Gulf General Atomic Incorporated

.

P.O. Box 608, San Diego, California 92112

GA-8774

REFERENCE MANUAL FOR ENDF THERMAL NEUTRON SCATTERING DATA

by

J. U. Koppel and D. H. Houston

Prepared under Contract AT(04-3)-167 Project Agreement No. 2 for the San Francisco Operations Office U. S. Atomic Energy Commission

- LEGAL NOTICE-

LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accu-racy, completeness, or used/uness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report. The provide the sponter E. Asourds any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the show, "preson acting on behalf of the Commission" includes any em-ployee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Gulf General Atomic Project 48

1

Ì

December 16, 1968

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CONTENTS

Page

Α.	GENERALITIES AND COMPUTER CODES									
	A. 1	Introduction 1.1								
	A. 2	The ENDF System 2.1								
	A. 3	Codes								
		A.3.1 GASKET								
		A, J, L = C A K E K + C A T								
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
		$\mathbf{A}_{\mathbf{A}}, \mathbf{A}_{\mathbf{A}} \in \mathbf{C} \times \mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} \times \mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} \times \mathbf{A}_{\mathbf{A}} \times \mathbf{A}_{$								
	A.4	References for Sections A.1, A.2, and A.3 4.1								
в.	MOD	DERATORS								
	1.	Physics								
	2.	Frequency Spectra								
	3.	Code Input								
	4.	Plots of Scattering Law								
	5.	Integral Data								
	6.	Miscellaneous Notes								

2

3

i i

A. GENERALITIES AND COMPUTER CODES

3

A.1 INTRODUCTION

This document is intended to serve as a general reference of information concerning the thermal neutron scattering law data submitted by Gulf General Atomic to the Evaluated Nuclear Data File $(ENDF)^{(1)}$ set up by the Neutron Cross Section Center at the Brookhaven National Laboratory. The data submitted to ENDF refers both to inelastic and elastic scattering. The inelastic scattering data, generally calculated in the incoherent approximation, is stored in the form of the scattering law $S(\alpha, \beta)$ related to the double differential cross section by the expression

$$\frac{d^2\sigma}{dEd\Omega} = \frac{a^2}{T} \sqrt{\frac{E}{E_o}} e^{-\beta/2} S(\alpha, \beta)$$

where

-2

$$\alpha = \frac{K^2}{2MT}$$
 and $\beta = \frac{E-E_o}{T}$

and where E_0 , E denote the initial and final neutron energies, K is the momentum exchange, a the bound scattering length of the scatterer and T its temperature.

The elastic scattering data, either coherent or incoherent is stored in the form of the Legendre moments P_0 through P_5 .

The report is divided into two parts. Part A includes information on the ENDF system (Section A. 2) and a concise description of the computer codes used to generate the scattering data (Section A. 3). This description is not intended to replace the more complete discussion given in the corresponding references, which are listed in Section A. 4, but it permits an understanding of the source data as tabulated on the input cards to each code. These codes have all been written in FORTRAN and are or will soon be available through the Argonne Code Center.

Part B contains the data corresponding to the different moderators. These data are included in a loose leaf format similar to the Gulf General Atomic Spectrum Book⁽²⁾ to facilitate revisions and updating. The information corresponding to each moderator is given in six sections as follows: (1) A description of the model underlying the calculation, with enough physical content to satisfy the casual user plus all pertinent references; (2) following the description of those models which include a continuum of vibrational modes, is a graphical illustration of the corresponding frequency spectra; (3.1) through (3.n) listings of the card input to all the codes used to generate the ENDF data for the moderator under consideration; (4) plots of the scattering law for several temperatures; (5) tabulated values of various integral quantities of the scattering law; and (6) miscellaneous information concerning the data and some quantities directly derived from the model such as the Debye-Waller integrals and effective temperatures. Comments as to the adequacy of the model and comparison with available measurements will also be included. For the convenience of easy updating pagination is by section in Part A and by moderator (alphabetically) in Part B. An index of the moderators currently included precedes the material of Part B.

÷

1.2

A.2 THE ENDF SYSTEM

7

A. 2.1 EVALUATED NUCLEAR DATA FILE (ENDF)

The Evaluated Nuclear Data File, developed by H. Honeck, is divided into two parts, ENDF/A and ENDF/B.

Specifications for ENDF/A are described in Ref. 1. The File presently contains UKAEA, KAPL, and GA data. Additions are made whenever significant data are received in the ENDF/A format.

Specifications for ENDF/B are contained in Ref. 3. ENDF/B is a cooperative effort among U.S. Laboratories organized by the USAEC Division of Reactor Development and Technology and coordinated by the Cross Section Evaluation Center at BNL. It is the objective of the participants (the Cross Section Evaluation Working Group) to assemble a library of recent evaluations for materials of interest to reactor designers. The materials presently included in the system are listed in Table 1 together with the Laboratory responsible for the selection of data. New materials will be added in the future.

Table 2 summarizes the characteristics of the Evaluated Nuclear Data Files A and B.

A. 2. 2 AVAILABILITY OF ENDF DATA

ENDF material is available to U.S. users from the National Neutron Cross Section Center (NNCSC) at BNL and to ENEA countries from the Neutron Data Compilation Centre at Saclay. Others can receive data from BNL provided bilaterial agreements exist for the exchange of neutron data or USAEC approval can be obtained.

A. 2. 3 TESTING OF ENDF/B DATA

The ENDF/B Library was assembled to increase the amount of

cross section data in a single format available to the reactor designer. Due to the tight schedule for completing the File, the data may contain errors and may not include the most recent evaluations. An iterative philosophy is used concerning ENDF/B. Periodically (perhaps annually) the File will be revised as errors become known and new data becomes available. For some materials, several revisions, or several years, may be necessary before ENDF/B will constitute a good set of data. In the meantime, the completeness of the File suggests that it can be used as a reference set of data for reactor calculations.

Table 1

<}

٠

()'

۴,

ENDF/B DATA

		•			· · · ·			
Material	MAT	Laboratory	Material	MAT	Laboratory	Material	MAT	Laboratory
H-1	1001	BN	Zr-92	1079		Au-197	1037	BN
H ₂ O*	1002	GA	Zr-94	1080	BAPL-KAPL	Th-232	1038	BW
D-2	1003	BN	Zr-96	1081		Pa-233	1040	BAPL
D ₂ O*	1004	GA	ZrH*	1023	GA	U-233	1041	GA-ORNL
Li-6	1005	LASL	Nb	1024	GA	U-233 F.P.	1042	
Li-7	1006	LASL	Mo	1025	ANL	U-233 F.P.	1066	BW
Be	1007	GA	Xe-135	1026	BN	U-233 F.P.	1067	
Be-metal*	1064	GA	Sm-149	1027	BN	U-234	1043	GA
BeO*	1008	GA	Eu-151	1028	BN	U-235	1044	KAPL
B-10	1009	ORNL	Eu-153	1029	BN	U-235 F.P.	1045	•
C	1010	KAPL	Gđ	1030	ANL	U-235 F.P.	1068	BW
Graphite*	1065	GA	Dy - 164	1031	BN	U-235 F.P.	1069	
CH2*	1011	GA	Lu-175	1032	BN	U-236	1046	GA
N-14	1012	ORNL	Lu-176	1033	BN	U-238	1047	BW
0-16	1013	KAPL	Hf-174	1082	14	Np-237	1048	Ð
Na	1059	APDA	Hf-176	1072		Pu-238	1050	AI
Mg	1014	ANL	Hf-177	1073		Pu-239	1051	GE
A1-27	1015	ORNL	Hf-178	1074	BAPL-KAPL	Pu-239 F.P.	1052	
Ti	1016	ANL	Hf-179	1075		Pu-239 F.P.	1070	BW
v	1017	ANL	Hf-180	1076		Pu-239 F.P.	1071	
Cr	1018	WAPD	Ta-181	1035	GE	Pu-240	1053	APDA
Mn-55	1019	BNL	W-182	1060		Pu-241	1054	GA
Fe	1020	WAPD	W-183	1061		Pu-242	1055	ÂI
Ni	1021	WAPD	W-184	1062	GE	Am-241	1056	ID
Zr-90	1077		W-186	1063		Am-243	1057	ID ·
Zr-91	1078	BAPL-KAPL				Cm-244	1058	AI

*Thermal data only

2.3

7]

Table 2

CHARACTERISTICS OF THE DATA FILES

ENDF/A

Evaluated point cross sec-All evaluated point data Basic Storage for one material needed tion data covering a parti-Unit for a reactor calculation. cular energy range for one reaction type and one mat-Simple format. erial. Highly flexible format. Data for neutron-induced All reaction types for all Type of Data reactions required for Included incident and final particle reactor calculations. types. Data stored in the order Ordered by material Ordering of Data received by the ENDF number, data type, and reaction type. center. Selection and One complete set of data No selection is made. All data is accepted and added for a material will be Revision of to the master files. Hence selected and stored. Data These data will be upmany alternate evaluations dated at regular intervals. occur. Complete sets of evalu-Storage of partial evalua-Main Usage tions and alternate or ated point data used as older evaluations used as direct input to reactor codes or codes to combuilding blocks to generate pute multi-group sets. complete evaluations.

ENDF/B

A.3 CODES

A. 3. 1 <u>GASKET</u>⁽⁴⁾

The code GASKET was designed to calculate the neutron scattering law in the incoherent approximation for the following dynamical modes of motion of the scatterer.

- 1. Free translation (gas)
- 2. Diffusive or Brownian motion
- 3. Harmonic isotropic vibrations with continuous frequency spectrum.
- 4. Harmonic anisotropic vibrations with continuous frequency spectrum.
- 5. Harmonic isotropic vibrations with discrete frequency spectrum.

The general approach of the code is to treat separately all possible dynamical modes of motion and to combine their relative contribution by means of appropriate weighting factors W_i . At present the coding is complete for modes 1, 2, 3, and 5 only.

The code GASKET calculates the scattering law $S(\alpha, \beta)$ by numerical Fourier transformation of the intermediate scattering function $\chi(\alpha, t)$ defined as:

$$\chi(\alpha, t) = \int_{-\infty}^{\infty} e^{-i\beta Tt} S(\alpha, \beta) d\beta.$$

For each one of the listed dynamical modes (with exception of mode 4) χ has the form

$$\chi_i(\alpha, t) = \exp\left[\alpha G_i(t)\right]$$

where $G_i(t)$ is the time correlation function for the mode i. The χ -function for a certain combination of modes then is simply

$$\chi(\alpha, t) = \exp\left[\alpha \sum_{i} W_{i}G_{i}(t)\right]$$

All combinations are permitted with the exception that modes 1 and 2 are mutually exclusive.

The combination of vibrational modes with either free translation or diffusion leads to quasi-elastic scattering when no phonons are excited or absorbed. For the sake of fast convergence this zero phonon term is treated separately by the code when the vibrations have a distributed frequency spectrum (Mode 3 or 4). This quasi-elastic contribution to the scattering law is called $S^{(2)}$ in the code as opposed to $S^{(1)}$ which includes the contribution from all one or multiphonon processes.

In order to accelerate the calculations for large energy or momentum exchange the code has the capability to evaluate the scattering law in the short collision approximation for the distributed vibrational frequency spectrum when α or β are larger than two given input numbers. The discrete modes, however, are always treated exactly since their frequency is generally much higher than the distributed band.

The following pages give the input instructions for GASKET.

INPUT FOR GASKET

C

....

.

Item	Columns	Format	Code Symbol	Report Symbol	Description
1	1-72	12A6	HØL		Title Card
2	1-5	15	NT		Number of time points. If NT>0, NT values of T will be read. If NT<0, $ NT $ sets of ΔT and Tmax will be read. (Note 1)
	6-10	15	NP		Number of α values (NP ≤ 80)
	11-15	15	NE		Number of β values (NE \leq 150)
	16-20	15	NDAM		Damping option (Note 2)
	21-25	15	NGPRT		G function print option. NGPRT = 0 to omit, = 1 to print.
	26-30	15	NCP		Q and R function print option. NCP = 0 to omit, = 1 to print.
	31-35	15	NMESH		Mesh choice option. NMESH = 0 to read α and β meshes, = 1 to calculate meshes using subroutine MESH, = -1 to read the α mesh and calculate the β mesh.
	36-40	I5	NREST		Restart indicator. NREST = 0 for a new problem = the number of the α value at which to begin for a restart problem. (Note 3)
	41-45	15	NCVP		Convolution print option. NCVP = 0 to omit, = 1 to print.
	46-50	15	NSEP		Separate S_1 , S_2 , output option. NSEP = 0 to punch combined $S_1 + S_2$, = 1 to punch $S_1 + S_2$, S_1 , and S_2 .
	51-56	15	IPG	·	Precalculated H and F option. $IPG = 0$ to calculate H and F functions (GC and GS in the code) from an input frequency spectrum, = 1 to read already calculated values.
3	1-5	15	JS3		Number of points in distributed frequency spectrum. If $JS3>0$, values of the frequencies will be read. If $JS3<0$, the maximum frequency is read and $ JS3 $ evenly spaced values are calculated. (JS3 \leq 100)

3.1.3

 \mathbf{C}^{\cdot}

U	•			Code	Report	
	Item	Columns	Format	Symbol	Symbol	Description
		6-10	15	JS4		Number of points in anisotropic part of the frequency spectrum. JS4 < 0 as for JS3. (JS4 \leq 100)
		14-15	15	J S 5		Number of discrete oscillators. (JS5 ≤ 2 if $W_1 \neq 0$, JS5 ≤ 20 otherwise)
	4	1-50	5E10	W1-W5		Weight of Mode 1-5. (not necessarily normalized)
	5	1-50	5E10	T1-T5		Temperature of Mode 1-5. (eV)
		51-60	E 10	TEMP	Т	Over-all temperature for all modes. If left blank or 0, TEMP = max(T1,, T5).
	6	1-10	E10	АМ	м	Mass of scatterer. (amu) (The code divides this value by the neutron mass.)
		11-20	E10	DC	d	Diffusion constant.
		21-30	E10	BETSW	β_{sw}	β value above which short collision time (SCT) approximation is used, if $\alpha \ge ALPSW$. BETSW = 100 if left blank.
		31-40	E10	ALPSW	α sw	α value above which SCT approximation is used for all β . (ALPSW = 100 if left blank)
		41-50	E10	CRIT 1		Criterion used in recursive convolution of S_1 with a delta line. (CRIT1 = 0.001 if left blank)
		51-60	E10	CRIT 2		Criterion used in analytical convolution of S_2 with delta lines. (CRIT2 = 0.001 if left blank)
		61-70	E10	CRIT 3		Criterion for truncating time integrals. (CRIT3 = 0.00001 if left blank) (Note 4)

3.1.4

Item	Columns	Format	Code Symbol	Report Symbol	Description
		If $JS3 = 0$, S If $IPG \neq 0$,	Skip Cards 7 Skip Cards 7	7 and 8 7 and 8	
7	1-70	7E10	X3	ω	If $JS3>0$, $JS3$ values of the frequency are read (eV). If $JS3<0$, $X3(JS3)$ is read, and $X3(I) = (I-1)X3(JS3)/ JS3 $, I=1,, JS3 .
		If JS3<0 an	a X3(JS3)<	<0, Skip Ca	rd 8 (Note 5)
8	1-70	7E10	Q3	f(ω)	Distributed frequency spectrum, Mode 3. (Unnormalized)
		If JS4 = 0,	Skip Cards '	9 and 10	
9	1-70	7E10	X4	ω	As in Cards 7 and 8 for Mode 3 .
10	1-70	7E10	Q4	f(ω)	
		If JS5 = 0,	Skip Cards	11-13	· · · ·
11	1-70	7E10	X 5	ω k	Frequencies of delta lines, Mode 5. (eV) $(\omega_1 < \omega_2 < \ldots < \omega_{JS5})$
12	1-70	7E10	Q5	a k	Weights of delta lines, Mode 5.
13	1-70	7110	NPHØN		Maximum number of phonon terms calculated for the correspond- ing delta lines. NPH \emptyset N \leq 20 for each line.
		If NMESH :	= 0, Skip Ca	rd 14	
14	1-10	E10	EMAX	Emax	Maximum energy of mesh chosen. (eV)
	11-20	E10	DALPHA	Δα	α interval. (α_1 = DALPHA, α_2 = 2. DALPHA,, α = ALPHAC)
	21-30	E10	ALPHAC	α _c	α value at which mesh spacing begins increasing geometrically.

C

n

•

 \mathbf{C} · ·

	<u>Item</u>	Columns	Format	Code Symbol	Report Symbol	C " <u>Description</u>
		31-40	E10	DBETA	$ riangle oldsymbol{eta}$	β interval. ($\beta_1 = 0$, $\beta_2 = DBETA$, $\beta_3 = 2 DBETA$,, $\beta = BETAC$)
		41-50	E10	BETAC	β _c	m eta value at which mesh spacing begins increasing geometrically.
			If NMESH >	0, Skip Ca	ards 15 and	16
	15	1-70	7E10	ALPHA	α	a mesh
			lf NMESH <	0, Skip Ca	ard 16	
	16	1-70	7E10	BETA	β	β mesh ($\beta \ge 0$)
			If $IPG = 0$,	Skip Cards	17-19	
	17	1-10	E10	TBAR	Ŧ	Effective temperature for Mode 3 (eV).
	18	1-80	8E10	T	t	Integration time values (sec).
	19	1-80	8E10	GS, GC	H, F	Values of the pre-calculated GS and GC functions, in the order $(GS(I), GC(I), I=1, NT)$.
			If NT < 0, S	kip Card 2	:0	
	20	1-70	7E10	Т	t	Integration time points (eV ⁻¹)
			If $NT > 0$, S	kip Card 2	:1	
	21	1-10	E10	DT	Δt	$\Delta t (eV^{-1})$ for time mesh.
	÷	11-20	ElO	TMAX		t max (eV^{-1}) ($ NT $ sets, see Note 1)
_{ພາ}	22	1-10	110	ID		Numeric identification for $S(\alpha, \beta)$ deck.

•

3.1.6

	:			
Code	Report			
Symbol	Symbol [Variable]		Description	
NPT		$S(\alpha, \beta)$ output option.	NPT = 0 to punch on cards,	NPT = 1 to

 $S(\alpha, \beta)$ deck in ENDF/A format. (Note 8)

write a binary output tape, NPT = 2 to do both.21-30E10SIGF σ_f Free atom cross section. (barns)31-40E10EPSSignificance Criterion for $S(\alpha, \beta)$ output. (Note 6, Note 7) |If NREST ≥ 0 , Skip Card 23

Note 1. If |NT1| < 0, t starts at 0 and increases by Δt_1 until $t \ge t_{1}$ max₁, then by Δt_2 up to TMAX₂, and so on up to TMAX_{NT}.

- Note 2. If NDAM = 0, Parts 1 and 2 of S will be calculated if $W1 \neq 0$. If NDAM = 1 only S1 will be calculated, and the Mode 1 contribution (free gas) is only used to damp the Q and R functions.
- Note 3. A tape containing $S(\alpha, \beta)$ for $\alpha = \alpha(1), \ldots, \alpha$ (NREST-1) must have been saved.
- Note 4. Time integrals are cut off at t i if $\max(\sum_{j=1}^{i+19} Q_j, \sum_{j=1}^{i+19} R_j)/Q_1 \leq CRIT3$. Note 5. If JS3 < 0 and X3(|JS3|) < 0, a Debye spectrum, $f(\omega_3) = \omega_3^2$, will be calculated.
- Note 6. If $S(\alpha, \beta) \ge e^{\beta/2} < EPS \cdot Max (S(\alpha, \beta) \ge e^{\beta/2})$, this (α, β) point is not punched. EPS = 10^{-6} is an adequate choice.

Note 7. If Card 22 is blank, punching and error map printout are skipped and code returns to Card 23 for next input.

Note 8. If NREST < 0, a previously calculated $S(\alpha, \beta)$ deck is read and all α points from NREST on are recalculated.

23

ι

~1

Item

Columns

11-20

Format

110

A. 3. 2 GAKER⁽⁵⁾

The original version of GAKER was coded to compute the double differential scattering cross section for Nelkin's discrete oscillator model. ⁽⁶⁾ This model allows for free translations, a hindered rotational oscillator and several vibrational oscillators. The treatment of each oscillator depends on the initial neutron energy E and some input switching criteria E_{c} . In general, for $E_{cn} < E < E_{cn+1}$ oscillator n is treated exactly, oscillator n + 1 is treated with a two-term phonon expansion, oscillators 1, 2... n - 1 are treated in the short collision approximation and oscillators n + 2, n + 3... are treated in the elastic limit. ^{*} Each oscillator has a frequency ω with weight 1/M. The sum of the reciprocal masses must be normalized to 1.

The double differential cross section is related to the scattering law by:

$$\sigma(E \stackrel{\rightarrow}{} E, \Omega) = \frac{\sigma_{\rm b}}{4\pi} \sqrt{\frac{E}{E_{\rm o}}} e^{-\beta/2} S(\alpha, \beta) .$$

The original GAKER was coded to read in a set of energies and scattering angles and to compute the double differential cross section and its first three Legendre moments. A modified version computes a set of α and β values and calculates $S(\alpha, \beta)$. In this modified version the switching depends on β rather than on the initial energy E. This is also an option in the original code. The input for the modified version of GAKER follows.

^{*}In its present version GAKER allows for a maximum of four oscillators.

INPUT FOR GAKER

Card	Col	Format	Code Symbol	Description
1	1-72	12A6	HOLREC	Comments
2	1-5	15	ID	An identification number (negative)
	6-10	15	NR	Number of vibrational osc.
	11-15	15	IBX	Number of β mesh points
	16-20	15	IZX	Number of α mesh points
3	1-10	E10.5	Т	Temperature (T ⁰ ev/.0253)
	11-20	E10.5	ECl	First Switching Criterion (ev/.0253)
3	21-30	E10.5	EC2	Second Switching Criterion (ev/.0253)
	31-40	E10.5	SIGF	Free atom scattering cross section (barns)
	41-50	E10.5	EPS	Punching Criterion (~ 10^{-6})
	51-60	E10.5	EMAX	Max. Energy Con- sidered (ev)
	61-70	E10.5	AMASS	Scatterer mass (AMU)
4	1-10	E10.5	RT	Temperature (ev)
	11-20	E10.5	MT	Translational Mass
	21-30	E10.5	MR	Rotational Mass
	31-40	E10.5	WR	Rotational Frequency (ev)
5	1-10	E10.5	MV1	Mass of First Vibrator
	11-20	E10.5	W 1	Frequency First Vibrator (ev)

Card	Col	Format	Code Symbol	Description
	21-30	E10.5	MV2	Mass of 2nd Vibrator
	31-40	E10.5	W 2	Frequency of 2nd Vibrator (ev)
	41-50	E10.5	MV3	Mass of 3rd Vibrator
	51-60	E10.5	W 3	Frequency of 3rd Vibrator (ev)
6	1-10	E10.5	EMAX	This card same as for GASKET Card 14
	11-20	E10.5	DALPHA	
	21-30	E10.5	ALPHAC	
	31-40	E10.5	DBETA	
	41-50	E10.5	BETAC	

A. 3. 3 HEXSCAT⁽⁷⁾

The HEXSCAT code calculates the Legendre moments P_0 through P_5 of the coherent elastic neutron scattering cross section for a polycrystalline scatterer with hexagonal structure. These moments rather than the angle dependent elastic cross section are put on the ENDF/B tape. In order to recover the angular dependence of the elastic scattering one must use FLANGE II which gives the corresponding expansion in spherical harmonics.

The version of HEXSCAT used for computing the tabulated ENDF/B data is slightly different from the one described in the reference. While the original version computes group averages, the modified code gives point values of the elastic cross section. The energy points are calculated for E < EXACT and read in for E > EXACT (EXACT being an input quantity). The calculated energy points are evenly spaced between Bragg peaks with two points in the immediate vicinity of each peak, one just below and the other just above the peak energy. The small energy difference between the points adjacent to a peak and the actual Bragg energy is an input number called ESEP in the code (see input instructions following below).

INPUT FOR MODIFIED HEXSCAT

Card	Col	Format	Code Symbol	Description
1	1-80	13A6 , A2	HOL	Comments
2	1-10	E10.5	SCOH	Coherent Scattering Cross Sec- tion (barns)
	11-20	E10.5	А	Magnitude of base plane lattice vector (cm)
	21-30	E10.5	С	Magnitude of lattice vector out of base plane (cm)
	31-40	E10.5	AMASC	Scatterer mass (AMU)
	41-50	E10.5	EXACT	For ENDF data code computes energy mesh for $E < EXACT$ and reads in higher E (Ev), see EIN

Card	Col	Format	Code Symbol	Description
2	51-60	110	ID	ENDF/B ID number
(cont)	61-70	E10.5	ZA	ENDF/B mass number identifi- cation
	71-80	E10.5	AWR	ENDF/B mass value (neutron mass units)
3	1-5	15	NES	Total number of energy points read in - see EIN
	6-10	15	NTS	Number of Temperatures
	11-15	15	NAV	Ignored for ENDF version
	16-20	15	NXAV	Number of energy points com- puted between peaks
	21-25	15	IP	Must be nonzero for this version
	26-30	15	NCOS	Ignored for ENDF version
	31-35	15	NPCH	\neq 0 to punch cards for ENDF/B
	36-40	15	NFORM	Code contains an expression which is unique for each mate- rial l = Be,2 = BeO,3 = C
	41-50	E10.5	ESEP	Absolute value of smallest energy difference (eV), between calculated mesh points and Bragg peaks
4	1-70	7E10.5	EIN	Energies: $E_1 = E_{min}$, $E_2 = E_2$ EXACT; E_3 , $E_4 \cdots E_N E_S$ are input energies (eV) for E > EXACT
5	1-70	7E10.5	WAL 2	Debye-Waller Integral/AMSC; NTS values
6	1-70	7E10.5	TMP	Temperatures, NTS values.

