Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

I'F"ule'c reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of intormation, including suggestions tor reducing this burden, to Washington Headquarters Services, Directorate for intormation Operations and Reports, 1215 Jetterson
Advise Highway, Sulte 1204, Arlington, VA 22202-43U2, and to the Uttice of Management and Budget, Paperwork Reduction project{t/U4-U188), washington, UG 20503,

7. AGENCY USE ONLY (Leave blank] _ J2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1/25/05 final report, 27 Aug 2001 - 29M_ay 2004
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Efficient Integration of Old and New Research Tools for Automating the Identification
and Analysis of Seismic Reference Events DE-FG02-01ER83218

6. AUTHOR(S)
D. Wilmer Rivers, Jr. and Robert A, Wagner

e N

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Multimax, Inc

1441 McCormick Drive MM-05-1SD-02

Largo, MD 20774

9. SPONSORING / MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 70. SPONSORING / MONITORING
U.S. Department of Energy AGENCY REPORT NUMBER

Chicago Operations Office
9800 South Cass Avenue
Argonne, IL 60439

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Any single computer program for seismic data analysis will not have all the capabilities needed to study reference events, since
these detailed studies will be highly specialized. It may be necessary to develop and test new algorithms, and then these special
codes must be integrated with existing software to use their conventional data-processing routines. We have investigated two
means of establishing communications between the legacy and new codes: CORBA and XML/SOAP Web services. We have
investigated making new Java code communicate with a legacy C-language program, geotool, running under Linux. Both methods
were successful, but both were difficult to implement. C programs on UNIX/Linux are poorly supported for Web services, compared
with the Java and .NET languages and platforms. Easier-to-use middleware will be required for scientists to construct distributed
applications as easily as stand-alone ones. Considerable difficulty was encountered in modifying geotool, and this problem shows
the need to use component-based user interfaces instead of large C-language codes where changes to one part of the program
may introduce side effects into other parts. We have nevertheless made bug fixes and enhancements to that legacy program, but
it remains difficult to expand it through communications with external software.

14. SUBJECT TERMS 75. NUMBER OF PAGES
seismic analysis, inter-process communications, distributed applications, CORBA, 183
Web sarvices, XMLISOAP, metadata, geolool programi 16 PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 79, SECURITY CLASSIFICATION _ |20. LIMITATION OF ABSTRACT
OF THIS PAGE OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed bv ANSI Std. Z39-18
298-102

SUMMARY

The selection and study of reference events for inclusion in the National Nuclear Security
Administration (NNSA) Knowledge Base (KB) requires the application of a much
broader suite of seismic analysis software than does either the routine production of a
seismic bulletin or the subsequent preliminary screening of those bulletin events to
conduct nuclear monitoring. For either of the latter applications, a large program de-
signed explicitly for that single purpose can perform all the tasks that must be applied to
the many events that will be processed daily, whereas all the different measurements and
algorithms that a scientist may wish to apply to a candidate reference event cannot be
anticipated in advance and incorporated into a single large program. A scientist studying
candidate reference events is therefore more likely to need the capabilities found in many
separate specialized programs, and it may in fact be necessary to develop new software to
perform specific analyses that are modified or designed just for the particular events
under examination. All these applications, including the developmental software that is
still in the testing phase, must then be made to work in tandem so that they can be applied
to the data set under examination.

To link together the different applications (which may be running in separate execution
threads on a single computer or on separate computers, perhaps even under different
operating systems), it is necessary to implement a middleware layer and then modify the
applications so that they can communicate through it. There are two principal approaches
to establishing the inter-process communications, and we have examined both of them.
One is the tight coupling of one application to another through socket-based Remote
Procedure Calls that are implemented directly in code or within Common Object Request
Broker Architecture (CORBA) or Java Remote Method Invocation (RMI) client-server
software. The alternative approach is the loose coupling of a diffuse cluster of clients and
servers employing a Service-Oriented Architecture (SOA) for communications, espe-
cially across an Intranet or Internet, such as “Web services” that exchange both process-
ing requests and data as XML-formatted Simple Object Access Protocol (SOAP)
messages transmitted by HTTP.

In this project we have assumed that the familiar program geotool, for the interactive
display and processing of seismic data, will be the cornerstone program in a reference
event analysis system. Because geotoo! is built using an early 1990s architecture consist-
ing of a single large C-language program running within UNIX (or Linux) that invokes
operations through callback functions from Motif widgets, it is a difficult program to
modify without introducing unanticipated software “side effects” into parts of the code
that were not themselves directly modified. We have met with mixed results in attempt-
ing to make geotool flexible enough to allow it to request services from other programs
by acting as a so-called “fat client” (i.e., a program that does most of the data processing
itself and relies on server programs only for specialized tasks). A preferable approach
would be to employ a “thin client” program that serves mainly as a user interface (like a
graphics terminal), but it would be better still to retain much of the client-side functional-
ity of geotool by breaking it up into individual components that could be modified
independently of one another, thereby minimizing the side effects introduced by those
modifications. Modern software architectures as such J2EE and .NET rely on client and

server programs that are developed using this approach. A promising future platform for
building a reference event analysis system comprising individual software components
for different seismic data processing tasks is the next version of the Windows operating
system, which is built upon a middleware layer called “Indigo” that blurs the distinction
between a tight client-server coupling and a loose coupling of Web services by employ-
ing SOAP messages for both types of inter-process communications.

ii

ACKNOWLEDGEMENTS

We wish to thank our collaborators at Lawrence Livermore National Laboratory, specifi-
cally Craig Schultz, Douglas Dodge, and Gregory Pope, for producing a requirements
document showing software that will be needed for a reference event analysis system and
showing bug fixes and enhancements to the program geotool that are needed not just for a
reference event system but for the application of geotool per se to seismic data analysis,
as it will be necessary to do to commercialize the results of this Small Business Innova-
tion Research investigation. We are especially indebted to Floriana Ryall of Johnson
Controls for her diligence and thoroughness in discovering shortcomings of geofool. We
are also indebted to the software development staff at Multimax for their hard work and
resourcefulness in their efforts to address those shortcomings.

iii

TABLE OF CONTENTS

Section

SUMMARY

ACKNOWLEDGEMENTS

|8

o 0 O N N s W N

10

11.
12.
13.
14.
e 8
16.
.
18.
19.

BACKGROUND

. OBJECTIVE OF THIS STUDY

. INITIAL SYSTEM ARCHITECTURE INVESTIGATION

. USE OF CORBA FOR DATA COMMUNICATIONS

. IMPLEMENTING CORBA IN GEOTOOL

. IMPLEMENTING CORBA IN APPLICATION “WAVEFORMVIEWER?”
. ON-SCREEN DEMONSTRATION OF CORBA ARCHITECTURE

. DISCUSSION OF DISTRIBUTED PROCESSING

. SHORTCOMINGS IN THE USE OF CORBA

. WEB SERVICES
USE OF XML/SOAP FOR DISTRIBUTED SEISMIC PROCESSING
METADATA REQUIREMENTS |

PROBLEMS ENCOUNTERED IN IMPLEMENTING WEB SERVICES
PROBLEMS ENCOUNTERED WITH MODIFYING GEOTOOL
INTEGRATION OF TOOLS FOR USING THE KNOWLEDGE BASE

CONCLUSIONS
REFERENCES

APPENDIX: GEOTOOL USERS MANUAL

FUTURE DEVELOPMENTS IN ARCHITECTURE FOR CLIENT CODE

Page

iii

wn W N

~

11
13
23
24

25

26

30

34

34

37

RECENT DEVELOPMENTS IN SERVICE-ORIENTED ARCHITECTURE 37

39

41

42
A-1

v

1. BACKGROUND

Monitoring the globe to detect, locate, and identify possible nuclear explosions requires
an extensive database of information about known seismic events (i.e., those which have
been located reliably and for which their nature, whether a particular type of earthquake
or chemical explosion, is presumed known either by detailed studies of locally recorded
seismograms or by ancillary information such as on-site geological investigations,
satellite photography, or perhaps simply the examination of the industrial logs of blasting
conducted at rock quarries) in as many different geographic and geologic settings as
possible. This extensive database is needed because the characteristics displayed by
seismograms are strongly influenced not only by the nature of the seismic event but also
by the event’s geologic setting and the seismic waves’ propagation path from the source
to the receiver. It is therefore important to have a reference database containing informa-
tion characterizing different types of events (e.g., chemical explosion with various
geometries of ripple-fire patterns relative to the spatial distribution of recording stations,
shallow strike-slip earthquakes, deep dip-slip earthquakes, etc.) in as many different
geologic settings (rock type, anelastic attenuation, proximity to local scatterers of seismic
waves, etc.) for as many different source-to-station wave propagation paths as possible.
These seismograms should then be studied in detail so that seismograms from newly
detected (and hence unidentified) events can be compared with them. Such a database of
reference events is therefore an important component of the Department of Energy
National Nuclear Security Administration (NNSA) Knowledge Base (viz. Young et al.,
2003). For instance, if the Knowledge Base records that for a particular type of event in a
particular region as detected at a particular station the ratio of the spectral amplitude of
the Pg wave in the 6-10 Hz band to that of the Lg wave in the 2-4 Hz band exceeds some
threshold, that characteristic will aid in the identification of other events of that same type
in that same region as detected at that same station. What is thus required is a powerful
and set of tools for studying seismic data in sufficient detail that they may then be used as
reference events in the analysis of new data.

Unfortunately, no single piece of software is adequate for this purpose, and furthermore
none ever can be, since it is impossible to foresee all the possible scientific investigations
than can be performed on a seismogram (which, as we have pointed out, will be highly
variable from case to case) and since new research results will always eventually lead to
new techniques for studying reference events. This is an important difference between a
reference event analysis system and the existing software systems that are employed in an
operational setting for the routine analysis of new data to produce a daily bulletin of
seismic activity as a means for monitoring the test ban: an operational system can (and
perhaps should) be limited to employing a specific set of tools, often in a routine se-
quence of actions specified in advance and carried out on a large data set, whereas a
reference event analysis system will of necessity be open-ended, since scientific research
leads wherever it may lead, often in unforeseen directions that require inventive new
tools. The reference event research system will be therefore be designed to perform as
many different operations as possible in whatever order is deemed most appropriate,
although perhaps on a much smaller data base (consisting of only a few events from the
same region and/or exhibiting some particular characteristic) than the one that is proc-
essed for routine seismic event bulletin production.

Large and powerful seismic analysis programs such as geotool, SAC, ARS, etc., all offer
a variety of useful tools, but each one offers certain capabilities that the others lack, and
all fail to provide the capabilities that are offered by specialized programs that perform
only a specific type of analysis in great detail. These specialized tools are frequently
developed by investigators who would like to add those capabilities to the existing
software programs (once they have been tested against them), but they do not want to
have to re-write the large programs in order to add these specialized routines to the pre-
existing suite of capabilities that those programs offer. What is therefore required is a
system architecture that allows the existing seismic analysis programs as well as newly
developed specialized ones to cooperate with one another, effectively creating a “super-
program”. This linking of the separate programs into an integrated whole is more useful
than the sum of its constituent parts, since it is the interplay between the different modes
of investigation, and not just results obtained by each technique separately, that will
prove most useful to a scientist attempting to identify and characterize reference events.

2. OBJECTIVE OF THIS STUDY

As is explained above, scientists use a variety of stand-alone computer programs to
analyze and identify seismic events for the monitoring of possible nuclear explosions,
and an especially wide selection of software tools is needed for the detection and inten-
sive study of reference events that will be included in the NNSA Knowledge Base for use
in future event comparisons. Some of these stand-alone programs are large software
packages that offer many tools for routine seismic analysis, but they are difficult to
modify to include additional tools for specialized tasks. Others of these stand-alone
programs offer the capability of performing only specific operations, and they must be
used in conjunction with other programs such as interactive waveform graphics displays
that offer more general analysis capabilities. In most cases neither the large software
packages nor the specialized analysis programs can communicate adequately from one to
another without the tedious creation and input of temporary data files and other awkward
techniques. Since the stand-alone programs cannot exchange data easily, it is difficult to
use them in a data-processing pipeline that could add new capabilities to those offered by
the large software packages or that could allow the specialized analysis programs to rely
on other software for tasks such as graphics displays.

