The Solubilities of Selected Elements in Liquid Plutonium

XVI. Yttrium

by

David F. Bowersox

LEGAL NOTICE

This report was prepared as an agent of government-sponsored work. Neither the United States, nor the Contractor, nor any person acting on behalf of the Contractor:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report was not contrary to primary patented rights;

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Contractor" includes any employee or contractor of the Contractor, or employee of such contractor, to the extent that such employee or contractor of the Contractor, or employee of such contractor, prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Contractor, or the employment of such contractor.
THE SOLUBILITIES OF SELECTED ELEMENTS IN LIQUID PLUTONIUM

XVI. YTTRIUM

by

D. F. Bowersox

ABSTRACT

The solubility of yttrium in liquid plutonium increases with temperature from 0.44 wt % Y at 700°C to 2.55 wt % Y at 990°C. The data fit the equation

$$\log N_Y = 1.12 - 2.97 \times 10^3 T^{-1}$$

where N_Y is the mole fraction of yttrium in a saturated solution at absolute temperature, T.

I. INTRODUCTION

The solubilities of carbon, tantalum, tungsten, rhenium, niobium, molybdenum, vanadium, thallium, zirconium, chromium, titanium, manganese, and lanthanum in liquid plutonium have been reported.1-3 The solubilities of these elements increased with temperature from 700 to 1000°C. Empirical equations of the form

$$\log N_i = A - B \times 10^3 T^{-1}$$

where N_i is the mole fraction of i in solution, A and B are empirical constants, and T is the absolute temperature, were constructed from the solubility data by least-squares calculations. In most cases, these solutes were of limited solubility (less than 10 at. % in this temperature range). However, both titanium and manganese are more soluble.

The phase diagram in the plutonium-rich area of the Y-Pu system indicates a simple eutectic-type binary with essentially no yttrium solubility in the solid plutonium.4 In the yttrium-rich area, the plutonium solubility is 15 at. % in α-Pu at 820°C;4 this increases to 20 at. % at 640°C.5 This study was restricted to mixtures containing less than 20 at. % Y and to the temperature range 700 to 1000°C.

II. EXPERIMENTAL

Electrorefined plutonium6 and high-purity yttrium were used for this study. The analyses of these elements are summarized in Table I. The yttrium was analyzed for all the rare earth elements; in most cases the concentration was less than the limit of detection (3 to 100 ppm). The highest concentrations were tantalum, gadolinium, and dysprosium at 50 ppm. The equipment and procedures were similar to those described earlier.6 There was no evidence of interaction between the CaF$_2$ crucibles and either yttrium or plutonium. The samples, which contained plutonium and yttrium, were dissolved, and aliquots were analyzed for yttrium. The estimated relative standard deviation of the analytical method is 2.4% in the concentration range of interest.7
Table I
ANALYSES OF PLUTONIUM AND YTTRIUM

<table>
<thead>
<tr>
<th>Element</th>
<th>ppm in Pu</th>
<th>ppm in Y</th>
<th>Element</th>
<th>ppm in Pu</th>
<th>ppm in Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>0.005</td>
<td>< 3</td>
<td>Co</td>
<td>< 0.5</td>
<td>< 30</td>
</tr>
<tr>
<td>Bi</td>
<td>0.05</td>
<td>< 3</td>
<td>Zn</td>
<td>< 5</td>
<td>< 300</td>
</tr>
<tr>
<td>Na</td>
<td>2</td>
<td>< 10</td>
<td>Am</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1</td>
<td>4</td>
<td>O</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>3</td>
<td>10</td>
<td>Mo</td>
<td>< 0.5</td>
<td>< 10</td>
</tr>
<tr>
<td>Al</td>
<td>5</td>
<td>150</td>
<td>W</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>1</td>
<td>50</td>
<td>Th</td>
<td>3</td>
<td>< 300</td>
</tr>
<tr>
<td>Si</td>
<td>7</td>
<td>4</td>
<td>Ta</td>
<td>< 5</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>< 0.5</td>
<td>< 10</td>
<td>Zr</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>< 0.3</td>
<td>8</td>
<td>H</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.5</td>
<td>30</td>
<td>C</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.5</td>
<td>< 3</td>
<td>F</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>< 0.3</td>
<td>< 10</td>
<td>V</td>
<td>< 0.5</td>
<td>< 10</td>
</tr>
<tr>
<td>Mn</td>
<td>< 0.1</td>
<td>< 5</td>
<td>Fe</td>
<td>2.5</td>
<td>40</td>
</tr>
<tr>
<td>Sn</td>
<td>< 0.5</td>
<td>< 10</td>
<td>Pu</td>
<td>99.99%</td>
<td></td>
</tr>
</tbody>
</table>

Parts per million parts Pu, by weight.

III. RESULTS

Samples were withdrawn from Pu-Y mixtures at timed intervals to determine the time required to reach saturation. Results at 850°C, which are typical of these measurements, are given in Table II. Saturation was reached in less than 7 h throughout the entire temperature range. Additional measurements demonstrated that solubilities at a given temperature were also independent of the direction of approach to saturation, which indicates that this system is reversible.

A series of measurements of the solubility of yttrium in plutonium as a function of temperature from 700 to 1000°C were made under equilibrium conditions. A minimum of four measurements was made at 50°C intervals. The results are summarized in Table III.

The liquidus line proposed in the Pu-Y phase diagram indicates a much higher solubility of yttrium in this temperature range.

The solubility of yttrium in liquid plutonium can be represented by

$$Y(s) + Pu(l) \rightarrow Pu(l, \text{sat'd with } Y).$$

The average solubilities, expressed as at. % Y, are plotted on a logarithmic scale against the inverse of the absolute temperature in Fig. 1. This plot shows an approximately linear relationship between the data and \(1/T\). A linear equation was constructed by least-squares computations on all the data used in Table III.

The resulting equation is

$$\log N_Y = 1.12 - 2.96 \times 10^3 \frac{T}{T}^{-1}. \quad (3)$$

The line in Fig. 1 is the graphical representation of this equation.

The partial molar enthalpy \(\Delta h_Y\) was calculated by

$$\Delta h_Y = T \left[\Delta S_f - R \ln N_Y \right], \quad (4)$$

where \(\Delta S_f\) is the total entropy from an ideal, supercooled liquid state of yttrium at temperature T to fusion, and the solution is assumed to be regular. The enthalpy of solution is \(10.5 \pm 0.2\) kcal/mole, and, therefore, the excess enthalpy of solution, \(\Delta h_{xs}\), is 7.8 kcal/mole.

The Hildebrand solubility parameter, \(\delta_Y\), was calcu-
Fig. 1. Average solubilities vs inverse absolute temperature.

lated from the excess enthalpy by

\[
\delta_Y = \left(\frac{\Delta H^{eX} + V_Y}{V_Y} \right)^{1/2} + \delta_{Pu}
\]

(5)

where \(V_Y\) is the molar volume of Y and \(\delta_{Pu}\) is 81.9,10

This parameter is calculated as 60.9, which is 0.84 of theoretical (the square root of the energy of vaporization of yttrium divided by the molar volume). It has been found that the solubility parameters of tungsten, tantalum, niobium, vanadium, molybdenum, and chromium in liquid plutonium also average 0.84 of theoretical.9,11 These elements do not form compounds with plutonium.

IV. ACKNOWLEDGMENTS

The author thanks J.A. Leary for his advice and encouragement and R.G. Hurley for performing the chemical analyses for this study.

V. REFERENCES