A.3.4 ZREND

This code calculates Legendre moments of the incoherent elastic cross section and was written explicitly to compute the cross section of hydrogen as bound in ZrH_x for ENDF/B. The Legendre moments are:

$$\sigma_{n}(E) = \frac{\sigma_{b}}{2} \int_{-1}^{1} P_{n}(\mu) \exp \left[-\frac{2EW}{A}(1-\mu)\right] d\mu, n = 0, 1, \dots 5,$$

where W is the Debye-Waller integral and A the atomic mass.

For high energies the moments are calculated recursively. For low energies the recursive calculation of the integrals blows up numerically and it is necessary to expand the exponential. Although the expansion is good for all energies the code has incorporated the feature of switching to the recursive method for $\frac{2EW}{A} > E_{switch}$.

INPUT FOR ZREND

Card	Col	Format	Code Symbol	Description
1	1-80	13A6 , A2	СОМ	Comments
2	1-5	15	NT	Number of temperatures
	6-10	15	NE	Number of energies
	11-20	E10.5	SB	Bound atom cross section
	21-30	E10.5	SWITCH	Eswitch
	31-40	E10.5	EPS	Criterion for expansion termin- ation
	41-45	15	NPCH	NPCH \neq 0 for punching of $\sigma_{n}(E)$
3	1-70	7E10.5	Т	Temperature ^o K; NT values
4	1-70	7E10.5	WP	W/A (eV ⁻¹); NT values
5	1-70	7E10.5	E	Energies; NE values (eV)

A.4 REFERNCES FOR SECTIONS A.1, A.2, AND A.3

- 1. H. Honeck, Evaluated Nuclear Data File Description and Specifications. BNL 8381 (June 1964).
- 2. Theoretical and Experimental Neutron Spectra, General Atomic Report GA-5319 (May 1964).
- 3. H. Honeck, ENDF/B Specifications for an Evaluated Nuclear Data File for Reactor Applications, BNL 50066 (May 1966).
- 4. J. U. Koppel et al., A Unified Code for Thermal Neutron Scattering, General Atomic Report GA-7417 (Rev.) (March 10, 1967).
- 5. Integral Neutron Thermalization Annual Summary Report, p. 155, General Atomic Report GA-5798 (Oct. 15, 1964).
- 6. M. S. Nelkin, Scattering of Slow Neutrons by Water, <u>Phys. Rev.</u> 119, 741 (1960).
- HEXSCAT: Coherent Elastic Scattering of Neutrons by Hexagonal Lattices, Y. D. Naliboff and J. U. Koppel, General Atomic Report GA-6026 (Dec. 15, 1964).

4.1

MODERATOR INDEX (12/16/68)

Moderator	Page	Date Submitted to ENDF	Distinguishing Characteristic of Data
Be	Be - 1.1	4/66	Central force model
BeO	BeO - 1.1	9/66	Debye frequency spectrum
BeO	BeO - 1.1 (Rev12/31/69)	9/68	Shell model
C	C - 1.1	4/66	Central force model
(CH ₂) _n	(CH ₂) _n - 1.1	9/66	Discrete oscillators model
(CH ₂) _n	<u>(CH₂)_n - 1.1</u> (Rev12/31/69)	6/69	Model of noninteracting infinite chains of CH ₂ radicals
C6H6	C ₆ H ₆ - 1.1	3/68	Normal mode calculation of frequency spectra
D ₂ O	D ₂ O - 1.1	8/66	Torsional frequency band plus discrete oscillators
H ₂ O	H ₂ O - 1.1	4/66	Torsional frequency band plus discrete oscillators
UC	UC - 1.1	6/69	Central force model
\mathtt{UO}_2	UO ₂ - 1.1	9/68	Shell model
Z _r H _n	$Z_{r}H_{n} - 1.1$	8/66	Debye acoustical band plus Gaussian optical band about 0.13705
Z _r H _n	Z _r H _n - 1.1 (Rev12/31/69)	3/68	Central force model

BERYLLIUM

1. Physics

Using the incoherent and isotropic approximations, one finds that the scattering cross section for thermal neutrons depends solely upon the phonon spectrum of the lattice vibrations. Thus the inelastic scattering or the scattering kernel is determined once one computes the phonon spectrum. The force constants of the beryllium lattice dynamics have been measured by R. E. Schmunk, et al. ⁽¹⁾ upon the assumption that the forces in beryllium are central and extend out to fifth nearest neighbors. These force constants are measured in the sense that the calculated dispersion curves were fit by a least squares method to the experimental ones. Using this force model the phonon spectrum was calculated by the root sampling method. The computed phonon spectrum gives good agreement with the measured specific heat.

The elastic scattering cross section was computed from the known lattice structure (hexagonal close-packed). Both infinite medium and angular-dependent spectral comparisons show that the scattering kernel computed by the above method gives good agreement with experiment.

⁽¹⁾R. E. Schmunk, R. M. Brugger, P. D. Randolph, and K. A. Strong, Phys. Rev. <u>128</u> (1962) 562. 2. 1. Frequency Spectrum for Be

Be - 2.1

3.1 GASKET Input for Be at 296[°]K

The code GASKET is discussed in Section A.3. The data tabulated below follows the format of the code input instructions also given in Section A.3. The code symbols used below are defined in the code input section. If no value is entered for a symbol the corresponding input quantity was not required in the calculation.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CARD NO.	FORMAT	CODE SYMBOLS AND VALUES	_
2 1115 NT -8 NP 50 NE 80 NDAM 1 NGPRT 0 NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0 3 315 JS3 -54 JS4 0 JS5 0 4 5E10 W1 002 W2 0.0 W3 1.0 W4 0.0 W5 0.0 5 6E10 T1 0255 T2 0.0 T3 0255 T4 0.0 T5 0.0 6 7E10 AM 9.01 DC 0.0 BETSW 15.0 ALPSW 15.0 CRIT1 0.0 7 7E10 X3 082948	1	13A6 ,A 2	COM <u>Be at 296°K</u>	
NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0 3 315 JS3 -54 JS4 0 JS5 0 4 5E10 W1 002 W2 0.0 W3 1.0 W4 0.0 W5 0.0 5 6E10 T1 0255 T2 0.0 T3 0255 T4 0.0 T5 0.0 6 7E10 AM 9.01 DC 0.0 BETSW 15.0 ALPSW 15.0 CRIT1 0.0 7 7E10 X3 .082948	2	11I5	NT -8 NP 50 NE 80 NDAM 1 NGPRT 0	_
IPG 0			NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0	
3 315 JS3 -54 JS4 JS5	1		/ IPG	
4 5E10 W1 _002 W2 0.0 W3 1.0 W4 0.0 W5 0.0 5 6E10 T1 _0255 T2 0.0 T3 _0255 T4 0.0 T5 0.0 6 7E10 AM 9.01 DC 0.0 BETSW 15.0 ALPSW 15.0 CRTT1 0.0 7 7E10 X3 _082948	3	315	JS3 <u>-54</u> JS4 <u>0</u> JS5 <u>0</u>	
5 6E10 T1 .0255 T2 0.0 T3 .0255 T4 0.0 T5 0.0 6 7E10 AM 9.01 DC 0.0 BETSW 15.0 ALPSW 15.0 ALPSW 15.0 ALPSW 0.0 7 7E10 X3 .082948	4	5E10	W1 .002 W2 0.0 W3 1.0 W4 0.0 W5 0.0	
6 TE10 AM 9.01 DC 0.0 BETSW 15.0 ALPSW 15.0 CRIT1 0.0 7 7E10 X3 .082948	5	6E10	T1 <u>0255</u> T2 0.0 T3 0255 T4 0.0 T5 0.0	_
7 7El0 X3 .082948	6	7E10	AM 9.01 DC 0.0 BETSW 15.0 ALPSW 15.0 CRITI 0.0	_
7 7E10 X3 <u>.082948</u>			CRIT2 0.0 CRIT3 0.0	
	7	7E10	X3082948	
			······································	
			· · · · · · · · · · · · · · · · · · ·	
	1			
	-			

C	ARD	NO.	FORMA	۲		CC	DDE SYMBOI	S AND VAL	LUES		
\bigcirc	8		7E10	G	3 <u>.00312</u>	.025	. 06	.115	.17	. 235	
			. 1.		.308	.39	. 475	.595	.775	1.052	
					1.1482	1.6233	1.5653	1.7423	2.4289	2.8072	
					3.2863	3.7577	4.4397	5.4924	6.3315	7.6421	
					9.5339	<u>12.1016</u>	1 <u>5.0553</u>	2 <u>2.0154</u>	2 <u>6.6382</u>	2 <u>9.3387</u>	
					32.6036	35.777	37.6536	40.3845	37.1196	32.39	
	:				<u>29.8269</u>	<u>21.2831</u>	1 <u>8,9488</u>	1 <u>3.0186</u>	7 <u>.33848</u>	1 <u>2.5075</u>	
					<u>18,9031</u>	2 <u>3.5564</u>	25.6923	2 <u>5.5855</u>	4 <u>3.0544</u>	1 <u>7.8656</u>	
	1			1	6 .8197 5	<u>3.98963</u>	2 <u>.99184</u>	1.6843	.65772	0.0	
:							<u></u>	<u></u>	<u></u>	<u></u>	
1.					<u> </u>	·			·	•	
,					<u> </u>				· ·		
			·		••••••••••••••••••••••••••••••••••••••					·····	· · ·
-					······································					• •••••	
					······		· · · ·				
							میں عدم ارتشاع میں				· · · ·
	9							· · · ·			
	10		Cards	9 and 10 ar	e not need	led					
	11		7E10	X	5						
	12		7E10	କ	5						
	13		7110	NPHC	N						
	14		5E10	EMA	X 1.0	DALPHA	.25 ALI	PHAC 3.0	DBETA	. 15	BETAC 4.0
	15,	, 16,	17, 18,	19 and 20	are not ne	eeded					
	21		2E10	D	T. 025	TMAX	·				
				-	. 05	1.	0				
					.125	10	. 0				
					25	_20	0				
					.5	10	0.0				
		1			1.0	_15	0.0			ï	
•					3.0	_20	0.0		· .		
					10.0	400	0.0				
-								, ,	•		
					· · ·	- -					
	22		2I10 2E10	Ţ	D <u>24</u>	IPT <u>0</u>	SIGF 6	<u>.10</u> EPS	. 000001		
	23		Card 2	3 is not ne	eded			•			

3.2 HEXSCAT Input for Be

The code HEXSCAT is discussed in Section A. 3. The data tabulated below follows the format of the code input instruction also given in Section A. 3. The code symbols used below are defined in the code input section. If no value is entered for a symbol the corresponding input quantity was not required for the calculation.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES	
1	13A6 ,A 2	HOL HEXSCAT for ENDF Be	
2	5E10,	SCOH 7.53 A 2. 2856-8 C 3. 5832-84MASC9.01 EXACT . 0625	<u>51</u> 5
	1 I 10,	ID 1064 ZA 4009. AWR	
3	815,	NES 32 NTS 8 NAV 0 NXAV 2 IP 1	·
	1E10	NCOS 0 NPCH 1 NFORM 1 ESEP 1.0001	
4	7E10	EIN .00521943 .0625515 .06256401 .06262687 .06263	<u>94</u> 0
		<u>.068997</u> 16 <u>.069010</u> 96 <u>.069438</u> 35 . <u>069452</u> 24 .0 <u>7245</u>	<u>13</u> 1
	- -	<u>.07246580</u> .07298931 .07300391 .07634664 .07636	<u>19</u> 1
		<u>.07768249 .078036</u> 03 .08 .09 .092	
		<u>.099</u> <u>.120</u> <u>.130</u> <u>.170</u> .220	
		<u>. 270</u> .325 .400 .475 .575	
		.800 1.0	
		· 	
5	7E10	WAL2 <u>3.16663</u> <u>3.88842</u> <u>4.62944</u> 5 <u>.40517</u> 6 <u>.1988</u>	0
		7.0042 8.63665 10.2865	
_			
6	7E10	$\underline{\text{TMP}}_{296.0} \underline{400.0} \underline{500.0} \underline{600.0} 7\underline{00.0}$	
	-	<u>800.0 1000.0 1200.0</u>	
			_

4. Plots of Scattering Law

β Value	s for Multic	urve Plots	
CURVE	INDEX	в(296К)	β(1200K)
1	l	0.00	0.00
2	2	•15	•037
3	3	•30	.074
4	4	•90	.222
5	5	1.50	•370
6	6	2.10	•518
7	7	2.70	.666
8	8	3.30	.814
9	9	3.90	.962
10	9	4.55	1.12
11	= .	5.33	1.31
12	**	6.27	1.55
13	1	7.42	1.83
14	δ	8.81	2.17
15	α	10.49	2.59
16	+	12.52	3.09
17	A	14.99	3.70
18	В	17.97	4.43
19	C	21.58	5.32
20	D	25,96	6.40

ALPHA

Be - 4.2

- - - - - - -

.

ALPHA

Be - 4.3

5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BARNS (SIGTOT) AND THE AVERAGE COSINE OF THE SLATTERING ANGLE (MUBAR).

DATA FOR BERYLLIUM AT 296 DEGREES K.

	Ĕ	SIGTOT	MUBAR		E	SIGTOT	MUBAR
1	.00522	2.09751	81057	43	.02448	6.98328	18083
2	.00560	1.97670	- 69936	44	02548	6.73219	13790
3	00599	1.87109	60405	45	02549	6.88446	15695
4	.00637	1.77846	52160	46	.02607	6.74354	13301
5	.00637	3.34561	74685	47	.02666	6.60905	11024
6	.00652	3.27802	71002	48	.02725	6.48062	08857
7	.00666	3.21390	67484	49	.02725	6.68300	11617
8	.00681	3.15248	64132	50	.02816	6.48772	08337
9	.00681	9.49546	88119	51	.02908	6.30518	05289
10	.00840	7.76248	53288	52	.02999	6.13351	02450
11	.01000	6.58706	29863	53	.03000	6.13242	02432
12	.01159	5.73626	13183	54	.03023	6.09011	01734
13	.01159	6.63154	24923	55	.03047	6.04850	01048
14	.01251	6.17464	16392	56	.03070	6.00757	00375
15	.01342	5,78029	09097	57	.03071	6.16935	02991
16	.01433	5.43726	02803	58	.03221	5.91556	.01193
17	•01434	5.43625	02784	59	•03371	5.68657	.04938
18	•01478	5.28684	00058	60	.03521	5.47933	.08294
19	.01522	5.14714	.02493	61	.03522	5.85388	•01353
20	.01566	5.01602	.04881	62	•03565	5.79242	.02379
21	.01566	6.09893	13779	63	•03609	5.73249	.03374
22	.01619	5.91501	10365	64	•03653	5.67358	.04343
23	.01672	5.74261	07188	65	•03654	5,78905	.02257
24	.01725	5,58028	04225	66	.03707	5,71869	.03424
25	.01725	5.57927	04207	67	•03760	5.65074	•04549
26	.01802	5.36105	00263	68	•03812	5.58510	•05635
27	•01879	5.16105	.03324	69	•03813	6.22625	05257
28	.01955	4.97695	.06596	70	.03869	6.14976	03939
29	.01956	6.08442	12842	71	•03925	6.07595	02668
30	.02000	5.96103	10577	72	•03981	6.00471	01440
31	.02044	5.84321	08419	73	•03982	6.00371	01423
32	•02088	5.73055	06362	74	•04026	5.94974	00493
33	•02088	5.89413	08963	75	•04070	5.89725	•00411
34	•02126	5.79755	07196	76	•04114	5.84618	•01290
35	•02164	5.70463	05498	77	•04115	6.212/1	04692
36	.02203	5.61504	03867	78	•04173	6.14158	03442
37	•02203	6.81143	20774	79	•04232	6.07298	02237
38	•02218	6.77031	2003/	80	•04290	6.00684	01073
39	.02232	0.129/5	19309	16	•04291	6.1/455	03762
40	• 02247	6.689/3	18592	82	•04362	6.09510	02351
41	.02247	7.55533	2/923	83	• 04435	6.019/8	01000
42	.02348	1.25669	22776	84	•04503	5.94842	•00294

Be - 5.1

DATA FOR BERYLLIUM AT 296 DEGREES K.

	E	SIGTOT	MUBAR		E	SIGTOT	MUBAR
85	•04504	6.17647	03412	127	.06238	5.89727	.03961
86	•04548	6.13152	02587	128	.06255	5.88823	.04133
87	04592	6.08769	01784	129	06256	5.92485	.03490
88	.04636	6.04493	01001	130	.06263	5,92159	.03552
89	.04637	6.11589	02149	131	.06264	5,99527	.02280
90	•04657	6.09629	01789	132	.06900	5.73915	.07209
91	.04677	6.07692	01433	133	.06901	5.85711	.05048
92	.04697	6.05777	01082	134	.06944	5.83988	.05381
93	.04698	6.19667	03300	135	.06945	6.01438	.02322
94	.04751	6.14598	02363	136	07245	5.89457	04694
95	.04803	6.09678	01455	137	.07247	5.99939	02864
96	.04856	6.04902	00575	138	.07299	5.97920	03266
97	.04857	6.04816	00559	139	.07300	6.08213	.01519
98	•04934	5,98148	.00667	140	•07635	6.00640	.03204
99	•05U10	5,91762	.01839	141	•07636	6.14487	.00878
100	.05087	5,85645	.02958	142	.07768	6.09715	.01853
101	•05088	6.20969	02904	143	•07804	6.08481	.02103
102	.05170	6.14123	01614	144	.08000	6.04036	.03071
103	•05252	6.07582	00384	145	•08900	6.06915	.03295
104	05334	6.01429	.00783	146	.10100	6.00351	.04658
105	•05335	6.22647	02653	147	.11300	5.97446	05569
106	•05406	6.17402	01627	148	.12500	6.05891	.04620
107	•05476	6.12339	00641	149	13700	6.02034	.05572
108	•05547	6.07453	.00307	150	.15 200	6.03409	.05416
109	• 05548	6.07378	.00321	151	.16 800	6.05452	•05385
110	.05610	6.03253	.01117	152	•18400	6.02036	•05989
111	•05672	5.99253	.01885	153	•20000	6.03187	.06039
112	.05733	5.95374	.02627	154	•22400	6,04859	.06292
113	•05734	5.98329	.02121	155	.24800	6.05396	.06327
114	•05846	5.91556	.03413	156	.27200	6.06504	•06393
115	•05957	5.85144	•04624	157	.29600	6.05304	.06468
116	• 06069	5.79076	.05760	158	•32500	6.05560	•06456
11/	• 06070	5.90991	.03626	159	• 35500	6.05836	.06454
118	.06090	5.89896	.03835	160	.38500	6.06277	
119	•06110	5.88812		161	•41500	6.06751	.06677
120	• 06130	5.87739	• 04245	162	•44500	6.05934	•06726
102	• UDIJZ	5.07074	.04257	103	•47500	6.07004	• 06765
122	+05100	5.00442	.04491	165	+ 50500 57500	6.07035	•06810
120	• UOL / O	5.00223	+U7/21	166	• 333UU		+U080U
105	• UOCUI	5 01557	04747 03610	167	• 30500 EQE00	0.00901 6 06910	•U0910
120	06200	2 004 XA	• UJOIU	101	+ 37300 4 3500	C+UDO10	•U0706
+ ∠0	• UOZZU	20226028	•UJ/0D ·	100	•023UU	0,000/0	• UD777
DATA FOR BERYLLIUM AT 296 DEGREES K.

	E	SIGTOT	MUBAR		E.	SIGTOT	MUBAR
169 170 171 172 173	•65500 •68500 •71500 •74500 •77500	6.06555 6.06476 6.06444 6.06463 6.06551	.07036 .07064 .07081 .07087 .07083	174 175 176 177	.80500 .85500 .90500 .95500	6.06679 6.06962 6.06623 5.99581	.07070 .07025 .06921 .06371

THE ELASTIC CONTRIBUTION TO THE TOTAL CROSS SECTION WAS CALCULATED AT ALL OF THE TABULATED ENERGIES.THE INELASTIC CONTRIBUTION WAS CALCULATED ON A COARSER MESH AND WAS INTERPOLATED TO GIVE THE VALUES AT THE TABULATED ENERGIES.

THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	DELTA E	UP TO)
1	.0005	•004	E٧
2 -	.001	.01	E۷
3	.002	.03	E۷
4	•004	.05	E۷
5	•006	•14	E۷
6	•008	.30	E۷
7	.01	1.0	E۷

6. Miscellaneous Notes on Beryllium

For temperatures other than 296°K the switching criteria for short collision and the α , β mesh input for 296°K were multiplied by $\frac{296°K}{T°K}$. The only other changes made in the input for higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye Waller integral, effective temperature and ID numbers of the scattering law data on file.

<u>т(^ок)</u>	Debye Waller Integral (eV ⁻¹)	T([°] K)	ENDF ID No.
296	28.531	405.64	GA 0024
400	34.997	484.22	GA 0029
500	41.714	568.53	GA 0030
600	48.704	657.66	GA 0031
700	55.855	749.69	GA 0032
800	63.112	843.63	GA 0033
1000	77.822	1035.0	GA 0042
1200	92.688	1229.3	GA 0043

BERYLLIUM OXIDE

1. Physics

The scattering law of BeO has been calculated using the incoherent isotropic approximation.

Beryllium oxide consists of two interpenetrating hexagonal closepacked structures with four atoms per unit cell.

The lattice dynamics⁽¹⁾ has been developed on the basis of a shell model, whose parameters have been chosen in such a way to give the best agreement to the elastic constants data and to the measured Raman frequencies.

Only the negative ions (oxygen) have been assumed to be polarizable. The effective charge on the ions has been taken to be 1.1 electron units, as derived from the Szigeti relation. The negative charge on the shell of each oxygen ion has been taken as equal to 1.2 electron units. The isotropic elastic force constant connecting shell and core of the negative ions has been taken as equal to 3×10^5 dyn/cm. The long range forces have been computed using the Ewald method.

Short range repulsive forces are acting among first and second neighbors. These interactions take place between the positive ions and the shells of the negative ions. Introduction of the second neighbors interaction was found necessary in order to fit the preliminary dispersion relations measured by neutron scattering.⁽²⁾

The frequency spectra weighted by the squares of the amplitude vectors have been computed separately for beryllium and oxygen and have been used to calculate the relative scattering laws using the code GASKET.

BeO - 1.1 (Rev. -12/31/69)

⁽¹⁾ G. Borgonovi, "Lattice Dynamics and Neutron Scattering of BeO," USAEC Report GA-8758, Gulf General Atomic Incorporated (1968).

⁽²⁾R. M. Brugger, K. A. Strong and J. M. Carpenter, <u>J. Phys. Chem.</u> Solids, 28, 249 (1967).

The two scattering laws have been combined and the total scattering law is referred to the beryllium atom.

The elastic part of the scattering law has been calculated by the code HEXSCAT using the average of the Debye-Waller factors for beryl-lium and oxygen.