A reference event analysis system should therefore be built by using a system architec-
ture that facilitates data flow among these stand-alone programs, including any new
programs that will be developed in the course of future research and that may be espe-
cially valuable for the identification and characterization of reference events. This new
architecture should allow the results of one program to be sent easily to another one, as
chosen on a case-by-case basis by the seismic analyst, without the creation of temporary
files and database tables. Because many of the stand-alone seismic analysis programs
that need to communicate with one another are written in different computer languages,
and many are written for use under different operating systems, it will be important for
this architecture to be as nearly platform-independent as possible. Furthermore, the
communications among the separate programs should allow access to remote resources
for data retrieval or specialized computations. The reference event analysis system

should therefore be constructed as a distributed system of individual software compo-
nents rather than as a single large software package. The first objective of our study was
to examine software architectures and communications protocols that will allow existing
and newly developed programs to be used as the components in this distributed system.
Our next objective was to modify one of those programs, geotool, so that it can be
integrated into a reference event analysis system using that distributed system architec-
ture.

3. INITIAL SYSTEM ARCHITECTURE INVESTIGATION

The first phase of work was intended to explore the architectural underpinnings of a
software system for analyzing seismic reference events, and it was not intended in this
first stage to design and construct any of the graphics, signal processing, geophysical,
communications and other modules that would be the constituent parts of such a system.
Our initial study focused not on the construction of a new seismic analysis package that is
intended to replace the ones currently in use; rather, it focused on the integration of
separate modules, including both existing code and newly developed routines, into a
flexible software system.

In examining possible architectures for a reference event analysis system, our choices
were guided strongly by the differences between routine seismic analysis performed for
constructing event bulletins and the more nearly ad hoc analysis that is required to
identify and characterize reference events for inclusion in the Knowledge Base. As noted
above, software packages for routine seismic analysis are designed to facilitate the
repetitive performance of a pre-determined series of tasks. Although a data analyst
engaged in constructing an event bulletin will have some flexibility in choosing to
perform certain ones of those analysis tasks for every waveform under consideration
while reserving other analysis tasks for use only in unusual circumstances (such as using
a polarization filter to help separate the sources of mixed signal arrivals), by and large the
processing of every new event will conform to set procedures. In particular, if the analyst
makes any choice of data processing tools at all, the selection of those tools will be
limited to only those modules that are included within the seismic analysis software
package, so the designer of that package must therefore foresee all the tasks that the
analyst may need to perform. For screening all seismograms recorded by a network and
pre-processed by an automated system, and especially for making a specified set of
measurements that are agreed upon for international data exchange, this approach is in
fact a suitable one. A number of software packages such as Seismic Analysis Code
(SAC2000; viz. Goldstein, 1998), Analyst Review Station (ARS; viz. Wang, 1996),
geotool (Henson, 1993), and MatSeis (Young, 2001), among others, are commonly used
for these analysis tasks. These same packages can also be used satisfactorily for the
analysis of reference events, but we feel that the use of any single one of these packages,
or for that matter the use of any other single large program that we could design and build
ab initio as a product of our current study, may not be the best possible approach for this
purpose. We shall now discuss some shortcomings of that approach and describe alterna-

tives to it.

For identifying and characterizing possible reference events for use within the Knowl-
edge Base, it is critical that the scientist have maximum flexibility in choosing what
algorithms and data processing routines should be used in any particular case. The
purpose of a reference event is to exemplify the seismograms that are to be expected from
a particular type of event, in a particular region, as recorded at particular stations, and the
tools needed to characterize those seismograms will be as varied as the waveforms
themselves. A wavetrain from a small strike-slip earthquake in the upper mantle in a
region of low anelastic attenuation will of course be markedly different from the wave-
form of a large thrust-fault earthquake at shallow depth in a tectonically active region,
and a scientist may wish to choose to apply a different suite of tools depending on certain
features that are exhibited by one of these events but not by the other. In fact, highlight-
ing these differences in order to categorize patterns that can be used to distinguish one
type of event from another is one of the goals of reference event analysis. Even for
conventional applications such as picking arrival times, determining epicenters and
confidence regions, measuring signal amplitudes and periods, etc., when studying a
reference event a scientist may well wish to apply unusual tools that would not conven-
tionally be applied during routine event screening. For instance, elaborate de-ghosting
algorithms may be used to identify multiple small echoes within reference signals propa-
gating along paths characterized by strong multipath arrivals, a procedure that is unlikely
to be applied to signals not intended for inclusion in the Knowledge Base. It is even
possible that a scientist may wish to develop special software for application to a particu-
lar signal, if no tool that is available seems appropriate for the purpose. Applying spe-
cialized tools would require making modifications or extensions to the seismic analysis
software packages. Another reason that these packages could need to be modified for
reference event analysis is that it can be the software itself, rather than the seismogram,
that is the subject of the analysis. This would happen because a scientist who is develop-
ing a new analysis routine will likely want to test it by applying it to reference signals in
conjunction with the existing tools that already exist in those packages. For instance, a
scientist who has developed some variant on the conventional computation of the com-
plex signal cepstrum will want to test only that algorithm and not have to write new
graphics code for the display of the waveforms, spectra, cepstra, etc., capabilities that are
already offered by the existing seismic analysis packages. For processing reference
events, then, it will be necessary for a scientist to make modifications to SAC, ARS,
geotool, etc., by incorporating unusual or newly developed analysis tools into the soft-
ware package.

Although most of these seismic analysis software packages can be modified to some
extent, the process is usually not an easy one. In some cases modifications can be made
to the software through the resource files it processes as data, and in other cases new
libraries can be linked in and operated from existing callbacks, but often it is necessary to
modify (and thus have access to) the source code to make some desired changes. Even
when it is possible to do this, it is dangerous to do so, since modifying code in the huge
single programs that form the basis of most of these packages is liable to result in unan-
ticipated “side effects” that cause existing functionality in the program to break or to
behave in a different manner than before. Another major problem is that often a scientist
who is working with a large seismic analysis program written in the C programming

language, for example, will want to implement a processing routine that is written in Java
or some other language. Although software “pragmas” (as they are called in some
languages, such as Ada) can be constructed to invoke routines written in one language
from main programs written in another, the process is not so straightforward that a
scientist or data analyst could rig it together in short order as an improvised addition to
the analysis of a specific event. Scientists who are running a program like geotool that is
intrinsically hard-coded with calls to a particular graphics platform (in this case, Motif)
are furthermore constrained to work within a particular operating system such as UNIX
and therefore cannot take advantage of seismic analysis codes written to run on another
platform such as Windows. To overcome these problems associated with adding func-
tionality to large software systems for seismic analysis, we have decided to take a differ-
ent approach to constructing the reference event Analysis System. Instead of augmenting
an existing large program, or writing a new one that would be more nearly comprehen-
sive but that would itself eventually become inadequate when future research results in
new analysis algorithms and new software tools, we have chosen to implement a distrib-
uted architecture that will permit existing code as well as new code to be invoked re-
motely from the large programs currently used for seismic analysis.

4. USE OF CORBA FOR DATA COMMUNICATIONS

The distributed system architecture that we investigated during the first phase of this
project is one that is based on CORBA (Common Object Request Broker Architecture), a
technology that was developed in the mid-1990s for client/server data communications
between desktop computers and corporate mainframes. Our scheme for implementing
CORBA as the backbone for a distributed seismic analysis software system is illustrated
in Figure 1. We are using the C-language program geotool as the server software, since it
manages the system of ASCII files (and/or the Oracle database) and thus operates as a
data server. Although geotool runs under the Linux operating system, for our proof of
concept we used a simple Java program called “WaveformViewer” as a client applica-
tion, running under the Windows 2000 operating system on a separate computer within
the same LAN. As its name implies, WaveformViewer does little more than display
waveforms using Java graphics, but it does offer a limited functionality such as digital
filtering that will suffice to demonstrate how the reference event Analysis System should
work. WaveformViewer is in fact assembled from only a few of the many Java classes
that make up a much more comprehensive seismic analysis system (Henson et al., 2000),
but rather than use that full system, thereby linking together two large programs that offer
many duplicated capabilities, we wish to show how a single server can drive data analysis
by communicating with a number of small client programs each of which perform only a
small number of particular tasks, perhaps only a single function. This is the system
design that we consider the best candidate for use in the reference event Analysis System.
Examining the configuration shown in Figure 1 points out a si gnificant difficulty with our
initial architecture, however: more properly geotool should be a client application, since
it acts as a Graphical User Interface, and it should call WaveformViewer by accessing a
Java application server, since it delivers a service (in this case, filtering a waveform) to
the geotool client. This reversal in roles is a problem to which we shall return later.

| WaveformViewer
(Java application)

Menu items and GUI controls added to
WaveformViewer to invoke new callback

Client Platform (Windows 2000)

ViewerAgent object

class attributes

class methods

Agent.connect()
Agent.getCSSv3Table()

Java ORB

(part of JDK 1.2)

geotool (C-language program)

New callbacks to connect to Name Server

L

| New callbacks to send data
in C8S-schema format to IDL interface

CORBA library

libORBextensions.so

. prlly Agent.sendCSSv3Table()
! functlgns within VlewerAgent object Agent.getWaveform()
Agent.sendWaveform()
S B E—
CORBA Naming o T
Service - IHOP
(accessed via data ‘
“CORBA Center” = transfer
GUI toal) = — |
— -
] —
— - Tk

Linux ORB
(part of
distribution)

‘ New callbacks to receive data

P

in CSS-schema format from IDL interface

Server Platform (Linux)

Figure 1. Using CORBA to enable client/server data communications between the C-
language program geotool, running as a data server under Linux, and the Java program
WaveformViewer, running as a client application under Windows 2000. (Ideally, how-
ever, geotool should be a client application, since it acts as a Graphical User Interface,
and it should call WaveformViewer by accessing a Java application server, since it
delivers a service to geotool.) The data communication takes place between the Object
Request Brokers on each platform via the Internet Inter-ORB Protocol, which is an
Internet standard. We have modified the client code and the server code so that they link
to CORBA, and that link can now be used to permit data communications between the
sever and additional client applications that are invoked by the user through items added
to the geotool pull-down menus. The data that are exchanged between the client and
server programs are translated from the standard CSS database table schema to CORBA
Interface Definition Language. We have written a utility called “CORBA Center” that
makes it easier for the user to set up the client/server link (which requires the geotool
server to register itself with the CORBA Name Server).

As is shown in the diagram in Figure 1, we have modified geotool by adding new call-
back functions that allow it to communicate with an ORB (Object Request Broker), a
commercial software program that operates as “middleware” in the CORBA data com-
munications design. Since georool is running under Red Hat’s distribution of Linux, we
are able to make use of the open-source ORB known as “ORBit” that is bundled as a part
of the distribution. For a geotool server running instead under Solaris, we could use as an
alternative any one of a number of commercial ORBs for UNIX. Using the X Resources
file for geotool we can then add a new pull-down menu item that will allow the user to
send data to our client program, WaveformViewer. To expedite the process (external to
geotool) of setting up the data connection, we wrote a utility called “CORBA Center”
that effectively acts as a switchboard for choosing a server side and a client side of the
data flow. This utility registers the IP addresses with the CORBA Naming Service (to
associate object references with symbolic names) so that the two programs can exchange
data across the LAN as easily as if they were both running on the same computer.
CORBA'’s data communication across the LAN takes place using the Internet Inter-ORB
Protocol (IIOP). This is an official Internet protocol (like FTP and HTTP) that allows an
ORB on one platform to communicate with one on another platform. Note that it is
irrelevant that the server-side software is in C and the client-side software is in Java,
since IIOP is platform-independent. We had to modify the pre-existing Waveform-
Viewer client application by adding callback functions that allow it to communicate with
anew “Agent” Java class, which in turn handles the communication with the ORB that is
included within the Java platform under releases of the Java Development Kit (JDK) with
version numbers 1.2 and higher. The data messages that are exchanged through this
client/server communication consist of seismograms and the metadata that describe them,
in conformance with the standard Center for Seismic Studies (CSS) data schema (Carter
et al., 2001). To allow this communication, we have translated the CSS-schema data
structures such as .wfdisc, .arrival, .origin, etc., into CORBA’s Interface Definition
Language (IDL). An IDL routine does not know whether the application with which it is
communicating is written in C or Java (or one of several other languages). All it knows
is that the application on the other side of the data stream expects to receive a message
conforming to a particular IDL argument list, and we have therefore translated all the
standard CSS data tables into a single IDL interface so that we can re-use that same
interface for as many different geotool client/server applications as possible.

5. IMPLEMENTING CORBA IN GEOTOOL

We have written a graphical interface to the CORBA Name Service and made it accessi-
ble by remote Java or C applications. The Name Service makes it possible for the client
applications to identify the remote data providers. Here, we have called these applica-
tions that provide data that can be accessed by other client applications as “server appli-
cations”. You can have one or more server applications in one network or even in a
single machine. The Name Service application must be running on one machine in the
network all the time so that it can be used by these server applications or client applica-
tions. This architecture is illustrated schematically in Figure 1, where the CORBA Name
Service is show as “middleware” between the server and client applications.

