NUCLEAR CHEMISTRY Annual Report 1974

G. T. Seaborg, Director

B. G. Harvey, Deputy Director

Nuclear Chemistry Division

Editors: H. E. Conzett
N.M. Edeistein
C. F. Tsang

Lawrence Berkeley Laboratory
 University of California Berkeley, California

Work done under
U.S. Energy Research and Development Administration Contract No. W-7405-eng-48

July 1975

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $\$ 10.60$; Microfiche $\$ 2.25$

Conterits

1. NJCLEAR SCIENCE

NUCLEAR SPECTROSCOPY AND RADIOACTIVITY

Table of Isotopes Project (E. Browne, J. M. Dairiki,
R. E. Doebler, L. J. Jardine, C. M. Lederer, E. Leon,
M. Rinneberg, A. A. Shihab-Eidin) •
Alpha Decay Studies of the High Spin Isomer of Bismuth-210
(D. Tuggle, F. Asaro and 1. Perlman) 5

K-She 11 Electron Shake-Off Accompanying A1pha Deca;
(M. S. Rapaport, F. Asaro, and I, Perlman)

The Electron-Capture Decay of ${ }^{206}$ Po (L. J. Ja:dine and
(A. A. Shihab-Eldin) 10

Alpha' lhecay of ${ }^{210}$ At to Leve. s in ${ }^{206}$ Bi (L. J. Jardine and (A. A. Shihab-Eldin).

The Half-Life and the a-Decay Branching Retio of ${ }^{207} \mathrm{Po}$
(B. Parsa and S. S. Markowitz)15

Alpha and Ganma Branching in 2-msec ${ }^{213}$ Fia Decay (D. G. Raich,
H. R. Botman, R. E. Eppley, J. O. Kasmussen, and
I. Rezanka)

Levels of ${ }^{156}$ Iy and Decay ticheme of ${ }^{156}$ tho tsomers (S. Iwata,
T. Timura, J. O. Fasmıssen, and R. Needham) 16

New $\mathrm{i}_{13 / 2}$ Isomer ${ }^{207} \mathrm{RRn}^{\mathrm{In}}$ ard Its Spin Relaxation Time in
Liquid Mercury (I. Rezanka, I. M. Ladenbauer-Bellis, and J. O. Rasmussen) .
High-Spin Rotational States in ${ }^{169}$ Hf From the $\left.{ }^{159} \mathrm{~Tb}^{14} \mathrm{~N}, 4 \mathrm{mr}\right)$
Reaction and Decay of ${ }^{169} \mathrm{Ta}$ (E. der Mateosian,

1. M. Ladenbauer-Be:11is, and J. O. Rasmussen).

High-Spin States in 191,193,195 Au (P. O. Tjpm, M. R. Maier,
D. Benson, Jr., F. S. Stephens and R. M. Diamond). 22
High-Spin Excitation Modes in Even Hg Nuclei (D. Proete],
R. M. Diamond, and F. S. Stephens)

Decoupled Bands in Odd-Mass Mercury Isotopes (D. Proetel,
B. Benson, Jr., A. Gizon, J. Gizon, M. K. Maier,
ii. M. Hiamond, and F. S. Stephens)26
l.i Cetines and g-Factors in Decoupled Bands (K. Nakai,
D. broetel, R, M. Dianond, and F. S. Steplens) 28

Backhending and Rotation Alignnent (F. S. Stephens,

1. Kleinheinz, R. K̈. Sheline, and R. S. Simon)
Angular-flomentum Effects on Continumm Gama Rays Following Heavy-Ion Reactions (P. O. Tjom, F. S. Stephens, R. M. Diamond, J. de Boer, and W. E. Meyerhof 32
Evidence for Asymetric Shapes from High-Spin Odd-A Spectra (J. Neyer ter Vehn, F. S. Stephens, and R. M. Diamond) 34
Interpretations of Line Structure in Delayed-Neut ron Spectra
(A. A. Shihau-Eldin, F. M. Nuh, S. G. Prussin, H. Franz, J.-V. Kratz, K.-L, Kratz, W. Redolph, and G. Herrmann) 35
Mass Yield Distributions in the Reaction of ${ }^{84} \mathrm{Kr}$ Ions With ${ }^{238} \mathrm{U}$ (J.-V. Kratz, A. E. Norris, and G. T. Seaborg) 39
Transfer Products Resulting from the Heavy Ion Reaction of ${ }^{40} \mathrm{Ar}$ with ${ }^{197} \mathrm{Au}$ (I. Binder, R. J. Otto, M. M. Fowler, and D. Lee) 41
Recoil Range Studies from Reactions of ${ }^{40} \mathrm{Ar}$ with ${ }^{209} \mathrm{Bi}$ and ${ }^{232} \mathrm{Tn}$
(R. J. Otto, T. Raunemaa, M. M. Fowler, K. Willians, and G. T. Seaborg. 42
Radiochemical Mass Yield Distribution Studies in the Reaction of ${ }^{40} \mathrm{Ar}$ with ${ }^{238} \mathrm{U}$ and ${ }^{209} \mathrm{Bi}$ and $25.2 \mathrm{GeV}{ }^{12} \mathrm{C}$ with ${ }^{238} \mathrm{U}$ (R. J. Otto, M. M. Fowler, D. Lee, 1. Binder, and G. T. Seaborg) 44
Excitation Functions of Compound Nucleus Products from the Reaction $40 \mathrm{Mr}+175 \mathrm{~J}$ (J. R. Alonso, C. T. Alonso, A. Ghiorso, J. M. Nitschke, and M. Nurmia) 47
Search for ${ }^{260}{ }_{R f}$ (M. Nurmia, E. K. Hulet, K. Williams, and A. Ghiorso) 50
Element 106 (A. Ghiorso, E. K. Hulet, J. M. Nitschke, J. R. Alonso,
R. W. Lougheed, C. T. Alonso, M. Nurmia, and G. T. Seaborg) 50
Superhearies in Nature - Where and How to Look (M, J. Numnia) 5
Nuclear reactions and scattering
The Vector Analyzing Power in d-p Scattering at 45.4 MeV and the Nucleon-Nucleon Interaction (F. N. Rad, J. Birchall, H. E. Conzett, S. Chintalapudi, and R. Roy) 55
Vector-to-Vector Polarization Transfer in Deuteron-Proton Elastic
Scattering (F. N. Rad, J. Birchall, H. E. Conzett, and R. Roy) 57
Polarizacion Effects in the Nucleon-Deuteron Breakup Reaction
(H. E. Conzett, F. N. Rad, R. Roy, and J. Birchall) 59
Polarization Phenomena in the Three-Nucleon System (H. E. Conzett) 60
Final State Interaction in Three-Nucleon System (F. N. Rad, D. P. Saylor, and Mahavir Jain) 63
Polarization-Analyzing Pover Theorem for (\mathbf{p}, n) Transitions Between Nembers of an Isospin Multiplet (H. E. Conzert) 64
Depolarization and the Spin-Spin Interaction in p^{-9} ge Elastic Scattering (J. Birchall, H. E. Conzett, J. Arvieux, W. Dahme, R. M. Latimer) 65
Two Protun Transfer on ${ }^{54} \mathrm{Fe}$ Studied with High Energy Heavy Ion Reactions (${ }^{16} \mathrm{O},{ }^{14} \mathrm{C}$) and (${ }^{12} \mathrm{C},{ }^{10} \mathrm{Be}$) (H. Homeyer,
F. D. Becchetti, B. G. Harvey, D. L. Hendrie, D. G. Kover, J. Mahoney and W. von Dertzen) 67
Study of the ${ }^{142} \mathrm{Nd}\left({ }^{18} 0,{ }^{160} 0\right.$) ${ }^{144} \mathrm{Nd}$ Reaction (K. Yagi, B. Harvey, D. Hendrie, U. Hahnke, C. Maguire, J. Mahoney and D. Scott 70
One- and Multi-Step Processes in the ${ }^{244} \mathrm{Nd}\left({ }^{12} \mathrm{C},{ }^{14} \mathrm{C}\right)$ Reactions
(K. Yagi, D. L. Hendrie, L. Kraus, C. F. Maguire, J. Mahoney,
D. K. Scott, Y. Terrien, T. Udagawa, K. S. Low and T. Tamura) 71
Opposite Interference Effects Observed in the ${ }^{148} \mathrm{Sm}\left({ }^{18} 0,{ }^{16} 0\right)$
${ }^{150} \mathrm{Sm}$ and the ${ }^{150} \mathrm{Sm}\left({ }^{16} \mathrm{O},{ }^{18} 0\right.$) ${ }^{148} \mathrm{Sm}$ Reactions (C. Maguire,B. Harvey, D. Hendrie, H. Homeyer, U. Jahnke, J. Mahoney,D. Scott, and N. K. Glendenning) .73
The Interference Between Direct and Indirect Modes in Two-Nueleon
Transfer Reactions with Heavy Ions (B. G. Harvey, D. L. Hendrie, U. Jahnke, L. Kraus, C. F. Maguire, J. Mahoney, D. K. Scott, Y. Terrien, K. Yagi, and N. K. Glendenning) 74
The Multinucleon Transfer Reaction ${ }^{12} \mathrm{C}\left({ }^{20} \mathrm{Ne}\right.$, a) ${ }^{28} \mathrm{Si}$ (D. K. Scott, D. L. Hendrie, U. Hahnke, L. Kraus, C. F. Maguire, J. Mahoney, Y. Terrien, and K. Yagi) 76
The Energy Variation of Multinucleon Transfer Reactions with Heavy Ions (D. K. Scott, D. L. Hendrie, U. Jahnke, L. Kraus, C. F. Maguire, J. Mahoney, Y. Terrien, and K. Yagi) 77
Spectroscopy of Exotic Nuclei Using Heavy-Ion Transfer Reactions (D. K. Scott, B. G. Harvey, D. L. Hendrie, L. Kraus, \therefore F. Maguire, Y. Mahoney, Y. Terrıen, and K. Yagi) 79
A More Accurate Mas: for ${ }^{8}$ He (Joseph Cerny, N. A. Jelley,
D. L. Hendrie, C. F. Maguire, J. Mahoney, D. K. Scott, and R. B. Weisenmiller) 81
${ }^{7}$ Li $+{ }^{7}$ Li Reaction Studies Leading to MuIti-Neutron Final States (Joseph Cerny, R. B. Heisenniller, N. A. Jelley, K. H. Wilcox, and G. J. Wozniak) 83
Study of $\mathrm{T}=2$ Stutes in ${ }^{12} \mathrm{C}$, and ${ }^{12 \mathrm{~B}}$ (D. Ashery, G. W. Goth, G. J. Wozniak, M. S. Zisman, and J. Cerny) 84
Is ($\alpha,{ }^{\text {日 }}$ Be) a Direct Reaction at High Energies? (N. A. Jelley, G. J. Wozniak, and J. Cerny) 86
α-Transfer Studies via the ($\alpha,{ }^{8} \mathrm{Be}$) Reaction on ${ }^{15} \mathrm{~N}$ and ${ }^{14} \mathrm{~N}$ (G. J. Wozniak, N. A. Jelley, and J. Cerny) 87
Spectroscopic Studies in the $1 p$-Shell by the (${ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}$) Reaction(R. B. Weisenmiller, K. H. Wilcox, N. A. Jelley, G. J. Wozniak,D. Ashery, and J. Cerny) .89
Cross Section Limits for the Production of Some Highly Neutron-
Excess S and Cl Isotopes (K. H. Wilcox, N. A. Jelley, R. B. Weisenmiller, and J. Cerny) 92
Predictions of the Masses of Very Neutron-Excess Light Nuclei
(N. A. Jelley, Joseph Cerny, D. P. Stahel, and K. H. Wilcox) 93
A Search for ${ }^{53} \mathrm{Ni}$ (D. J. Vieira, R. A. Gough, and J. Cerny) 96
Argon-Induced Transfer Reactions at Coulonb Barrier Energies (R. C. Eggers, J. O. Rasmussen, and W. S. Ribbe) 97
Cross Sections of (P, pxn) Reactions on ${ }^{20 \mathrm{~B}} \mathrm{~Pb}$ (H . Kawakami,
M. Koike, K. Komura, N. Yoshikawa, M. Sakai, and J. O. Rasmussen). 100
X Ray Reasurements of Angular Distributions in Heavy Ion Reactions
(J. Moulton, R. Babinet, L. G. Moretto, and S. G. Thompson) 101
Particles Emitted in the Interaction of Cu with ${ }^{20} \mathrm{Ne}$ at $252-\mathrm{MeV}$Bombarding Energy (R. Jared, L. G. Moretto, R. Babinet,J. Gal in, J. Hunter, R. Schmitt, J. Moulton, and S. G. Thompson)103
Preliminary Study of the Particles Emitted in the Reaction Between Cu and $288-\mathrm{MeV}$ and $340-\mathrm{keV}{ }^{40} \mathrm{Ar}$ (L. G. Moretta, R. C. Jared, R. Babinet, J. Galin, J. Hunter, and S. G. Thompson) 104
Study of the Relaxation Processes in the Reaction Between
${ }^{107-109} \mathrm{Ag}$ and ${ }^{20} \mathrm{Ne}$ at $175 \cdot \mathrm{NeV}$ and $252-\mathrm{MeV}$ (R. Babinet, J. Galin, M. Fowler, R. Jared, J. Hunter, L. G. Moietto, and S. G. Thonqson. 104
Study of the Fragments Emitted in the Interaction Between Ag and ${ }^{40} \mathrm{Ar}$ at $288-\mathrm{MeV}$ and $340-\mathrm{NeV}$ Bombarding Energy (J. Galin, R. Babinet, M. Fowler, R. Jared, R. Gatti, S. G. Thompson, and L. G. Moretto) 106
Coincidence Experiment in the Reaction Argon ($340-\mathrm{MeV}$) on Silver Using a Solid State Position Sensitive Detector and a Particle Telescope (R. Babinet, Z, Fraenke1, P. Russo, R. Jared, L. G. Moret to, and S. G. Thompson 108
Study of the Fragments Emitted in the Interaction Between ${ }^{197} \mathrm{Au}$ and
${ }^{40} \mathrm{Ar}$ at $288-\mathrm{MeV}$ and $340-\mathrm{MeV}$ Bombarding Energy (L. G. Moretto,
R. Babinet, J. Galin, R. Schnitt, 2. Fraenkel, R. Jared, J. Humter, and S. G. Thompson) 111
Preliminaty Studies on the Reaction $\mathrm{Cu}+84 \mathrm{kr}$ at $606-\mathrm{MeV}$ Bonbarding Energy (L. G. Moretto, R. Babinet, R. Jared, R. C. Gatti, J. Moulton, and S. G. Thompson) 115
Fission Excitation Functions in Medium-Heavy Nuclei (L. G. Moretto, R. C. Gatti, R. P. Schnitt, and S. G. Thompson) 114
Complete Fusion Cross Sections for the ${ }^{20} \mathrm{Ne}+{ }^{235} \mathrm{U}$ System (V. E. Viola, Jr., A. M. Zebelman, R. G. Sextro, W. G. Meyer, and R. G. Clark) 115
Counter Experiments in the Thin Target Area at LAMPF (G. W. Butler, D. G. Perry, A. M. Poskanzer, J. B. Natowitz, F. Plasil, and L. P. Rensberg) 116
Fragments from Uranikm Irradiated by $2.1 \mathrm{GeV} / \mathrm{Nucleon}$ Deuterens and Alpha Particles (A. M. Zebelman, A. M. Poskanzer, J. D. Bowman, R. G. Sextro, and V. E. Viola, Jr.) 117
Studies at the Bevatron of Fragments from $\mathrm{C}, \mathrm{Al}, \mathrm{Ag}$, and UTargets Observed with a Gaseous $\Delta \mathrm{E}$ Counter (R. G. Sextro,A. N. Zebelman, and A. M. Poskanzer) .119
Cross Sections Above 0.3 GeV for ($\mathrm{p}, 2 \mathrm{p}$) Reactions of ${ }^{48} \mathrm{Ti}$ and ${ }^{74} \mathrm{Ge}$ (N. P. Jacob, Jr. and S. S. Markowitz) 120
Nuclear Reactions of C, A1, and F With Relativistic Heavy Ions at the Bevalac (D. L. Murphy and S. S. Markowitz). 123
Excitation Functions for Simple Pion Induced Nuclear Reactions on ${ }^{14} \mathrm{~N},{ }^{160}$, and ${ }^{19} \mathrm{~F}$ (N. P. Jacob, Jr., and S. S. Markowitz). 124
NJCLEAR TIIEORY
Droplet Model Description of Nuclear Masses, Fission Barriers and Radii (W. D. Myers) 127
Macroscopic Aspects of Heavy-Ion Reactions (W. D. Myers) 129
A Classification of Heavy-Ton Reactions (C. F. Tsang). 152
Exact Treatment of the DNBA by Analytic Means for Particle Transfer Between Heavy Ions (N. K. Glendenning and M. A. Nagarajan) 133
How Well Can the Interaction Between Heavy Ions Be Determinad by Elastic and Inelastic Experiments? (N. K. Glendenning) 135
Tho-Nucleon Transfer Hetween Heavy Ions, Deep Orbits and Secondary Feaks (N. K. Glendenning) 137
Tho-Foid Nature ot Coulomb-Nuclear Interference in Heavy-Ion Inelastic Scattering (N. K. Glenconing) 140
Quantal Analog of the Classical Deflection Function for Heavy-Ion Collisions (N. K. Glendenning) 142
A Separable Expansion for the Nuclear Form Factors (M. A. Nagarajan and W. L. Wang) 143
Coupled-Channel Pion-Nucleus Charge Exchange Reactions (M. A. Nagarajan and W. L. Wang). 145
Heavy-Ion Induced Transfer Reactions Leading to Weakly Bound Final States (M. A. Nagarajan) 145
Pion-Nucleus Charge Exchange Reactions in the Isobar-Doorway Model (M. A. Nagarajan and W. L. H'ang) L48
Factorization in Relativistic heavy-Ion Scatcering (w. L. Vang) 149
Charge Transfer in High-Energy Atomic Collisions (M. Kileber and N. A. Nagarajan) 150
The Nuclear Seyler-Blanchard Model in the Hartree Approximation (J. Randrip) 154
Nuclear (lydrodynamics (C. T. Alonso) 157
Similarities and Differences Between Volume-Charged (Nuclear) Drops and Charged Conducting (Rain) Drops (C. F. Tsang) 160
Further Studies on Proximiry Forces (J. Randrup, h. J. Swiatecki, and C. F. Tsang) 163
Potential Energy Surfaces (J. P. Blocki) 166
A Simple Kodel fc: Deep-Inelastic Heavy-Ion Scat:ering (F. Beck) 168
Theoretical Fstinuates of Spontaneous-Fission Malf-Lives for Superheavy Elements (J. Randrup, S. E. Larson, P. Nöller, A. Sobiczewski, and A. Tukasiak) 171
Studies in the Superfluid Enhancement of Fission Barrier Penetration (L. C. Moretto, R. B. Babinet, and J. J. Sventek). 175
A Theoretical Approach to the Problem of Partial Equilibration in Heavy Ion Reactions (L. G. Mbretto and J. S. Sventek) 176
Statistical Emission of Large Fragnents - a General Theoretical Approach (1., G. Moretro) 179
Themodynamical Properties of a Paired Nucleus with a Fixed Number of Quasi-Particles (l. G. Boretto) 179
Influence of Pairing and of the Spin Projection Distribution on the "Classical" Isothermal Rotations of a Nucleus (L. G. Noretto) 184
Statistical Decay of Gamma Rays in ($n_{\text {th }}, \gamma$) Reactions (E. Nard, L. G. Noretto, and S. G. Thonpsonf) 184
Semiclassical Calculations for Coulomb Excitation (J. de Boer, H. Maismann, and Aa. Winther) 185
Uniform Seniclassical Orbital Calculations of Heavy-Ion Coulomb Excitation (H. Massmann and J. O. Rasmussen). 187
Two Hydrodynamical Limits in the Description of High-Spin Yrast Cascades (J. Meyer-ter-Vehn) 190
The Triaxial-Rotor-Plus-Quasipurticle Nodel (J. Neyar-ter-Vehn) 19:
On the Yrast States of r-Unstable Nuclei (J. Ahyer-ter-Velul) 195
Theoretical Investigation of Unique Parity Spectra of Odd-A Nuclei in the $A=135$ and $A=190$ Nass Region (J. Neyer-ter-Vehn) 197
Test of Manybody Nethods in an Exactly Soluble Backbending Nodel
(S. Y. Chu, E. R. Marshalek, J. O. Rasmasien and P. Ring) 202
Attenuation of the Coriolis Interaction Within the Cranking Model
(P. Ring and 1!. J. Atang) 214
Meroscopic Description of "Backbending" in Yb-Nuclei (II. R. Dalafi, II. J. Aking, and P. Ring]. 208
Approximate Projection of Angular Momentun and Particle Nunher in Iteary Atuclei (li. R. Dalafi, H. J. Ming, ind P. Ring) 2111
Corioli: Effects and Rotation Alignment in Aucici (f. S. Stephens) 213
Alpha-lecay Theory (T. Fliessbach) 214
Graphical Representation in Alpha Decay Rate Theory of Spherical Odd-Odd Nuclei - Application to ${ }^{210} A t$ and ${ }^{212}$ At (A. A. Shihab- Eldin, L. J. Jardine, and J. O. Rismassen) 217
Kinetic Energy Density of a Degenerate Fenni Gas (fl. Graf) 223
Parabolic Cylinder Functions $W(A>0, \pm X)$: Expansions for all Arguments (H. Graf) $2: 3$
The Dymanic r-Process Nucleosynthesis of :loavy and Superheav; Elements (0. Jchns) $\therefore 2$
The Long-Lived Radioisotopes as Monitors of Stellar, Calactic and Cosmological Phenomena (H. Reeves and U. Johns) 239
2. GHENICNL AND ATOMIC PHYSICS
HEAW ION INDUCTED ATWHC PEACTIONS
Atomic Processes in Heavy-Ion Cellisions W. E. Neyerhof, T. K. Shylor, S. Y. Lazarus, W. A. Little, B. B. Triplett, L. F. Chase, Jr., R. Anholt, and P. D. Bond 235
Neasurement of KX -Ray Yield in $100 \mathrm{MeV} \mathrm{Ph}+\mathrm{Pb}$ Collisions and an Approximate Scaling Law for K Vacancy Prociuction in Heavy-Ion Collisions with $2>10$ (W. E. Meyerhot, R. Anholt, T. K. Saylor, and P. D. Bond) 2.35
Observation of Molecular Orbital $K X$-Ryys in Heavy-Ion Collisions (H. E. Heyerhof, T. K. Saylor, S. M. Lazarus, W. A. Little, B. B. Triplett, L. F. Chase, Jr., and R. Anholt). 237
Description of the One and Two Collision Molecular Orbital X-fay Yield (R. Anhoit) 2410
Secondary Electron Bremsstrahlung Yield in Symmetric Fleavy-Ion Collisions (R. Anholt and J. O. Rasmussen) 243
X -Ray Continua in 60 MeV Br and 202 NeV Kr Bombardments of Au , Pb , and Li (R. Anholt, J. O. Rasmassen, H. Bakhru, N. Cue, T. K. Saylor, S. M. Liszarus, and A. Little) 245
ATCMIC AND MOLEQULAR SPECTROSCOPY
Radiative Decay of the $2^{3} \mathrm{~S}_{1}$ and $2^{3} \mathrm{P}_{2}$ States of Helium-Like Vanadium ($Z=23$) and Iron ($Z=26$) (H. Gould, R. Marrus, and P. J. Mohr? 246
Coherent Orientation and Aligmment of Ion Levels bs a Bean-Tilted- Feil Collision (D. A. Church, W. Kolbe, and hf. C. Michel) 250
The Infrared Enission Spectra of Curiun, Berkelim and Califomium(.J. G. Conway)251
High lonization Spectra Experiments (G. V. Shalimoff and S. P. Davis) 252
Spect. am of Quintuply lonized Manganese (Mh VI) (W. H. King, S. P. Davis, and G. Y. Shalimpff) 252
Some Properties of $\mathrm{H}_{2} \mathrm{CN}^{+}$: A Potentially Important Interstellar Species (P. K. Pearson and H. F. Schaefer, Jll) 254
Potential Energy Surface for the Model Unimolecuiar Reaction $\mathrm{INC} \rightarrow \mathrm{HCN}$ (P. K. Pearson and II. F. Schaefer ItI). 254
Potential Energy Surfaces for $\mathrm{H}+\mathrm{Li}_{\mathbf{2}} \rightarrow \mathrm{LiH}+\mathrm{Li}$ Ground State Surface From Large Scale Configuration Interaction (P. Siegbahn and H. F. Schaefer [II] 255
Saddle Poinc Ceometry and Barrier lfeight for $\dot{H}+F_{2} \rightarrow H F+F$
(C. F. Bender, C. W. Bausthlicher, Jr., and H. F. Schaefer 1II) 256
Potential Energy Surfaces and Methylene Keactions (H. F. Schaefer J[I) 258
A Critical Test of Semi-Empirical SH_{2} Potential Energy Surfaces:
The Barrier teight for $\mathrm{H}+\mathrm{HF} \rightarrow \mathrm{HF}+\mathrm{H}$ (C. F. Bender, B. J. Garrison, and H. F. Schaefer III) 259
A Priori Prediction of the Cohesive Energe of One-Dinensional Hetalli. Hydrogen (D. H. Liskow, J. N. Bckelvey, C. F. Bender, and H. F. Schaefer 171) -ul
The Weak Attraction Between Water and Bethane (S. R. Ungemach and H. F. Schaefer 1II). 263
Triplet Electronic Groud Stat : of Trimethyienemethane (D. R. Yarkony and H. F. Schaefer III) 264
Three Ismars of the NO_{2}^{-}lon (Y. K. Pearson, H. F. Schaefer III, J. I. Richardson, L. M. Stephenson, and J. I. Brauman) 264
Electronic Stiucture on Nitrenes: LiN, the Simplest Ionic Species (C. E. Dykstra, P. K. Pearson, and H. F. Sciacfer III) 267
$X^{3} A_{2}, a^{1} \mathrm{E}$, and $b^{1} A_{1}$ Electronic States of Nethyl Nitrene (II. R. Yarkony, H. F. Schaefer II, and S. Fothenberg) 267
Excited Hlectronic State of HNC, Kydrogen Isocyanide (G. M. Schwenzer and II. F. Schaefer III) 268
Correlation Diagram for $\mathrm{He}+\mathrm{He} \rightarrow \mathrm{He}$ (D. R. Yarkony and H. F. Schaefer [II] 269
The Hypervalent Molecules Sulfurant $\left(\mathrm{SH}_{4}\right)$ and Persulfurane $\left(\mathrm{SH}_{6}\right)$
G. M. Schwenzer and H. F. Schaefer III) 270
PHOTOELECTRON SPECTROSCOPY AND HYPERFINE INTERACTIONS
Molecular Properties of Excited Electronic States: The $\tilde{a}^{3} A^{\prime \prime}$ and $\tilde{\mathrm{A}}^{1} \mathrm{~A}^{\prime \prime}$ States of Formaldehyde (B. J. Garrison. H. F. Schaefer III, and W. A. Lester) 271
Supertransferred Hyperfine Interaction: Perturbed AngularGerrelation of 11 lited In Antiferromagnetic $\mathrm{NiO}, \mathrm{CoO}$, and NnO(H. H. Rinneberg and D. A. Shirley)272
Perturbed Angular Correlation of ${ }^{111} \mathrm{Bd}$ In Antiferromagnetic $\mathrm{HiF}_{2}, \mathrm{FeF}_{2}, \mathrm{CoF}_{2}$, and NiF_{2} (H. H. Rinneberg and D. A. Shirley) 273
A Nuclear Orientation Neasurement of Parity Admixture in the 501-keV Gamma Transition in ${ }^{180} \mathrm{Hf}^{-1 \prime}$ (T. S. Chou, K. S. Krune, and D. A. Shirley) 276
Nuclear Orientation Studies of ${ }^{241} \mathrm{Am}$ and ${ }^{255}$ Fm (A. J. Soinski and D. A. Shirley) 278
Pare agnetic Shifts and Spin-Flop in Supericansferred Hyperfine Structure of ${ }^{111 \mathrm{~m}^{2} \mathrm{Cd}}$ in Rbhif F_{3} (H. H. Rinneberg, G. P. Schwartz, and D. A. Shirley) 25.
Pertirbed Angular Corralation of 1110 Cd in Antiferromagnetic AhS Under External Pressure (H. H. Rinneberg, G. P. Schwartz, and D. A. Shirley) 282
Ferturbed Angular Correlation of $111 \mathrm{~m} C$ in Antiferromagnetic Insulators (H. H. Rinneberg, G. P. Schwartz, and D. A. Shirley), 283
Initial-State Configuration-Interaction Sateiiites in the Photo- emission Spectrum of Cd (S. Suzer and D. A. Shirley) 284
X-Ray Photoemission Molecular Orbitals of Hydrogen Fluoride and the Fluorinated Ntthanes (M. S. Banna, B. E. Milis, D. 'i. Davis, and D. A. Shirley) 285
The Relation of Core-Level Binding Energy Shifts to Proton Affinity and Lewis Basicity (R. L. Martin and D. A. Shirley) 291
Theory of Satellite Structure in Photoemission (R, L. Martin and D. A. Shirley) 295
Fluarine is Correlation States in the Photo-Ionization of Hydrogen Fluoride: Experiment and Theory (R. L. Martin, B. E. Mills, and D. A. Shirley). 298
Multiplet Splitting of the Manganese $2 p$ and $3 p$ Levels in MhF_{2} Single Crystals (S. P. Kowalczyk, L L:*v. F. R. McFeely, and D. A. Shirley) 302
Evidence for a Localized Magnetic Nomat in Paramagnetic a-An From Nultiplet Splitting (F. R. McFeely, S. P. Kowalczyk, L. Ley, and D. A. Shirley) 305
Multiplet Splitting of X-Ray Photaemission Spectra Core Levels in Mignetic Metals (S. P. Kowalczyk, F. R. McFeely, L. Ley, and D. A. Shírley) 307
X-Ray Photoemission Study of the Electronic Structure of the 3d Transition Metals Sc ta Zn (L. Ley, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley). 310
Crystal-Field Effects on the Apparent Spin-Orbit Splitting of Core and Valence Levels Ubserved by X -Ray Photoemission (L. Ley, S. P. Kowalczyk, F. R. McFeely, and D. A. Shirley) 311
The Structural Nature of Ammphous Se and Te (M. Schlater, J. D. Joannopoulos, Marvin L. Conen, L. Ley, S. P. Kowalczyk, R. A. Pollak, and D. A. Fhirley) 317
An Ionicity Scale Based on X-Ray Photoemission Valence-Band Spect : of $\mathrm{A}^{\mathrm{N}} \mathrm{B}^{\mathrm{B}-\mathrm{N}}$ and $\mathrm{A}^{\mathrm{N}} \mathrm{B}^{13-\mathrm{N}}$ Type Crystals (S. P. Kowalczyk, I. Ley, F. R. McFeely, and D. A. Shirley) 318
X-Ray Photoenission Spectra of the 4d Levels in Rare Earth Metals (S. P. Kowalczyk, N. Edelstein, F. R. McFeely, L. Ley, and D. A. Shirley) 322
Multiplet Splitting of the $4 s$ and $5 s$ Core T .avels in the Rare Earth Metals (F. R. McFeely, S. P. Kowalczyk, L. Ley, and D. A. Shirley) 325