2. Weighted Frequency Spectrum for Be in BeO

BeO-2.1 (Rev. -12/31/69)

Weighted Frequency Spectrum for Oxygen in BeO

BeO-2.2 (Rev. -12/31/69)

3.1 GASKET Input for Be(BeO) at 296[°]K

The code GASKET is discussed in Section A. 3. 1. The data tabulated below follows the format of the code input instructions also given in Section A. 3. 1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES				
1 2	13A6, A2 11I5	COM Be in BeO at 296 degrees K.NT-5NP50NE80NDAM1NGPRT0NCP0NMESH1NREST0NCVP0NSEP0IPG0				
3	315	JS3 -83 JS4 0 JS5 0				
4	5E10	W1 0.001 W2 0.0 W3 1.0 W4 W5				
5	6E10	T1 0.0255T2 0.0 T3 0.0255 T4 T5				
6	7E10	AM 9,013 DC 0.0 BETSW 40.0 ALPSW 20.0 CRIT1				
-		CRIT2 CRIT3 X3 0.1371				

CARD	NO	FORMAT
OmD	110.	LOUMULT

(______

CODE SYMBOLS AND VALUES

8	7E10	Q3 <u>0.3</u>	<u> 0. 7 </u>	0.9	1.0	1.2	1.6	
		2.0	2.2	3.0	-3.5	4.5	5.5	
		6.8	8.0	<u>9.2</u>	10.9	12.9	15.5	
		<u>18.6</u>	22.0	<u>26.0</u>	30.5	35.0	39.0	
		40.0	<u>34.0</u>	28.0	<u> 26. 0 </u>	24.4	23.0	
		<u> </u>	19.8	<u>17.0</u>	<u> 14. 1 </u>	12.0	10.0	
		<u> </u>	<u> </u>	<u> </u>	7.5	<u> 6.0</u>	4.6	
		<u> </u>	20 0	0.5	0.0	0.0	4.0	
		230 0	200 0	<u> </u>	145 0	105.0	165.0	
		112 0	96.0	<u>170.0</u> <u>80.0</u>	<u>145.0</u> 94.0	<u>130.0</u> 75.0	134.0	
		81.0	66.0	59 0	68 0	105 0	87.0	
		97.0	135.0	163.0	130 0	111 0	92.0	
		67.0	45.0	19.0	7 0	0.0		
					-			
9	Cards 9 a	and 10 are not	needed		<u></u>		**************************************	
10		ind to are not	neeueu				-	
11	7E10	X5						
12	7E10	Q5						
13	7I10 NI	PHON		<u> </u>				
14	5E10 E	MAX 1. 0 DAI	PHA0.25	ALPHA	C 2.95 D	BETA 0.	15 BETAC	24.0
15, 1	6, 17, 18, 19	and 20 are no	t needed	-				
21	2E10	DT <u>0.15</u>	TMAX	6.0				
		0.40		0.0				
		3.0	30	0.0				
		6.0	25	00.0				
		10.0	<u>55</u>	600.0				
22	2110							
	2E10	ID 150	NPT 0	SIGF	6.09	EPS 1.01	E-6	
92	Condition						<u> </u>	
23	Card 23 1	s not needed						

BeO - 3. 1. 2 (Rev. -12/31/69)

3.1.a GASKET Input for O(BeO)

The code GASKET is discussed in Section A. 3. 1. The data tabulated below follows the format of the code input instructions also given in Section A. 3. 1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1	13A6, A2	COM_Oxygen in BeO at 296 degrees K.
2	11I5	NT -5 NP 50 NE 80 NDAM 1 NGPRT 0
		NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0
		IPG 0
3	315	JS3 -83 JS4 0 JS5 0
4	5E10	W1 0.001 W2 0.0 W3 1.0 W4 W5
5	6E10	T1 0.0255 T2 0.0 T3 0.0255 T4 T5
6	7E10	AM 16.0 DC 0.0 BETSW 40.0 ALPSW 20.0 CRIT1
		CRIT2 CRIT3
~		X3 <u>0. 1371</u>
		• •

BeO - 3.1.3 (Rev. -12/31/69)

-- -----

CARD NO.	FORMAT	C	ODE SYMBOLS	AND VALUES	
8	7E10 Q3	0.40 0.80	1.0 1.4	2.0 2.5	
	_	3.5 4.8	6.2 8.9	11.0 14.0	
	_	17.2 21.5	26.5 34.0	40.0 46.0	
		58.0 60.0	93.0 110.0	129.0 141.0	
	1	42.0 125.0	101.0 93.0	92.0 91.0	
		95.0 95.0	<u>98.0 108.0</u>	93.0 78.0	
	· · · · · · · · · · · · · · · · · · ·	98.0 112.0	<u>115.0 145.0</u>	<u>160.0 190.0</u>	at .
	Į.	<u>120.0</u>	43.0 0.0	0.0 1.0	
	_	9.0 19.0	26.0 35.0	48.0 66.0	
		92.0 82.0	56.0 44.0	35.0 29.0	
	-	21.0 15.0	11.5 9.0	8.0 7.0	
		6.0 5.2	4.5 5.0	5.9 6.0	
	-	5.0 4.0	2.5 1.8	1.0 0.50	
		<u>0.50</u> <u>0.20</u>	0.0 0.0	0.0	
			<u> </u>	<u></u>	
				<u> </u>	
9	Cards 9 and 10	are not needed			
10				·	
11	7E10 X5_				
12	7E10 Q5_				
13	7I10 NPHON				
14	5E10 EMAX <u>1</u>	.0 DALPHA.1408	3 ALPHAC 1.6618	DBETA <u>0.15</u> BETA	C <u>4.0</u>
15, 16, 1	17, 18, 19 and 20	are not needed			
21	$2E10$ DT_	<u>0.15</u> TMAX	6.0		
		0.40	60.0		
	_	3.0	300.0		
		<u>6.0</u> <u>2</u>	<u>500.0</u>		
		<u>10.0</u> <u>5</u>	<u>500.0</u>		
		<u> </u>			
	·	······	<u></u>		
22	2110 -				
	2E10 ID	160 NPT 0	SIGF 3.76	EPS 1.0E-6	
0.0		······································			
23	Card 23 is not n	eeded			

-

- - -

_

· · · · · · ·

BeO - 3.1.4 (Rev. -12/31/69)

3.2 HEXSCAT Input for BeO

The code HEXSCAT is discussed in Section A. 3. 1. The data tabulated below follows the format of the code input instruction also given in Section A. 3. 1. The code symbols used below are defined in the code input section. If no value is entered for a symbol the corresponding input quantity was not required in the calculation.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1 2 3	13A6,A2 5E10, 1I10, 8I5, 1E10	HOL HEXSCAT for Borgonuuis shell model BeO SCOH 1.0 A 2.695-8 C 4.39-8 AMASC 1.0 EXACT 0.05 ID 1108 ZA 200.0 AWR 24.7967 NES 22 NTS 8 NAV 0 NXAV 2 IP 1 NCOS 0 NPCH 1 NFORM 2 ESEP 1.0001 EIN 3.754475-3 0.05 0.05280088 0.05281143 0.05834735 0.05835902 0.06442 0.07132077 0.07548925 0.07826468 0.08325706 0.09662996 0.120 0.130 0.150 0.200 0.260 0.300 0.425 0.600
5	7E10	WAL2 2.153 2.6374 3.1348 3.6513 4.1798 4.7164 5.8052 6.9068 6.9068
6	7E10	TMP 296.0 400.0 500.0 600.0 700.0 800.0 1000.0 1200.0 1200.0 1200.0 1000.0

BeO - 3.2.1 (Rev. - 12/31/69)

4. Plots of Scattering Law for BeO

BETA VALUES FOR MULTICURVE PLOT

Curve	Index	<u> β(296⁰К)</u>	<u>β(1200⁰K)</u>
1	1	0.00	0.0
2	2	0.150	0.036992
3	3	0.300	0.073984
4	4	0.900	0.22195
5	5	1.500	0.36992
6	6	2.100	0.51789
7	7	2.700	0.66586
8	8	3.300	0.81382
9	9	3.900	0.96179
10	9	4.5456	1. 1210
11	=	5.3273	1.3138
12	11	6.2738	1.5472
13	I.	7.4199	1.8299
14	δ	8.8078	2.1721
15	α	10.488	2.5866
16	+	12.523	3.0884
17	А	14.987	3.6961
18	В	17.971	4.4319
19	С	21.584	5.3229
20	D	25.959	6.4017

-

6

ALPHA

BeO - 4.2 (Rev. -12/31/69)

 \bigcirc

ALPHA

BeO - 4.3 (Rev. -12/31/69) 5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN GARNS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUB/R).

DATA FOR BED AT 296 DEGREES K.

	É	SIGTOT	MUBAR		E	SIGTOT	MUBAP
1	00476	5 3045 <i>.</i>	- 07566	1. 7	01779	10 10400	7470
2	- 65302	5 1 3 0 7 0	- 95710	40	• 01050	12.10421	- 20072
3	•00392		- 78526	44 115	016090	11.01140	- 29073
ŭ	.00400		- 71011	40	• 01090	11.0502	- 03000
	•00424	7 53704		40	•U1//4	11.42382	
5	•00424	7 228-7		47	•01050	10.90152	= 10942
7	+0044J	4 94500		40	•01920	19.57430	- 17415
, ж	+UU462			49 50	•01920	10.94937	- 1415
ų	•00401	0.00000		50	•01975	10.09084	- 1005
10	00402 00602	- フ・フィイン4 - ローンスローノ	- 4409	51	• UZUZ4	10 00517	- 00577
11	•000000 .80%604	7 03230	- 22300	20	•UZU7J	10 03453	- 09577
12	.00094	5 150C2	-07011	55	02075	10 22/055	- 095/4
15	•00800 •00800	7 70300	- 35866	54	02070	10 01303	- 00433
14	•00000 . angs2	7 261:0	- 19626	55	02070	10.21020	- 00000
15	•00852 .06903	6 87030	- 12263	50	02081	10 10073	- 09298
16	• UU9UU	6 52226	- 06236	ີ 107 ຮູລ	02081	10.19973	- 07520
17	+00955 01055	6 521.7		50	02200	9.00122	
1.6	00955	6 17407	- 01129	59 60	02001	9.10252	•01594
19	• UIUIZ	□ ● ▲ / O ラ / ら ミフスピラ		61	02430	10 01204	- 07280
20	• 01007	5.64057 5.60462	• UU / 1.7	62	02457	0 00077	
21	•01120	9 140XC	• UOUZO	 ∠ 3	02514	9.80437	- 00037
22	•01120	2 4 47507	- 30095	65	02571	9.00000	- 02933
23	• 01102	8 69764	- 25305	04 65	02020	9.41793	- 05284
20	+UI17/	9 30370	- 20324	65	02020	9.85243	- 00000
25	• 01232	8 39221	22857	67	• U2030 • U2644	9+86489	- 04992
20		8 18833		68	.02652	9 77032	- 04096
27	.01205	7 995.9	- 17:19	69	- 02653	9 76855	- 04495
28		7 81264	14 329	70	.02690	9 67970	- 03036
29	.01331	11.29419	40761	70	.02080	9.69270	02505
30	.01388	10.85305	35150	72	.02707	9.50750	- 01595
31	.01445	10.44731	-30004	73	.02734	9,90612	05557
32	.01501	10.07233	25267	74	.02764	9,80945	04521
33	.01502	10.62726	29164	75	.02794	9.71495	03510
34	.01518	10.51954	27836	76	-02824	9.62256	02523
35	.01534	10.41414	- 26538	77	12824	9.65217	- 112821
36	.01551	10.31097	25269	78	02892	9.44876	0065u
37	•01551	12,46553	38187	79	02960	9,25473	.01406
38	.01570	12,32211	- 36569	80	.03028	9.06999	-0334P
39	• 01589	12,18214	- 34992	81	• Ú3028	9.94355	65746
40	.01608	12.04556	33453	82	.03036	9,92050	05492
41	•U1608	12,53271	36429	83	.03044	9.89758	05247
42	.01638	12,31451	33622	84	.03052	9,87479	05002
	*****			<u> </u>			* 0 0 0 V K

BeO - 5.1 (Rev. -12/31/69)

DATA FOR BED AT 296 DEGREES K.

	È	SIGTOT	MUDAR		Ľ	SIGTOT	MUBAL
35	• 03053	10.21571 -	08173	127	.04331	10.16478	03934
80	•031 01	10.07140 -	.06624	128	.04333	10.16009	03884
പ7	.03150	9,93190 -	.05131	129	.04334	10.15840	03866
80	.03199	9.79700 -	.03090	130	.04391	10.04904	02712
89	• U3200	9.80155 -	.03735	131	.04448	9.94332	01595
90 -	.03259	9.64290 -	. 02042	132	.04504	9.84066	00514
91	• 03319	9.49046 -	.00423	133	04505	10.16924	03730
92	• 03376	9.54390	• 0113 0	134	.04540	10.10476	03046
ل وا	• 03379	9.90289 -	04583	135	•04 576	10.04136	02376
94	• 03414	9.01330 -	03024	136	•04611	9.97905	01718
95	• 03449	9.72571 -	∙ ປິ2 ບ 8ຍ	137	.04611	9.97742	01701
90	• u3464	9.04007 -	01774	138	.04701	9.82322	00081
97	 u3485 	9,63839 -	01756	139	.04790	9.67545	.01462
90	• 03510	9.56102 -	• U0932	140	•04880	9.53377	.02931
99	•u355ü	9.48521 -	•U0126	141	•04881	9.67397	+01438
100	.U3582	9.41093	00662	142	.04897	9.64877	•01701
101 -	•03583	10.70532 -	•11516	143	.04913	9.62375	•01961
102	•03648	10.53817 -	.09712	144	• 04929	9.59892	.02219
100	•03713	10.37759 -	07982	145	•04930	9.88108	00702
104	•U3779	10.22305 -	•ú6521	146	•04935	9.87264	00614
105	.03779	10.22129 -	06302	147	•04940	9.86421	00525
100	•03787	10.20319 -	06108	148	.04946	9.85581	00437
197	•03795	10.18516 -	•15915	149	•ü4947	10.13666	03190
1.0	•03863	10.16722 -	•115722	150	•04960	10.11458	02962
168	•03804	10.02713 -	•09802	151	•04973	10.09322	02736
110	•03609	10.01421 -	• 09664	152	•04986	10.07199	02511
111	•03814	10.00133 -	09525	153	•04987	10.20401	03772
112	•03820	10.58849 -	09388	154	• 04991	10.19687	03696
115	•03620	10.66299 -	10017	155	• 04996	10.18973	03620
114	• 03932	10.40297 -	07233	156	•05000	10.18261	03545
110	• 04 04 3	10.15867 -	.04630	157	•05280	9.76254	•00885
110	•04154	9.92886 -	02190	158	•05281	10.38598	05174
117	• 04155	10.42104 - 6	.06817	159	•05835	9.82993	•00989
110	• 04160	10.39274 -	06515	160	•05836	10.34113	04005
119	• 04182	10.36464 -	06216	161	•06442	9.73668	.02367
120	•04195	10.33674 -	05919	162	•07132	9.40065	• 05574
151	• 04196	10.43127 - 6	06770	163	•07549	9.66037	•02481
122	• 04239	10.34172 -	05818	164	• 07826	9.48388	•04272
120	• 04282	10.25419 -	04889	165	•08326	10.14446	02422
124	• 04325	10.16861 -	03983	166	• 09663	9.56344	•04310
ິງະ 1⊂ວ	• 04526	10.1/417 -	04033	167	.12000	9.69701	•03481
120	• 04528	10.16947 -	-03984	168	•13000	9.60319	•04890

BeO - 5.2 (Rev. -12/31/69) DATA FOR BED AT 296 DEGREES K.

Ë.	SISTOT	MUBAR		E	SIGTOT	MURAE
.15000	9.74734	.03483	183	•64500	9.77491	.05556
.38500	9,71551	• ü5368	184	.66500	9,77725	.0556⊕
.40500	9.74522	.05470	185	•68500	9.77883	.05569
·425UÜ	9.74804	05393	186	.70500	9.78061	.05577
.44500	9.74973	.05450	187	.72500	9,78226	.05585
.46500	9.75211	05479	188	•74500	9.78363	.05594
.48500	9.75543	05489	189	.76500	9,78542	05598
.50500	9.76004	•05489	190	.78500	9,78675	05607
.52500	9.76261	.05493	191	. 80500	9.78795	05614
.54500	9.76420	.05512	192	•85500	9.78938	.05634
•56500	9.76622	05523	193	.88500	9,78474	.05645
.58500	9.76874	.05530	194	•91500	9.76238	05625
.00500	9.77062	.05541	195	•94500	9.71484	05591
.62500	9.77299	•U5546	196	.97500	9.53559	.05150
	E • 15000 • 38500 • 40500 • 42500 • 44500 • 44500 • 46500 • 48500 • 50500 • 52500 • 52500 • 56500 • 58500 • 62500	 E SIGTOT .15000 9.74734 .38500 9.71551 .40500 9.74522 .42500 9.74804 .44500 9.74973 .46500 9.75211 .48500 9.75543 .50500 9.76004 .52500 9.76261 .54500 9.76874 .60500 9.77299 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ESIGTOTMUBARESIGTOT.150009.74734.03483183.645009.77491.385009.71551.05368184.665009.77725.405009.74522.05470185.685009.77883.425009.74804.05393186.705009.78061.445009.74973.05450187.725009.78226.465009.75211.05479188.745009.78363.485009.75543.05489189.765009.78542.505009.76004.05489190.785009.78542.505009.76261.05493191.805009.78795.545009.76420.05512192.855009.78938.565009.76874.05530194.915009.76238.05009.77062.05541195.945009.71484.625009.77299.05546196.975009.53559

THE ELASTIC CONTRIBUTION TO THE TOTAL CROSS SECTION WAS CALCULATED AT ALL OF THE TABULATED ENERGIES.THE INELASTIC CONTRIBUTION WAS CALCULATED ON A COARSER MESH AND WAS INTERPOLATED TO GIVE THE VALUES AT THE TABULATED ENERGIES.

THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	DELTA E	UP TU	;
1	•0005	•004	Eν
2	•001	.01	E۷
3	.002	•03	Eν
4	.004	.05	E۷
5	·UU6	•14	E۷
6	.008	.30	E٧
7	•U1	1.0	EV

 \cup

BeO - 5.4 (Rev.-12/31/69)

Ŭ

6. Miscellaneous Notes on Beryllium Oxide

For temperatures other than 296°K the switching criteria for short collision and the α , β mesh input for 296°K were multiplied by $\frac{296°K}{T^{\circ}K}$. The only other changes made in the input for higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye-Waller integral and effective temperature of the scattering law data on file.

	Debye-Waller	Debye-Waller					
<u>т([°]к)</u>	Integral (eV ⁻¹) for Beryllium	T(⁰ K) for Beryllium	Integral (eV ⁻¹) for Oxygen	T(⁰ K) for Oxygen			
296	19.339	596.4	34.568	427.8			
400	23.191	643.9	43.227	502.8			
500	27.200	704.6	52.031	584.3			
600	31.4021	775.3	61.096	671.3			
700	35.7334	852.9	70.321	761.6			
800	40.152	935.4	79.649	854.2			
1000	49.161	1109.8	98.497	1043.7			
1200	58.312	1292.3	117.50	1236.6			

BeO - 6.1 (Rev. -12/31/69)

GRAPHITE

1. Physics

The scattering law data for graphite has been computed assuming that the incoherent and isotropic approximations are valid, so that the scattering depends solely upon the phonon spectrum of the lattice vibrations. The force model used to compute the phonon spectrum⁽¹⁾ contains four force constants. One force constant is used to describe a nearest neighbor central force which binds two hexagonal planes together, another describes a bond-bending force in a hexagonal plane, the third is for bond-stretching between nearest neighbors in the plane, and the fourth corresponds to a restoring force against bending of the hexagonal plane. The force constants have been evaluated numerically in this model by performing a very precise fit to the high and low temperature specific heat, and to the compressibility of reactor grade graphite. Calculations of neutron spectra using the phonon spectrum based on the above calculation gives excellent agreement when compared with experiment. The elastic scattering was evaluated using HEXSCAT and the known lattice structure of graphite.

¹⁾ Nukleonik Band 1, 295, (1965).

 $\left(\right)$

2. Frequency Spectrum for Graphite ...

).

C - 2.1

 \cup

3.1 GASKET Input for Graphite at 296° K

The code GASKET is discussed in Section A.3. The data tabulated below follows the format of the code input instructions also given in Section A.3. The code symbols used below are defined in the code input section. If no value is entered for a symbol the corresponding input quantity was not required in the calculation.

CARD NO.	FORMAT			C	ODE SY	MBOLS	AND VAI	UES	· · · · · · · · · · · · · · · · · · ·			
1	13A6 ,A2	COM	carbon	at 2	96 K							
2	11I5	NT _	-9	NP	40	NE	80	NDAM	1	NGPRT	0	الأساني ال
		NCP	0	NMES	H 1	NRES	T_0	NCVP	0	NSEP	0	
		IPG	0									
3	315	JS3	-38	JS4	0	JS5	0	-				
4	5E10	W1	.001	W2	0.0	W3	1.0	W4	0.0	_ W5 _	0.0	
5	6E10	Tl.	.0255	Т2	0.0	ТЗ	.0255	_ т4	0.0	_ T5 _	0.0	
6	7E10	AM	12.011	DC	0.0	BETSW	30.0	ALPSW	30.0	CRITI	0.0	
		CRIT2	0.0	CRIT3	0.0							
7	7E10	X 3	.20842				ور مرد				-	
		-					وروار المراجع				-	
		-					-		موغنات وموجز		-	
				-							_	
		-									_	
											_	
		_									-	
		_										
							برمندر بعاده الم					
				· · · · · · · · · · · · · · · · · · ·							-	
		_									-	
											_	
											_	
											_	
											_	
		- -									_	
		-										
		-				، بر القطرية من بريد						

C - 3.1.1

CARD 1	NO.	FORMA	1				co	DE SYMBOI	S AND VAL	UES			
8		7E10		Q 3	.346613	1.1	+135	3.03321	3.25901	3.38468	3.48269)	
$\overline{)}$					3.76397	4.(05025	4.84696	7.35744	5.88224	4.63255	-	
					4.48287	5.8	30642	4.63802	4.28503	3.92079	4.91352	:	
					5.53836	7.5	51076	5.31651	5.40525	5.20376	5.3276	-	
					7.17251	3.	<u>31813</u>	4.50126	5.04663	4.2089	2.91985	<u>.</u>	
					4.65109	13	.1324	7.25016	6.5662	5.47181	5.0613	7	
					5.1981	3 <u>4</u>	<u>5708</u> 6					-	
											<u></u>	-	
													
						<u></u>				<u></u>		-	
							·····			<u></u>			
•								<u> </u>				-	
										<u></u>			
												-	
_												-	
	• *											-	
Q						-				<u></u>		-	
- 10		Cards 9) and 10 e	are	not need	led							
11		7E10		X5									
12		7E10		Q5	<u></u>			<u>_</u>				•	
13		7110	NPH	ION				·				-	
14		5E10	EM	AX	1.0	DALF	HA .	.25 ALI	PHAC 2.0	DBETA	.1	BETAC	4.0
15,	16,	17, 18,	19 and 20) ar	re not ne	eeded	1						
21		2E10		DT	.001	TMAX	۲ <u>ـــــ</u>	.01					
					.01			.1					
					.1			3.0					
					.25		. 6	.0					
					<u>.5</u>			<u></u>					
					1.0								
					2.0			<u></u>					
•					4.0		100	<u></u>					
					0.0		3000						
		0730											
~~		2E10		ID	34 1	PT	0	SIGF 4.	71 EPS	.000001			
23		Card 23	is not n	need	led								
-										С	- 3.1.2		

3.2 HEXSCAT Input for Graphite

The code HEXSCAT is discussed in Section A. 3. The data tabulated below follows the format of the code input instruction also given in Section A. 3. The code symbols used below are defined in the code input section. If no value is entered for a symbol the corresponding input quantity was not required in the calculation.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES	
1	13A6 ,A2	HOL HEXSCAT for ENDF carbon	
2	5E10,	SCOH 5.50 A 2.4573-8 C 6.700-8 AMASC 12.011 EXACT	04
	1 I 10,2E10	ID 1065 ZA 6000.0 AWR	
3	815,	NES 42 NTS 10 NAV 0 NXAV 2 IP	1
	1E10	NCOS 0 NPCH 1 NFORM 3 ESEP 1.0001	
4	7E10	EIN 1.822378-3 .04 .04037961 .0403876 .040	063488
		.04064301 .0424569 .04246539 .04269718 .042	270571
		·04299249 .04300109 .04555034 ·04555945 ·04	792294
		.04793252 .05149859 .05392457 .05704441 .059	909530
		.05910712 .05915034 .05916216 .06146790 .06	148019
		.06978710 .07059208 .07302051 .07592887 .08	101450_
		.09663674 .11 .15 .19 .25	
		.32 .40 .50 .60 .75	
		.90 1.0	
	•		
5	7E10	WAL2 2.1997 2.7448 3.2912 3.8510 4.42	210
-		4.9969 6.1624 7.3387 9.6287 11.99	92
6	7E10	TMP 296.0 400.0 500.0 600.0 700	.0
	-	800.0 1000.0 1200.0 1600.0 2000	•0

C - 3.2.1

4. Plots of Scattering Law

β Values for Multicurve Plots

CURVE	INDEX	β (296K)	β (1200K)
1	1	0.00	0.00
2	2	.10	. 025
3	3	. 20	. 049
4	4	. 60	.148
5	5	1.00	. 247
6	6	1.40	. 345
7	7	1.80	. 444
8	8	2.20	. 543
9	9	2.60	. 641
10	9	3.00	.740
11	=	3.40	. 838
12	11	3.80	. 937
13	I	4.21	1.038
14	δ	4.76	1.175
15	α	5.56	1.372
16	+	6. 72	1.657
17	Α	8. 38	2.067
18	В	10.79	2.660
19	С	14.25	3.514
20	D	19.25	4.748

2

.

