
JLIFE: THE JEFFERSON LAB INTERACTIVE FRONT END FOR THE
OPTICAL PROPAGATION CODE*

Anne M. Watson# & Michelle D. Shinn
Jefferson Lab, 12000 Jefferson Ave, Newport News, VA, 23606 U.S.A

Abstract

We present details on a graphical interface for the open
source software program Optical Propagation Code, or
OPC [1]. This interface, written in Java, allows a user
with no knowledge of OPC to create an optical system,
with lenses, mirrors, apertures, etc. and the appropriate
drifts between them. The Java code creates the
appropriate Perl script that serves as the input for OPC.
The mode profile is then output at each optical element.
The display can be either an intensity profile along the x
axis, or as an isometric 3D plot which can be tilted and
rotated. These profiles can be saved. Examples of the
input and output will be presented.

INTRODUCTION
Since its creation in 2006 to model wave propagation in

FEL oscillators, OPC has been used to simulate a wide
variety of laser systems. Like most scientific programs,
OPC is written such a way that a user interacts with the
program using a script they must write themselves.
Additionally, the output must then be plotted using a
different scripting syntax. For those inexperienced with
such coding work, it can be a daunting task, so they
choose not to use the program at all. It was our desire to
construct a user-friendly piece of software to handle the
back-end portion of the optical calculation and present
solely the simple forms of input and output. JLIFE, or the
Jefferson Lab Interactive Front-End, enables a user to
select and configure various optical elements within a
web-like form interface. This data is then translated
behind the scenes into the appropriate code for use with
OPC, as shown in Figure 1. The resultant graphs showing
the beam profile at each element are displayed to the user,
and can be modified and saved.

We feel it is important to continue to extend these
functions in an open-source (free) manner, since other
options such as PARAXIA-Plus [2] or GLAD [3] cost in
the thousands of dollars, while OPC is open source. In
comparison to these existing programs, JLIFE not only
dispenses with the need to construct a script (unlike
GLAD) but also includes 3D graphing capabilities (unlike
PARAXIA-Plus).

This paper presents details on the construction of the
code for JLIFE, along with examples of results generated
from using this program.

JAVA INTERFACE
We chose to implement this software in Java for two

essential reasons. The primary rationale is that Java is an
intrinsically cross-platform language, and thus our
program can be run on any operating system that also
supports Java. Secondly, Java has native libraries for
constructing a Graphical User Interface (GUI) that is
adaptable to many sizes of screens and to the look-and-
feel for each platform. The back-end portion of code we
elected to continue writing in Perl, the same scripting
language used by OPC. Perl is a language highly suitable
for quick text manipulation, which allowed us to offload
memory-heavy in/out operations from Java onto Perl.

Figure 1: A schematic showing the control flow that
JLIFE implements to handle each distinct function.

 __

*Authored by Jefferson Science Associates, LLC and supported by the ONR, the Joint Technology Office, and the DOE under U.S. DOE Contract No.
DE-AC05-06OR23177
#awatson@jlab.org

Figure 2: A screenshot of the graphical front-end of JLIFE. On the left-hand panel, users enter their desired
specifications for an optical system. Field information and optical components are detailed in the same manner as in an
OPC script. The user then selects the ‘Submit Configuration’ button to run the simulation. A graph showing the end
result is displayed on the right-hand side upon completion of the calculation. Additional modifications of this view can
then be made, including displaying profiles for element in the system and various 3D graphing capabilities.

The graphical output is produced using Gnuplot, a
portable script-driven graphing utility created for the
visualization of mathematical functions and other data [4].
Various types of 2D and 3D plots are constructed and
saved as Portable Network Graphic (PNG) files, to
continue utilizing free and portable data formats.

