Transient propagation behavior of two-phase flow equations

PDF Version Also Available for Download.

Description

The capability of published two-phase flow equation sets to predict transient propagation behavior has been studied numerically. The equation sets are those cited by Wallis for separated flow and extensions of those used by Rudinger and Chang for dispersed flow. The primary difference between these two sets is that in the set cited by Wallis, the pressure gradient appearing in each momentum equation is weighted by the phase volume fraction, whereas in the extended Rudinger--Chang set, the pressure gradient appears only in the ''continuous'' phase. The original Rudinger--Chang set had to be modified because it can adequately describe only the ... continued below

Physical Description

Pages: 31

Creation Information

Lyczkowski, R.W. January 1, 1975.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

  • Aerojet Nuclear Company
    Publisher Info: Aerojet Nuclear Co., Idaho Falls, Idaho (USA)
    Place of Publication: Idaho Falls, Idaho

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The capability of published two-phase flow equation sets to predict transient propagation behavior has been studied numerically. The equation sets are those cited by Wallis for separated flow and extensions of those used by Rudinger and Chang for dispersed flow. The primary difference between these two sets is that in the set cited by Wallis, the pressure gradient appearing in each momentum equation is weighted by the phase volume fraction, whereas in the extended Rudinger--Chang set, the pressure gradient appears only in the ''continuous'' phase. The original Rudinger--Chang set had to be modified because it can adequately describe only the transient flow of very dilute suspensions of solids in air. This numerical study shows that pressure pulses propagate at essentially the sound speeds obtained from characteristics analysis for the equation sets investigated. Comparisons of numerical results with experimental air-water pressure propagation data show that only the modified Rudinger--Chang equation set exhibits propagation behavior in good agreement with the experimental observations at low (less than 10 percent) void fractions. None of the equation sets adequately predict the experimental pressure propagation rates in the range of void fractions from 10 to 60 percent where the flow regime was observed to change from bubbly to full slug flow. The modified Rudinger-- Chang set explains an apparent discontinuity in the experimental pressure wave propagation speed at a void fraction of 50 percent if the entire pressure gradient is assumed to be carried by the liquid for less than 50 percent voids and by the vapor for greater than 50 percent voids; however, the magnitude of the calculated discontinuity is greater than the experimental discontinuity. (auth)

Physical Description

Pages: 31

Notes

Dep. NTIS

Source

  • Conference on heat transfer, San Francisco, California, USA, 11 Aug 1975

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: CONF-750804--10
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 4169786
  • Archival Resource Key: ark:/67531/metadc864733

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1975

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Oct. 26, 2017, 3:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lyczkowski, R.W. Transient propagation behavior of two-phase flow equations, article, January 1, 1975; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc864733/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.