X-MAY CRYSTALIDCHAPITV

(':ystal and Mojecular structure: of Thoriun und franlum Tetrikis
(lkxalluamacetonylpyrazolide) lomplexes (K. Volz, A. Zalkin, and D. H. Templeton) 331
The Crystal Strinture and Absolute Configuration of a Bromohexaacetyl
Deritutive of Vitexin (I. A. Jumak and D. H. Templeton) 352
Crystal St nu'ture and Confomation ais a Malt 1 -Sulfur Hete:ocyele (Ii. Ruben, [1. H. Tempieton, and A. Ealkin) 335
Crystal Strature of Amionjun lydrogen Malonate (G. Clapuis, A. zalkin, and D. H. Templeton) 33.3

ibukhending and Other leviations from ldeality in Extraction systems (1.). A. Kuher and R. M. Diamond) 354
Luninescence from the feptide Group (N. Daniels and N. E. Jayho) 336
Rudiopolarographic Stadies of Cf, Es, and Fim (F, David and K. isamhoun) 336
Study of Some Thermodynamic l'ropertic: of 5 Etements (F. David, K. Shatioun, R. Guilitimont, and L. J. Augent) 338
The Magnetic Susceptibility of ${ }^{249}$ Cf Metal (D. A. Pujita, T. C.
Parsons, J. K. Peterson, N. Noe, and N. Edelstein) 340
Thr E:PR of Cic ${ }^{3 *}$ in Octalledral Symmetry and the Nuclear Dipele Monent of ${ }^{249} \mathrm{Cf}$ (N. ELe: ©rein and D. G. Karraker) 342
Reactions of Dithiolate ligands with Uranimm (1V) Halides (R. Gradl and N. Edelstein) 344
Some Reactions of Neptunium Hexafluoride and the Synthesis of XpOF_{4} (R. D. Peacock and N. Edelstein) - 346
Recoil Tritium Reactions with Nethylcyclehexene. in fest of the Assamption of Energy Randomizat iun Prior to lnimolecular Decomposition (D. C. Fee and S. S. Markowitz) 348
Recoil Tritiun Reactions with Cyclohexene and Alkenes, Determination of Rate Parameters (D. C. Fee and Samuel S. Markowitz) 348
Ion-inleculc Reactions in Recoi: Tritium Chemistry (D. C. Fee and S. s. Markowitz) 348
Detemination of Lead in Atmospheric Air and in Aluminum by Helium-3-Induced Nuclear Reactions (B. Parsa ant S. S. Markowitz) 350
Heavi- Ion Irradiation of Solid Glycine (T. L. Tung, H. A. Sokol, W. Bennett-Comiea, G. P. Welch, and W. M. Garrison) 350
Sulfur Determinations on Small Biological Samples (A. J. Hebert). 352
GEOCHEMISTRY
Alasiya of the Amama Letters (N. Artzy, F. Asaro, and I. Perlman) 353
Chronology of the O. B. James i m (R. Drake, H. R. Bownan, and A. J. Hebert) 358
Twenty-Four Major Element XRF Aralyses of Late Cenozoic volcanic Rocks from the Chilean Andes, $35-36^{\circ} S$ latitude (R. Drake and A. J. Hebert) 358
Soft X-Ray Analysis of the Grizzly Peak Volcanics, Berkeley Hills, Califomia (R. N. Lambe, D. G. Kosco, A. J. Hebert, and G. H. Curtis) 360
Evidence in Support of Similur Source Material in the Genesis of Alkalic Basalts (H. R. Bowman, F. Asaro, I. S. E. Carmichael, R. K. Mark, and H.-U. Schmincke) 362
Ocean Ridge-Like Tholeiites in the Northern Great Basin of Nevada
(H. R. Bowman, F. Asaro, R. K. Mark, C. Lee Hu, E. H. McKee, and R. R. Coats) 364
Rare Earth and Trace Element Patterms in Historic Azorean Lavas (H. R. Bownan, M. F. J. Flowers, and H. U. Schnincke) 366
4. INSTRUMENTATION
SuperHILAC 1974 Operations (E. L. Kelly) 371
88-Inch Cyclotron Operation, Development and Studies (J. Bowen, D. J. Clark, P. E. Frazier, D. L. Hendrie, W. R. Holley, and D. Morris) 372
Ion Source [ovelopment (S. Chintalpudi, D. J. Clark, C. E11sworth, B. Gavin, R. Gough, H. Grunder, W. R. Holley, J. R. Meriwether, and F. Selph) 374
A bigital Themmelectric Bean Power Meter (J. M. Nitschke) 376
Extraction of ${ }^{20} \mathrm{Na}^{+}$Ions from a lie Jet Ion Source (R. A. Gough, D. Litclejohn, D. J. Vieira, and J. Cerny) 377
A Cluster Breeder for He Jet Experiments (R. A. Gough, D. Littlejohn, L. Ho, D. Sherman, T. Raunemaa, D. Moltz, and J. Cerny). 378
A Modified ${ }^{\text {a }}$ Be Identifier (G. J. Wozniak, N. A. Jelley, and J. Cerny) 380
Performance of a Silicon Proton Polarimeter Between 19 and 32 MeV (J. Birchal1, H. E. Conzett, W. Dahne, J. Arvieux, F. N. Rad, R. Roy, and R. M. Latimer) 382
A View of the Present Status and Future Propsects of High Purity Gernani.m (W. L. Hausen and E. E. Haller) 384
Impurities in High-Purity Gemnanium as Determined by Fourier Transform Spectroscopy (E. E. Haller and W. L. Hansen) 387
High Resolution Fourier Transform Spectroscopy of Shallow Acceptors in Ultra-Pure Germaniun (E. E. Haller and W. L. Hansen). 391
A Gas Ionization Counter for Particle Identification (R. C. Jared, M. M. Fowler, and S. G. Thompson) 393
Computer Aided Analysis of Gamma-Ray Spectra (M. M. Fowler, D. Lev, R. J. ©tto, and 5. Binder) 395
A Syntax Analyzer for Complex Technical Text (G. M. Litton, C. M. Lederer, and L. S. Vardas) 397
5. THESIS ABSTRAC「S
Parity Non-Conserving Nuclear Force (T. S. Chou 403
The Use of Thermally Sensitive Ion-Exchange Resins or Electrically
Sensitive Liquid Crystals as Adsorbents (James A. Latty) 403
Atomic Electrons Shake-Off Accompanying Alpha Decay (Meir Shimshon Rapapors: 404
Electronic Structure Quantum Mechanics Applied to Some Small Polyatonic Molecules (Dean Hemingway Liskow) 404
$a \cdot$ Transier Studies Via the $\left\{\left(\omega,{ }^{*} \mathrm{Be}\right.\right.$) Reaction at High Energies (Gordon John Wozniak) 404
Study of Partial liave Branching in the Alpha Decay of ${ }^{241}$ Am, ${ }^{253}$ Es and ${ }^{255}$ Fm (Arthur James Soinski) 405
Enzymatic Utilization of Waste Cellulosics (Gautan Mitra and C. R. Wilke) 405
6. 1974 PUBLICATIONS 411
7. AUIHOR INIEX 431

1. Nuclea, Science PS +5
\square
\qquad $2^{2}+$

Nuclear Spectroscopy and Radioactivity
\qquad

tAble Of ISOTOPES PROJECT

E. Browne, J. M. Dairiki, R. E. Doepler, L. J. Jardine,*
C. M. Lederer, E. Loon, M. Risneberg, t A. A. Shihub-Eidin,
V. S. Shisloy and M, Whalley

As of December, 1974, the first compilation of 225 (of a total of 262) mass chains has been completed. In addition, 100 of these mass chains have been updated to a final 1974 cutoff date. This work represents a total compilation effort of 18.4 man-years since work on the 7 th edition began in 1971.

Computer processing of the tabular data is in routine operation. The data for each mass chain are keyboarded and edited on the IRATE conputerterminsl system. I Proof copy, including diagnostics on computer-detected errors in the data, is printed. The data are then proofread and edited, a second proof copy is produced and the corrections are checked. At a later date, after the mass chain nas been updates to a final cutoff date, the new data are added, and any corrections to existing entries are made. (Most corrections at this stage involve only smail changes in the data "flagging": e.g., an early γ-ray spectrum, superseded by a later measurement, is flagged to indicate that the data should not be printed, but that the reference (s) should be included under "other".)

Conputer processing of level schemes is likewise in routine use. The output includes a semifinal plot for proofreading, diagnostics, and special tables useful for data checking. The latter include summaries of beta and alpha feeding and calculated log ft values or hindrance factors, tables and plots of transition energies vs levelenergy differences, and liscs of γ-ray properties (energy, intensity, multipolarity) reordered by energy. Level-scheme data are entered (on punched cards) only after final updating; the data are then processed, the plots proofread, and corrections made on the card decks.

Figure 1 shows the current status of these activities by mass chain. The totals are as follows:
First compilation conmleted
(Tabular data entered and
proofread) $\quad 225$

A target date for final production of the 7th edition, July 1976, was set last year. ${ }^{2}$ We hope to keep this date as nearly as possible. However, in the face of recent reduction in personnel on the project, some delay is unavoidable.
Level Scheme Formats
As described in the previous annal report, ${ }^{2}$

TABLE OF ISOTOPES-7 $7^{\text {m }}$ EDITION

Fig. 1. Status of the mass-chain compilations for the 7 th edition of the Table of risotopes. Halfshaded boxes indicatc first compilation only (mass chain not updated to final cutoff date) and tabular data entry of first compilation (see legend in lower right-hand comer).
(XBL 755-1222)
level schemes will include a "skeleton scheme" for each mass chain and detailed schemes for each nucleus. The latter will consinst of a decay scheme, including feeding fram all radioactive parents, and a scheme sumarizing the levels populated by all nuclear reactions. A sample set of detailed schemes for ${ }^{197}{ }^{\text {Au }}$ is shown in Fig. 2. Reaction levels too rimerous to display are noted in comments (see Fig, 2); hopefully the decay schemes can be shown in their entirety. Reaction schemes involving many γ-rays may also be abbreviated by omission of some of the γ-ray labels and/ or by "stackplotting" of the γ-rays.

Table of Nuclear Moments

Two previous editions of this table, a standard reference on the subject, have been ${ }_{3}$ published as appendices to conference proceedings. ${ }^{3}$ In 1974, production of the table was computerized by application of techniques developed for the Table of Isotopes. The data are entered in. a readily updatable form on the IRATE system; 1 a11 infommtion, including the introductory text, are input

TABLE OF NIICLEAR MONENTS'

V.S. Shirley and C.M. Lederer

Tabte of isolopes Project
Lawrence Berkeley Laboratory
Berkeley, Calitormia 94720
This table contany nuciear magnetic and quadrupole moments reported as of September, I日T4. It supdradea the Jable of Muctear Moments published in the proceedinge of the lgra Rehovot conference [CF70 Hypint $\{255$] and is similar to that cable, excepl for changes described below.

The major innovation concerns a chengeover from slanderd typing and printing methods ta direct compuier input end typography. The systems used tor this purpose mere developed in Berkeley, and are currently being used tor saveral LEL projects, meluding production of the zib edition of the toble of lsotopes. The systems leatures include direet generation of final outgut on film, thorough ehecking of input data -ceordinf to apecifted suidelines, mad perforfance of certsin calculations. For the Toble of Nuclear Homphes, the computer checked all deta and references for correct syntax, calculated some of the mpments fram messured frequency or moment ratios, and applied diemagnetic corfections where appropriate.

Jour nal-Code List

Fig. 3. Sample sections of the $3^{\text {Td }}$ edition of the Tabls of Nualear Momants. These include introduct is material (top), the table itself (middle), and the joumal-code list (botton). The entire 23 -page table, including the two-page introduction and one-page journal-code list, was produced by computer.

Fig. 2. Sample of detailed level schemes for ${ }^{197}$ Alu.
(XBL 755-1224)
and edited in this manner. The 3rd edition was completed late in 1974; sample sections are shown in Fig. 3. This edition will again be published as part of a conference proceedings. 4 Future editions will be published at shorter intervals, possibly in a compilation journal.

Footnotes and References

*Present address: Argonne National Laboratory, Argonne, Illinois
${ }^{\dagger}$ Present address: Hahn-Meitner Institute, Berlin, West Gemany.

FTabular data for the remaining mass chains will be entered after the data have been updated to a final cutoff date.

1. E. Romascan, W. Greiman, C. N. Lederer and A. All $2 n$, LBL-2366, p. 453 (1974).
2. E. Browne, J. M. Dairiki, R. E. Doebler, L. J. Jardine, C. M. Lederer, A. Shihab-Eldin, V.'S. Shirley and M. Whalley, LBL-2366, p. 3 (1974).
3. a) V. S. Shirley, Proc. Int'1. Conf. Hyperfine Structure and Nuclear Radiations, Asilonar, Pacific Grove, Calif., p. 985 (1967); edited by E. Natthias and D. A. Shirley, North-Holland Pub. Co., Amsterdan (1:768).
D) V. S. Shirley, Proc, Int'1. Conf. Hyperfine Interactions in Excited Nuclei, Rehovoth, p. 1255 (1970); edited by G. Goldring and R. Kalish, Gordon and Breaci Science Pub., New York, London, Paris (1971).
4. V. S. Shirley and C. M. Lederer, in froc. Int'l. Conf. Hyperfine Intergctions Studied in Nuclear Reactions and Decay, Uppsala (1974); to be pul. lished (1975).

ALPHA DEGAY STUDIES OF THE HIGH SPIN ISOMER OF BISMUTH-210

D. Tuggila, F. Asaro and 1. Perlman"

$210 \mathrm{~m} i$ is a metastable alpha enitter lying 270 keV above tite ground state of ${ }^{210} \mathrm{Bi}$ and has a probable spin and parity of 9 -. It decays principally by alpha particle enission but a snati beta branching was reported, 1 In previous work ${ }^{1-5}$ the alpha decay scheme was constructed from alpha singles, ganma singles, and a few alptiangama coincidence measurements. One author ${ }^{2}$ reported that he had observed a parity forbidden alpha
branching to the ground state of ${ }^{206} \mathrm{TI}$ which has a spin and parity, $0-$. Later data compilations ${ }^{0}$ called the measurements doubtful.

In the present mork the decsy characteristics of ${ }^{21} \mathrm{~m}_{\mathrm{Bi}}$ were carefully measured using a sample that had been chemically purified and highly enriched by mass separations. The ${ }^{210} \mathrm{mi}$ was produced by the reaction ${ }^{{ }^{\circ}{ }^{\circ} \mathrm{Bi}(\mathrm{n}, \gamma){ }^{2 i} \mathrm{~m}_{\mathrm{Bi}}\left(\mathrm{o}_{\mathrm{C}}=19 \mathrm{mb}\right) \text {. }}$

The ground state of ${ }^{210} \mathrm{Bi}$ was also produced ($\sigma_{c}=15 \mathrm{mb}$). It decayed by B emission to ${ }^{210} \mathrm{po}$ with the relatively short half life of 5 days. The ${ }^{21}$ Po was removed from the bismuth by fractional distillation and solvent extraction. The 210 mbi was separated from the ${ }^{209} \mathrm{Bi}$ in two mass separations. The first was conducted at Dak Ridge National Laboratory and the second at Lrl. The separation at LBL procuced an aluminum bucked source of $20 \mu \mathrm{~g}$ of 21 omgi containing less than 108 ${ }^{209} \mathrm{Bi}$ and with a total alpha activity of 25,000 dis/min.

The half life of ${ }^{210} \mathrm{~m}_{\mathrm{Bi}}$ was measured using a bismuth sample that had not been mass separated, and hat a ${ }^{230} \mathrm{mbi}$ fraction measured as 0.135 by mass spectrographic analysis here at LBL. A known mass of this sample was deposited on a platinum disc by electrodepositic : and the alpha activity was measured in a Frisch grid chamber. The alpha decay half life detemmined from this measurement is $(3.0 \pm .1) \times 10^{6}$ years (see Table 1).

Table 1. Compariser of decay values.

	Half life (present)	Half life (literature)	Branching ratio (present)
Alpha (total)	$(3,0 \pm .1) \times 10^{6} \mathrm{yr}$	$3.55 \times 10^{6} \mathrm{yr}^{a}$	

The beta decay branching was determined by measuring the amount of $21{ }^{\circ} \mathrm{Po}$ ilpha activity in the sauple in equilibrium with 210 ll Bi alpha activity. Our limit for this branching is much lower than previous values 1,2 and may represent a better chemical separation of $210 \mathrm{~m}_{\mathrm{Bi}}$ from the ${ }^{210} \mathrm{Po}_{0}$ formed from the initial decay of the 5 -day ${ }^{220} \mathrm{Bi}$ ground state (see Table 1).

The alpha particle energies of ${ }^{210 \mathrm{~m}_{\mathrm{Bi}}}$ were measured with a surface barrier silicon detector with an active area of $150 \mathrm{~mm}^{2}$. The conversion electrons in coincidence with alpha particles populating excited states in ${ }^{206} \mathrm{~T} 1$ give spurious peaks at the sum energies. These spurious peaks can be reduced by decreasing the counting geometry for the alpha neasurenent or by bending the conversion electrons away from the detector with a magnetic field. Both techniques were used and an upper limit of 1×10^{-6} was set on the parity forbidden transition to the ground state of ${ }^{206} \mathrm{Tl}$. Based on a Nang type calculation of alpha decay rates, this limits the parity admixture in 2 ontibi to less than
10^{-4}. The energies and mlative intensities of the alpha groups populating the excited states of ${ }^{205} \mathrm{~T}$ were also measured and these are compared with previous work in Table 2.

Table 2. Alpha energies and relative abundances.

Energy (MeV)		Relative Abundance (\$)	
Present	Literature ${ }^{\alpha}$	Present	Literature ${ }^{\alpha}$
4.224	-	0.01	-
4.414	4.400	0.3	0.19
4.579	4.568	0.5	0.96
4.564	4.550	4.8	3.74
4.905	4.896	39.4	40.4
4.941	4.935	55.0	54.6
5.201	5.201	$<1 \times 10^{44}$	0.04

${ }^{a_{\text {Ref. }} 2}$

The energies and relative intensities of the ganma rays associated with the alpha decay of 2.10 Bi were measured with a $\mathrm{Ge}(\mathrm{Li})$ detector. The results of those measurements are compared with previously reported values in Table 3. The decay scheme of ${ }^{206} \mathrm{~T} 1$ along with the low energy levels of ${ }^{210} \mathrm{Bi}$ and ${ }^{210} \mathrm{Po}$ are shown in Fig. 1.

Table 3. Garran my energies and intensities.

Energy Literature			Relative Intensity Present
Present	265.7	100	Literature b

${ }^{a_{\text {Ref. }} 3}$
$b_{\text {Ref. }} 2$
CThese two gama rays were not observed by Ref. 3; the values given are for Ref. 2.

The branching ratios for the alpha decay of 210 M Bi to excited states of ${ }^{2066} \mathrm{Tl}$ were calculated using a method developed by Mang. ${ }^{7}$ Harmonic oscil ${ }_{-}$ lator wave functions and the configurations of Kuo ${ }^{8}$ were used. A radial parameter of 9.3 Fermis was chosen, and barrier penetration was calculated with a pure Coulomb potential between the alpha and the daughter nucleus. The values for the α and β size paraneters used in the calculations were 0.17 and

Fig. 1.
(XBL 756-3316)

Table 4. Comparison of calculated and measured relative intensities.

Alpha rergy (HeV)	${ }^{206} \mathrm{Tl}$ level (kev)	I ()	Experi- mental	Calculated
4.941	266	$2-$	55.0	82.6
4.905	305	$1-$	39.4	16.2
4.564	650	$1-$	4.8	1.1
4.579	635	$2-$	0.5	0.04
4.414	801	$3-$	0.3	0.002
4.224	994	$2-$	0.01	0.0066

$0.47 \mathrm{Fm}^{-2}$ respectively. The results of the calculations are listed in Table 4. The deviation in experinoental and theoretical alpha abundances populating the higher excited states of ${ }^{205}$ T1 becones increasingly larger with excited state energy. This may indicate that Juo's configuration mixiny; is inadequate.

We are indebted to Maynard C. Michel for his guidance in the mass separations and measurements.

Footnotes and References

${ }^{*}$ I. Perlman is currently is the Department of Archeonetry of the Institute of Archeology of the Hebrew University in Jerusalem.

1. 2. I. Rusinov, Y. N. Andreev, S. V. Golenetskii, M. I. Kislov and Y. I. Filimonov, J. Exptl. Theoret. Phys. 13, 707 (1961).
1. R. C. Lange, G. R. Hagee and A. R. Campheli, Nucl. Phys. A133, 273 (1969).
2. E. H. Spejewski, Nucl. Phys. Al00. 236 (1967).
3. Y. I. Kharitonov, L. A. Sliv and G. A. Sogomonova, Nucl. Phys. 28, 210 (1961).
S. R. J. Walen and G. Bastin-Scoffier, J. de Phys. 20, 589 (1959).
4. M. B. Lewis, Nucl. Data Sheets, Sec. B, Vol. 5, ㅎ, 631 (1971).
5. H. J. Mang, Ans. Rev. Mucl. Sci. 14, 1 (1964).
6. T. T. S. Kuo and G. H. Harling, State Univ. of New York, Stony Brook, Naval Research Lab. Report NK. 2255 (1971).
7. R. C. Lange and G. R. Hagee, J. Inorg, Nucl, Chem. 31, 2297 (1969).

K-SHELL ELECTRON SHAKE-OFF ACCOMPANYING ALPHA DECAY

M. S. Rapaport, F. Asaro, and I. Perlman*

An electron ejected by the passage of an a particle through the Coulomb field shares in a complementary fashion in the a emission energy. The a spectrum asscciated with electron shake-off from a particular subshell will have a maximum energy equal to essentially the α particle energy without shake-off less the binding energy of the electron. The present work was undertaken to measure directly that part of the alpha spectrum connected with the electron shake-off effect in the K sheIl and to determine the differential shape of this spectrum and compare it with theoreticis predictions. We hoped to improve the precision of previous measurements of the total K shell probability and delineate more clearly
the discrepancy between experiment and the Nigdal theory.

The general experimental procecture was to measure the alpha spectra of ${ }^{2}{ }^{0} \mathrm{Po}$ and ${ }^{230} \mathrm{Pu}$ which were in coincidence with \mathbf{K} x-rays. The $\mathrm{K} X$-rays were detected with a solid state detector of pure Ge which had a full-width-at-half-maximan (Pifi) of 1.0 keV for a 122 keV Y -ray and an overall detection efficiency of 13.5 i at that energy. The a particles were detected with Au-Si surface-bst. rier type detectors with geonetries of about 2-5i.

The ${ }^{234} \mathrm{Pu}$ was purified by elution from an anion colum and then vaporized in vacuna from a
tungsten filament onto a 0.002 inch thick mylar foil. The source which had been collimated to an area $5 / 16$ inch in dianeter during vaporization was invis:ble and had an activity of $n 1.2 \times 10^{7}$ a dis/min.

Two vials of $2{ }^{\circ} \mathrm{Po}$ were purchased from New England fuclear. The ${ }^{10} \mathrm{Po}$ was catalogued as careier-free and of natural origin although investigation at the conclusion of the experiment showed it was prepared by the reaction and decay:

$$
{ }^{209} \mathrm{Bi}(\Omega, y)^{210} \mathrm{Bi} \frac{\mathrm{~B}^{-}}{5 \mathrm{day}}{ }^{210} \mathrm{Po} .
$$

The ${ }^{216}$ po from one of the vials was further purified by funing to near drymess with consentrated HHO_{3}, loading onto a cation column (DONER 50) with $2 \mathrm{NHCl}^{2}$, washing with $2 \mathrm{MHNO}_{3}$, and eluting the ${ }^{210}$ Po with 2 MHCl . The eluent was evaporated to drymess and vaporized like the ${ }^{231} \mathrm{Pu}$ onto a .202 inch thick mylar foil. The source was $n 1.7 \times 10^{7}$ o dis/min and was imrisible.

The ${ }^{238}{ }^{3} \mathrm{P} u$ was measared in a coincidence unit for a total running tine of 15 days. The a singles spectra were measured and recorded every day as were the coincident spectra. The γ singles spectra were monitored continuously. The $\alpha-K x$-ray coincidence spectra for the one day runs were surned and this total spectrum is presented in Fig. 1. The abscissa is the analyzer channel in which the coincidences appeared, and it is roughly linear with the a particle energy. The ordinate is the total number of observed coincidences in the 15 day period. The highest energy peaks, u and α_{44}, are due to accidental coincidences betweer: the most intense a groups and radiation in the K x-ray gate. The most intense peak, $\alpha_{2 g 6}$, is fue to true coincidences with $K \quad x$-rays from conversion of the 153 keV Y-ray and with the compton background of this γ-ray in the $\mathrm{K} x$-ray gate region.

The abundance of the a group associated with K she11 shake-off is $(0.83 \pm 0.11) \times 10^{-6}$ per ${ }^{214} \mathrm{Pu}$ a particle.

The nomenclature for the normal a groups shown in Fig, 1 is the ususl one with the energy of the excited state being a subscript to the a symbol, e.g. the ${ }^{231} \mathrm{Pu} \alpha$ groups populating the 44 KeV excited state in ${ }^{2}{ }^{34} \mathrm{~J}$ is designated ${ }^{29} \mathrm{Pu} \mathrm{a}_{4}$ or simply a_{49}. We suggest for the a groups removing orbital electrons in their passage through the Coulomb field, that the shell designation of the

Fig. 1. ${ }^{23}$ "Ru a spectrom in coincidence with uraniun $\kappa_{B} x$-rays.
(XBL 744-2875)
electrons be added as a subscrip before the excited state energy. Thus, the ${ }^{23}{ }^{3} \mathrm{Pu}$ a group which populates the 44 keV state in ${ }^{234} \mathrm{U}$ and which also causes a K elecrron to be removed would be designated ${ }^{236} \mathrm{Pu} \cdot \mathrm{K}$, w or simply $\mathrm{oK}_{4}{ }^{44}$, To determine if these observed coincidences had the proper maximum erergy for a ${ }^{23}{ }^{9} \mathrm{Pu} a_{0}$ particle which ejected a K electron with about zero kinetic energy we extrapolated their high energy side (Fig. 2) and that of ${ }^{23} \mathrm{Pu} \alpha_{0}$ to \% one quartex of their peak height. There was a difference in energy of $115 \pm 10 \mathrm{keV}$ which agrees with the K binding energy of uranium, 115.6 keV .

The ${ }^{210} \mathrm{Po}$ was also measured in the coincidence unit for a total running time of 15 days. The experiment was very similar to that for ${ }^{23}{ }^{8} \mathrm{Pu}$ except that a larger fraction of the $K \times$-ray peak could be used in the gate as there are no ganma rays in $2^{20} \mathrm{p}_{0}$ decay near the gate energy. The various coincidence runs in the 15 day period were sumed and the total spectrm is shown in Fig. 2. The highest energy peak, α_{o}, is the to accidental coincidences with the main α group.

By extrapolating the two peaks (Fig. 2) in the same fashion as tor the ${ }^{234}$ Pu experiment, we fourud the difference in energy was $88 \pm 1 \mathrm{keV}$ in excellent agreement with K shell binding energy of lead, 88.0 keV . The abundance of the particles associated with K shell shake-off is $(1.65 \pm .16) \times 10^{-6}$ per ${ }^{2}{ }^{\circ} \mathrm{Po}$ a particle.

Fig. 2. ${ }^{10}{ }^{\circ} \mathrm{Po}$ a spectrua in coincidence with lead Ka. x-rays. Theoretical shape nomalized to peak height.
(XBL 744-2876)

According to Migdal's ${ }^{1}$ theory the differential probability of ionizing one of the electrons may be expressed as

$$
\begin{align*}
d P_{15} & =\frac{8 v^{2}}{3\left(E_{K}-B\right)^{4}}\left|\left\langle k, R=1 \left\lvert\, \frac{1}{r^{2}} \hat{i} 1 s\right.\right\rangle\right|^{2} d E_{k} \\
& + \text { smaller terms } . \tag{I}
\end{align*}
$$

Where y is the velocity of the a purticie, r is the radial distance from the meleus, B is the binding eneraj of a is electron, \& is the angular momentin of the continum states, Ex $_{k}$ is the kinetic energy carricd off by the ionized is clectron and

| Table 1. Probability of electron shake-off from the K oheiz. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$\mathrm{k}=\sqrt{2 \mathrm{E}_{\mathrm{k}}}$. This equation is like Migdal's equation 15 except the summation over the angular part of wave function and of the tho electrons has been carried out. The matrix element can be readily calculated with hydrogenic wave functions and the probability equation becomes

$$
\begin{equation*}
d P_{1 s}=\frac{2^{11} v^{2}}{32^{6}} \frac{e^{-\frac{42}{k} \arctan k / Z}}{\left(1+\frac{k^{2}}{z^{2}}\right)^{5}\left(1-e^{-2 \pi 2 / k}\right)} d E_{k} \tag{2}
\end{equation*}
$$

where Z is the charge of the daughter nucleus. One gets the total ionization probability by numerical integration.

A more realistic set of wave functions would be of the self consistent type. We used the tabulated ${ }^{2}$ Hartree-Fock-Slater central potentials to solve the Schrödinger equation for ${ }_{3}$ the continum electrons and applied the Noumerov ${ }^{3}$ integration methor.

Table 1 sumarizes the experimental results and our theoretical results on the shake-off effect in a decay.

Using our calculations of shake-off probability as a function of electron energy and the expeririental average peak shape in the ${ }^{10}{ }^{\circ} \mathrm{po}$ a singles spectrum, we decermined the shape of the a spectrum associated with the shake-off of k electrons which would be expected from Nigdal's theory. The theoretical shape was nomalized to the same peak height as the experimental curve and is shown as a dashed line in Fig. 2. The a singles spectrum had a Small perturbation aliout 300 keV below the peak due to instrmiental effects and this is reflected in both the calculations and the coincidence speitrum. As seen in Fig, 2, there is a definite discrepancy between the experinental and theoretical curves. The probability of electron shake-aff decreases more rapidly than the theoretical prediction as the electron energy increases (i.e., as the a particle energy decreases), Ovechkin and Tscnter ${ }^{4}$ observed the same effect in
comparing electron energy measurenents with Migdal's calculations, but the authors felt their experimental work was not sufficiently precise to indicate a definite discrepancy.

A distinctly different type of theorerical treatment was publ ished recer: ${ }^{\circ}$ y by J. S. Hansen 5 after the present work was concIuded. Hansen obtained a value of 2.02×10^{-6} for the total K shell ionization probability for ${ }^{2}{ }^{2}{ }^{\circ} \mathrm{Po}$ which is somewhat closer in agreement with the experimental result than any of the theoretical values. Although not discussed in the present work, Hansen's calculations for 1 :ind M shells were in far better agreement with the experimental results than any other theory.

After compilation of this work Briand et al ${ }^{9}$ published a paper in which the a spectra associated with K shell shake-off was also measured.

Foornotes and References

*I, Periman is now at the Hebrew University in Jerusalem.

1. A. Migdal, J. Phys. (USSR) 4, 449 (1941).
2. F. Herman and S. Skillman, Atomic Structure Cnlculations, Prentice-Hall, Inc. (1963).
3. J. M. Blatt, J. Comp. Phys, 1, 382 (1967).
4. V. V. Ovechkin and E. M. Tsenter, Soviet J. At. Energy (English transl,) 2, 344 (1957).
5. J. S. Hansen, Phys, Rev. A 9, 40 (1974).
6. M. A. Crace, R, A. Allen, D, West and H. Halban, Proc. Phys. Soc. (London) A64, 493 (1951).
7. W. C. Barber and R. H. Helm, Phys. Rev. B6, 275 (1952).

B, M. Riou, J. Phys. Rad. 13, 487 (1952).
9. J. P. Briand, P. Chevallier, A. Johnson, J. P. Rozet, M, Tavertier, and A, Touati, Phys, Rev, L33, 266 (1974).

THE ELECTRON-CAPTURE DECAY OF ${ }^{206}{ }^{\text {Po }}$ *

L. J. Jardina ${ }^{\dagger}$ and A. A. Shihab-Eldin

Earlier investigations of electron-capture decay of ${ }^{206} \mathrm{Fo}$ were carried out by Arbman ${ }^{1}$ and Stoner ${ }^{2}$ before high-resolution $\mathrm{Ge}(\mathrm{Li})$ detectors were avaijable. More recent in-bean reaction studies ${ }^{3}, 4$ have provided some properties of the high-spin states of ${ }^{206} \mathrm{Bi}$. Direct measurements of the alpha spectra of ${ }^{210}$ At have also been made, 5 and we have recently ${ }^{6}$ carried out the $\alpha-\gamma$ coincidence measurenents of ${ }^{210}$ At weak alpha decay branch to complement these recent studies of ${ }^{206} \mathrm{Bi}$ level structure.