.

ALPHA

-

ALPHA

2

.

C - 4.3

5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BARNS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUBAP).

DATA FOR GRAPHITE AT 296 DEGREES K.

	Ł	SIGTOT	MUBAR		Ē	SIGTOT	MUBAR
	00100	7 64070	07047	11 7	01/01	3 00000	00(0)
1	•UU102	7.04034 E 0403E	97243	40	• U1491	3.90909	.00688
2	•00258	5.44835	40108	44	•01557	5.80491 5.40000	• 03313 - 077 50
3	.00334	4.24816	09517	45	•01537	5.40999	-2/359
4 5	.00410	3.49297	.09385	40	•01555	5.35240	25969
5	.00410	3.49230	.09402	47	.01573	5.29618	24614
6	• 00424	3.38405	.12071	48	.01590	5.24126	23292
7	.00438	3.28267	.14560	49	.01591	5.52492	27223
8	•00451	3.18756	.16883	50	.01607	5.47237	25982
9	.00452	3.53391	.05396	51	•01623	5.42092	24769
10	•00467	3.42510	.08193	52	•01640	5.37053	23581
11	•00482	3.32314	.10801	53	•01640	5.61010	26837
12	•00497	3.22742	.13236	54	•01682	5.48151	23856
13	•00497	5.02176	27283	55	.01723	5.35934	21030
14	•00543	4.61610	17032	56	•01764	5.24309	18346
15	•00588	4.27360	08432	57	. 01765	5.24213	18324
16	.00634	3,98065	01131	58	•01779	5.20488	17465
17	.00634	4.39051	10372	59	.01792	5.16822	16621
18	.00665	4.19120	05427	60	.01806	5.13214	15790
19	.00697	4,01021	00957	61	.01 806	5.16963	16395
20	.00729	3.84512	.03099	62	.01821	5.13040	15494
21	.00729	4.72471	16119	63	.01836	5.09186	14610
22	.00773	4.46711	09823	64	.01852	5.05394	13740
23	.00817	4.23772	04245	65	.01852	5.27439	17342
24	.00861	4.03220	.00722	66	.01897	5.15867	14713
25	.00862	4.79308	15284	67	.01943	5.04868	12219
26	.00954	4.35224	04741	68	.01988	4.94395	09851
27	.01046	3.99064	.03816	69	•01989	5.00858	11011
28	.01139	3.68904	.10862	70	.02020	4.93771	09415
29	.01139	3.68835	.10878	71	.02052	4.86912	07873
30	.01153	3.64768	.11820	72	.02083	4.80271	06384
31	.01167	3.60799	.12736	73	.02084	5,77090	22095
32	.01180	3.56926	.13629	74	.02086	5.76450	21955
33	.01181	3.72248	08941	75	•02089	5,75811	21816
34	.01239	3.56202	.12709	76	.02091	5.75174	21677
35	.01297	3.41646	.16092	77	.02092	5.81086	22465
36	.01354	3.28395	.19138	78	.02133	5.70767	20223
37	.01355	4.26938	08392	79	.02175	5.60861	18075
38	.01370	4.22597	07289	80	.02216	5.51339	16015
39	.01385	4.18354	06213	81	.02216	5.67609	18417
40	.01400	4.14203	05161	82	.02222	5.66405	18158
41	.01400	4.14127	05142	83	.02227	5.65206	17901
42	.01446	4.02180	02125	84	.02232	5.64010	17644

C ~ 5.1

DATA FOR GRAPHITE AT 296 DEGREES K.

	E	SIGTOT	MUBAR		E	SIGTOT	MUBAR
85	.02232	5.63909	17623	127	.03420	4.92054	01292
86	.02319	5.44763	13521	128	.03446	4.88932	00642
87	.02406	5.27074	09751	129	.03446	4.91373	01136
88	.02493	5.10691	06278	130	.03488	4.86518	00127
89	02494	5.10600	06259	131	.03529	4.81787	.00853
90	.02507	5.08132	05737	132	.03570	4.77178	.01805
91	.02521	5.05696	05223	133	.03571	4.91292	01122
92	.02535	5.03288	04715	134	035 76	4,90712	01001
93	02535	5.07534	05510	135	.03 581	4.90133	00880
94	02585	4.98987	03710	136	.03586	4.89556	00760
95	.02634	4.90779	01988	137	.03587	4.89474	00743
96	02683	4.82895	00341	138	.03621	4.85662	.00050
97	02684	4.94596	02700	139	•03655	4.81930	•00823
98	02761	4.82571	00186	140	•03690	4.78273	.01579
99	. 02838	4.71249	.02164	141	•03690	4.78195	•01595
100	.02915	4.60573	.04363	142	•0375 7	4.71306	.03012
101	02916	4.69557	.02364	143	.03823	4.64682	.04366
102	02925	4.68234	.02638	144	.03889	4.58312	•05659
103	02935	4.66921	.02909	145	.03 890	4.62284	•04749
104	02945	4.65617	.03179	146	•0392 7	4.58832	•05450
105	•02945	4.75553	.01020	147	• 03 96 3	4.55453	.06134
106	02962	4.73315	.01486	148	•04000	4.52143	•06801
107	•02978	4.71101	.01946	149	•04038	4,48787	•07474
108	•02994	4.68915	.02400	150	•040 39	4,54376	•06149
109	02995	5.20704	07790	151	•04063	4.52195	•06589
110	.03050	5.12565	06064	152	•04064	4.67044	.03197
111	.03105	5.04737	04411	153	•04246	4.56562	•05248
112	.03160	4.97206	02827	154	•04247	4.83981	00718
113	.03161	5.00067	03382	155	.04270	4.81901	00278
114	•03176	4.98059	02960	156	•04271	5.09026	05593
115	•03191	4.96073	02544	157	•04299	5.06308	05008
116	•03206	4.94107	02132	158	•04300	5.16296	06844
117	•03207	5.11253	05414	159	•04555	4.93285	01915
118	•03252	5.05181	04136	160	•04556	4.97219	02690
119	•03297	4.99291	02900	161	•04792	4.79568	•01040
120	•03343	4.93577	01705	162	•04/93	5.01332	03348
121	•03343	4.98823	02739	163	•05150	4.78590	•01526
122	.03351	4.97846	02534	164	•05392	4.62761	•04797
123	03359	4.96875	02331	165	•05704	4.93436	01817
124	.03367	4.95908	02129	166	.05910	4.82089	•00618
125	03367	4.98456	02629	167	•05911	4.96463	02295
126	•03394	4.95228	01954	168	05915	4.96205	02239

DATA FOR GRAPHITE AT 296 DEGREES K.

	Ĕ	SIGTOT	MUBAR		F	SIGTOT	MUBAR
169	.05916	5.01539	03278	188	• 3 8500	4.68239	.04906
170	.06147	4.94147	01546	189	•41500	4.68589	.04939
171	.06148	5.07408	04119	190	•44500	4.68729	.04940
172	.06979	4.77967	.02365	191	•47500	4.68802	.04985
173	.07059	4.98958	01909	192	•50500	4.69016	.05005
174	.07302	4.90137	.00019	193	• 53 500	4.69117	.05026
175	.07593	4.81484	.01883	194	•56500	4.69090	.05062
176	.08101	4.73567	.03471	195	•5 9500	4.69144	.05084
177	.09564	4.66335	.04515	196	.62500	4.69286	.05104
178	.11000	4.74872	.02675	197	•65 500	4.69441	.05120
179	.15000	4.68711	.04064	198	•68500	4.69523	.05132
180	.19000	4.68832	.04176	199	.71500	4.69620	.05142
181	.20000	4.68662	.04359	200	•74500	4.69704	.05153
182	.22400	4.68899	.04484	201	.77 500	4.69789	.05164
183	.24800	4.68608	.04637	202	. 80500	4.69813	•05174
184	.27200	4.67786	.04855	203	. 85500	4.69798	.05201
185	.29600	4.68374	.04782	204	•90500	4.69124	05233
186	.32500	4.68238	.04801	205	•95500	4.64078	.05211
187	.35500	4.67689	.04928				

THE ELASTIC CONTRIBUTION TO THE TOTAL CROSS SECTION WAS CALCULATED AT ALL OF THE TABULATED ENERGIES.THE INELASTIC CONTRIBUTION WAS CALCULATED ON A COARSER MESH AND WAS INTERPOLATED TO GIVE THE VALUES AT THE TABULATED ENERGIES.

THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	DELTA E	UP TO
1	.0005	.004 EV
2	.001	.01 EV
3	.002	.03 EV
4	•004	.05 EV
5	.006	.14 EV
ó	•008	.30 EV
7	.01	1.0 EV

1.

Ω F 5. 4

6. Miscellaneous Notes on Graphite

For temperatures other than 296°K the switching criteria for short collision and the α , β mesh input for 296°K were multiplied by $\frac{296°K}{T°K}$ The only other changes made in the input for higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye Waller integral, effective temperature and ID numbers of the scattering law data on file.

<u>т([°]к)</u>	Debye Waller <u>Integral (eV⁻¹)</u>	Τ([°] K)	ENDF ID No.
296	26. 421	713.39	GA 0034
400	32.968	754.68	GA 0035
500	39. 531	806.67	GA 0036
600	46.255	868. 38	GA 0037
700	53.101	937.64	GA 0038
800	60.018	1012.7	GA 0039
1000	74.016	1174.9	GA 0040
1200	88.145	1348.2	GA 0041
1600	115.65	1712.9	GA 0090
2000	144.03	2091.0	GA 0091

C - 6.1

POLYETHYLENE

1. Physics

The scattering kernel of polyethylene has been calculated on the basis of a model of noninteracting infinite chains of CH_2 radicals originally developed by Lin and Koenig.⁽¹⁾ The lattice dynamics of polyethylene shows that nine branches of the dispersion relation are present, the frequency in each branch being a function of the phase difference of the vibration of corresponding atoms in neighboring CH_2 units. For some normal modes the ratio of the amplitude of the hydrogen atom vibrations to the amplitude of the carbon atom vibrations also depends strongly on the phase difference.

The neutron scattering has been computed from the weighted frequency spectrum, which has been calculated exactly for the hydrogen atoms using the computed frequencies and amplitude vectors. ⁽²⁾ The weighted frequency spectrum was first calculated in histogram form; two modifications were then made. The low frequency part of the histogram ($\omega < 0.02 \text{ eV}$) was replaced by a Debye spectrum having the same area. Furthermore, to avoid numerical difficulties, the histogram was replaced by Gaussian functions of area equal to the area under each step and centered at the center of each interval in the histogram.

The inelastic scattering law was calculated using the code GASKET and the distributed weighted frequency spectrum for hydrogen. The incoherent elastic scattering cross section for hydrogen was obtained by the code ZREND. The contribution of the carbon atoms was taken into account by adding the scattering from a free gas of mass 12.011.

⁽¹⁾T. P. Lin and J. L. Koenig, <u>J. Molec. Spectra</u>, <u>9</u>, 228 (1962).
 ⁽²⁾D. Sprevak and J. U. Koppel, <u>Nucleonik</u>, <u>12</u>, 87 (1969).

(CH₂)_n - 1.1 (Rev. -12/31/69)

CH₂ - 2.1 (Rev. -12/31/69)

3.1 GASKET Input for H(CH₉)

The code GASKET is discussed in Section A. 3. 1. The data tabulated below follows the format of the code input instructions also given in Section A. 3. 1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1	13A6, A2	COM Hydrogen in CH_2 at 296 degrees K.
2	1115	NT -5 NP 80 NE 80 NDAM 1 NGPRT 0
		NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0
		IPG 0
3	315	JS3 95 JS4 JS5
4	5E10	W1 .015 W2 0.0 W3 1.0 W4 W5
5	6E10	T1 .0255 T2 0.0 T3 .0255 T4 T5
6	7E10	AM 1.008 DC 0.0 BETSW 100.0 ALPSW 100.0 CRIT1
		CRIT2 CRIT3
-		X3.001239.002478.004957.007435.009914.01239
		.01487 .01735 .01983 .02231 .02478 .02726
		.02974 .03222 .03470 .03718 .03965 .04213
		.04461 .04709 .04957 .05205 .05452 .0570
		.05948 .06196 .06444 .06692 .06940 .07187
		.07435 .07683 .07931 .08179 .08427 .08674
		.08922 .09170 .09418 .09660 .09914 .1016
		.1041 .1066 .1090 .1115 .1140 .1165
		<u>. 1190</u> . <u>1214</u> . <u>1239</u> . <u>1264</u> . <u>1289</u> . <u>1314</u>
		<u>. 1338</u> . <u>1363</u> . <u>1388</u> . <u>1413</u> . <u>1437</u> . <u>1462</u>
		. <u>1487</u> . <u>1512</u> . <u>1537</u> . <u>1561</u> . <u>1586</u> . <u>1611</u>
		. <u>1636 .1661 .1685 .1710 .1735 .1760</u>
		. <u>1784</u> . <u>1809</u> . <u>1834</u> . <u>1859</u> . <u>1884</u> . <u>1908</u>
		. <u>1933</u> . <u>1958</u> . <u>1983</u> . <u>3445</u> . <u>3470</u> . <u>3495</u>
		. <u>3519</u> . <u>3544</u> . <u>3569</u> . <u>3594</u> . <u>3618</u> . <u>3643</u>
		.3668 .3693 .3718 .3742 .3767
CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
-----------	----------------	--
8	7E10	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
9	Cards 9 and	$\begin{array}{c} .04206 \\ .003843 \\ .000178 \\ .01371 \\ .05987 \\ .20453 \\ .05987 \\ .01371 \\ .01$
10	Ourus / and	
11	7E10	X5
12	7E10	Q5
13	7I10 NPHC	DN
14	5E10 EM2	AX <u>1.5</u> DALPHA <u>0.01</u> ALPHAC <u>0.06</u> DBETA <u>0.08</u> BETAC <u>2.5</u>
15, 16, 1	17, 18, 19 and	20 are not needed
21	2E10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22	2I10 2E10	ID <u>210</u> NPT <u>0</u> SIGF <u>20.36</u> EPS <u>1.0E-6</u>
23	Card 23 is n	ot needed

3.2 ZREND Input for H(CH₂)

The code ZREND is discussed in Section A. 3. 1. The data tabulated below follows the format of the code input instruction also given in Section A. 3. 1. The code symbols used below are defined in the code input section. If no value is entered for a symbol the corresponding input quantity was not required in the calculation.

CARD NO.	FORMAT		CODE SYMBOLS AND VALUES					
1	13A6, A2	COM Incohe	erent elas	tic scatte	ering for	H(CH ₂)		
2	215 3E10, 15	NT 2 I NPCH 1	NE <u>117</u>	SB <u>162</u> .	88 SWIT	CH 7.0	EPS <u>1.</u>	0-8
3	7E10	T_296.0	350					
4	7E10	WP <u>34.957</u>	40.282	<u> </u>				
5	7E10	E. 0005 . 00072 . 0010 . 00175 . 00290 . 00440 . 0064 . 0090 . 0145 . 0250 . 038 . 056 . 080 . 120 . 210 . 330 . 500 . 720 1 000	$\begin{array}{r} . \ 00053 \\ . \ 00076 \\ . \ 0011 \\ . \ 00190 \\ . \ 00310 \\ . \ 00470 \\ . \ 0068 \\ . \ 0095 \\ . \ 0160 \\ . \ 0270 \\ . \ 041 \\ . \ 06 \\ . \ 085 \\ . \ 130 \\ . \ 230 \\ . \ 350 \\ . \ 530 \\ . \ 760 \end{array}$	$\begin{array}{r} . \ 00056\\ . \ 00080\\ . \ 0012\\ . \ 00210\\ . \ 00330\\ . \ 0050\\ . \ 0072\\ . \ 010\\ . \ 0072\\ . \ 010\\ . \ 0175\\ . \ 0290\\ . \ 044\\ . \ 064\\ . \ 090\\ . \ 145\\ . \ 250\\ . \ 380\\ . \ 560\\ . \ 800\\ \end{array}$	$\begin{array}{r} . \ 00060\\ . \ 00085\\ . \ 0013\\ . \ 00230\\ . \ 00350\\ . \ 0053\\ . \ 0076\\ . \ 011\\ . \ 019\\ . \ 011\\ . \ 019\\ . \ 031\\ . \ 047\\ . \ 068\\ . \ 095\\ . \ 160\\ . \ 270\\ . \ 410\\ . \ 600\\ . \ 850\\ \end{array}$	$\begin{array}{r} . \ 00064 \\ . \ 00090 \\ . \ 00145 \\ . \ 00250 \\ . \ 00380 \\ . \ 0056 \\ . \ 0080 \\ . \ 012 \\ . \ 0210 \\ . \ 0210 \\ . \ 033 \\ . \ 05 \\ . \ 072 \\ . \ 100 \\ . \ 175 \\ . \ 290 \\ . \ 440 \\ . \ 640 \\ . \ 900 \end{array}$.00068 .00095 .00160 .00270 .00410 .0060 .0085 .013 .0230 .035 .053 .053 .053 .076 .110 .190 .310 .470 .680 .950	
		1.000					<u> </u>	

3.1 GAKER Input for $H(CH_2)$ at 296°K

The code GAKER is discussed in Section A. 3. The data tabulated below follows the format of the code input instruction also given in Section A. 3. The code symbols used below are defined in the code input section. If no value is entered for a symbol the corresponding input quantity was not required in the calculation.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1	1246	HOLREC Poly $S(\alpha,\beta)$ (Gaker) 296 K
2	415	ID <u>-72</u> NR <u>3</u> IBX <u>120</u> IZX <u>80</u>
3	7E10	T 1.0079 EC1 6.66667 EC2 12.941 SIGF 20.36 EPS 1.0-6
		EMAX 1.0 AMASS1.008
4	4E10	RT .0255 MT 14.0 MR 12.92 WR .089
5	6E10	MV1 4.31 W1 .14 MV2 3.23 W2 .174 MV3 3.23
		W3 <u>.36</u>
6	5E10	EMAX 1.0 DALPHA .03 ALPHAC .4 DBETA .05 BETAC 2.5

(CH₂)_n - 3.1.1

4. Plots of Scattering Law for $H(CH_2)$

BETA VALUES FOR MULTICURVE PLOT

CURVE	INDEX	β(296 ⁰ К)	β(350 ⁰ K)
1	1	0.00	0.00
2	2	8.00 - 02	6.7646 - 02
3	3	1.60 - 01	1.3529 - 01
4	4	4.80 - 01	4.0588 - 01
5	5	8.00 - 01	6.7646 - 01
6	6	1.12 + 00	9.4704 - 01
7	7	1.44 + 00	1.2176 + 00
8	8	1.76 + 00	1.4882 + 00
9	9	2.08 + 00	1.7588 + 00
10	9	2.40 + 00	2.0294 + 00
11	=	2.7425 + 00	2.3190 + 00
12	11	3.2183 + 00	2.7213 + 00
13	ı	3.8924 + 00	3.2913 + 00
14	δ	4.8474 + 00	4.0989 + 00
15	a	6.2005 + 00	5.2430 + 00
16	+	8.1174 + 00	6.8639 + 00
17	А	1.0833 + 01	9.1604 + 00
18	В	1.4681 + 01	1.2414 + 01
19	С	2.0133 + 01	1.7024 + 01
20	D	2.7856 + 01	2.3554 + 01

(CH₂)_n - 4.1 (Rev. -12/31/69)

ALPHA

(CH₂)_n - 4.2 (Rev. -12/31/69)

ALPHA

(CH₂)_n - 4.3 (Rev. -12/31/69)

5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BARNS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUBAR).

DATA FOR CH2 AT 296 DEGREES K.

	È.	SIGTOT	MUBAR		E	SIGTOT	MUBAR
1	01.00 6	311 33700	- 00005	3/1	16900	60 1/1970	34060
5	•00023	311.00799	- 02495	3 3 5	• 10000 • 18400	59 20434	- 3772g
- 	•0007J	240.01040	- 01057	34	•10400	59.20707 50 5 7 776	30/12/
5	•00125	220.74058	01957	30	•20000	58.5/3/6	• 38426
- 11	•00175	213.72123	01386	31	•22400	57.69464	.39431
5	•00225	204.33345	00779	38	•24800	56.58626	•40420
U S	•00275	196.84912	00161	39	.27200	55.32418	•41377
1	•00325	190.39548	•00453	40	•29600	54.09652	.42272
6	•00375	184.84702	•01u64	41	•32500	52.87445	.43231
9	•00450	177.75911	.01962	42	•35500	51.95551	•44005
Τù	•00550	169.59134	. 03097	43	•38500	51.41874	•44683
11	•00650	162.81603	.04178	44	•41500	51.06172	.45325
12	•00750	156.85456	.05178	45	•44500	50.70884	•45955
15	•00850	151.75335	.06117	46	•47500	50.32440	•46544
14	•00950	147.21072	.06979	47	•50500	49.94807	•47086
15	.01100	141.44128	.08150	48	. 53500	49.62847	•47572
16	•01300	135.20263	.09494	49	•56500	49.38096	.48019
17	.01500	130.27690	.10626	50	•59500	49.18140	•48434
13	.01700	126.33695	•11598	51	.62500	49.00008	4882 8
19	.01900	123.09931	·12458	52	.65500	48.82160	.49198
20	.02100	120.33445	.13239	53	.68500	48.64081	.49538
21	.02500	115.57965	.14636	54	.71500	48.47474	-4985R
22	.02900	111.40648	.15872	55	.74500	48.32658	•5n16n
23	.03600	105.11385	.17801	56	.77500	48.19965	.50439
24	.04400	99.09542	.19768	57	.80500	48.08537	.50703
25	• 05300	93.27185	.21819	58	.85500	47.90923	•51108
26	.06500	86.61940	.24334	59	.90500	47.75075	.51475
27	.07700	80.97450	.26647	60	.95500	47.61439	.51806
28	.08900	76,16830	.28721	61	1.00500	47.49697	.52107
29	.10100	72.15747	.30580	62	1.10500	47.30117	-52622
3ŭ	.11300	68.82245	.32220	63	1.20500	47.14741	.53046
31	-12500	66 06100	.33630	64	1.30500	47.02555	-53400
32	-13700	63 80554	.34421	65	1.40500	46.01265	.53717
3.5	15000	61 66704	36001	44	1.50500	45.91654	-53140
	• TOKUU	01.001.00	+ JOUUT	00	T+20200		+ J J J 4 C

THE TOTAL CRUSS SECTION INCLUDES A CONSTANT SCATTERING CROSS SECTION OF 4.71 BARNS (SIGD) FOR THE CARBON ATOM.ALSO FOR THE CARBON.SIG1 = .006*SIGD/MASS WAS USED TO CALCULATE THE AVERAGE COSINE OF THE SCATTERING ANGLE.

THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	DELTA E	UP TO)
1	•0005	•004	E٧
2	•001	•01	ΕV
3	.002	•03	E.V
4	•004	•05	ΕV
5	.006	•14	E۷
υ	•008	•30	Ł, V
7	•01	1.5	E٧

(CH₂)_n - 5.2 (Rev. -12/31/69)

(CH₂)_n - 5.3 (Rev. -12/31/69) \cup

6. Miscellaneous Notes on CH_2

For temperatures other than 296° K the switching criteria for short collision and the α, β mesh input for 296° K were multiplied by $\frac{296^{\circ}K}{T^{\circ}K}$. The only other changes made in the input for higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye Waller integral and effective temperature of the scattering law data on file.

	Debye-Waller	
<u>т(^ок)</u>	Integral (eV ⁻¹)	T([°] K)
296	34.957	1204.4
350	40.282	1215.1

BENZENE

1. Physics

The benzene molecule C_6H_6 has a hexagonal planar structure with symmetry D_{6h} . Two parameters describe the geometry of the molecule, namely the distance between two nearest carbon atoms, 1.39 Å, and the distance between a carbon and the nearest hydrogen, 1.08 Å.

The following assumptions have been made in order to describe the atomic motions in the benzene molecules: (1)

- 1. There is no interaction between vibrational and rotational states of the molecule.
- 2. The hindered rotations which describe the interactions of molecules in the liquid are replaced by translations of the whole molecule with an effective mass. The effective translational masses associated with the hydrogen and carbon atoms are 20.94 and 42.2 respectively (in atomic units).

Continuous frequency distributions weighted by the amplitudes of the polarization vectors have been obtained for the hydrogen and for the carbon atoms. Details of the normal mode calculation from which the frequency spectra were obtained are given in Ref. 2. The cluster of frequencies closely spaced around 0.38 eV was lumped into a single oscillator. The inelastic scattering laws for hydrogen and carbon in C_6H_6 were calculated from these weighted distributions by the code GASKET. The two scattering laws were then combined with the final value being referred to hydrogen as a primary scatterer.

(2) D. Sprevak, G. M. Borgonovi, G. W. Carriveau and J. M. Neill, "Neutron Thermalization in Benzene," USAEC Report GA-8185, General Dynamics Corporation, General Atomic Division, August 1967.

