power is measurably used to vaporize and transport the mercury in
this effusion process. This would suggest that a calorimetric technique
might be used to measure the heat of transport in this process. The
point doubly circled on the graph in Figure 9.2-2 is not an erroneous
measurement, but refers to an experiment in which the mercury level
in the oven was probably near the bottom tip of the well or below it;
there was about a 2-millimeter difference between the tip and the bot-
tom of the oven. This temperature difference is between that of the
empty and full oven, probably because the vapor effects some warm-
ing of the well. The power requirements for the oven during the effu-
sion process appear, then, to be nearly independent of the level of the
mercury inside the oven. Since the well is somewhat shielded from

the vapor in the orifice, the well probably measures more nearly the
liguid mercury temperature at all times.

The reason for the initial high values of the power input
and temperature difference is obscure. In part, such high values may
arise from the reflectance change in the film of condensed effusate as
it builds up below the plane of the orifice exit, and partly to the slow
attainment of a steady state under these conditions. In the principal
experiments the power input responded to the temperature of the well,
and this steadied out quite rapidly in these cases. Of course, it is un-
known what happens to the temperature of the wall during these effusion
experiments at higher temperatures.

(c) The Problem of Overflow.

The maximum volume available to the mercury sample
within the ovens was not precisely enough known prior to the experi-

ments to permit one properly to gauge the maximum quantity of




mercury which could be introduced without overflowing on expansion at
higher temperatures. Moreover, before the experiments were under-
taken, it was not known to which temperatures and pressures the
experiments could and would be extended; for various reasons the capa-
bilities of the temperature controller and balance were unknown for
conditions of mass flow rates of several grams per minute. The large
flow rates were obtained by trial-and-error and brute-force methods;
the measurements were extended to higher and higher pressures after
the nature of the flow rate in these regions and the capabilities of the
equipment were more clearly understood from the experimental data.
It was discovered however, in series 6, set E, that the flow rate data
indicated that the mercury was overflowing. The first evidence for
this was obtained from the combined experiments 103, 104 and 107,
108, both pairs of which should have yielded similar flow rates. How-
ever, the combination 103, 104 gave low results, and 107, 108 gave
high results. The secondary or warm-up correction experiment for
the former combination was carried out first and for the latter second;
an initial overflow of mercury would account for these discrepancies.
Thus, if one assumes identical conditions for both sets, namely, that
the oven was filled to the same initial volume prior to experiments 103
and 107, then the combinations 108, 107 and 104, 108 should have vyielded
results in mutual agreement. and they did so reasonably well; an over-
flow of approximately 10 grams in the experiments 103 and 107 would
make the combinations 103, 104 and 107, 108 agree with the results of
experiments 140, 141 for which the results are known to be reliable.
The orifices of ovens 2-A, 7 and 3 were oriented downward
so that overflow of some mercury could have occurred in the experi-
ments with these containers. The oven 9 of series 8 had an orifice
oriented upwards, and therefore no similar trouble could have occurred
in this series. Set E of series 6 was carried out expressly to study the

problem of overflow. This set consists of experiments 139 through 147,
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four of which are reported in Tables 9.1-2. The remaining experiments

demonstrate the problem and the reliability of those previously men-

tioned experiments.

For set E of series 6 the oven was filled to capac-

ity, the secondary or warm-up correction experiment 139 was carried

out, then the primary experiment 140 was made, followed by a duplicate
secondary experiment 141.

experiments 142 and 143, were made of the secondary experiment. The

The oven was refilled and two repetitions,

results recorded in Table 9.2-2 show an initial loss in weight which

TABLE 9.2-2

Data on the Examination of the Loss in Weight Due to the Overflow
of Liquid Mercury, Set E of Series 6.

Weight Loss | Time (min) Required
: (grams) for the Oven to
Experiment Remarks (Secondary Attain the Steady-
Experiments) State Temperature
(139) Oven Filled 10.060 1.45
140 Primary Experiment, Difference
Table 9.1-2B = 8.010 ¥
(141) 2.050 1.66
(142) Oven Filled 10.352 1.48 Difference
(143) 2.082 1.42 = 8,270
(144) 7.536 1.87
145 Primary Experiment,
Table 9.1-2B
(146) 4.896 1.58
(147) 6.765 2.09

obviously is too high by about 8 grams. Also, the data illustrate that

the measurements were reproducible, both in the initial loss and in the

subsequent experiments, and that the flow rate appeared to be indepen-

dent of the mercury level after the initial loss of 8 grams. Consequent-

ly, these data indicate that the initial loss of 8 grams was due to

overflow of liquid and the loss of 2 grams was due to the effusion of the

vapor.

* NOTE: The term difference =

8.010 applies to the difference in

weight losses of experiments
{139)and 140. The second term

difference = §.270 applies simi-

larly to the experiments (142) and

(143).
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A similar group of experiments was carried out for the

higher temperature measurements of set E. The experiments 144, 145,
146 and 147 were carried out immediately after experiment 143 and
without a refilling of the oven. The data in Table 9.2-2 seem to indicate
that no overflow occurred. The fluctuations in the weight losses are
understandable as the normal variation in the measurement due to ex-
perimental conditions. The flow rate calculation arbitrarily employed
the result of experiment 147 for the warm-up correction: this result
seemsto be areasonable compromise among the three possible correc-
tions for the loss in weight in the warm-up procedure.

The results of these experiments certainly seem to demon-
strate that overflow of the liquid leads to the abnormally high results.
Since the specific volume of mercury is calculable, one ought to be able
to examine the present data with the knowledge of the experimental
volumes determined from the weight of the oven both empty and full,
the temperature, and the measured maximum volume available to the
liquid. The usable capacity of the ovens 2-A, 3, and 7 was between 7.5
and 4.5 cm3, and the experimental data indicate that overflow could
have occurred only in the experiments of set D and E of series 6 and
set C of series 5. For these particular experiments, however, the data
can account for only about one-half of the overflow loss in weight experi-
mentally measured in the set E experiments of series 6. The trouble
here seems to be associated with the severe temperature gradients
near the walls of the oven on the rapid warm-up procedure. During
this procedure, large amounts of power are applied to take the oven
from nearly zero degrees to the steady-state temperature in only a few
minutes. Since the well senses only the temperature of the liquid near
the orifice, it is possible that the liquid near the wall of the oven be-
comes momentarily hotter by many tens of degrees, and perhaps a
fountain effect occurs. However, whatever happens, it appears that it

must lead to an overflow of the liquid. Other effects, such as the
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boiling of liquid and the formation of bubbles, are possible, but it is dif-
ficult to conceive how these could be so reproducible. Since a priori
predictions of the extent of the overflow are not possible, the experi-
ments 105, 106 of series 6 and the set C experiments of series 5 must
be considered to be too high by an indeterminate amount. All other ex-
periments appear to be reliable. In further analyses and considera-
tions, the experiments 103, 104, 107 and 108 of set D of series 6 will
be taken in the combinations 103, 107 and 104, 108,

9.3 Calculation of A Priori Errors in the Basic Data

(a) Errors in the Weight Losses

The primary and secondary weight losses, w; and w,,
respectively, are differences in initial and final weighings of the oven.
The errors in these quantities are derived using the propagation of
error formulation for statistically independent measurements.(64) In
so far as possible, these errors are deduced on the basis of standard
deviations assumed or calculated for the actually measured quantities.

(1) The Error in the Primary Weight Loss w;

The quantity w; is derived from the initial and final
weight differences in the primary experiment. Thus,
wiswi-wp o (9.3-1)
and if €; and €; represent the standard deviations for the initial and

final weighings, then the error in w; is given by the expression

€ :::’\/;"‘ +e? . (9.3-2)
Wi Wi Wi

The weight w; or wy is the sum of the pan weights, rest point correction,
and weight standardizations, and the last two quantities contain the er-
rors propagated to the calculated weight loss. Since a number of cali-
brations of a single weight were made and since the NBS certificate
supplied with the standard reference weights contained information
concerning the limits of uncertainty in the absolute mass, an assump-

tion could be made as to the possible "absolute" standard deviation in
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the standardization corrections. The total calibration error was de-
rived as the root of the sum of the squares of the individual errors for
those weights actually involved in the weight differences; the remain-
ing weights served only as tares.

The error in the rest point correction is somewhat in-
volved and was calculated by various methods, depending on the waythe
rest correction was determined. In some of the experiments the method
of "swings" was used to determine the rest point; in others it was
found to be more convenient and, for vacuum weighings, equally or more
reliable to employ a magnetic damping method. The standard deviation
for the rest correction was calculated by the propagation procedures
with the same function as used to derive the value of the rest correc-
tion from the rest point determinations. All of the rest point measure-
ments in a given series were analyzed to determine the balance
sensitivity and error in a single measurement under the conditions pre-
vailing. This was used in the propagation formulas as required to
determine the error in the rest correction, which error depends on the
magnitude of the correction. For example, in series 5 the rest correc-
tion error in milligrams, with some convenient simplifying assumptions,

was found to be given by the formula

— _ R R
ER = + KVZ = \/l +("09—3') +(0—§‘) » (9.3-3)

where K and € are the balance sensitivity, milligrams per scale divi-

sion, and error in a rest point measurement in units of scale divisions,
respectively, and R is the rest correction in milligrams. The con-
stant 0.3 represents a tare weight and is a natural result of the partic-
ular method used in determining the correction R. The values of K and
€¢ were determined, as stated, by analysis of all of the data, so that
the rest point error represents a fairly rigorous standard deviation of

a single measurement.



These calculated errors were used to determine the

errors in w;

; and wy, and finally the standard deviation in the weight

loss w;. Some of these tedious calculations would not have been at-

tempted in hand calculations, but the availability of a computer made
it convenient to carry these out as part of the general scheme of the
calculations.

(2) The Error in the Secondary Weight lLoss w,

The error in the quantity w, was not calculated in the
same way as that for w; because this error needed to be derived with
respect to the extent of its agreement with the warm-up loss in weight
in the primary experiment. The principal error in the steady-state
flow rate, in fact, where the coupled experiments were carried out, is
that attributable to the error in w,. An a priori determination of this
error was strictly impossible, but pseudo-errors were determined
from an examination of the series 5 data. A group of four nearly dupli-
cate experiments were carried out and the secondary weight losses were
compared in order to obtain some idea of the reproducibility of the
warm-up correction procedure. The pertinent data are assembled in
Table 9.3. The data in this table are taken from the Table 9.1-2A.

Examination of the Table 9.3 shows that, except possi-
bly for the first set, these secondary weight losses should agree in the
group if each of the two were carried out under identical conditions.
For various reasons they were not so carried out, but nevertheless the
fractional deviations from the mean should indicate the reproducibility
of the secondary experiment, and the root mean square value appears
to be a reasonable choice for the fractional error attributable to a sin-
gle secondary weight loss. Consequently, the error in w, generally was
taken for all experiments as

[ = % A . .3-4
w5 0.28 w, (9.3-4)




TABLE 9.3

Comparison of Secondary Correction Experiments

. Fractional
Secondary Heating e
Secondary Temperature . . Deviation
. o Weight Loss | Period
Experiment (°K) (mg) (rin) from the
g Mean
34 372.3 0.53 28.81 0.35
51 372.2 0.37 12.14
30 421.3 2.42 11.79 0.16
32 421.4 2.06 11.65
36 471.4 27.46 9.90 0.08
48 471.5 29.88 8.01
38 521.4 316.61 7.71 0.40
54 521.5 211.05 7.60

Root-Mean-Square

Fractional Deviation = 0.28

(b) Errors in the Time

Errors in recorded values of the time were quite small. An
examination of all the data showed that a conservative value for stand-
ard deviation of an individual time reading would be *0.03 minute. This
error was occasionally adjusted by a small amount as the data war-
ranted. These errors were propagated to other derived quantities in
the usual wavy.

(c) Errors in the Mass Flow Rate dw/dt,,

The standard deviations in the mass flow rates dw/dt were
calculated by the propagation procedures from the basic errors dis-
cussed in the above sections.

(d) Errors in the Temperature

(1) The Error in the Apparent EMF of the Thermocouple.

The apparent thermocouple temperature of the oven is

derived, as previously described, from the sum of three measurements:
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the EMF of the reference voltage source, the galvanometer scale read-
ing in the absence of any applied voltage (that is, the galvanometer zero
reading), and the average of the galvanometer readings for the steady-
state flow measurement. The error of the total apparent EMF is the
root of the sum of the squares of the three errors associated with these
independent measurements.

An examination of all the data indicated that the stand-
ard deviation error of the galvanometer zero reading could be taken as
£ 0.003 mv and that an error in the reference voltage measured by the
potentiometer could be given the value £0.002 mv. The error in the
average of the galvanometer reading for the steady-state process was
taken as the statistical standard deviation of a single measurement as
calculated in the usual way by the root-mean-square average of the dif-
ferences between the calculated mean and the single readings. This
error, of course, does not represent a true standard deviation because
the fluctuations are real rather than apparent. Thus the error in the
apparent temperature represents more nearly a geometrically averaged
fluctuation.