We have remeasured the γ-ray singles and γ coincidences following electron-capture decay of ${ }^{206} \mathrm{Po}$ using $\mathrm{Ge}(\mathrm{Li})$ detectors. Sources of 8.8 days ${ }^{206}$ Po were obtained via the ${ }^{209} \mathrm{Bi}(\mathrm{p}, 4 \mathrm{n}){ }^{206} \mathrm{Fo}$ reaction. The targets were allowed to stand for several days following bombardnent (at 37-42 MeV) until the ${ }^{203}$ Po impurity had decayed away. This was then followed by chemical separation to remove the ${ }^{20} 7^{7} \mathrm{Bi}$ activity, in addition to the ${ }^{205} \mathrm{Bi}$ activity which grew in from the decay.

Gamma-ray singles spectra were obtained with a $35-\mathrm{cm}^{3}$ coaxial Ge(Li) detector (system resolution 2.6 keV (FWM) at 1332 keV) and a $10 \mathrm{~cm}^{3}$ planer $\mathrm{Ge}(\mathrm{Li})$ detector (system resolution 1.4 keV (FWFM) at 122 keV). Three parameter $\gamma-\gamma$ coinc idence measurements ($\mathrm{E}_{1}, \mathrm{E}_{2}, \Delta t$) were carried out with two
$35-\mathrm{cm}^{3}$ coaxial $\mathrm{Ge}(\mathrm{Li})$ detectors. The width of the prompt time distribution was about 35 ns (FMHM). Approximately 50 coincidence sorts were performed at a resolving time of about 70 ns . Seventy-seven γ-ray transitions observed in the γ-rdy singles were assigned to the electron-capture decay of ${ }^{206}$ Po. Our results for the γ-ray energies are in rather good agreement with the transition energies detemmined from the internal conversion-electron measurements of Ref. 7 for transitions observed in both types of measurements. Multipolarities for many y-rays were deduced from the comparison of experimental subshell ratios ${ }^{7}$ and/or experimental conversion coefficients with theoretical values of Hager and Seltzer. ${ }^{8}$ Conversion coefficients were calculated from the relative electron intensiiies of Ref. 7 and our relative γ-ray intersities.

Coincidence measurements and sum-difference relationships among γ-ray energies have bsen used to construct the scheme shown in Fig. 1. Spin and parity assignments are based upon $\log \mathrm{ft}$ values of the electron-capture branches, transitiorimultipolarities and previously reported data. ${ }^{-7}$ Also included in Fig. 1 , are levels populated by the alpha decay of ${ }^{210}$ At. 5,6 The decay scheme of Fig. 1 is substantially different than the previous gne proposed by Arbman because of the discovery of an intense (93% of EC decays) 10.84 keV

Fig. 1. Level scheme of ${ }^{206 B i}$. Relative photon intensities (with errors in italics) from the ${ }^{206} p_{0}$ decay are show above the transitions. Relative alpha intensitios from the ${ }^{210} \mathrm{At}$ decay and calculated alypa hindrance factors are show. The absolute intensity of the $286.2 \mathrm{keV} \gamma$-ray was criculated from the level scheme to be 22.8 ± 2.0 photons per 100 decays of ${ }^{206} \mathrm{Po}$.
(XBL 7412-7847)

Mil transition depopula+ing a new 3^{+}state at 70.8 keV .

No theoretical calculations of the level structure of ${ }^{206} \mathrm{Bi}$ have been made. However, its cow-1ying level strucrure might a priori be characterized by one (proton) particle-three (neutron) hole states arising from couplings of the (odd) 83 rd proton with the (odd) 123 rd neutron. To estimate qualitatively the number and type of such states, we show in Fig: 2 the experimental 9,10 states of ${ }^{209} \mathrm{Bi}$ and ${ }^{285} \mathrm{~Pb}$. The first three states of ${ }^{2}{ }^{5} \mathrm{Bi}$ are due ${ }^{9}$ to the proton single-particle orbitals of $1 \mathrm{~h}_{9 / 2}, 2 \mathrm{f}_{7 / 2}$, and $\mathrm{li}_{13 / 2}$. The four states ${ }^{203} \mathrm{~Pb}$ at $0,2.3,270$ and 1014 keV are due ${ }^{10}$ predominantly to an odd neutron (or threeneutron holes) in the $2 \mathrm{f}_{5 / 2}, 3 \mathrm{p}_{1 / 2},{ }^{3} \mathrm{p}_{3 / 2}$, and $1_{13 / 2}$ single-particle orbitals, respectively. The renaining ${ }^{205} \mathrm{~Pb}$ states shown are presunuably of a more complex nature. If one now considers couplings of the $1 \mathrm{~h}_{\mathrm{g}} / 2$ and $2 \mathrm{f}_{7 / 2}$ protons with the three neutron hole states of ${ }^{205} \mathrm{~Pb}$, the degenerate band stracture shom in column 4 of Fig. 2 results. Finally, all known experimental states of ${ }^{206} \mathrm{Bi}$ are shown (with a shifted energy for the ground state) in th, last column of Fig. 2. Relations between experimental levels and the $1 \mathrm{p}-3 \mathrm{~h}$ configurations assumed responsible for it are indicated by dashed lines.

The rather low Q-value for the electron-capture decay of ${ }^{206} \mathrm{Po}$ helps to make an interpretation of the levels of ${ }^{206} \mathrm{Bi}$ easier as only five states receive any measurable direct electron-capture decay in the present level scheme. Electron-capture decays to these 1^{+}states from the even-even 0^{+}ground state of ${ }^{206}{ }^{6}$ o proceed via an allowed data transition. Subsequent γ-ray decay of these 1^{+}states populates states of $\operatorname{spin} 2,3,4$, and 5 until the 6^{+}ground state is reached.

In Fig. 2 we have shown five possible (degenerate) multiplets formed from couplings of the odd proton and the odd neutron (or three-neutron holes) that give rise to 1^{+}states in the energy range of interest. (It may only be fortuitous that five 1^{+} states are presently experimentally idcitified.) The 1^{+}state at 1389.5 keV receives most of the electron-capture decay and is bel ieved to arise from the coupling of a $2 f_{7 / 2}$ protion to the threeneutron holes with a configuration of the ground state of ${ }^{205} \mathrm{~Pb}$. Such a configuration of ${ }^{285} \mathrm{Bi}$ can be written explicitly as

$$
\left(\pi\left(f_{7 / 2}\right) v\left(f_{5 / 2}\right)^{-1}\left(\mathrm{p}_{1 / 2}\right)^{-2}\right)_{1^{+}}
$$

The 0^{+}ground state of ${ }^{205} \mathrm{Po}$ is of a two protonfour neutron hole character with the probable dominant configuration

$$
\left(\pi\left(h_{9 / 2}\right)^{2} v\left(f_{5 / 2}\right)^{-2}\left(p_{1 / 2}\right)^{-2}\right)_{0^{+}}
$$

Fig. 2. Comparism of the experimental ${ }^{206} B i$ level schemo with the preatsions of a simple coupling model, the experimental 12,13 states of ${ }^{206}{ }^{\circ} \mathrm{Bi}$ and ${ }^{205} \mathrm{~Pb}$ are used to estimate the energies and range of spins from multiplets formed from couplings of the odd proton and the three-nuetron holes ($1 \mathrm{p}-3 \mathrm{~h}$ states) in ${ }^{266} \mathrm{Bi}$,
(ABL. 7412-8385)

An allowed single-particle electron-capture decay of the type

$$
\pi 2 f_{7 / 2} \xrightarrow{\mathrm{EC}} v 2 f_{5 ; 2}
$$

can be used to explain the electron-capture decay to the 1^{+}state at 1389.5 keV if the ground state wavefunction of ${ }^{206} \mathrm{Po}$ has a second component of the form

$$
\left(\pi\left(f_{7 / 2}\right)^{2} v\left(f_{5 / 2}\right)^{-2}\left(p_{1 / 2}\right)^{-2}\right)_{0^{+}}
$$

Decay to the other 1^{+}states in ${ }^{206} \mathrm{Bi}$ (with sonewhat higher $\log f t$ values) probably proceeds via the same single-particle mechanism through admixtures of the

$$
\left(\pi\left(\mathrm{f}_{7 / 2}\right) \vee\left(\mathrm{f}_{5 / 2}\right)^{-1}\left(\mathrm{p}_{1 / 2}\right)^{-2}\right)_{1^{+}}
$$

configuration present in the wavefunctions.
States assigned to the configurations

$$
\begin{aligned}
& \left(\pi\left(h_{9 / 2}\right) \vee\left(f_{5 / 2}\right)^{-1}\left(p_{1 / 2}\right)^{-2}\right)_{2,3,4,5,6,7^{+}}, \\
& \left(\pi\left(h_{9 / 2}\right) \vee\left(p_{1 / 2}\right)^{-1}\left(f_{5 / 2}\right)^{-2}\right)_{4,5^{+}}, \text {and } \\
& \left(\pi\left(h_{9 / 2}\right) \cup\left(p_{3 / 2}\right)^{-1}\left(p_{1 / 2}\right)^{-2}\right)_{3,4,5,6^{+}}
\end{aligned}
$$

are shown in Fig. 2. Calculations of electromagnetic transition probabilities and alpha decay rates using these assumed configurations for states of ${ }^{205}$ Bi populated in the alpla decay of ${ }^{210}$ At have previously been made. 6,11 The results indicated that agreement 0 . the theoretical calculations with existing experinnental data could be ohtained if some configuration mixing among these three configurations was allowed.

Finally the states in the energy lange of 734.0-1103.1 keV are presumab1y of a rather complex structure and we cannot presently ascribe a specific configuration to these states using only qualitative arguments. However, two rtates observed 3,4 in recent in-beam experiments in this energy range merit some additional remarks. A 10° isomer of 1 msec at 1043 keV has been assigned 12,13 the configuration

$$
\pi\left(\mathrm{h}_{9 / 2}\right) v\left(\mathrm{i}_{13 / 2}\right)^{-1}\left(\mathrm{p}_{1 / 2}\right)^{-2}
$$

This is also consistent with the qualitative predictions of Fig. 2. Decay of this isomeric state to an 8^{+}scate at $B 14 \mathrm{keV}$ has been observed. This 8^{+}state, as suggested from Fig. 2, might arise from a coupling or a hg/2 proton witl: a $7 / 2^{-}$ state of ${ }^{205} \mathrm{~Pb}$. The dominant configuration of the $7 / 2^{-}$state of ${ }^{205} \mathrm{~Pb}$ is expected to be of the type

$$
\left(v\left(f_{5 / 2}\right)^{-2}\left(p_{1 / 2}\right)^{-1}\right)_{7 / 2^{-}}
$$

with perhaps the following internal coupling

$$
\left(v\left(\left(f_{5 / 2}\right)^{-1}\left(\mathrm{p}_{1 / 2}\right)^{-1}\right)_{2}+\left(f_{5 / 2}\right)^{-1}\right)_{7 / 2^{-}}
$$

Thus the 8^{+}state of ${ }^{206} \mathrm{Bi}$ might have major r. q^{-} ponent of the type

$$
\left(\pi\left(h_{9 / 2}\right)\left(v\left(f_{5 / 2}\right)^{-2}\left(p_{1 / 2}\right)^{-1}\right)_{7 / 2}\right)_{8^{+}}
$$

Perhaps these latter two states provide further evidence that the level structure of ${ }^{206} 8 \mathrm{Bi}$ can be regarded as a series of one particle-three hole states, at least uf to 1389 keV .

Footnotes and References

"Condensed from LBL-3447, to be submitted to Phys. Rev. C.
†Present address: Argonne National Laboratory, Argonne, Illinois.

1. E. Arbman, Nucl. Phys. 3, 625 (1957).
2. A. W. Stoner, Lawrence Berkeley Laboratory Report UCRL-3471 (1956).
3. Yu. N. Rakivnenko et al., Ukr. Fiz. Zh. 17, 1037 (1972).
4. U. Hagenann, K. H. Kaum W. Neubert, W. Schulze, and F. Stary, Nucl. Phys. A197, 111 (1972).
5. N. A. Golovkov, Sh. Guetkh, B. S. Dzhelepov, Yu. V. Norseev, V. A. Khalkin, and V. G. Chumin, Izv. Akad, Nauk. SSSR (Ser. Fiz.) 33, 1622 (1969).
6. L. J. Jardine and A. A. Shihab-Eldin, Lawrence Berkeley Laboratory Report LBL-2943 (1974); Nucl. Phys. Az44, 34 (1975).
7. M. Fujioka, M. Kanbe and K. Hisatake, Phys. Rev. Letts. 31, 114 (1973); K. Hisatake and M. Kanbe (private communications).
8. R. S. Hager and E. C. Seltzer, Nucl. Data A4, 1 (1968).
9. M. J. Martin, Nuc1. Data 5, 287 (1971).
10. M. R. Schmorak, Nucl. Data 6, 425 (1971).

1]. A. A. Shihab-Eldin, L. J. Jardin, and J. O.
Rasmussen, Lawrence Berkeley Laboratory Report LBL-3409 (1974), (to be published in Nucl. Phys. . 1975).
12. G. Schäfer, H. Hübel, C. Günther, A. Goldman, and D. Riegel, Phys. Lett 46B, 65 (1973).
13. T. W. Conlon, Nuc1. Phys. A212, 531 (1973).

ALPHA DECAY of $\mathbf{2 1 0}_{\text {At }}$ to Levels in $\mathbf{2 0 6}_{\text {gi* }}$

L. J. Jasdine ${ }^{\dagger}$ and A. A. Shihab-Eldin

Alpha-ganma coincidence measurements were carried out for the weak a] rhā-decay branch of ${ }^{2}{ }^{\circ}$ At to supplement prevjous high resolution map, 1 , netic spectrometer measurenents of the a spectra, 1,2 The completed alpha decay scheme of ${ }^{210}$ At and the recent detailed studics of the electron-capture decay of ${ }^{205} \mathrm{PO}^{3}, 4$ and the ${ }^{203} \mathrm{Tl}(\alpha, 3 \mathrm{n} \gamma)$ reaction 5,6 provide complementary information on the nature and decay characteristics of $10 \mathrm{w}-1 \mathrm{ying}{ }^{206} \mathrm{Bi}$ leve1s.

Astatine sources were produced at the 88 -Inch Cyclotron via the ${ }^{209} \mathrm{Bi}(\alpha, 3 n)$ reaction, followed by chenical frification and separation.

Thren parant 'er ($\mathrm{E}_{\alpha}, \mathrm{E}_{\mathrm{Y}}, \Delta t$) coincidence measurements were carried out using a $10 \mathrm{~cm}^{3}$ (active volume) $\mathrm{Ce}(\mathrm{Li})$ detector (1.5 keV (FH M) resolution at 122 keV) and a 6 min diameter Au-Si surface barrier detector (16 keV (FWHM) resolution at 4.8 MeV). Gates were set on the relatively intense three alpha groups $\alpha_{63}, \alpha_{148}$ and $\alpha_{16} 7^{\circ}$. The energies and relative intensities of the coincidert γ-rays are given in Table 1 . The relative intcirsities of the $\alpha_{93}, \alpha_{140}$ and α_{167} groups calcuiated from the relative γ-ray intensities of Table 1 and the theoretical internal conversion coefficients, assuming the four γ-rays were of pure M1 multipolarity, gave good agreement with α-singles measurements of Ref. 1. This constitutes a weak argument supporting assignments of M1 multipolarity for these four transitions.

TABLE 1. Y-rags measured in coincidence with $210_{A t}$ atpha particles.

γ ray energy (keV)	Relative γ-ray intensity	a gate
83 ± 1	766 ± 153	α_{83}
140 ± 1	100	α_{140}
106 ± 1	272 ± 54	α_{167}
167 ± 2	$174+35$	α_{167}

The ${ }^{206} \mathrm{Bi}$ levei scheme deduced from our $\alpha-\gamma$ coincidence data is shown in Fig. 1. We have also included other known lavels below 500 keV observed from the riectron-capture decay of ${ }^{206} \mathrm{Po} 3,4$ and the ${ }^{205} \mathrm{~T} 1(\alpha, 3 \mathrm{n} \gamma)$ reaction 5,6 from which spin and parity assignments for all levels except those at 83 and 167 keV were derived. The decay characteristic of these two levels obtained in the present experiment together with the relative alpha decay rate calculations of Ref. 7 make a spin and parity assignment of 5^{+}for both of these levels most probable.

Fig. 1. Level scheme of ${ }^{200} \mathrm{Bi}$. Relative alpha intensities, 1 relative photon intensi os for the 167 keV level and calculated ${ }^{8}$ alpha f nore factors are also shown. Spins, parinces and level energies below 0.524 MeV are shown as deduced from previous studies, ${ }^{3-6}$ of the level structure.
(XBL 745-846A)

The ${ }^{206} \mathrm{Bi}$ nucleus with 123 neutrons and 83 protons is three neutron-hole and one proton removed from the magic ${ }^{20}{ }^{\circ} \mathrm{Pb}$ core. Thus the $10 \mathrm{w}-$ est-1ying states of ${ }^{205}$ Bi are expected to be described (in zeroth order) by configurations resulting from the coupling of the $1 \mathrm{~h}_{\mathrm{g}} / 2$ proton (${ }^{209} \mathrm{Bi}$ ground stat:) to the $5 / 2^{-}, 1 / 2^{2 / 2}$ and $3 / 2^{-}$ three-neutron hole states in 205 pb at $0.0,23$ and 263 keV , respectively. The configurations for these three multiplets are

$$
\begin{aligned}
& \quad\left[\pi\left(h_{9 / 2}\right) \cup\left(f_{5 / 2}\right)^{-1} v\left(p_{1 / 2}\right)^{-2}\right]_{2,3,4,5,6,7^{+}}, \\
& \quad\left[\pi\left(h_{9 / 2}\right) \cup\left(p_{1 / 2}\right)^{-1} v\left(f_{5 / 2}\right)^{-2}\right]_{4,5^{+}} \\
& \text {and } \\
& {\left[\pi\left(h_{9 / 2}\right) \cup\left(p_{3 / 2}\right)^{-1} v\left(p_{1 / 2}\right]^{-2}\right]_{3,4,5,6^{+}}}
\end{aligned}
$$

respectively. The separation energies between the centers of mass of these three configurations are identical to the excitation energies of the first $5 / 2^{-}, 1 / 2^{-}$and $3 / 2^{-}$states in ${ }^{20} \mathrm{~Pb}$. These small separations imply that the lower-lying states of spin and arity 4^{+}and 5^{+}must have rather extensive admixtures fron the above three configurations, While the lowest states of spin and parity $2^{+}, 3^{+}$, 6^{+}, and 7^{+}are expected to be sonewhat "purer" in character, belonging basically to a pure

$$
\left[\pi\left(h_{9 / 2}\right) v\left(f_{5 / 2}\right)^{-1} v\left(p_{1 / 2}\right)^{-2}\right]
$$

configuration.
Relative alpha decay rate calculations ${ }^{7}$ and electromagnetic transition rate calculations were carried out to test the above qualitative conclusions. To obtain agreement with experimental results it was found necessary to include adnixtures from the above three configurations in describing the wave functions of the $4_{1,+}^{+} 5_{1,+}^{+} 5_{2}^{+}$ and 4_{2}^{+}states, with wave functions for $6+1,3_{1}^{+}, 77_{1}^{+}$ and ${ }^{2} \mathbf{1}_{1}^{+}$states limited to the pure

$$
\left[\pi\left(\mathrm{h}_{9 / 2}\right) v\left(\mathrm{f}_{5 / 2}\right)^{-1} v\left(\mathrm{p}_{1 / 2}\right)^{-2}\right\}
$$

configaration.
In Table 2 we give a set of wave functions for the $6{ }^{+}, 4 \pm, 71$, and 5_{2}^{+}states (obtained by trial and error) that correctly reproduces the
experimentel results from the a-decay studies when the relative alpho decay rates and electronagnetic transition rates are calculated. In Table 3 we show a comparison between calculated and experimental electromagnetic transition rates using the wave functions of Jable 2.

In conclusion, both α - and γ-decay rate calcu1ations indicated that an appreciable admixture from the

$$
\left[\pi\left(h_{9 / 2}\right) v\left(p_{3 / 2}\right)^{-1} v\left(p_{1 / 2}\right)^{-2}\right]
$$

conEiguration, in addition to those from the

$$
\left[\pi\left(h_{9 / 2}\right) \cup\left(f_{5 / 2}\right)^{-1} v\left(p_{1 / 2}\right)^{-2}\right]
$$

and

$$
\left[\pi\left(h_{9 / 2}\right) v\left(p_{1 / 2}\right)^{-1} v\left(f_{5 / 2}\right)^{-2}\right]
$$

configurations are required for the description of the wave functions of the $4 \ddagger$ and 5_{2}^{+}states (and

TABLE 2. Wave fimctions for some $206_{B i}$ states deduced from the electromagnetic transition probabilities calculations. These give consistent results with experiment when electromagnetic transition probabilities and α-decay rates are calculated.

Energy (keV)	$J^{\text {T}}$	$\left\|\pi\left(h_{9 / 2}\right) \cup\left(\mathrm{f}_{5 / 2}\right)^{-1}\left(\mathrm{p}_{1 / 2}\right)-2\right\rangle$	$\begin{aligned} & \text { configurations }{ }^{\text {a }} \\ & \mid \pi\left(h_{9 / 2}\right) \vee\left(p_{1 / 2}\right)^{-1}\left(f_{5 / 2}\right)^{-2\rangle} \end{aligned}$	$\mid \pi\left(h_{0 / 2}\right) \cup\left(p_{3 / 2}\right)^{-1}\left(p_{1 / 2}\right)^{-2\rangle}$
0	$6+$	1.0		
60	4_{1}^{+}	$\sqrt{0.74}$	$-\sqrt{0.10}$	$-\sqrt{0.16}$
140	$7{ }_{1}^{+}$	1.0		
167	5_{2}^{+}	$\sqrt{0.05}$	$\sqrt{0.67}$	$-\sqrt{0.28}$

a Numbers in the table represent the anplitudes of the configurations composing the state.

TABLE 3. Comparison of eleatromagnetia transition probabilities, using the wave functions of Table 2 in the decay of 306 Bic states with available axperimental data.

Transition $\left(J_{i}+J_{f}\right)$	$\begin{gathered} \mathrm{E} \\ (\mathrm{keV}) \end{gathered}$	Relative r-ray branching intensity (expt.)	Multipolarity (expt.)	Theoretical transition probability$\begin{aligned} & T(\lambda) \times 10^{-9} \mathrm{sec}^{-1} \\ & (\text { M } 1 \text { calc. })(E 2 \text { calc. }) \text { (expt.) } \end{aligned}$		
$5_{2}^{+}+7_{1}^{+}$	27	n.0. ${ }^{\text {b }}$	(E2)	0	3.4×10^{-7}	
$5_{2}^{+}+4_{1}^{+}$	107	1.6 ± 0.5	(M1)	3.00	2.5×10^{-4}	
$5_{2}^{+}+6_{1}^{+}$	167	1.0	(M1)	1.16	5.8×10^{-3}	
$7_{1}^{+}+6_{1}^{+}$	140	2.0	M1	6.63	0.013	
$4_{1}^{+}+6+$	60	1.0	E2	0	1.18×10^{-6}	$(1.2 \pm 0.1) \times$

[^0]also for the $4 \frac{1}{2}$ and $5{ }_{1}^{+}$states) in order to get agreenent between theory and experiment. It will be interesting to find out if these qualitative conclusions will still be valid when theoretical wave functions in a larger and unore realistic configuration space become available.

Footnotes and References
*Candensed from LBL-2943, Nuc1. Phys. A244, 34 (1975).
${ }^{\dagger}$ Present address: Argonne National Laboratory, Argonne, Illinois.

1. N. A. Golovkov, Sh. Guethk, B. S. Dzhelepov, Yu. V. Norseev, V. A. Khalkin, aurd V. G. Chumin, Izv. Akad. Nauk. SSSR (ser. fiz.) 33, 1622 (1969). (translated page 1489).
2. R. W. Hoff, Ph.D. Thesis, University of California, Radiation Laboratory Report UCRL-2325 (1953) umpublished.
3. M. Fujioka, M. Kanbe, and K. Hisataka, Phys. Rev. Lett. 31, 114 (1973); private commications, September 1973 and October 1973.
4. L. J. Jardine and A. A. Shihab-ridin, Lawrence Berkeley Laboratory Report LBL-3447 (107i), unpublushed, to be submitted to Phys. Rev. C.
5. U. Hagemann, K. H. Kaum, W. Neubert, W. Schulze and F. Stary, Nucl. Phys. A197, li1 (1972).
6. Y. M. Rakivnenko, O. P. Klyucharev, V: 0. Lutsik, V. V. Ranae: I. A. Ramanii, E. O. Skakm, G. T. Yatsenko, and K. S. Goncharov, Ukr. Fiz. Zh. 17, 1029 (1972).
7. A, A. Shihab-Eldin, L. J. Jardine, and J. 0. Rasmussen, Lawrence Berkeley Laboratory Report LBL-2366 (1973), p. I75; ibid. LBL-3409 (1974), to be published in Nucl. Phys. A.
8. C. M. Lederer, Lawrence Berkeley Laboratory Report LBL-1996 (1973).

THE HALF-LIfE AIND THE α-DECAY bRANChing RATIO of $\mathbf{2 0 7}_{\mathrm{Po}_{0}}$

B. Parsa ${ }^{\dagger}$ and S. S. Markowitz

Abstract

${ }^{207} \mathrm{Po}$ was produced via ${ }^{3} \mathrm{He}$ activation of lead samples. Polonium was chemically separated from the irradiated targets. Gama and a spectra were measured with $\mathrm{Ge}(\mathrm{Li})$ and surface-barrier α counters, respectively. The decay of the $992-\mathrm{keV} \gamma$-ray of ${ }^{207}$ Po was followed and a half-life of 5.84 ± 0.07 hr was obtained for ${ }^{207} \mathrm{Po}$. Tha α-decay branching of ${ }^{207} \mathrm{Po}$ was measured to be 0.0210 ± 0.0023 per cent.

Footnote and Reference
"Condensed version of J. Inorg. Nuc1. Chem. 36, 1429 (1974).
${ }^{\dagger}$ Visiting Fulbright-Hays Grantee. Permanent address: Tehran University Nuclear Center, Tehran, Iran.

ALPHA AND GAMMA BRANCHING IN 2-msec ${ }^{213}$ Ra DECAY
D. G. Raich, ${ }^{\dagger}$ H. R. Bowman, R. E. Eppley, \ddagger
J. O. Rasmussen, and I. Rezanka§

We have observed a direct α-branch in the 2.1 mscc decay of ${ }^{21} \mathrm{~m}_{\mathrm{Ra}}$. The isomer was produced by bombarding a thin ($\sim 0.6 \mathrm{mg} / \mathrm{cm}^{2}$) isotopically enriched ${ }^{204} \mathrm{~Pb}$ target with $\sim 60 \mathrm{MeV}{ }^{12} \mathrm{C}$ beans from the SuperHILAC. Recoil products were stopped in 2 atm of helium and jetted to a seniconductor detector. Transport and counting times in the millisecond region were achieved through the use of a very small volune He cell ($\sim 1 \mathrm{~cm}^{3}$) and short capillary, and a computer-based data collection system which, during the 220 ms interval between Hiide pulses, directed counting into a series of timed 'buckets'.

Three α-groups have been tentatively assigned to 213 mRa decay, having energies of $8.47,8.36$, and 8.25 MeV in an intensity ratio of about 8:5:1. The assigrment of the two stronger groups is fairly
certain, and in particular it has been possible to rule out contributions from ${ }^{214} \mathrm{Fr}$ and ${ }^{214 m \mathrm{Fr}}$ decay here. The existence and assignment of the weakest group is as yet less certain. These energies correspond to Q-values of $8.63,8,52$, and 8.41 MeV . Valli and Hyde's investigation of 2.75 min groundstate ${ }^{213} \mathrm{Ra} \alpha$-decay likewise found three groups, corresponding to Q-values of $6.859,6.750$, and 6.645 MeV . From this we conclude that the isomeric state of ${ }^{213} \mathrm{Ra}$ must lie about 1770 keV above the ground state (see Fig. 1).

Such an assignment requires that we revise somewhat the ${ }^{213} \mathrm{Ra}$ level scheme and γ-ray tables that we ${ }_{2}$ put forth tentatively in last year's Annual Report, ${ }^{2}$ and it supports some of the reservations expressed there. Additional γ-ray data from ${ }^{206} \mathrm{~Pb}\left({ }^{12} \mathrm{C}, 5 \mathrm{n}\right)^{213} \mathrm{Ra}$ experiments this year at Yale
lead to similar conclusions. Careful singles counting in the x-ray region fails to support our original inclusion of the $49 \mathrm{keV} \gamma$-ray, so that has been dropped. And γ yt coincidence experiments show coincidences only between the three major y-rays, $160.9,546.3$, and 1062.5 keV . The 210.5 keV Y -ray is not in coincidence, even though it tracks the others in excitation function and halflife; thus we believe it belongs to ${ }^{209} \mathrm{Rn}$ rather than ${ }^{213} \mathrm{Ra}$. The resultant new level scheme is shown in Fig. 1.

Fig. 1. Tentative level scheme to account for 213 ma decay data.
(XBL 756-3317)

This new level scheme is capable of showing intensity balance down the γ-cascade, and it yields K-fluorescence of the right order of magnitude. Considering the 9/2- and 11/2- levels to be members of the $\pi\left(h_{9 / 2}\right)^{6} v\left(p_{1 / 2}\right)$ multiplet, it actually comes closer to following the trends of neighboring 125neutron isotones. The introduction of an unobserved low-energy transition is a little distasteful, but there seems to be no other way of accounting for the halflife and α-energy data. The mobserved transition must be highly retarded, nevertheless, to give a 2.1 ms half-life; but if we consider the isomeric state to be primarily $v\left(i_{13 / 2}\right)$, the configuration change required in going to the $11 / 2-$ level of the $\pi(\mathrm{hg} / 2)^{6} v(\mathrm{p} / / 2)$ multiplet could account for such retardation.

Work is continuing to more thoroughly check out additional consequences of this proposed level schenle.

Footnotes and References

*Final results will be submitted to Nucl. Phys. (antacipated 1975).
${ }^{\dagger}$ Graduate student of Yale University, resident at LBL.
${ }^{\text {Present }}$ address: Nonsanto Research Corp., Mound Laboratory, Miamisburg, OH 45342.
${ }^{5}$ Work performed at fommer Yale Univer:ity HILAC facility. Present address: Research Laboratory, Xerox Corp., Rochester, NY 14600.

1. K. Va11i, W. Treytl, and E. K. Hyde, Phys. Rev. 161, 1284 (1967); K. Valli and E. K. Hyde, Phys, Rev. 176, 1377 (1968).
2. D. G. Raich, J. O. Rasmussen, and I. Rezarka, Lawrence Berkeley Laboratory Nuclear Chemistry Arnual Report 1973, LBL-2366 (1974), p. 16.

Levels of ${ }^{156}$ Dy and decar scheme of ${ }^{156} \mathrm{Ho}$ ISOMERS*

S. Iwata, ${ }^{\dagger}$ T. Tamura, ${ }^{\ddagger}$ J. O. Rasmussea, and R. Needham ${ }^{\mathcal{S}}$

Previous studies ${ }^{1}$ have been made of the decay of ${ }^{156} \mathrm{Ho}$, and they have shown population of daughter states up to spin 6 . Ekströn et al ${ }^{2}$ have measured the spin of $56 \mathrm{~min}{ }^{256} \mathrm{Ho}$ to be $I=1$. The above facts suggest that there may be a short-lived higher-spin gromd state that rapidly equilibrates with the 56 min , spin 1 isomer.