⁽¹⁾D. Sprevak, G. M. Borgonovi, J. M. Neill and G. W. Carriveau, Nukleonik, 11, 233 (1968).

Vibrational spectrum of the carbon atoms used to calculate benzene kernel. (The set of frequencies about 0.38 eV are now shown.)

 $C_6H_6 - 2.2$

3.1 GASKET Input for H(C₆H₆)

The code GASKET is discussed in Section A. 3. 1. The data tabulated below follows the format of the code input instructions also given in Section A. 3. 1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES				
1	13A6, A2	COM Sprevak's H(C6H6) at 296 degrees K.				
2	1115	NT -5 NP 80 NE 80 NDAM 0 NGPRT 0				
		NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0				
		IPG 0				
3	315	JS3 84 JS4 0 JS5 1				
4	5E10	W1.04775436W2. 0.0 W3.65331978W4 0.0 W5.29892586				
5	6E10	T1 .0255 T2 0.0 T3 .0255 T4 0.0 T5 .0255				
6	7E10	AM 1.008 DC 0.0 BETSW 100.0 ALPSW 100.0 CRIT1				
		CRIT2 CRIT3				
~		X3.0210766.0272756.0334746.0359542.0384338.0409134				
		.0433930.0458726.0483522.0508318.0533114.0557910				
		.0582706 .0607502 .0632298 .0657094 .0681890 .0706686				
		.0731482.0756278.0781074.080587.0830666.0855462				
		.0880258.0905054.092985 .0954646.0979442.10042				
		.102903 .105383 .107863 .110342 .112822 .114062				
		.115301 .116541 .117781 .119021 .120261 .1215				
		. <u>12274</u> . <u>12522</u> . <u>127699</u> . <u>130179</u> . <u>132659</u> . <u>135</u> 138				
		.137618 .140097 .142577 .145057 .147536 .150016				
		<u>.152495</u> <u>.154975</u> <u>.157455</u> <u>.1599</u> 34 <u>.162414</u> <u>.164</u> 893				
		. <u>167373</u> . <u>169853</u> . <u>17233</u> 2 . <u>1748</u> 12 . <u>177291</u> . <u>179</u> 771				
		. <u>182251</u> . <u>18473</u> . <u>18721</u> . <u>1896</u> 89 <u>.192169</u> . <u>194</u> 649				
		.197128 .199608 .202087 .204567 .207047 .209526				
		. <u>212006</u> .214485 .216965 .219445 .221924 .225644				

CARD	NO. FORM	ИАТ	С	ODE SYMBC	LS AND VALUE	ES
8	7E10	Q3 <u>.657-4</u>	.055757	21626354	<u>1649</u> 2 <u>1.120</u> 39	2.27607
		<u>3.8979</u> 0	<u>5.6273</u> 6	<u>6.848</u> 81 <u>7</u> .	<u>-027</u> 51_ <u>6.082</u> 44_	4.4523
		<u>2. 7948</u> 4	<u>1.6118</u> 6	<u>1.097</u> 22 <u>1</u> .	<u>221</u> 66 <u>1.882</u> 49	<u>3.00</u> 571
		<u>4.5913</u> 6	<u>6.6695</u> 4	<u>9.110</u> 53 <u>1</u>	1.4021 12.712	<u>12.3</u> 825
		1 <u>0.5085</u>	<u>8.0522</u> 5	<u>6.375</u> 98 <u>6</u> .	<u>56681 8.922</u> 19	<u>12.7</u> 375
		1 <u>6.5438</u>	<u>18.923</u> 9	<u>19.53</u> 14 <u>1</u> 9	<u>9.41</u> 66 <u>20.16</u> 50	<u>21.1</u> 560
		2 <u>2.5272</u>	24.1431	<u>25.81</u> 55 <u>2</u>	7 <u>.34</u> 73 <u>28.57</u> 36	<u> 29. 3</u> 896
		2 <u>9. 7608</u>	<u>29.324</u> 7	<u>27.86</u> 37 <u>2</u> 6	<u>5.01</u> 97 <u>24.26</u> 28	23.0276
		2 <u>2. 7183</u>	23.3652	<u>24. 26</u> 50 <u>2</u> 4	<u>4.14</u> 88 <u>22.00</u> 91	<u>17.9</u> 748
		1 <u>3.3792</u>	<u>9.8760</u> 2	<u>8.34718</u> 8.	<u>450</u> 35 <u>9.028</u> 10	<u>8.98</u> 379
		<u>8.0003</u> 1	<u>6.6468</u> 3	<u>5.867</u> 17 <u>6</u> .	25846, 7, 62610	<u>9.07</u> 965
		<u>9.6077</u> 6	8.75109	<u>6.878</u> 02 <u>4</u> .	87321 3.54396	3.20771
		<u>3.6489</u> 1	4.33341	4. 70823 4.	46195 3.63710	2.53857
		<u>1.5137</u> 5	. 769813	. 333320 .	122689 .038335	<u>.491</u> 124-2
				<u> </u>	··· ·	
					······································	
			<u> </u>			
9	Cards	s 9 and 10 are not	needed			
10						
11	7E10	X5				
12	7E10	Q5				
13	7110	NPHON				
14	5E10	EMAX DAI	LPHA	ALPHAC _	DBETA	BETAC
15,	16, 17, 18,	19 and 20 are no	t needed			
21	2E10	DT	TMAX	·····		
		-, -,, -,, -,, -, -, -, -, -, -, -, -, -				
		<u></u> .				
				<u> </u>		
		·				
		- <u> </u>		<u></u>		
		·····				
		······				
0.0	9110					
44	2110 91-10	ID	NPT	SIGE	EPS	
	2610	· · · · · · · · · · · · · · · · · · ·				
23	Card	23 is not needed				

3.2 GASKET Input for $C(C_6H_6)$

The code GASKET is discussed in Section A.3.1. The data tabulated below follows the format of the code input instructions also given in Section A.3.1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1	13A6, A2	COM Sprevak's C(C6H6) at 296 degrees K.
2	1115	NT -5 NP 80 NE 80 NDAM 0 NGPRT 0
		NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0
		IPG 0
3	315	JS3 86 JS4 0 JS5 1
4	5E10	W1.2848568 W2 0.0 W3.6799013 W4 0.0 W5.03524188
5	6E10	T1 .0255 T2 0.0 T3 .0255 T4 0.0 T5 .0255
6	7E10	AM 12.011DC BETSW ALPSW CRIT1
		CRIT2 CRIT3
<u>,</u>		X3.0210766 .024796 .0272756 .0297552 .0322348 .0359542
		.0384338 .0409134 .0433930 .0458726 .0483522 .0508318
		.0533114 .0557910 .0582706 .0607502 .0632298 .0657094
		.0681890 .0706686 .0731482 .0756278 .0781074 .0805870
		.0830666 .0855462 .0880258 .0905054 .0929850 .0954646
		······································
		. <u>112822</u> . <u>115301</u> . <u>117781</u> . <u>120261</u> . <u>122740</u> . <u>125220</u>
		.127699 .130179 .132659 .135138 .136378 .138858
		<u>. 141337</u> <u>. 143817</u> <u>. 146296</u> <u>. 148776</u> <u>. 151256</u> <u>. 153735</u>
		. <u>156215</u> . <u>158694</u> . <u>161</u> 17 <u>4</u> . <u>163654</u> . <u>166133</u> . <u>168613</u>
		<u>. 171092</u> <u>. 173572</u> <u>. 176052</u> <u>. 178531</u> <u>. 181011</u> . 183590
		<u>.185970</u> <u>.188540</u> <u>.190929</u> <u>.193409</u> <u>.195888</u> <u>.</u> 198368
		<u>. 200848</u> . 202087 . 204567 . 207047 . 209526 . 212006
		<u>.214485</u> <u>.216965</u> <u>.219445</u> <u>.221924</u> <u>.224404</u> .226883
		. 229363 . 231843

CARD NO.	FORMAT		CO	DE SYMBO	OLS AND V	ALUES	
8	7E10	Q3.0001394	.002276	.0118288	.0518248	.191408	.986323
		2.37689	4.82867	8.26939	11.9386	14.5310	14.9158
		12.9363	9.57165	6.34166	4.55398	4.94717	7.64850
		12.08790	16.9292	20.4759	21.6053	20.4665	18.1607
		15.6907	13.2922	10.7283	7.98262	5.50871	3.89351
		3.40532	3.83098	4.65451	5.43735	6.18629	7.45024
		10.0043	14.2772	19.8946	25.6449	29.9190	31.4131
		29.7227	25.4886	20.0272	14.7016	12.3965	8.76491
		6.37869	4.87859	3.83559	2.97089	2.24017	-1. 76195
		1.64964	1.86803	2.21706	2.46529	2.55559	2.73752
		3.49435	5.23719	7.89931	10.7300	12.59360	12.7343
		11.4726	10.2140	10.6759	13.8067	19.0333	24.3230
		27.1901	27.1773	24.1861	18.4339	12.0354	6.73345
		3.22796	1.32526	.465514	. 139718	.0357764	.00780317
		.0014474	.000228				<u> </u>
		<u> </u>					••••••
9	Cards 9 ar	d 10 are not no	eeded				
10							
11	7E10	X5.3798541					
12	7E10	05 1 0					
13	7110 NP	HON $\overline{5}$		······			—
14	5E10 EMA	X 2. 0 DALPHA	. 004196	7 ALPHAC	041967	DBETA 0	BETAC 2 5
15, 16,	17. 18. 19 a	nd 20 are not n	eeded		<u></u>		<u></u>
21	2E10	DT.1 T	MAX 6.	0		¢	ر ۱
		2	16.	0			;
		A	68	0			ż
		1.0	$\frac{00}{272}$	0			2
		2.0	1072.	0			• •
		<u></u>					2
				<u></u>			2
							Ì
			• <u>•</u> ••••				2
22	2110						(
	2E10	ID 96 NI	PT 0	SIGF 4.	71 EPS	1.0-6	;
0.2	Canal 02 1		· · · · · · · · · · · · · · · · · · ·				,
25	Card 23 1s	not needed					

C₆H₆ - 3.2.2

4. Plots of Scattering Law for C_6H_6

BETA VALUES FOR MULTICURVE PLOT

CURVE	INDEX	β(296 ⁰ K)	β(1000 ⁰ К)
1	1	0.00	0.0
2	2	0.0800	0.0237
3	3	0.160	0.0474
4	4	0.480	0.1421
5	5	0.800	0.2368
6	6	1.120	0.3315
7	7	1.440	0.4262
8	8	1.760	0.5209
9	9	2.080	0.6156
10	9	2.400	0.7103
11	=	2. 745	0.8123
12	H	3.239	0.9586
13	1	3.963	1.173
14	δ	5.022	1.486
15	a	6.573	1.945
16	+	8.843	2.615
17	А	12.168	3.601
18	В	17.035	5.042
19	С	24.162	7.151
20	D	34.600	10.239

ALPHA

- - -

5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BARNS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUBLE).

DATA FOR COHO AT 296 DEGREES K.

.

	Ł	SIGTOT	MUBAR		Ε	SIGTOT	NUBAE
1	·JU025	1261.02466	00728	37	.22460	185.33761	- 36956
2	•00020.	779.53856	00495	38	.24800	181.47426	.37903
ن	.00125	661.71517	.00264	39	.27200	178.33136	.38690
4	.00175	603.79561	.01029	40	.29600	175.42882	.39294
Э	.00225	570.66467	.01766	41	.32500	172.49613	.40036
ъ	.00275	548.08026	.02424	42	.35500	169.76371	.40719
7	.00325	530.38136	.02998	43	.38500	167.67158	.41332
ö	.00375	510.23259	.03472	44	.41500	166.14968	.41899
9	.00450	502.16706	.04212	45	.44500	164.88797	.42455
1υ	.00550	485.68152	.04904	46	•47500	163.67643	.42966
11	•00650	474.08694	05548	47	.50500	162.61503	.43431
12	00750	463,12953	•06060	48	•53500	161.80374	.43861
15	•00850	453.97712	•06431	49	•56500	161.11257	•4427G
14	•00950	445.93833	• 06947	50	•59500	160.49148	•4465;
T.P	•01100	437.00513	•0 779 8	51	•62500	159.93048	.45009
10	•01300	425.54068	•08790	52	• 65500	159.43954	•45346
17	•01500	414.30129	·0.9577	53	•68500	158.98866	.45652
18	•01700	403.79544	10322	54	•71500	158.56784	.45947
19	• J1900	393,93216	•11044	55	•74500	158.18708	•46220
20	.02100	384.61083	•11748	56	•77500	157.82635	•464 7 8
21	•02500	367.23240	•13084	57	. 80500	157.48566	.46723
22	•02900	350.44792	•14120	58	•85500	156.97461	•47097
20	• 03660	526.94867	.16417	59	.90500	156.52364	•47438
24	•04400	303.96256	•18775	60	•95500	156.11275	.47752
20	• 05300	282.47900	•21229	61	1.00500	155.74192	•48041
20	• 06500	259.85552	•24169	62	1.10500	155.12044	•48551
21	• 0 / / 0 0	241.67532	•260//	63	1.20500	154.60915	•48988
20	•08900	227.56727	•28733	64	1.30500	154.17801	.49367
29	•10100	217.02069	•30325	65	1.40500	153.80699	.49701
20	•11300	209.55520	•31481	66	1.50500	153.46608	•50003
31	•12500	204.01051	• 32289	6/	1.60500	153.16526	•50275
36	.13/00	201.21646	• 52804	68	1.70500	152.8/450	·50530
33	•15200	198.54208	• 33467	69	1.80500	152.59381	-50768 5000r
94 36	•10800	195.88807	• 34213	70	1.90500	102.20018	• 5U995
35	•18400	192.93460	• 35019	/1	2.00500	148.00259	•20256
30	•20000	197.03122					

 $C_6 H_6 - 5.1$

THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	DELTA E	UP TU	
1	.0005	.004 EV	(
۷	•UU1	•01 E.V	i
3	·002	-03 EN	1
4	•064	.05 EN	J.
5	.006	•14 E	Ú.
Ó	•UUb	.30 EV	v
7	• Ü1	2.0 EN	Í

 $C_6H_6 - 5.2$

 $^{\rm C_6H_6}$ Т ្លា ω

U

Ú

6. Miscellaneous Notes on Benzene

For temperatures other than 296° K the switching criteria for short collision and the α, β mesh input for 296° K were multiplied by $\frac{296^{\circ}\text{K}}{\text{T}^{\circ}\text{K}}$. The only other changes made in the input for higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye Waller integral and effective temperature of the scattering law data on file.

	Debye Waller		Debye Waller	
<u>т([°]к)</u>	Integral (eV ⁻¹) for Hydrogen	T(⁰ K) for Hydrogen	Integral (eV ⁻¹) for Carbon	T(⁰ K) for Carbon
296	9.3536	1165.9	10.730	685.54
350	9.7064	1177.8	11.315	712.02
400	10.093	1191.4	11.927	738.97
450	10.530	1207.7	12.593	768.10
500	11.009	1226.0	13.304	799.22
600	12.070	1268.7	14.831	866.63
800	14.471	1373.4	18.165	1017.3
1000	17.096	1497.7	21. 720	1182.3

D₂O

1. Physics

Whereas hydrogen is nearly a completely incoherent neutron scatterer, the scattering from deuterium is largely coherent. Although it would appear that due to this fact a treatment of D_2O analog to the one used for H_2O would be inadequate, calculations⁽¹⁾ have shown that because of a great deal of cancellation between inter and intra- molecular interference scattering, integral quantities like the total cross section or thermal neutron spectra can actually be predicted quite accurately with an incoherent model.

The scattering law for D_2O calculated for the ENDF using the code GASKET is based on a model quite similar to the one used for H_2O . The internal modes of vibration are represented by oscillators having the measured frequencies of 0.142 and .305 eV (approximately 1//2 times the corresponding frequencies for H_2O as expected from the mass ratio) and the weights 1/6 and 1/3 respectively. The torsional oscillations are represented by a broad band of frequencies extending from 0 up to 0.127 eV and peaking at about 0.05 eV as shown in the figure of Section 2.1. Their total weight is 9/20. This torsional band was taken from the work of Haywood⁽²⁾ although here, as well as in the case of H_2O , the low frequency range of his spectrum was replaced by a parabola c ω^2 smoothly joining the rest of the torsional band at about 0.025 eV. Haywood's original spectrum showed several peaks in this low frequency range, corresponding to translational vibrations of the D_2O molecule as a whole. These modes

⁽¹⁾J.U. Koppel and J.A. Young, <u>Nukleonik</u>, 7, 408 (1965).

B.C. Haywood, Proceeding of the IAEA Symposium on Pulsed Neutron Research, Karlsruhe, Vol. 1, p. 434 (5/1965).

were replaced by free translations of mass 20 in order to avoid numerical difficulties.

The scattering by the oxygen atoms is not included in the tabulated scattering law data. It should be taken into account by adding to the data the properly weighted $S(\alpha, \beta)$ for a free gas of mass 16 recalling, however, that the α values for the oxygen must be 2.014/16 times those for the deuterium in order to correspond to the same neutron momentum transfer K.

D₂O - 1.2

U

D₂O - 2. 1

*

٠

. Torsional Frequency Spectrum for D_2O

•

2

3.1 GASKET Input for D_2O at 296°K

The code GASKET is discussed in Section A.3. The data tabulated below follows the format of the code input instructions also given in Section A.3. The code symbols used below are defined in the code input section. If no value is entered for a symbol the corresponding input quantity was not required in the calculation.