(2) Errors in the True Temperature

No errors attributable to the temperature corrections
have been included in the tabulation of the data, since it would be dif-
ficult to assign meaningful errors of the nature of a prediction of the
accuracy of the standardizations. The calibrations should be accurate
to about 0.25 degree, and this would introduce uncertainties in the
vapor pressures of about two percent or less. One might wish that the
accuracy of the measurements could be prescribed more closely, but
this study must be recognized to be limited by the strong temperature
dependence of the vapor pressure. This is a problem common, of

course, to all effusion studies of saturated vapors.

-
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CHAPTER 10
DISCUSSION OF THE EXPERIMENTAL DATA

The basic experimental data presented in the previous chapter
may be used to derive other quantities which are more amenable to a
graphical representation and discussion of the general features of the
cbserved effusive behavior of mercury vapor. These quantities are
derived and reported in this chapter and analyzed with reference to the
observed features of the present experiments and the general and spe-
cific previous concepts outlined in the initial chapters. As might be
expected, these analyses illustrate that the previous concepts qualita-
tively predict many aspects of the effusive behavior observed in this
investigation.

There is, however, only a limited quantitative correspondence,
and this is examined here in as much detail as the data warrant. There
is observed a quite interesting new feature of the effusive behavior of
vapors flowing through channeled orifices from a source of vapor pre-
sumably at a pressure near one atmosphere. These conditions lead to
a phenomenon superficially corresponding to a predictable limiting effu-
sion rate, which apparently has not been observed previously nor would
be expected for conditions similar, for example, to those employed in
Knudsen's investigations.

10.1 Some Quantities Derived from the Basic Data

The physical constants in the molecular effusion formula (2.1-1)
may be evaluated to yield the relation appropriate for monatomic mer-

cury vapor:

Si_V_Y c=1y p(mm)
s (mg min™') = 49571 SW JTCR) , (10.1-1)

in which S in square centimeters is the cross-sectional area of the
orifice and W is the dimensionless transmission coefficient or Clausing

factor. Since the mass flow rate dw/dt and temperature T are
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experimentally measured quantities and the pressure is derivable from
the temperature by equation (6.3-1), then it is natural to choose the ex-
perimental quantity

~T(°K) dw

p—_——(mm) a (mg min™?)

for the representation of the data and comparison with the theoretically
predicted molecular flow limit. A graphical representation of this
quantity for the various experiments within the four series is plotted
in Figure 10.2 against the variable p(mm)/,\/m Since these two
quantities cover a wide range of numerical values, a logarithmic plot
is used,

Knudsen's semitheoretical formula (2.3-7) for the transition
from molecular to viscous flow may be expressed for mercury vapor

by the relation
~ T(°K) dw

olmm) dt (mg min~!) = C(

Rp \VT d_w] . [«/’E dw]
mol vis

‘ﬁi p dt

in which the average pressure has been taken as one-half of the source

pressure p. In this expression,

; Rp
Rp 142.0709 7=
C(“""“")= LAT , (10.1-3)
Ty 25576 Rp
uy'T
and
. 4
[‘—/—% d“} - 50525 8P (10.1-4)
P dt Jyis /T
\/'}.‘ dw e .
further TD— T has the value specified by the equation (10.1-1).
mol

The quantities are appropriate to the units of pressure, temperature,
mass, and time already specified, and R and L are the radius and
length, in centimeters, of the channeled orifice and U is the vapor vis-

cosity of mercury.
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Knudsen's semitheoretical formula is a coupling of Poiseuille's
viscous flow term and the molecular flow term with a coupling coefficient
represented here by the symbol C(Rp//VLjTI‘—). This coefficient varies be-

tween | and 0.810. At high pressures, Knudsen's formula predicts that

the quantity [BI %Z:, on the left side of the expression (10.1-2) is a
function of p/ufT_; at intermediate pressures it is dependent upon both
of the coupled terms; at very low, decreasing pressures it proceeds
through a minimum to a limiting value specified by the molecular flow
term.

The basic data reported in the Tables 9.1-2 are converted to
the appropriate quantities described and are listed along with other de-

Pressure

rived quantities, such as the vapor derived from equation
(6.3-1). These quantities are arranged in Tables 10.1 according to in-
creasing temperatures and consequently increasing pressures and
increasing ratios of the pressure divided by the square root of the tem-
perature, pA/?. Not all of the basic data are used; only the total flow
rates of a given experiment are employed.

The errors recorded are those propagated from the errors in
the basic data. The error in the temperature is propagated in two ways:
by the direct error in the temperature and by the error in pressure as a

result of the temperature error. The error €p in pressure p due to the

error €, in the temperature T is taken as
€ = Tp OH/R,T?) ¢ (10.1-5)

where AH and Ry are the heat of vaporization and gas constant, respec-
tively. For convenience, the value of AH/RO is taken as one-half of
15,000 calories at all temperatures, and for an error of 0.25 degree in
the temperature this yields an error in the pressure of 2 percent at
300°K, 1 percent at 450°K, and 4 percent at 600°K. The true error cal-

culable from the real heat at these temperatures is slightly smaller.
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TABLE 10.1-1

Derived Flow Rate Quantities, Series 5 (Oven 3)

Orifice Dimensions:
Radius* = 0.02031 cm; Length:Radius =122.8
Length = 2.495 cm; Clausing Factor = 0.02077
VT(°K) aw ~1
[p(mm) era (mg min ):] ol 1.334
<
[—————T( K) dw (mg min")]
Pressure p {mm) dt
Experiment | T(°K) (mm Hg) ET&"?{Q
(Eq. (6.3-1)}] Experimental Knudsen (°K)
P [Eq. (10.1-2)]

132 311.4 0.00571 1.15 £ 0.04 1.324 0.000324 (1.6)+
49 323.9 0.0142 1.10 £ 0.04 1.312 0.000790 (0.8)
130 324.0 0.0143 1.16 + 0.02 1.312 0.000797 (0.7)
52 348.1 0.0687 1.10 + 0.04 1.279 0.00368 (1.1)
131 348.3 0.0695 1.08 +£ 0.0z 1.279 0.00372 (1.0)
50 372.2 0.269 1.14 £ 0.04 1.302 0.0139  (1.2)
33 372.3 0.270 1.12 £ 0.06 1.303 0.0140 (0.6)
39 396.4 0.888 1.29 1+ 0.03 1.533 0.0446 (1.0)
31 421.4 2.64 2.04 £ 0.04 2.221 0.129 (0.9)
29 421.3 2.63 1.98 £ 0.05 2.217 0.128 (1.3)
43 446.4 6.94 3.41 * 0.07 3.783 0.328 {0.4)
35 471.4 16.4 6.36 T 0.10 6.932 0.757 (0.4)
47 471.5 16.5 6.721t 0.12 6.945 0.759 (1.1)
41 496.6 35.7 11.4 £0.2 12.77 1.60 (0.3)
37 521.4 71.2 18.9 t 0.5 22.66 3.12 (1.1)
53 521.5 71.3 201 +0.3 22.68 3.12 (0.4)
45 546.0 132 28.8 t 0.5 38.37 5.67 (0.3)
55 561.0 189 32.9 0.7 51.87 7.96 {0.2)
133 594.9 390 50.8 t0.7 96.77 16.0 (1.4)
135 631.0 774 65.5 2.5 174.1 30.8 (0.8)
137 632.0 789 64.6 * 0.8 176.9 31.4 (0.7

*Orifice is constricted.

"'Percent error.




TABLE 10.1-2

Derived Flow Rate Quantities, Series o {Oven 2-A)

Orifice Dimensions:

Radius = 0.03011 cm  Length: Radius = 99.54
Length = 2.997 cm Clausing Factor = 0,02540
[ﬂ)— dw (mg min=!) = 3.587
p(mm) dt mol
VT(PK) dw .1
Pressure [p(mm) at (mg min ):'
Experiment | T{°K) {mm Hg) (nl;n,
o T(°K)
[Eq. (6.3-1)] Experi tal Knudsen
perimental! 1mq. 10.1-2)]

81 311.7 0.00584 3.6l 0.20 3.546 0.000330 (5.4)*
950 316.3 0.00828 3,407 0.10 3.533 0.000465(2.7)
82A 324.2 0.0146 3.49% 0.07 3.505 0.000809 (0.9)
88 330.3 0.0328 3.367 0.04 3,458 0.00179 (1.0
76 348.3 0.0698 3.38% 0.06 3,425 0.00374  (1.7)
89 360.2 0.139 3,451 0.12 3.464 0.00735  (3.4)
77 372.2 0.269 3.43% 0.04 3.632 0.0139  (0.8)
93 3814 0.499 4,041 0.06 4.003 0.0255  {0.9)
91 396.6 0.896 4.54% 0.06 4.068 n.0451  {1.2)
68 396.7 0.904 4,17 .06 4.677 0.0453 (0.7}
79 408.8 1.56 5.34% 0.14 5.747 0.0770  (0.8)
62 4210 2.66 648t 0.21 7.499 0.130 (1.2)
95 435.5 1.62 10,3 £ 0.14 10.44 0.221 (1.0)
74 446.6 6.99 13.1 * 0.29 13.83 0.331 (0.5)
86 458.7 10.7 16.6 1 0.36 18.96 0.501 (2.1)
64 471.5 16.5 24.0 % .21 26,47 0.758 (0.5)
97 84,1 2.6 32,6t 0.68 36.61 1.12 (0.4)
66 496,7 35.8 40,7 T 1.3 50.03 1.60 {2.8)
99 508.9 50.8 53.8 T 0.83 67.22 2.25 {0.4)
84 521.8 72.0 66.1 T 2.0 90.54 3,15 (0.8)
101 532.7 95,4 76.1 1 1.6 115.2 4.13 (1.4)
105 551.4 | 151 112 & 2.4 171.1 6.43 (1.1)
72 570.1 | 231 121t 3.0 247.2 9,68 {6.7)
70 570.7 | 234 118 i1 5.4 250.0 9.81 {4.1)
104 594.0 | 383 121t 6.6 381.0 15.7 {1.1)
140 594.1 | 384 132 % 1.9 382.3 15.7 (1.2)
167 594.4 | 386 136 10 384.6 15.8 (3.5)
145,147 630.9 | 774 143 1 4.7 $98.8 30.8 (1.1)
*Percent error
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TABLE 10.1-3

Derived Flow Rate Quantities, Series 7, (Oven T}

Orifice Dimensions:
Radius = 0.03066 c¢m; Length: Radius = 66.41
Length = 2.036 cm; Clausing Factor = 0.03726
T{°K) dw -1 B
l:p(mm) i (mg min™) mol 5.453
«/1‘(01{) ‘i_‘_‘ﬁ( min“)
Pressure plmm) dt me
Experiment | T°K {mm Hg) L
[Eg. (6.3-1)] | Experimental Knudsen TEK
Eq. (10.1-2)
124 309.6 0.00497 5.33% 0.10 5.400 0.000283 (1
123 324.1 0.0145 5,34 0.14 5.331 0.000804 (2
125 348.1 0.0687 5.26 + 0.09 5.214 0.00368 (1.
126 348.3 0,0696 5.27 % 0.08 5,214 0.00373 (1.
121 348.4 0.0700 4.93 £ 0.07 5.214 0.00875 (1.
122 372.3 0.269 5.31 % 0.12 5.558 0.0140 (2
109 396.6 0.897 6.52 % 0.24 7.201 0.0451 (1.
127 397.0 0.914 6.54 % 0.10 7.246 0.0459 (1.
113 421.9 2,70 11.1 % 0.15 11,77 0.131 (0.
117 447.0 7.09 19.7 £ 0.50 21.93 0.335 (1.
111 72.1 16.8 37.1 1.4 32.32 0.771 (1.
128 484.9 25,1 47.7 % 1.6 58.88 1.14 (1.
115 497.4 36.6 60.2 £ 1.3 80.46 1.64 {0.
119 522.4 73.1 86.3 1.7 144.9 { 3.20 (0.
*Percent error
TABLE 10.1-4
Derived Flow Rate Quantities, Series 8§ (Oven 9)
Orifice Dimensions:
Radius = 0.02141 c¢cm; Length:Radius = 0.0729
Length = 0.00156 cm; Clausing Factor = 0,965
o
VICK) 4% (e min Y = 68.88
p (mm) dt mol
/ <
Pressure [ PI(‘r(anj % {mg min'l)] ( )
Experiment | T(°K) (mm Hg) P ! 713[_ m
. (6.3~ VT (°K
(Eq. (6.3-1)] Experimental CK)
150 301.4 0.00261 69.5 1 6 0.000150 (2.
148 324.1 0.0144 70.1 0.7 0.000799 (0.
154 337.0 0.0343 69.8 % 1.3 0.00187 (1.
151 348.3 0.0696 9.0+ 0.6 0.00373 (0.
149 372.2 0.269 8l.2 £ 0.5 0.0139 {
153 406.3 1.39 101 1.0 0.0690 (0.
152 448.3 7.43 115 +1.5 0.351 {
157 499.2 38.3 112 £1.3 1.72 0.
155 548.8 141.8 114 £ 2.2 6.05 (1.