In earlier work at the Yale Heavy Ion Accelerator Laboratory we have strmied the ganma spectra, mainly producing the activiiies by boron-11 bombardments of samarium oxide targets. In the summer of 1974 we made new studies, producing the activity by way of the parent erbium-156 by (${ }^{12} \mathrm{C}, 3 \mathrm{n}$) reaction on isotopically enriched ${ }^{147} \mathrm{Sm}$ oxide. This new work was done at the cyclotron of the Institute
of Physical and Chemical Research (RIKEN), Japan.
We present in Fig. 1 a partial decay scheme extending the earlier work. Our $\gamma-\gamma$ coincidence experiments were not very informative due to t2 ubles from strong anuihilation radiation. Thus, the assignments are mainly based on energy sums. That there is still more complexity to the decay is indicated by the table of additional gamma rays not fitted into the decay scheme,

He are especially grateful to Director H. Kimitsubo and colleagues of the Institute of Physical and Chemical Research, Wakai-shi, Saitana-ken, Japan, for making available their heavy-ion cyclotron and high-resolution gamma spectroscopic apparatus.

Fig. 1. Preliminary decay scheme of the ${ }^{156} \mathrm{Ho}$ isoners.
(XBL 756-3319)

TABLE 1. Unassigned high energy r rays (keV) of

$1001.32(\mathrm{~W})$	$1155.35(\mathrm{M})$	$1205.80(\mathrm{~N})$
$1218.03(\mathrm{~S})$	$1292.49(\mathrm{M})$	$1301.43(\mathrm{M})$
$1337.86(\mathrm{M})$	$1416.04(\mathrm{~S})$	$1422.60(\mathrm{~N})$
$1432.91(\mathrm{M})$	$1453.04(\mathrm{~S})$	$1471.04(\mathrm{~S})$
$1528.09(\mathrm{M})$	$1535.43(\mathrm{M})$	$1543.62(\mathrm{~N})$
$1632.89(\mathrm{M})$	$1647.97(\mathrm{~S})$	$1761.70(\mathrm{M})$
$1820.11(\mathrm{~N})$	$1854.62(\mathrm{~N})$	$2020.73(\mathrm{~S})$
$2025.91(\mathrm{~N})$	$2042.91(\mathrm{~S})$	$2218.46(\mathrm{~S})$
$2252.08(\mathrm{M})$	$2331.28(\mathrm{~S})$	$2392.29(\mathrm{~S})$
$2458.26(\mathrm{~N})$		

Intensity scale: (W) weak, (M) mediun, (S) strong.

Footnotes and References

*Work supported in part by Kyoto University, by J.A.E.R. I., and by Japan Society for the Promotion of Science.
${ }^{\dagger}$ Reactor Institute, Kyoto University, Kumatori, Japan.
\#Research Division, Japan Atomic Energy Research Isstitute, Tokai-mura, Japan.
${ }^{5}$ Present address: 34 Main Street, Malden, Mass.

IN LJQUID MERCURY•

I. Rezanka, ${ }^{\dagger}$ I. A. Ladanbauar-Bellis, ${ }^{\dagger}$ and J. O. Rasmussen

In the process of systematic investigation of nuclear isomers and their properties at Yale Heavy Ion Accelerator (HILAC), a previously unreported isomer ${ }^{20}{ }^{7} \mathrm{Rn}^{\mathrm{m}}$ was observed and its properties were studied.

The isomer was originally produced by bombardments of a thick natural Hg target with 120 MeV ${ }^{12} \mathrm{C}$ ions from the Yale HILAC.

In the study which followed, a thin ($10 \mathrm{mg} / \mathrm{cm}^{2}$) self-supporting Au target and ${ }^{14} \mathrm{~N}$ ions with energies varyjng from $70-120 \mathrm{MeV}$ were used. The Y and x rays were detected during and after the accelerator beam pulse by means of several $\mathrm{Ge}(\mathrm{Li})$ detectors ianging in size from 8 to $40 \mathrm{~cm}^{3}$.

The standard beam duration of the HILAC is 2 ms and is followed by 98 ms beam-off period. However, for some of these experiments, the beam pulses were narrowed down to about $150 \mu \mathrm{~s}$ at the same repetition rate of 10 Hz . The data collection was performed under computer control and the PDPS/I
computer was programmed for a wide variety of collection modes including a real-time analysis of the talf-lives associated with different peaks of the spectrum. The photon radiations sumarized in Table 1 are assigned to the isomer with a best

TABLE 1. Tronsitions in ${ }^{207_{R 1}}{ }^{m}$ decay.

E (keV)	$\mathrm{I}_{\text {photon }}$ $(\%$ of decays)	$\mathrm{I}_{\text {transit }}$ (8 of decays)
$K \times$ rays	77 ± 7	
234 ± 1	21 ± 5	126 ± 30
665.1 ± 0.1	98 ± 2	100^{b}

[^1]half-1ife value set at $181 \geq 18$ us.
A prompt (within the resolving time of 40 ns) coincidence relation was established between the 665.1 keV Y line and the Rn kx group when using a standand fast-slow coincidence circuitry and two Ge(Li) detectors with volunes 40 and $8 \mathrm{~cm}^{3}$, respec. tively. Consequently, the isoner is a Pn muclide.

The nass number of the Pn isomer was deter: mined as $A=207$ by the measurement of relative excitation functions. Based on the coincidences observed in the decay of the iscneric state, between the 665.1 keV Y line and the Rn Kx rays, the two transitions consected with the isomer decay, 665.1 and 234 keV , appear to be in cascade. Furthenmore, due to the observation of the 665.1 keV transition in the prompt garan rays while the 234 keV y line was not seen in beam at all, the 665.1 keV transition populates the ${ }^{237} \mathrm{~Pa}$ ground state.

A $(20 \pm 15) \%$ anisotropy in the bean direction, of the intensity of the 665.1 keV line was observed during the first 1 ms after the bean pulse when bombarding the thick Ho metallic target at roon temperature with ${ }^{12} \mathrm{C}$; by analogy with the relaxation time of ${ }^{2}{ }^{5} \mathrm{~Pb}^{\mathrm{m}}$ in liquid Hg found to be equal to $0.4 \pm 0.2 \mathrm{~ms}$, the relaxation time of Rn recoils could be expected to be comparable with the measurement time. The anisorropy indicated a cuadrupole character of the 665.1 keV transition and its multipe;arity was assigned as E?. The assigmment of the M 2 multipolarity of the 334 keV transition followed then from the measured γ - and x-ray intensities.

Considering the regular occurrence of the $5 / 2^{-}$ground state for the nuclei with $\mathrm{N}=121$, the
level scheme as shown in Fig. 1 was proposed and the isomeric level was assigned as the $i_{13 / 2}$ shell. model state.

Mig. 1. Necay scheme of ${ }^{219} \mathrm{Rn}^{17}$. (XAL 755-1225)
The hindrance factor of 530 for the delayed NR, $15 / 2^{*} \rightarrow 9 / 2^{-}$transition in. ${ }^{*}{ }^{7} \mathrm{fm}$ wis calculated by means of heisskopf formula, this value apreses well with the himetrance factors of 1500 and 290 calculated for the transitions of the same rype observed ${ }^{2}$ in ${ }^{2} \mathrm{spo}^{m}$ and 36 , respectively.

Foothote

*A more decailed report is in Phys. Rov. C10, 766 (1974).
tileavy Ion Accelerator Laboratory , File University Nen Itaven, C「 06520

HIGH-SPIN ROTATIONAL STATES IN ${ }^{169}$ Hi FROM THE ${ }^{159} 7{ }^{314} \mathrm{~N}, 4 \mathrm{my}$ REACTION AND DECAY OF ${ }^{169} \mathrm{Ta}^{\circ}$

E. der Mateosim," ${ }^{\circ}$
I. Razanka ${ }^{\dagger} W$
W. S. Rible \ddagger
I. M. Ledenbeuer-Bwlis, S and J. O. Ramusime

Studies of nuclear high-spin rotatlunal states have led in recent years to the discovery of tho new effects: sudden changes of the moment of inertig at high rotational velocities (backbending) 1,2 and the weakening of the coupling of the last odd partisle to the core in unique parity states. 3,4 A complete understanding of both effects has not yet been achieved; both may be, in fact, related to Coriolis effects, ${ }^{5}$ To arrive at a more definitive theoretical explanation, further experimental measurements are needed. The experimental studies should probably stress two directions: studying the nuclear high spin states in new nuclear species, and extending the knowledge about already investigated nuclei to even higher spin states. This study of ${ }^{169} \mathrm{Hf}$ has followed both lines.

The experimental work on this project was done as a cooperative effort of Yale Heavy Ion Accelerator, Lawrence Berkeley, and Brookhaven National
laboratories. The first experiments on this study were made it the Yaie lenvy Ion Accelerator (HIA) where both the decay of ${ }^{363}$ Ta and the in-bean gamma ray excitation functions of $16{ }^{9} \mathrm{Hf}$ in the ${ }^{159} \mathrm{~Tb}^{\circ}{ }^{14} \mathrm{~N}$, $4 n$) reaction were studied. Following this preliminary in-beam spectroscopy, the finni experiments on γ-coincidences and angular distributions were done at the Brookhaven laboratory tanden van de Graaf.

Although all the data are important for the level assignment and interpretation, the results of the coincidence experinent provided the most direct infonmation ahout the rotational bands in ${ }^{18}{ }^{9} \mathrm{Hf}$. The coincidence results formed the main basis for the assigment of all rotational levels resulting from this study.

The three lowest levels of the 5/2"1523] rotational band were already assitgled from the

16tra decay. liere, in the in-beres study, this bend mas also observed and identified up to considertibly higher excitations. It mas found that it consisted of two cascedes with weak cross-fopiling. The only ΔI - -1 transitions positively observed here, are the two lowest ones; othenvise, only the al $=-2$ strotched transitions formed the bend up to aplas 31/2 and 29/2.

The soo strons cascades shom in the coineldence spectra of Fif. 1 are otrious cundidates for the decoupled positive parity bind occurrips reguLarly in odd-neutren rare earth muclei. 6 This assifunant follows both from thelr specine and from their population patzems. The delayed colncidunces of both cascudes with the 21.8 hev, EI trmasition ending in the ground state prove thls assl gment. Although zuch a baed is a Coriolis minture of soveral Nllsson orbitals origlanting in the $\frac{i}{2} 3 / 2$ shefl model state, end the perturbation my bt $3 / 2$ effective owen for low rotational excirations, the prevililus single particle charactor for the low exeltations should be $5 / 2^{2}(612)$. The speciants and intensities in the stronger of the cascendes show, for exmple, that the $218.6 \mathrm{kaV} \mathrm{r}-1$ ine is the $17 / 2^{+\alpha+13 / 2 *}$ cransition; thls, and the ancular distribution aneble us to assion this bend startins with the $9 / 2^{+}$level and extending reliably to spin $91 / 2$ and tertectively to 49/2. The level scheme of iomif resultise from this study is shom in Fig. 2.

Pundmental information can be obralnct frow the E2fu maxict mplitudies o. This malysis is treortint for the nisf mont of the $5 / 2^{-1}(512]$ bond. Information of two kins is avilioble for this purpose: the results of the mplar distribution manurments, and the croes-over-to-cascaio brmehIng ratios within the band. Comprally the bramehin ratios yield more scourate aboolute valuos of δ but camot decentine the slfa, ad the gelifibility hinges on the vallidity of the strang compline modiol.
 uneqilvocally and its cholute value umiliy sather irncourately, both in a model-ipimpadent my. Doduced mixime mplitudes are given in Trble 1.

The mixing aplitude is serictix, related to the muelear gitactor by the relation?

$$
\begin{equation*}
e_{x}=\varepsilon_{R}=\frac{Q_{0} E_{y}}{1.073\left(x^{2}-1\right)^{\frac{1}{2}}} \frac{1}{\delta} \tag{1}
\end{equation*}
$$

wiere O_{0} is the muclear quadrupole moment in barrs, Ey the cuery of the catcale crensicion in HeV, and I the initial spin. The value of 5.5 bares wat taken for the vilue of $\mathrm{gop}_{\text {, extrapolated }}$ f:tan che tabulated $B(E 2)$ values of heavier HF tur.tej according to the A-dependence of the $2 \rightarrow 0$ tematitions in the doubly-men mectel. The results of this deternination are given in colush of

Fig. 1. Coincidence spectra added for the two cascedes in $5 / 2^{+}[642]$ band; $1+1 / 2$ odd in upper pert, I $+1 / 2$ even in lower part of the figure.
(XBL 748-10005)

Fig. 2. ${ }^{169} \mathrm{Hf}$ scheme based on this study.

TABLE 1. Nixing amplitudes and g-faators in nagative pavity bande of ${ }^{189} \mathrm{Hf}$.

Band	Initial spin				$\left(g_{X}-g_{R}\right)_{\exp }$	$\left(g_{K}-g_{R}\right)_{\text {th }}^{\text {a }}$
		Fron angular distribution	From branching ratio	Adopted value		
5/2 ${ }^{-}$[523]	9/2		$\pm 0.70 \pm 0.21{ }^{\text {b }}$	-0.70 ± 0.21	-0.13 ± 0.04	-0. 12
5/2 ${ }^{-}$[512]	9/2	-4.0 to -0.05	$\pm 0.35 \pm 0.10$	-0.35 ± 0.10	-0.47 ± 0.15	-0.62
	11/2	-6.0 to -0.03	$\pm 0.22 \pm 0.07$	-0.22 ± 0.07	-0.66 ± 0.22	-0.62
	13/2	-10 to +0.02	$\pm 0.18 \pm 0.05$	-0.18 ± 0.05	-0.79 ± 0.26	-0.62

${ }^{2}$ Values of g_{K} extrapolated from Ref. 27, and $g_{R}=* 0.3$ were used.
${ }^{\mathrm{b}}$ From analysis of coincidence spectra.

Table 2, and in column 7 they are compared with the calculated ${ }^{9}$ values. For that purpose, the value of 0.30 was used for gR_{R}. The agreement appears to be good.

There is no abrupt change in monent-of-inertia at high spin in any of the bands measured here. This observation can be internreted as favoring Stephens' and Simon's explanaicion's ot backbending. If indeed the decoupled $i_{13 / 2}$ two-neutron band is responsible for the backbending in the ${ }^{168} \mathrm{Hf}$, one would not expect the band in ${ }^{169}$ Hf based on the $i_{13 / 2}$ neutron to backbend. On the contrary, the mixing with the three-neutron states of the same shell-model character would be strong, and the moment of inertia would change only gradually in the $5 / 2[642]$ band, as is observed here.

Footnotes and References

*A more complete report is published in Phys. Rev. C11, 1767 (1975).
**Present address: Brookhaven National Laboratory, Upton, New York 11973.
${ }^{\dagger}$ Present address: Xerox Corporation, Rochester, New York.

中Present address: Städt Rudolf-Virkchow Krankenhaus, Strahlungsabteilung, 1 Berlin 65.
${ }^{5}$ Present address: Heavy Ion Accelerator Laboratory, Yale University, New Haven, Connecticut 06520.
'Present address: Lawrence Berkeley Laboratory, Lhiversity of California, Berkeley, California 94720.

1. A. Johnson, H. Ryde, and J. Starkier, Phys. Letters 34B, 605 (1971).
2. A. Johnson, H. Ryde, and S. A. Hjorth, Nucl. Phys. A179, 753 (1972).
3. S. A. Hjorth, H. Ryde, K. A. Hageman, G. Lpvhpiden, and J. C. Waddington, Nucl. Phys. Al44, 513 (1970).
4. I. Rezanka, … M. Bernthal, J. O. Rasmussen, R. Stokstad, I. Fraser, J. Greenberg, and D. A. Bromley, Nucl. Phys. Al79, 51 (1972).
5. F. S. Stephens and R, S. Simon, Nucl, Phys. Al83, 257 (1972).
6. F. S. Stephens, P. Kleinheinz, R. K. Sheline, and R. S. Simon, Nucl. Phys. A222, 235 (1974).
7. F. Boehn, G. Goldring, G. B. Hagemann, G. D. Symons, and A. Tveter, Phys. Letters 22, 627 (1966).
8. R. A. Sorenson, Rev. Nod. Phys. 45, 353 (1973).
9. I.-L. Lamm, Nucl. Phys. Al25, 504 (1969).

A nember of experimental studies have eatablished the existence of decoupled bends in muclei; these bends hive been rather unemituously identified in the inutron-daficiont la whe rexe-arth muclei, in the He region, and probobly also in the Sc, Se, and Pd regions, 1 lore wevil riport on results from a study of the 192;is?itsin muelei.

If the Au maclei a low-lying 11/2- state is known. ${ }^{2}$ which at first might be thoupht to be the $\Omega=11,2^{-}$Nilsson state, indicating a prolato deformation for these nuclai. Ameent resuluts show, however that the nuclei in this mass reqion are oblate, ${ }^{3-6}$ and if this is the case also for the Au nuclei, the $a=1 / 2$ Nilsson orbital is closest to the Ferni surface and, within the context of the strong-coupling model, camot explain the existence of the known low-1ying $11 / 2^{-}$states. However, the model of a particle coupled to a rapidly-rotating non-spherical core 6 is consistent with the $11 / 2$ assigrment and with the observed band built on this state. The aim of the present study was to test insofar as possible the adequacy of such a rota-tion-aligned model for the negative-parity levels of this nucleus.

Several reactions have been used to populate
 26,29 , and 42 MeV a beans and Os (${ }^{\mathrm{L} i}, \mathrm{xmy}$) Au with 50 and $58 \mathrm{MeV}{ }^{1} \mathrm{Li}$ beans. The targets were monnted on thin AA backings and were enriched in ${ }^{19}$ IIr, ${ }^{193} \mathrm{Ir},{ }^{190} \mathrm{Os}$ and ${ }^{192} \mathrm{Os}$. The Berkeley 88 -Inch

Cyclotion providel the alphay and 'Li beans. The gen-ray spectra wre difected with one or two 8
 The sifeles giveray spectin wie recorded both
 distinuish batween prompt transitions and ones Which ato deloyed by 3 ns. The manuar misotropies were manured with the desectors at 30° and 96° for the a raxctions, and at 45° and 90° for the li rectetions. Gen-gimencidence meisurements were perfoned with both detecters at 90° relitive to the bed direction.

The lovel schemes doduced for the 201,181 , 105Au pucleus are shom in Fig. 1. The detailed experimentil data are available in the published report of this work, 7 The favored bands in these Au nuclei are well establishod. Figure 2 shows the bends in colparison with the corresponding bands in dobbly-eyen Pt and Homclei. is seen from the fipure, the $11 / 2^{-}+15 / 2^{-}$energy spacings are very close to the $0^{+}+2^{+}$energo spencing in the Hg isotopes, whereas the $0^{+} \rightarrow 2^{+}$energy spacing in the Pt isotopes are somewhat smaller. For the higher spins, the agreenent between the energy spacings is aiso much better for in and Hg than for Air and Pt . In the Pt isotopes, the mumber of expty levels available to the proton pairs is two rather than one, as it is for Hg and Au. This night be the reason for the greater similarity of the energy specings in Au and Hg.

Fig. 1. The decay schemes for ${ }^{191} \mathrm{Au},{ }^{193} \mathrm{Au}$, and ${ }^{195} \mathrm{Au}$. The widths of the arrows indicate the relative intensities of the transitions following the ($a, 2 n \gamma$) reaction for ${ }^{19}{ }^{13}$ Au and ${ }^{195} \mathrm{Au}$ and the ($\mathrm{Li}, 6 \mathrm{n}$) reaction for ${ }^{19} \mathrm{Au}$.
(XBL 743-2493)

Fig. 2. The bands based on the $11 / 2^{\circ}$ state in the odd-mass Au nuclei colpared to the ground-state bands in the adjacent Hg and Pt nuclei.
(XBL 743-2491)

Apart from the decoupled band, levels having spins $7 / 2^{-}, 9 / 2^{\circ}, 13 / 2^{-}$, and $17 / 2^{\circ}$ are observed at excitation energies wich do not differ more than 20 keV for ${ }^{19}{ }^{1} \mathrm{Mu}$ and ${ }^{125} \mathrm{Au}$. From the study of the decay of ${ }^{19}{ }^{1} \mathrm{Hg}, 7 / 2^{-}, 9 / 2^{-}$, and $13 / 2^{-}$levels are also observed in "'Au at about the same excitation energy as in the other Au nuclei. Since these three Au nuclei are so similar, a comparison between the observed and calculated energy levels is only made for one case and this is shown for ${ }^{195} \mathrm{Al}$ in Fig. 3.

The calculation, similar to those previously nade, 1 is based on a particle-plus-rotor model. using a perfect (rigid) rotor haniltonian for the core. Thus it does not include the possibility of asymmetric shapes, shape changes, vibrations, or large individual $2-q p$ components, All of these effects might be expected to occur in the Au region, so that the calculations in Fig. 3 should only be considered as a first approximation. The calculation has no parameters. The $h^{2} / 2 F$ and β values were derived fron the average 2^{+}energy in ${ }^{194} \mathrm{Pt}$ and ${ }^{19} \mathrm{Hg}$ according to expressions given in Ref. 1. This is about the same result one would get by basing these quantities on an average $\hbar^{2} / 2 \mathcal{G}$ value from the 2^{+}and 4^{+}states in ${ }^{136} \mathrm{Hg}$.

Even with this relatively crude calculation the agreenent between the experinental results and the calculation is rather comvincing. The decou-pled-band menbers ($11 / 2,15 / 2$, and $19 / 2$) reflect the core energies, and would be improved by using core spacings more realistic than those of the rigid rotor, as can be seen in Fig. 2. The $7 / 2$ and 3/2 states are approximate members of this band, and this is the first time such $10 w-$ spin states have been associated with a decoupled band. Their qualitative agreement with the calculation suggests that the rotation-aligned coupl ing 'scheme may apply to $10 w-$ spin, as well as high-spira, states. The $13 / 2$ and $17 / 2$ states are membe:s of the $a=j-1$ n $9 / 2$ band (sometimes called the unfavored band), and the fact that this band lies considerably lower

Fig. 3. A comparison of the observed negativeparity levels in ${ }^{15} \mathrm{Au}$ with those calculated from a particle-plus-symetric-rotor nodel. The heavy, dashed lines indicate levels not observed in this work.
(XBL 743-2492)
than calculated can be caused by non-axial shapes. Such shapes are likely to be inportant in tne gold region as indicated by the 10 w -lying second 2^{+} states' in the even-even Pt and Hg maclei. The $9 / 2$ state is an approximate member of this band. The second $11 / 2$ and $15 / 2$ states would belong to the $a=7 / 2$ band, and the second $13 / 2$ state to the $\alpha=5 / 2$ band. Figure 2 shows all the experimental negative-parity states below $1,25 \mathrm{MeV}$, and ail the calculated ones below 2.3 MeV . The significant features of the comparison seem to us to be a) the
apreement in eneray of the decoupled band and of the 6 or 8 lopest-energy states, and b) the occurrence, in general, of the correct states in the energy rogion shown. Calculations including shupe asymetry have been mide, ${ }^{8}$ and seem to proulde a major improvement over the comparison in Fig. 3.

Two other kinds of leveis are seen in these gold melei. Isomeric states with probable spins of $21 / 2^{+}$are seen in all three muclei, and probably result from the $h_{11 / 2}$ proton hole coupled with the well-known core \mathbf{S}^{-}states. While a plausible structure exists for these 5_{7}^{-}states, a number of unexplained features rempin. ${ }^{7}$ In addition, there are systematically occurring bands based on the low-lying positive-parity levels in these gold muclei. These states are very likely based on the $s_{1 / 2}$ and $d 3 / 2$ orbitals, but the appropriate twoshell calculations are not available for comparison.

Footnotes and References

*On leave of absence from the Institute of Physics, University of Osin, Norway.
${ }^{+}$Present address: Physik Department ti2, T. U, Nirichen, 8046 carching Hochsciulge!ainde, West Germany.
\#present address: Department of Chemistry, Brookhaven National Laboratory, lipton, Long island, N.Y. 11973.

1. F. S. Stephens, R. M. Diamond, J. R. Leigh, T. Kumari, and K. Nakai, Phys. Rov. Letters 29 , 438 (1972); see reforences in F. S. Stephens, Proceedinps of the Intermational conference on Miciear Physics, Mmith, 1973 , edited by J. de Boer and II. J. Matig, Vol. I1, p. 367.
2. Nuclear Data Sheets B, No. 5 (1972).
3. J. E. Gilenn, R. J. Pryor, and J. X. Saladin, Phys. Rev. 188, 1905 (1969).
4. J. O. Newton, S. D. Cirilov, E. S. Stephens, and R. M. Diamond. Nucl. Phys. A148, 593 (1970).
5. K. Nakai, Phys. letters 34B, 269 (1971).
6. F. S. Stephens, R. M. Diamond, D. Benson, Jr., and M. R. Meier, Phys. Rev. C7, 2163 (1973).
7. P. O. Tjem, M. R. Maier, D. Benson, Jr., F. S. Stephens, and R. M. Dianond, Nkel. Phys. A231, 397 (1974).
8. J. Heyer ter Vehn, private commanication (1974).

high-spin excitation modes in even hg nuclei*

D. Proetel, ${ }^{\dagger}$ A. M. Diamond, and F. S. Stephams

The mercury nuclei, with $Z=80$, have only two protons less than the inagic number 82 and lie in the transition region between the strongly deformed proiate rare-earth nuclei and the spherical lead nuclei. The heavier Hg isotopes are considered to be nearly spherical (vibrational) with small oblate defomation. 1 Negative-parity bands have been observed 2,3 in these nuclei starting at spin 5 . The E2 transition probabilities ${ }^{4}, 5$ connecting the lowest members of these bands have strengths of about 30 s.p.u., indicating some collectivity. The negative parity, the fact that the lowest spin in the band is 5, and the occasionally very close spacing of the 5^{*} and 7^{-}members, however, suggest a single-particle nature for these states in which an $i_{13 / 2}$ neutron is coupled to a $p_{1 / 2}, P_{3 / 2}, f_{5 / 2}, \ldots$ neutron. In the very neutron-deficient mercury isotopes with $A=184$ and 186 , a change from small (probably) oblate deformation to large prulate deformation has been found in the yrast states around spins 2 and 4, respectively.

The nuclei with $A=194,196$ and 198 have been studied following ($\alpha, x, x ; 3,4$) reactions on enriched self-supporting platinum targets of approximately $5 \mathrm{mg} / \mathrm{cm}^{2}$ thickness. The a bean was provided by the 88 -Inch Cyclatron of the Lawrence Berkeley Laboratory. Excitation functions for the ($\alpha, 3 n$) and ($\alpha, 4 n$) reactions have been studied in the energy range between 34 and 50 seV . The nuclpus ${ }^{10} \mathrm{Hg}$ has been studied with the reactions
${ }^{132} \mathrm{Yb}\left({ }^{20} \mathrm{Ne}, 4 \mathrm{n}\right)$ at 104 MeV and ${ }^{364} \mathrm{Dy}\left({ }^{20} \mathrm{Si}, 4 \mathrm{n}\right)$ at 128,135 , and 144 NeV , and in the β decay of ${ }^{11} \mathrm{Tl}$, which has been produced by bombarding ${ }^{16}{ }^{5} \mathrm{Ho}$ with ${ }^{25}$ Si and ${ }^{159} \mathrm{~Tb}$ with ${ }^{32} \mathrm{~S}$. These heavy-ion beams were produced by the HILAC at the lawrence Berkeley Laboratory. The time structure of the beams (pulse width 210 ns , distance hetween bean burst $\sim 150 \mathrm{~ns}$ at the cyclotron and ≈ 6 ms pulse width with a repetition rate of $36 \mathrm{sec}^{-1}$ at the HILAC) were used to accumulate in-bean (IB) and off-beam (OP) spectra in order to determine isomeric transitions and short-lived activities. Approximate A_{2} coefficients for the γ transitions were determined by measuring the anisotropy of the γ-ray emission at two angles in the reaction plane. Gamma-gama coincidences were recorded between a coaxial and a planar Ge(li) detector using conventional iast-slow coincidence techniques.

Low-lying levels in the three Hg isotopes with $A=194,196$ and 198 were known previously to the ${ }_{7}$ 6^{+}and 7^{-}states, ${ }^{2}$ and in ${ }^{188} \mathrm{Hg}$ to the 4^{4} state. ${ }^{7}$ Our experiments agree with all previous assignments, and add levels up to around spin 12 in both the positive- and the negative-parity bands. The decay schemes for the nuclei studjed follow quite straightforwardly from the coincidence data, and are shown in Fig. 1, A great help in the case of ${ }^{101} \mathrm{Hg}$ is the γ spectrum from the β decay of ${ }^{188} \mathrm{~T} 1$ which populates with decreasing intensity levels in ${ }^{163} \mathrm{Hg}$ up to the 8^{+}state, and so determines the

Fig. 1. The level and decay shcemes of the low-lying high-spin states in mercury nuclei with $A=188,194,196$, and 198 as they follow from previous studies and the present work.
(XBL 743-2500)
sequence of these γ rays uniquely.
Information on the 10 -1-1ying high-spin states is now available for almost all even-even and odd-A mercury nuclei from $A=184$ through 200. The Hg nuclei with $190<$ A <200 are belicved to be of oblate deformation, and the $\mathrm{B}\left(\mathrm{E} 2 ; \mathbf{2}^{+\boldsymbol{+}} \rightarrow 0^{+}\right)$values indicate moderate collectivity in these muclei, of a type historically called vibrational. However, the 10^{+}states, with their small transition ener: gies to the 8^{+}states and their small $B\left(E 2 ; 16 \cdot \rightarrow 8^{+}\right)$ values, seem to be mainly due to ($\pi \mathrm{h}_{11}^{2} / 2$) excitation. With the neutron-deficient Hg isotopes, $A<190$, a very different transformation appears at higher spin. There is evidence for a change to large prolate deformation (small values of $h^{2} / 2 \%$ and large $B(E 2)$ values) for states above a spin value which decreases with decreasing neutron number from 6^{+}in ${ }^{186} \mathrm{Hg}$ to 2^{+}in ${ }^{184} \mathrm{Hg}$. Thus, the high-spin states of the yrast band show ore type of behavior for $A>190$, and a different type for $A<190$. In either case, chese nuclei with small deformation find it necessary to change the rature of their yrast band at higher spins, to either large prolate defmmation ($A<190$) or to a stretched pair of high-j particles ($A>190$), in order to accommodate larger amouns of angular wonentum more economically.

Finally, the negative-parity band built on the 5^{-}state shows both considerable collective quadrupole character (enhanced $B(E 2)$ values among the merbers) and a strong two-particle component, particularly of [vi $13 / 2, v \mathrm{j}]$. Some aspects of the levels (including having the natural parity members lowest and starting with 5°) can be understood by shell-model calculations including residual inter-
actions, ${ }^{8}$ but the enhancement of the $B(E 2)$ values requires additional mixing of the states so obtained with each other, and with the collective motion of the core. ${ }^{9}$

Footnotes and References

* Condensation of LBL-2380.
${ }^{\text {ton }}$ On leave from Sektion Physik, University of Manich.

1. D. Proetel, D. Benson, Jr. A. Gizon, J. Gizon, M. R. Maier, R. M. Diamond, and F. S. Stephens, Nucl. Phys. A226, 237 (1974).
2. R. F. Petry, R. A. Naumann, and J. S. Evans, Phys. Rev, 174, 1441 (1968).
3. J. C. Cunnane, R. Hochel, S. W. Yates, and P. J. Daly, Nucl. Phys. Aloo, 593 (1972); and S. W. Yates, J. C. Cumnane, R. Hochel and P. J. Daly, Preprint (1974).
4. H. Ton, G. H. Dulfer, J. Brasz, R. Kroondijk, and J. Blok, Nucl. Phys. A153, 129 (1970).
5. K. Krien, E. H. Spejewski, R. A. Naumann, and H. Híbel, Phys. Rev. C5, 1751 (1972).
6. D. Proetel, R. M. Diamond, P. Kienle. J. R. Leigh, K. H. Maier, and F. S. Stephens, Phys. Rev. Letters 31, 896 (1973) ; N. Rud, D. Ward, H. R. Andrews, R. L. Graham, and J. S. Geiger, Phys. Rev, Letters 31, 1421 (1973); and D. Protel, R. M. Diamond, and F. S. Stephens, Phys. Letters 48B, 102 (1974).
7. J. Burde, R. M. Diamond, and F. S. Stephens, Nuc1. Phys. A92, 306 (1967).
8. The authors are indebted to Dr. M. Redlich for valuable discussions of this point.
9. Dr. Petr Vogel has made calculations enbodying the essential features just described, and achieved qualitative agreenent with experiment. Private communication, June, 1974.