CARD NO.	FORMAT			C	ODE SY	MBOLS	AND VAI	UES			
l	13A6 ,A2	COM	D ₂ 0 -	2 050). + <u>H</u> a	ywood	Freq.	Spectru	n		
2	11I5	NT _	-6	NP	80	NE	. 80	NDAM	0	NGPRT	0
		NCP	0	NMESI	H <u>1</u>	NRES	T <u>0</u>	NCVP	0	NSEP	0
		IPG	0	•							
3	3I5	JS3	-51	JS4	0	_ JS5	2	-			
4	5E10	W1	.05	W2	0.0	₩3	.45	. W4	0.0	W5	•5
5	6E10	T1 _	.0255	Т2	0.0	_ T3	.0255	. т4	0.0	T5	.0255
6	7E10	AM _2	2.014	DC	0.0	BETSW	50.0	ALPSW	50.0	CRIT1	0.0
		CRIT2	0.0	CRIT3	1.0-7	, 					
7	7E10	X3 _	.129642								_
		_		• • • • • •							-
		_							<u></u>		-
		_									-
		_									-
		_		. 					<u></u>		
			<u></u>							·	_
							_,,				-
		-									-
·		. –				- <u></u>		· · ·			-
•		_						<u></u>			-
					<u></u> .	<u></u>					-
		-		. <u></u>							_
								·			-
		-		· · · · · · · · · · · · ·	a						-
				•	-	مر میں میں میں میں میں میں اور میں					-
		-					~~~~				-

 $D_2 O - 3.1.1$

CARD NO.	FORMAT			C	ODE SYMBO	LS AND VA	LUES		
8	7E10	Q 3	.0012	.0048	.0108	.0192	.03	.0432	
			.0588	.0768	.0972	.12	.142	.17	
			.195	.217	.24	.256	.27	.282	
			.294	.291	.271	.245	.22	.20) •
			.178	.166	.153	.143	.135	.128	
			.122	.118	.112	.106	.101	.098	
			.092	.086	.081	.076	.074	.070	
			.066	.064	.060	.058	.055	•053	
			.051	.049	0.0				
									•
						·			•
					· ·····				
9	Cards 9 a	nd 10 are	not nee	ded					
11	7E10	X 5	.14235	.30504					
12	7E10	Q5	•333333	.6666667	7 <u></u> 7				
13	7110	NPHON	14	7		النظر باين _ بان _ بان مينيو ب ي			
14	5E10	EMAX	1.5	DALPHA	.03 AL	PHAC .3	DBETA	.05	BETAC 1.5
15, 16	, 17, 18, 19	and 20 ar	e not n	eeded -				<u></u>	
21	2E10	DT	.1	TMAX 2	2.0				
			.25	10	0.0				
			•5	30	0.0				
		×	•75	100	0.0				
			5.0	500	0.0				
			10.0	2000	0.0				
		·							
22	2710								
an gu	2E10	ID	<u>51</u>	NPT_0	SIGF 3.	37 EPS	.000001		
23	Card 23 1	s not need	led						
-	-								2
							I	0 ₂ 0 - 3.]	2

4. Plots of Scattering Law

	β Values	for Multicurve	Plots	
CURVE		INDEX	в(296к)	β(800К)
1		1	0.00	0.00
2		2	•05	.0185
3		3	.10	.0370
4		4	•30	•111
5		5	•50	.185
6		6	•70	.259
7		7	•90	•333
8		8	1.10	.407
9		9	1.30	.481
10		9	1.50	• 555
11		=	1.73	.649
12		и	2.08	.788
13		1	2.59	•990
14		δ	3.34	1.29
15		a	4.46	1.72
16		+	6.12	2.36
17		A	8.57	3.29
18		В	12.20	4.65
19		C	17.57	6.64
20		D ·	25.51	9.56

ALPHA

D₂O - 4.2

ALPHA

5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BARNS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUBAR).

DATA FOR D20 AT 296 DEGREES K.

	E	SIGTOT	MUBAR		E	SIGTOT	MUBAR
1	.00025	38.07525	.00066	34	.16 80 0	11.59936	.17545
2	.00075	27.05134	.00570	35	.18400	11.50014	•17907
3	.00125	24.04814	.01321	36	.20000	11.40593	.18226
4	.00175	22.59090	.01931	37	.22400	11.27391	.18649
5	.00225	21.65168	.02357	38	.24800	11.15229	•19016
6	.00275	21.00219	.02638	39	.27200	11.04408	.19332
7	.00325	20.58357	.03124	40	.29600	10.95047	•19558
8	.00375	20.10239	.03082	41	.32500	10.88406	•19893
9	.00450	19.65958	.03502	42	.35500	10.84085	.20199
10	.00550	19.14117	.03805	43	.38500	10.81264	.20477
11	.00650	18.71781	.04077	- 44	.41500	10.79063	.20717
12	.00750	18.36669	.04357	45	.44500	10.77122	•20914
13	.00850	18.08219	.04698	46	•47500	10.75521	•21085
14	.00950	17.79570	.04941	47	•50500	10.74121	•21235
15	.01100	17.40920	.05333	48	• 53 500	10,72780	• 213 66
16	.01300	16.95268	.05792	49	•56500	10.71359	•21477
17	.01500	16.58219	.06387	50	• 5 9500	10.69999	•21577
18	•01700	16.24372	.06957	51	•62500	10.68798	•21670
19	.01900	15.93826	.07499	52	•65 500	10.67638	• 2175 2
20	.02100	15.65841	.08006	53	•68500	10.66618	•21827
21	02500	15.16453	.08892	54	•71500	10.65697	•21898
22	.02900	14.73386	.09520	55	•74500	10.64897	•21962
23	.03600	14.19817	.10819	56	•77500	10.64177	•55050
24	•04400	13.71790	.11768	57	.80500	10.63516	•22075
25	.05300	13.34724	.12669	58	.85500	10.62516	•22154
26	.06500	12.97677	.13503	59	.90500	10.61595	•22226
21	.07700	12.69793	.14290	60	•95500	10.60/15	•22292
28	.08900	12.46789	.14963	61	1.00500	10,59875	•22351
29	.10100	12.2/206	.15539	62	1.10500	10.58274	•22458
30	.11300	12.10244	.160.33	63	1.20500		•22553
31	.12500	11.95361	.16447	64	1.30500	10.55333	•22632
52	.13/00	11.81880	.16/18	65	1.40500	10,53852	•22683
33	.15200	11./0/38	.1/160	66	1.50500	10.3/632	•21/50

D₂O - 5.1

THE TOTAL CRUSS SECTION, INCLUDES A CONSTANT SCATTERING CROSS SECTION OF 3.76 BARNS (SIG0) FOR THE OXYGEN ATOM.ALSO FOR THE OXYGEN,SIG1 = .666*SIG0/MASS WAS USED TO CALCULATE THE AVERAGE COSINE OF THE SCATTERING ANGLE.

THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	DELTA E	UP TO	2
1	.0005	•004	E٧
2	.001	.01	E۷
3	.002	.03	E۷
4	•004	.05	E۷
5	•006	•14	E۷
ó	.008	.30	E۷
7	•0i	1.5	E۷

D20 F

5. 3

<u>)</u>.

6. Miscellaneous Notes on D_2O

For temperatures other than 296°K the switching criteria for short collision and the α,β mesh input for 296°K were multiplied by $\frac{296°K}{T°K}$. The only other changes made in the input for higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye Waller integral, effective temperature and ID numbers of the scattering law data on file.

<u>т(^ок)</u>	Debye-Waller Integral (eV ⁻¹)	<u>T</u> ([°] K)	ENDF ID No.
296	39.867	940.91	GA 0051
350	45.263	961.62	GA 0052
400	50.418	982.93	GA 0053
450	55.684	1006.1	GA 0054
500	61.033	1030.9	GA 0055
600	71.905	1085.1	GA 0056
800	94.068	1209.0	GA 0094
1000	116.52	1350.0	GA 0095

 $D_{2}O - 6.1$
н₂0

1. Physics

The first realistic model for describing the scattering of thermal neutrons by hydrogen bound in H_2O was given by Nelkin.⁽¹⁾ In this model the scattering units are freely recoiling H_2O molecules. Each molecule can undergo torsional harmonic oscillations (hindered rotations) as a whole with a single frequency of 0.06 eV, as well as internal vibrations with frequencies of 0.205 and 0.48 eV. The effective masses attributed to these dynamical modes by Nelkin are respectively 2.32, 5.85 and 2.92.

The scattering law for H_2O calculated for the ENDF with the code GASKET is based on a model which retains the essential features of the Nelkin model but which replaces the single torsional oscillator by a broad band of distributed modes. This torsional frequency spectrum is shown in Section 2.1. Between 0.04 and 0.165 eV it was taken from the work of Haywood and Thorson, ⁽²⁾ but below 0.04 eV it was smoothly joined to a parabola $c \omega^2$. The original spectrum given by Haywood and Thorson showed several peaks in this low frequency range, corresponding to translational vibrations of the H_2O molecule as a whole. These modes were replaced by free translations of mass 18 in order to avoid numerical difficulties. The discrete internal modes of vibration of the H_2O molecule were taken over from the Nelkin model with slightly readjusted masses, namely 6 for the 0.205 eV mode and 3 for the 0.48 eV oscillator. The torsional band was then normalized to 4/9 in order to give the proper

⁽¹⁾M.S. Nelkin, <u>Phys. Rev</u>. <u>119</u>, 741 (1960).

over-all normalization to one of the sum of all inverse masses. ⁽²⁾ The scattering by the oxygen atoms is not included in the tabulated scattering law data. It should be taken into account by adding to the data the properly weighted $S(\alpha, \beta)$ for a free gas of mass 16. It is important to note, however that the α values for the oxygen must be 1.008/16 times the α values for the hydrogen data, in order to correspond to the same neutron momentum transfer K.

H₂O - 1.2

⁽²⁾ B. C. Haywood and J. M. Thorson, Proc. Conf. on Neutron Thermalization, Brookhaven (4, 1962). Also see J. U. Koppel, Proc. ANS Conf. on Reactor Physics in the Resonance the Thermal Ref. on (S. Diego, 2/1966), The M.I.T. Press 1966.

 $\left| \right\rangle$

H₂O - 2.1

 \bigcup

۰.

•

3.1 GASKET Input for H_2O at 296°K

The code GASKET is discussed in Section A.3. The data tabulated below follows the format of the code input instructions also given in Section A.3. The code symbols used below are defined in the code input section. If no value is entered for a symbol the corresponding input quantity was not required in the calculation.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1	13A6 ,A2	COM H20 - Modified 1965 English Freq Spectrum
2	11I5	NT -5 NP 80 NE 80 NDAM 0 NGPRT 0
		NCPONMESH_1NREST_ONCVP_ONSEP_O
3	315	JS329JS40JS52
4	5E10	W1.0555556 W2 0.0 W3 .4444444 W4 0.0 W5 .50
5	6E10	T1.0255 T2 0.0 T3 .0255 T4 0.0 T5 .0255
6	7E10	AM 1.008 DC 0.0 BETSW20.0 ALPSW 20.0 CRIT1
	-	CRIT2CRIT3
7	7E10	x3 .006375 .01275 .019125 .0255 .031875 .03825
		.044625 .0510 .057375 .06375 .0663 .06885
		<u>.0714</u> .07395 .0765 .082875 .08925 .095625
		.102 .108375 .11475 .121125 .1275 .133875
		.14025 .146625 .153 .159375 .16575
		· · · · · · · · · · · · · · · · · · ·
·		
2		
7		

CARE	NO.	FORMAT	······································			DE SYMI	OTS AND VI	VEU63			
8	}	7ETO	93	.00125	.005	.01125	.02	.03125	.045		
				.059	.075	.095	.115	.1197	.1214		
				.1218	.1195	.1125	•0975	.0871	.0791	_	
				.0735	.0688	.065	.061	.0571	.054	- 	
				.0515	.0488	.0459	.0431	.042			
				· · · · · · · · · · · · · · · · · · ·							
						<u></u>		. <u> </u>			
•									<u></u>		
						·		* <u></u>			
				<u></u>							
				· · · · · · · · · · · · · · · · · · ·							
					a, <u></u>			*			
				·····							
								-			
							<u>میں پر جبرہ پر نالیات</u> ہ مص	وری سی بر بنایک کار ی ک			
								. <u> </u>		-	
9		Canda O en	d 10 ama	not nos				• • • • • • • • • • • • • • • • • • •		.	
10		Varus y an	u iv are	not nee	ucu .						
11		7E10	X5	.205	.48						
12		7E10	Q5	·333333	3 .66666667						
13		7I10	NPHON	10	5						
14		5E10	EMAX	2.0	DALPHA	.05 A	LPHAC .5	DBETA	.08	BETAC	2.5
15	, 16,	17, 18, 19	and 20 at	re not n	eeded						
21		2E10	DT	.1	TMAX 2.0						
				.2	5.0						
				5	20.0						
				1.0	100.0						
				2.0	6 <u>00.0</u>						
					•				•		
					· · · · · · · · · · · · · · · · · · ·	<u> </u>					
22		2110		_							
		2E10	ID		NPT 0	SIGF 2	:0.36 EPS	.000001			
23		Card 23 is	not need	led							

H₂O - 3.1.2

4. Plots of Scattering Law

	β Values	for Multicur	ve Plots	
CURV	Έ	INDEX	в(296К)	β(800К)
l		1	0.00	0.00
2		2	.08	.0296
3	•	3	.16	.0592
4		4	.48	.1776
5		5	.80	.296
6		6	1.12	•414
7		7	1.44	•533
8		8	1.76	.651
9		9	2.08	•765
10		9	2.40	.888
11		=	2.75	1.02
12		tt	3.24	1.20
13		I	3.96	1.47
14		δ	5.02	1.86
15		α	6.57	2.43
16		+	8.84	3.27
17		A	12,17	4.50
18		В	17.04	6.30
19		С	24.16	8.94
20		D	34.60	12.80

4

ÁLPHA

H₂O - 4.2

ALPHA

H₂O - 4.3

5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BARNS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUBAP).

DATA FOR H20 AT 296 DEGREES K.

	Ĕ	SIGTOT	MUBAR		E	SIGTOT	MUBAR
1	.00025	446.61971	00062	37	.22400	58.70315	.39348
2	.00075	282.53653	.00300	38	.24800	57.47408	.40517
3	.00125	235.44726	.01043	39	.27200	56.36451	•41506
4	.00175	211.74469	.01803	40	.29600	55.31012	42290
5	.00225	197.61657	.02566	41	.32500	54.23526	.43161
6	.00275	187.82400	.03261	42	.35500	53,22526	.43916
7	.00325	180.28262	03899	43	.38500	52.31221	.44591
8	.00375	174.26069	.04444	44	.41500	51.47195	.45179
9	•00450	167.82642	.05282	45	•44500	50.71632	.45715
10	.00550	160.71212	.06131	46	.47500	50.06524	.46199
11	.00650	155.49000	.06921	47	•50500	49.51662	•46655
12	.00750	150.82354	07573	48	•53500	49.05239	.47094
13	.00850	146.91556	.08100	49	•56500	48.66251	•47526
14	.00950	143.49759	.08727	50	•59500	48.33092	.47953
15	.01100	139.45900	.09716	51	•62500	48.04959	•48369
16	.01300	134.57830	.10883	52	•65500	47.80850	•48774
17	.01500	130.06634	.11841	53	•68500	47.60161	.49161
18	.01700	125.98003	. 12736	54	.71500	47.42690	•49522
19	.01900	122.25222	.13588	55	•74500	47.27436	.49870
20	.02100	118.81882	. 14404	56	•77 500	47.13997	•50197
21	.02500	112.66597	.15921	57	. 80500	47.01971	•50507
22	.02900	107.04419	.17109	58	.85500	46.84422	•50992
23	.03600	99.47064	.19467	59	•90500	46.69502	•51431
24	•04400	92.58750	.21742	60	•95500	46.56007	•51831
25	.05300	86.63676	.23902	61	1.00500	46.43735	•52199
26	•06500	81,00226	.26240	62	1.10500	46.21047	•52849
27	•07700	76.98061	.28097	63	1.20500	46.00821	•53404
28	•08900	73.96602	.29640	64	1.30500	45.82845	•53893
29	.10100	71.53633	.30968	65	1.40500	45.67310	•54336
30	.11300	69.47619	.32143	66	1.50500	45.54009	•54743
31	.12500	67.68473	.33177	67	1.60500	45,42736	•55109
32	.13700	66.05334	.34024	68	1.70500	45,32688	•55445
33	.15200	64.35290	.35069	69	1.80500	45.23461	•55750
34	•16800	62.76767	.36123	70	1.90500	45,13252	•56038
35	.18400	61.37622	.37122	71	2.00500	44.19259	•55834
36	.20000	60.17616	.38052		1		

H₂O - 5.1

THE TOTAL CROSS SECTION INCLUDES A CONSTANT SCATTERING CROSS SECTION OF 3.76 BARNS (SIGO) FOR THE OXYGEN ATOM.ALSO FOR THE OXYGEN.SIG1 = .666*SIGO/MASS WAS USED TO CALCULATE THE AVERAGE COSINE OF THE SCATTERING ANGLE.

THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	DELTA E	UP TO	
1	.0005	.004 EV	
2	•001	.01 EV	
3	.002	.03 EV	
4	•004	.05 EV	
ხ	• UUÓ	.14 EV	
6	•008	.30 EV	
7	•01	2.0 EV	

4

 \mathbf{O}^{\prime}

H₂O - 5.3

6. Miscellaneous Notes on H₂O

For temperatures other than $296^{\circ}K$ the switching criteria for short collision and the α,β mesh input for $296^{\circ}K$ were multiplied by $\frac{296^{\circ}K}{T^{\circ}K}$. The only other changes made in the input of the room temperature problem to do higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye Waller integral, effective temperature and ID numbers of the scattering law data on file.

т(⁰ К)	Debye Waller Integral (ev ⁻¹)	<u></u> Τ(⁰ Κ)	ENDF ID No.
296	19.68	1396.8	GA 0001
350	21.62	1411.6	GA 0002
400	23.54	1427.4	GA 0003
450	25.54	1444.9	GA 0005
500	27.60	1464.1	GA 0006
600	31.88	1506.8	GA 0007
800	40.78	1605.8	GA 0092
1000	49.94	1719.8	GA 0093

 $H_2^{0} - 6.1$

URANIUM DIOXIDE

1. Physics

The scattering laws for uranium and oxygen in uranium dioxide (UO_2) have been calculated in the inelastic incoherent approximation by GASKET, using weighted phonon frequency distributions obtained from a lattice dynamical model. Coherent elastic scattering by U and O was calculated⁽¹⁾ from the known lattice structure, which is similar to CaF₂ (fluorite). The lattice dynamical model is that developed by Dolling, Cowley, and Woods⁽²⁾ to fit dispersion curve measurements. In addition to short-range core-core forces, the model includes shell-core, shell-shell, and long-range Coulomb interactions. Weighted frequency distributions were calculated from a dynamical matrix based on this model. A review of the work by Dolling, et al. is given in a Gulf General Atomic report. ⁽³⁾

 (3) J. A. Young, "Neutron Scattering from Uranium Dioxide," USAEC Report GA-8760, Gulf General Atomic Incorporated, July 10, 1968.

UO₂ - 1.1

 ⁽¹⁾ E. L. Slaggie, et al., "Integral Neutron Thermalization, Annual Summary Report, October 1, 1968 through September 30, 1969," USAEC Report GA-9753, Gulf General Atomic Incorporated (1969).

⁽²⁾G. Dolling, R. A. Cowley, and A. D. B. Woods, <u>Can. J. Phys. 43</u>, 1397 (1965).

2. Weighted Frequency Spectrum of Uranium in UO₂

UO₂ - 2.1

3. Weighted Frequency Spectrum of Oxygen in UO_2

V

C

UO₂ - 2.2

U

6

3.1 GASKET Input for $U(UO_2)$ at 296[°]K

The code GASKET is discussed in Section A.3.1. The data tabulated below follows the format of the code input instructions also given in Section A.3.1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES					
1	13A6, A2	$COM \frac{U \text{ in } UO}{2}$ at 296 [°] K. FCC model.					
2	1115	NT -12 NP 50 NE 80 NDAM 1 NGPRT 0					
		NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0					
		IPG 0					
3	315	JS3 -86 JS4 JS5					
4	5E10	W1.0001 W2 0.0 W3 1.0 W4 W5					
5	6E10	T1 0255 T2 0.0 T3 0255 T4 T5					
6	7E10	AM 238.03DC BETSW ALPSW CRIT1					
		CRIT2 CRIT3					
-		X3.086					
		•					

CARD NO.	FORMAT		C	ODE SYN	IBOLS AI	ND VALU	ES
8	7E10	Q30.0	. 46260	1.0831	2, 4514	4, 9159	6, 4420
		10.649	15.442	21.982	27.892	45.230	69.832
		89.965	99.874	95.651	66.029	47.279	32.150
		29.643	77.690	127.91	29.401	5.2336	. 70288
		.63442	. 64183	.99599	1.5331	2.3095	3.4823
		4.2186	5.2855	5.8177	5.9447	5.4349	4.1625
		3.4041	3.3047	2.8288	2.6629	2.6025	2.3100
		2.3287	2.4506	1.9019	2.0120	1.3254	.88542
		1.1558	1.3608	1.2867	1.3258	1.2356	1.2501
		1.2354	1.3677	1. 2846	1.2589	1.1108	1.0409
		. 76018	. 58347	.45129	.31670	. 21204	. 13266
		. 23744	.40970	.63213	.74042	.82127	.84773
		.80319	.56653	.39261	. 27048	. 18194	. 13979
		.070214	.054065	.037417	.021232	.012110	.0036441
		<u>.00042</u> 99	0.0				
							·
							<u> </u>
9	Cards 9 a	nd 10 are not	needed				
10	,						
11	7E10	X5					
12	7E10	Q5					······································
13	7I10 NE	PHON	·				
14	5E10EMA	X 1. 0 DALPH	A.01008	3 ALPHA	C.13443	7 DBETA	. 10 BETAC 2.95
15, 16,	17, 18, 19	and 20 are not	needed	_		_	
21	2E10	DT .05	rmax .	L			
		. 10	1.	0			
		. 25	20	0.0			
		.50_	10	0.0			
		1. 25	15	50.0			
		2.5	20	0.0			
		3.0	50	0.0			
		5.0	1(00.0			
		10.0	3(000.0	25.0	7000.0	-
	0.5.4.0	15.0	40	000.0	40.0	<u>9500.</u> 0	-
22	2110	-		· · · · · ·	• •		,
	2E10	ID <u>130</u> 1	VPT (SIGF	<u>8.4</u> E	PS 1.0E	-6
23	Card 23 is	s not needed					

~

. . . .

3.2 GASKET Input for O(UO₂)

The code GASKET is discussed in Section A.3.1. The data tabulated below follows the format of the code input instructions also given in Section A.3.1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1	13A6, A2	COM O in UO_2 at 296°K. FCC model.
2	1115	NT -12 NP 50 NE 80 NDAM 1 NGPRT 0
		NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0
		IPG 0
3	315	JS3 -86 JS4 JS5
4	5E10	W1.0001 W2 0.0 W3 1.0 W4 W5
5	6E10	T1 .0255 T2 0.0 T3 .0255 T4 T5
6	7E10	AM 16.0 DC BETSW ALPSW CRIT1
		CRIT2 CRIT3
*		X3 .086
		······································

CARD NO.	FORMAI		С	ODE SYN	ABOLS A	ND VALU	JES
8	7E10	$\begin{array}{r} Q3 & \underline{0.0} \\ \hline .78298 \\ \hline 5.3794 \\ .94784 \\ \hline 6.9724 \\ \hline 21.040 \\ \hline 21.258 \\ \hline 19.859 \\ \hline 18.467 \\ \hline 34.566 \\ \hline 15.430 \\ .98949 \\ \hline 23.807 \\ \hline 7.1559 \\ .83710 \\ \hline \end{array}$	$\begin{array}{r} . \ 03 \ 1386 \\ \hline 1. \ 1367 \\ \hline 5. \ 3587 \\ \hline 2. \ 2904 \\ \hline 7. \ 5104 \\ \hline 24. \ 496 \\ \hline 21. \ 168 \\ \hline 20. \ 873 \\ \hline 22. \ 937 \\ \hline 29. \ 607 \\ \hline 11. \ 726 \\ \hline 2. \ 0034 \\ \hline 19. \ 566 \\ \hline 6. \ 0066 \\ \hline 0. \ 0 \end{array}$	$\begin{array}{r} . \ 074139 \\ \hline 1. \ 6674 \\ \hline 5. \ 0484 \\ \hline 2. \ 9726 \\ \hline 10. \ 067 \\ \hline 24. \ 452 \\ \hline 18. \ 205 \\ \hline 16. \ 838 \\ \hline 20. \ 815 \\ \hline 24. \ 674 \\ \hline 9. \ 3296 \\ \hline 3. \ 7310 \\ \hline 16. \ 969 \\ \hline 5. \ 5223 \\ \hline \end{array}$	$ \begin{array}{r} & 16980 \\ $	$ \begin{array}{r} .34950 \\ 3.2024 \\ 3.0644 \\ 2.8011 \\ 18.547 \\ 26.769 \\ 19.911 \\ 15.296 \\ 22.950 \\ 20.377 \\ 4.5238 \\ 8.2498 \\ 12.518 \\ 3.6634 \\ \hline $. 46484 4. 3883 1. 8615 4. 7463 21. 186 21. 396 17. 479 13. 225 26. 210 20. 659 2. 6508 13. 318 9. 9532 1. 9191
9 10 11 12 13 14 15, 16, 21	Cards 9 7E10 7E10 7I10 N 5E10 17, 18, 19 2E10	and 10 are not X5 Q5 PHON EMAX 1.0 DAI and 20 are no DT.05 .10 .25 .50 1.25 2.5 3.0 5.0 10.0	needed	ALPHA 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00.0 000.0 000.0	25.0	 BETA 7000.0	10_BETAC <u>2.95</u>
22	2I10 2E10	ID <u>140</u>	4 NPT() SIG	F <u>3.76</u>	EPS <u>1</u> .	0 <u>E-6</u>
23	Card 23	is not needed					

UO₂ - 3.2.2

4. Plots of Scattering Law for UO_2

BETA VALUES FOR MULTICURVE PLOT

CURVE	INDEX	β(296 [°] K)	β(1200 ⁰ K)
1	1	0.00	0.0
2	2	0.100	0.024661
3	3	0.200	0.049322
4	4	0.600	0. 14797
5	5	1.00	0.24661
6	6	1.400	0.34525
7	7	1.800	0.44390
8	8	2.200	0.54254
9	9	2.600	0.64119
10	9	3.00	0.73983
11	=	3.4716	0.85614
12	11	4.083	1.0069
13	1	4.8753	1.2023
14	δ	5.9024	1.4556
15	а	7.2336	1.7839
16	+	8.9590	2.2094
17	А	1.1195 + 01	2.7609
18	В	1.4094 + 01	3.4758
19	С	1.7852 + 01	4.4024
20	D	2.2722 + 01	5.6034

-

ALPHA

UO₂ - 4.2

ALPHA

UO₂ - 4.3