*Percent error




10.2 The General Behavior of the Flow of Mercury Vapor

Logarithmic plots of the derived quantities listed in Tables 10.1
are graphically represented in Figures 10.2. In these plots the horizon-
tal lines at the left represent the value of the calculated ordinate derived
from the molecular flow equation (10.1-1), the orifice parameters listed
in both Table 8.3-2 and Tables 10.1. It should be noted that the repre-
sentation of the data is similar to that used by Knudsen,(13> with his #7T"
function, and by others who plot an analogous quantity called the specific
flow variable.(59) It is the general practice to represent these data
normalized to unity for the molecular flow limit; this is avoided here
because it obscures the relationship between the experimental and de-
rived quantities. The present data, derived quantities, and the graphical
representations consider the flow behavior of the mercury vapor in re-
lation to the source pressure, which is assumed at present to be the
saturation pressure of mercury corresponding to the measured tem-
perature of the liquid.

The quantities derived from the data of the four series of ex-
periments yield graphical representations having quite similar features.
An examination of the Figures 10.2 show qualitatively that at the lowest
pressure or value of the abscissa, log p/ﬁ, the ordinates in all but
the series 5 representation are nearly predictable by the molecular ef-
fusion formula with the Clausing factors derived by DeMarcus(42) and
the measured parameters of the orifices. The discrepancy in Fig-
ure 10.2-1 for series 5 at the lower pressures appears to arise from
the previously mentioned constriction in the orifice of the oven used in
this series.

In the graphical representations of the series 5, 6 and 7 experi-

ments on the flow of vapor through channeled orifices, the value of the

VT dw

ordinate, log ( o dt) , appears first to decrease and then to increase

for increasing values of the source pressure. This is in agreement

both with the predictions of Knudsen's semitheoretical formula and the
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Fig. 10.2-4 Graphical Representation of the Experimental and Theoretical
Flow Rates for Series 8
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results of similar experiments as outlined in the initial chapters. The
solid curve drawn in the figures under consideration is derived from
Knudsen's formula with the values of the viscosity, pressure, and ori-
fice parameters recorded in Tables 10.1. In the pressure region of
0.5 mm Hg and above, the experimental values of the ordinate appear
to follow the same general trend as predicted by Knudsen's formula,
but are systematically lower. In the graphical representation of the
Series 8 experiments on the flow of vapor through a thin-edged orifice,
there is no minimum, but the ordinate does increase at a pressure of
0.1 mm Hg.

The series 6 representation shows that at source pressures of
several tens of mm Hg, the values of the ordinate systematically and
increasingly depart from the predictions of Knudsen's formula, and it
appears that the flow approaches some kind of a limiting rate. The
horizontal line drawn in the figure in this pressure region is the value

of the ordinate derived from the molecular flow formula with the

Clausing factor taken as unity or similarly the molecular flow value,

{_x/id_w

:I , recorded in Table 10.1-2 divided by the Clausing factor.
P dt | mol

The reason this value appears to correspond to the limiting flow rate
may be that at these high source pressures the channeled orifice be-
haves as if it were nearly saturated with vapor so that the virtual
source of vapor is near the exit of the orifice. This phenomenon
appears not to have been previously reported.

The effusive behavior at high pressures for the series 5 and 7
qualitatively agrees with the more detailed results of series 6. The ef-
fusive behavior at high pressures for the series 8 also shows a limiting
flow rate, but this rate is expected on the basis of the previous experi-
ments of Knudsen. The present experimental flow rates in the region of

source pressures of 10 mm Hg and higher are nearly in agreement with

the hydrodynamical isothermal effusion formula (2.2-3).
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In the region of pressures of 5 mm Hg and above, the slope of
the curve defined by Poiseuille's formula would be unity for a graphical
plot similar to those of Figures 10.2 if the viscosity were independent
of the temperature. The present experiments differ from those of
Knudsen in that an increase in pressure necessarily requires an increase
in temperature. Consequently, since the viscosity of the vapor increases
with temperature, the slope of the curve in question would be slightly
less than unity. On the other hand, Knudsen's formula predicts and the
present data vield a slope much less than Poiseuille's formula because
the viscous and molecular flow contributions are comparable. The
purely viscous flow term of Knudsen's formula begins to predominate
only in the high pressure regions in which the experimental curve com-
mences to depart from the viscous flow behavior,

Consequently, except for the high-pressure limiting flow of
vapor through channeled orifices, the effusive behavior of mercury
vapor in the present experiments is in qualitative agreement with pre-
vious concepts and experiments. The results of the experiments of
series 8 appear to be of sufficient precision and accuracy that they are
unequivocal, and this should allow one to clarify to some extent the de-
parture from molecular flow of the effusive behavior of vapors flowing
through a thin-edged orifice. The experimental results of the effusive
behavior of the vapors flowing through the channeled orifices are of
less precision than desirable, but they should allow one to deduce some
limited conclusions. The quantitative aspects are now considered.

10.3 The Flow of Mercury Vapor through Channeled Orifices, Series 5,
6 and 7

(2) The Molecular Flow Limit

(1) The Experimental Intercept

Because of insufficient precision and measurements it
is not possible to conclude that the present observations extrapolate to
the molecular flow limit. However, the experimental values of the ordi-

nate for the low-pressure measurements and the theoretical molecular
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flow values calculated from the measured orifice parameters are com-
pared in Table 10.3-1. For experiment 127 of series 7, the experimental
quantity is lower than the theoretical limit by about 2 percent, which is
nearly within the limits of the a priori error. For series 6, experiment
81 yields a quantity in good agreement with the theoretical value, but the

a priori error is large; experiment 90 yields a value which is low by

about 5 percent, and the average of the two experiments yields a quantity

which is within 2.2 percent of the theoretical value.
TABLE 10.3-1

Comparison of the Experimental and Theoretical Ordinates
for the Molecular Flow Region of Pressures

—
[ vT gy} /T ﬁzz}
. . ) p dt p dt Percent
Series | Experiment mol Difference
(Experimental) | (Theoretical)
5 132-T 1.15  0.04 1.334(2) -13
1.034(b) 12
6 81 3.61 £ 0.20 3.587 + 0.6
90 3.40 T 0.10 - 5.0
average 3.51 T 0.11 - 2.2
L 7 124 5.34 t 0,10 5.45 - 2.0

(2)Calculated for an unconstricted orifice.
(b)Calculated for the maximum extent of the effect of a
constriction. Refer to text.

The results of series 5 in the low-pressure region are
somewhat difficult to interpret, but one may show that the discrepancy
is most likely caused by the constriction in the orifice at the exit. The
idealized situation is similar to that discussed in Chapter 5 in regard
to the extent of saturation within a cylindrical enclosure; the constric-

tion in the exit end of the orifice tends to increase the wall emission
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density. Accordingly, the problem becomes that of deducing the correct
transmission coefficient or Clausing factor for the orifice. The theo-
retical low-pressure limit was calculated with the value of the cross-
sectional area S; of the unconstricted portion of the channel and the
Clausing factor derived from the radius defining this circular area. On
the other hand, if we may consider the constricted end to define a re-
flecting surface similar to the lid portion of a Knudsen cell, then the
correct transmission coefficient to be used to define the low-pressure
limiting value of the ordinate in the series 5 experiments is that function
W(H,P,1) defined by equation (5.4-4). Consequently, the molecular flow
quantity desired is

VT dw
P

eyl 49571 S, W(H,P,1) , (10.3-1)

as is apparent from the equation (5.4-5), rather than the already cal-

culated value

\/i‘ dw

p dt

49571 S; W(H,1,1)

1.334, (10.3-2)
where

area of constricted cross section
area of nonconstricted cross section

0.775 . (10.3-3)

P? =

We cannot calculate W(H,P,1) exactly without detailed
numerical work, but we can demonstrate the extent of this transmission
coefficient. Since the constricted exit contributes to the wall emission
density,n(n) = 1 - §(N), then n(n) is larger than it would be for the
present orifice if the constriction were absent. Therefore, if the quan-
tity 6 (n). were that leading to the Clausing factor W(H,1,1) for the tube
having a uniform cross-sectional area S; throughout, and if the positive
but small value 6(1)* were a measure of the increase in the wall emis-

sion density, then one could write

§(n) =6(n)e - d8ln)* (10.3-4)




where 6(7’)) is the quantity needed to determine the present transmission
coefficient.

One may show that

on
Thus, the above expression (10.3-4) and equation (10.3-5) may be

3
p’ 2 K(H-7, 1, 1)25~ K(H-n, P, 1) . (10.3-5)
n

placed into the equation (5.4~4) to obtain the equation

H o
W(H,P, 1) >P? W(H, 1,1) + 2 f 5(n)* EK(HamP,,l)dT)o (10.3-6)
0

Therefore, the correct transmission coefficient is larger than
PZW(H,I, 1), where W(H,1,1) is the coefficient reported in Table (8.3-2).
Hence, the limiting molecular flow quantity is greater than

7 F]

P dt

(1.334) (0.775)

1.034 . (10.3-7)

As shown in Table 10.3-1, this value leads to a discrepancy between
the theoretical and experimental values to the same extent as before.
Consequently, it appears quite likely that the discrepancy principally
is due to the effect of the constriction.

In summary, the present data demonstrate that the
limiting values of the ordinate at low pressures for the two series 6
and 7, where a quantitative comparison maybe made, are ontheaverage
within 3 percent of the theoretical values and within the precision of the
data. The comparison for series 5 suggests an agreement within the
extent of one's knowledge of the systematic error due to the effect of the
constriction in the orifice. The accuracy of the data is another matter,
and this point has bearing on whether values at lowpressures are really
less than or greater than the theoretical values. For series 6 and 7 the
data superficially suggest that the experimental values of the ordinate

at the low pressures are less than the theoreticalmolecular flow values.
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There are two known possible sources of a systematic
error. The first is that attributable to the possible error resulting
from the thermocouple circuitry, as discussed in section 8.3. This
error is such that, if it exists, the true low temperatures are less
than those reported; consequently, the true pressures are less than
those employed and the ordinates should be larger than those calculated.
The second source of error is that arising from an error in the heat of
vaporization of mercury. As discussed in Appendix 2, the error may be
such that the pressures employed are too low by one or two percent, and
the true experimental ordinate possibly should be larger. Consequently,
both of the known possible sources of error could lead only to a de-
crease or to a change in sign in the apparent discrepancy. Another
point which should be remembered is that one has no assurance that the
experiments have been carried to low enough pressures that true molec-
ular flow occurred.

(2) Comparison of the Intercept with Previous Observations

The known possible sources of a systematic error lead
one to conclude that the discrepancies, if any, between the theoretical
and experimental values of the intercept are no greater than 3 percent
of the theoretical value. Berman and Lund(59) and Huggil,(SS) on the
other hand, suggest that the true limiting flow possibly should be of the
order of 5 percent less than the theoretical molecular flow formula
predicts with the use of Clausing's factor. The suggested reason for
this occurrence is that the reflections at the wall of the channel are not
random, but depend on the potential of interaction between the wall sur-
face and the impinging molecules. This may indeed be the case, but
the present data are not precise nor extensive enough to furnish any
evidence bearing on this point. The only conclusion these present data
permit one to draw is that the agreement between the experimental and

theoretical values is within the experimental precision of about 3 percent.




(b) The Region of the Transition between Molecular and
Viscous Flow

(1) The Minimum

Strict conclusions on the correspondence of the experi-
mental data with the theoretical predictions in the transition region de-
pend upon the reliability of the vapor pressure values employed in this

study. The low-temperature data, however, indicate that at values of

p/'\/p'f of 107% and less there occurs in the quantity [—ET- %:7} a very

slight minimum value in accordance with those ideas outlined in Chap-
ter 2. The minimum appears to be most significant in the series 5 ex-
periments, and least significant in the series 7 experiments. This
minimum as it occurs in series 5 may be the result of the constriction
in the orifice, but the data for the other two series do not appear to be
explainable on this basis unless it be a matter of the uniformity of the

\/'E‘ dw

The minimum in the ordinate [? a] for series 6

cross section of the channeled orifice.

occurs in the region of experiment 88, and this experiment yields a
value of the ordinate about 1.1 percent lower than that of experiment 90.
The individually assigned errors propagated from the basic data are
larger than this value, so that one must examine the data closely to de-
cide upon the reliability of these observations. The difference in the
ordinates of experiments 125 and 124 of series 7 amounts to about
1.3 percent, which is nearly comparable to the possible minimum in
series 6.

In the low-temperature region of interest, gas imper-
fections in mercury vapor are insignificant. Thus, the quantity [ﬁ %—Z]
may be written in the form

VT aw ] _ (Voie), b 0%
log ,:p ]“ log (VT T 2303 R,T 2.303 Ry (10.3-8)
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The heat capacities of mercury appear to be sufficiently well established
that the small uncertainties in the entropy and temperature dependence

of the heat introduce no appreciable errors. Consequently, the error in

<‘\/’Z_[' aw

—’p— —>, aside from experimental systematic errors in the temper-

atures and random fluctuations in the mass flow rate measurements, is
the error in AH;, and thus the percent error in the quantity <—— —_

the error in
AHg /R,T

An error in the AH, value used in the vapor pressure equation introduces
a systematic error in (\[I‘/p)(dw/dt) which will not cause the curve to
pass through a minimum as observed experimentally. If the heat AH}
employed is too high, then, consistent with the requisite entropy change,
the effect would be to raise the lowest values of the ordinate and deepen
the minimum. On the other hand, a value of AH§ too low would tend to
make the experimental minimum less pronounced. For a small adjust-
ment in the heat AHj, however, the region under consideration will be
affected primarily in the limiting value of the ordinate at the low tem-
peratures with the general features of the transitional region remaining
largely unaffected.