DECOUPLED BANDS IN ODD.MASS MERCURY ISOTOPES*

D. Proetw, ${ }^{\dagger}$ D. Benson, Jr., ${ }^{\ddagger}$ A. Gizon, ${ }^{\text {§ }}$ J. Gizon, ${ }^{\text {§ }}$

M. R. Maler, R. A. Dimond, and F. S. Staphens

The schenes of the low-1ying high-spin states in mercury isotopes with $A=195,197$, and 199 have been studied by γ-ray spectroscopy following (α, xn) reactions on separated platinum targets. Excitation functions for the ($\alpha, 3 n$) and ($\alpha, 4 n$) reactions have been studied at seven different energies between 34 and 50 MeV , with α beans provided by the 88-Tnch Cyclotron of the Lawrence Berkeley Laboratory. The time structure of the cyclotron beam (pulse width $\approx 10 \mathrm{nsec}$, distance between beam pulses 2150 ns)-was used to accumilate in-beam and off-beam spectra in order to detemine isomeric transitions and short-lived activities. The anisotropies of the γ-ray angular distributions have

195

Hg

Fig. i. Decay scheme for the low-lying high-spin states in ${ }^{195} \mathrm{Hg}$.
(XBL 741-2231)
been measured at 45° and 90° in the reaction plane. Conventional fast-slow coincidence techniques wer used to record $\gamma-\gamma$ coincidences between a planar and a coaxial Ge(Li) detector, both located at 90° with respect to the incident beam.

The decay schemes of the low-lying high-spin states in the three muclel, $195,197,19{ }^{9} \mathrm{Hg}$ are shown in Figs. 1-3. Although we are dealing with odd nuclei near the closed proton and neutron she11s, the spectra of the odd- A Hg nuclei are relatively simple and renarkably similar to those of the adjacent even-even Hg nuclei. We observe a posi-tive-parity band based on the $13 / 2^{+}$state connected with stretched E2 transitions, and a presumably negative-parity band starting at $21 / 2^{2}$ which decays into the positive-parity band around spin $21 / 2$.
Figure 4 displays all available data on the $2^{+}, 4^{+}$ and 6° states for even-even mercury nuclei and the $13 / 2^{+}, 17 / 2^{+}$and $21 / 2^{+}$states in the odd-A mercury isotopes (solid bars) and the $5^{-} 7^{-}$, and 9^{-}states

Fig. 2. Decay scheme for the low-1ying high-spin states in ${ }^{197} \mathrm{Hg}$.
(XBL 741-2232)

Fig, 3. Decay scheme for the low-lying high-spin states in ${ }^{199} \mathrm{Hg}$.
(XBL 741-2230)
together with the $21 / 2^{(-)}, 25 / 2^{(2)}$ and $29 / 2^{(-)}$ states (broken bars) in the even-even and odid-A nuclei. (The spectra of the odd-A nuclei have been shifted so that the $13 / 2^{+}$states match up with the 0^{+}states in the even-even Hg nuclei.) A striking regularity is apparent in the $2^{+}, 4^{+}$, and 6^{+}states and the corresponding $13 / 2^{+}, 17 / 2^{+}$and $21 / 2^{+}$states through a range of 14 neutron numbers. Clearly, decoupled bands are occurring in the odd-A Hg nuclei with spin sequences $13 / 2,17 / 2$ and $21 / 2$ and energies very similar to the core energies in the even-ever Hg isotopes. In the context of the rotation-alignnent model ${ }^{1,2}$ this implies oblate deformation for these muclei, since for $\beta<0$ the Iow Ω states of the $\mathbf{i}_{13 / 2}$ subshell are close to the Fermi surface. For prolate deformation, one would expect a nomal rotational band based on the $13 / 2^{+}$ state, with the usual spin sequence and energies approximately proportional to $I(I+1)$. Some of the unfavored states of the decoupled band ($\alpha=11 / 2$) also seem to be seen, and their excitation energies follow qualitatively the predictions of the rota-tion-aligned coupling scheme. This provides additional evidence tha": this new coupling scheme may be a useful description for the low-lying high-spin states in these nuclei, and the large differences in energy tetween members of the multiplets show that weak-coupling schemes are invalid here. It appears that the strongly defomed (prolate) rareearth region and the spherical lead region are

Fig. 4. Level systematics for the low-lying highspin states in Hg isotopes with $\mathrm{A}=184$ through $A=200$. Plotted are the $0^{+}, 2^{+}, 4^{+}$, and 6^{+}quasirotational statss in the even-even and the $13 / 2^{+}$, $17 / 2^{+}, 21 / 2^{+}$, and $25 / 2^{+}$decoupled states in the odd-A muclei (solid bars) as well as the $\mathrm{S}^{-}, 7^{*}$, and 9^{-}and $21 / 2^{-}, 2 S / 2^{-}$, and $29 / 2^{-}$negative-parity states (dotted lines) in the even-even and odd-A nuclei, respectively. The spectra of the odd-A isotopes have been shifted in energy so that their isomeric $13 / 2^{+}$states match up with the ground states in the even-even lig isotopes. The numbers refer to the transition energies between the posi-tive-parity states. The data on ${ }^{192,192,193} \mathrm{Hg}$ are fram W. F. Davidson (private conmmication), the ones on ${ }^{1 日 7} \mathrm{Hg}$ are our okn preliminary resuits.
(XBL 741-2233)
connected by a transitional region with oblate deformation.

The observation of a probably negative-parity band in the odd-A mercury nuclei, starting at spin $21 / 2$, strongly suggests that the excitation of a (decoupled) il3/2 neutron hole plays a major role in the $5^{-}, 7^{-}, 9^{\prime}, \ldots$ bands recently discovered in the even-even mercury isotopes.

Footnotes and References

*Condensation of LBL-2349, see Nucl. Phys. 1226 , 237 (1974).
${ }^{+}$On leave from: Sektion Physik der Universität Minchen, 8046 Garching, West Germany.
†present address: Brookhaven National Laboratory, Upton, NY 11973.
${ }^{5}$ Present address: Institut des Sciences Nucleaires, BP 257, Grenoble 38044, France.
"Present address: Physik Department der TU Minchen, 8046 Garching, Hest Germany .

1. J. R. Leigh, K. Nakai, K. H. Maier, F. Päh1hofer, F. S. Stephens, and R. M. Diamond, Nucl. Phys. A213, 1 (1973).
2. F. S. Stephens, Rev. Mod. Phys., in press.

LIFETIMES AND g.FACTORS IN DECOUPLED BANDS*

K. Nakai, ${ }^{\dagger}$ D. Proated, ${ }^{\mp}$ R. M. Diamond, and F. S. Stephans

Recently, a number of decorpled bands have been reported in odd-mass nuclei in various regions of the nuclear chart, 1 and an interpretation of these bands as examples of the rotation-aligned coupling scheme has been suggested, If this interpretation is correct for nuclei in the "vibrational" regions, it indicates a greater importance of collective Totation than was preriously thought to be likely in nuclei having such small deformations. Studies of the electromagnetic properties of these bands can be helpful in distinguishing among the possible coupling schemes, namely, weak, strong, and rota-tion-aligned.

The odd-mass Er isctopes were chosen for this first study because the lifetimes and the g-factors of the even-even Er nuclei are known, 3,4 and these are essential for comparison. Lifetimes of the $17 / 2(j+2)$ and $21 / 2(j+4)$ members of the decoupled bands in ${ }^{1 / 5}$ Er and ${ }^{159} \mathrm{Er}$ have been measured using the recoil-distancl joppler-shift method. From the lifetimes determined for ${ }^{157} \mathrm{Er}$, the g factor of the $17 / 2^{+}$state was calculated by analyzing time-integral PAD data taken during experiments to determine ${ }^{4} \mathrm{~g}$-factors in the even-even Er nuclei.

In the lifetime measurements, an ${ }^{\circ 0} \mathrm{Ar}$ beam from the Berkeley 88-Inch Cyclotron was used to bombard self-supporting targets of ${ }^{122} \mathrm{Sn}$ and ${ }^{124} \mathrm{Sn}$

Fig. 1. The fraction of unshifted intensity, F, vs target-plunger distance for the $17 / 2+13 / 2$ and $21 / 2 \rightarrow 17 / 2$ transitions of ${ }^{157} \mathrm{Er}$. The distance is given in units of 25 im , and a scale in psec is shown at the top. The lines are the computer fits to the data.
(XBL 743-2672)
about $850 \mu \mathrm{~g} / \mathrm{cm}^{2}$ thick. The beam energy was 171 MeV , near the maximun of the excitation functions for the ($40 \mathrm{Ar}, 5 n$) reactions. Since some γ transitions of ${ }^{150} \mathrm{Er}$ were also seen in the spectra obtained, their lifetimes were detemined for comparison with the previous resuIts, ${ }^{3}$ but the accuracy was poorer in these even-even measurements, because the beam energy was not optimized for the $4 n$ reaction. The ratios, (unshifted intensity)/ (unshifted + Doppler-shifted intensity), for the transitions of interest at each plunger distance were obtained and analyzed with a computer program that fits three cascading gamma transitions simultaneously, and allows for another cascade of three transitions to feed the group being citermined. A plot of the experimental ratios vs plunger distance for ${ }^{157} \mathrm{Er}$ is shown in Fig. 1. The recoil velocity was detemined to be $v / c=(2.10 \pm 0.02)$.

The $\mathrm{B}(\mathrm{E} 2)$ values obtained are compared with those in the neighboring ever-even Er nuclei in Fig. 2. The $\mathrm{B}(\mathrm{E} 2)$ values in tre odd-mass nuclei are considerably larger than the average values in the even-even nuclei. This indicates that the oddmass states are not examples of weak coupling, as such a coupling scheme requires that these reduced transition protabilities be identical to those of the core, i.e., the neighboring even-even nuclei. However, both the rotation-aligned and the strong-

Fig. 2. Plots of $B(E 2)$ vs A. The solid curves correspond to weak-coupling (even-even) values, and the dashed curves to rotation-aligned ones. The crosses and circles correspond to measured values in even-evon and odd-mass nuclei, respec. tively.
(XBL 743-2671)
coupling schemes lead to larger $B(E 2)$ values, much closer to the observed ones.

To distinguish between these two possibilities, the results of an earlier time-integrated PAD measurcnent ${ }^{4}$ of the g-factors in $156,950,160 \mathrm{Er}$, using the strong hyperfine field acting on the highly-charged ions recoiling into vacuran, was re-evaluated to also extract the g-factor of ${ }^{157} \mathrm{Er}$. The result for the $17 / 2^{+}$state of ${ }^{157} \mathrm{Er}$ is $|\mathrm{g}|=$ 0.05 ± 0.05. This can be compared with the calculated values, using g_{5} (effective) $=0.6 \mathrm{~g}_{\mathrm{s}}$ (free), $g_{R}=0.40$, and $g_{l}=0$ for neutrons, weak coupling, -6.04 ; strong coupling, $+0.18,+0.38$, and +0.35 for $K=1 / 2,3 / 2$, and $5 / 2$; and rotation-aligned, -0.02 . So only the rotation-aligned wave functions give reasonable agreement for toth types of indusirement made here. The energy levels of these nuclei are also in best agreement with this scheme, though it is clearly only approximate, especially for ${ }^{259} \mathrm{Er}$. These measurenents are relatively casy to make, and can be applied rather generally to identify the type of coupling in particular nuclei. It will be interesting to make thesie measurements on other "deccupled" bands in regions of low deformation.

Footnotes and References

*Condensation of LBL-2389, see Phys. Rev. Lett. 32, 1380 (1974).
${ }^{\dagger}$ Present address: Physics Department, University of Tokyo.
\#Present address: Physics Department, University of Munich.

1. F. S. Stephens, Proceedings of the Intermational Conference on Nuclear Physics, Munich, Augist 1973, edited by J. de Boer and H. J. Mang (North Holland/American Elsevier, Ansterdan, 1973), p. 367, Vol. 2.
2. F. S. Stephens, R. M. Diamond, and S. G. Nilsson, Phys. Letters 44B, 429 (1973).
3. R. M. Diamond, F. S. Stephens, W. H. Kelly, and 1 . Ward, Phys. Rev. Letters 22, 546 (1949).
4. R. Nordhager, G. Goldring, R. M. Diamond, K. Nakai, and F. S. Stephens, Nucl. Phys. A142, 577 (1970).

backbending and rotation alignment*

F. S. Stephens, P. Kleinheinz, ${ }^{\dagger}$ F. K. Sheline, ${ }^{\ddagger}$ and R. S. Simon ${ }^{\S}$

It is row clear that a rather sudden structural change occurs in the ground-state rotational band of a considerable number of rare-earth even nuclei at high angular momenta, 1,2 Early evidence for such a change came from the population patterns of such bands following (HI, xn) reactions. ${ }^{3}$ but the conclusive step was the observation of jrregularities in the rotational-energy spacings. ${ }^{4}$ These irregularities are such that two or three rotational transitions in the region of I $212-20$ become lower in energy with increasing 1 , whereas transitions above and below this 1 -region have the normal (rotationa1) monotonic increase in energy with I. If the moment-of-inertia, \mathcal{F}, is plotted against the square of the rotational frequency, w^{2}, su:h a behavior produces a "backbending" curve (larger \mathcal{F} but smaller values for ω^{2}). There has recently been considerable interest in determining the nature of the structural change responsible for this behavior. The purpose of this paper is to pursue the consequences of the "rotation-alignment" explanation for this change in order to see if it is consistent with relevant data in adjacent odd nuclei.

The underlying model for the effects we want to estimate here will be that suggested by Stephens and Simon ${ }^{6}$ (SS). The basic proposal is that certain 2 -quasiparticle states in even-even nuclei gain enough Coriolis energy by aligning their angular momenta with the rotation axis (rotation aligned) so that at high spin values they becone the lowest states. At the beginning of the rare
earth deformed region the 2 -quasiparticle states involved would almost certainly be those from the $\mathrm{i}_{13 / 2}$ shell. This alignment effect can be estimated using the SS model, however several parameters enter these calculations, which makes a unique prediction appear difficult. At this point it is useful to remenber that most of the parameters entering into the 2-quasiparticle calculation for even nuclei also enter in much the same way into the 1 -quasiparticle calculation of the lowest $\mathrm{i}_{13 / 2}$
 throughout the rare-earth region and it seems clear that backbending in the even nuclei should be related to the characteristics of these bands in the adjacent odd nuclei if the rotation-alignment model is correct. We will make this comparison, first qualitatively for the whole rare-earth region, and then quantitatively for two pairs of nuclei.

1f we look at the lowest $i_{13 / 2}$ band in an oddneutron rare-earth nucleus one characteristic feature of the energies is the presence of a term whose sign altemates as I increases: this term has been called ${ }^{7}$ the "signature" term. This alternation of energies is the beginning of the rotationalignment process, and can be traced back to the Coriolis-induce- anplitude of the $\Omega=1 / 2$ orbital in the wave funciion, and further, to its decoupling term. Thus, this signature term is related to the extent of alignment, though it is not a direct measure of it. Therefore, it would be of interest to compare the size of this term with the degree
of backbending in the adjacent even nuclei. In Fig. 1 we have plotted all the information on rotational levels of even nuclei in the rare-earth region from N * 90 through $2 * 76$. A figure sinilar in this respect has been given by Sorensen. ${ }^{2}$ We have plotted in Fig. 2 the rotational levels of the lowest $i_{13 / 2}$ band in the odd-mass nuclei. The effects of the altermating energy term are apparent. The rotation-aligrment model would inply some correlation between the size of the alternating energy term and backbending. Conparison of Figs. 1 and 2 suggests that this may well be the case, but a more quantitative conparison would be useful.

One of the effects that Coriolis mixing has on the levels of the lowest mixed band is a compression of the band; that is, an increase in the apparent monent of inertia, It is not difficult to arrive at a quantitative expression for the conpression of the lowest $i_{13 / 2}$ band in the odd-neutron nuclei. If the band is decoupled (zotation aligned), then the $I=17 / 2$ to $13 / 2$ separation should be just the average $I=2$ to 0 separation in the two adjacent. even nuclei. Thus, the ratio, $6 \mathrm{E}(17 / 2 \rightarrow 13 / 2) / 32 \mathrm{E}$ $(2 \rightarrow 0)$, should be $6 / 32=0.188$ if the band is decoupled. This ratio should be 1.00 if the band is not mixed at all. This "compression factor" for the odd nuclei has been included in Figs. 1 and 2, and we have drawn a rough contour line for a compression factor of 0.45 . It is apparent that these mumbers correlate rather clasely with the size of
the altemating energy tem. Furthemore, the contour line approximately divides the backbending even nuclei from those that do not seem to backbend, though more data are badly needed in the lower right portions of Figs. 1 and 2, We find the correlation between compression factor and backbending, as indicated in Fig. 1, quite encouraging, and will now try to test these ideas by direct calculation.

The above discussion suggests that calculations of the type made by SS for the even nuclei should be first tested against the adjacent odd nuclei, and adjustments of the parameters be made, if necessary, in order to fit these odd nuclei. Thus, we start with an a priori estimate for the parameters, and an order for varying then until a satisfactory fit of each 1-quasiparticle band is achieved. Then this identical set is used for the 2-quasiparticle states in the adjacent even nuclei. Two sets of nuclei have been done: ${ }^{181,162} \mathrm{Er}$ in a backbending region, and $171,172 \mathrm{Hf}$ in a non-backbending region. The details of the mathematical procedures are given in Ref. 5.

It seems possible to characterize the bands in the odd nuclei roughly by two features; a compression fron the input $\left(\mathrm{h}^{2} / 2 \xi\right)_{\mathrm{l}}$ value and a magnitude for the energy oscillations. It is well known that both these quantities are too large if one does the Coriolis calculations with the a priori

Fig. 1. Ground-band level eaergies in doubly-even rare earth nuclei. The plots give the moement-of-inertia \mathcal{F} versus the square of the rotational frequency ω^{2}, both quantities derived from the transition energy. In a few cases where more than one possible choice exists, the lowest-energy transition is always used. Tentatively assigned band members are indicated by an onitted dot. The compression factors C and the contour line for $C=0.45$ are derived from the $17 / 2^{+}+13 / 2^{+}$level spacings observed in the odd-N nuclei (Fig. 2), and from the mean value $E(2 \rightarrow 0)$ of the 2^{+}energies in the adjacent even nuclei. The data references are given in Ref. 5 .
(XBL 7312-6974)

Fig. 2. The $i_{1} 3 / 2$ yrast level energies in odd-N rare-earth nuclei. The plots give the apparent $h^{2} / 23^{3}$ as derived from the transition energy (in urits of the mean value of $\left.h^{2} / 2\right\}$ in the neighboring doubly-even isotopes) versus the square of the spin of the upper level. In this plot an unperturbed rotational band gives a horizontal line (with the ordinate close to one), a band follc:ring the equation $E=A I(I+1)+\operatorname{BI}^{2}(I+1)^{2}$ gives a straight line with the slope B . The compression factor C derived from the $17 / 2^{+} \rightarrow 13 / 2^{+}$transition energy is indicated for each mucleus. In several nuclei with $N<99$ only one $E 2$ cascade was observed, which establishes the energy-favored band members with $I=j, j+2, \ldots$; these points are connected by a broken line to indicate the absence of the aiternate band menbers. (For illustrative purposes this is also done for several complete bands.) Dots are anitted for tentatively assigned band members. Reference to the original data is given in Ref. 5.
(XBL 7312-6973)
parameters described. The Coriolis matrix elements must be reduced, and to do this we chose the form used by SS, which is decreasing $f(T, V)$. We use:

$$
f(U, V)=\left(U_{1} U_{2}+V_{1} V_{2}\right)^{n} \quad\left\{\begin{array}{l}
1 q p-1 q p \tag{1}\\
2 q p-2 q p
\end{array}\right.
$$

where Ω is adjusted to fit the odd nucleus, Our procecure, therefore, was to fit the compression of the 1 -quasiparticle band with π, and then fit the energy oscillation by varying E_{4} (the hexadecapole deformation). To obtaln the fits shown in Fig. 3 for ${ }^{161} \mathrm{Er}$ and ${ }^{171} \mathrm{Hf}$, only these two quantities hed to be varied from the a prioni inpuit values (see Ref. 5). The rosults for the eien nuclei are also shown in Fig. 3. They seem to us to be very encouraging, since there are no adjustable parameters in these cases. T.is kind of agreement between the calculated 5 . 1 observed behavior suggests both that the input parameters are behaving as we have proposed and that the basic ideas may be correct.

Both the qualitative survey and the detailed calculations we have made support the rotationalignment explanation of back bending. It seems plausible that all the backbending in the rareearth deformed region could be due to these $i_{13 / 2}$

Fig, 3. A comparison of experimental (dots) and calculated (lines) properties of levels in the pairs of nuclei ${ }^{161,162} \mathrm{Er}$ and ${ }^{171,172} \mathrm{Hf}$. The plots are of the same type as those in Figs. 1 and 2. The left side of the figure shows the fits obtained for the lowest $\mathrm{i}_{1} 3 / 2$ band in the odd nucleus of each pair, and tra right side shows the results for the doubly-even nucleus calculated using the same parameters.
(XBL 736-3105)

2-quasiparticle states, though in the Os region it is quite possible that the h9/2 proton shell is more important, or even that another process is involved.

Footnotes and References

*Condensation of LBL-1911.
${ }^{\dagger}$ Present address: Los Alamos Scientific Laboratory, Los Alamos, N 87544 ; supported by USAEC Contract AT-(40-1)2454 Florida State University.
${ }^{\dagger}$ Present address: Florida State University, Tallahassee, FL 32306.
${ }^{5}$ Present address: University of Mmich.

1. A. Johnson and 2. Syzmanski, Physics Reports 7C, 181 (1973).
2. R. A. Sorensen, Rev. Mod. Phys. 45, 353 (1973).
3. J. O. Newton, F. S. Stephens, R. M. Diahond, W. H. Kelly, and D. Wand, Nucl. Phys. A141, 631 (1970).
4. A. Johnson, H. Ryde, and J. Sztarkier, Phys. Letters 34B, 605 (1971).
5. Published in Nucl. Phys. A235, 235 (1974).
6. F. S. Stephens and R. S. Simon, Jucl . Phys. A183, 257 (1972).
7. A. Bohr and B. R. Mottelson, Nuclear Structure, (Benjzainn, New York, Vol, 1, 1969), Vols. 2 and 3 to be publisled.

ANGULAR-MOMENTUM EFFECTS ON CONTINUUM GAMMA RAYS FOLLOWING HEAVY-ION REACTIONS*

P. O. Tjdm. ${ }^{\dagger}$ F. S. Stephens, R. M. 'ivemond, J. de Boer, \ddagger and W. E. Meyorhof $\$$

The gatma-ray spectra following heavy-ian (HI, xn) reactions have two main features: discrete lines from l,eavily populated low-lying levels of the final product nuclei, and a continuan which presumably represents all the higher transitions, none of whirt has sufficient population to be resolved with present techniques. The present wark, using p, ${ }^{16} 0$, and ${ }^{84} \mathrm{Kr}$ projectiles, shows that large variations occur in the number of gamna rays in the contimum region depending mainly on the outgoing channel, and that this variation may be understood in terms of a simple model.

In our work it was essential to specify the reaction ch mnel because many channels occur simultaneously in the reactions and a composite continuun of gamma rays would be difficult to interpret. Thus we measured the contimum in coincidence with known discrete transitions that specified particular channels, as was tone by Sunyar. 1 for the discrete lines we used a $40 \mathrm{cc} \mathrm{Ce}(\mathrm{Li})$ detector at an angle of 90° to the incident beam direction and about 5 cm from the target. The continum gammarays were detected in a $7.5 \times 7.5 \mathrm{~cm} \mathrm{NaI}$ crystal, 15 can from the target, and at angles of $0^{\circ}, 45^{\circ}$, and 90°. An absorber, consisting of 0.32 cm Pb and 0.32 cm Cu , was placed in front of the NaI detector, resulting in an overall detec...on efficiency that is very nearly constant for any gamma ray above 0.5 MeV . Since there are known discrete lines ist the spectra of interest up to about 0.6 MeV , and since there are not likely to be many continumm gamma rays below this energy, 1 we took 0.6 MeV as the lower limit for measurenants of the continum.

Bears of $347 \mathrm{BeV}{ }^{84} \mathrm{Kr}$ provided by the Berkeley SuperHILAC were used to banbard targets of ${ }^{62} \mathrm{Se}$
($1.3 \mathrm{mg} / \mathrm{cm}^{2}$) enriched to 97%. This produced the compound nucleus ${ }^{66} \mathrm{Yb}$, and various discrete lines in the final nuclei ${ }^{163} \mathrm{Yb}(3 n)$, ${ }^{162} \mathrm{Yb}(4 \mathrm{n})$, and ${ }^{16} 1 \mathrm{Yb}(5 n)$ could be used as coincidence gates. A target of 99% enriched ${ }^{150} \mathrm{Sm}\left(1.4 \mathrm{mg} / \mathrm{cm}^{2}\right)$ was also bombarded at the Berkeley 88 -Inch Cyclotron with $88 \mathrm{MeV}{ }^{16} 0$ to produce the same compound nucleus and products. Both targets were evaporated onto Pb backings about 25 yminth which stopped the beam and recoiling nuclei with no appreciable background. We also bombarded a ${ }^{165} \%$ target ($220 \mathrm{mg} / \mathrm{cm}^{2}$) with 25 MeV protons at the cyclotron in order to produce the compound nucleus ${ }^{166} \mathrm{Er}$, and product nuclei ${ }^{263} \operatorname{Er}(3 n)$ and ${ }^{264} \mathrm{Er}(2 \mathrm{n})$. The average numbers of gamma rays, N, associated with each discrete line are given in table 1.

The variations of \bar{N}_{γ} in Table 1 are more than a factor of 10 overail, and nearly a factor of 3 in various ${ }^{25} 0+{ }^{150} \mathrm{sm}$ reactions alone. Such large variations are not likely to be caused sim iy by the difference in excitation energy resul: . Ig from aifferent numbers of neutrons evaporated. This is shown by the $p+{ }^{165} H 0$ reaction, where a difference of one neutron causes a change of less than two ¢amma rays. It seems more likely that these large variations in \bar{N}_{γ} result from angular-mome. itum effects. This can be tested by application of the simple sharp-cutoff model. ${ }^{2}$ Using this mode1 we could estimate the root-mean-square angular momentum, ℓ nns, going into each reaction channel. To test whether the ${ }_{\mathrm{N}}^{2}$, values from Table 1 correlate with these e_{m} values, we have plotted these quantities against each other in Fig. 1. For the $p+{ }^{165} \%$ case, we took an average (weighted by the cross sections) for the $2 n$ and $3 n$ reactions of $\bar{N}_{Y}=3$. It is quite apparent that a correlation

TabLE 3. Average number of oontinuw gama-raya above 0.6 NeV.

$\mathbf{E}(\mathrm{keV})$	${ }^{404} \mathrm{Kr}+{ }^{22} \mathrm{Se}$		${ }^{160}+{ }^{150} 5 \mathrm{~m}$		p+ ${ }^{165} \mathrm{Ho}$	
	$\mathrm{I}_{\mathrm{i}}+\mathrm{I}_{\mathrm{g}}$	in,	\bar{N}_{Y}	E(keV)	$\mathrm{I}_{\mathrm{i}} \rightarrow \mathrm{I}_{\mathbf{1}}$	\bar{N}_{γ}
${ }^{162} \mathrm{Yb}(4 \mathrm{n})$				${ }^{16}{ }^{3} \mathrm{Er}(3 \mathrm{n})$		
166	$2>0$	11	8	127	$\left(13 / 2^{+} \rightarrow 9 / 2^{+}\right)$	1.2
320	$4 \rightarrow 2$	14	10	165	$\left(15 / 2^{+}+13 / 2^{+}\right)$	2.2
437	$6 \rightarrow 4$	12	9	171	$\left(13 / 2^{-} \rightarrow 11 / 2^{-}\right)$	2.3
521	$8 \rightarrow 6$	12	9	190	$9 / 2^{*}+5 / 7^{*}$	1.3
579	$10+8$		9	213	$\left(15 / 2^{+}+11 / 2^{+}\right)$	1.3
				218	$\left(17 / 2^{+}+13 / 2^{+}\right)$	1.7
	${ }^{163} \mathrm{Yb}(3 \mathrm{n})$			236	$11 / 2^{-}+7 / 2^{-}$	1.6
202	$17 / 2^{+}+13 / 2^{+}$	20	14		11/2-7/2	
345	$21 / 2^{+}+17 / 2^{+}$	19	9		${ }^{164} \mathrm{Er}(2 \mathrm{n})$	
	${ }^{16} \mathrm{Y} \mathrm{Yb}(5 \mathrm{n})$			208	$2 \rightarrow 0$	3.7
				314	$4 \rightarrow 2$	3.3
232	$17 / 2^{+} \rightarrow 13 / 2^{+}$	10	5	410	$6+4$	3.2

Fig. 1. The average number of contimum ganma rays ($E_{y}>0.6 \mathrm{MeV}$ coincident with the lowest observed discrete transition ($2 \rightarrow 0$ or $17 / 2 \rightarrow 13 / 2$) YS the input ${ }^{\circ}$ tms values. The cross is for the
 angles and squares arie for the $5 \mathrm{n}, 4 \mathrm{n}$, and 3 n reactions from ${ }^{16} 0+{ }^{16}{ }^{3} \mathrm{Sm}$ (open) and ${ }^{10} l_{K}+{ }^{8}{ }^{3} \mathrm{Se}$ (solid). The parentheses on the ${ }^{84} \mathrm{Kr}+{ }^{82} \mathrm{Se}$ data indicate that considerable uncertainty in the $\ell_{\text {rms }}$ values is introduced by the target thickness in this case.
(XBL 746-3366)
exists in Fig. 1, although the relationship is not so good as to completely exclude the possibility of some other effects. For example, there is some
suggestion that the ${ }^{84} \mathrm{Kr}+{ }^{02} \mathrm{Se}$ reaction produces slightly more gamna rays than does the ${ }^{16} 0+{ }^{150} \mathrm{Sm}$ reaction. Nevertheless, we conclude that most of the variation of \bar{N}_{γ} is due to variation of the input angular momentum.

It is also interesting to consider whether there are enough gamma rays to carty of the mos ℓ-values. Figure 1 shows that an input angular momentum ef 30 h gives about 10 ganma rays. Since a militipolarity higher than E2 is not likely, this accounts for a maximum of 20 h . Howeyer, the 4π reactions from both ${ }^{16} 0$ + ${ }^{150}$ sm and ${ }^{64} \mathrm{Kr}+{ }^{82} \mathrm{Se}$ have at least five discrete gama rays below 0.6 MeV which are known to carry off 10 h . In the oddmass cases ($3 n$ and $5 n$ reactions) even more angular manentum is carried off by the discrete lines. Thus the \hat{N}_{1} val:us are consistent with the rms ℓ-values estimated from the sharp-cutoff model provided the continum gainna rays are predominantly of the stretched ($1 \rightarrow 1-2$) E2 type. It is not yet clear whether the anguiar distributions are consistent with this requirement. The situation is somewhat relieved since the neutrons may carry off a few units of angular monentum, and there may be a few continum garma rays below 0.6 MeV .

Footnotes and References

${ }^{*}$ Condensed from Phys. Rev. Lett. 33, 593 (1974).
${ }^{+}$On leave from the University of Oslo.
$\ddagger_{\text {on leave fram the University of Mmich. }}$
${ }^{5}$ On partial leave from Stanford University.

1. A. Sunyar, Proceedings of Heavy-Ion Surner Study, ORNL Report, CONF-720669, edited by S. T. Thornton (1972).
2. J. M. BIatt and V. F. Weisskopf, Theoretical Nuclear Plysics (John Wiley \& Sons, New York, 1952).