In addition to developing the IDL description of the data to be transferred among applica-
tions, we have added a software library called /ibORBEXxtensions.so to facilitate the use of
CORBA in the server-side application. The coding in the server is then less complex
than inter-process communication ordinarily is. Most of what the users need to know is
how to use the callback functions in geotool and what are the data structures in the CSS
Schema v3.0. Here we list the functions that are the ones most often used in libORBEx-
tensions.so:

void Init Schemav3(void);

void Schemav3 create service(char *host,
int portnum,
char *requested name);

void Schemav3_SetCallback(void *func,
int which,
int callback_type);

void Schemav3_thread run_service(void);

First, the function Init Schemav3 must be called before the program uses this library.
Then the function Schemav3_create_service can be called to create a name and set it to
the Name Server, as is shown in the second function call that is listed above. The pa-
rameters used in this function call are:

host: The name or IP address of the machine on which the name server is
running. For example, if you have a name server running in a machine
with IP address 63.119.210.101 in your network, this parameter will be
“63.119.210.101”.

portnum: The port number in name server machine. The TCP/IP protocol
uses different port numbers to listen to the network and establish different
network connections. When the name server starts, you will have to give
it a port number for network connection. This number can be obtained
from the person who administers the name server.

requested_name: This name will be stored in the name server and will be
requested by the client applications. It is used to identify the server appli-
cations. If a client application wants to establish a connection with a
server application, it has to request this name from name server, and the
name server will then guide it to connect to the proper server application.

Next, the program should make the function call:
void Schemav3_SetCallback(void *func, int which, int callback type);

This function is used to set different callb-ack function for different data tables. If the
client applications place the requests, the system will call this corresponding callback

function automatically. For example, we define a callback function and set it to respond
to a data request about the data table Wfidsc. When the client application requests the
waveform description table Wfdisc, the server application will automatically call the
function void impl CALLBACK get Wfdisc vector():

static void impl CALLBACK get Wfdisc vector(Schemav3 WfdiscVector * w)
{
//collect data for the table Wfdisc in Geotool and fill in the structure w.
// the client application will get back all the data in structure w.
}
Schemav3_SetCallback((void
)&impl CALLBACK get Wfdisc vector,F Wfdisc,T
Y CALLBACK VECTOR);

For the other data tables in CSS Schema v3.0, the user can perform a similar procedure in
the same way.

void Schemav3 thread run service(void);

This function tells the system to begin the application data service. The service will start
as an individual thread. The user therefore does not have to worry about the main
message loop in the system.

Here is the sample code in geotool that shows how to response to the “get Wfidsc table
data” requests. When geotool starts, it will first call the function “StartSche-
mav3ServiceCB”, and this function call will make geotool work as the CORBA data
provider.

// This is function orbCB.c

static long impl CALLBACK get Wfdisc_total(void) ;
static void impl CALLBACK get Wifdisc vector(Schemav3 WfdiscVector *w);

void StartSchemav3ServiceCB(Widget widget, XtPointer client_data,
XtPointer callback data)
{

Init_Schemav3(); //initialize before using the lib

// Set the callback function so that client can get the total waves in Geotool
Schemav3_SetCallback((void *) &impl CALLBACK get Wfdisc_total,
F _Wifdisc, TY CALLBACK_TOTAL),

/I Set the callback function to response to the “Get Wfdisc” table request from client application.
Schemav3_SetCallback((void *) &imp! CALLBACK get Wfdisc_vector, F_Wfdisc,
TY CALLBACK_VECTOR);

// A name server is running in machine with IP address 63.119.210.101 and listening to the port 1077.
// Here, the name “Geotool” is set to the name server

Schemav3 create service(“63.119.210.1017, 1077, “Geotool”);

Schemav3 thread run service(); //begin the service and begin to response to the client’s requests

printf("starting Geotool Corba service, waiting for request....\n");

}

/* This function returns how many waveforms are displayed in Geotool */
static long impl CALLBACK get Wfdisc_total (void)
{

Geotool *g;

if ((g = getGeotool(g_widget)) ==NULL) {
printf("TableListCB: Can't get geotool parent”);
return 0;

}

return (long) g->num_wavs;

/* This function reads these data in Wfdisc table in Geotool and fills in the structure w.
The structure w will be returned to the client’s application, */
static void impl CALLBACK_get Wfdisc vector(Schemav3 WfdiscVector *w)
{
Geotool * g;
int i;
Schemav3 Wfdisc * wl;
WFDISC30 * wf = NULL;
Boolean valid wf = 0;

if ((g = getGeotool(g_widget)) ==NULL) {
printf("TableListCB: Can't get geotool parent");
return;

}

if (g->num_wavs < 1) return;

mallocWarn(&wf, g->num_wavs*sizeof(WFDISC30));
valid_wf = GetWfdisc30Data(g_widget, wf);

for (i=0; i< g->num_wavs; i++)

// get from the wf
wl = &w->_buffer[i];
if (valid wf') {
if (wifi].sta[0]) strncpy(wl->sta,wili].sta, strlen(wifi].sta));
if (wii].chan[0]) strncpy(wl->chan, wi[i].chan, strlen(wi[i].chan));

wl->wfid = wili].wfid;

wl->time = wili].time;

wl->chanid = wii].chanid;

wl->endtime = wffi].endtime;

wl->nsamp = wi[i].nsamp;

wl->samprate = wii].samprate;

wl->jdate = wili].jdate;

wl->calib = wf[i].calib;

wl->calper = wili].calper;

if (wili].instype[0]) strncpy (wl->intype, wili].instype, strlen{ wi[i].instype));

if (wili].segtype[0]) strncpy (wl->segtype, wili].segtype, strlen(wili].segtype));
if (wili].datatype[0]) strncpy (wl->datatype, wi[i].datatype, strlen(wili].datatype));
if (wili].clip[0]) strncpy (wl->clip, wili].clip, strlen(wili].clip));

if (wili].dir[0]) strncpy (wl->dir, wili].dir, strlen(wi[i].dir));

10

if (wii].dfile[0]) strnepy (wl->dfile, wili].dfile, strlen(wi[i].dfile));

wl->foff = wili].foff;

wl->commid = wi[i].commid,

if (wili].lddate[0]) strncpy(wl->Iddate, wili].lddate, strlen(wf]i].lddate));
}

}
free(&wf');
return,;

}

Here is an illustration showing the logic of this sample code.

Client application sends the Name Server responds and guides

name “geotool” to the name .| 1t to establish the connection with

server to request the connec- the machine that sent the

tion. “geotool” name to the name
server.

h)

geotool detects the request and

Client application Client application calls the callback function
establishes the .| requests the | impl CALLBACK get Wfdisc_vector
connection with "| Wfdisc table "| and then return the data structure
geotool “.w” to the client application.

Figure 2. Flow of logic implementing the data communications between a geotool data
server and a client application, using the CORBA interface developed during this project.

In order to do this same procedure with the other data tables in CSS Schema v3.0, one
can simply copy the code and add the callback functions for those tables. In this exam-
ple, there is another callback function impl CALLBACK get Wfdisc total that returns
how many waveforms are shown in geotool. It will be called if the client applications
make a request for the “total number of waves”. The theory underlying this request is the
same as that for the Wfdisc table.

6. IMPLEMENTING CORBA IN THE APPLICATION “WAVEFORMVIEWER?”

For the client application also, the users do not need to be knowledgeable about how to
perform coding with CORBA. We have provided a Java class “GRBAgent” (which is
labeled “ViewerAgent” for illustration purposes in the schematic diagram of the system
architecture in Figure 1), and client applications can use this class to query the name

11

server, establish the connection with geotool or other server applications and fetch data
from geotool in the CSS v3.0 schema.

Here is the code in WaveformViewer to get the “.wfdisc” table from geotool:

Vector v[]; //define variable stores the return data from Geotool
GRBAgent ¢ =nnew GRBAgent(); //create class instance.

// connect to the name server machine, IP address 63.119.210.101:1077

// and connect to the server application “Geotool”
c.connect(*63.119.210.101”, 1077, “Geotool™);

//get table widisc from server application “Geotool”
v = c.getTable("Wfdisc");

This 1s a description of the Java class GRBAgent:

public class GRBAgent : class to implement the CORBA connection and
other necessary functions of the CSS v3.0 data schema IDL.

Method Summary

public GRBAgent()
Class instance construction, initialization.

public void Connect(String host, int portnum, String requested_name)
Connect to name server and establish connection with server application.

Parameter:

String host: the host name or IP address of the name server.
int portnum: the listening port number of the name server.

String requested_name: the server application name specified on the
name server.

public Vectorl[] getTable(String Suffix)

Get table/data structure defined in Schema V.3 IDL from geotool.
f e.g. getTable(*Wfdisc”) - get data from wfdisc table,

Public getTimeseries(int wfid)

sTimeSeries | In table “wfdisc”, each wave has a unique wfid identifier.
1 This function returns the TimeSeries of the wfid from geotool .

12

7. ON-SCREEN DEMONSTRATION OF CORBA ARCHITECTURE

The following figures show a user interface view of how this system would be used in
practice. This demonstration of the system architecture is self-explanatory, since the
figure captions serve as a step-by-step narrative of how CORBA can be used to enable
data communications between geotool and a separate application (WaveformViewer).

£ Coiba Center " R il o Lo R

Progame Name Distributed App. Group | IP Address App type
Name Server MName Setyice £3.119.210.101
Geotool Geoloo 63.119.210.101 1077 Server Stop Add
WaveformViewer Geotool 63.119.210.101 1077 Client Stap
Delete l
Setting
Stop
Exit

Figure 3. Using the “CORBA Center” tool that was developed in the first phase of this
project to make the use of CORBA simpler, start the CORBA name server to permit
components to locate one another within the distributed processing environment.

£ Corba Center ; L ? X
Progame Name | oistributed App. Group | 1P Address | Pon | apptype | statws |

Name Server Name Service 63.119.210.101 1077 Server Bunning

Gaotool Geotool 63 115.210.101 1077 Server Running Add

WaveformViewer Genotool 63.119.210.101 1077 Client Stop
Delete
Sefting I
Stop I

Exit I

Figure 4. Now use “CORBA Center” to start up the program geotool as a server within
this distributed processing environment. Next use this same window to start up Wave-
formViewer, an application developed using Java classes, as a client within this distrib-
uted processing environment. Finally, select “Name Service” in “CORBA Center” to
make settings to connect the server and the client.

13

]

£/ 3etting of the Application

[BEIES

Program Type:

Application Type:

Application Name:

Application Path:

IP Address:

Port:

Description:

Okay

A C program + Java program
A Server + Client
]Geotool

|/h0me/zy.f‘src/geotool/src/geotoolfsrc/geotool

]63.1 19.210.101

|1D77

test 1

Cancel

Path

Default{locaihost)

Default(1050)

Figure 5. Now, a pop-up window is generated that enables the user to make settings in
the CORBA connection to the server program. This form of the pop-up is the one for a
C-language program like geotool (and like most of the legacy code that will be incorpo-
rated into the Reference Event analysis system using “wrappers” to make those stand-
alone programs function as distributed components). This pop-up eliminates the need for
detailed CORBA programming knowledge on the part of the user of the distributed

processing system.

14

Seting of the Applicalion [S=TET

1]

Program Type: « C program A Java program
Application Type: v Server . Client
Application Name: |Geotool
Jar file path [momerzy/sicijava Path
Class file name |com.multimax.mmi.apps‘Waveforr'nViewer
IP Address: |63A1 19.210.101 Default(localhost)
Port: [1077 Default(1050)
test 2
Description: ks
Okay [Cancel

Figure 6. Next, a pop-up window is generated that enables the user to make settings in
the CORBA connection to the client program. This form of the pop-up is the one for a
Java application like WaveformViewer. In the future, new components could be written
using C++ and Java, since these two object-oriented languages have CORBA interfaces,
and they can then be incorporated into the reference event analysis system to create a true
distributed processing environment of software objects communicating data and requests
for processing services from one to another. WaveformViewer is a prototype of a Java
component that is intended for use within that distributed processing environment.