Both sources of a known possible systematic error, as
previously described, would tend to obscure the minimum in these
curves if the minimum exists; that is, if these errors are real and sig-
nificant and could be accounted for, the present data would show a
more pronounced minimum. But it is possible to analyze the data only
as they now exist. In the region around pressures of 0.05 mm Hg, the
experimental values of the ordinates compared with those at the lowest
pressures indicate a minimum of the extent of 4 percent in series 5,

1 to 8 percent in series 6, and about 1.3 percent in series 7. In view of
the a priori errors, however, the minimum appears to be real only in

series 5; the data of the other two series could nearly define a straight




line having ordinate values of 3.43 for series 6 and 5.30 for series 7
with the experiment 121 discarded; this experiment appears to be in
error. Therefore, if a minimum exists in series 7, it is 3.3 percent

or less than the theoretical molecular flow limit, and may be about

1.3 percent less than the experimental ordinate at the lowest pres-
sure. Similarly, if a minimum exists in the series 6 data, it is 6.1 per-
cent or less than the theoretical molecular flow limit and may be about
4 percent less than the experimental ordinate at the lowest pressure.
The minimum in series 5 appears to be real and about 4 percent of the
experimental ordinate at the lowest pressure. These observations are

summarized in Table 10.3-2.
TABLE 10.3-2

Extent of the Minimum

Series Extent of Minimum
5 4%
6 <6% (Perhaps about 4%)
7 <3.3% (Perhaps about 1%)

(2) Comparison of the Minimum with Previous Observations

The problem in determining the existence of a real mini-
mum in the curves for the present data is that the precision of the meas-
urements is not sufficient and that it is quite possible that the extent of
the minimum, if real, amounts to a very small percent of the limiting
value of the ordinate at the lowest pressures. The present experimental
data appear to follow a trend similar to Knudsen's formula, which is
based on data for gaseous flow under conditions of smaller pressure
gradients. The differences are not surprising. The minimum in the
curve at low pressures may be less pronounced and thus qualitatively
agrees with the idea that gas-phase collisions tend to cause the initial
decrease. As the pressure gradient becomes large at a constant source
pressure for a given channeled orifice, the total effect of gas-phase

collisions becomes less. The constriction in the orifice of the oven 3
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for series 5 would decrease the pressure gradient, and thus one might
expect a consequent increase in the effect of gas-phase collisions and
a more pronounced minimum; that is, the constriction would yield re-
sults more in agreement with the usual bilateral flow measurements.

The data for all of the ordinates of series 6 and 7 in
the region of p/ﬁ equal to 1072 and less agree on the average within
better than 2 percent with Knudsen's semitheoretical formula.

(c) The Viscous Flow Region

In the strongly curved region at source pressures near and
greater than 0.2 mm Hg the figures show an abrupt transition, and the
experimental curve is nearly parallel to Knudsen's curve, the differ-
ence amounting to about 10 percent for experiment 117 of series 7. It
is possible that the mercury viscosity is too low by this same percent-
age or more, so that too great a reliance on the difference might prove
to be misleading. On the other hand, if Knudsen's formula were strictly
applicable here, the present data might well be a reliable measure of
the vapor viscosity. The correspondence is suchthatan estimate of the
vapor viscosity by an effusion method similar to that of this study should
yield viscosities within 10 to 20 percent in these pressure regions.

(1) The Extent of the Viscous Flow Behavior

The dashed curves drawn through the experimental
data for each of the three series 5, 6, and 7 show a similar systematic
departure from Knudsen's semitheoretical curve. The apparent paral-
lelism between the curves is quite striking and suggests some kind of
systematic error leading to a constant difference in the logarithms. An
inspection of Knudsen's formula shows that a possible error in the radii
of the channels could lead to such an effect. However, this does not
appear to be the correct explanation for two reasons. First, Knudsen's
equation contains two terms of nearly comparable magnitudes in the
low-pressure region but of different magnitudes in the regions at higher

pressure,
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An error in only one of the terms would not generally
lead to a constant error in the logarithm, and the molecular flow term
appears to be sufficiently accurate that a large error cannot be attrib-
uted to this term. Secondly, we know there is an error of about 10 per-
cent in the radius of the oven used for series 5, but this amounts to
nearly a 40 percent error in the factor R* occurring in the viscous term
of Knudsen's formula. However, since the results of series 5 in this
viscous region show a trend nearly identical to those of the other two
series, the difference between the experimental and semitheoretical
curves appears to arise from some fundamental aspect of the flow. In
fact, it would appear that the constriction in the orifice for series 5 has
little effect, if any, on the flow behavior in this viscous flow region.
This suggests that the end effects, such as beam contraction or expan-
sion of the gas, are not sensitive to the uniformity of the channel at its
exit,

One cannot ascribe any great significance to Knudsen's
formula, as has been emphasized previously, first because the deriva-
tion is not rigorous and, secondly, because the formula as applied to
the present study should contain terms to account for the expansion of
the gas. For the relatively short channels used in this study the vis-
cous flow formula is not applicable first without the usual end correc-
tions and even less applicable to the present study because of the severe
pressure gradients which necessarily existed. The irreversible char-
acter of the flow in this region probably is such that the expansion of
the gas cannot adequately be treated by considerations of reversible
isothermal or adiabatic expansions. This is suggested by the thermal
effects studied in conjunction with series 5 and reported in section 9.2.
We shall return to this point later. However, there cannot be any doubt
that at least within a limited pressure region the flow is of a viscous
nature, and the parallelism between the experimental and semitheo-
retical curves is such at the parameters in Knudsen's equation probably

could be adjusted to effect a reasonably good {fit to the experimental data.
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In the upper pressure regions beginning in the region
near 50 mm Hg, the curves begin to depart increasingly from Knudsen's
equation, and these departures occur at pressures where the viscous
term in Knudsen's equation becomes the principal term. Consequently,
the length-to~radius ratios of the present orifices are too small to al-
low us directly to determine if viscosities within, for example, 10 per-
cent of the true value could be measured by the effusion method employed
here. It ought to be possible for a channel of about 30 cm or more in
length to be coiled and placed within the present ovens. If the departure
from the viscous behavior observed here at the upper pressures is re-
stricted by the increased length, then it would be possible to extendflow
measurements to higher pressures and temperatures. A problem asso-
ciated with this, however, in regard to applying the technique to the
measurement of viscosities would be the pressure effects. The coef-
ficient of viscosity is not very sensitive to pressure at normal densities,
but at several atmospheres the effectina precision measurement might
well be noticeable and obscure the normal viscous behavior. Neverthe-
less, one ought to be able to measure viscosities of saturable vapors
to within 10 percent over a temperature region of nearly 50 degrees by
such methods,

(2) The Upper Pressure Region

The upper pressure region is perhaps the most inter-
esting aspect of these data. The experimental quantities define a curve
which progressively departs from the viscous flow predictions and
appears to approach some kind of a limit at about one atmosphere of
pressure withinthe effusioncell. Surprisingly, though perhaps fortui-
tously, this limit in series 6 is exactly that predicted by the molecular
effusion formula applicable to a thin-edged orifice. Of course, there
must be some limit to the effusion rate; the viscous flow equation pre-
dicts continuously increasing rates, whereas the true rate cannotexceed

the rate of evaporation of the liquid mercury. However, if it were true,
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and it probably is not, that the oven was totally saturated with vapor
under all conditions, then the rate of effusion would not exceed the
arrival rate of molecules at the inner opening of the channel. The data
indicate this to be the case for series 6. The situation in series 5 is
complicated by the possibility that experiments (133,134), (135, 136),
and (137,138) yield weight losses too high as a result of possible over-
flow of the liquid. Nevertheless, series 5 qualitatively agrees with the
effects observed in series 6. Not enough mercury could be contained
in the oven for series 7 to permit higher pressure measurements to

be made, but the partial results of series 7 agree with the more detailed
aspects of the flow behavior measured in series 6.

The true situation must be complicated; certainly there
would be some effect analogous to a process leading to increasing sat-
uration of the channel through turbulent interactions. But turbulence,
expansion of the vapor, and thermal effects must be strongly associated
at these high rates of effusion. The experiments 58-1 and 58-2, dis-
cussed earlier for series 5 in section 9.2, are probably generally appli-
cable qualitatively to the three series. One will notice that the drop in
the temperature difference between the well and the top-end tempera-
ture of the oven begins in the region where the curves begin to bend over
and depart from the viscous flow behavior. The temperatures used in
deriving the values of (%rf %}_:) are those of the liquid, whereas theoven
itself appears to be at a higher temperature, and the temperature of the
vapor also may be higher, Consequently, the real nature of the flow is
somewhat obscure. Probably turbulent effects begin to set in the region
under consideration. The usual Reynolds number(65) [R] may be
expressed in quantities appropriate to the experimental measurements
by the relationship

-5 dw /dt

[R]=1.67x10 TR ,

(10.3-9)

where the symbols have their usual significance. For experiment 66 (67)
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of series 6 one calculates a value of [R] of 12, whereas the usual value
of the Reynolds number at which turbulent effects set in is {R? 7500 to
3,000,(65) Thus, the Reynolds number hardly seems appropriate here.

We have very little data on which to base decisions re-
garding the leveling off region near one atmosphere. We know that
thermal effects are associated with this behavior but know little more.
The only explanation presumably available is that a tendency might
exist for the vapor to saturate the channel so that the virtual source of
the vapor is near the exit of the tube. The question as to the reality of
such an explanation is difficult to answer and would demand a more de-
tailed experimental study. It was only the fortuitous choice of the
particular orifice used in series 6 that permitted measurements to be
made, although with difficulty, in the high-pressure region. In so far
as the writer is aware, this effect has not been observed nor reported
previously. Probably the usual hydrodynamic experiments would not
demonstrate a completely analogous effect.

10.4 The Flow of Mercury Vapor through a Thin-edged Orifice

The data for series 8 depict a behavior almost identical to that
observed by Knudsen,(”) The curve in Figure 10.2-4 shows the molec-
ular flow behavior, a transition region, and some kind of a hydrodynamic
behavior at the higher pressures. The writer wishes to emphasize that
these present data are unusually precise for the method employed in
this study and demonstrate an unequivocal behavior. The absolute
values of the curve may be shifted slightly by small temperature or
pressure errors, but the general behavior cannot be obscured by these
errors.

(a) The Molecular Flow Limit

The data of series 8 compare favorably in the molecular
flow region with the theoretically derived value of the ordinate, as can
be seen in Figure 10.2-4. It is interesting, however, to compare the

pressures calculated from the data by the use of the molecular effusion




formula (10.1-1) with the vapor pressures reported by Busey and

(61)

Giauque and derivable from the vapor pressure equation (6.3-1).
Table 10.4-1 summarizes the appropriate data for series 8. The pres-
sure p; (mm) is calculated from the molecular flow formula (10.1-1).
The error in the calculated pressure is larger than the error in the
mass flow rate %%5 but for the comparison of the internal consistency
the percentage error in the pressure may be taken as the percentage
error in the flow rate. The error of 2 percent in the Clausing factor in
addition to the error in the flow rate yields an error in the pressure of
more than 2 percent, and this is important in comparing the calculated
pressure with those derivable from the vapor pressure equation (6.3-1),
which comprises the pressures reported by Busey and Giauque.

The data summarized in Table 10.4-1are assembled in three
groups. Group 1 comprises the calculations which use the temperatures
and weight losses experimentally averaged over the full heating period.
Group 2 comprises the calculations which use the temperatures and
weight losses measured at intermediate intervals during the experiment,
as described in Section 9.1. Group 3 comprises the data covering the
transitional and hydrodynamical flow regions. One will notice that the
internal consistency of these data, both with respect to the a priori
errors and agreement between the individual measurements, is excel-
lent. The data of groups 1 and 2 in Table 10.4-1 show unusually good
precision of about one percent or better, principally because the weight
losses were large encugh to be measured with ease., The data of groupd
show within a partial experiment less precision than that attributed to
the data for a total experiment because the measured weight losses are
smaller.

The pressures calculated from the molecular flow formula
and assembled in group 2 agree within the precision of the data with the
pressures reported by Busey and Giauqueo(é’l) There may be systematic
errors in the temperature, but the data show that up to a pressure of

nearly 0.1 mm Hg the flow rate is calculable within at least 2 percent
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TABLE

10.4-1

Pressures Calculated from the Data of Series 8

Radius (R) = 0.02141 cm (£0.3%) Length: Radius(%) = 0.0729
*Length (L) = 0.00156 cm (+20%) Clausing Factor (W) = 0.965 (£2%)
Group 1: Molecular Flow Region, Total Heating Periods
Percent Deviation
. o __W o ] Pl(mm), Pz (mm), _ 10g Pi 103
Experiment T(°K) dt (g min™) calculated | Busey and Giauque 100 -&1—3—12& (mm) | T(°K)
2
150-T 301.4 0.01045(£1.05%) | 0.00263 0.00261(£2.0%) 0.77 -2.580 {3.318
148-T 324.1 0.05606(+0.61%) | 0.0146 0.0144 (10.86%) 1.75 ~-1.834 [3.086
154-T 337.0 0.1304 (£0.48%)| 0.0347 0.0343 (£1.8 %) 1.17 -1,459 |2.968
151-T 348.3 0.2575 (+0.34%){ 0.0698 0.0696 (+0.80%) 0.29 -1.156 [2.871
Group 2: Molecular Flow Region, Partial Heating Periods

150-1 301.4 0.01031(*¥2.1 %) | 0.00260 -2,585 13.318
150-2 301.4 0.01040(%2.0 %) | 0.00262 ~-2.,582 13.318
148-1 324.1 0.05637(%2.0 %) | 0.0147 -1.832 | 3.086
148-2 324.0 0.05741(%1.5 %) | 0.0150 -1.824 |3.086
148-3 324.0 0.05407(£2.0 %) | 0.0141 -1.850 | 3,086
154-1 337.0 0.1299 (£0.95%) | 0.0346 ~1.461 {2.968
154-2 337.0 0.1305 (£0.98%)| 0.0348 -1.459 [ 2.968
151-1 348.3 0.2523 (+0.64%)| 0.0684 -1.165 | 2.871
151-2 348.3 0.2630 (£0.66%)| 0.0713 -1,147 12.871
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TABLE 10.4-1 (Cont'd.)