EVIDENGE FOR ASYMMETAIC SHAPES FROM HIGH-SPIN ODD-A SPECTRA*

J. Meymer ter Velun, ${ }^{\dagger}$ F. S. Stephens, and R. M. Diamond

Rotational bands built on high-j states of unique parity in odd-A nuclei have a simple theoretical interpretation and can give rather detailed information about the nuclear shape and moments-ofinertia. In particular, this holds for nuclei with shall deformations in the vicinity of closed shells in which the odd mucleon represents either a pure hole or a pure particle in the high-j orbital. It has been shown that a particle (hole) on a prolate (oblate) core tends to decouple from collective rotation by aligning its afgular momentura to the rotation axis of the core. 1 This leads to decoupled bands with spin sequence $\mathbf{j}, \mathbf{j}+2, j+4, \ldots$ and energy spacings equal to those of the core. On the other hand, a hole (particle) in the prolate (oblate) core is strongly coupled and displays a rormal rotational spectrum with spin sequence $j, j+1$, j+2,... .

The present calculation based on a single-j nucleon coupled to an asymetric rotor shows that there is a contimuous transition from decoupled to strongly coupled bands obtained by changing the shape asymetry Y of the nucleus from prolate ($\gamma=$ 0°) to oblate ($\gamma=60^{\circ}$) through a series of asymmetric shapes. In this transition, shown in Fig. 1 for a deformation $g \circ A^{2 / 3}=5$ and $j=11 / 2$, many levels change energy rather sharply relative to others; for example, the 'unfavored" states, $\mathrm{I}=$ $13 / 2,17 / 2, \ldots$ ell drop considerably relative to the "favored" ones, $I=15 / 2,19 / 2, \ldots$. This

Fig. 1. Spectrun of a $j=11 / 2$ particle coupled to an asymnetric rotor with all yrast levels I $\leqslant 23 / 2$ as functions of γ.
(XBL 743-2656)
complex pattern of levels provides a severe test of the asymnetric rotor madel, and one of the objectives is to apply this test to several nuclei in the $2=80$ region. It is also important to realize that some new types of information can be extracted from these odd-A spectra, provided the model is applicable. This is basically because the γ-dependence enters not only through the rotational Haniltonian as in the even-even nuclei, but also through the Hamiltonian of the single particle. One can, therefore, easily differentiate between oblate and prolate shapes, and this detemines γ in a range fron 0-60* rather than only 0-30 Furthermore, the level shifts, like the favoredunfavored one mentioned, are sensitive to the way the monents-of-inertia deperd on shape, and thus can test the assumption of irrotational flow.

In Figs. 2 and 3, the calculation is campared with urique parity states in ${ }^{10}{ }^{7} \mathrm{Ir},{ }^{175} \mathrm{M}$, and ${ }^{197}$ T1. The parameters β and γ are derived from the lowest excited states of adjacent even nuclei, also show in the figures. None of the parameters is adjusted in the odd-A calculation. Compared with the calculation based on axially sympetric cores ($\gamma=0^{\circ}, 60^{\circ}$), the triaxial calculation leads to remarkably improved agreement with experiment, in particular conceming the position of mfavored

Fig. 2. Conparison of calculated and ex orimental Spectra in ${ }^{17}$ Ir with parameters 8 and γ iitted to ${ }^{16} 0 \mathrm{O}$.
(XBL 743-2655)

Fig. 3. Comparison of calculated and experinental spectra in ${ }^{195} \mathrm{Au}$ and ${ }^{197} \mathrm{TI}$ with β and γ fitted to ${ }^{196} \mathrm{Hg}$.
(XBL 743-2653)
states. As seen for ${ }^{195} \mathrm{Au}$, the second $11 / 2$ and $15 / 2$ states strongly support the assumption of shape asymnetry. It should be noticed that ${ }^{195} \mathrm{Au}$ and ${ }^{19}{ }^{19} \mathrm{TI}$ have the same core ${ }^{19}{ }^{19} \mathrm{Hg}$ and the same parameters. For ${ }^{19}{ }^{5} \mathrm{Au}$ a decoupled $\mathrm{h}_{11 / 2}$-hole spectrmm is obtained and for ${ }^{19}{ }^{19} \mathrm{Tl}$ a stronglycoupled $h_{9 / 2}$-particle spectrum - in agreement with experiment. These results represent considerable evidence for triaxial deformations in these nuclei.

Footnotes and References

*Published in Phys. Rev. Lett. 32, 1383 (1974).
${ }^{\dagger}$ On leave fron Technische Universität Minchen, Minich, West Gernany.

1. F. S. Stephens, R. M. Diamond, J. R. Leigh, T. Kammuri, and K. Nakai, Phys. Rev. Lett. 29, 438 (1972).

INTERPRETATIONS OF LINE STRUGTURE IN DELAYED-NEUTRON SPECTRA

A. A. Shihab-Eldin, F. M. Nuh, ${ }^{*}$ S. G. Prussin,* H. Frank, ${ }^{\dagger}$ J.-V. Kratz,' K.-L. Kratz, \dagger W. Rudolph, ${ }^{\dagger}$ and G. Hermann

A doninant feature of all recently measured ${ }^{1-4}$ high-resolution delayed neutron spectra (see Fig. 1) is prominent line structure with densities small compared to the expected level densities (e.g., the number of neutron lines for ${ }^{65}$ As account for about 18 of the levels available through allowed β-decay. ${ }^{5}$) The line structure in ${ }^{65} \mathrm{As}$ and ${ }^{135} \mathrm{Sb}$ delayed-neutron spectra was shonn ${ }^{4}$ to accoumt for the majority (2 $60 \frac{0}{3}$) of the total neutron intensity. Statistical and possible systematic errors precluded a unique definition of the remaining intensity, although the presence of an underlying, contimuous neutron distribution could not be ruled out. A second dominant feature of ${ }^{85} \mathrm{As}$ and ${ }^{135} \mathrm{Sb}$ spectra is the absence of appreciable neutron intensity above 1.6 NeV (${ }^{85} \mathrm{As}$) and 2.0 MeV (${ }^{315} \mathrm{Sb}$) even though larger ranges are possible for the neutron energies (large energy window, $\left(Q_{\beta}-B_{n}\right.$)). Franz et al ${ }^{4}$ demonstrated that this was mainly due to the dominance of neutron emission from intemediate levels to excited levels
in the final residual nucleus. They also suggested that the extent of neutron decay of intemediate levels in ${ }^{85}$ Se to more than one level in ${ }^{44} \mathrm{Se}$ is small.

Two possible interpretations of the linestructure in delayed-neutron spectra have been proposed so far. Shalev and Rudstam ${ }^{2}$ suggested that for ${ }^{87}{ }^{3} \mathrm{Br}$ and ${ }^{131}$ I delayed-neutron spectra, the mean spacing of apparent reutron lines represents the true mean level spacing in the emitter nuclides $\left(^{86} \mathrm{Kr}\right.$ and ${ }^{135} \mathrm{Xe}$, respectively). They used these "experimental" mean level spacings to obt ${ }^{2} \mathrm{n}$ a normalized set of level density parameteis in both regions. These paraneters were then used to calculate level densities for other neutron enitting nuclei (${ }^{84} \mathrm{Se}$ and ${ }^{134} \mathrm{Te}$) that can then be used to predict the envelope of the energy distribution of delayed neutrons and the mear line spacing in their spectron. They obtained fair agreement for ${ }^{195} \mathrm{Sb}$

Fig. 1. Relative neutron intensity for ${ }^{135} \mathrm{Sb}$, taken from Ref. A. (XBL 755-1220)
and rather poor agreement for ${ }^{85} \mathrm{As}$. The problem in their approach lies in the fact that the mean level spacing they derive from the line structure - Of the delayed-neutron spectrm is only an "effective" mean level spacing, (i.e., it is the mean level spacing for those states that are strongly fed by B-decay). Indeed for ${ }^{85}$ As the peaks in the spectrum are much more widely spaced than can be accounted for by conventional spin-dependent leveldensity calculations with shell and pairing corrections 5 (the so-called "back-shifted" zero-order Fermi gas model). However, Huizenga and Moretto ${ }^{6}$ have cautioned that for nuclei near closed shells, the magnitude and energy dependence of level densities, when calculated $\# i t h$ a more realistic model (system of interacting fermions in shell-model states), can be quite different from the prediction of the previous model, especially at low excitation energies.

The second interpretation proposed was suggested simultaneously by Hansen ${ }^{7}$ and by Karnaukhov ot al ${ }^{B}$ to explain the less pronounced line structure in delayed proton spectra. They interpreted the jine structure as a statistical fluctuation result ing from the finite statistical distributions of parameters that detemine the delayed-particle distribution (i.e., the beta strength function (S_{β}), delayed-particle width (Γ_{p}) and level density (ρ) in particle enitting nucleus). The application of
this approach to the interpretation of line structure in measured delayed proton spectra seemed to be quite successful. The conditions for the applicability of this method are that $\Delta E \gg D \gg \Gamma$, where D is the mean level spacing $(1 / \rho)$ and ΔE is the particle spectroneter resolution.

In order to compare the line structure in the experimental delayed-neutron spectra with predictions of such a statistical model, we have followed the general method for non-overlapping $\frac{1}{8}$ evels discussed by Hansen ${ }^{2}$ and Karnaukhov et al. 8 For neutron-emitting nuclides of interest, it was found that the condition $D \gg+$ required for the validity of this method is not rigorously satisfied in the energy region of interest (above B_{n}) as can be seen from Table 1. However, this condition is sufficiently valid ($D \geqslant 2 \Gamma$) in the energy region of interest, that Erickson fluctuations are not significant. 9,10

The expression for the variance in neutron intensities can be written out as: 7,8

YABLE 1. Estimates of $\left(\frac{\mathrm{T}}{\mathrm{D}}\right)$ for daughters of the precursors ${ }^{87}{ }_{\text {Br }}$ and ${ }^{85}$ Ag.

Precursor	Emitter		$\begin{gathered} \text { Neutron } \\ \text { energy } \\ \mathrm{E}_{\mathrm{n}} \\ (\mathrm{MeV}) \end{gathered}$	$J^{\pi}=1 / 2^{-}$	$\begin{aligned} & \Gamma / D^{a} \\ & 3 / 2^{-} \end{aligned}$	$5 / 2^{-}$
	$\begin{gathered} \overline{\mathrm{B}_{\mathrm{n}}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{aligned} & E_{x} \\ & (\mathrm{MeV}) \end{aligned}$				
${ }^{87} \mathrm{Br}$	5.51	5.6	0.1	0.017	0.017	0.002
		6.5	0.9	0.0169	0.0169	0.004
${ }^{85} \mathrm{As}$	4.1	4.2	0.1	0.016	0.016	0.024
		5.7	1.6	0.174	0.174	0.05
		6.3	2.2	0.317	0.317	0.239
		6.9	2.8	0.467	0.467	0.449

${ }^{a}{ }^{0}$ calculated using the level density formula of Gilbert and Caneron. ${ }_{12}^{5}$ r calculated using the "Oxford Optical Code" by Wilmore. ${ }^{12}$
where

$$
\begin{align*}
& I_{n}\left(E_{n}\right)=\sum_{i} \sum_{f} \omega\left(I, I_{i}\right) \cdot I_{\beta}(E) \cdot \frac{r_{n}^{i f}}{\Gamma^{i}}, \\
& {\alpha^{i f}}^{i f}=2+6\left[1 \cdot 2 \frac{\Gamma_{n}^{i f}}{\Gamma^{i}}+\sum_{f^{\prime}}\left(\frac{\Gamma_{n}^{i f^{\prime}}}{\Gamma^{i}}\right)^{2}\right], \\
& I_{B}(E)=S_{B}(E) \cdot f(Z, Q-E)
\end{align*}
$$

ω is the beta decay partition function, $I_{\beta}(E)$ is the average beta intensity feeding levels at energy E in the intermediate nucleus, $\mathrm{i}_{\mathrm{n}}^{\mathrm{i}}$ is the partial neutron width fron level i to level f in final nucleus, Γ^{i} is the total level (i) width, and f is the fermi function. Partial neutron widths were calculated using the expression

$$
\Gamma_{n}^{i f}\left(L_{n}\right)=\sum_{\ell} \frac{T_{\ell}\left(E_{n}\right)}{2 \pi \rho\left(E_{n}\right)}
$$

where T_{ℓ} is the e ${ }^{\text {th }}$ partial neutron transmission coefficient. These Th's were taken from opticalmodel calculations. 11,12 Level densities were calculated using the fommlation of Gilbert and Cameron. ${ }^{5}$

The variance calculations were carried out for the ${ }^{8}{ }^{7} \mathrm{Br},{ }^{15} \mathrm{As},{ }^{13} \mathrm{Sb}$, and ${ }^{197} \mathrm{I}$ precursors. Neutron emission to four excited states in ${ }^{84} \mathrm{Se}$ and ${ }^{134} \mathrm{Te}$ and to two excited states in ${ }^{136} \mathrm{Xe}$ were included in the calculations. Only allowed B transitions were considered, and a constant beta intensity was assumed. This is not an unreasonable approximation, as it has been shown that the beta strength function for delayed-neutron precursors must have a reasonably strong energy dependence in the energy region of interest. $2,13,14$ This yields
a slowly varying beta intensity in the energy wi-riow ($Q-B_{n}$), which can be approximated by a con tant average value.

The calculated theoretical variance for all cases decreases smoothly with energy, with a small increase at an energy corresponding to the first excited state in the final daughter (if energetically accessible). In contrast, the experinental functicns are relatively constant for ${ }^{7} \mathrm{Br}$ and ${ }^{197}$ I, while showing a slowly increasing energy dependence for ${ }^{65}$ As (Fig. 2) and a logarithmically

Fig. 2. Theoretical and experimental ${ }^{18}$ fluctuations in the relative neutron intensity for the ${ }^{6}{ }^{\text {As }}$ precursor.
(2BL 756-3319)
increasing energy dependence for ${ }^{135} \mathrm{Sb}$ (Fig. 3). Thus there is general disagreenent between the theoretical and experimental variances, especially for ${ }^{85} \mathrm{As}$ and ${ }^{135} \mathrm{Sb}$. However, for ${ }^{17} \mathrm{Br}$ and ${ }^{1371}$, the large experimental variance uncertainties and the small energy window make the results of the comparison not as conclusive.

Fig. 3. Theoretical and experimental ${ }^{18}$ fluctuations in the relative neutron intensity for the ${ }^{135} \mathrm{Sb}$ precursor.
(XBL 756-3318)

The energy dependence of the calculated theoretical variance is directly proportional to the energy dependence of the average level density and therefore the increasing energy dependence of the experimental variance in ${ }^{85} \mathrm{As}$ and ${ }^{135} \mathrm{Sb}$ cannot be reconciled with predictions of the statistical mode1 for non-overlapping levels, However, a combination of a der -ase as a function of energy in the effective number of channels available for neutron emission and a breakdown of the condition $\mathrm{D} \geqslant 2 \Gamma$ (thus bringing in Ericson fluctuations) might explain such a behavior. The present calculations do not support this contention, though we cannot rule out this possibility completely and it is worthy of further investigation. The magnitude of the fluctuations was foumd to be strongly dependent upon the level density and only weakly dependent upon variations in the partial neutron width (as a result of variations in optical model parameters) and γ-decay width (which was held constant) 15.

We conclude from these comparisons and the experinental data that the β-strength function for levels in the energy, range s-8 MeV in the emitter nuclides ${ }^{015}$ Se and ${ }^{93}{ }^{5} \mathrm{Te}$ must possess strong local resonances not accounted for in the simple statistical model. Unless large, local fluctuations in the level density occur that are not contained in the nomal level density formulations, the data
indicate high selectivity in β decay and in the subsequent neutron emission to levels in the final nucleus, as evidenced by the lack of high-energy neutrons in ${ }^{85} \mathrm{As}$ and ${ }^{133} \mathrm{Sb}$ spectra.

These observations might be explained in terms of particle-hole structures involving the $\mathrm{d}_{5} / 2$ or $\mathrm{g}_{\mathrm{B} / 2} / 2$ proton orbitals. The last two neutrons in ${ }^{8} s_{s}$ occupy the $d_{5 / 2}$ orbital just beyond the closed shell $\mathrm{N}=50$. A cribe estimate locates the energy of the two-particle, one-hole configuration [$\left.\left.\pi\left(d_{5 / 2}\right)^{1}\left(f_{5 / 2}\right)^{-1} ; v^{\left(d_{5} / 2\right.}\right)^{1}\right]$ at $6-7 \mathrm{NeV}$ in ${ }^{\text {as }} \mathrm{Se}$, and the more complex structure resulting from decay of a $\mathrm{g}_{9 / 2}$ neutron should lie within several HeV of this energy. It is possible that the selectivity in β decay is probing that part of the particlehole structure in ${ }^{95}$ Se contained in the antianalog state (AIAS) orthogonal to the analog state (IAS) of the ${ }^{~}{ }^{5} \mathrm{As}$ ground state. Using the value of 110 NeV for the Lane potential 16 the AIAS is calculat ed to 1 ie near 6.3 MeV in ${ }^{65} \mathrm{Se}$ and should have its strength spread by strone coupling to core polarization states. 17 Since the strength of GamovTeller $\overline{6}$ decay to the AJAS is proportimen to that of the $\Delta T=1$, M γ-transition between the IAS and AIAS, this correlation may possibly serve as the basis for interpretation of the structure in the delayed-neutron spectrm from ${ }^{\text {as }} \mathrm{As}$.

Finally, the present calculations depend upon the val idity of many assumptions and approximations that were made to simplify the calculations. These need to be further investigated in detail. We are currently investigating the effect on the variance calculations of explicitly including a beta strength function proportional to level density, and calculating level densities using the more realistic model of interacting fermions in shellmodel states.

Footnotes and References

*Department of Nuclear Engineering, University of Califormia, Berkeley, California 94720.
${ }^{\boldsymbol{t}}$ Institut für Kernchenie der Universität Mainz, D-6S Mainz, Germany.

1. S. Shalev and G. Rudstam, Phys. Rev. Lett. 28, 687 (1972).
2. S. Shalev and G. Rudstam, Nuc1. Phys. A230, 153 (1974).
3. H. Franz, G. Hermann, J.-V. Kratz, and K.-L. Kratz, J. Physique 33, C5, 31 (1972).
4. H. Franz, J.-V. Kratz, K.-L. Kratz, W. Rudolph, G. Herrmann, F. M. Nuh, S. G. Prussin, and A. A. Shihab-Eldin, Phys. Rev, Lett. 33, 859 (1974).
5. A. Gilbert and f.. G. W. Cameron, Can. J. Phys. 43, 1446 (1965).
6. J. R. Huizenga and L. G. Moretto, Ann. Rev. Nucl. Sci. 22, 427 (1972).
7. P. G. Hansen, Adv. Nucl. Phys. 7, 159 (1973).
8. V. A. Karnaukhov, D. D. Bogdanov, and L. A. Petrov, Nucl. Phys. A206, 583 (1973).
9. M. G. Braga Marcazzan and L. M. Col1i, Prog. Nuc1. Phys. 11, 145 (1970).
10. P. J. Dallimore and 1. H1l, Nucl. Phys. B8, 88. (1966).
11. N. G1endenning, "OPTIC Code", private commmication (1965).
12. D. Wilmore, "Oxford Optical Programme", private commaication by F. Hasan (1973).
13. A. C, Pappas and T. Sverdrup, Nuc1. Phys. ALB8, 48 (1972).
i4. K. Takahashi, Prog. Theor. Phys. 47, 1500 (1972).
14. A. G. W. Cameron, Can. J. Phys. 34, 606 (1956).
15. A. M. Lane, Nuxl. Phys. 35, 676 (1962).
16. G. Vouryopoulos and J. D. Fox, Phys. Rev. 177. 1558 (1969).
17. F. M. Nuh, Ph.D. Thesis, Nuclear Engineering Ilepartment, University of Califormia, Berkeley (1975).

MASS YIELD DISTRIBUTIONS IN THE REACTION OF ${ }^{84} \mathrm{Kr}$ IONS WITH ${ }^{238}{ }_{\mathrm{U}}$ *

J. V. Kratz, ${ }^{\dagger}$ A. E. Norris, ${ }^{\ddagger}$ and G. T, Seaborg

Thick uranium targets were bomiuarded at the superheavy ion 1 inear accelerator with $605 \mathrm{MeV}{ }^{84} \mathrm{Kr}$ ions, dissolved shortly after the end of bombardment, and separated chemically into 7 fractions ${ }^{1}$ that were assayed for α-particle and γ-ray activities. We have measured cross sections for 129 isotopes. Through an interlaboratory collaboration a lanthanide-actinide fiaction from an intense $24-\mathrm{h}$ bombardment was radiochemically analyzed by the Los Alamos Scientific Laboratory nuclear chemistry group, which resulted in yield information on 27 additional nuclides. 2 The independent and cumulative yields are plotted versus mass number in Fig. 1 (a). A detailed listing of the data and a description of their analysis will be given elsewhere. ${ }^{4}$ The apparent scatter in the data in Fig. 1 (a) occurs because independent yieids, and even many of the cumulative yields, represent only a fraction of the total mass yields. Figure 1 (b) is a contour map of the independent yields in a $Z-A$ plane, indicating yield locations relative to the stability line. The pronounced structure revealed by the isopleths in the figure indicete that several yield distributions with different charge and mass dispersions, hence different origins, are superimposed on each other. To calculate the final mass yields, we integrated, at each mass number the Gaussian charge dispersion curves that were fitted to the data. 4^{s} The final results are show in Fig. 1 (c).

Component A is determined by the yields of heavy-rare-earth nuclides and by the yields of very reutron-deficient Mo, $\mathrm{Tc}, \mathrm{Ag}, \mathrm{In}, \mathrm{Sn}, \mathrm{Sb}, \mathrm{I}$, and Cs isotopes. This component shows the expected characteristics of the binary fission product distribution originating from the fission of a composite nucleus. For component B, the heavymass branch is defined by the cumulative yields of neutron-rich nuclides peaking at $A \approx 140$. Figure 1 (b) shows how distinctly the neutron-excess yields are separated from those of component A in this mass region. Gujded by our results from the reaction ${ }^{40} \mathrm{Ar}$ on ${ }^{236} \mathrm{U}$, where a low-energy fission of transfer products near ${ }^{238} U$ was observed, 5 we assign this component to a double-mumped low-energy
fission product distribution. The light branch of this distribution was obtained by reflecting the weil-defined shape of the heavy one, and its mass location was deduced from the cumulative yield balances for the isotopes ${ }^{1 / 2} \mathrm{Pd}$, ${ }^{111}{ }^{\mathrm{Ag}}$, and ${ }^{107} \mathrm{Rh}$, From the observed charge distribution and the peak-to-valley ratio, we estimate an excitation energy of the fissioning nuclei of $\sim 15 \mathrm{Mer}$. We find a value of 200 mb for the cross section of this transfer-induced fission as represented by component B. There should be a corresponding reduction in the heavy-rabbit-ear (component F) cross section as compared to its complementary light-rabbit-ear (component E) cross section; our measurements do show that component F has a cress section about 200 mb (actually 280 mb) smaller than component E .

After subtraction os contribution B from the yisld data in the mass $\mathrm{range} 67 \leqslant \mathrm{~A} \leqslant 140$, we are left with yields that cin be resolved into two Gaussian distributions (components C and D in Fig. $1(c)]$, peaking around $A=85$ and $A=112$. Distribution C [full width at half-maximm (FWM) ≈ 20 mass units] is probably identical with the "quasi-Kr" events observed in Refs. 6 and 7. Apparently, the complementary "quasi- V " distribution is missing. Because much kinetic energy in the deep inelastic interaction of ${ }^{84} \mathrm{Kr}$ with the targec nucleus goes into excitation, one would expect a high-energy cascade iission of the "quasi-tu" nuclei leading to a symmetric fission product distribution centered slightly below $A=119$. Actually, we do observe such a distribution (Component D). From a mass and charge balance for the complete process - 'quasifission" fallowed by a cascade fission of the "quasi-J" (which process might be temed "quasi-ternary-fission") - one can conclude that in the most probable interactions 13 neutrons and no protons are evaporated. The yield of component D is $840 \pm 120 \mathrm{mb}$ (200\%), indicating that 67-100\% of the "quasi-ए' nuclei undergo fission. The shape and width of the distribution suggest that the average excitation energy of the "quasi-U" must have been $\geqslant 45 \mathrm{MeV}$.

The excess yields around $A=155$ (cumponent G;

Fig. 1 (a). Independent and cumulative yields of individual isotopes, calculated with the assumption of a general interaction barrier of 450 NeV (see Ref. 3) corresponding to an effective target thickness of $11.6 \mathrm{mg} \mathrm{U} / \mathrm{cm}^{2}$.
(b). Contour lines for equal independent yields in mb.
(c) Total integrated mass yields (upper and lower limits are indicated at those mass numbers for which experimental data were obtained) and their decomposition into individual components: (A) complete fusion-fission, (B) transfer-induced fission, (C) quasi-Kr, (D) cascade fission of the quasi-U, (E) and (F) : insfer reactions ("rabbit ears"), (G) yields of. own origin.
(XBL 746-3449)
are mexplained. $\mathrm{Sugi}_{\mathrm{g}} \mathrm{st}$: 2 glanations such as target contamination and teuding of these mass chains by α-decay from higher masses can be excluded. We have also considered whether this peak might be a surviving nonfissionable tail (due to high fission barriers) at the light-mass-number end of the fissioning "quasj.-U" distribution of nuclei.

The primary 'quasi-U' distribution (FWHM ≈ 20 mass units) could hardly extend into a mass region ~ 2 mass uits below the target mass while still yielding cross sections of a few millibarns. Attempts to force a considerably broader complementary distribution through the mass yields around $A=185$ resulted in an unreasonable imbalance in cross section for the quasi-termary-fission process. We conclude, then, that the excess yield around $A=195$, which we refer to as the "goldfinger", more likely originates from a hitherto unobserved reaction channel.

The paucity of data points between peaks F and G is due to the experimental difficulty of measuring the small yields of the predominantly shortlived isotopes in this region using radiochemical techniques.

As a consequence of the interpretation presented here, the total reaction cross section is the sum of the production cross sections for components $A / 2, C, E$, and G; $1265 \pm 205 \mathrm{mb}$. The mean geonetrical cross section in the energy interval 450 to 605 MeV (1ab) can be estimated as

$$
\sigma_{R}=\pi R^{2} \frac{\int_{B}^{E}(1-B / E) d E}{E-B}=1130 \mathrm{mb}
$$

where $B=450 \mathrm{MeV},{ }^{3} E=605 \mathrm{MeV}$, and $\mathrm{R}=16.0 \mathrm{fm}$,
To conclude, we wish to point out that our analysis of the total mass yield distribution, and its decomposition into the components indicated in Fig. 1, is consistent with the results obtained for ${ }^{64} \mathrm{Kr}$ on ${ }^{209} \mathrm{Bi}$ in the k :mmatic coincidence experiments, 6,7 Our data confim the assumption 6,7 that the quasi-kr distribution is centered close to the projectile mass. It appears that >92 of the Kr interactions with U in the imvestigated energy interval feed inelastic and deep inelastic reaction channels where only little mass transfer occurs. It is only in very few collisions ($\sim 4 \%$) that a composite nucleus is fonned.

Footnotes and References

*Condensed from J.BL-2947, published in Phys. Rev. Letters 33, 502 [1974].
${ }^{\dagger}$ On leave from Institut für Kernchemie, Universität Mainz, with a fellowship from Gesellschaft für Schwerionenforschung GSI, Darmstadt, Germany.
${ }^{\dagger}$ Los Alamos Scientific Laboratory, University or Califormia, Los Alamos, New Mexico 87544.

1. J. V. Kratz, J. O. Liljenzin, and G. T. Seaberg, Inorg. Nucl. Chem. Lett. 10, 951 (1974).
2. B. P. Bayhurst, J. H. Cappis, W. R. Daniels, D. C. Hoffimen, F. O. Lawrence, C. J. Orth, R. J. Prestwood, H. L. Smith, and K. Wolfsberg, unpublished.
3. M. Lefort, C. Ngô, J. Péter, and B. Tamain, Nuc1. Phys. A197, 485 (1972).
4. J. V. Kratz, A. E. Norris, and G. T. Seaborg, to be published.
5. J. V. Kratz, J. O. Liljenzin, A. E. Norris, I. Binder, תd G. T. Seaborg, in Proceedings of the International Conference on Reactions Between Complex Nuclei, Nasliville, Tennessee, 1974 , edited by R. L. Robinson, F. K. Mclowan, J. B. Bai 1, and J. H. Hamilton (North-Hollant, Amsterdan, 1974), Vol. 1, p. 88.
6. F. Hanappe, M. lefort, C. Ngo, J. Péter, and B. Tanain, Phys. Rev. Lett. 32, 38 (1974), and references therein.
7. J. Huizenga, K. Holf, J. P. Unik, V. E. Viola, J. Birkelund, and H. Freiesleben, Phys. Rev. Lett. 33, 1105 (1974).

TRANSFER PRODUCTS RESULTING FROM THE HEAVY ION REACTION OF ${ }^{40}$ Ar WITH ${ }^{197}{ }_{\mathrm{Au}}$

I. Binder, R. J. Otto, M. M. Fowler, and D. Lee

As part of the on-going radjochenical study of heavy-ion reaction mechanisms, 1 the reaction of ${ }^{40} \mathrm{Ar}$ and ${ }^{192} \mathrm{Au}$ has been used to look at transfer products in the neighborhriod of the target nuclide. This region is not readily accessible to particle identification techniques, and this radiochemical study will complement work already done ${ }^{2}$ in studying products in the vicinity of the projectile. Precise isotopic distribution curves permitted by the sensitive radiochenical methods will aid in the calculation of cross sections in multi-element, mass distribution experıments. The ganna-ray analysis method used here permits resolution of nuclear isomers and determination of isoner ratios and some angular momentum effects. The yields in proximity to the target, ${ }^{197} \mathrm{Au}$, will not be distorted by low-energy fission reactions found with $a^{236} U$ target. ${ }^{3}$

In this experiment gold foils ($50 \mathrm{mg} / \mathrm{cm}^{2}$) are bombarded with $340-\mathrm{MeV}{ }^{4}$ Ar projectiles produced at the Berkeley Supertilac. Exientially all the reaction transfer products are caught within the foil. The foil is dissolved, and chemical separation schemes have been developed to quickly isolate os, Au, Hg and Pb samplof free of most interfering contaminants. Camnia-ray spectra are recorded for each of the samples, and the product nuclides are identiriled using half-life, ganna-ray energy and chemical information. 4

The resulting plots of relative yield versus mass number (Fig. 1) appear to be rather Gaussian despite the interference of feeding from radicactive precursors to some of the yields. The center of the distribution is in the region of neutrondeficient isotopes, suggesting that substantial neutron evaporation has occurred. Given two possible isomeric states the high-spin state (e.g. ${ }^{19}{ }^{9}{ }^{m} \mathrm{Hg},{ }^{19}{ }^{1} \mathrm{gos},{ }^{2} 8{ }^{4} \mathrm{mpb}$) is the favored product.

The gold isotopic distribution (Fig. 2) provides a special case. Two Gaussian curves seem to be superimposed. The broader, lower curve containing points for the high-spin isomers better corresponds to the curves obtained for the other elements.

Looking at Fig. 2, the narrow-A curve containing low-spin states of gold probably represents the "rabbit ears" of earlier studies ${ }^{3}$ in which a few nucleons are transferred without much internal
excitation. The wider, high-spin, neutron deficient curves seen for all the elements thus far investigated are likely due to deep-inelastic reactions in which nore nucleons can be exchanged and there is a greater degree of internal excitation.

In examining the gama rays from the various samples, some radiations could not be identified with any knowin ruclide. Interestingly, several ganma rays from the gold fraction seem to have similar half-lives (see Table 1). It is possible these originate from previously undiscovered isomers of gold. Heavy-ion reactions, in which much angular momentum can be brought in by the

Fig. 1. Relative yields of Hg isotopes plotted $v \mathrm{~s}$ mass number.
(XBL 750-3321)

Fig. 2. Relative yields of Au isotopes plotted vs mass number.
(XBI, 756-3322)
projectile, may provide an important method for synthesizing high-spin states. This is worthy of further study.