15

= | geatoul [METE]
File Edit View Option Help
DpeJ Select FillJ Select Hr‘r‘aul Deselect Allf{ Unzoom All
1 ' T T ' PI T T T T) T : ¥ T
2 ' lg Rg PKll’df Ly
1 | [EKR1/s7] Bk ey WMMWMWMMWW
-4
Ly A PKPAF Ly
’Z _.
—5
R
5 PKPdf U.I
3 : IL_WM\MMM«\-\M WW**MMWMWMWM
-9
”‘-’ PKPdf Lg |
a m—,w WWWW}* ww‘wmmwww |
L‘J R‘-’ PK}I)df Lq ;
2 5 | [EX hnjs; AN oA L e Wa%ﬁqwn*MMWMmeWw@w: '
-5 L
'-9 "‘-’ PKPAf Ly
6 | |
6 | [EKRB/sz]snnpmcs hw\ifw*mmmwfwwww«»wm
- L=
Ly Ry PKPdf Ly
B i~ | | | |
7 = ’]
=g L
8 | Lg Rg PK[Ide ng
8 EKR_BE?EMMWV ﬁWWW%ﬁNW\WNMMWMMMM
= Ls
Ly Ry PKPdf Lg
6 - | ! I I
9 =
g L P
| : T, P |
i1 W@wmhﬂ&%ﬂ%mwuwihww‘ |
04:00:00 :01:00 :02:00 :03:00 :04:00
Time (hr:min:sec)
=4 e ST [P
data-1 IEKRS/SZ 04:03;68.900 -0.754763

Figure 7. In the geotool server window, the user is displaying an event as recorded at the
short-period vertical-component channels of the seismic array EKA in Scotland. The
user has selected channels 3 and 4 so that bandpass filtering can be performed on them,
and so geotool highlights them in blue. Since that filtering has not yet taken place,
however, the waveforms as displayed on the screen are still the same as they are in the
“.w” data files that reside on the hard disk.

16

= | Butterworth Filter [x]

High Pass i | Order 3 ..1]

Causal . | Replace I

Taper On _n_l sSelected I

Low Cut[9.60 High Cut | nyq
Taper Width... |

Filter List

19.60 0.00 3 HP causal [

4.5 3 BP zero phase
0 3 BP causal
0 3 BP causal
0 3 BP causal
0 3 BP causal
0 3 BP causal
0
1]
0
]

i 3 BP causal
3 BP causal

3 BP causal

.b
6
A0
.0
.0
.0
1|
.0
.0
.9
e 3 BP causal

b
3
4
]
4
3
Z
2
1

Closgl Applyl Unﬂlterl data-1

Figure 8. The user creates a high-pass filter using the pop-up window that appears in
response to selecting an item from a geotool menu. This is the type of waveform proc-
essing operation that is conventionally performed using programs such as geotool or
SAC. Although here it is being performed within geotool, it is the goal of the reference
event analysis system that scientists can implement their own processing tools, for
instance a high-pass filter that uses a different algorithm from geofool’s, by means of
distributed processing. This figure shows the conventional approach, namely using a
callback function that is part of geotool itself. The following figures show the distrib-
uted-processing approach, whereby data are transmitted from geotool via CORBA to a
separate Java application, namely WaveformViewer, that will apply its own filtering
routine and then send the filtered data back to geotool. However, we first apply the
conventional approach of conducting filtering within geotool so that we can show that
data modified within geotool are sent dynamically to the distributed components directly
from memory rather than from disk.

1

= yeotool ||._._KII:I'f><|
File Edit View Option Help
Dpenl Select All] Select ﬁrray] Dezelect ﬂlll Unzoom ALl
| — 7
K T T T T p T T T T T L T T T T
A | ng HIG PK!l’df Ly
1 | [EKRI/sz e WWMWM#MWMW*WMW
-4
Ly Ry PKPdf Ly
, 5 | | | I
5L " PKPdf Ly
P Lg | I |
3
4
Eeis Ly Ky PRPAf Ly
. 5 I I | |
5 | [EKRbS/sz A A AN vt s b A st
-3
ng “‘g PKPdf Ly
6 | I
6 | [EKRBISZ]=-mnsmtrsarmnind YA A T A AN Ao
B
Ly Ry PKPdf Ly
b= I I | |
7 [P
-B = |
n 5 T
8 | [EKRBISZ}~ravmnomn P AT VA e M o Bl e
g L
Ly Ry PKPdf Ly
6 | I I I
9 =
-6 L H
' Ly Ry PKPdf Ly
B [;w I | | | |
¥ 10 [EKR1Df=r AP AT A A e Pl L i i g - ol
04:00:00 :01:00 :02:00 :03:00 :04:00
Time (hr:imin:sec)
ff — SN
data-1 |EKH3/SZ 04:03:56.750 -0.001933

Figure 9. The selected filter has been applied to channels 3 and 4. Now the waveforms
as displayed on the screen are different from the disk-resident data. In a conventional
data-processing pipeline consisting of stand-alone applications that cannot communicate
with one another, it would be necessary to save onto disk the modified waveforms (and
probably the modified “.wfdisc” database table that describes them), and then the next
program in the data stream would read those new files from disk as its input. The work
we have done in the first phase of this project permits the memory-resident waveforms to
be transmitted to the next program (in this particular case, WaveformViewer) dynami-
cally.

18

%% WavetormViewer SETET
File Edit View Option Help

Open.. | Clear | Stop |

Fy T T T T T T T T T T T T T T T

= [Carna Ghject 2 [=iaix]
2 File Edit View

ﬁLga@_Qata] Close
. sta [chan[time wfid|chanid [jdate endtime nsaml___'

EKR1|se 199/01/30 04:00:00.000/668(111076(|1999030(99/01/30 04:03:59.950 4806
EKR3 |5z 199/01/30 04:00:00.000|670}111078(1999030/99/01/30 04:03:59.950] 480
EKR4|sz 199/01/30 04:00:00.000|671(111079(1999030(99701/30 04:03:59.950| 480(
4 = EKR6|sz- [99/01/30 04:00:00.000(673J111081(1999030|99/01/30 04:03:59.950 4%?
EKR8{sz |99/01/30 04:00:00.000|675[111083(1999030[99/01/30 04:03:59.950| 480¢(J

[
T

RSt ey 2 S el

=== W15 rows, 20 calliNns

Figure 10. In WaveformViewer, a Java application, the user sees a “.wfdisc” display of
the data channels that were selected within geotool and were then transmitted via
CORBA to WaveformViewer. The “.wfdisc” information was translated to CORBA IDL
on the geotool side of the connection, and those IDL data were then interpreted properly
on the WaveformViewer side of the connection so that they can be displayed as the
seismogram description table that appears in the pop-up window. The user will then
select certain of those channels for display within WaveformViewer. In this particular
case we shall choose to display all 5 of the channels that were transmitted from geotool.
Note that these include channels 3 and 4, to which a high-pass filter had been applied by
geotool, as well as 3 waveforms that were unmodified by geotool from their disk-resident
files.

15

£ WaveformViewer B

File Edit View Onption Help

Open.. | Clear | Stop
Fy

T T ¥ T T T T T T T T T

1 ‘[KR 157 WW«MM*‘%{WWWM\M@‘nV'MVMMMNW«MMWWMM.\;vww,mwwwh-w—

Ao ot B b 40
e -t - o

EKRE /52 -vww»wm-—vwwJ*H]uwwmdxnrw\drw‘uWﬂilawrwﬁ\mwwww~mwwv.mw~\»wm~mwmw»»-.-—

~

w

i

5 Lkns/szj }"‘Jﬂ‘«‘awwwwww\w"i‘rwnw—mmww»-wwa.w«»hwwmwwww» .
6 |- -
| P i 1 i i 1 i i L i i I

04:00:0 04:01:0 04:02:0 04:03:0 04:04:0

01/30/39

ol R = = = =

Figure 11. Since the user selected all five channels that were listed in the pop-up win-
dow, WaveformViewer then displays them all. Note that the waveforms for channels
EKR3 and EKR4 are the filtered ones that were resident in memory within geotool and
not the original ones that reside on disk. The data have been transmitted from one
program to another dynamically rather than via intermediate disk files. Note also the
similarity of the WaveformDisplay screen (which employs Java graphics) to the geotool
screen (which employs X Windows graphics). This demonstrates the feasibility of using
Java classes to duplicate, in a platform-independent application, the functionality of the
Motif widgets that were written as the basis of geotool. Although WaveformViewer, as
its name suggests, displays here only the waveforms and not the phase arrivals that were
shown in the geotool display, the arrival information too (as well as “.origin”, “.assoc”,
“sitechan”, etc., information) was transmitted from geotool to WaveformViewer via
CORBA through the IDL code that we have developed in the first phase of this project to
hold the contents of the CSS v3.0 schema for seismic data tables. These data can then be
used by other Java classes for additional data processing beyond the waveform filtering
that will be shown here. From this display, the user now selects the last 2 channels on the
screen (EKR6 and EKRB) to be filtered using one of the Java classes. As in the previ-
ously shown geotool screen, the selected channels are then highlighted in blue. On
account of the similarity between the geotool and WaveformViewer graphics displays,
— we shall not show herein that process of channel selection. S

20

[

e T
High Pass -1] Taper Off -J]

Causal — I Replace — |
Order8 — l

Low Cut (Hz) | &

elected

L

High Cut (Hz) | NYauist

Bpply Unfilter | Hide |I

Figure 12. Just as with geotool, the user is presented with a pop-up window that allows a
filter to be created. The difference is that this window and the filter it applies are written
in Java, rather than C and Motif. The filter is then applied to the selected channels,
namely EKR6 and EKRS8

e e e e — = C 7 [EEET
File Edit View Option Help

Open.. Clearl Stop

=

k] T T T T T
LKR 1/sz wm.~-\wwwww-m&w‘rq‘b\-,.\b\w*-\d,wm&,rw.mwﬂ‘yw;wwww»m«mwwwwmw\wwwwfmww.w%

o o -

04:00:0 04:01:0 04;02 0 - 04:03:0 04:04:0
ig

~

w

=

w

Figure 13. The user next selects these newly filtered channels with the mouse, and then
they are both sent back to georool via the CORBA bus.

21

[E geotool I
File Edit View Option Help
Upenl Select Rlll Select Hr‘ragl Deselect ﬁlll Unzoom Qlll

R — 5
i J T v T o ' T T T T T T T T
4 . P L IO
1 EEKRJIS_ZE-'-W—"WA“vm L e e e
-4
' Ly Ry PKPAf Ly
5 r | I | |
2 [Ry
- L
5 pl Ly | PK}rdf Ig
01 !
: 01 E PKPdF
= R L) &
TN RV T
015 ~ |
4 | [EKR4/sz]-
—.mg - | ng ! . PKPdf ng
= N |
5 | [EKRBISZ A arerovmansims M,NWM%'MMWW&WWWW@WW
-5 L
q | P Ly Ry PK}I’df Ly
6 - | | | |
- Pl
Ly Ry PKPdF Ly
6 i | | | i
7 i
6L
2 p Ly Ry PKPdf Ly
s | I ' '
i} L T) T W
_2 P
' Ly Ry PKPdf Ly
9 =
-B L P
' Ly Ry PKPdf Ly
B I I | f
£ 10 MIMLWW s #) s
04:00:00 :01:00 :02:00 :03:00 :04:00
Time (hrimin:sec)
i~ ———— J
data-1 | EKRS/sz 04:03:59.750 0662389

Figure 14. The waveform display that has been running within the geotoo! window is
updated with the data for channels EKR6 and EKR8 that were filtered within the Wave-
formViewer Java application. Just as with the data transmission from geotool to Wave-
formViewer, the data that were transmitted from WaveformViewer to geotool were sent
dynamically rather than being written out as disk files. In addition to the binary wave-
forms themselves, the data tables such as “.wfdisc” and “.arrival” were transmitted in
both directions via CORBA through the code that we have written to translate the CSS
—v3.0-data table schema to IDL.—The whole process shows how a filter would beapptied
in the reference event analysis system: the user can apply a filter using a routine that is
part of geotool or can apply a filter (in this case, one written in Java) that is part of a
separate application (in this case, WaveformViewer). We have thus demonstrated the
technical feasibility of using CORBA to link stand-alone seismic data analysis programs.

22

8. DISCUSSION OF DISTRIBUTED PROCESSING

The proof of concept shown in Figures 3 — 14 demonstrates that a distributed software
architecture built using CORBA can form the basis of a reference event analysis system.
Instead of having as the tool to use for identifying and characterizing reference events a
single huge program that is difficult and/or dangerous to modify, it is possible to modify
geotool (or ARS, or SAC, etc.) to be used as a data server and then to perform the actual
seismic analysis externally to geofool by using a host of separate applications, including
both existing code and programs yet to be written, running on whatever platform is most
appropriate. In particular, the analyst should be able to use seismic data centers and
supercomputers located at remote facilities accessible via the Internet, just as if those
capabilities were offered by the server platform itself. The data communications should
be performed as easily as possible without requiring the analyst to go through intermedi-
ate steps of creating, exporting, and importing temporary files and database records. This
flexibility will be required for the intensive study of reference events, where new algo-
rithms not ordinarily used for routine seismic analysis may be required in order to per-
form specialized investigations in individual cases. The analyst should be able to select
which programs to run, and in what order to run them, and in many cases it may well be
necessary to construct new programs. The analysis programs that run as client applica-
tions should perform only one or two specific tasks, and they can be written to perform
only those particular functions without reproducing all the overhead capabilities for data
management that are required by the server program.