JLIFE first takes user input for the parameters of the
optical system to be simulated (see Figure 2). Objects are
constructed for each element that includes details such as
the element’s size or transmissive properties. These
objects are then used to generate a Perl file in the proper
format for compatibility with OPC. Care is taken to
minimize the run time by utilizing a pre-written Perl script
that acts as a general template applicable to any optical
system. Thus it handles pre- and post-computation tasks
such as locating the OPC libraries and cleaning up
temporary files. The Java portion of JLIFE then executes
the Perl script as an external runtime process and waits for
confirmation that OPC has completed its execution.

A second Perl program is then externally executed to
generate script files that contain commands for Gnuplot.
This Perl script also calculates any necessary scaling
factors due to user-specified magnifications or mesh sizes,
and passes those values on to Gnuplot. Gnuplot then
gathers the mode profile information from OPC data files,
scales the data appropriately, and outputs the graphs in a
PNG format. Control is returned to the main Java portion
of JLIFE, which is then tasked with handling any view
changes. Only a single graph is shown at a time; the user
can select the output from the initial propagation,
subsequent elements, or the final beam profile from
among the buttons below the displayed graph. Each graph

can be saved to a place of the user’s choosing by simply
right-clicking on the picture.

The user can also switch between viewing the default
2D cross-section or a 3D graph of the beam profile. Once
the 3D view is selected, additional rotational capabilities
are enabled. The view can be rotated in the z-direction (in
and out of the plane) or in the x-direction (around the z
axis). The replot button executes a Perl script to calculate
the changes and re-write the input file for Gnuplot.
Gnuplot is then called to re-plot just the modified 3D
image, whereupon control is returned to JLIFE which re-
displays that graph with the revolved view. Figure 3
exhibits the various styles of graphical output that JLIFE
offers, including the contour map achieved by rotating a
3D image by 90 degrees out of the plane.

Instead of requiring a user to re-input their optical
system each time JLIFE is used, save and load functions
were written to ensure continuity of a configuration. Only
the input information is saved, in a simple text file, which
can be edited away from JLIFE or left to be loaded into
JLIFE for the next time. No output graphs are saved
unless explicitly specified by the user.

CONCLUSIONS
In this paper we have discussed the programming

details employed in the new JLIFE software. This GUI
effectively wraps the existing extensive capabilities of
OPC in a way that frees the user from learning how to
write Perl scripts or deal with plotting software. It is our
expectation that this will make OPC more widely adopted
by a greater number of scientific users for their optical
calculations. In contrast to expensive software packages
like PARAXIA-Plus and GLAD, this Java program is

provided free of charge as an additional open-source tool
for modeling laser systems. Proposed future developments
will focus on adapting JLIFE to any subsequent OPC
versions and other FEL oscillator modeling programs.
Execution of JLIFE could also be accelerated using a
parallelized approach (MPI).

JLIFE is available for distribution now via an online
download, which includes a readme file for all supported
operating systems (Mac OS X, Windows XP or later, and
most Linux flavors) and an installer package for
Windows. A User’s Manual is in preparation. Along with

Figure 3: An example of (a) the default 2D beam profile,
(b) the corresponding colored contour map, and (c) the
rotated 3D graph.

the Java executable, a test configuration is provided that
demonstrates propagating a plane wave through an
apodized aperture and subsequently focused using a lens.

ACKNOWLEDGMENTS
The authors would like to thank Stephen Benson for

useful discussions, Peter van der Slot, one of the creators
of OPC, for his close cooperation with us, Dominic Yurk
for his coding work that added flexibility to the 3D
plotting during a DOE-sponsored Summer High School
internship at Jefferson Lab, and George Neil for
proposing the acronym JLIFE.

REFERENCES
[1] J. G. Karssenberg, P. J. M. van der Slot, I. V.

Volokhine, J. W. J. Verschuur, and K.-J. Boller,
“Modeling paraxial wave propagation in free-electron
laser oscillators”, JAP 100, 093106 (2006).

[2] PARAXIA-Plus, Sciopt Enterprises, San Jose, CA
95120, USA.

[3] GLAD, Applied Optics Research, Woodland, WA
98674, USA.

[4] Gnuplot; www.gnuplot.info