TABLE 1. Energy and estimated $T_{1 / 2}$ for same un-

$\mathrm{E}(\mathrm{keV})$	$\mathrm{T}_{1 / 2}$
158.7	56 days
211.7	60 days
499.5	5.2 hr
635.3	6.8 hr
1158.2	7.1 hr
1309.6	5.5 hr
1407.4	6.0 hr
1519.7	6.3 hr
1782.1	6.5 hr
1934.7	

References

1. R. J. Otto, M. M. Fowler, D. Lee, I. Binder, G. T. Seaborg, Radiochemical Mass Yield Distribution Studies in the Reaction ${ }^{40} \mathrm{Ar}$ with ${ }^{2{ }^{38}} \mathrm{U}$ and ${ }^{20} 9^{9} \mathrm{Bi}$ and $25.2 \mathrm{GeV}{ }^{12} \mathrm{C}$ with ${ }^{23}{ }^{3} \mathrm{G} \mathrm{A}$, in Section 1 of this Annual Report.
2. A. G. Artukh, G. F. Gridnev, V. L. Mikheev, V. V. Volkov, J. Wilczynski, Nucl. Phys. A215, 91 (1973) ; S. G. Thompson et al., LBL-29A0.
3. J. V. Kratz, A. E. Norris, and G. T. Seaborg, Phys. Rev. Lett. 33, 502 (1974): 'Mass-Yie1d Dis: tributions in the Reaction of ${ }^{84} \mathrm{Kr}$ Ions with ${ }^{238} \mathrm{U}$, in Section I of this Annual Report.
4. M. M. Fowler, D. Lee, R. J. Otto and I. Binder, "Computer Aided Analysis of Gama-Ray Spectra", in Section IV of this Annual Report.

recoil range studies from reactions CF ${ }^{40}{ }_{\text {Ar }}$ WITH ${ }^{209}{ }_{\text {Bi AND }}{ }^{232} \mathrm{Th}$

R. J. Otto, T. Raunemua, M. M. Fowler,

 K. Williams, and G. T, SeaborgRecoil range studies are a well-known and useful method of studying reaction mechanisms. 1 The stacked foil method inherently yields results that represent partial integrals of the energy and angular distributions of the reartion products. These results must then be fit with a postulated reaction model. Small and sometimes not so small differences seen with kinematic studies are lost; however, the important advantage of recoil range studies is that they can be used in conjunction with radiochemical methods.

A series of stacked recoil foil experiments were carried out at the Superfilac facility with $288-\mathrm{MeV}{ }^{40} \mathrm{Ar}$ ions on thin ${ }^{232} \mathrm{Th}$ targets and with $300-\mathrm{Mey}{ }^{40} \mathrm{Ar}$ ions on thin ${ }^{209} \mathrm{Bi}$ targets. The target geometry for the ${ }^{40} \mathrm{Ar}+{ }^{209} \mathrm{Bi}$ experiments is shown in Fig. 1. The target geometry for the
${ }^{40} \mathrm{Ar}+{ }^{232} \mathrm{Th}$ experiments was the same as shown in Fig. 1 except that the Th targets consisted of 0.2 to $0.7 \mathrm{mg} / \mathrm{cm}^{2}$ of electrodeposited ThO_{2} on a 0.075 mil Ni backing. Following the first Th experiment

Fig, 1. Target geometry for ${ }^{40} \mathrm{Ar}+{ }^{209} \mathrm{Bi}$ experiments.
(ABL 756-3326)
the ThO_{2} target and Ni backing were dissolved and chemical separations were done yieluing a Ra, Ac fraction, a $\mathrm{Th}, \mathrm{Pa}, \mathrm{U}, \mathrm{Np}$ fraction and a $\mathrm{Pb}, \mathrm{Bi}_{2}, \mathrm{Po}$
 were found in the Ra, Ac sample based on the identification of the alpha particle energies associated with each decay chain. Peaks in the Th, Pa, U,Np fraction were seen with alpha energies corresponding to ${ }^{226} \mathrm{Th}$ and its alpha decay chain. The Pb, Bi, Po fraction contained a small amoumt of ${ }^{212} \mathrm{Po}$ resulting from the decay of ${ }^{22} 2 \mathrm{Ra}$, produced during the bombarment, and subsequent growth of ${ }^{212} \mathrm{~Pb}$ prior to the chemical separation. In the following ${ }^{40} \mathrm{Ar}+{ }^{232} \mathrm{Th}$ experiments the alpha activities of the target and recoil foils were determined direct1y. Alpha particle commts observed between 5.1 and 6.4 NeV were summed for each of the recoil foils. These energies, based on the chemical separations above, correspond primarily to ${ }^{225} \mathrm{Ra},{ }^{225} \mathrm{Ac}$ and ${ }_{223} \mathrm{Ra}$ transfer products. The relative distribution of these ${ }^{225} \mathrm{Ra}$, ${ }^{225} \mathrm{Ac}$ and ${ }^{22{ }^{3} \mathrm{Ra} \text { products in the }}$ forward recoil foils is shown in Fig. 2. The range distribution of Ra and Ac transfer products shown in Fig. 2 is consistent with the energy and angular distribution of the complementary quasi Ar products measured in the reaction of ${ }^{4{ }^{4}} \mathrm{Ar}$ with ${ }^{232} \mathrm{Th} .{ }^{2,3}$ The small but significant fraction of transfer products with range of $\because 4.2 \mathrm{ng} / \mathrm{cm}^{2}$ and corresponding to an energy equal to complete monentum transfer plus Coulonb repulsion could result from a deep inelastic process having a $1 / \sin \theta$ angular distribution. This process is suggested in a kinematic

Fig. 2. Range distribution of alpha emitters with energies between 5.1 and 6.2 MoV produced in the reaction of $288 \mathrm{MeV}{ }^{40} \mathrm{Ar}$ with ${ }^{232} \mathrm{Th}$. (XBL 756-3324)
study of the light quasi ${ }^{40} \mathrm{Ar}$ complements to Ra and Ac. ${ }^{2,3}$

One important object of these studies was to determine the usefuiness of high resolution gammaray counting of the stacked Al recoil foils for identifying reaction mechanisms. Figure 3 shows the recoil rauge distributions of a transfer product ($\left.{ }^{211}{ }^{1} A t\right)$ and complete fusion-fission or quasifission followed by fission of the heavy complement products (${ }^{86} 2 r$, ${ }^{125}{ }^{50} \mathrm{Sb}$, ${ }^{182} \mathrm{Re}$) from the reaction ${ }^{40} \mathrm{Ar}+{ }^{209} \mathrm{Bi}$. The complete fusion-fission and/or quasifission followed by fission of the heavy complement products were identified on the basis of gamma-ray energy and relative intensity. The intensity of ganma-rays associated with fusionfission or quasifission followed by fission of the heavy complement products is small relative to that associated with the ${ }^{40} \mathrm{Ar}+{ }^{27} \mathrm{AI}$ transfer reaction product produced in the Al recoil foils and therefore a careful analysis of the gamma-ray spectra was needed. The computer code SAMPO ${ }^{4}$ was used to identify the peak energies and absolute intensities

Fig. 3. Recoil range distribution of reaction products from $300 \mathrm{MeV}{ }^{40} \mathrm{Ar}$ with ${ }^{209} \mathrm{Bi}$.
(XBL 756-3325)
in the gamma-ray spectra from each of the recoil foils. The range distributions of the quasifission followed by fission of the heavy complement and/or complete fusion-fission products are clearly differentiated from those of the transfer products. These resulte will be used to correct cross sections from the mass yield studies of ${ }^{40} \mathrm{Ar}$ with ${ }^{238} \mathrm{U}$ and ${ }^{209}$ Bi Eor recoil losses, 5 Using the stacked foil method along with radiochemistry and gamma-ray analysis, it may be possible to identify the reaction mechanism associated with the "goldfinger" phenomena, seen as excess yields around $A=195$, and reported by Kratz, Norris and Seaborg. ${ }^{6}$

References

1. J. M. Alexander, Nuclear Chemistry I, L. Yaffe, editor (Acadenic Press, New York, 1968), pp. 273357.
2. A. G. Arkuth, G. F. Gridnev, V. L. Mikheev,
and V. V. Volkov, Proceedings of the Nasliville Conference on Reactions Between Complex Nucle; June 10, 1974, Vol. 1, p. 87 (North-Holland and Anerican Elesevier).
3. A. G. Arkuth, G. F. Gridnev, V. L. Mikheev, V. V. Volkov, and J. Wilczynski, Nucl. Phys. A215, 91 (1973).
4. J. T. Routti, UCRL-19452 (1969).
5. R. J. Otto, M. M. Fowler, D. Lee, I. Binder, and G. T. Seaborg, 'Radiochenical Mass Yield Distribution Studies in the Reaction of ${ }^{40} \mathrm{Ar}$ with ${ }^{23}{ }^{3} \mathrm{U}$ and ${ }^{209} \mathrm{Bi}$ and $25.2 \mathrm{GeV}{ }^{12} \mathrm{C}$ with ${ }^{23 \mathrm{~B}} \mathrm{U}^{\prime}$, see Section I of this Annual Report.
6. J. V. Kratz, A. E. Norris, and G. T. Seaborg, Phys. Rev. Lett. 33, 502 (1974); see Section I of this Annual Report, 'Mass Yield Distributions in the Reaction of ${ }^{64} \mathrm{Kr}$ Ions with ${ }^{23} \mathrm{~d}^{\prime \prime}$.

RADIOCHEMICAL MASS YIELD DISTRIBUTION STUDIES IN THE REACTION OF ${ }^{40}{ }_{A r}$ WITH ${ }^{238} \mathrm{U}$ AND ${ }^{209}{ }_{\mathrm{Bi}}$ AND $25.2 \mathrm{GeV}{ }^{12} \mathrm{C}$ WITH ${ }^{238} \mathrm{U}$

F. J. Otto, M. M. Fowler, D. Lee, I. Binder, and G. T. Seaborg

The radiochemical mass yield distribution of $605 \mathrm{MeV}{ }^{94} \mathrm{Kr}$ with ${ }^{23}{ }^{38} \mathrm{U}$ reported by Kratz, Norris, and Seaborg 1 clearly distinguished five components. They were

1) transfer products showing as "rabbit ears" on the mass distribution curve ($700 \pm 120 \mathrm{mb}$);
2) "quasi- $\mathrm{Kr}^{\prime \prime}$ products centered at $\mathrm{A} \approx 85$ corresponding to the new "quasifission" reaction also observed by others in kinematic coincidence measurements ($470 \pm 70 \mathrm{mb}$) and the products from symetric fission of their complements ($420 \pm 60 \mathrm{mb}$);
3) neutron-excess products from low-energy fission of $2 \approx 92$ nuclides ($200 \pm 40 \mathrm{mb}$);
4) products from complete fusion-fission ($55 \pm$ 15 mb); and
5) unexplained neutron-deficient yields near gold at $A \approx 195$ which we refer to as the "goldfinger" (~ 40 mb).

Thick depleted uranium ($30 \mathrm{mg} / \mathrm{cm}^{2}$) and bismuth ($125 \mathrm{mg} / \mathrm{cm}^{2}$) targets were bombarded with 340 MeV ${ }^{40} \mathrm{Ar}$ ions. The targets were subjected to a chemical group separation scheme developed by Kratz, Liljenzin and Seaborg, 2 with some small modifications to account for the differences in chemical properties of bismuth and uranium. The Ge(Li) gamma-ray counting and analysis used to identify and measure cross sections of the nuclides is the subject of another report. 3

We have made a preliminary comparison of the independent and partial chain yields for the 340 $\mathrm{MeV}{ }^{4} \mathrm{Ar}+{ }^{23 \mathrm{~B}} \mathrm{U}$ reaction with those reported ${ }^{2}$ for the $288 \mathrm{MeV}{ }^{40} \mathrm{Ar}+{ }^{23} \mathrm{~V} \mathrm{~J}$ reaction. Based on this comparison and examination of the relative yields
of nuclides as related to the valley of beta stability for the nuclides over the mass number range $A \approx 40$ to $A \approx 92$, the relative contribution of the complete fusion-fission process compared to other reaction channels is not as large as previously reported. 4

In addition to the complete mass yield distribution studies of $340 \mathrm{MeV}{ }^{40} \mathrm{Ar}$ with thick ${ }^{23} \mathrm{E}_{\mathrm{U}}$ targets, the isotopic distribution of I and Br isotopes from the same reaction with 212 to 288 MeV ${ }^{4}{ }^{0} \mathrm{Ar}$ ions was deternined. Figures 1 and 2 show the cross sections for the I and Br isotopes identified by gama-ray energy and half life for ${ }^{40} \mathrm{Ar}$ with incident laboratory energies between 340 and 212 MeV . Since thick U targets were used, the cross sections represent integrated formation cross sections between the incident ion energy and the barrier, calculated to be 206 MeV (Lab) using $r_{p}=1.4 \mathrm{fm}$. The Gaussian shaped curves drawn through points representing the yielids of the neutron-deficient 1 isotopes represent best fits to the independent yield data in this region. The Gaussian-like isotopic mass yields probably result from quasifission followed by fission of the heavy complement (type 2 above) or from complete fusionfission (type 4 above). The neutron-excess I and Br products are produced by low energy fission of uclides with $Z \approx 92$.

An analysis of the indine isotopic distributions in terms of a camplete fusion-fission mechanism may be made. Assuming that the neutrondeficient isotopic distributions in Figures 1 and 3 result from fusion-fission only, 15 ± 1 and 11 ± 1 neutrons would be emitted in the fusionfission process from the ${ }^{40} \mathrm{Ar}+{ }^{238} \mathrm{U}$ and ${ }^{40} \mathrm{Ar}$ $+{ }^{209} \mathrm{Bi}$ reactions, respectively. The relatively

Fig. 1. Iodine isotopic yields from the reaction of ${ }^{40} \mathrm{Ar}$ with thick ${ }^{23 \mathrm{~B}} \mathrm{U}$ targets. (XBL 753-2565)
large neutron to proton ratio of the compound nucleus with respect to the neutron to proton ratio of stable Br isotopes would shift the center of the Br isotopic distributions to the neutron excess side of the valley of beta stability, Neutron deficient Br isotopes seen in Fig. 2 result from ${ }^{40} \mathrm{Ar}$ contamination trapped in the uranium metal target. The target arrangement did not allow for accurate beam intensity measurements. However, the cross section ratios shown in Fig. 4 provide information about the excitation functions of the I and Br isotopes independent of beam intensity and chemical yield. The ${ }^{126} \mathrm{I}$ to ${ }^{135} \mathrm{I}$ ratio indicates that the barrier is about 20 MeV higher for the fusion-fission or quasifission mechanism than for the transfer-reaction mechanism. The ratio of

Moss number

Fig. 2. Bronine isotopic yields from the reaction of ${ }^{4} \mathrm{~A} \mathrm{Ar}$ with thick ${ }^{238} \mathrm{y}$ targets.
(XBL, 756-3315)

Fig. 4. Cross section ratios from the reaction of ${ }^{40}$ Ar with ${ }^{23}{ }^{4} \mathrm{U}$ plotted as a function of incident beam energy. The values plotted represent integral production cross section ratios for the reaction of ${ }^{4}{ }^{4} \mathrm{Ar}$ with ${ }^{2}{ }^{38} \mathrm{U}$ between the incident ion energy and the reaction barrier.
(XBL 753-2559)
${ }^{62} \mathrm{Br}$, an independent yield isotope, to ${ }^{135} \mathrm{I}$, a cumulative yield isotope with a short-lived parent, is also shown in Fig. 4. Since ${ }^{82} \mathrm{Br}$ is produced in the transfer reaction mechanism as well as in the fusion-fission or quasifission mechanism, the evidence for a difference in barriers between the two type of reactions is not clearly seen.

The isotopic yields of I from $340 \mathrm{MeV}{ }^{40} \mathrm{Ar}$ with a thick ${ }^{28}{ }^{9} \mathrm{Bi}$ are shown in Fig. 3. As expected, the low energy fission neutron excess products are not seen. The Gaussian curve fit through the neutron-deficient I isotopes has the same width as was found with $340 \mathrm{MeV}{ }^{40} \mathrm{Ar}+{ }^{238} \mathrm{U}$ but centered at $A=125.2$ almost 1.5 mass units lower than the center for the ${ }^{40} \mathrm{Ar}+{ }^{238} \mathrm{U}$ curves (Fig. 1).

A mass yield distribution study using relativistic heavy ions was also begun at the Bevalac. A ${ }^{2} \mathrm{C}$ C bean intensity of $n 10^{9}$ particles/pulse was attained. The iodine isotopic yields from the reaction of $25.2 \mathrm{GeV}{ }^{12} \mathrm{C}$ with a $250 \mathrm{mg} U$ target is shown in Fig. 3. The complete radiochemical separation used for the ${ }^{40} \mathrm{Ar}$ bonbardments as described

Fig. 3. Iodine isotopic yields from the reaction of $340 \mathrm{MeV}{ }^{40} \mathrm{Ar}$ with a thick ${ }^{209} \mathrm{Bi}$ target and from the reaction of $25.2 \mathrm{GeV}{ }^{12} \mathrm{C}$ ions with a ${ }^{232} \mathrm{U}$ target.
(XBL 753-2560)
above was used with the $25.2 \mathrm{GeV}{ }^{12} \mathrm{C}+\mathrm{U}$ experiment. Ganme-rays were seen for many nuclides between $2 \approx 20$ and $Z \approx 92$ with strong peaks for nuclides such as ${ }^{28} \mathrm{Mg},{ }^{24} \mathrm{Na}$ and neutron-excess low-energy fission products. An interesting comparison can be made between yields of cesium from 2.0 GeV protons on ${ }^{238} \mathrm{U}^{5}$ and the yields of iodine from this experiment. The comparison shows that, in the case of the iodine, there is an enhancenent in the yields of neutron-deficient isotopes relative to that observed in the case of cesium.

References

1. J. V. Kratz, A. E. Norris, and G. T. Seaborg, Phys. Rev, Lett. 33, 502 (1974). See 'Mass Yield Distributions in the Reaction of ${ }^{84} \mathrm{~K}_{\mathrm{i}}$ with ${ }^{238} \mathrm{U}^{\prime \prime}$, in Section I of this Annual Report.
2. J. V. Kratz, J. O. Liljenzin, and G. T. Seaborg, Inorg. Nucl. Chem. Lett. 10, 951 (1974).
3. M. M. Fowlet, D. Lee, I. Binder, R. Otto, "Computer Aided Analysis of Gamma-Ray Spectra", in Section IV of this Annual Report. See also I, Binder, M. DiCasa, J. V. Kratz, J. O. Liljenzin, and A. E. Norris, Report LBL-2366, p. 451 (1973).
4. I, Binder, J. V. Kratz, J. O. Liljenzin, A. E. Norris, and G. T. Seaborg, Report LBL-2366, p. 61 (1973).
5. G. Friedlander, L. Friedman, B. Gordon, and L. Yaffe, Phys. Rev. 129, 1809 (1963).

EXCITATION FUNCTIONS OF COMPOUND NUCLEUS PRODUCTS
 FROM THE REACTION ${ }^{40} \mathrm{~A}_{\mathrm{Ar}}+{ }^{175} \mathrm{Li}$

J. R. Alonso, C. T. Alonso, A. Ghiorso,

J. M. Nitschke, and M. Nurmia

Introduction

One aspect of heavy ion physics that is receiving a great deal of current attention is the probability of compound nucleus formation using heavy beams on heavy targets. It is now clear that true compound nucleus formation does not occur as readily for very heavy projectiles as it does for the lighter projectiles, and t^{2} at although full montentum transfer processes do occur with high probability the usual result is some form of composite system whose shape precludes the possibility of complete fusion into a compound rucleus. Thus a study of the effect of projectile size and total system charge on compound nucleus formation by a direct observation of the complete fusion products has a direct bearing on, anong other things, the probability of symthesis of transuranic and superheavy elements. In addition, the details of particle evaporation from compound nuclei produced with heavy beans are not well uderstcod, and a measurenent of the ratio of charged particle emission to neutron emission is important. Therefore we are undertaking a systematic study of compound nucleus formation and evaporation, starting with argon beans on progressively heavier targets. Prelininary results from the first study of this type are reported here.

For a direct and unambiguous detection of compound nucleus products it is important to work in a region where the neutron-evaporation products are isotopes of known alpha decay energies and half-1ives. Thus the light actiniun isotopes ${ }^{210-213} \mathrm{Ac}$ are the heaviest products that can be easily reached, implying that ${ }^{175} \mathrm{Lu}$ is the heaviest target that can be used with " Ar to observe (xn) products from a compound nucleus reaction. A detailed study of ${ }^{135} \mathrm{Lu}+{ }^{4}{ }^{4} \mathrm{Ar}$ can yield a good picture of many compound nucleus products, and ratios of (xn), (pxn), and ($0 \times \mathrm{x}$) cross sections can be evaluated. The use of heavier targets such as ${ }_{18}{ }^{\text {Ta }}$ can also yield compound nucleus information, but the important (xn)/(axn) ratio cannot be measured because the light protactinium isotopes are too short-1ived to be detected with our apparatus, or are unknown.

It is hoped that eventually an extrapolation of our measurements, together with those of Hahn et a1 ${ }^{2}$ for 1 ighter targets, will yield some trends that could give us some insight concerning the probabilities of compomd nucleus fomation for heavier beans on heavy targets.

Experiments

Our experimental techniques are the same as those used in our recent discovery of element 106.3 These involve the transport of activity from the target area by an aerosol-gas strean to a lowbackground alpha counting area. Thin targets of metallic lutetium of thickness $a 1 \mathrm{mg} / \mathrm{cm}^{2}$ were evaporated on $2.7 \mathrm{mg} / \mathrm{cm}^{2}$ aluminum backings. The
argon beant energies ranged fionis $\mathbf{i} 77$ to 242 MeV . The energies were adjusted in gross steps by retuming the SuperHILAC and in fine steps by inserting degraders in the beam line. A solid state counter directly behind the target measured the attenuated beam after it had traversed both the degraders and the target.

Table 1 lists the alpha activities detected as well as the reaction which produced them. Note that some of the Fr products may have originated from the alpha decay of actinium parents, but the much higher yield of (axn) to ($x n$) products implies that this effect is negligible. A typical alpha

TABLE 1.

Reactions	Activities	Half-1ife (sec)	Alpha energy (MeV)
(${ }^{4} \mathrm{Ar}, 2 \mathrm{n}$)	$2^{213} \mathrm{Ac}$	0.93	7.377
$3 n$	212 Ac	0.80	7.362
4 n	${ }^{211} \mathrm{Ac}$	0.25	7.480
5 n	$230^{10} \mathrm{Ac}$	0.35	7.482
- 2 n	${ }^{212} \mathrm{Ra}$	13	6.869
p 3 n	${ }^{211} \mathrm{Ra}$	15	6.910
p 4 n	210 Ra	4.7	7.018
P 5 n	${ }^{209} \mathrm{Ra}$	3.8	7.008
$\alpha 2 \mathrm{n}$	209 Fr	59	6.647
- 3n	${ }^{208} \mathrm{Fr}$	52	6.647
a 4 n	${ }^{207} \mathrm{Fr}$	14.7	6.773

spectrom is shown in Fig. 1. This is a sum of the spectra observed in each detecting station around the periphery of the collecting whee1. Figures 2, 3 , and 4 give excitation functions for the (xn), ($p \times n$), and ($\alpha \times n$) products, respectively. These data are preliminary, with a fully computerized analysis still in progress. Figure 5 is a composite of the curves dram through the experimental points. These excitation functions are broadened by about 5-10 MeV because of the energy dispersion of the beam in the degraders and the target.

Discussion

The parameters obtained fron theoretical fits to these excitation functions reinforce our previous observation that our understanding of these processes is very linited. Two sets of calculations were performed. The first was a Sikkelandtype neutron evaporation calculation which does not include charged particle emission but does include nuclear deformation effects. 4 This code has proven to be very useful and quite accurate for transuranic element neutron evaporation cross sections
for projectiles up to neon. The second treatment utilized the code ALICE developed by M. Blann et al. 5 This code includes all modes of evaporation from the nucleus but does not include prompt or direct particle emissions.

The more efficient neutron evaporation code was used to mdertake a search in the Wood-Saxon ($\mathrm{r}_{0}, \mathrm{~d}$) parameter spuce for optimum values to fit

Fig. 1. Exantiple of alpha spectrum obtained for the ${ }_{40 \mathrm{Ar}}+{ }^{175} \mathrm{Lu}$ reaction products. The peaks are labeled by energy (in MeV), parent isotope, and by porticles boiled off from the compound nucleus to give each product.
(XBL 756-3323)

Fig: 2. Experimental excitation functions for ${ }_{21}$: $_{213}{ }^{3}$ Ac activities, produced by pure neutron evaporation from the compound nucleus.
(XBL 756-3330)
the observed (xn) excitation functions. The optimum parameters were found to be $r_{0}=1.32$ fm and $\mathrm{d}=1.0 \mathrm{fm}$. In contrast, the parameters found by this code for transuranic element production with light projectiles were $r_{0}=1.25 \mathrm{fm}$ and $\mathrm{d}=0.5 \mathrm{fm}$. The implication is that for $\mathrm{Ar}+\mathrm{Lu}$ the effective nuclear interaction radius is larger and the surface is more diffuse than for reactions involving lighter projectiles on heavier targets. Deformation effects are included in these calculations, so they camot be responsible for the lower effective barriers.

Fig. 3. Experimental excitation functions for $209-232 \mathrm{Ra}$ isotopes, produced in (${ }^{40} \mathrm{Ar}, \mathrm{pxn}$) reactions.
(XBL 756-3327)

Fig. 4. Experimental excitation functions for ${ }^{208-209} \mathrm{Fr}$ isotopes produced in ($\left.{ }^{40} \mathrm{Ar}, \infty \times \mathrm{n}\right)$ reactions
(XRL 756-3328)

Fig. 5. Composite of experimental excitation fumction curves from Figs. 2-4. Experimental points have been left out for clarity.
(XBL 756-3531)

These parameters were used in the ALICE code with the results shown in Fig. 6. For comparison, the dotted lines show the predictions for the parameters ($r_{0}=1.17 \mathrm{fm}$ and $\mathrm{d}=0.574 \mathrm{fm}$) which are nomally used with this code and which were selected on the basis of experimental data from the lower mass regions. Although there is similarity between theory and experiment (Figs. 6 and 5), the detailed agreement is poor. For example, the experimental excitation functions are much broader than the predictions, the observed (pxn) cross sections are about 10 times higher than predicted, and the $(2 n, 3 n)$ prediction peaks at too $10 w$ an energy and is too strong with respect to the ($4 n$, 5n) curve. Nevertheless, gross features are reproduced by the theory.

Using these parameters from the $\mathrm{Ar}+\mathrm{Lu}$ reaction to predict cross sections for the ${ }^{40} \mathrm{Ar}+{ }^{2088} \mathrm{~Pb}$ reaction yields cross sections for ${ }^{245} \mathrm{Fm}$ and ${ }^{245} \mathrm{Pn}$ which are at least three or four orders of magnitude too high compared to recent experimental results. ${ }^{6}$ It is apparent that the region of targets from Lu to Pb sees the onset of one or more new mechanisms that are radically diminishing the probability of compound nuclear formation. Although the Ar + Lu parameters obtained here cannot be used to describe compound nucleus formation for heavier targets, perhaps an analysis of trends in the parameters themselves as a function of target size may lead to an extrapolation that has more validity. Further studies of this nature are in progress.

Fig. 6. Predictions for observed excitation fumctions made by the ALICE code of M. Blann et aI, 5 using nuclear potential parameters of $r_{0}=1.32 \mathrm{fm}$, $\mathrm{d}=1.0 \mathrm{fm}$, which best fit our observed reaction threshold. The dotted lines indicate the higher reaction barrier obtained for $r_{0}=1.17 \mathrm{fm}$, $\mathrm{d}=$ 0.574 fm , the paraneters built into the code.
(XBL 756-3.329)

References

1. See for exanple, M. Lefort, Y. Le Beyec, and J. Peter, "Experimental Complete Fusion Results", Proceedings of International Conference on Reactions Between Complex Nuclei, Nashville, Tennessee, June 10-14, 1974.
2. R. L. Hahn et al., private commemication.
3. A. Ghiorso, J. M. Nitschke, J. R. Alonso, C. T. Alonso, M. Nurmia, G. T. Seaborg, E. K. Hulet, and J. N. Lougheed, "Element 106", Phys. Rev. Lett. 33, 1490 (1974).
4. J. R, Alonso and J, D. Rasmussen, "Total Reaction Cross Sections for Heavy Ions", LBL-2366, p. 150 (1974).
5. M. Blann and F. Plasil, "ALICE: A Nuclear Evaporation Code", USAEC Report COO-3494-10 (1973); also W. G. Winn, H. H. Gutbrod, and M. Blann, Nuc1. Fhys. A18R, 423 (1972).
6. A. Ghiorso, private commanication.

SEARCH FOR $\mathbf{2 6 0}_{\text {Ri }}$

M. Nurmia, E. K. Hulet,* K. Williems, and A. Ghiorso

We have continued our efforts to find the missing isutope ${ }^{260} \mathrm{Rf}$. As in our earlier experiments ${ }^{1}$ we have concentrated our work in the half-1ife range of 50 ms to one second because of the repeated claim ${ }^{2}$ that ${ }^{250} \mathrm{Rf}$ has a half-life of 100 ms .

We bombarded a target of ${ }^{249} \mathrm{Bk}$ with ${ }^{15} \mathrm{~N}$ ions in the rotating drum system described in Ref. 3. The reaction ${ }^{249} \mathrm{Bk}\left({ }^{15} \mathrm{~N}, 4 n\right)^{26}{ }^{6} \mathrm{Rf}$ is expected ${ }^{4}$ to have a cross section of 14 nb at 82 MeV ; this is in accordance with the measured production cross sections of neighboring nuclides.

No spontaneous fission activity with a halflife within the above limits was observed in these experiments, and we conclude that the half-life of ${ }^{260} \mathrm{Rf}$ is quite likely to be shorter than 25 ms .

Footnotes and References

"Lawrence Livermore Laboratory.

1. A. Ghiorso, Proceedings of the Welch Conference on Chemical Research, Huston, Texas, November $17{ }^{-}$ 19, 1969; LLL Amival Report 1968 (UCRL-18667).
2. See, for instance, K. Bemis, Proceedings of Intemationsl Conference on Reactions Between Conplex Nuclei, Nashville, Temn., June 10-14, 1974.
3. E. K. Hulet et al., Phys. Rev. Letters 26, 523 (1971).
4. J. Alonso, Gne1in's Handbuch der Anorganischen Chemie Vol. 71.

ELEMENT 106

A. Ghiorso, E. K. Hulet، J. M. Nitschke, J, R. Alonsu,
R. W. Lougheed,* C. T. Alonso, M. Nurnia, and G. T. Seaborg

The identification of new elements at the upper end of the periodic table is especially difficult because of extremely low production rates and because there are large uncertainties in predicting their nuclear properties. For these reasons, positive identification requires some means of determining the atomic number directly. Among the proven methods are (1) the measurement of distinctive $K-x$ rays 1,2 following a-decay and (2) the establishment of a generic link between an α emitter of a new element and a previously identified daughter muclide. Our identification of element 106 is based on the latter method because of its higher sensitivity. This method was also used in discovering a_{3} emitting isotopes of ruther ${ }_{-}$ fordium (element 104) ${ }^{3}$ and hahnium (element 105). ${ }^{4}$ In the case of element 106, we have carried this method one step further by demonstrating that the granddaughter $\left\{^{255} \mathrm{No}, t_{1 / 3}=3 \mathrm{~min}\right.$, E main alpha group 8.11 MeV (578) $5,6,1$ is in the chain of a-decay of ${ }^{263} 106$. Thus, our proof for the atomic struber of element 106 cones from demonstrating the following decay sequence: ${ }^{263} 106 \xrightarrow{\alpha}{ }^{259} \mathrm{Rf} \xrightarrow{\alpha}{ }^{25} \mathrm{No} \xrightarrow{a}$.