Pressures Calculated from the Data of Series 8

Radius (R) = 0.02141 cm (£0.3%) Length: Radius L. 0.0729
Length (L) = 0.00156 cm (£20%) Clausing Factor (W) = 0.965 (£2%)
Group 3: Transition and Hydrodynamic Flow Region, Total Heating Periods
Percent Deviation
. dw - P; (mm) P, (mm) log Py| 10°
o — 1 1 2 2 3 _ 1
Experiment T (°K) dt (mgmin™) calculated | Busey and Giauque 100 Pi-F (mm) | T(°K)
2 .

149-T 372.2t0.1 | 1.132 (%0.23%)| 0.317 0.269(¥0.49%) 17.8 -0.499 | 2.686
153.-T 406.310.2 | 6.968 (£0.44%)| 2.039 1.390(10.91%) 46.7 +0.309 | 2.461
152-T 448.310.2 | 40.31 (¥0.99%)| 12.39 7.427(£0.82%) 66.8 +1.093 | 2.231
157(158) 499.210.2 | 193.6 (%0.93%)| 62.79 38.55(10.66%) 62.9 +1.798 | 2.003
155(156) 548.810.6 | 693.6 (f1.0 %) | 235.9 141.8(t1.5 %) 66.4 +2.373 1 1.822

£0¢
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by the molecular flow formula. Above this pressure the flow rate de-
parts from the molecular flow prediction, and this will be analyzed
subsequently. An unweighted least-squares analysis of the data assem-
bled in group 1 yields for the heat and entropy of vaporization the values
AHS
AS3s

15,392 t 48 cal g-atom™*
23.45 ¥ 0.18 e.u. ,

and these agree within their errors with the values derived from the
work of Busey and Giauque,(6l)

AHY

AS3s

15,403 cal g-atom™’
23.48 e.u.

(b) The Transitional and Hydrodynamical Flow Regions

Figure 10.2-4 wvery clearly shows a departure from the
molecular flow behavior at a source pressure of 0.1 mm or higher and
a leveling off at a pressure near 5 mum Hg. Thus the figure shows two
limiting flow behaviors and a transitional region extending over a pres-
sure range differing by a factor of 50. The nature of this transition has
never been clearly explained nor has the reason for the nature of the
onset of the transition and the onset of the hydrodynamical behavior
been unequivocally established. Nevertheless, this region, similar to
the transition to viscous flow in channeled orifices, has the aspects of
a progressive change in the bulk character of the gas from one of a
discontinuous medium to one of a fluid medium.

In the pressure region of 5 mm Hg and higher, the flow rate
appears to be slightly higher than the isothermal effusion formula pre-
dicts with no contraction of the issuing stream of vapor. From the

expressions (2.2-2) and(2.2-3) one finds that

({i‘ dww)

P dt)isothermal v/ﬂﬂ: 1575-SL
(ﬁ dw e SW . S ’

p dt )molecular
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(«/_z dw (

p dt >molecu1ar
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where Y is the ratio of specific heats, which for mercury is 1.667, e is
the base-number of the natural logarithms, S; is the cross-sectional

area of the vena contracta, S is the orifice area, and W is the Clausing

factor. The horizontal lines representing these hydrodynamic flows in
the Figure 10.2-4 are drawn for S; equal to S.

The nature of the flow in this high-pressure region probably
is complicated by several factors, such as the small extent of the chan-
neling, thermal effects, contraction of the jet, and so forth. Therefore,
it would be difficult to decide on the exact effusive behavior here.
Nevertheless, the behavior clearly has the aspects of a truly hydrody-
namical effusion process. It is interesting now to examine the data of
series 8 on a log P vs l/T plot, as in Figure 10.4. One can see that in
the present experiments measurements were carried out to sufficiently
high source pressures that the full effusive behavior could be ascer-
tained. On the other hand, had the experiments been carried out only to
pressures as high as 0.5 mm, such that only the first five of the lowest
pressure points had been determined, then a plot such as that given in
Figure 10.4 would suggest only the effect of large errors in the measure-
ments rather than a fundamental violation of the conditions under which
molecular flow occurs. Thisis exactly the reason why one wishes to

establish as clearly as possible the necessary a priori conditions for

the occurrence of molecular effusion, for rarely is a vapor pressure
experiment capable of handling the excessive flow rates necessary to
trace out the full experimental behavior. In the Argonne National

Laboratory we have previously been confronted with this difficulty in
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connection with other less precise experiments(éé) which yielded an
entropy of vaporization several units too high for the substance under
study. The present experiments, however, delineate the problem
quite clearly.

(c) Comparison of the Effusive Behavior with Previous Concepts

We now come to the interesting but difficult questions re-
garding the comparison of these data with the concepts and experimental
results of others. Specifically, one would wish to have these questions
answered:

(1) How does one predict the onset of the departure from

molecular flow?

(2) What is the behavior of the issuing stream of vapor in

the transitional region ?

Clearly, the single series of experiments here is not capa-
ble of answering these questions unequivocally. Nevertheless these
data combined with previous knowledge permit one to establish tenta-
tive conclusions, besides the one valid conclusion that molecular effu-
sion occurs under present conditions up to 0.1 mm Hg. If the ratio of
mean free path to orifice diameter or slit width is the defining quantity
which predicts the onset of the departure, then the present data yield a
ratio of about unity at this pressure. As discussed in Appendix 2, the
mean free path may be calculated from the vapor viscosity, pressure

and temperature by the formula

poise)'v/'f‘zgim{_j

cmj = M(
* (em) = 0.6064 B

(10.4-3)

Mean free path values and ratios of the mean free path to orifice
diameter are tabulated in Table 10.4-2 for the various experiments
of series 8.

Johnson's study(zg) employed mercury, and the results of
this study, as described in Chapter 3, lead one to infer that molecular

flow occurs at mean free path-to-diameter ratios of less than unity.
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The appropriateratios for Johnson's study, onthe basis of the same mean
free path formula, are between 2.0 and 0.002 if the slit width of the ori-
fice is used, or between 0.2 and 0.0002 if the slit length is used for the
pressure range from 0.2 to 35.0 mm Hg. Consequently, the lowest pres-
sure employed by Johnson is within the region where these present data
begin to show the transitional regions. Since the same pressure ranges
and nearly comparable orifice dimensions and same experimental sub-
stances were used in both the present study and Johnson's study, it
seems reasonable to conclude that Johnson's experimental arrangement
yielded, not molecular beams of mercury vapor, but rather fluid-like
streams. These conclusions, of course, assume that the vapor pres-

sures were correctly measured by Johnson.

TABLE 10.4-2
Mean Free Path Calculations for Series 8

Series 8

Orifice Radius (R) = 0.02141 cm

Experiment | T(°K) p (mm) (1077 poise) A{cm) A /2R
150-T 301.4 0.00261 2698 1.088 25
148-T 324.1 0.0144 2929 0,222 5.2
154-T 337.0 0.0343 3062 0.0995 2.3
151-T 348.3 0.0696 3178 0.0517 1.2
149-T 372.2 0.269 3426 0.0149 .35
153-T 406.3 1.390 3778 0.00332 0.078
152-T 448.3 7.427 4215 0.000729 0.017
157(158) 469.2 38.55 4749 0.000167 0.004
155(156) 548.8 | 141.8 5270 0.0000528 0.001

The conclusions derivable from the comparison of the
present data with the results reported by Johnson could be extended
further. For example, Johnson's data clearly show that the beam in-
tensity in the forward direction was nearly proportional to the pressure

up to 35 mm Hg. One concludes, then, that within the transitional and
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hydrodynamic flow regions, contrary to the conclusions drawn by
Knauer and Stern,(28) the beam intensity did continue to increase with
the source pressure. Consequently, it may be true, but 1s not proven,
that the intensity increased over that predicted on the basis of the co-
sine law, and this would explain the positive curvature in the results
reported by Ackermann, Gilles, and Thorn(43) and discussed in sec-
tion 6.1. This conclusion, of course, is only tentative, and further
experimental study on this matter is warranted. Phipps and associ-
ates,(67) for example, are studying angular dependences of flux inten-
sities of molecular beams at various source pressures.

Finally, we are confronted with the task of makinga decision
as to how one might accurately predict the conditions under which the
departure from molecular flow occurs. The usual prediction is based
upon the mean free path-to-orifice dimensions concept. The question
arises now as to whether this 1s a proper parameter to permit an accu-
rate prediction to be made. The values of the mean free path calculated
from the present data cannot be considered to be any more reliable than
10 percent. if even that much. But it would appear that the present study
in conjunction with the observations by Knauer and Stern(28) and
Knudsen(17) indicate that the ratio of mean free path to cross-sectional
length of the orifice defines the departure to occur at unity within a
factor of 10,

10.5 Summary of the Conclusions

The experiments reported here have never before been carried
out extensively for saturated vapors, although basically they are similar
in concept to those experiments carried out by Knudsen(13) in 1909, In
thé low-pressure regions they yield results having features simailar to
those of Knudsen, and for the effusion of vapors through channeled ori-
fices at source pressures near one atmosphere, yield results consider-
ably different from those of the more usual experiment employing

common gases flowing under small pressure gradients, The results of
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the measurements of the effusive behavior of mercury flowing through a
thin orifice yield for the first time unequivocal verification of the tran-
sition from the molecular to the hydrodynamical effusive behavior.

The experimental results of the study of the behavior of mer-
cury vapor flowing through channeled orifices into vacuum from a
region of nearly saturated vapor show a general agreement with
Knudsen's formula, which expresses the transition from molecular to
viscous flow behavior, except in one pressure region. The length-to-
radius ratios of the channeled orifices employed were between 122 and
66. In the low-pressure regions of 10™* mm Hg, the agreement of the
experimental measurements with the predictions of the molecular effu-
sion formula is about three percent. At increasing pressures there
appears to be a very slight negative deviation of 5 percent or less from
the molecular flow behavior, and in this region the data agree with the
predictions of Knudsen's equation within 2 percent.

At source pressures beginning about 0.5 mm Hg, or greater, the
effusive behavior of mercury vapor progresses into the viscous flow
region, where there are systematic differences between the predictions
of Knudsen's formula and the experimental results. This difference
appears to be attributable to fundamental differences between the present
unilateral flow experiments with short channels compared with the usual
bilateral flow measurements with much longer channeled orifices. The
present experiments indicate that viscosities of saturable vapors could
be measured within 10 percent by methods similar to those employed in
this study by some adjustment of the length of the channels.

At source pressures near 50 mm Hg and higher, the flow behavior
progresses into a turbulent flow region which leads to an apparent satu-
ration of the vapor within the channel. In one series of experiments the
flow rates clearly begin to correspond exactly with this apparent effect

at source pressures near one atmosphere.




The results of the study of the flow of mercury vapor through a
thin-edged orifice show unusually good precision. The data demon-
strate a molecular flow region, a transitional region, and a hydrody-
namical flow region which has a flow rate only slightly higher than the
isothermal flow reported by Knudsen. The pressure at which the de-
parture from molecular flow occurs is slightly less than 0.1 mm, which
corresponds to a mean free path-to-orifice diameter ratio of unity. On
the basis of the same kind of analysis, the study by Johnson on the beam
intensity of mercury vapor is applicable to the effusion of vapor under
hydrodynamical conditions. This leads to the tentative conclusion that
the positive curvature in the plot of the vapor pressure data of uranium

dioxide reported by Ackermann, Gilles, and Thorn(43)

may be due in
part to the departure of the vapor from conditions under which molecular
flow occurs. Different and more extensive studies are required, how-

ever, to decide the validity of the conclusions.
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CHAPTER 11
SUGGESTIONS FOR FURTHER STUDIES

The present investigation comprises a study of two aspects of
the effusive behavior of vapors. The first is concerned with questions
related to the extent of vapor saturation at very low pressures, and the
second is concerned with questions related to certain phenomena oc-
curring at pressures for which the effects of gas~phase interactions
are significant. These are limited aspects of an effusive behavior,
which depends in general on a variety of conditions and on the effects
of the molecular interactions. This suggests several possibilities for
further investigation.

The equations and formalism developed for the problems of the
extent of vapor saturation may be modified to include the effects of
some gas-phase interactions. The problem, of course, becomes more
difficult from a mathematical standpoint, but certain aspects of the
departure from the molecular flow behavior might be handled in this
way. The formalism should include terms which account for the ter=
mination of free paths in the gas by interactions of the gas~phase mol-
ecules, The usual mean free path treatment should be avoided in favor
of a more rigorous formulation in terms of an intermolecular potential.