5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BARMS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUB/P).

DATA FUR UCE AT 296 DEGREES K.

	Ľ.	SIGTOT	MUDAR		E	SIGTOT	MUBAP
1	.00265	36,53458	92603	43	.02326	23.71562	05480
2	• 00222	34.35072	74015	44	02396	23.19428	02755
ک	.00250	32.40761	- 59599	45	.02396	24.38127	09752
Ц.	00274	30.66762	- 46519	46	.02418	24.20632	08820
5	.00274	31,19432	50111	47	.02441	24.03379	07903
ö	• 00355	26.69415	18629	48	02464	23.86357	07002
7	.00446	23.32185	.02201	49	02464	23.90557	07249
Ö	.00548	20.70736	.16247	50	02554	23.26979	03893
9	.00548	36.90198	76091	51	.02645	22.66688	00751
10	.00612	33.914.1	57752	52	.02738	22.09404	.02191
11	• 00681	31.33138	42278	53	02738	24.47704	12056
12	.00753	29.08568	29118	54	.02805	24.02636	09626
١Ĵ	.00753	32.72368	42950	55	.02874	23.59116	07301
14	·Uu775	31.99914	38918	56	02943	23.16774	05070
15	•uu798	31.30305	35065	57	.02943	23.59274	07516
10	.00821	30.63231	31387	58	02966	23.45398	06786
17	.00821	30.74431	31831	59	.02989	23.31659	06066
10	•00908	28.49743	19708	60	.03012	23.18157	05357
19	•01000	26.53574	09354	61	.03012	23.20157	05473
20	·U1695	24.81240	00473	62	.03102	22.69037	02803
21	• U1095	27.53746	17577	63	.03193	22.20405	00280
22	•01162	26.33733	11210	64	.03285	21.74143	.02101
23	•01230	25,23030	05423	65	03285	22.31643	01673
24	•01300	24.21089	00161	66	.03353	21.98382	.00064
25	•01360	25.77289	10515	67	03422	21.66327	.01729
20	•01323	25.44174	08753	68	•03491	21.35371	.03324
27	• 01346	25.11916	07041	69	•03491	21.99466	00959
20	• 01369	24.80410	05377	70	•03513	21.89173	00415
29	•01369	24.93310	06213	71	•Ú3536	21.79010	.00121
SU	•01457	23.80079	00297	72	•03559	21.68878	•0065ü
ST	•01549	22.76070	.05019	73	•03559	21.7 0078	.00572
52	•01643	21.80538	•09791	74	•03649	21.32868	.02552
35	•01043	27.45638	24827	75	•03741	20.97760	•04409
34	•01710	26.61854	20181	76	03833	20.63931	.06164
35	•01776	25.83186	15839	77	•03833	23.25131	10142
30	•01848	25.08598	11775	78	•03901	22.96811	08516
31	•01848	26.28398	17885	79	•03969	22.69229	06949
30	•01959	25.12803	11671	80	•04038	22.42284	05438
59	.02073	24.06143	06038	81	•04038	23.17584	09600
40	•02190	23.08193	00941	82	•04151	22.73517	07116
41 	•02190	24.82993	11389	83	•04265	22.31314	04770
42	• Ú2258	24.26007	08355	84	.04380	21.90651	02555

UO₂ - 5.1

DATA FOR UO2 AT 296 DEGREES K.

	Ł	SIGTOT	MUBAR		E	SIGTOT	MUBAF
65	.04381	22.16140	04075	127	.06456	20.46604	.01495
80	.04448	21.92255	02803	128	.06571	20.24123	.02640
87	•u4517	21.68845	01569	129	.06571	20.70023	00316
85	• 4586	21,45955	00375	130	.06639	20.56492	.00386
89	•04586	21.66155	01636	131	.06707	20.43118	.01070
90	.04609	21.58694	01244	132	.06776	20.30098	.01737
91	• 4631	21.51346	00856	133	• 06776	20.60498	00209
92	• 34654	21.43913	00472	134	. 16799	20.56204	.00018
93	• 04654	21.44813	00526	135	.06822	20.51816	.00243
94	• 04745	21.16538	.00942	136	.06845	20.47534	.00465
95	•04836	20.89262	.02347	137	.06845	20.47634	.00463
90	.04928	20.62786	.03689	138	.06935	20.30865	.01325
97	• 04928	21.84986	04060	139	.07026	20.14590	.02157
98	• 04990	21.64557	02956	140	.07118	19.98709	.02961
99	05064	21.44635	01887	141	•07118	21.15309	04279
100	.05133	21.25217	00850	142	.07186	21.02705	03589
101	•05133	21.63916	03217	143	.07255	20.90453	02915
102	.05156	21.57471	02868	144	.07324	20.78350	02258
103	.05179	21.51036	02522	145	.07324	21.04750	03818
104	.05202	21.44713	02179	146	.07346	21.00693	03596
105	• U5202	21.45013	02194	147	.07369	20.96741	03376
106	05292	21.20443	00880	148	07392	20.92696	03158
11:7	• 05384	20.97547	.00367	149	.07392	20.92796	03159
1.03	•05476	20.75268	•01561	15 0	•07550	20.66104	01705
109	• 05476	21.41566	02597	151	•08213	19.84346	.02513
110	•05544	21.24825	01670	152	•Û8213	20.41546	01112
111	•05 <u>61</u> 2	21.08400	00771	153	•08966	19.71877	.02360
112	•ú5681	20.92289	.00102	154	•08966	20.01878	.00430
115	•05681	21.34089	02474	155	.09309	19.63104	.02479
114	•05704	21.28687	02176	156	•09309	20.06204	00276
115	• 05727	21.23287	01881	157	•09856	19.63290	•01846
110	• 05749	21.17988	01588	158	•09856	19.86992	.00338
11/	• 05749	21,18188	01605	159	•10404	19.44108	.02431
110	•05840	20.97499	00478	160	•10404	19.94108	00741
119	•05931	20.77328	•00606	161	•10609	19.74705	.00309
120	•06023	20.57671	•01649	162	•10609	19.91905	00764
151	.06023	21.12472	01802	163	•11499	19.34816	.02102
122	•06091	20.97604	00997	164	•11499	19.61016	.00430
120	•06160	20.83142	00214	165	•11704	19,44890	•01281
124	• 06229	20.68783	•00548	166	•11704	19.62590	.00164
120	• 06229	20.92383	00934	167	•12594	19.39/00	•01548
150	• 06342	20.09244	•00308	168	•12594	19.60600	.00236

UO₂ - 5.2

DATA FOR UG2 AT 296 DEGREES K.

	É	SIGTOT	MUBAR		E	SIGTOT	MUBAR
169	•13689	19.03232	•02612	182	•1991 8	18.43967	•0220e
170	.13689	19.32832	.00721	183	.240 00	18.23501	.01961
171	•14784	19.14285	.01925	184	•28500	17.91529	.021 08
172	•14784	19.41785	.00197	185	• 32 000	18.25172	.01632
175	.15332	19.10020	.01249	186	.36000	18.15018	.01859
174	.15332	19.22520	.00465	187	• 4100 0	18.00830	•01891
175	•16130	18.82168	• 0147 8	188	•46000	17.89775	.01952
176	•16975	18.5777B	•02680	189	•51000	17.80177	.02003
177	•16975	18.76590	•01458	19 0	.60000	17.65328	.02097
178	.18070	18,54101	.02338	191	•70000	17.51905	•02185
179	.1807 0	18.69831	.01322	192	.80000	17.40802	.02251
18u	.18275	18.62212	.01688	193	.90000	17.30783	.02301
161	18825	18.53339	.01955	194	1.00000	15,79234	•03105

THE ELASTIC CONTRIBUTION TO THE TOTAL CROSS SECTION WAS CALCULATED AT ALL OF THE TABULATED ENERGIES.THE INELASTIC CONTRIBUTION WAS CALCULATED ON A COARSER MESH AND WAS INTERPOLATED TO GIVE THE VALUES AT THE TABULATED ENERGIES.

THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	DELTA E	UP TU	
1	.0005	•004 EV	
2	.001	•01 EV	
3	.002	•03 EV	
4	•004	.05 EV	
5	.006	•14 EV	
6	•008	•30 EV	
7	•01	1.0 EV	

C

 uo_2 T

5**.** 4

6. Miscellaneous Notes on Uranium Dioxide

For temperatures other than 296° K the switching criteria for short collision and the α, β mesh input for 296° K were multiplied by $\frac{296^{\circ}K}{T^{\circ}K}$. The only other changes made in the input for higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye Waller integral and effective temperature of the scattering law data on file.

	Debye Waller		Debye Waller	
т(^о к)	Integral (eV ⁻¹) for Uranium	T(⁰ K) for Uranium	Integral (eV ⁻¹) for Oxygen	T(⁰ K) for Oxygen
296	277.87	311.1	48.294	387.2
400	371.63	411.4	61.635	470.0
500	462.38	509.1	74.987	557.0
600	553.44	607.6	88.618	647.9
700	644.69	706.6	102.42	741.3
800	736.05	805.7	116.32	836.3
1000	918.98	1004.6	144.33	1029.1
1200	1102.1	1203.8	172.50	1224.4

URANIUM CARBIDE

1. Physics

The scattering laws for uranium and carbon in uranium carbide (UC) have been computed in the inelastic incoherent approximation by GASKET, using squared-amplitude weighted frequency distributions obtained from a central force lattice dynamical model. ⁽¹⁾ Contributions from coherent elastic scattering by U and by C were computed ⁽²⁾ from the lattice structure. UC has a cubic structure of the NaC ℓ type with a lattice constant of 4.9554 ± 0.003 Å. The central force model is based on three force constants, including next-nearest-neighbor interactions. The uranium-carbon force constant was adjusted to give a peak in the normal mode frequency distribution at about 0.045 eV in accordance with neutron data. ⁽³⁾ The carbon-carbon force constant was selected to give a reasonable width to this peak. Finally, the uranium-uranium force constant was chosen to make possible a good fit to specific heat data. Details of the work are given in a Gulf General Atomic report. ⁽¹⁾ The frequency distributions are shown in Fig. 1.

 ⁽¹⁾ E. L. Slaggie, "Central Force Lattice Dynamical Model for Uranium Carbide," USAEC Report GA-8675, Gulf General Atomic Incorporated, December 23, 1968.

 ⁽²⁾ E. L. Slaggie, et al., "Integral Neutron Thermalization, Annual Summary Report, October 1, 1968 through September 30, 1969," USAEC Report GA-9753, Gulf General Atomic Incorporated (1969).

⁽³⁾S. N. Purohit, et al., "Inelastic Neutron Scattering in Metal Hydrides, UC and UO₂, and Applications of the Scattering Law," <u>Proceedings</u> of the IAEA Symposium on Neutron Thermalization, held July 1967 at the University of Michigan.

Figure 1A. Histogram representation of the normalized frequency distribution obtained from the central force mode for UC.

Figure 1B. Weighted frequency distribution for C in UC.

Figure 1C. Weighted frequency distribution for U in UC.

UC - 2.1

V

3.1 GASKET Input for U(UC)

The code GASKET is discussed in Section A.3.1. The data tabulated below follows the format of the code input instructions also given in Section A.3.1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES				
1 2	13A6, A2 1115	COM <u>Slaggie's U(UC) 296 degrees K.</u> NT -12 NP 50 NE 80 NDAM 1 NGPRT 0				
		NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0 IPG 0				
3	315	JS3 37 JS4 JS5				
4	5E10	W1 .001 W2 0.0 W3 1.0 W4 W5				
5	6E10	T1 .0255 T2 0.0 T3 .0255 T4 T5				
6	7E10	AM 238.0 DC BETSW ALPSW CRIT1				
-		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

	-							
CARD NO.	FORMAT			CODE SYN	MBOLS A	ND VAL	JES	
8	7E10 Ç	$\begin{array}{r} 23 \\ \underline{, 05191} \\ \underline{10, 907} \\ \underline{150, 84} \\ \underline{69, 034} \\ \underline{1, 1144} \\ \underline{1, 6425} \\ \underline{0, 0} \end{array}$	<u>. 4848</u> <u>14. 096</u> <u>180. 33</u> <u>17. 370</u> <u>1. 3690</u> <u>1. 2849</u>	$ \begin{array}{r} 1.3866 \\ 22.763 \\ 87.874 \\ 0.0 \\ 1.5624 \\ .8022 \\ \\ \\ \\ \\ $	$ \begin{array}{r} 2. 2571 \\ 30. 514 \\ \overline{67.360} \\ 0. 0 \\ \hline 2. 1094 \\ \overline{1.7380} \\ \end{array} $	4. 7959 45. 190 53. 466 0. 0 2. 3142 . 6595	$ \begin{array}{r} 7.2844 \\ 68.004 \\ \overline{148.94} \\ 0.0 \\ 2.4207 \\ .03506 \\ \hline \hline \hline $	
9	Cards 9 and	10 are not	needed					
10	7010							
10	7E10 2	<u> </u>						
13	7110 NDHO	25		<u> </u>		······		
13	5E10EMAX 1		TA 0075		$\frac{1}{AC}$	92 DBFT	▲ 05 B F	
15, 16,	17. 18. 19 and	$\frac{10}{20}$ are not	needed	<u>570</u> 1111 1			A <u>. 05</u> DE.	IRC <u>1. 70</u>
21	2E10 I	$\begin{array}{c} 20 \\ 20 \\ 10 \\ 1.25 \\ \hline 1.0 \\ \hline 1.25 \\ \hline 175.0 \\ \hline 2.5 \\ \hline 3.0 \\ \hline 5.0 \\ \hline 20.0 \\ \hline 25.0 \\ \hline 30.0 \\ \hline \end{array}$	TMAX 1 2 1 1 2 5 1 3 4 7	. 0 0. 0 52. 5 00. 0 720. 0 000. 0 000. 0 000. 0	<u>50.0</u> 100.0	<u>95</u>	<u>00.0</u> 000.0	
22	2110							
	2E10 I	D <u>190</u>	NPT -0	<u>0</u> SIGF	8.4	EPS <u>1.0</u> .	.06	
23	Card 23 is no	t needed						

-

. ..

3.2 GASKET Input for C(UC)

The code GASKET is discussed in Section A.3.1. The data tabulated below follows the format of the code input instructions also given in Section A.3.1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1	13A6, A2	COM Slaggie's C(UC) 296 degrees K.
2	1115	NT -10 NP 50 NE 80 NDAM 1 NGPRT 0
		NCP 0 NMESH 1 NREST 0 NCVP 0 NSEP 0
		IPG 0
3	315	JS3 37 JS4 JS5
4	5E10	W1 .001 W2 0.0 W3 1.0 W4 W5
5	6E10	T1 .0255 T2 0.0 T3 .0255 T4 T5
6	7E10	AM 12.011DC BETSW ALPSW CRIT1
		CRIT2 CRIT3 1. 0-08
-		X3.0005.00150.0025.0035.0045.0055
		.0065 .0075 .0085 .0095 .0105 .0115
		.0125 .0135 .0145 .0155 .0165 .0175
		<u>.0185</u> .0195 .0205 .0215 .0385 .0395
		.0405 .0415 .0425 .0435 .0445 .0455
		.0465 .0475 .0485 .0495 .0505 .0515
		. 0525

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
8	7E10	$\begin{array}{c} Q3 \\ \underline{002615} \\ \underline{.43465} \\ \underline{.51740} \\ \underline{.75688} \\ \underline{.89469} \\ \underline{.11229} \\ \underline{1.1229} \\ \underline{1.3203} \\ \underline{2.0546} \\ \underline{2.9250} \\ \underline{1.4443} \\ \underline{1.1647} \\ \underline{.66306} \\ \underline{2.1415} \\ \underline{.79890} \\ \underline{.079342} \\ \underline{0.0} \\ \underline{0.0} \\ \underline{0.0} \\ \underline{0.0} \\ \underline{132.606} \\ \underline{66.574} \\ \underline{114.73} \\ \underline{128.14} \\ \underline{128.37} \\ \underline{107.84} \\ \underline{128.37} \\ \underline{107.84} \\ \underline{1.4920} \\ \underline{0.0} \\ 0.$
9	Cards 9 and	d 10 are not needed
10		
11	7E10	X5
12	7E10	Q5
13	7I10 NPH	ION
14	5E10 EM	AX 1.0 DALPHA. 15 ALPHAC 2.0 DBETA. 05 BETAC 1.96
15, 16,	17, 18, 19 an	d 20 are not needed
21	2E10	DT <u>.05</u> TMAX <u>.1</u>
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
22	2I10 2E10	<u>25.0</u> <u>6000.0</u> ID 180 NPT 0 SIGF 4.71 EPS 1.0-06
23	Card 23 is	not needed

1

4. Plots of Scattering Law for UC

BETA VALUES FOR MULTICURVE PLOT

- - - - - - -

CURVE	INDEX	β (296 [°] K)	β(1 200 ⁰ K)
1	· 1	0.00	0.0
2	2	5.00 - 2	1.233 - 2
3	3	1.00 - 1	2.4660 - 2
4	4	3.00 - 1	7.3980 - 2
5	5	5.00 - 1	1.2330 - 1
6	6	7.00 - 1	1.7262 - 1
7	7	9.00 - 1	2.2194 - 1
8	8	1.10 + 0	2.7126 - 1
9	9	1.30 + 0	3.2058 - 1
10	9	1.50 + 0	3.6990 - 1
11	=	1.70 + 0	4.1922 - 1
12	11	1.90 + 0	4.6854 - 1
13	I	2.1187 + 0	5.2248 - 1
14	δ	2.4545 + 0	6.0527 - 1
15	a	2.9827 + 0	7.3554 - 1
16	+	3.8140 + 0	9.4053 - 1
17	А	5.1220 + 0	1.2631 + 0
18	В	7.1801 + 0	1.7706 + 0
19	С	1.0419 + 1	2.5693 + 0
20	D	1.5515 + 1	3.8259 + 0

.....

.

. . .

- - - - -

-

ALPHA

 \bigcirc

- - -

ALPHA
5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BARNS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUBAR).

DATA FOR UC AT 296 DEGREES K.

	£	SIGTOT	MUBAR		E	SIGTOT	MUBAR
1	.00250	25,49961	50606	43	.02833	19,56984	• 0 229 6
2	.00277	24.26205	41269	44	.02918	19.16881	.04639
3	.00304	23.16827	33304	45	•02918	19.26581	.03801
4	.00333	22.14040	27921	46	.02946	19.13709	.04542
5	.00333	35.36693	95030	47	.02973	19.00869	.05269
6	.00432	29.63622	51702	48	.03001	18.88262	.05983
7	.00543	25.42991	22032	49	.03001	20.79962	08797
8	•00667	22,23774	01040	50	.03110	20.26027	05477
9	•00667	31.30532	55953	51	.03222	19.74792	02371
10	•00746	28.82214	39804	52	•03335	19.26140	.00533
11	•00829	26.72125	26160	53	.03335	20.53140	08694
12	•00917	24.91032	14647	54	•03417	20.16654	06433
13	•00917	25.12126	16104	55	.03500	19.81334	04272
14	•00944	24.60662	12946	56	•03585	19.47278	02208
15	•00972	24.09851	09938	57	•03585	19.51078	02494
16	•01000	23.60544	07068	58	•03613	19.39770	01831
17	•01000	26.79644	27408	59	.03640	19.28241	01167
18	•01106	24.83514	15813	60	•03668	19.16788	00513
19	01217	23.08604	05833	61	•03668	20.23688	08183
20	•01334	21.63161	.02659	62	•03778	19.77786	05453
21	•01334	23.13961	09662	63	•03889	19.34751	02874
22	•01415	22.22055	03901	64	•04002	18.94327	00446
23	•01498	21.35176	.01289	65	•04002	19.24627	02744
24	•01584	20.50125	.06063	66	•04084	18.96453	01020
25	•01584	20.60425	.05062	67	•04168	18.69741	.00624
20	•01612	20.34785	•06492	68	•04252	18.44294	.02188
21	•01639	20.09771	•07877	69	•04252	18.50491	•01679
∠ 0 00	•01667	19.85420	.09219	70	•04279	18.42511	.021/7
27 20	• 01667	24.03850	22135	71	•04307	18.34600	.02667
30	•01775	22.91898	15213	72	•04335	18.25/62	•03148
22	•01886	21.90347	- 03301	73	•04335	19.05062	02978
32 33	• 02001	20.99339	-00001	74	+04445	18.70281	00995
30	02001	24.00039	- 19104	75	•04555	18.51993	.00800
35	• 02083	23.30309	- 17000	70	• 04007		• 02476
36	• 02100	22.00180		79	+ U40D7	19.04002	- 06036
37	• 02251	22.06526	- 10505	70	•04/51	19 97001	
38	.02294	21 10220	· · · · · · · · · · · · · · · · · · ·	20	.04030	10,02257	
39	.02525	20 23204		. OV 	· · · · · · · · · · · · · · · · · · ·	19.16957	- 03332
<u>4</u> 0	• UZGZJ	10 47342	- UUE04	80 01		18.08245	- 01961
<u>4</u> 1	· U2000	17.7/613	+ U7010	02 27	.05105	18.60210	+01001
ц <u>э</u>	.02000	10 00300		<u>р</u> п	-05195	19.30344	.01214
- T f an	02130	12420200		07	+02020	10+0E004	•0TOTO

UC - 5.1

DATA FOR UC AT 296 DEGREES K.

	E	SIGTOT	MUBAR		E	SIGTOT	MUBAR
85	• 05336	18.45462	.00803	127	•08670	17.98723	01897
86	.05418	18.27821	.01839	128	.09004	17,70731	00151
87	.05502	18,10704	.02834	129	•09004	17.93811	01811
88	•05586	17,94112	.03789	130	.09671	17.41421	.01550
89	•05586	17.96411	.03602	131	.09671	17.85364	01655
90	.05613	17.91044	.03908	132	.10004	17.59487	.00023
91	•05641	17.85691	.04210	133	.10004	17.86527	01909
92	• 05669	17.80450	•04508	134	.11005	17.14921	.01578
93	.05669	18.73350	02629	135	.11005	17.36421	-:00019
94	•05779	18,51428	01270	136	.11338	17.14493	.01267
95	•05890	18.30211	.00022	137	.11338	17.34463	00207
96	•06003	18.09900	.01249	138	•11672	17.21898	.00807
97	•06003	18.72000	03327	139	.11672	17.40478	00548
98	•06085	18.56721	02363	140	.12672	17.10507	.01234
99	•06169	18.41952	01433	141	.12672	17.33127	00414
100	.06253	18,27492	00537	142	.13673	16.52153	.02240
161	•06253	18.32292	00887	143	.13673	16.76863	.00363
102	•06280	18,27627	00597	144	.14006	16.39852	.01628
103	•06308	18.22974	00311	145	•14006	16.51432	.00739
104	•06336	18.18334	00028	146	•15006	15.81775	.02630
105 -	•06336	18.55434	02730	147	.15007	15.96169	.01477
106	•06446	18.37175	01570	148	•16285	15.63813	.03288
107	•06557	18.20059	00475	149	•17118	15.70539	.02379
108	•06669	18,03831	•00 5 60	150	.17591	15.48341	.02801
109	•06670	18,37132	01895	151	•18258	15.30891	.02222
110	•06752	18.25212	01112	152	•18675	15.27042	.02661
111	•06836	18.13397	00356	153	•19119	15.34195	.02278
112	•06920	18,01984	.00374	154	.20000	15.20270	.02735
113	•06920	18.07384	00030	155	.25000	14.90251	.02534
114	• 06947	18,03640	•00207	156	.30000	14.63930	.02663
115	• 06975	17.99897	•00442	157	.35000	14.42104	.02540
110	•07003	17.96153	.00674	158	•40000	14.31933	.02352
11/	•07003	18,56255	03663	159	•45000	14.24/8/	.02090
110	•07113	18.40952	02649	160	.50000	14.16819	.01972
112	• 07224	18.26045	016//	161	•55000	14.11693	.01/94
120	•07336	18,11528	00748	162	•60000	14.07535	.01657
151	•07336	18.38/28	- 02693	163	.65000	14.04072	.01516
122	•08003	17.60115	.02090	164	•70000	14.01274	.01406
123	• 08003	17.82615	•00388	700	• /5000	13.98909	.01312
124	•08337	17.50301	.02208	160	.80000	13.96/98	•01240
120	•08337	17.76042	.00200	701	•82000	13,9492/	•01178
150	•08670	17,42253	.02278	100	• 90000	13.92481	•01114

DATA FOR UC AT 296 DEGREES K.

E SIGTOT MUBAR E SIGTOT MUBAR 169 .95000 13.81523 .01192 170 1.00000 12.67302 .02508

THE ELASTIC CONTRIBUTION TO THE TOTAL CROSS SECTION WAS CALCULATED AT ALL OF THE TABULATED ENERGIES.THE INELASTIC CONTRIBUTION WAS CALCULATED ON A COARSER MESH AND WAS INTERPOLATED TO GIVE THE VALUES AT THE TABULATED ENERGIES.

THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	DELTA E	UP TO
1	.0005	•004 EV
2	.001	•01 EV
3	.002	.03 EV
4	•004	•05 EV
5	•006	•14 EV
6	•008	.30 EV
7	•01	1.0 EV

uc 1 5. 4

 \mathbf{O}

6. Miscellaneous Notes on Uranium Carbide

For temperatures other than $296^{\circ}K$ the switching criteria for short collision and the α, β mesh input for $296^{\circ}K$ were multiplied by $\frac{296^{\circ}K}{T^{\circ}K}$. The only other changes made in the input for higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye Waller integral and effective temperature of the scattering law data on file.

	Debye Waller		Debye Waller	
т([°] к)	Integral (eV ⁻¹) for Uranium	T(⁰ K) for Uranium	Integral (eV ⁻¹) for Carbon	T(⁰ K) for Carbon
296	362.72	304.79	39.558	369.78
400	486.29	406.58	49.766	455.89
500	605.69	505.28	60.128	545.17
600	725.41	604.40	70.778	637.84
700	845.32	703.78	81.599	732.56
800	965.34	803.30	92.527	828.55
1000	1205.6	1002.6	114.58	1022.9
1200	1446.0	1202.2	136.80	1219.2

ZIRCONIUM HYDRIDE

1. Physics

The scattering laws for zirconium and for hydrogen in zirconium hydride were calculated by GASKET from squared-amplitude weighted frequency spectra obtained from a central force lattice dynamical model. This model approximated the slightly tetragonal lattice structure of ZrH_2 by a face-centered-cubic lattice. Four force constants - μ , γ , ν , and δ were introduced describing respectively the interaction of a zirconium atom with its nearest neighbors (8H atoms) and the next nearest neighbors (12 Zr atoms) and the interaction of a hydrogen atom with its next nearest neighbors (6 H atoms) and its third nearest neighbors (12 H atoms). Eigenvalues and eigenvectors of the dynamical matrix were calculated and a phonon frequency spectrum obtained by means of root sampling techniques. In addition, weighted frequency spectra for use in neutron scattering calculations were obtained by appropriate use of the dynamical matrix eigenvectors. ⁽¹⁾ These spectra are illustrated in Figs. 1, 2 and 3.