The example that was illustrated in these figures should serve to demonstrate the need for
certain features in a distributed processing architecture that are not conventionally part of
a software system like geotool that runs as a single program on one computer (albeit
within multiple windows). In Figure 9 data channels 6 and 8 are unfiltered, in Figure 13
they have been filtered by the Java application, and in Figure 14 they have been returned
to the geotool server in their filtered form. What, then, should the geotool server program
do with the unfiltered versions of these channels, which of course are still resident in the
program’s RAM, and are still displayed on the Linux computer screen, once the client
program is ready to send the filtered versions back to the server? Should the process of
returning the filtered data from the client automatically cause the server to delete the
unfiltered data? Should the geotool window instead now display the presence of two
different versions of these waveforms, and if so, should it change the waveform identifi-
* cation label .wfid to reflect that there are now two different waveforms for the same time
windows on these particular data channels? Should the return of the filtered data from
the server be blocked until the analyst has hit a “receive” button in geofool indicating that
the original data should now be overwritten? (Blocking the transmission of a data
message from the client until the server specifies that it is ready to receive it makes the
data stream function in many ways like an Instant Messenger service such as AOL IM or
1CQ.) What happens if the data analyst sends the unfiltered data to one client application
for filtering and then chooses to send those same data to a different client program for
some other processing, such as polarity reversal, before the first client program has
returned its results? Clearly, the distributed processing architecture presents a number of
issues related to the data’s referential integrity, versioning, and configuration manage-

23

ment. Establishing and enforcing policies for handling these issues will be an important
part of the design of a reference event analysis system.

It is also clear that the system must use some sort of metadata audit trail for tracking the
distributed processing. Regardless of whether the unfiltered data are deleted from the
server’s memory and screen display when the filtered data are returned from the client,
how will the system distinguish between the filtered waveforms and the original ones that
reside on the disk? In the particular case of the interactive WaveformViewer client
application, the analyst was required to input the filter parameters by using a GUI, so it is
known (at least by the analyst, if not by geotool) what sort of filter was applied. In
general, however, it is far more likely that the client code will run automatically, and the
analyst will have no knowledge of the exact parameters that govern the algorithm imple-
mented by the client program, which after all is likely to be running on a different com-
puter, perhaps even at a different facility. The client must therefore return not only the
processed data but also a metadata message describing just what operations it performed
and the parameters it used. The server must construct a database archive of these meta-
data records as a tool to use for the data versioning and configuration management so that
any one or all of the data processing routines executed by the distributed client applica-
tions can later be repeated or undone. We shall present a formulation of metadata in a
subsequent section, after we discuss the use of XML as a means for expressing data and
for invoking remote processing.

9. SHORTCOMINGS IN THE USE OF CORBA

In the last few years there has been in the software industry a move away from 1990s
client/server architecture based on CORBA. This move has been motivated by the need
for business-to-business (B2B) software interoperability. The software of one company
needs to interface with that of another, but security requirements rule out the use of a
tight coupling model such as CORBA, since binary protocols like CORBA cannot be
used to transmit data among machines that use firewalls that regard external data trans-
missions and requests as viruses or hacker intrusions. A company’s proprietary data must
not be accessible by another company using a binary Remote Procedure Call, since the
content of that message cannot be analyzed and vetted by the system that receives it.
Another major problem with the use of CORBA in a commercial environment is that
CORBA is limited to the UNIX (or Linux) and Java platforms; Microsoft Windows has
used its own data communications protocol, DCOM, which is based on a different object
model. Building software bridges between CORBA and DCOM systems is quite diffi-
cult, but in most commercial applications, system architectures make extensive use of
both UNIX and Windows systems, and code running on both of them must be able to
exchange data between them. It should of course be noted that in Figures 3 - 14 we did in
fact exchange data between Linux and Windows 2000 using CORBA, but this was
_possible only because the code that ran on Windows was in fact running within the Java
platform rather than as native Windows code. We feel that this scenario will become
increasingly unrealistic in coming years, as more and more scientific code is written that
takes advantage of the ever-increasing power and low costs of desktop and laptop com-
puters by writing C/C++ programs that run as Windows native code. Because this project
is a Small Business Innovation Research (SBIR) project, it has as its ultimate goal the

24

development of software that can be marketed commercially, and we therefore need to be
able to use native Windows code. This cannot be done using CORBA. In the second
phase of this project, we have therefore investigated using the new B2B standard for data
communications, and that is the technology of Web services.

10. WEB SERVICES

The term “Web services” is often misunderstood, since it has become associated (through
marketing initiatives) with the concept of selling what were formerly desktop applica-
tions as “software as a service” through a subscription model. This is in fact one use for
Web services, but it is far better to think of this technology as a Web of services, in the
same manner that the WWW is a Web of information. The shelves of the computer
sections of most bookshops nowadays are filled with textbooks describing how to build
Web services, since it is a technology that is rapidly becoming a necessity for businesses
that wish to stay competitive in a B2B marketplace. (The number of CORBA program-
ming books, by comparison, is miniscule.) Web services are built around the HTTP
protocol, so they run on every platform. They use XML messages, so they are text-based
and thus are platform independent. Web service software written on Windows can
communicate perfectly with Web services written in Java, and this is not at all true of
CORBA. Every major software vendor has released toolkits to enable the development
of Web services, including software running under the UNIX, Windows, and Java
platforms (e.g., Sun Microsystems’ “Sun ONE”, Microsoft’s ASP.NET, and the Java
Web Services Developer Pack). It is especially important for B2B purposes that Web
services operate by transmitting ASCII messages (written using XML) over HTTP, since
this text-based messaging over a standard industry protocol can work through firewalls,
whereas a binary technology such as CORBA cannot.

Web services are built upon the Simple Object Access Protocol (SOAP) for network
communication between software components. This protocol is simpler and thus easier
to use than is CORBA. SOAP containers are available in Java, C++, Perl, Python, C#,
and many other languages. SOAP provides a mechanism for performing Remote Proce-
dure Calls more easily than does CORBA. No ORB is required to invoke methods from
distributed objects, since the Web server itself performs that operation. In particular, the
open-source Web server from the Apache project makes Web services possible. Just as
the ORB is replaced with object method calls made via SOAP, the CORBA IDL is
replaced by Web Services Description Language (WDSL), a standard that is based on
XML. Finally, the CORBA Naming Service is replaced by the Universal Description,
Discovery, and Integration (UDDI) software standard that allows a Web service to be
published on the Internet or Intranet and then found by clients that need it.

Moving from sockets to CORBA to SOAP results in a gain of flexibility by moving to
_increasingly higher levels of software abstraction within the TCP/IP stack, but it comes at
the cost of decreased efficiency, as direct binary communications are replaced by ASCII
messages. We nevertheless believe this loss in efficiency is offset by the decrease in
development time, and especially by the decrease in software maintenance time, required
for the implementation of such a loosely coupled system of independently developed
components rather than a large single program or a tightly coupled client/server system.

23

As we have noted above, a particular advantage of Web services is that whereas CORBA
permits communication only among the UNIX, Linux, and Java platforms, SOAP Web
services permit these platforms to communicate directly with the Windows platform. We
feel the commercialization of seismic data analysis software will require the ability for
the software to operate within such a heterogeneous environment.

11. USE OF XML/SOAP FOR DISTRIBUTED SEISMIC DATA PROCESSING

Our investigations of the use of XML SOAP for distributed seismic processing will be
illustrated by a Web service that computes the short-term average (STA) of a time series.
This routine is a C++ program running within the Microsoft .NET software platform
under Windows 2000 (not as a program running on the Java platform within Windows).
Figure 15 shows the Web Services Description Language (WSDL) interface that this
program presents to the Internet. WSDL is an XML markup language that is used for
SOAP Web services in a manner analogous to the use of the IDL software that enables
data communications under CORBA. In this case the WSDL file was generated auto-
matically by the Microsoft Visual Studio software development tool when the C++
program was installed within the Inetpub/wwwroot directory of the Web server, so the
programmer does not need to write the WSDL description. Figure 16 shows the format
of the SOAP message that should be used by a client program such as geotool that has
need of this particular Web service. This SOAP format too is generated automatically by
the Microsoft .NET development environment, and SOAP messages in that format can
then be used by a program running under Linux (like geotool) to communicate with this
Windows program.

In our description of the work performed in the first phase of this project when we used
CORBA as the middleware platform for distributed processing, we presented a number of
screenshots showing the transmission of waveforms between the C-language program
geotool running under Linux and the Java program WaveformViewer running within
Windows 2000. We shall not show a similar sequence of screenshots herein, since
externally the distributed processing appears the same whether CORBA or Web services
are used as the architecture. We do show in Figure 17 how to establish a routing to that
same Java program, now accepting SOAP messages rather than CORBA transmissions to
invoke its operations, and at the bottom of the figure we show that a geotool menu item is
being used to receive the results of the processing performed by that remote application.
Note that we have replaced the CORBA Center code that was developed in the first part
of this project (cf. Figures 3 — 6) with a new “SOAP Center” application that establishes
the data routing in an analogous manner.

We mentioned earlier that a problem with the architecture shown in Figure 1 is that
geotool, even though it operates as a data server, should more properly be considered a
client, since it also fills the role of being the graphical user interface. A user of geotool
will then use CORBA, or SOAP, to invoke a remote application that performs a service
(such as the bandpass filtering that was shown earlier) on behalf of geotool. The Web
services architecture makes this distinction explicit, so we shall henceforth refer to
geotool as a client of services that are provided by other programs such as the Java
WaveformViewer code, which is thus more properly considered an applications server.

26

I \“ Vidw Favonies Todl i

et bt Sl -1o) x| ETH
m File Edit View Favorites Tools Help
Addressidhltp //Iocalhos!/Stateless_] "Go +“Back v " Links " Addresslmhttp //localhosl/SlatelessUSTAserver/SlaJ “Go +Back v " 'Links”

‘MMocalhost/StatelessL1STAsevar/Stalalessl IS] =lo]x|

<?xml version="1.0" encoding="utf-
8“ ?>
| = <definitions
xmlns:http="http://schemas.xmlsoap.c
[xmins:soap="http://schemas.xmlsoap.
xmins:s="http://www.w3.org/2001/X| ||
xmins:sO="http://www.multimax.com; |
xmlins:soapenc="http://schemas.xmlso
xmins:tm="http://microsoft.com/wsdl,

name="Buil[dAndGetSTAseriesSoapIn'> 2
<part name="parameters"
element="s0:BuildAndGetSTAseries" />
</message>
- <message
name="BuildAndGetSTAseriesSoapOut" >
<part name="parameters"
element="s0:BuildAndGetSTAseriesResponse” ,
</message>

I . - <portType
g?égi’,'\‘rg:nn; paggi[zl{t/t:c?%‘v‘z:vx: ::g amF: name="StatelessL1STAserverClassSoap" >
xmins="http:/ /schemas.xmlsoap.org/\ - <operation
- <types> B B name="BuildAndGetSTAseries">
- <s:schema <documentation>Construct and

retrieve the Short-Term Average
of the L1-norm (i.e., rectified)
signal</documentation>

elementFormDefault="qualified"
targetNamespace="http:/ /www.mull
- <s:element

—n : = " <input
- girlfézm;:)l(%lp\)ggGetSTAsenes - message="s0:BuildAndGetSTAseriesSoaplIn’ /
' <output

- <s:sequence>
<s:element
minOccurs="0"
maxOccurs="1"
name="arRawTimeseries"
type="s0:ArrayOfFloat" />
<s:element
| minOccurs="1"
L] lY\:1Vﬂ(‘PIII’C—"1 L

#|Done ! ! ¥ Local intranet

message="s0:BuildAndGetSTAseriesSoapOut"
</operation>
</portType>
- <binding
name="StatelessL1STAserverClassSoap"
type="s0:StatelessL1STAserverClassSoap" >
<soap:binding
transport= "http://sclhemas.xmlsoap.org/soap_/’d

o o

5 T T

Figure 15. Screenshot of two browser windows displaying portions of the WSDL (Web
Services Description Language) interface to the Web service StatelessL1STAserver,
which computes the short-term average (STA) of a time series, using the L1 (i.e., abso-
lute value) norm to rectify the data. StatelessL1STAserver is a C++ class operating as a
Web service within the Microsoft .NET software platform under the Windows 2000
operating system. The WSDL interface shows the input values (namely the array of data
points that make up the time series, along with a couple of integers describing the desired
STA time window) that can be used by geotool (or any other program needing the service
of this STA algorithm) to access this Web service, as well as the output values (namely, a
new array of data points) that this service will return to the calling program. The applica-
tion that needs this service will call a local proxy object that has the same interface as is
shown in this WSDL file, and the proxy will transmit the request via the Web server
(within the local host, or across the Intranet or Internet, as directed by the URL for the
Web service) and will receive the response. Because WSDL and SOAP are XML
vocabularies, it does not matter that geotool and StatelessL1STAserver are written in
different programming languages and run on different operating systems.