A systematic experimental investigation of the viscous behavior
under the conditions used in these present experiments should be car-
ried out. For example, the effusive behaviors of a group of elements
such as the alkali metals could be studied to exploit the systematic
differences in their potential functions. Since the viscosity of the
vapor is intimately related to the intermolecular potentials, interesting
differences in the viscous effusive behavior would be observed. Cer=
tainly some experiments should be designed to employ much longer
tubes than those employed in the present study in order that a more

extensive pressure range of viscous flow behavior be obtained.
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The transitional flow region for the effusion of vapor from thin-
edged orifices should be similarly investigated, for in such an investiga-
tion one might be able to determine the various factors leading to the
departure from molecular flow. A systematic study should delineate the
extent of the reliability of the classical mean free path as a parameter
which predicts the pressure at which the transition from the molecular
flow behavior occurs. In addition, similar experiments in which beam
intensities are measured at various angles normal to the plane of the
orifice should be carried out for source pressures covering the molec-
ular and transitional flow regions. Such experiments are necessary to
determine whether or not beam intensities relative to the intensities
predicted by the cosine law increase in the directions normal to the
orifice,

Finally, in view of the interesting discrepancies in the measured
vapor pressure and the vapor viscosity of mercury, these properties
should be remeasured. As yet there has been no precise measurement
of this vapor pressure by effusion methods. The present apparatus
seems admirably suited to an accurate determination of this in the low-
pressure regions. Both the pressure and viscosity measurements
should permit one to deduce a more reliable value for the dissociation

energy of the dimer than presently exists.






APPENDIX 1
MATHEMATICAL DETAILS RELATED TO SOME
FUNCTIONS DERIVED FROM THE COSINE LAW

Al.l1 Two Geometry Factors

(a) A Circular Receiver and Source

The geometry factor is defined by the cosine law expression

cos 6, j cos jS
1S f f dsidsj (Al.1-1)
7T£13

The quantity G(SyS,) associated with the geometrical arrangement shown

in Figure Al.l-1 is derived by making the following substitutions:

801 =910
cos 6y = L/Ag,
B =L d
qz = rl + rg - Zrlro Cos(ﬁl - !Bo)
dSl = rldrldﬁl
dsO = rodrod‘Bo o (Al.l-Z)
Therefore,
ds,ds

G(S¢S;) = f f 9-"1

051) S0 Vs, [L? + % + v§ - 21,1 cos(B; - Bof (A1.1-3)

The integration over S; may be carried out first. For convenience, we

define
2 = x
M=12%+r%+1}
N = -2r;rg
Y = PB1-Bo - (A1.1-4)

Thus, one has

R} 2m
L? / ! f dxdp
G(SeS)) = 5= d 1 . (Al.1-
(8eS1) = 57 ) 6., DITNcos 7T (Al.1-5)
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Fig. Al.1-1 Variables of the Geometry Factor for a Cir-
cular Receiver and Source
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It may be demonstrated that

o dp 2TM
1 = s f 2 2 ,
'{3‘1= [M T Ncosy]P (M- NO)¥2 *7°OF M2> N

(Al.1-6)

First, because of the symmetry, one can choose B = 0 and ¥ = B,. Sec-

ond, one may find that all the conditions are satisfied to validate the

operation(ég)
4 ap ap
dM /‘B‘M+Ncosﬁ>‘- 'é [M + N cos BJ . (Al.1-7)

Therefore, the value of (Al.1-5) may be derived from the

standard integral(ég)
dp

M + N cos B (Al.1-8)
We obtain the result
R}
Mdx
G(SeS;) = fdsoLz [ i - N (Al1.1-9)
o

The integration over R; proceeds in a straightforward man-

ner. By making the substitutions

c = (L% 4 r2)?

b = 2(L?* - r})

a=1

x =1} , (A1.1-10)

one obtains

) Ri ‘\/=C_+ x
G(SeS,) = fdsosz dx ; (Al.1-11)
0

[ax? + bx + c]¥2

which may be separated into two standard integrals.(69) The evaluation

of these yields the result
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dS LZ + rZ - RZ
G(SoS;) = /;0 20 [1 "+t -Rzlo)z - ir%R"’i]uz - (Al.1-12)

The integration over dsy proceeds by similar steps. The integra-
tion over B, follows immediately. The remaining constants and variable
rg may be combined to yield integrals of a standard form. The desired

result is

m
G(SeS1) =5~ [L_" +RZ + R} - +/(L? + R} + R)? - 4R%R§} Lt
Al.1-13)

In the process of deriving this final factor, we have derived

also the useful geometry factor

1% + ri - R?
G(2mrodry,8;) = Tredrg [1 ~TITZ . .2 2\2 In 27172 .
[(L + o RI) - 4r0R1] (Al.l=14)
(b) A Cylindrical Source and Circular Receiver
From Figure Al.l-2 one obtains the following:
J% = v} + L2
= Ry +4% - 2Ro for cos6n
cos B30 = L/loy 5 4% = o + L2
o? =R% + 1} - 2Ror; cos ¥
v =B -Bo
dsl = rldrldﬁl
dsg = RodBed L . (Al.1-15)
These give
cos B4, cos 6y, L[Ro - r; cos Y]
, Al.l1-16
£, " [RE + 2 + L% - 2Rqr; cos Y ( )
and
G(27RdL,S;)
RoLde f f Ry - rycos ¥
= R z r1dr dfedB,
[R + 1‘1 + L ZRorl cOos IY] (A_l.].ml?)

The integrations over the angular variables are carried out in steps

similar to those used in deriving G(S¢S;). These yield the result



Fig. Al.1-2 Variables of the Geometry Factor for a
Cylindrical Source and Circular Receiver
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(R3 + 12 - r¥)r,dr,
G(2TR(dL,S,;) = 4TR{LAL f [(RZ + =2 + L - 4R%r 2]3/2

1 (A1.1-18)

From this expression one may obtain directly the factor

R + L% - 1§
Ro + 1‘1 + LZ 4&21'2]3/2
(A1.1-19)

Integration of expression (Al.1-19) over r; between 0 and R, ;4 Ry vields

the factor

R3 + R + 12 }
- - -1g. (A1.1-20
G(Z RodL,Sl) widL {{(th) + R“;’. + LZ)Z - 4R§R§;]1/2 ( 1 )

Al.2 The Probability Functions K

One may easily demonstrate the interrelationship of the previous
geometry factors through differentiation of the principal factor G(SyS,).
These relations lead to the following functions employed in the analysis

of the extent of saturation in a Knudsen cell. From the definition,

K(h,a,b) =;§[h2 +a% +b? - V(B +a? + bP) - 4a,2b2] ,

one may derive the following positive functions:

K(H,P,1) =%;-[HZ’ + PP+l -2+ P? 4 1) - 4P2'-|

MT (H-m)? + P> + 1 ) 1:)
T R

3
n

K(H-n,P,1) =

2
-"5_5,,7“K(T)31,1) = [«/ﬂz +4 + 5 ﬁm;_, 277]

vt +4
% [ 3|D~ﬂ‘i In - ”’)'3 ]
1,1) =42 -

Fonam BUPL LA =42 - TR TN [ on 7 4 4T
9 9
Sp K(Lop.1) = 5K(L,1,0)

_P {1 ) B 402 - 1 }

=3 [(EF +p% ¢ 1)?‘ ~ 4pz]1/z

> i (H-m?2 +1 - p? ]
Y K(H-7,p,1) = 2(H-n)p L[(H TN)E 4pZ 1 LT - apP) e
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Al.3 An Iterate Property of the 6(7) Equation

For the integral equation

H
8(n) = &(n) + f 8(M)K(n,N")dn (A1.3-1)

and the defined equation for the iterate

- H
I {f(ﬂ)} =gn) +/ (KM YA (Al.3-2)
0
whose kernels meet the conditions
0<n <H
1. K("%n') 2 09 {0 g nl <_.H
H
2. / Knn)an <1, 0<n<H , (A1.3-3)
0
Snyder(70) and DeMarcus(7l) have proved a theorem:
if I{f(n)} <f(n) for 0 {n<H )
then 5n) <I {f(')’))} Sf(?’)) for 0 < N<H . (A1.3-4)

The two equations (5.4-9) and (5.4-10) in Chapter 5 may be writ-

ten in the form

3 H
8) = g‘ﬁK(H-'f},P,l) + [ K(n,n")é(n")dn’ , (A1.3-5)
Ao

where

1 1 aﬂi az
+ T Shae K(H - 7,p"1) B_S_p’ K(H - n,p'.1)dp' .
P N (A1.3-6)
This kernel, incidentally, is symmetrical with respect tomn and 7', a
property which is useful in solving integral equations. Consequently, if
we prove that K(7,n') meets the conditions (Al.3-3), then the theorem as

proved is applicable to the integral equations developed in Chapter 5.
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The terms
P
+anan’ K(I’r}“n'l’l:l) 3

1 3 o
p_; annaop K(H = 77;/0:1) s

and

Q% .
Snop K(H - n,p',1) (A1.3-7)

are positive, so that condition 1. of (A1.3-3) is satisfied. The integration

of K(n,M") is easily executed. Thus

H 3 3
f K(nnYdn' =1 - *a—nK(H -n,1,1) + 51 K(n,1,1)
0

1
az
+ ﬁ‘7{MQ@M~mew&-—ﬁKm-mwﬁ®' .
j;’ ot o nde (A1.3-8)

Since K(O,p',1) = p'2/2, and the second term, K(H,0',1), is positive and
less than K(O,p',1), then it is true that

H
/ Kn,nHdn' <1 ra% K(H -1,1,1) + aa—nK(T),l,l) . (A1.3-9)
0

o) )
Since 657)’ K(n,1,1) is negative and g?",) K(H - n,P,1) is positive for

0 <M <H, and if we keep H <%, then

H
/ Khn)dn'< lfor 0 {n<{H { » , (A1.3-10)
0

and condition 1. of (A1.3-3) is satisfied. Therefore, the theorem is
applicable to the integral equations developed in Chapter 5. These con-

ditions also apply to the theorem:

if {em} > ) for 0 <<

then &) }__I{f(n)} >f(m) foro<n< H . (A1.3-11)
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Al.4 The Clausing Factors

It has been pointed out repeatedly that the equations developed
in the analysis in Chapter 5 are applicable to the Clausing problems
for the case that P is unity. Consequently, the generalized equations
for P = 1 represent the wall emission density of Clausing's problem,

and the Clausing factor becomes

H
W(H,1,1) = 1 - z/ 5(n) S%K(H -71,1.1)dn : (Al.4-1)
0

DeMarcus(42) recently has evaluated these factors for various values
of H by employing an analysis based on the variational calculus. He

was able to determine a variational value of W(H,1,1) which is known to

be equal to or greater than the true value. Since his calculations yield
in some cases values several per cent lower than those values calcu-

lated by Clausing by crude procedures, and since the value
W(H,1,1) = 8/3H = 8R/3L (Al.4-2)

for L >>R, as deduced by Knudsen. is only an asymptotic solution,(42) we
must accept the recent calculations by DeMarcus as being the most re-
liable values of the Clausing Factors.

The variational value of W(H,1,1) may be calculated from the
analytical expression deduced by DeMarcus. In the notation of the sym-

bols and functions used in this thesis, this factor may be written

W(H,1,1)* =4[1 4 2K(H,1,1)] - Haa(H)o"’(I;DZB(H) , (Al.4-3)

where the functions G(H) and B(H) have the following values:

1
K(H,1,1) :-%_;[HZ +2 - HVHE +4 |

H
a(H) = - 2 / (%- n) —5% K(n.1,1)d7

1 3
H{E - K(H,l,l)} + {%+ -1113—+2 VH? + 4}

NOTE: formula for a{H) is continued on p. 224.




H=1/R

and

W(H,1,1) < W(H,1,1)*
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APPENDIX 2
EQUILIBRIUM AND TRANSPORT PROPERTIES
OF MERCURY VAPOR

AZ2.1 The Vapor Pressure of Mercury

A large number of investigators have reported sets of measure-
ments of the vapor pressure of mercury, but of these only a few appear
to be reliable. Douglas, Ball, and Ginnings(72) and Busey and Giauque((’l)
have analyzed selected vapor pressure data covering the temperature
region near the normal boiling point (629.88°K) and, in conjunction with
their enthalpy measurements for the liquid over an extended tempera-
ture range and the known properties of the monatomic vapor, have cal-
culated the vapor pressure and associated equilibrium properties at
small temperature intervals from the melting point (234.29°K) to 750°K.
Thermodynamically consistent extrapolations of vapor pressures have
a reliability which depends, aside from other considerations, on a
knowledge of the extent of gas imperfection, and apparently little is
known concerning this characteristic of mercury. The problem involved
in such extrapolations consists of the determination of both the virial
coefficient as a function of temperature and a heat of vaporization from
the experimental data. The reported low-temperature vapor pressure
measurements available to these workers is of such poor precision that
they could not be used to obtain a reliable heat of vaporization. The
high-temperature data utilized, however, experimentally indicate gas
imperfections of less than two percent at pressures below two atmos-

pheresb(72‘)

Consequently, errors no larger than this are incurred in
consistent extrapolations provided the auxiliary thermodynamic data
are reliable.