The final values of the force constants were obtained by fitting both specific heat and neutron data. The position of an optical peak - observed by neutron scattering techniques to be centered roughly around 0. 14 eV determines the constant μ , while the over-all width and shape of this peak determine ν and δ , respectively. Existing neutron data are not sufficiently precise to confirm the structure predicted in the optical peak by the central force model. Specific heat data were used to determine the force constant γ , which primarily determines the upper limit on the phonon energies associated with acoustic modes.

⁽¹⁾E. L. Slaggie, "Central Force Lattice Dynamical Model for Zirconium Hydride," General Atomic Report GA-8132, July 29, 1967.

In the plots for the scattering law some discontinuities are fairly prominent at high values of α . These discontinuities are associated with the switch to the short collision time approximation and are of no practical significance in this case because of the small values of the scattering law in the region of the discontinuities.

> ZrH_n - 1.2 (Rev. -12/31/69)

Fig. 1. ZrH_2 frequency spectrum calculated from the central force model. The smooth curve shows a Debye spectrum for $\omega \le 0.02 \text{ eV}$ and a Gaussian of width 0.02 eV centered at 0.137 eV.

ZrH_n - 2.1 (Rev. -12/31/69)

 $\left| \right\rangle$

Fig. 2. Weighted frequency spectrum for H in ZrH_2 calculated from the central force model. Acoustic modes are shown multiplied by a factor 10^2 .

ZrH_n - 2.2 (Rev. -12/31/69)

Fig. 3. Weighted frequency spectrum $\rho_1(\omega)$ for Zr in ZrH₂ calculated from the central force model.

 $ZrH_n - 2.3$ (Rev. -12/31/69)

3.1 GASKET Input for H(ZrH)

The code GASKET is discussed in Section A. 3. 1. The data tabulated below follows the format of the code input instructions also given in Section A. 3. 1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1	13A6, A2	COM Slaggie's H(ZrH) at 296 degrees K.
2	1115	NT -5 NP 40 NE 150 NDAM 1 NGPRT 0
•		NCP 0 NMESH 0 NREST 0 NCVP 0 NSEP 0
		IPG 0
3	315	JS3 80 JS4 JS5
4	5E10	W1.00005 W2 0.0 W3.99995 W4 W5
5	6E10	T1.0255 T2 0.0 T3.0255 T4 T5
6	7E10	AM 1.008 DC 0.0 BETSW 60.0 ALPSW 60.0 CRIT1
		CRIT2 CRIT3 1. 0-5
~		X3 .001 .002 .003 .004 .005 .006
		.007 .008 .009 .010 .011 .012
		.013 .014 .015 .016 .017 .018
		.019 .020 .021 .022 .023 .024
		.025 .026 .027 .028 .029 .030
		.031 .032 .113 .119 .115 .116
		.117 .118 .119 .120 .121 .122
		.123 ,124 .125 .126 .127 .128
		. 129 . 130 . 131 . 132 . 133 . 134
		. 135 . 136 . 137 . 138 . 139 . 140
		. 141 . 142 . 143 . 144 . 145 . 146
		<u>. 147</u> <u>. 148</u> <u>. 149</u> <u>. 150</u> <u>. 151</u> <u>. 152</u>
		<u>. 153 . 154 . 155 . 156 . 157 . 158</u>
		. 159 . 160

 $ZrH_n - 3.1.1$ (Rev. -12/31/69)

· · · · — –

C	ΔR	n	NO	EODMA	π
U .	$\alpha \alpha$	L	INO.	r ORMA	1

CODE SYMBOLS AND VALUES

8	7E10	$\begin{array}{r} Q3 \underbrace{8.75-04}_{.046}\\ \underline{.046}\\ \underline{.1606}\\ \underline{.3322}\\ \underline{.09738}\\ \underline{1.0-04}\\ \underline{4.790}\\ \underline{13.52}\\ \underline{32.21}\\ \underline{38.18}\\ \underline{26.59}\\ \underline{24.66}\\ \underline{14.51}\\ \underline{8.497}\\ \end{array}$	$\begin{array}{r} 3.5-03\\ .061\\ .1969\\ .3328\\ .06067\\ 0.0\\ 5.995\\ 16.04\\ 31.75\\ 38.75\\ 27.86\\ 27.51\\ 11.48\\ 0.0\\ \end{array}$	8.0-03 .078 .2606 .2911 .1221 0.0 7.250 19.79 33.14 39.48 27.89 37.94 9.53	$\begin{array}{r} . 015 \\ . 094 \\ . 3479 \\ . 1617 \\ . 1495 \\ . 0499 \\ 8.550 \\ 26.10 \\ 35.65 \\ 28.99 \\ 29.44 \\ 60.77 \\ 7.53 \end{array}$	$\begin{array}{r} . 0235 \\ . 116 \\ . 3559 \\ . 1431 \\ . 07219 \\ 2.010 \\ 9.640 \\ 29.39 \\ 33.34 \\ 23.29 \\ 25.86 \\ 26.66 \\ 5.449 \end{array}$	$\begin{array}{r} . \ 0340 \\ . \ 144 \\ . \ 3500 \\ . \ 1248 \\ . \ 01443 \\ \hline 3.560 \\ \hline 11.91 \\ \hline 30.82 \\ \hline 36.27 \\ \hline 25.18 \\ \hline 23.33 \\ \hline 18.54 \\ \hline 3.838 \\ \hline \end{array}$	
		· · · · · · · · · · · · · · · · · · ·		.				
Q							<u> </u>	
7 10	Cards 9 an	nd IV are not	needed					
11	7E10	X5						
12	7E10	Q5	<u> </u>					
13	7I10 NP	HON						
14	5E10 EN	MAX DAI	_PHA	ALPHA	C E	BETA	BETAC	
15	7E10 ALE	PHA 5	1.0	1.5	2.0	2.5	3.0	
		3.5	4.0	4.5	50	5.5635	6.1986	
		<u>6.9143</u>	<u>7.7209</u>	<u>8.6299</u>	<u>9.6544</u>	10.809	12.110	
		<u>13.577</u>	15.229	17.092	<u>19.191</u>	<u>21.557</u>	24.223	
		<u>27.228</u>	30,615	<u>34.431</u>	<u>38.732</u>	<u>47.580</u>	<u>49.043</u>	
		55,200	<u>62.138</u>	<u>69.958</u>	78.771	88.704	<u>99.897</u>	
		<u>112.51</u>	126.73	142.75	160.81			

CARD NO.	FORMAT
----------	--------

CODE SYMBOLS AND VALUES

^ 16	
------	--

16		7E10.5	ΒΕΤΑ <u>0.</u>	0	<u>.07843</u> 1	. 15686	. 23529	.31373	. 39216
			. 4	7059	.50980	.54902	.58824	.62745	.66667
			. 7	0588	.74510	.78431	.82353	.86275	.94118
			1.	0196	1.0980	1.1765	1.2549	1.3333	1.4510
			1.	5686	1.6863	1.8039	1.92160	2.0392	2.1569
			- 2.	2745	2.3922	2,5098	2.8627	3.1765	3.4902
			3.	8431	4.1176	4.4314	4.5490	4.6275	4.7059
			4.	7843	4.8627	4.9412	5.0196	5.098	5.1765
			5.	2549	5.2941	5.3333	5.3725	5.4118	5.4902
			5.	5686	5.6471	5.7255	5.7647	5.8039	5.8431
			5.	8824	5.9216	5.9608	6.0392	6.1176	6.1961
			6.	2745	6.8627	7.4510	8.0392	9.0196	9.3333
			9.	6471	9.9608	10.275	10.588	10.667	10.745
			10	. 824	10.980	11.137	11.294	11.451	11.529
			11	. 608	11.686	11.765	11.843	11.922	12.235
			12	.549	12.941	13.529	14.118	14.706	15.294
			15	.647	15.882	16.118	16.353	16.588	16.824
			17	. 059	17.294	17.529	17.765	18.039	18.353
			18	.824	19.608	20.392	20.784	21.176	21.569
			21	.961	22.353	22. 745	23.137	23.529	24.314
			25	. 098	25.490	25.882	26.275	26.667	27,059
			27	. 451	27.843	28.235	28.627	29.020	$\frac{29.412}{29.412}$
			30	.000	30.588	30,980	31, 373	31. 765	32, 157
			32	. 549	32.941	33.333	33.725	34.118	34.510
			35	. 294	36.078	36.863	37.647	38.431	39.216
17.	18.	19 and 20	are not n	e ed ed	·····				
21		2E10	DT.	15	TMAX 6	. 0			
				40	-6	0.0			
			3	. 0	3	00.0			
			6	. 0		500.0			
			1	2.0	4	100.0			
				<u></u>					
								•	
~ ~	`				·				
22		2110		.			- 00 0/		1
		2E10	$ID _1$	04	NPT 0	SIGE	20, 36	EPS <u>1.0-</u>	0
23	,	Card 23	is not ne	eded					

 $ZrH_{n} - 3.1.3$ (Rev. -12/31/69)

3.2 GASKET Input for Zr(ZrH)

The code GASKET is discussed in Section A. 3. 1. The data tabulated below follows the format of the code input instructions also given in Section A. 3. 1. The code symbols used below are defined on the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT	CODE SYMBOLS AND VALUES
1	13A6, A2	COM Slaggie's Zr(ZrH) at 296 [°] K.
2	1115	NT -5 NP 40 NE 118 NDAM 1 NGPRT 0
		NCP 0 NMESH 0 NREST 0 NCVP 0 NSEP 0
		IPG 0
3	315	JS3 80 JS4 JS5
4	5E10	W1.005 W2 0.0 W3 1.0 W4 W5
5	6E10	T1 .0255 T2 0.0 T3 .0255 T4 T5
6	7E10	AM 91, 22 DC 0.0 BETSW 60.0 ALPSW . 66346CRIT1
		CRIT2 CRIT3 1. 0-5
-		X3.001.002.003.004.005.006
		.007 .008 .009 .010 .011 .012
		.013 .014 .015 .016 .017 .018
		.019 .020 .021 .022 .023 .024
		.025 .026 .027 .028 .029 .030
		.031 .032 .113 .114 .115 .116
		.117 .118 .119 .120 .121 .122
		.123 $.124$ $.125$ $.126$ $.127$ $.128$
		.129 .130 .131 .132 .133 .134
		.135 .136 .137 .138 .139 .140
		.141 .142 .143 .144 .145 .146
		.147 .148 .149 .150 .151 .152
		.153 .154 .155 .156 .157 .158
		.159 .160

ZrH_n - 3.2.1 (Rev. -12/31/69)

CARD NO. FORMAT

CODE SYMBOLS AND VALUES

8	7E10	$\begin{array}{r} Q3.08 \\ \underline{4.50} \\ 21.3 \\ \underline{69.42} \\ 37.72 \\ \underline{1.031} \\ .1650 \\ .2340 \\ .214 \\ .202 \\ .243 \\ .194 \\ .0775 \\ 000266 \end{array}$	$\begin{array}{r} .32 \\ \hline 6.30 \\ \hline 27.97 \\ \hline 76.32 \\ \hline 29.24 \\ \hline 0.0 \\ .1860 \\ .239 \\ .198 \\ .193 \\ .253 \\ .204 \\ .0592 \\ \hline 0.0 \end{array}$	$ \begin{array}{r} .70\\ \underline{8.40}\\ 39.79\\ 73.70\\ \underline{66.07}\\ 0.0\\ .2050\\ .242\\ .189\\ .197\\ .253\\ .263\\ .0406\\ \end{array} $	$ \begin{array}{r} 1.40 \\ 11:0 \\ 57.36 \\ 43.53 \\ 94.47 \\ .00218 \\ .2150 \\ .235 \\ .170 \\ .200 \\ .262 \\ .390 \\ .0235 \\ \end{array} $	$\begin{array}{r} 2.15 \\ 14.2 \\ 63.10 \\ 42.53 \\ 58.62 \\ .0828 \\ .2170 \\ .223 \\ .206 \\ .212 \\ .228 \\ .170 \\ .0112 \end{array}$	$\begin{array}{r} 3.10 \\ 16.4 \\ 67.14 \\ 41.67 \\ 19.57 \\ .1340 \\ .2360 \\ .221 \\ .207 \\ .225 \\ .195 \\ .108 \\ .00424 \end{array}$
							· <u>······</u>
				میں بین ہیں۔ جو میں این ایک میں کار			•
0	Canda			- <u>محمد میں معموم میں اور محمد م</u> رد	_ 	<u> </u>	
9	Cards	9 and 10 are not	needed				
11	7E10	X5					
12	7E10	Q5				,	
13	7110	NPHON				<u></u>	
14	5E10	EMAX DAI	LPHA	ALPHA	CD	BETA	BETAC
15	7E10	ALPHA . 005525 . 038676 . 076404 . 15003 . 30088 . 60997	1.011050 .044201 .085318 .16828 .33830 .68664 1.4004	.016575 .049726 .095362 .18887 .38047 .77305	.02210 .055251 .10668 .21206 .42800 .87044	. 027626 . 061478 . 11944 . 23821 . 48157 . 98020	. 033151 . 068496 . 13382 . 26767 . 54194 1. 1039

CARD NO	. FORMAT	CODE SYMBOLS AND VALUES
* 16	7E10 BETA 0.0 .4705 .7058 .9411 1.176 1.568 2.039 2.509 3.372 4.705 7.058 9.411 11.76 1.568 2.039 2.509 3.372 4.705 7.058 9.411 11.76 14.11 16.47 18.82 22.74 27.45 32.15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
17, 18 21	2E10 DT.60 1.0 4.0 6.0 12.0	$\begin{array}{c} 5 & 57.047 & 58.451 & 59.216 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
22	2I10 2E10 ID 112	NPTSIGF6.2_EPS1.0-6
23	Card 23 is not needed	d

ZrH_n - 3.2.3 (Rev. -12/31/69)

3.3 ZREND Input for Zr(ZrH)

The code ZREND is discussed in Section A. 3. 1. The data tabulated below follows the format of the code input instruction also given in Section A. 3. 1. The code symbols used below are defined in the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO	FORMAT	CODE SYMBOLS AND VALUES					
1	13A6, A2	COM Slaggie's incoherent elastic for zirconium					
2	215,	NT <u>8</u> NE <u>109</u> SB <u>6.3366</u> SWITCH <u>10.0</u> EPS <u>1.0-15</u>					
	3E10,	NPCH					
	15						
3	7E10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
4	7E10	WP <u>1.9957</u> <u>2.6546</u> <u>3.2946</u> <u>3.9380</u> <u>4.5835</u> <u>5.2302</u> 6.5260 7.8236					
5	7E10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

3.4 ZREND Input for H(ZrH)

- - - -

The code ZREND is discussed in Section A.3.1. The data tabulated below follows the format of the code input instruction also given in Section A.3.1. The code symbols used below are defined in the code input section. If no value is entered for a symbol then that datum was not required.

CARD NO.	FORMAT		CODE	SYMBO	LS AND V	ALUES	
1	13A6, A2	COM <u>Slagg</u> i	e's incoh	erent ela	stic for h	ydrogen	
2	215,	NT <u>8</u>	NE <u>109</u>		<u>44</u> SWITC	CH 10.0	EPS 1.0-15
	3E10,	NPCH					
	I5						
3	7E10	T 296.0 1000.0	<u>400.0</u> 1200.0	500.0	600.0	700.0	800.0
4	7E10	WP8.4795 14.822	9.0854 17.125	9.8196	10.676	11.625	12.643
5	7E10	$\begin{array}{r} E \underline{, 0005} \\ \underline{, 00072} \\ \underline{, 0010} \\ \underline{, 00175} \\ \underline{, 00290} \\ \underline{, 00440} \\ \underline{, 0064} \\ \underline{, 0090} \\ \underline{, 0145} \\ \underline{, 0250} \\ \underline{, 038} \\ \underline{, 056} \\ \underline{, 080} \\ \underline{, 120} \\ \underline{, 210} \\ \underline{, 330} \end{array}$. 00053 . 00076 . 0011 . 00190 . 00310 . 00470 . 0068 . 0095 . 0160 . 0270 . 041 . 06 . 085 . 130 . 230 . 350	.00056 .00080 .0012 .00210 .00330 .0050 .0072 .010 .0175 .0290 .044 .064 .090 .145 .250 .380	.00060 .00085 .0013 .00230 .00350 .0053 .0076 .011 .019 .031 .047 .068 .095 .160 .270 .410	.00064 .00090 .00145 .00250 .00380 .0056 .0080 .012 .0210 .033 .05 .072 .100 .175 .290 .440	. 00068 . 00095 . 00160 . 00270 . 00410 . 0060 . 0085 . 013 . 0230 . 035 . 053 . 053 . 053 . 076 . 110 . 190 . 310 . 470
		<u>.500</u> .720 1.000	<u>.530</u> .760	<u>.560</u> .800	<u>.600</u> .850	.640	.680 .950
			and the second	ويغطانك المحيد ويسبط ويهود مغده			

4. Plots of Scattering Law

BETA VALUES FOR MULTICURVE PLOT

- ---

CURVE	INDEX	β(296 [°] K)	β(1200 ⁰ K)
1	1	0.00	0.0
2	2	7.843 - 02	1.934 - 02
3	3	1.569 - 01	3.868 - 02
4	4	4.706 - 01	1.161 - 01
5	5	6.275 - 01	1.547 - 01
6	6	7.843 - 01	1.934 - 01
7	7	1.030 + 00	2.515 - 01
8	8	1.333	3.288 - 01
9	9	1.804	4.449 - 01
10	9	2.275	5.609 - 01
11	=	3.177	7.834 - 01
12	11	4.431	1.093
13	ı	4.784	1.180
14	δ	5.098	1.257
15	a	5.333	1.315
16	+	5.569	1.373
17	А	5.804	1.431
18	В	5.961	1.470
19	С	6.275	1.547
20	D	9.020	2,224

ALPHA

ZrH_n - 4.2 (Rev. -12/31/69)

1

ALPHA

ZrH_n - 4.3 (Rev. -12/31/69)

4. Plots of Scattering Law

BETA VALUES FOR MULTICURVE PLOT

- - -

- - - -

- - - -

CURVE	INDEX	β(296 ⁰ К)	β(1200 ⁰ K)
1	1	0.00	0.0
2	2	0.09804	0.02418
3	3	0.1961	0.04836
4	4	0.4706	0.1161
5	5	0:6275	0.1547
6	6	0.7843	0.1934
7	7	0.9412	0.2321
8	8	1.0980	0.2708
9	9	1.2549	0.3095
10	9	1.5686	0.3868
11	=	1.8824	0.4642
12	f f - 1	2. 1961	0.5416
13	1	2.5098	0.6190
14	δ	3.0588	0.7544
15	a	3.6863	0.9091
1 6 ,	+	4.7059	1.1605
17	А	6.2745	1.5474
18	В	7.8431	1.9342
19	С	9.4118	2.3211
20	D	10.980	2.7078

ZrH_n - 4.4 (Rev. - 12/31/69)

ALPHA

.

ALPHA

ZrH_n - 4.6 (Rev. -12/31/69)

5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BAPNS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUBAR).

DATA FOR H IN ZRHX AT 296 DEGREES K.

	E	SIGTOT	MUBAR		E	SIGTOT	MUBAP
1	•00025	89,90548	00197	43	.20000	25.41035	. 43939
2	.00075	85.41316	.00143	44	.22400	23.56416	48092
S	.00125	83.61810	.00404	45	23200	23.67109	.49220
4	.00175	82.37898	.00670	46	.24000	22.74336	.50636
5	.06225	81.35449	.00934	47	.24800	21.85869	.52014
6	.00275	80,43537	.01195	48	.25600	22.18505	.52594
7	.00325	79.58997	.01455	49	.26400	21.76768	.52693
8	•00375	78.80482	.01715	50	.27200	21.74898	.52139
9	.00450	77.70758	.02107	51	.28000	22.96554	.51064
10	•00550	76.33323	.02632	52	.28800	23.44512	.49968
11	.00650	75.06864	.03154	53	.29600	23.56458	.49025
12	•00750	73.89089	.03669	54	.32500	23.96857	.49257
ڈ 1	•00850	72.75033	.04183	55	.34500	22.87262	•50855
14	00950	71.61374	•04704	56	.36500	22.49780	•53315
15	•U1100	70.00706	.05460	57	•38500	21.30778	,55096
10	•01300	67.91289	•06470	58	•40500	21.55567	• 5563 8
17	•01500	66.031 ₀ 9	.07459	59	•42500	21.77270	•5392()
18	• 017 00	64.21587	.08443	60	•44500	22.52294	•52985
19	•019 0 0	62.49634	.09403	61	•46500	22.88714	.53672
20	02100	60.82376	. 10353	62	•48500	22.50560	•54915
21	•02900	57.81927	.12210	63	. 50500	21.92601	•56453
22	•02900	54.91148	.14068	64	•52500	21.49945	•57636
23	03600	50.47814	•17214	65	•54500	21.45326	• 5761 0
24	•04400	45.99742	·20757	66	•56500	21.84903	• 5661 0
25	• 053u0	41.60040	.24643	67	•58500	22.18953	.55902
20	•06500	36./3023	.29580	68	•60500	22.19169	•56110
27	•07700	32.64858	•34259	69	•62500	21.91059	•57000
20	•08900	29,28834	• 38629	70	•64500	21.53142	•58080
29	•09500	27.80668	•40694	/1	•66500	21.26547	•58779
20	•10100	26.45179	.426/5	12	•68500	21.31009	.58602
30 01	•10700	25.23214	•44550	13	•70500	21.58474	•57894
32	•11300	24.11972	•46297	74	• 72500	21.80291	•57440
30	•11900	23.1815/	•47735	10	•74500	21./021/	.57609
25	•12500	22.07095	•48322	10	•/65UU 70560	21.5/010	•58271
30 34	•13100	22.19304	+4/024	70	• 78500	21.30230	+39043 E0E1(
30	• 15/00 15000	23.34048	•4001J	70	•00000 85540	21 511002	• 37310
38	• IS200	20.7774U	*41130	7 80	•00000 •00000	21 56007	+ U0049 58621
39	•16400 •16400	20,74315	• 37704 _ 30881	00 21	•000UU	21.00027	• JODA1
<u>ц</u> п	• 10000	07 00507	• J 7001 // 0// 5/	01 01	-91500 -91500	21.07610	- 60230
4 0 Ц1	• 1 / 0 U U	26 51000	•40404 .41500	<u>مح</u>	• 74000 • 97600	21.19917	.5085/
42	• 10400 . 10200	20,01098	+1000 19471		∎ 270UU	CI012211	•
T 6	+ T 2 C U U	£J,77/01	• 7 2 0 J I				

 $ZrH_n = 5.1$ (Rev. -12/31/69) THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

i illeri i illeri i ileriti i

.

	UELTA E	UP TO	
1	.0005	-004 EV	ŧ.
2	•001	.01 EV	Ĺ
3	.002	.03 EV	i.
4	.004	•05 EV	Ĺ
5	•0üb	•14 EV	1
0	•008	.30 EV	Ĺ
7	• U 1	1.0 EV	1

_

 $ZrH_n - 5.2$ (Rev. -12/31/69)

5. INTEGRAL DATA

TABULATION OF ENERGY IN EV (E), THE TOTAL CROSS SECTION IN BARNS (SIGTOT) AND THE AVERAGE COSINE OF THE SCATTERING ANGLE (MUBAR).

- - ----

-- · - --

DATA FOR ZR IN ZRHX AT 296 DEGREES K.

	Έ.	SIGTOT	MUBAR		Е	SIGTOT	MUBAP
1	•06025	8.66627	01632	43	.20000	6.19278	.0008/
2	.00075	7.68620	00635	44	.22400	6.18743	.00945
3	.00125	7.38165	00531	45	.23200	6.18612	.00931
4	·00175	7.21862	00502	46	.24000	6.18488	.00917
5	.00225	7.11269	00446	47	.24800	6.18370	.00904
ΰ	.00275	7.03610	00403	48	25600	6.18197	.00892
7	.00325	6.97962	00371	49	26400	6.18042	.00882
Ö	.00375	6.93486	00344	50	.27200	6.17926	.00872
9	.00450	6.87102	00278	51	•28000	6.18619	.00842
10	.00550	6.795/3	00168	52	•288nü	6.28015	.00869
11	.00650	6.74561	00095	53	.29600	6.25926	.00849
12	00750	6.71292	00055	54	.32500	6.38601	•00970
10	•00850	6.67560	.00016	55	.34500	6.32578	.00829
14	.00950	6.62947	.00131	56	.36500	6.31661	.00864
15	•01100	6.60235	.00176	57	.38500	6.31383	.00869
10	.01300	6.54735	.00323	58	•40500	6.31395	.00833
17	.01500	6.51775	.00391	59	.42500	6.31635	.00769
18	.01700	6.47672	.00518	60	•44500	6.31748	.00734
19	•01900	6.46143	.00554	61	•46500	6.31634	.00735
20	.02100	6.43391	.00638	62	•48500	6.31439	.00752
21	02500	6.43064	.00599	63	.50500	6.31163	.00781
22	02900	6.38248	• 00749	64	.52500	6.30830	.00816
23	•03600	6.38426	.00658	65	.54500	6.30488	.00852
24	•04400	6.37524	.00635	66	•56500	6.30107	.00892
25	•05300	6.33238	.00743	67	.58500	6.29711	.00933
26	•06500	6.31315	.00762	68	•60500	6.29316	.00971
27	• 077 00	ь.29098	.00796	69	.62500	6.28922	.01008
26	•08900	6.25814	•00868	70	•64500	6.28527	.01045
29	•0950Ú	6.25300	•00867	71	•66500	6.28136	•01080
30	•10100	6.24862	•00864	72	•68500	6.27761	.01110
31	•10700	6.24506	.00857	73	•70500	6.27398	.01139
32	•11300	6.22549	.00902	74	•72500	6.27034	•0116 <u>7</u>
33	•11900	6.22141	•00903	75	.74500	6.26677	.01193
34	·12500	6.29081	.00696	76	•76500	6.26355	.01214
35	•13100	6.25738	.00810	77	•78500	6.26038	.01234
36	•13700	6.20674	.00882	78	. 80500	6.25718	.01253
37	•15200	6.30571	.00743	79	.855 00	6.24986	.01292
38	•16000	6.32325	•00694	80	•885 00	6•24540	.01315
39	•16800	6.22104	·00945	81	•915 00	6.23497	.01388
40	•17600	6.19942	.01020	82	•945 00	6.17619	.01736
41	•1840U	6,19583	.01014	83	•975 ()0	5.83199	.02532
42	•19200	6,19423	• 010 00				

 $ZrH_n - 5.3$ (Rev. -12/31/69) THE FINAL ENERGY INTERVALS USED FOR INTEGRATION OF THE INELASTIC DATA ARE GIVEN BELOW.

	UELTA E	UP TO
1	•0005	•004 EV
2	•001	•01 EV
3	.002	.03 EV
4	•004	•05 EV
5	•006	.14 EV
ΰ	•008	.30 EV
7	•01	1.0 EV

ZrH_n - 5.4 (Rev. -12/31/69)

ZrH_n - 5.5 (Rev. -12/31/69)

6. Miscellaneous Notes on Zirconium Hydride

For temperatures other than 296°K the switching criteria for short collision and the α , β mesh input for 296°K were multiplied by $\frac{296^{\circ}K}{T^{\circ}K}$. The only other changes made in the input for higher temperatures were for obvious items: T, ID number and comments.

Tabulated below are the temperature, Debye Waller integral and effective temperature of the scattering law data on file.

	Debye Waller		Debye Waller		
<u>т(^ок)</u>	Integral (eV ⁻¹) for Hydrogen	T(⁰ K) for Hydrogen	Integral (eV ⁻¹) for Zirconium	T(⁰ K) for Zirconium	
296	8.4795	806.79	182.05	317.27	
400	9.0854	829.98	242.15	416.25	
500	9.8196	868.44	300.53	513.22	
600	10.676	920.08	359.23	611.12	
700	11.625	981.82	418.11	709.60	
800	12.643	1051.1	477.10	808.43	
1000	14.822	1205.4	595.30	1006.8	
1200	17. 125	1373.4	713.67	1205.7	