27

A StatelessL 1STAsarverClass Wab Service - Microsoft Internet Explorer
File Edit View Favorites Tools Help

Fhapn v ¢ v 904 OSearch Favorites YMedia S Sy 4 ¥ v
Address |—L I;}!p.lllocaIhosijtateIessUSTAserver/S!atelessUSTAserverAasmx j ®Go 'Links "

R =18] x|

StatelessL1STAserverClass

A Web service to compute the Short-Term Average (STA) of the input time series.
The following operations are supported. For a formal definition, please review the Service Deascription.
¢ BuildAndGetSTAseries

Construct and retrieve the Short-Term Average of the L1-norm (i.e., rectified) signal

/3 StatelessL1STAserverClass Web Service - Microsolft Internet Ex " =T . =8]%
File Edit View Favorites Tools Help n
#Back v » v @0 QSearch UFavorites FMedia 3 Liv = B b == : > T

Addressl‘elhttp:l/localhost/StatelessL1STAserver/SlatelessLTSTAserver.asm-x:?zap=BuiIvdAndGelSTAseries _-] “Go |Links "

StatelessL1STAserverClass

Click here for a complete list of operations.

BuildAndGetSTAseries
Construct and retrleve the Short-Term Average of the L1-norm (l.e., rectified) signal
Test
The test form is only avallable for methods with primitive types or arrays of primitive types as parameters.
SOAP
The following is a sample SOAP request and response. The placeholders shown need to be replaced with
actual values.

POST /StatelessLlSTAserver/StatelessL1STAserver.asmx HTTP/1.1

Host: localhost

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "http://www.multimax,com/StatelessL1STAserver/BuildAndGetSTAseries"

<?xml version="1.0" encoding="utf-8"?>
<scap:Envelope xmlns:xsi="http://www.w3,o0rq/2001/¥MLSchema-instance" xmlns:xsd="http://www.
<soap:Body>
<BuildAndGetSTAseries xmlns="http://www.multimax.com/StatelessL1STAserver">
<arRawTimeseries>
<float>float</float>
<float>float</float>
</arRawTimeseries>
<numberPointsInWindowBeforeSTAtimePoint>int</numberPointsInWindowBeforeSTAtimePoint>

-1] ’v\|-ml«r\rn(\:h‘-ﬁTV\Yl"':v\rlr\'!“‘:“/-\v-c‘m“.':iv\nnﬁ:h.'\'!.“‘l'/ frrimbm ryTad kb AaThWT n A D+ A OMD k3 mmn D d b q
2] Done 1@ Local intranet
RSt B No..|fig.. [#1SR...| EIME..| W Mic. |« Mic..| #unti..|[Eist . vaes G @CIMSRNEHEIE 230PM

Figure 16. (Top) Screenshot showing a browser window that exposes the State-
lessL1STAserver Web service to examination by a potential user of this service. The
hyperlink to the “Service Description” exposes the WSDL file that was shown in Figure
15 and that can be used to construct the interface to the proxy object. (Bottom) Screen-
shot showing that the hyperlink to the BuildAndGetSTAseries method of the C++ class
exposes a template of the Simple Object Access Protocol (SOAP) message that will be
sent to the Web service via HTTP when the calling program, such as geotool, makes a
call to the BuildAndSetSTAseries method of the proxy object.

28

{=/lailx!

| =/ Soap Conter

Progame Name DI;I!_IDUlBU App. Groug| IP Atidress Port Applype [Stalus]

Gaoteol " Geoloal 63119210100 10000 Servar Running
\Wavelarm Geatool 53119 210101 10000 nin Add |

Detete l
gg'Seniné of the Application || =lallX
Program Type: + C program ~ Java program
Application Type: w Sarvar Client
Program Name: [Waveform
Distributad App. Group]Geotool o
Jar file path |momerzyssrcriava Fath
Class file hame Icom.multlmax.mmi.apps‘waveformViewer
IP Address:]63,119.210.34 Default(localhost)
Pot:]1 0000 Crefault(1050)
Filte Edit I Views Option Help
0 Sl Deselect ALL| U ALl
pe L leselect NnzZoorm
et Delete Data il J
E o
Partial Select
"'-S' (;O'JY La I L3 T I T
Ly
Cut Ly ng nmlw qu
Paste ;*{*WMMW»MWWWMWWAW
]
o L
Filter F L: Rf PKPdf iy
Polarity . i |
. 1] Rg PKPdf
Rolate.. Ly i | Ly
Refresh From Soap Client... - . !
¥ 1)
o '
2 b Ly

Figure 17.—(Topand middle)Windows that set up-a SOAP commection from the ¢
language program geofool to the Java program WaveformViewer. Although in this

instance both programs are running on the same computer, this need not be the case.

(Bottom) A window showing the menu item to refresh the selected waveform in the

geotool display using data modified within the WaveformViewer program.

29

12. METADATA REQUIREMENTS

In seismic data analysis the issue of metadata is always an important one, since it is
necessary to know how the raw data were obtained, how reliable were the measurements,
what automatic and interactive processing were applied to the data, the thresholds beyond
which the processing results are invalid, etc., before the data can be entered into the
Knowledge Base and the events can be located, parameterized, and classified. As we
have mentioned earlier, this need for a thorough description of the metadata is even more
nearly critical for a distributed processing system than for a single large seismic analysis
package, since in our reference event system the client program such as geotool will treat
the independent analysis programs as black boxes. It will send data to other applica-
tionns and receive results back, but the internal operations of these remote services must
be regarded as unknown. It is therefore essential that the servers return to the clients not
only the output of their algorithms but a thorough metadata description of all the values it
returns and how they were derived. We have therefore undertaken the design of metadata
records for all the processing routines within geotool, and we are extending that design to
include external processing that will communicate with geotool. It is becoming the
software industry standard to use XML for categorizing metadata, and this format is
especially beneficial to us since it can be passed back and forth between clients and Web
services via HTTP along with the XML SOAP RPC messages that instigate the data
processing. Because Oracle and other RDBMS vendors are enabling their products to
manage XML metadata records along with relational tables, we shall be able to store on
the server the contents of the passed metadata files. Figure 18 shows the XML markup
for a metadata file describing the waveform processing applied by geotool. Because the
XML markup tags are by definition extensible, we must define the tags that will be used
in all instances of waveform processing, and the schema for these tags (itself an XML
document) is shown on the right-hand side of the figure. The design of this particular
schema is illustrated in Figure 19. Although the XML markup is intended to be read
principally by the data processing software, it can be presented in a form readily accessi-
ble by the geotool user, as is shown in Figure 20. The stylesheet that transforms the
XML file into a presentation format is yet another XML document, and it is shown on the
right-hand side of that figure.

30

¥ Microsaft Deunloprmentk Ml=]p49% Microsoft Development Environment [design] = XMEWS —iolx|
File Edit View erug XML Table Tools Window Help Eile Edit View Debug Schema Table Tools Window Help
HEan E R ar EIE 4% %% B ElEarF %l s £ 6% %% 0.

I XMLwaveform. xml'| XMlwaveformxsd ~ ¢:*| Start Page XMLwaveform.xsd*| b
<?xml version="1.0"?> z <?xml version="1.0"?> <
<l-- filename XMLwaveform.xml (metadata d <l-~ filename XMLwaveform.xsd (XML Schema - waveform

vaveforms written out by geotool usi metadata: describes parameters applied to waveforms

| written out by geotool jusing File/Output) -->
<?xml-stylesheet type="text/xsl" href="XM
<xs8d:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

<WAVEFORM
xmlng:xsi="http://www.w3.0rg/2001/XMLSc <xs8d:element name="WAVEFORM">
xsi:schemaLocations"http://www.multimax_ <xsd:complexType>
<x8d: sequence>
<WFINFO>
<STA>ASAR</STA> <xs8d:element name="WFINFO">
<CHAN>SHr</CHAN> <xsd:complexType>
| <START> <x8d: sequence>
<EPOCH>792269353.800000</EPOCH> <xsd:element name="STA" type="xsd:string"/
<JDATE>1995039</JDATE> <xsd:element name="CHAN" type="xsd:string”
<DATE>1995-02-08</DATE> <xgd:element name="START" type="epochtime"
<TIME>18:49:13.800</TIME> <xsd:element name="END" type="epochtime"/>
</START> <xs8d:element name="WFID" type="xsd:positiv
<END> <xs8d:element name="NSAMP" type="xsd:positi
<EPOCH>792269473.825000</EPOCH> <xgd:element name="SAMPRATE" type="xsd:dec
<JDATE>1995039</JDATE> <xsd:element name="CALIB" type="xsad:decima
| <DATE>1995-02-08</DATE> <x8d:element name="CALPER" type="xsd:decim
<TIME>18:51:13.000</TIME> <xsd:element name="DATATYPE" type="xsd:str
</END> <xsd:element name="WFDIR" type="xsd:string
<WFID>1845</WFID> <xsd:element name="WFPREF" type="xsd:strin
<NSAMP>11132</NSAMP> <xsd:element name="WFILE" type="xsd:string
<SAMPRATE>40.00</SAMPRATE> <x8d:element name="FOFF" type="xsd:nonNega
<CALIB>6.283183</CALIB> <x8d:element name="REMARK" type="xsd:strin
. <CALPER>1.000</CALPER> </xsd: sequence>
<DATATYPE>84</DATATYPE> </xs8d:complexType>
| <WFDIR>/waveform/wagner/geotool/data/ | </xsd:element>
<WFPREF>array</WFPREF> L &
..... = Hrzassre W = i TRV RS - = i _,‘:l

L?XML”GDam = Schema EXML

|Ready | Ln4 Col 6 Che | Ready n5 Col 29 Ch29 Ne

Figure 18. The two windows on the left and right of the screenshot show excerpts from
two separate XML files that are part of the characterization of the metadata describing the
operations of the server application that performs the FK and bandwith filtering. On the
left-hand side is the XML file itself that describes the waveform. The contents of the
“widisc” record in the CSS database schema are immediately obvious in this XML file,
since the “.wfdisc” record is in fact metadata describing the waveform undergoing
processing. An advantage of XML as a means for describing metadata is that it is an
“eXtensible Markup Language”, so the user can create whatever markup tags are appro-
priate to the vocabulary of the application being described, unlike a markup language
such as HTML that is restricted to a pre-defined set of tags. Of course, extending the
markup language by employing tags appropriate to seismology requires that these new
tags, such as the “SAMPRATE”, “START”, “DATATYPE”, etc., tags used in this XML
file must be defined somewhere else. This is done in the schema file on the right-hand
side, which is itself written in XML, that tells the software that “CALIB” is an XML-
standard type (a decimal) and “END” is a user-defined type (“epochtime”, which is
further defined in this schema file). This schema corresponds to the design that is shown
graphically in Figure 19.