The pressures calculated by Douglas, Ball and Ginnings are
lower than those calculated by Busey and Giauque by about five percent

at the melting temperature, three percent at 298.16°K, and decreasing

differences up to the arbitrary agreement at the normal boiling
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temperature. Both analyses have employed a nearly identical second
virial coefficient, which alone is sufficient for the mercury vapor im-
perfections, so that the differences in the calculated pressures ostensi-
bly are attributable to the differences in the free energy data for liquid
mercury. The former investigators measured the enthalpy of liquid
mercury between 273 and 723°K, and combined this information with
previous low-temperature heat capacity data to derive the necessary
thermal data employed in their extrapolations. Busey and Giauque
subsequently carefully remeasured the heat capacity in the range from
15 to 330°K and combined their data with those of Douglas, Ball and
Ginnings to construct the information necessary for their own analysis.
Consequently, the pressures calculated by Busey and Giauque possibly
are the more reliable of the two sets. It is difficult to make an estimate
of the absolute reliability of these data, but it would appear that they
are reliable certainly within ten percent and perhaps within two to three
percent over the temperature region of interest to the present
investigation.

More recent vapor pressure data of excellent precision and pre-

(73,74) but apparently not exploited.

sumed reliability have been reported
This writer has analyzed these data to calculate vapor pressures over
the same temperature region as that cited above. These pressures are
based on measurements of such outstanding precision that they should
be reliable to within one or two percent, except that they lead to a per-
plexing conflict with either the thermal data for mercury, the dissocia-
tion energy of the mercury dimer, or the boiling point. The pressure
data in question here are those reported by Spedding and Dye(73) for the
region from 520 to 633°K and those reported by Ernsberger and
Pitman(74) for low pressures in the region from 273 to 327°K. In con-
trast to the imprecise low-temperature data previously obtained by the
molecular effusion method, the more recent measurements by a mano-

metric technique have a precision of better than one percent and, in

spite of the small temperature range, give a second law entropy of




vaporization at 300°K which agrees precisely with the third law entropy
difference. The reported pressures are higher than those calculated by
Douglas, Ball, and Ginnings and about two percent lower than those cal-
culated by Busey and Giauque. The data of Spedding and Dye are more
precise in the temperature range they cover than previous data and
agree within five thousandths of a degree with the accepted normal
boiling temperature.

For small gas imperfections the above-mentioned low-
temperature data would allow one directly to derive a heat of vaporiza-
tion for the liquid in its standard state to the ideal gas, both at zero
degree Kelvin. This value may be used in conjunction with the free

61)

energy functions reported by Busey and Giauque( to derive the ideal
gas pressure in the region of the data of Spedding and Dvye, and from
this by comparison with the experimental pressures to deduce experi-
mental values of the second virial coefficient. The coefficients so
obtained mav be fitted to an equation giving the temperature dependence
by appropriate means to effect a consistent and reliable extrapolation
of the two sets of data. This procedure was used in the following analy-
sis. A rough check demonstrated that the neglect of the virial coeffi-
cient for the low-temperature data would not influence significantly the
analysis for the heat of vaporization. The heat reported below is in
error by less than one calorie for this neglect, but no correction has
been applied. The centigrade temperatures are corrected to the thermo-
dynamic absolute scale.{72) and the same natural constants (NBS, 1947)
used by Busey and Giauque and by Douglas, Ball and Ginnings have been
emploved.

For a gas having an equation of state

pV =RT + B(T)p ; (A2.1-1)
the free energy change for the transformation

Hg(lig, 1 atm. T) —= Hg(ideal gas, 1 atm, T) (A2.1-2)

may be written as

227
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AF® _ B(T)p V (1 -p)
T T-RInP - T -5 035559
_(F° - HS) (F° - Hg) AHS
_.< = - + = , (A2.1-3)

with the enthalpies Hj and AHf and free energies F° and AF° expressed
in units of calories, p in atmospheres, B in calories per atmosphere, V
in cubic centimeters, and R in calories per degree, all for one gram-
atom of mercury (200.61 grams). The free energy function of the gas

is given by the Sackur-Tetrode equation,

___—__Fo; 5 _ 7.2821 =%R£n M-—g—RI&nT , (A2.1-4)
and the free energy function of the liquid is interpolated from the
values reported by Busey and Giauque. The molar liquid volume V is
required to correct the free energy of the liquid for the change in pres-
sure from the saturation pressure to one atmosphere. The correction
is small but is included for consistency with the previous analyses. The
temperature dependence of V is given in an equation by Douglas, Ball,
and Ginnings.

From the pressure data of Ernsberger and Pitman, the value of
A Hg for each experimental value was calculated by neglecting the virial
coefficient B(T). These resulting values are reported below in
Table A2.1-1, along with the second law value deduced from the reported
least~squares vapor pressure equation. There appears to be an excel-
lent consistency of these values, and the fluctuation at the low tempera-
tures probably is attributable to the decreased precision of the
apparatus at low pressures, as suggested by the investigators. The
third law value for AH§ was used in the free energy equation (A2.1-3),
along with the experimental pressures reported by Spedding and Dye,
to calculate at each experimental point a value of B(T). The calculated
values were fitted to an empirical equation corresponding to the virial

coefficient in Berthelot's equation of state. Admittedly, it is more




TABLE A2.1-1
Third Law Values of AHf from the Data

of Ernsberger and Pitman

T (°K) AHS (cal) Third law T (°K) AHS (cal) Third law
285.24 15418 306.19 15415
288.16 15410 309.25 15413
291.11 15408 312.13 15412
293.25 15411 315.17 15412
294.12 15416 318.19 15412
296.23 15413 321.17 15412
299.22 15415 324.14 15412
300.27 15411 326.65 15412
303.20 15412

Third lawav. ... .. 15,412.6 1 0.5 cal

Second law . . ... .. 15,414 cal

consistent with the theory of the virial coefficient to fit the data to a

75) This was not done,

coefficient derivable from a potential function.(
however, for several reasons. First, the experimental virial coeffi-
cient, as will later be explained, leads to a conflict with the present
knowledge of the dissociation energy of the dimer. Secondly, precision
pressure data in excess of one atmosphere would be required to effect
a meaningful potential function analvsis. Thirdly, a simple, more
amenable virial function equation is sufficient for the extrapolation in
the present investigation, and Busey and Giauque chose an approximate
Berthelot coefficient in their analysis.

The Berthelot equationof state has a two-term second virial
coefficient:

B(T) = a - (b/T?) . (A2.1-5)
Busey and Giauque reasoned in effect that with many gases the constant
a could be neglected at temperatures near and below the normal boiling
point, and they derived for the virial coefficient of mercury vapor on
this basis the expression

B(T) = - 1.35 x 10%/T? : (A2.1-6)
which, combined withthe equations (A2.1-3) and the pressure data they

utilized, yielded a value for the heat of vaporization of

229
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AHf= 15,402.5 calories per gram=-atom. The present analysis, however,
gives a virial coefficient having a temperature dependence which
decidedly is not of the same form, but rather demands the inclusion of
the constant a. Since this analysis is not in itself complete enough to
decide on the reliability of the experimental boiling point, B(T) by
equation (A2.1-5) was arbitrarily fixed at the accepted boiling point and
the constants accordingly adjusted by least squares. This analysis
vielded the equation,

(32.255 + 6.3) x 10°
TZ

B(T) = 67 + 16 - (A2.1-7)

The correspondence of this equation with the experimental values admit-
tedly is not as good as the data appear to demand, and it would be falla-
cious to use this for extrapolations much beyond the boiling point. It
does appear to be sufficient for the present purposes, however. A few
representative values of the experimental and empirical virial coeffi-
cient are given in Table AZ2.1-2.
TABLE A2.1-2
Representative Values of the Virial

Coefficient of Mercury

-B(T),
T (°K) -B(T) Eqn:B}(‘E).’ls’Z B&Ziﬂj:d
629.88 (BP) 14.3 14.3 3.4
573 31.3 31.0
549 38.0 39.7
534 47.1 46.2

These coefficients are surprisingly large, especially compared
with those deduced by Busey and Giauque. The ideal gas pressure at the
accepted boiling point is found to be 751.4 mm Hg, and therefore the ex-
tent of gas imperfections amounts to 1.2 percent as compared with the

value of 0.3 percent on the basis of the analysis by Busey and Giauque.




Although this is within the two percent maximum previously mentioned,
it leads to the uncomfortable conclusion that the dissociation energy of
the mercury dimer is much larger than suspected. The thermodynamic
properties of the mercury dimer are practically unknown, although the
evidence seems to indicate that the dissociation energy at zero degrees
is less than two kilocalories per mole. There is insufficient informa-
tion from which reliable entropy and free energy functions of the dimer
may be calculated, so that little can be gained in an examination of the
present data from the usual equilibrium considerations. One may turn,
however, to an examination on the basis of a virial coefficient derived
from a potential functiona(75)

If a potential function for the interaction of two spherically
symmetrical atoms is known as a function of the distance of separation,
then B(T) may be derived from a statistical mechanical equation.
Mercury is known to possess a singlet ground state, so that unless un-
usual and unsuspected circumstances occur for the essentially binary
collisions of the atom of slightly imperfect mercury vapor, then the
potential function may be taken as that applicable to the formation of
the mercury dimer. Douglas, Ball, and Ginnings calculated a virial co-
efficient from a Morse potential function in which the dissociation
energy was taken at 1.5 kcal, a choice based upon a serious examination
of the spectroscopic evidence, an arbitrary equilibrium separation of
3.2 x 10~® cm, and the first vibrational constant as 36 cm™". Epstein

66)

and Powers( more recently chose to evaluate the virial coefficient
on the basis of a Lennard-Jones (6-9) potential with the dissociation
energy taken as 1.54 kcal and an equilibrium separation as 3.25 x

1078 c¢m, the latter value having been chosen from an analysis of the
viscosity of mercury vapor. These various calculations of the B(T)
dependence agree closely with that derived by Busey and Giauque. In
contrast to these, a rough estimation of the dissociation energy neces-

sary to give the present value of 14 calories per atmosphere for the

virial coefficient at the boiling point vields an energy of nearly 4 kcal,
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which is twice the highest value reported for the disscciation en-
ergy.(Yz) Although spectroscopic values for this energy are subject
to large errors, the value of 4 kcal does seem unreasonable, even in
view of the current ambiguousness of the value.

The conflict arising in the present analysis is traceable to sev=-
eral possible circumstances:

1. The data of Ernsberger and Pitman are in error such that

AHG < 15,413 cal.
ov

2. The peripheral entropy? free energy data of liquid mercury

are in error.

3. The dissociation energy of mercury dimer is greater than

2 kcal.

4. The data of Spedding and Dye and the currently accepted

normal boiling point of mercury are in error.

The low-temperature data of Ernsberger and Pitman are so con-
sistent that one finds difficulty in attributing significant error to their
data. Admittedly the temperature range covered in their work is not
large, but the agreement of the second and third law heats leads one to
conclude that the data are reliable. Indeed, it would be an unlikely set
of circumstances which would give incorrect data of such excellent
agreement, although the entropy agreement is a necessary but insuf-
ficient condition for reliability. Since the absolute entropies are in
agreement, it is difficult to attribute significant error to the liquid
thermodynamic data.

The dissociation energy of mercury dimer possibly may be
larger than suspected, but a more detailed analysis would be required
to evaluate this point fully. One can say, however, that it appears un-
likely that the dissociation energy is as high as 4 kcal.

Despite the obvious precision of the measurements of the nor-
mal boiling point of mercury by at least two workers(73:77) and the fact
that this temperature is accepted as a secondary fixed point on the 1948

(78)

International Temperature Scale, it igs not impossible that this
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temperature may be in error. Boiling point determinations are subject
to indeterminate temperature errors. a circumstance which, for example,
appears to have occurred in measurements on the vapor pressures of

(79)

potassium in the region of the boiling point. One can estimate that a
discrepancy of about 0.4 degree in the temperature of the pressures
reported in the region of one atmosphere could account for the difference
in the virial coefficients determined in the present analysis and those
derivable from a potential function consistent with the spectroscopic
evidence. Further analysisand certainly continued experimental study
of the mercury vapor pressures are warranted.

The pressures reported by Busey and Giauque and those calcu-
lated on the basis of the present analysis have been fitted to
four-parameter equations by a least-squares reduction. The agreement
of both equations with the original pressures used in the reduction over
the range of temperatures from the melting point (234.29°K) to the boil-
ing point (629.88°K) are consistently within better than 0.2 percent for
the equation applicable to the data of Busey and Giauque and within bet-
ter than 0.8 percent for that applicable to the combined data of Spedding

and Dye and of Ernsberger and Pitman. The general form of the va-

por pressure equation used is
B 2
log P (mm Hg) =A+?+ClogT+DT . (A2.1-8)

The constants applicable to both sets of information are tabulated in the

following table:

EQUATION A B C Dx10°% Source

A2.1-8A  +10.80644 -3322.183 -08.9576842 +0.0738591 Busey and
Giauque

A2.1-8B  +10.44108 -3309.811 -0.8286779 +0.03352341 Present
Analysis

The writer recognizes the inconsistencies in the data and believes a
more detailed analysis is necessary to resolve these. Consequently, he

chose the data of Busey and Giauque and therefore the pressure
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equation A2.1-8A for the primary analysis of the data presented in this
thesis. The present analysis indicates that these pressures may be too
large by two percent in the low pressure region.

