RHIC Dynamic Aperture for Lattices With Some $\beta^{*}=3$ Insertions

 G. Parzen$$
\text { May 12, } 1987
$$

1. Introduction

This note points out that it is possible to operate RHIC at $\gamma=30$ with some insertions having $\beta^{*}=3$, and still have enough dynamic aperture to allow the beam to grow because of intrabeam scattering. At the $\beta^{*}=3$ insertions the luminosity is higher by a factor of 2 .

Tracking studies show that starting with a lattice that has six $\beta^{*}=6$ insertions, the dynamic aperture decreases as one introduces $\beta^{*}=3$ insertions, and the decrease is roughly monotonic with the number of $\beta^{*}=3$ insertions. The results show that RHIC can operate with a beam of gold iions at $\gamma=30$ for ten hours with up to three $\beta^{*}=3$ insertions.

2. Tracking Results

Figure 1 plots the stability limit, $A_{\text {SL }}$ or dynamic aperture found as the number of $\beta^{*}=$ 3 insertions is increased from 0 to 6 . Note that $\beta^{*}=6$ at the insertions where $\beta^{*} \neq 3$. The tracking runs start with $\varepsilon_{x}=\varepsilon_{\mathrm{y}}$, and the $\mathrm{A}_{\text {SL }}$ plotted is the lowest A_{SL} found for 10 different sets of random field errors at $\Delta \mathrm{p} / \mathrm{p}=0$.

Figure 2 adds the dynamic aperture, A_{SL}, required by the intrabeam scattering for a beam of gold ions with $N_{b}=1.1 \times 10^{9}$ ions/bunch at $\gamma=30$, for ions that start out with $\varepsilon_{\mathrm{x}}=\varepsilon_{\mathrm{y}}$.

One sees from Figure 2, that one can have up to three $\beta^{*}=3$ insertions for a beam of gold ions at $\gamma=30$.

Figure 1 also seems to indicate that the periodicity of the $\beta^{*}=3$ insertions does not seem to play a large role. The lattice with three $\beta^{*}=3$ insertions has a periodicity $=3$, the lattice with six $\beta^{*}=3$ insertions has a periodicity $=6$, and the lattice with one $\beta^{*}=3$ and five $\beta^{*}=3$ insertions have a periodicty $=1$. The result in Figure 1 seems to indicate a roughly monotonic dependence of $A_{\text {SL }}$ on the number of $\beta^{*}=3$ insertions with little dependence on the periodicity of the insertions.

I am much indebted to S.Y. Lee for providing the input data for the various lattices that were studied.

$F_{1 g}, 1$,

Fig, 2