3l

gn] - XMLwaveform.xsd.
Fite Edit View Debug S;hema Tools Window Help

Ciki =18

- I L My e = s = STy - s fabs - AE YR, A
XMLwaveform.xsd| i
)
|
{ f T
FIN (WFINF FILTP(FILTP.
i | ©STA string = * FILTI positi =
; | ¢ CHA string _| £ FILT boole
| ¢ *STA epoc " FTY string
! £ END epoc tPAS (PAS |
‘ ¢ WFI _positi +f L LOW?decn =
i T T) —
BisTAR epochi EXIEND epochti PASS[PASST] BEIFILTR(FILTP | RD_|ORDE TAPE (TAPE| EXIBEAMIE
‘ | £ EPQC decim T £ TAPO (TAP
€ JOAT el CADAT posttiv t TAPW decim
| ¢ DATE date | ¢« DATE date [F’A 55 lstring l [FILTPistring | o ORDE[DOSINV! ¢ TAPM intege m - l,/\ME'
(& TIME ume | FHME ime | "enum Band | ©'enum Causa ' mininc 1 + TAPM intege fomum
Fenum Low P renum ZeroP! ! fmaxin 10 | 1 | fenum
“ enum High P = | enum
f enum Band
v ﬂfAPOZTAPo ===
H(T'AP_QElrinq -
fenum ON
. fenum OFF |
o Schema |« XML . {
| Ready tnt Col 1 Ch1 {INS
4R Start)| § Norton S [JJSRR_2003[[&» Microsof . ®]SRR2003..| Dudes GG EYLREG P 333PM
. =12]x|
File Edit View Debug Schema Tools Window Help
U0~ o= [e L ' HES TG v (&) fabs v ARSI, kL2
| XMLwaveform.xsd\ v x
CCFLT (FILT E
* BEA (BEA
* ROT (ROT i
L *INST_(iNS |
I T
BEAM(BEAM o T8
© € BMID positi £ R
¢t BEA (BEA | *R
© {grou choic | R
*BM_ (BM_ PeT
* REF _string ~| Ly
T - - = ——t T T |
i B Ehoice v LeM L0 [Bm eLev | BlR
© PHAS (PHA £ BMGH string
“INSL azslo .
R ¢ FKBE azslo BRI ting iR
s | *enum refere ' el
i _ * enum dnorth ‘el
3 7 *enum array t ol
] E————— = 1] |
h PHAS (PHAS BiNstoasiow MiFkeEimzsiow] S E=y
' ¢ SLOW (SLO EAZIM decim |12 AZIM decm
¢ PHAS string | £ SLOW decim ‘€ SLOW decim
' AZSL azslo = SLOW |SLO £ SLOW (SLO =

[|
@T(SLO@ HAZSLO'azsIow

| A

{ b e AZIM decim !
L X A
i[ﬂ Schema |8 XML

4
Ready Ln1 Col 1 Ch1 |INS
1B Start|| & Norton ... | AJSRR_2... W Micros. . ®1SRR20,, | ¥)untitied . dudes GG LTS E 333PM

Figure 19. Two selected excerpts from the design layout of the waveform metadata
XML schema that was shown on the right-hand side of the screenshot in Figure 18.

2

% Microsoft Development Environment [design] - XMLwavetorm.xs!

| 2METADATA FORSER ‘_J_JI

Fiie Edit Vlew Favorites Too ' File Edit View Debug Table Tools Window Help
«:ackv#vd_)/ﬁ Asearch j - SO .}ﬁEi *“)'“"r@ » v [fabs
Address e1veform.xm) _] “Go Lmks E}D ah L—lﬁgj [t a2 [E2 45 E 4 /‘ /‘ ﬂ f\e& E
’;’“”"’l"’f;”ﬂ’“’:):oé“32 Start Page XMLwaveform xmi XMLwaveform xs1] KMLwaveform.xsa v fis
ample Rate: f "
Calibration Factor (calib): 6.283183 <?xml version="1,0"7> &t
Calibration Perlod (calper): 1.000
Data Type: 4 <l-- filename XMLwaveform.xsl (XSLT stylesheet for parameters applied
| to waveforms written out by geotool using File/Output).
WF \ This file is generated by geotool to customize the the standard
Dir: | orin/wagner/ge 1/ data/ ial metadata parameter templates referenced with “xsl:include”. ~—>
WF PrefIx: aray
WF File: amay.w <xsl:gstylesheet version="1.0"
3;]’;‘?@'5’(1‘"!07-'0 xmlns:xsl="http://www.w3.org/1999/XsSL/Transform">
owfld:
| Remark: N/A

<xsl:template match="/">

<HTML>
aift ters
I\l Filter Parameters <HEAD>
ER AT <TITLE>METADATA FOR SELECTED WAVEFORM</TITLE>
Siltid: 101 E :éggg? y
ey BT ERWORTH <H2 ALIGN="CENTER" STYLE="font-family:Arial,sans-serif">METADATA
Passband Type: Band Pass <HR/> . l
M Low Pass: 0,5 1z <H3>Waveform Information</H3> ’
IHigh Pass: 3.0 Hz <xsl:apply-templates select="WAVEFORM/WFINFO"/>
Phase Type: Causal <HR/> e
Order Number: 3 <H3>Filter Parameters</H3> i
<xsl:apply-templates select="WAVEFORM/FILTPARAM"/>
i Tuper: ON <HR/>
T“”"’WM';‘O y <H3>Beam Parameters</H3>
lrz::g'a'; va’::‘::si <xsl:apply-templates select="WAVEFORM/BEAMPARAM"/>
o i <HR/> fl
Lparilic <H3>Rotate Parameters</H3> o
Link ID Name (tagname): whid | <xsl:apply-templates select="WAVEFORM/ROTPARAM"/> [l
Link ID Value (tagid): 1845 <HR/>
<H3>Instrument Response Parameters</H3>
<xsl:apply-templates select-"WAVEFORM/INSTRESP"/> =
Ll] e e 2
am Parameter. i T >
‘I]I-('ull e e's‘ = |;f—| Output b lve i RS] : ﬁ__l;l X 5§
2 My Computer Ready | Ln 1 Col 1 H

9B Star] B Norton S... | QJfigures_r.. |®1SRR2003. | £METADA... [» Microsof.. (AHBew A G WTREIAGE 9:39 AM

Figure 20. The browser window on the left-hand side of the screenshot shows, in a
format that can readily be understood by the geotool operator, the contents of the wave-
form metadata file that were shown in XML format in the window on the left-hand side
of the screenshot in Figure 18. To the right of the browser window there is shown
another window that displays the XSLT (Extensible Stylesheet Language — Transforma-
tion) file that was used to transform the XML metadata file into the visual presentation
form that was shown within the browser window.

33

13. PROBLEMS ENCOUNTERED IN IMPLEMENTING WEB SERVICES

We have encountered difficulties in this project due to the paucity of satisfactory soft-
ware for using SOAP with C or C++ programs on UNIX and Linux, and like much other
geophysical analysis software (especially older code), geotool is in fact such a program.
Although there are Java Web services packages that implement SOAP and that work with
the commonly used open-source Apache Web server, we are restricted to using SOAP
with C, and this significantly limits our options. The Microsoft SOAP toolkit makes it
possible, albeit not especially easy, to use SOAP with C/C++ software on Windows (a
task that now has been made considerably easier under the .NET platform by using
ASP.NET and that will be made still easier in the next version of Windows by using a
new technology called “Indigo”, as we discuss below), but there is no corresponding
commercially supported off-the-shelf technology for C/C++ on Unix or Linux other than
certain expensive products that have been developed for enterprise-scale commercial
applications. In our 2003 — 2004 work we therefore used the academic software gSOAP
(van Engelen, 2005) to enable geotool to communicate using SOAP using the C lan-
guage, but the process was not so simple as we would like it to be. This is a significant
problem, since ease of use will be an important consideration by a scientist who wishes to
integrate new and legacy research software. By far the most popular UNIX and Linux
Web server tool for utilizing SOAP is the Java-based software Axis, which is developed
and maintained by the open-source software organization Apache. Throughout the
duration of this project we have awaited for Apache to deliver the promised C++ version
of Axis, but it was not released until the spring of 2004. Our attempts to use that C++
version of Axis have been unsatisfactory, and we are not alone in that experience, so we
feel this version 1.0 software release needs further improvements before we can interface
it to geotool. Fortunately, a new version of gSOAP has now been released that generates
header files that require less manual changing, so it is now a bit easier to use gSOAP to
implement C/C++ Web services on UNIX and Linux than it was previously. However,
the process is still far from transparent, and many or most scientists will not want to make
use of it for routine purposes. We feel that we shall not be able to introduce a satisfactory
commercial product based on this technology until the process of establishing data
communications among applications “on the fly”, rather than “hard wired” on a perma-
nent or at least seldom changing basis, becomes considerably simpler. A scientist will
want to concentrate on doing the programming for a new algorithm to analyze reference
events instead of devoting significant time and energy to setting up the “plumbing” to
make that new algorithm communicate with geofool (or any other program) so that the
algorithm can then be applied within a visual data processing environment.

14, PROBLEMS ENCOUNTERED WITH MODIFYING GEOTOOL

As is described above, we found adding functionality to geotool by modifying the pro-
gram to send and receive SOAP messages to be a more complicated process than most
scientists would be willing to do for routine modifications, and so the process needs to be
simplified. Perhaps an even bigger problem, however, is that not only is it cumbersome
to modify geotool to communicate with other applications, it is difficult to modify
geotool to make use of the information that those other applications would send back to
it. This problem is a consequence of the program’s architecture, namely an early 1990s-

34

style large C-language program with many internal interdependencies. Thus, changing
the code to modify a feature or add a new one is liable to cause unanticipated “side
effects” in a different feature. In a reference event system, it will be necessary to modify
geotool by adding widgets that permit the user to manipulate the displayed data and select
seismogram segments, make measurements, enter parameter data, and then dispatch those
values to another application which will in turn send its results back to geotool for
display, a process that will require further modification to add new widgets (or expand
existing ones) to incorporate- those results. Each of these modifications to the code is
liable to cause problems and introduce bugs. In many cases it is possible to accomplish
changes by editing a table of X Windows resources, and this process is certainly prefer-
able since it requires changing only an ASCII file outside of geotool instead of the source
code. However, most modifications require some re-programming, and the architecture
of geotool is not sufficiently robust for changes to be made easily.

Evidence of this problem can be seen in the host of changes we have made to geotool
during this project simply to fix existing bugs in the code or to expand the functionality
of many existing operations, since these changes were all internal to geotool and involved
no communications with any other applications. An extensive list of bug fixes was
generated by intensive testing of the existing code, and the mere fact that these bugs have
persisted in a program that is well over a decade old shows how hard the code is to
modify successfully. In spite of the problems in making changes to a large C program,
we did correct those bugs, and we added many features that users have specified as being
needed to enhance the utility of geotool and improve its ease of use. The process
(whether a highly visible one such as the addition of the Oracle interface shown in Figure
21, or a minor and seemingly trivial one such as a bug fix that should be straightforward)
has been a tedious one, however, and it bodes ill for our intended use of geotool as a
central application in a reference event system, since we would like it to serve as a
graphical user interface, and it would thus require frequent modification to perform new
data manipulation and display operations. We acknowledge that a preferable approach
would be to use, at the very least, a program that runs within a modern software “plat-
form” like Java or .NET that handles the low-level systems operations for it, instead of a
legacy program like geotool that must make UNIX kernel calls and other systems-level
operations. It would be better still to use a program running within that platform that is
far more flexible than is a monolithic C code like geotool, such as an object-oriented
program organized into independent components (such as Enterprise Java Beans) that can
be swapped in and out just as hardware components can be. In this regard, geotool is
significantly inferior to a modern seismic analysis program like MatSeis (Young, 2001),
which minimizes many of these difficulties because it is built upon a robust commercial
software platform (MATLAB) that offers to the programmer an extensive suite of graphi-
cal and computational components that adhere to this architecture. In the long term it
would be easier to build new “thin client” programs (i.e., small object-oriented codes that
rely on an underlying software platform for systems-level operations and that have little
functionality other than to serve as a user interface for server-side components and
applications) to act as intermediaries in a seismic reference event system than continually
to make major modifications to a large, fragile program like geotool every time that new
functionality is required. In the following section we discuss modern trends in software

-

development that should be exploited to construct the type of programs that would be
better suited for use within a seismic reference event system than is geotool.

Because during the course of this project we have made extensive changes to the geotool
code base (unrelated to Web services or other communications with external applications
but instead confined to geotoo! itself), we have revised the 1995 version of the documen-
tation of the program to reflect the bug fixes and enhancements that have been made to
the code in the last 10 years, especially the many changes that we made during this
project. The updated documentation is included as an appendix to this report.

Select Database: |explosion |4
GESCHEMAYZ |7

SEARCH WAVEFORMS

Station(stal,sta2...): Channel{ch1,ch2...):

| o | 3

Waveform Time
(yyyy/inm/idd hh:mm:ss) Station Latitude Station Longitude

3’=l b:['.b='

€= l €= l =

Apply| List| Appendto List| Clear|

SEARCH ORIGINS

Origin Time
(yyyy/mmidd hh:mm:ss) Event Latitude Event Longitude
= P= ; = e
| | >= |
= I <= l w= I
Event Depth Event Magnitude Mag Type

Search Origin[Clear|

- ——— _— TN . |

Close| Help|

Figure 21. Among the bug fixes and enhancements that we have added to geotool during
this project is a graphical interface to the Oracle database that allows the user to query the
database and retrieve waveforms of interest. This interface was added to geotool through
conventional C-language Motif widget callback functions, and considerable difficulty
was experienced in its implementation due to unanticipated “side effects” in parts of the
program unrelated to the changes that were made in the code. This behavior is typical of
large monolithic C-language programs, and it points out the need for, at the very least,
object-based software design or, preferably, a component-based architecture.