A2.2 The Viscosity of Mercury Vapor

The viscosity of mercury vapor as a function of temperature was
measured by Kochﬁso) in 1883 and bv Braune, Basch and Wentzel(60) in
1928. Apparently no more recent determinations have been made, al-
though the discrepancies between these two determinations and the dis-
crepancy of both with a theoretically calculated temperature dependence
indicates that the data possibly are unreliable. Epstein and Powers(76)
recently have analyzed the viscosity data to determine if possible the
theoretical temperature dependence. They conclude that within the pre-
cision of the measurements and within the present available framework
of the theory of transport phenomena, the theory and experimental re-
sults may be brought into reasonable agreement.

The data, in the opinion of the writer, do not appear to substan-
tiate the conclusions drawn by Epstein and Powers, for clearly the two
sets of data are in serious disagreement. Whereas an analysis of the
combined data does indicate variations which are comparable to the
extent of the agreement with theoretical values, and analysis separately
of either set of data shows better internal consistency than can be pro-
vided by a theoretical prediction within the present framework.

Koch measured the viscosity by the so-called transpiration
method over a temperature range of 100 degrees, and his 18 reported
measurements defined approximately a temperature dependence of T!*®,
However, there is considerable variation in his data. The reliability of
his method depends on a precise knowledge of the capillary dimensions
and the vapor pressure of mercury, and for the latter Koch measured
the pressures by a manometric procedure. Because of the difficulties
associated with such measurements, the lack of pure mercury, and
questions on the reliability of his temperature measurements, it ap-

pears that the more recent data of Braune, Basch, and Wentzel must




be accepted as more reliable, particularly because their method de-
pends less rigidly on an absolute knowledge of parameters unique to the
apparatus.

Braune. Basch, and Wentzel measured the viscosity by the oscil-
lating disk method over a range of temperatures of 400 degrees. Their
description of the procedure indicates that considerable attention was
devoted to details for the temperature measurements and standardiza-
tions. Their apparatus was used prior to the mercury experiments for
the measurement of the viscosity of air and bromine, and their data for
air agree substantially with the more reliable of the reported data and
within 2 percent or better with the recent NBS evaluation of the viscos-
ity of air.(81) Since the method of measuring the mercury viscosity
involved measurements relative to air, it would appear the the reliabil-
ity of their mercury data is within two to five percent in the range of
their measurements. The overall precision of their data, however, is
within one=-half percent.

A plot of the data reported both by Koch and the latter investiga-
tors is presented in Figure A2.2. A least-squares reduction of the data
of Braune, Basch. and Wentzel was tried for equations of the general

form
I (poise) = AT + BTP (A2.2-1)

for values of b of 0,4, 1, and 2, and with T representing the absolute
temperatures reported by these investigators. The best agreement with

the data was obtained with the equation
K (1077 poise) = -43.788 TY2 1 11.472 T : (A2.2-2)

It is of interest for the present investigation that the viscosity
be extrapolated to temperatures lower than the experimental values ob-
tained. Probably the most reliable way to effect this is to fit the data
by suitable adjustment of parameters in the region of the measurements
to a viscosity equation derivable from a potential function. The param-

eters so obtained may then be employed to calculate theviscosity at
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temperatures outside the range of the measurements. For sufficiently
dilute gases in which only binary collisions occur, the viscosity of the
vapor to a good approximation is given by the equation(sz)

- . JMTE(T*
u(10-7 poise) = 266.93;39@%% . (A2.2-3)

In this expression0 is the collision diameter, related to the equilib-
rium separation of the two atoms. () @2 (T*) is a complicated integral
function of the potential energy of the binary collision and the reduced
temperature T*, which is the absolute temperature divided by the
depth of the potential well in units of €/k (°K), and f(T*) is a small cor=
rection factor of nearly unit value. Numerical values of I T*) and £(T¥)
at small intervals of T* have been tabulated(83) for various potential
functions, but of these to date, only the Lennard-Jones (6-12) and mod-

(83)

ified (exponential -6) functions represent realistic potentials.

76)

Epstein and Powers( concluded from an analysis of the data
of Braune, Basch, and Wentzel and the four of the values measured by
Koch and reported in the International Critical Tables that the viscosity
of mercury vapor, if it were to fit that derivable from a Lennard-Jones

(6-12) potential, yielded unique parameters for the collision diameter

J, the equilibrium separation ry. and the well depth €/k as follows.

]
2.89 £ 0.04 A

[e) =
(<]
ro =3.2570.04A
e/k = 851 *32°K (1.7 keal) : (A2.2-4)

These conclusions, however, are drawn from an examination of the cor-
respondence of the slope of the viscosity-temperature curve with that
derivable from the Lennard-Jones potential within the limits of

818.6< €/k < 883.2, and their validity rests on the assumption that the
slope has different properties outside the experimental range. Contrary
to the opinion of these investigators. the theoretical fit of the data with
the above parameters is quite unacceptable with respect to the apparent
precision of the more recent data as the values cited in Table A2.2-1

illustrate.



TABLE A2.2-1

Comparison of Experimental and Derived Viscosities of Mercury Vapor

7 7 7 7

o Hrx10 Kx 10 o . px 10 ) pHx10 )
T(°K) (exp., BBW) | (Eqn: A2.2-2) rDev. | (1.3, 6-12) %oDev. (exp-6) ToDev.
491.0 4709 1662 +1.0 4739 -0.6 4720 -0.2
192.5 4672 1678 -0.1 1753 -1.7 4734 -1.3
496.5 1689 4720 -0.7 1793 _2.2 4774 -1.8
554.4 5310 5329 -0.4 5355 -0.8 5356 -0.9
573.5 5501 5530 -0.5 5546 -0.8 5550 -0.9
603.0 5831 5842 0.2 5835 -0.1 5852 -0.4
694.0 6856 6808 +0.7 6730 +1.8 6790 -1.0
712.7 7029 7007 +0.3 6912 +1.7 6983 -0.6
769.0 7610 7607 +0.03 7471 +1.8 7567 +0.6
838.0 8343 8346 -0.03 8154 +2.3 8281 +0.7
861.5 8632 8598 +0.4 8387 +2.8 8523 +1.3
880.0 8766 8796 -0.3 8571 +2.2 8713 +0.6
883.0 8802 8828 -0.3 8601 +2.3 8744 +0.7

8¢
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Epstein and Power s have suggested that the Lennard-Jones
(6-9) potential function might fit the data better. This function has a
weaker repulsive strength than the former potential, but apparently
the necessary temperature-dependent function Q%*(T#*) has not been
evaluated for the (6-9) potential. The recent tabulations(83) for the
(exp=-6) function, however, allow one to test the effect of a weaker re-
pulsive potential with the above parameters. For this potential func-
tion, the repulsive effect may be decreased by adjustment of a
parameter & In the present case, & was chosen as 12, which should
yield a repulsive effect only very slightly larger than that for the (6-9)

potential. The parameters

<
1‘0 = 3.25 A
e/k = 850 °K
a =12 (A2.2-5)

were used to derive the viscosity according to equation (A2.2-3) for the
(exp=-6) potential function. The values so obtained are tabulated in
Table 2.2-1, and it is apparent that the agreement, as suggested by
Epstein and Powers, is superior to those values derivable from the
(6-12) function. However, these too show a systematic deviation.

The experimental data of Braune, Basch, and Wentzel are com-
pared in Table A2.2-1 with the viscosities derived from the least-
squares equation (A2.2-2) and the above-described theoretical treat-
ments. The percent deviations listed are referred to the experimental
values.

One now comes to the difficult task of deciding how the viscosity
should be properly extrapolated to the lower temperatures. Certainly
the best procedure would be that employing a potential function as de-
scribed. However, this procedure does not appear to be valid enough
since, with the potential parameters described, there are systematic
differences between the experimental values and those derived theoret-

ically. The writer finds that no consistent set of potential parameters
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may be found to give the necessary agreement. Either the data are un-
reliable, or a different set of 022(T*) values for a potential function pres-
ently not examined is required, or possibly some aspect of the theory is
incorrect in its application to mercury vapor.

There is an interesting point worth mentioning here in regard to
this problem and that of the discrepancies in the vapor pressure of
mercury. The distance of nearest neighbors, both in the solid and liquid
phases of mercury, is 3.0 ;x,(‘84) whereas a choice of €/k = 850°K yields
a value of 3.25 .2 for the equilibrium separation in the gas. In contrast
to this situation, the equilibrium separations of the sodium and potassium
dimers(85) are several tenths of an angstrom less than nearest neigh-
bor distances in the condensed phases.(86) An examination shows that
for a (6-12) potentialfunction a value of 3.11 R_for the equilibrium separation
gives an €/k value of 1006 °K and a dissociation energy of 2 kcal to give
agreement with the experimental viscosities. This value ofe/k would
have to be increased further to yvield an equilibrium separation corres-
ponding to nearest neighbor distances in the liquid phase.

In view of the difficulties involved in constructing an adequate

theoretical correspondence for the viscosity of mercury vapor, one

must accept the experimental data a priori to be more reliable than a

theoretically deduced equation. One might wonder whether a Sutherland
equation would extrapolate correctly to lower temperatures. Braune,
Basch, and Wentzel fitted their data to such an equation, which at the
time of their study was the most rigorous form for the temperature

dependence. They obtained by least-squares the Sutherland equation

- 612.3 T2
7 _6la.5 T _
L(107° poise) = T 9173 . (A2.2-6)

This expression gives a good representation of their data, but, as can
(83)

be demonstrated, such an equation may lead to serious errors on

extrapolation.
Since there is no other choice which appears more reasonable

at present, the empirical equation (A2.2-2) will be used for
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extrapolations of the viscosity of mercury vapor. A least-squares anal-
ysis indicates that an extrapolation to 300°K would not yield errors
greater than five percent. In Table A2.2-2 a comparison is given of
several extrapolated values for the Sutherland equation of Braune,
Basch, and Wentzel, the empirical equation (A2.2-2), and values calcu-
lated for the (exp-6) potential with the parameters (A2.2-5).
TABLE A2.2-2
Comparison of Extrapolated and Interpolated Viscosities

of Mercury Vapor

pmx 107

T°K | (Sutherland, | 4 x 107 (Eqn. A2.2-2) | 4 x 107 (exp-6)
BBW)

300 2561 2683 2912

400 3650 3712 3833

500 4747 4757 4809

600 5835 5810 5821

700 6905 6872 6852

800 7952 7939 7888

The maximum percent difference between these values is
14 percent at 300°K. If the original data are reliable, then one may con-
clude that the extrapolated viscosity is reliable within 5 to 10 percent.

A2.3 The Mean Free Path of Saturated Mercury Vapor

The most commonly employed expression for the mean free

path(87) is
A= 1/«/57m52 , (A2.3-1)

where Vis the uniform molecular density and 0 is the diameter of a
hard, elastic spherical molecule. If the gas is ideal then ¥V = p/kT,
with the symbols representing the usual quantities, and therefore the

mean free path may be written as

A = KT/ +/27p0? (A2.3-2)
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These prescriptions are derivable from considerations of an
equilibrium gas, specifically, a Maxwellian hard-sphere gas. Their ap-
plication to a description of a real gas in flow presumes a saturated gas
contrary to the irreversible nature of the gas in flow. One must ac-
knowledge then that a mean free path description provides only a quali-
tative picture of phenomena associated with a flowing gas.

Perhaps as serious as the above limitations is the fact that col-
lision diameters vary with the temperature, a situation which explains
in part why the viscosity is strictly not proportional to the square root
of the temperature, as the classical derivation predicts. Apparently,
there is no completely rigorous way in which this situation can be cor-
rected, but one may resort to a subterfuge. In the simplified kinetic
description of transport properties, the various properties (viscosity,
diffusion, and conductivity) are considered as mean free path phenom-
ena and are derivable on this basis. A rigorous theory of such prop-
erties of a gas of hard-sphere elastic molecules was used by Chapman
and Enskog(88) to derive the viscosity and mean free path relationship

for a dilute shearing gas:
g=0.499 MycA ; (A2.3-3)

in which T is the average thermal speed and A is the usual mean free
path. Presumably, then, if the viscosity is known as a function of tem-
perature, the mean free path is derivable. However, when the viscosity
is that of a real gas, the mean free path so calculated must be considered
as an equivalent hard=-sphere free path, and in this devious way the
change in the collision diameter with temperature is at least qualita-
tively included in the mean free path description of the gas. Since
there is some question as to the uniqueness of the density v, this de-
scription is subject also to the equilibrium limitations.

For the present purposes we may take the equation (A2.3-3) as
defining the mean free path of mercury vapor. ( Thus, for pressure ex-
pressed in mm Hg, viscosity in poise, and temperature in degrees

Kelvin,




A(cm) = 0.6064

ua/T
p(mm)

This equation gives the following mean free paths:

T°K | u(107 poise) p{mm Hg) AMem)
300 2683 2.33 x 1073 1.2

400 3713 1.048 7.1 x 1073
500 4757 39.42 2.7x 1074

(A2.3-4)
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