36

15. INTEGRATION OF TOOLS FOR USING THE KNOWLEDGE BASE

As we have described, our intention in this project was to develop a system architecture
that could be used for analyzing reference events, especially for building the NNSA
Knowledge Base, and then to use that architecture as the basis for a commercial seismic
data analysis product. Difficulties in using SOAP with C software under UNIX or Linux
(until more mature SOAP software becomes available for this language on this platform)
has kept this goal from being realized with the necessary ease of use for the scientist.
Under the current technology, users will not want to use C-language programs for Web
services on UNIX/Linux, at least not for rapid development and testing of new algo--
rithms. However, a system of inter-process communications has in fact been constructed
specifically for the NNSA Knowledge Base that allows the integration of its software
tools that conduct seismic analysis (Merchant et al., 2004). This system takes the C-
language code for seismic analysis and adds a Java “wrapper” to serve as the interface.
These Java wrappers call the C code using Java Native Interface (JNI), a built-in feature
of Java for invoking C functions, and the wrappers communicate with one another using
Java Remote Method Invocation (RMI), another built-in feature of Java that implements
a version of CORBA specifically for the Java platform. The C-language seismic pro-
grams thus communicate with one another through these Java intermediaries. In the
current state of technology for utilizing Web services under UNIX/Linux using C, this
Java RMI approach would in fact seem preferable, and it is appropriate that it be the
architecture that is used for integration Knowledge Base tools. Perhaps this situation will
change when the C-language version of Apache Axis becomes more mature, but that of
course remains to be seen. The “Navigator” software designed and built by Merchant et
al. (2004) thus makes our original goal of using Web services for the data communica-
tions in constructing a reference event analysis system for the Knowledge Base certainly
less important. However, this Small Business Innovation Research (SBIR) project has as
its ultimate goal the construction of seismic data analysis software that could be sold
commercially, since commercialization of Government-sponsored research is the objec-
tive of the SBIR program. Bringing commercial software to market is still our intention,
and we feel the Web services approach will be an important part of the architecture for a
commercial product that will be used for seismic data analysis. However, the success of
this approach depends on certain other developments in the software industry, as we shall
now discuss. :

16. RECENT DEVELOPMENTS IN SERVICE-ORIENTED ARCHITECTURE

The need to integrate separate business processes, such as shipping products and submit-
ting invoices, has long been a requirement in commerce, and large and complex Man-
agement Information Systems (MIS) have been sold for many years to address that need.
More recently, these systems have evolved to a higher level by unifying all the separate
“information stovepipes” within a corporation, for instance by allowing the warehouse
inventory system to initiate requisition processes in the purchasing system. Most of
these Enterprise Resource Management software systems make use of data warehouse
systems, a specialized type of database for Online Analysis Processing (OLAP) that used
to be a separate technology but that is now being incorporated into conventional Transac-
tional Processing relational database management systems, such as the latest versions of

3

Oracle and SQL Server. These commercial software systems for integrating separate
processes are conventionally implemented using a three-tier client-server architecture
wherein desktop computers function as “thin clients” for graphical user interaction, a
database server allows all applications to have access to the same data (to the extent
allowed by security controls), and in the middle tier the actual business rules are carried
out by programs running on an application server. The communications between the
desktop clients and the application server, and between the application server and the
database server, are carried out through tight coupling of the tiers. The inter-tier commu-
nications uses socket connections directly or underneath Remote Procedure Calls,
CORBA, or Java Remote Method Invocations (RMI), which is the Java-specific imple-
mentation of CORBA that is used in the “Navigator” tool developed by Merchant ez al.
(2004) for performing data communications among programs that access the NNSA
Knowledge Base.

Currently, however, most enterprises are starting to implement, or at least to experiment
with, the concept of replacing this tight inter-tier coupling by using instead a loosely
coupled architecture for integrating separate processes, namely Service-Oriented Archi-
tecture (SOA). One of the principal motivations for using SOA is that it allows a still
higher level of integration, not just within a department or throughout the enterprise but -
among separate enterprises. The concept underlying SOA is that a company can use a
Web server tier to respond to requests for services from individual applications whether
those applications are running locally or at another site. That way the purchasing system
of one company can initiate a process by the order fulfillment system of another com-
pany, without the need for manually re-entering the data from the first company’s pur-
chase order (generated by that company’s application server tier) into the back-end
database of the other company so that the second company’s application server can
process it. Obviously, allowing data to flow directly from one company to another
cannot be accomplished by a tight coupling of the two computer systems, due to security
concerns. A non-intrusive data communications model is required for SOA that uses an
open protocol such as HTTP for transmitting data in ASCII format instead of in a binary
format that can contain viruses or spyware. As we have described in our discussion of
Web services, such a model is provided by SOAP and XML, and in fact the acronym
“SOAP” is sometimes now re-interpreted to mean “Service-Oriented Architecture
Protocol” instead of its original meaning of “Simple Object Access Protocol”. Corpora-
tions are actively addressing methods to expose their business processes through SOA so
that they can be utilized by both local and remote applications, and a large software
industry is emerging to meet that demand. Our work in the second phase of this project
began at about the same time as SOA became popular in industry, and in future work we
expect to be able to make use of forthcoming software products, both commercial and
open-source, that will considerably expedite application integration using SOAP.

A large part of the problem in our use of SOAP has been that not only are programs such
as geotool legacy software, but the fundamental architecture of developing software that
runs at a level close to the operating system (in our case, Linux) is itself a legacy design.
Modern software is for the most part written at a higher level, specifically one that targets
a “platform” such as Java or .NET rather than the underlying operating system. The

38

platform interposes a software layer that operates as a virtual machine to handle the low-
level communications protocols. We hope that the available tools such as gSOAP and
Apache’s Axis for C/C++ will become easier to use on Linux and UNIX, but for now it is
considerably simpler to implement Web services within the Java and .NET platforms
where much of the data communications is handled by the platform software instead of
by the applications.

Furthermore, the ease of use of the platforms is escalating rapidly. Because Java has its
own CORBA-style RMI software for performing Java-to-Java communications, and since
it also supports CORBA directly, Java software used for SOAP communication has
heretofore been provided only by packages external to the core language. With the
release in July 2004 of Java 1.5 (now re-labeled Java 5), however, JAX-RPC (Java API
for XML-based Remote Procedure Calls) has been incorporated into the client-side
platform, and this same change will be made to the next release of the server-side plat-
form. Moreover, in 2005 Sun will release new software development tools that will make
the use of Web services easier, and the open-source Eclipse organization is doing the
same. On the .NET platform, the implementation of Web services has always been made
relatively easy (although still not transparent) by the use of ASP.NET (a technology that
replaced Microsoft’s Active Server Pages for its earlier COM platform), since much of
the low-level coding of both the proxy client and the proxy server is generated automati-
cally by ASP.NET in a fashion that requires no re-coding by the programmer. This
processing is becoming easier still, since in July 2004 Microsoft released the first beta
distribution of “Whidbey”, its new Integrated Development Environment for .NET
programming (which will be released officially as “Visual Studio 2005 next year), and
“Whidbey” contains a new tool with the code name “Whitehorse” that expedites the
design and construction of SOA software. Unlike the Java platform, the NET platform
supports multiple languages, and Web service clients and services can be constructed
using the version of C++ that runs within NET. (The syntax for C++ under .NET, and
the scope and utility of that language for the .NET platform, will also be considerably
enhanced under “Whidbey”.) Web services can be implemented in .NET even by using
Fortran 95 with selected Fortran 2003 object-oriented extensions, and the commercially
available Lahey-Fujitsu v7.1 compiler accomplishes this. We anticipate that the intro-
duction of JAX-RPC into the Java 1.5 platform, the introduction of “Whidbey” for the
Net platform, the release next year of new Java software development tools by Sun and
by Eclipse, and the continued evolution of the lower-level gSOAP and Apache Axis tools
for C/C++ application on Unix and Linux will all make the implementation of Web
services considerably easier within the next year or so than it has been heretofore.

17. FUTURE DEVELOPMENTS IN ARCHITECTURE FOR CLIENT CODE

As we have noted, most modern desktop applications, unlike legacy program such as
geotool, are written using an object-oriented design that permits them to be altered with
less danger of introducing unanticipated side effects than is possible in a large C language
program. An important trend is that the platforms on which these modern programs run,
such as .NET and Java, are themselves object-oriented, so modern application develop-
ment software readily enables desktop client programs to be constructed that are more
nearly suitable for easy modification than geotool is. This advantage is certainly demon-

39

strated by the ease with which MatSeis (Young, 2001) can be modified, since it is built
on a commercial object-oriented platform (namely MATLAB). We plan to continue
development by migrating functionality from geofool to new client and server applica-
tions that will be sufficiently flexible for easy incorporation into a seismic analysis
system that can be tailored for the needs of analyzing specific data sets.

A particular software platform that will likely be useful for constructing the sort of highly
flexible distributed systems that will be needed for integrating seismic analysis applica-
tions is the next version of Microsoft Windows, which has the code name “Longhorn”
and will likely be released as “Windows 2006”. Although the software that is available
to developers is still in its pre-alpha release, it is possible to begin investigating its utility
for constructing new client and server applications that may eventually replace geotool,
and we intend to pursue that investigation. “Longhorn” offers a particular benefit to the
construction of distributed applications in that it incorporates a new data communications
software system called “Indigo” that uses XML and SOAP messages not only for Web
services but also for inter-process communication within the local environment. It will
thus be transparent to the developer whether function calls are being made across threads
or across computer systems. More importantly for the ease of use, and hence for the
likelihood that scientists will write their code in a manner that allows its incorporation
into a distributed system, the “Indigo” software will automate most of the coding required
to perform data communications using SOAP. This will be an important change from the
current situation with CORBA and Web services, and we feel it is important that work
begin on building new programs using this new data communications software. Another
significant feature of “Longhorn” is that the screen graphics for drawing windows,
window controls (such as menus, buttons, etc.), and presentation graphics within win-
dows (such as plots of seismograms, spectra, etc.) will be performed using a new Appli-
cation Programming Interface (API) that is based on XML. Moving to XML-based
displays and screen graphics from those built using Motif, Xt, and Xlib on Linux and
UNIX (as is geotool) will be a significant change in the construction of seismic analysis
software, and it is potentially a valuable feature. In particular, the use of XML graphics
may make it possible for application servers to generate not only processed data, such as
a seismogram that has been subjected to a particular filter, but also to generate presenta-
tion graphics displaying the results, and those graphics would be returned to the client
program as an XML message. This would alleviate the client application from having to
know how to display the processing results of the server application, so it could act as a
true “thin client” for user interaction since it would not have to maintain the huge graph-
ics and processing overhead that makes an application like geotool so difficult to modify.
We intend to investigate this possibility actively before the anticipated 2006 release of
“Longhorn”.

40

18. CONCLUSIONS

We believe that a distributed system of individual applications for seismic data analysis,
all communicating to a client program acting as a graphical user interface, is the appro-
priate design for a software system to identify and study seismic reference events that are
candidates for inclusion in the Knowledge Base. However, the need for graphical
interaction with each of the component programs means that they are perhaps better
operated in a peer-to-peer mode than within a network of Web services. In either case,
the requirement to use legacy C-language code in UNIX or Linux as major components
of this system imposes significant limitations upon the ease with which components may
be added to this system and modified. Whether these legacy components are wrapped
within Java interfaces so that they can communicate through RMI or JAX-RPC, or
whether they communicate directly through middleware such as CORBA or gSOAP (or,
after it becomes more nearly stable, through Apache Axis for C/C++), establishing the
data communications software for these legacy applications and modifying them to use
that communications software and to handle properly the data and processing results that
will be transmitted to them, remains a difficult task that most scientists would not under-
take for routine software applications maintenance and modification. Newer data com-
munications software such as ASP.NET and the inclusion of JAX-RPC in the core Java
platform make the production of data communications software easier (for programs
other than C-language applications running under Linux, which remain problematic), and
future systems such as the “Indigo” software that will be part of the next version of
Microsoft Windows will make much of this programming transparent to the developer.

The problem will still remain, however, of modifying the component applications such as
geotool to handle new data and perform new applications without having those modifica-
tions break existing features in the code. That problem can be solved only by migrating
the graphical display functionality of large monolithic programs like geotool into compo-
nent-based programs where one component can be modified without changing others.
This component-based graphical display program should then use Service-Oriented
Architecture to operate as a “thin client” that handles user interaction but that does not
carry the overhead of extensive computational code, since those computations would be
performed by application server codes that could be modified separately. It would then
be far easier to modify the component-based display software to handle the new data
returned from the application servers than it is now, where changing geotool to handle
new data is a difficult task.

41