These genetic relationships were established in two ways depending on whether or not the ${ }^{263} 106$ a-particles escaped from their backing surface. (1) In the case where these particles , ere detected leaving the surface we observed with a certain probability in a time interval of 12 seconds the alphas of the 3 -second daughter ${ }^{259} \mathrm{Rf}$ ($\mathrm{E}=8.77$ and 8.86 MeV) that also here directed outward; i.e., we observed the ${ }^{263} 106 \xrightarrow{\alpha}{ }^{259} \mathrm{Rf} \xrightarrow{a}$ decay sequence. (2) In the case where the ${ }^{26}{ }^{3} 106$ alphas were directed into the backing surface (and hence were not detected), the recoil energy inparted to the
daughter nucleus allowed it to escape from the surface and to be implanted in the face of an opposing detector. Upon periodically moving these detectors away from the original sources, the α decay of daughter ${ }^{259} \mathrm{Rf}$ and the subsequent α-decay of the granddaughter were observed; i.e., we detected the ${ }^{259} \mathrm{Rf} \xrightarrow{\alpha}{ }^{255} \mathrm{No} \xrightarrow{\alpha}$ decay sequence. Considering the finite thickness of the deposits containing the ${ }^{2663} 106$ atoms, the considerable recoil energy required to transfer the observed number of daughter ${ }^{259} \mathrm{Rf}$ atoms to the detertor faces could be furnished only by a preceding α enitter. We thus were provided with a second genetic linkage to ${ }^{263} 106$ by α-decay.

Our experimental apparatus is illustrated schematically in Fig. 1. The ${ }^{38} 0$ beam obtained from the Supertlllac had an average current of 3×10^{12} ions $/ \mathrm{sec}$ and was wobbled electromagnetically over the target area to prevent localized overheating of the target. The target was both edge-cooled by contact with a water-cooled copper block and gas-cooled by helium impinging on the aluminum target backing. The energy of the ${ }^{16} 0$ ion beam emerging from the target was deternined by measuring the energy of these ions scattered from the target into a $\mathrm{Si}(\mathrm{Au})$ surface harrier detector placed at 30° to the beam axis.

The target was prepared by subliming $259 \mu g$ of ${ }^{24}{ }^{9} \mathrm{Cf}$ as CfF onto a $27 \mathrm{ug} \mathrm{imm}^{2}$ substrate of 99.999 g pure Al. The ${ }^{24}{ }^{9} \mathrm{Cf}$, depesited over a 6.3 mm diam. area had an average surface de:r.aty of $8.3 \mu \mathrm{~g} / \mathrm{mm}^{2}$. It was covered with a thin ($\left(1.3 \mathrm{\mu g} / \mathrm{mm}^{2}\right.$) layer of Al to prevent any transport of the califorsium to the detection system.

Fig. 1. Schematic representation of the experiment.
(XBL 748-3899)

Atoms of ${ }^{263} 106$ along with other transmutation products :ec:iled from the target into a stopping chamber and were swept by a flow of helium through Teflon tubing (4.8 m long, 1.24 mm inside diam.) into an adjoining counting area. The introduction of NaCl aerosol into the helium increased the transport efficiency to 80% or more. After a 0.1 sec transit time, the radioactive products which emerged from the Teflon tube were deposited onto the rim of a 45 cm diam. wheel which was rotated 45° each sec to collect a new deposit. Alpha particles from the deposits were then examined by a series of seven detecting stations each having 50 $m m^{2} \operatorname{Si}(A u)$ surface barrier detectors positioned within 0.5 mm of the wheel rim. An eighth $100 \mathrm{~mm}^{2}$ Si (Au) annular detector analyzed the a-activity of the deposit while it was being collected. Thus, each deposit was α-analyzed for seven sec (1 sec at each station) before it returned to the collecting position. Since new deposits were layered over the old, the wheel was advanced by 1.5° every 30 min to reduce the buildup of long-1ived radioactivities in the deposits being analyzed.

If an α-particle from the decay of ${ }^{263} 106$ is observed, then another a-particle from the decay of its daughter, ${ }^{259} \mathrm{Rf}$, should follow within a few daughter half-lives. Both events must originate from the same def'sit, but they may be observed in separate detectors because the wheel advances the deposit every second. After considering the counting geometry and the decay and gating intervals we calculated a detection efficiency for these 'motherdaughter' pairs of 288 conmared to 'mother only" events.

In addition to monitoring mother and daughter a-decays directly, we used a detector shuttle system (shown in the inset of Fig. 1) to detect daughters and granddaughters resulting from a-recoils. By moving the detectors away from the wheel, we could distinguish between recoil-implanted and wheelborne ${ }^{25}{ }^{5} \mathrm{No}$ and ${ }^{259} \mathrm{Rf}$. Mich larger amounts of these nuclides were made by direct muclear reac-
tions than by a-decay from ${ }^{263} 106$ and thus constituted a high background on the wheel. The set of seven detectors monitoring the wheel was stuttled every o sec to a low-background position facing seven stationary detectors, while another set of movable detectors resumed the monitoring of the wheel. In the event that a ${ }^{259} \mathrm{Rf}$ daughter had recoiled from the wheel onto a detector and we later observed α-decay of this daughter with the detector in the off-wheel position, this detector was not returned to the wheel position until 10 minutes had elapsed. This time period permitted an adequate opportunity for observing the subsequent α-decay of the $3-\mathrm{min}$ granddaughter, ${ }^{5}{ }^{5} \mathrm{No}$.

Alpha and fission pulses from the detectors were anplified and passed through an analog-to-digital-converter to a PDP-9 conmuter. The computer recorded on magnetic tape all the event information, including a-energy, time, detector location, and wheel position. The PDP-9 also controlled the operation of the wheel and shuttle systems. We used off-1ine computer programs for correlating the arrival time of selected α-events with the time, a-energy, and detection 10 cation of other a events. Using events in the ${ }^{259}{ }^{5 f}$ energy region to define time origins, the intervals of 0 to 12 seconds and 50 to 62 seconds preceding these events were scanned for correlated decays. The first time range gave possible mother-daughter correlations, the second provided a good measure of the accidental background.

Earlier experiments performed in the Berkeley laboratory in 1970-71 had shown several promising mother-daughter everts and daughter recoils. However, because of background radioactivities arising from Pb , Bi and Be in the target, these experiments were unable to provide sufficient proof of the atomic manber. Our current α-spectra are virtually free of these background activities and show prominently only those α-emitters produced from the reactions of ${ }^{20} 0$ ions with ${ }^{243} \mathrm{Cf}$.

The gross a-spectrum above 8 MeV , summed using the data from the wheel detectors, is shown in Fig. 2 (a). Alpha groups at 8.77 and 8.86 MeV have been identified previously as belong: ics to ${ }^{259} \mathrm{Rf}, 3 \mathrm{We}$ attribute most of the 87 events : the groups at 9.06 MeV and near 9.25 MeV to the c -decay of the new nuclide, ${ }^{263} 106$. By means of a least-square analysis the number of these events observed at each wheel position (1 sec intervals) was found to decrease with a 0.9 ± 0.2 second half life.

The 9.06 and 9.25 MeV alphas are followed within 12 seconds by daughter alphas at 8.77 and 8.86 MeV , as shown in Fig. 2(b). The ratio of the time-correlated daughters to gross ${ }^{263} 106$ events is roughly equal to the detection efficiency we derived for this process. An application of Pois. son statistics indicates that, with 95% confidence,

Fig. 2(a). Sum of alpha spectra from stations 1 through 7. The integrated beam intensity was 1.34×10^{18} particles of ${ }^{18} 0$.

2(b). Alpha events in the $0-12$ second inter$v a 1$ preceding ${ }^{259} \mathrm{Rf}$ events (8.65 to 8.91 MeV). The 12 second time interval represents four ${ }^{259} \mathrm{Rf}$ half lives.

2(c). Alpha events in the 50-62 second
interval preceding ${ }^{259} \mathrm{Rf}$ events. A 50 -second time displacenent was chosen to determine the accidental spectrum. Only one alpha event was found within the ${ }^{263106}$ energy region, as had been expected from Poisson statistics.
(XBL 349-4129)
a maximum of 2.5 out of fourteen ${ }^{263} 106{ }^{254} \mathrm{Rf}$ decay pairs might be attributed to accidentals. Random alphas occurring $50-62 \mathrm{sec}$ before ${ }^{259} \mathrm{Rf}$ decay events are shown in Fig. 2(c). We infer from these data that the new activity decays by emission of 9.06 and $9.25 \mathrm{MeV} \alpha$-particles to ${ }^{259} \mathrm{Rf}$ and, therefore, can belong only to ${ }^{263} 106$.

Some 22 atoms of recoil-transferred ${ }^{259} \mathrm{Rf}$ were observed to decay in the off-wheel detectors, Shortly after such daughter events, granddaughter ${ }^{255}$ No α-particles were detected in about a fifth of all off-wheel daughter decays. Considering the small number of granddaughters, this ratio niay be expected from the 270% counting geometry and the $\because 50 \%$ E.C. branching by ${ }^{25}{ }^{5}$ No. ${ }^{\circ}$ In Table I we give a surfinary of all doughter-granddaughter and motherdaughter events.

From the rate of producing our new activity with α-energies of 9.06 and 9.25 MeV , we calculate a fomation cross-section of 20.3 nb at an ${ }^{16} \mathrm{O}$ energy of 95 MeV . Very little of this activity was made by ${ }^{190} 0$-ion beams of ≈ 91 and $\approx 100 \mathrm{MeV}$, which indicates a rather narrow excitation function. These preliminary measurements are consistent with our calculated excitation function for the ${ }^{249} \mathrm{Cf}\left({ }^{18} 0,4 \mathrm{n}\right)$ reaction, which shows a halfwidth of 7 MeV and a maxinum cross section of 0.2 nb. 8

Spontaneous fission of ${ }^{263} 106$ could not be detenmined because of interference from 2.7 hour 256 Fm , a spontaneous fission emitter produced in the bombardments. However, spontaneous fission is

TABLE 1.

$\begin{array}{r} 263106 \\ \mathrm{E}_{\alpha}(\mathrm{MeV}) \end{array}$	$\begin{gathered} \text { Mother-Dau } \\ { }^{25{ }^{5} \mathrm{Rf}} \\ \mathrm{E}_{\alpha}(\mathrm{MeV}) \end{gathered}$	$\begin{aligned} & \text { Correlal } \\ & { }_{263}{ }^{3} 106 \\ & \text { Station } \end{aligned}$	Δt (sec) ${ }^{259}$ Rf decay
9.03	8.85	1	3.6
9.04	8.85	2	10.5
9.04	8.91	1	1.2
9.05	8.74	2	2.2
9.05	8.77	5	0.9
9.05	8.85	1	1.0
9.06	8.70	2	3.0
9.06	8.72	1	2.5
9.06	8.75	3	1.6
9.06	8.78	1	6.4
9.06	8.78	3	9.4
9.08	8.74	1	2.1
9.08	8.76	7	0.3
9.25	8.88	1	3.5
Daughter-Granddaughter Correlations			
${ }^{259} \mathrm{Rf}$	${ }^{25}$ No	${ }^{259} \mathrm{Rf}$	Δt (sec)
$\mathrm{E}_{\alpha}(\mathrm{MeV}$)	$\mathrm{Ecc}_{\mathrm{c}}(\mathrm{MeV})$	Station	$25{ }^{\text {No decay }}$
8.79	8.02	2	93.3
8.86	7.93	6	134.9
8.81	8.30	2	39.2
8.81	8.07	1	491.0

apparently not a major decay mode, since the α events we observe account for a production cross section already larger than the calculated one.

During a recent visit by Soviet scientists to our laboratory, in which we exchanged information about "106" experinents, G. N. Flerov of the Dubna Laboratory reported the observation of spontaneous fission activities with half-1ives of 4-10 milliseconds produced by bombarding ${ }^{207,208} \mathrm{pb}$ with ${ }^{54} \mathrm{Cr} 9$ They attribute these activities to element 106. In view of the simultaneity of the experiments at the Dubna and Lawrence Laboratories, and their very different nature, we shall postpone suggesting a name for element 106 until the situaticn has been clarified.

Footnotes and References

*Lawrence Livermore Laboratory, Livermore, California 94550.

\author{

1. P. F. Dittner,
 C. E. demis, D. C. Hensley,
} R. J. Silva, and C. D. Goodnan, Phys. Rev. Lett, 26, 1037 (1971).
2. C. E. Benis, R. J. Silva, D. C. Hensley, O. L. Keller, J Tarrant, L. Hunt, P. F. Dittner,
R. Hahn, and C. D. Goodman, Mhys. Rev. Lett. 31, 647 (1973).
3. A. Ghiorso, M. Murnia, J. Harris, K. Eskola, and P. Eskoia, Phys. Rev. Lett. 22, 1317 (1969).
4. A. Ghiorso, M. Nurmia, K. Eskola, J. Harris, and P. Eskola, Phys. Rev. Lett. 24, 1498 (1970).
5. G. N. Flerov, G. N. Akap'ev, A. G. Demin, V. A. Druin, Yu. V. Lobanov, and B. V. Fefilov, Yad. Fiz 7, 977 (1968); Soviet J. Nuc1. Phys. 7. 588 (1968).
6. P. Eskola, K. Eskola, M. Nurmia, and A. Chiorso, Phys. Rev. 62, 1058 (1970)
7. A. Ghiorso, et al., unpublishel data (1971).
8. J. R. Alonso, "Productj in of Transuranic tlements in Charged Particie Reactions", in Golin Handbuch, Erg.-Herk, Bd. 7a, Transurane, T1. Al, II, p. 28.
9. Yu. Ts. Oganessim, Yu. P. Tretyakov, A. S. Iljinow, A. G. Demin, A, A. Pleve, S. P. Tretrakova, V. M. Plotko, M. P. Ivanov, N. A. Danilow, Yu. S. Korotkin, and G. N. Flerov, JINR-D7-8099, Dubna. 1974.

SUPERHEAVIES IN NATURE - WHERE AND HOW TO LOOK*

M. J. Nurmia

It is not going to be easy to synthesi:e superheavy elements (SHE) - at best we might be able to make a few atoms the samp way as, say hahnium, with the SuperHILAC or other machines.

However, if we were ever to find a single SHE nuclide in any natural source in the abmadance of, say 10^{-16}, the whole picture would change. By working 100 kilograns of the material we would have some 10^{10} atoms - more than enough t separe a large number of reighboring nuclei by :zutron and charged-particle irradiation.

These "secondary" isotopes will generally have shorter half-lives and would thus provide sufficient activity for the study of the nuclear and chemical properties of the superheavy elements. They woulf also give rise to decay chains that would facilitate the stuiy of the elements in the gap between the SHE's and hahnium. The rewards of success would thus be great, and we shall now look at the basic questions on how to improve the sensitivity of our searci:.

Most work so far has been based on two imporiurt assumptions:

1) The eka-element follous the chemistry of the lower homolog both in geochemical fiactionatiza and in ordinary industrial processes. Fir example, one 100 ks for eka-lead in either lead minerals or "pure" lead compomds.
2) The SHE either decays by SF or exists in secular equilibrium with a descendent that decays by SF.

Regarding the first assumption I would like to quote Darleane Hoffman, the discoverer of ${ }^{24}{ }^{4} \mathrm{Pu}$ in nature. 1 She points out that even in that case it was very difficult to decide where to look for the highest geochemical enrichment of Pu , even though the chemistry of plutonium "has been rather well studied."

Regarding the second assumption it should be pointed out that an assumed primordial SHE is not likely to decay by spgntanecias fission. A calculation b: Fiset and Nix ${ }^{2}$ that covers all nuclides with $172 \leqslant \mathrm{~N} \leqslant 191$ and $104<Z \leqslant 130$ predicts that out of these 520 isotopes 15 would have a total halflife longer than 2 years. The half-1ives of these 15 range up to ${ }^{1} 0^{9}$ years, but only two of them, two isotopes of element 110, are predicted to have spontaneous fission as their main mode of decay. Even assuming for the considerable uncertainty of the provicted half-lives thenselves, it appeans likely that a long-lived primordial SHE wound decay by alpha emission or electron capture and give rise tos a family of one or more members before the chain is teminated in SF.

Most minerals are old enough so that there is a goou chance for a secular equilibriun between the SIIE and its descendants, but this condition
would not bu fulfilled in case of industrial products and other such samples.

Of course, if the SHE has an essentially infinite half-life, it could only be detectable by methods such as mass spectrometer or activation analysis, As D. Hoffman ${ }^{1}$ points out, it would be necessary to perform chemical concentration, i.e., a separation between SHE and its lower homolog.

1 would suggest that we try to improve the sensitivity of our SHE search by abandoning the above assumptions and replacing them with specific assumptions regarding the SHE and its geochemical behavior.

At this point 1 would like to concentrate on one good possibility of a geochenical and physical distinction between a SHE and its lower honolog. The SHE is eka-mercury. In the group consisting of Zn, Cd and Hg , Cd is more volatile than Zn , and Hg is much more volatile than Cd .

Quantitative predictions can be made in the manner used for other Slir's by Keller et al, 3 but no matter how one extrapolates, eHg seems tc he still more volatile than Hg . The trend of t.e chemical nobility of these elements is similar: In and Cd do not occur as metals in nature, but mercury is present in metallic form in minerals and as vapor in the atmosphere.

The anount of Hg in "unpolluted" air is given as $1-40 \mathrm{ng} / \mathrm{m}^{3}, 4^{4}$ a concentration of $(1-8) \cdot 10^{-92}$. In sea water the Hg concentration is 10 to $50 \mathrm{ng} / 1$ or $(1-5) \cdot 10^{-11}$.

It is interesting to note that the Hg in the atmosphere may be largely of volcanic origin. 4,6 The same geochemical processes should work still more efficiently in the case of the more volatile and more noble eHg, if it is present in nature. efg may actually resemble the heavy rare gases in its geochemical behavior and be preferentially concentrated in the atmosphere!

This offers many interesting possibilities for a search along the lines explored by Stoughton et al. 7 They used a neutron-multiplicity counter to look for spontaneous fissions in samples of crude xenon and silica gel from a conmercial air liquefaction process, and also examined $A u$ and $A g$ foils exposed to air flowing out of mercury mines. No SF activity was observed during a counting period of a few days.

Let us now consider the nuclear properties in some detail; this kind of evaluation can be made for other SHE's as well but I shall cancentrate on eHg. Decay properties predicted for the longestlived elg isotopes by Fiset and Nix ${ }^{2}$ are given in Table 1.

Table 1

A moderate "adjustment" of the alpha halflives would evidently yield total half-liyes sufficiently long so that some of the above isotopes could be present as primordial SIE's. There are at least two other possibilities.

TABLE 1. Longest-lived oHg isotopes. ${ }^{6}$

N	A	$\mathrm{T}_{S F}$	T_{c}	$\mathrm{Q}_{8} \mathrm{MeV}$
178	290	79 d	180 d	--
179	291	$10^{4.5} \mathrm{y}$	6.4 y	0.2
180	292	$10^{3.6} \mathrm{y}$	$98 \quad y$	--
181	293	$10^{9.1} \mathrm{y}$	$10^{5.6} y$	-*
182	294	$10^{8,5} \mathrm{y}$	$10^{4.5} y$	--
183	295	$10^{14.5} y$	$10^{6.4} y$	--
134	296	$10^{14.4} \mathrm{y}$	$10^{5.4} \mathrm{y}$	--

First, SHE's may, after all, be produced in supermova explosions or other astrophysical processes and be arriving on the Earth as cosmic rays or cosinic dust some 10^{3} to 10^{6} years after their fomation, Relatively short-lived eHg isotopes may thus be present as "cosmic fallout" in the atmosphere or in the deep-sea sediments.

Second, eHg isctopes may be present as decay products of other SHE's. In this content we should pay particular attention to the suggestion of Meldner and Hermann ${ }^{9}$ that the longest-lived $5 H E$ isotopes may be of the odd-add type and similar to ${ }^{40} \mathrm{~K}$ and ${ }^{50} \mathrm{~V}$, both of which are long-1ived in spite of their large beta-decay energy.

Some such odd-odd SHE candidates, taken from the table of Fiset and Nix, ${ }^{2}$ are listed in Table 2.

Table 2
If eHg isotopes, such as those shown in Table 1, are present in nature, they are likely to decay by alpha enission forming $\mathrm{e} \mathrm{pl}_{\mathrm{t}}$ isotopes with various expected decay modes and half-1ives up to $20^{4} \cdot 5$ years for ${ }^{292}{ }^{29 p t},{ }^{2}$ In particular we cannet assume that samples of less than "geological" age contain the eHg in secular equilibrium with a descendant decaying by SF.

TABLE 2. Odd-odd SHE candidatea. ${ }^{2}$

Element	N	A	${ }^{T} \mathrm{SF}$	$\mathrm{T}^{\text {c }}$	Q_{β}
107 eRe	183	290	$10^{11.8} \mathrm{y}$	$10^{17.5} \mathrm{y}$	3.7
109 eIr	181	290	$10^{5.3} \mathrm{y}$	$10^{6.9} \mathrm{y}$	2.2
	183	292	$10^{13.0} \mathrm{y}$	$10^{12.3} \%$	2.7
111 eAu	179	290	$10^{4.3} \mathrm{y}$	$10^{3.8} \mathrm{y}$	1.1
	181	292	$10^{9.1}$	$10^{4.2}$ y	1.3
	183	294	$10^{15.2} \mathrm{y}$	$10^{8.2} \mathrm{y}$	1.7
113 eT1	181	294	$10^{13.6} y$	960 y	1.8
	183	296	$10^{18.9} \mathrm{y}$	$10^{5.3} \mathrm{y}$	1.2

The most attractive way to look for these isotopes is the mass spectroneter. The expected high volatility of eHg will cause some special problens but it will also provide an excellent way of concentrating and transferring samples.

In conclusion, then, I suggest that we look for efig in natural sources using a good mass spectrometer, Of course I cannot guarantee success but if we are always successful, then we are not tackling problems of the right kind:

Footnotes and References

*Condensed from a paper presented at the Nobel Symposium on "Superheavy Elements, Theoretical Predictions and Experimental Generation", Ronneby, Sweden, June 10-14, 1974; Physica Scripta 10A, 77 (1974).

1. D. C. Hoffman, Los Alamos Preprint LA-IR-73251 ; D. C. Hoffinan, F. O. Lawrence, J. M. Merewether and F. M. Rourke, Nature 234, 132 (1971).
2. E. O. Fiset and J. R. Nix, Nucl. Phys. Al93, 647 (1972).
3. O. L. Keller, J. L. Bumett, T. A. Carlson, and C. W. Nestor, J. Phys. Chem. 74, 1127 (1970).
4. B. 2. Siegel, S. M. Siegel, and F. Thotarinsson, Nature 241, 526 (1973).
5. D. Gardner and J. P. Riley, Nature 241, 526 (1973).
6. A. Eshleman, S. M. Siegel, and B. Z. Siege1, Nature 233, 471 (1971).
7. R. W. Stoughton, J. Halperin, J. S. Drury, F. G. Perey, R. L. Xacklin, R. V. Gentry. C. B. Moore, J. E. Noakes, R. M. Milton, J. H. McCarthy, and D. W. Sherwood, Nature Phys. Sci. 246, 26 (1973).
8. This mechanism has been considered for ${ }^{244} \mathrm{Pu}$ by K. Sakamoto (Nature 248, 130 (1974)).
9. H. Meldner and G. Herrmann, 2. Naturforsch. 24a, 1429 (1969).

THE VECTOR ANALYZING POWER IN d-p SCATTERING AT 45.4 MeV AND THE NUCLEON NUCLEON INTERACTION*

F. N. Rad, J. Birchall, ${ }^{\dagger}$ H. E. Conzett
S. Chintalapudi, \ddagger and R. Roy $\$$

During the past few years, three-body calculations ${ }^{1-5}$ have achieved notable success in fitting measured polarization observables ${ }^{6-9}$ in elastic nucleon-deuteron scattering. These calculations, which use the Faddeev equations with sejarable nucleon-nucleon potentials, have been made with more and more complicated $\mathrm{N}-\mathrm{N}$ interactions. The simple S-wave force had been sufficient to give agreement only with the differential cross-section data. The increasingly accurate and extensive polarization data, including nucleon and deuteron vector analyzing powers and deuteron tensor analyzing powers, have played a significant role ir. this theoretical refinement. ic now sems possible to derive from such data, via the three-body calculations, infomation on the $\mathrm{N}-\mathrm{N}$ interaction which, as yet, has not been available from $\mathrm{N}-\mathrm{N}$ scattering experiments. The most recent calculations of Doleschall ${ }^{5}$ show a surprisingly strong dependence of the nucleon and deuteron vector polarizations on variations of the input ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1} \mathrm{~N}-\mathrm{N}$ tensor interaction. We report here measurements of the deuteron vector analyzing nower, iT_{11}, in d-p elastic scattering at $E_{d}=45.4 \mathrm{MeV}$, which can be compared directly with the calculated vector polarization at the equivalent nucleon energy $\mathrm{E}_{\mathrm{N}}=22.7 \mathrm{MeV}$.

Although it has been known $1-3,8$ that the vector polarizations in N -d scattering are essentially due to the $\mathrm{N}-\mathrm{N}$ P-wavo interactions, there have ocen conflicting conclusions concerning the contribution to these polarizations from the tensor force. Pieper ${ }^{4}$ reported rnly slight changes with the addi-
tion of the tensor force, and he suggested ${ }^{10}$ that changes in the ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$ potential would have little effect on the nucleon polarizations. This conjecture was based on Sloan and Aarons ${ }^{1}$ result, which demonstrated that none of the N -d polarizations were very sensitive to changes in the ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$ potential. However, that calculation did not include the P-wave interactions, so the calculated vector polarizations were unrenlistically small. Doleschall's first calculation ${ }^{3}$ showed a substantial change in the vertor polarizations with the addition of the tensor foice to the S and P-waye interactions, and his nost recent calculation ${ }^{5}$ shows that the vector polarizations are quite sensitive to the details of the ${ }^{3} S_{1}-{ }^{3} D_{1}$ potential. It is just this sensitivity that offers the promise of providing information on the ${ }^{3} S_{1}-{ }^{3} D_{1} n-p$ mixing parameter ε_{1} and the ${ }^{1} P_{1}$ phase shift, which are poorly detemined from the phase shift analyses of $r_{1}-p$ scattering data below 80 MeV .11 Although Doleschall does not address this question, it seems clear that variations of ε_{1} and the P_{1} phase shift, in a search for improved fíts to the vector polarization data, could result in a better determination of these parameters than has been possible from $n-p$ scattering data.

Our experimental results are shown in Fig. 1, where the relative errors include the statistical error and a contribution of ± 0.004 which was determined from measured asymuetries with the beam polarization set to zero. In addition, there is a \pm 3f nomalization uncertainty from that of the

Fig. 1. The deuteron vector analyzing power, iT11 ${ }^{(\theta)}$, in $\mathrm{d}-\mathrm{p}$ elastic scattering at $\mathrm{E}_{\mathrm{d}}=45.4$ HeV. The curves are celculated results from Ref. 5 with different $\mathrm{N}-\mathrm{N}$ interactions. Dotted line, set C (S and P-waves) + T4D tensor potential; dashed line, set $\mathrm{C}+\mathrm{T} 4 \mathrm{M}$; solid line, set $\mathrm{C}+\mathrm{TAM}+{ }^{3} \mathrm{D}_{2}$.
(XBL 744-2770A)
$\mathrm{d}-4 \mathrm{He}$ analyzing power. Also shown in Fig. 1 are Doleschall's calculated results. 5 In this calculation he used an improved set of p -wave potentials which provido auch better ageement with the twomucleon p-wave phase shifts ${ }^{\text {F1 }}$ for the lower energies which contribate in the three-nucleon calculation. Additionall,, rank-2 tensor interactions were constructed in an attempt to simultaneously reproduce the ${ }^{3} \mathrm{~S}_{1},{ }^{3} \mathrm{D}_{1}$ phase shifts, the mixing paraneter ε_{1}, and the deuteron properties. It was not possible to find a single rank-2 tensor force which satisfied all of these criteria, so two such sets were used. One, the T4D force, reproduced the low energy ($\leqslant 100 \mathrm{MeV}$) ${ }^{3} \mathrm{D}_{1}$ phase shifts but gave larger values of ε_{1} than have been deduced from $n-p$ scattering. ${ }^{12}$ The other, the T4M force, reproduced the low enersy ε_{1} behavior but not that of the ${ }^{3} \mathrm{D}_{1}$ phase shifts. As shown in Fig. 1, the T4M force calculation is in good agreement with our data backward of $\theta_{\mathrm{C}} \approx 80^{\circ}$, but the agreement deteriorates at the forwand angles. Even though the calculations are for n -d scattering they can be compared with our data since charge symmetry of the nuclear interaction provides equality of the $n-d$ and $p-d$ polarizations in the absence of Couiomb effects. Such effects have been demenstrated to be small near $E_{\mathrm{N}}=22 \mathrm{NeV}$, in that the nucleon analyzing power in $n-d^{13}$ and $p-d^{5}$ scattering are equal within the experimental error. In a further effort to improve the agreement between experiment and theory for the proton analyzing power data, Doleschall also incluted a ${ }^{3} D_{2}$ interaction. Computational 1imitations precluded the addition of a complete set of D-wave interactions. The results of that calculation with the T 4 M interaction, the $\mathrm{T} 4 \mathrm{M}+{ }^{3} \mathrm{D}_{2}$ result,
is also shown in Fig. 1. Some improvement toward agreement is seen at the forward angles at the expense of a slightly poorer fit in the region ${ }^{\theta} \mathrm{c}=85^{\circ}$ to 115°. A very similar comparisom between experiment and theory was foum for the proton analyzing power data. 5

The three-nucleor calculations represent major progress in predicting the polarization observables in N -à elastic scattering below 50 MeV . Small discrepancies remain with the vector polarizations in the forward angle region, which is just the region of greatest sensitivity to details of the ${ }^{3} \mathrm{~S}_{1}-{ }^{-3} \mathrm{D}_{1}$ tensor interaction. Clearly, it would be most useful to do the calculation with a tensor force which simultaneously reproduces the $\mathrm{N}-\mathrm{N}{ }^{3} \mathrm{D}_{1}$ phase shift and the mixing paraneter ε_{0}, for example, the rank-4 potential recently constructed by Pieper. ${ }^{14}$

Binstock and Bryan ${ }^{11}$ have shown that the presently available $n-p$ data ($\sigma_{\text {tot }}$, do/d Ω, and $P(\theta)$) near 50 MeV leave ε_{1} undetermined between -10° to $+3^{\circ}$. They also examined the sensitivity of other experimental observables to ε_{1}, and they found that the neutron-to-proton polarization transfer coefficient D_{t} combines fairly high sensitivity with reasonable experimental feasibility. A measurement of D_{t} to an absolute accurary of $\pm i$ io could determine ε_{1} to about $\pm 1^{\text {a }}$. However, it should be possible in the three-nucleon calculation to fix $\delta\left({ }^{3} \mathrm{D}_{1}\right)$ at the values determined from the $n-p$ analyses and then to vary ε_{1} in a search for improved fits to the p-d vector analyzing-power data. It seens quite possible that this procedure could provide a better determination of the low energy values of ε_{j} than is feasible via the much more difficult n-p measurement of D_{t}. If this should prove to be io, one would, indeed, have deduced from the three-nucleon problem specific information about the two-nucleon interaction that has not yet been attainable.

Footnotes and References

*Condensed from publication in Phys. Rev. Letters 33, 1227 (1974).
${ }^{\dagger}$ Present address: Physics Department, University of Basel, Switzertand.
\#Visitor from Bhabha Atomic Research Centre, Trombay, Bombay, India.
${ }^{5}$ National Research Council of Canada Post Doctoral Fellow.

1. J. C. Aatuns and I. H. Sloan, Nucl. Phys. Al82, 369 (1972) ; I. H. Sloan and J. C. Aarons, ibid A198, 321 (1972).
2. S. C. Pieper, Nucl. Phys. A193, 529 (1972).
3. P. Doleschall, Phys. Lett. 40B, 443 (1972); Nucl. Phys. A201, 264 (1973).
4. S. C. Pjeper, Phys. Rev. C 6, 1157 (1972).
5. P. Doleschall, Nuc1. Phys. A220, 491 (1974).
6. J. C. Faivre, D. Garreta, J. Jungerman, A. Papineau, J. Sura and A. Tarrats, Nuc1. Phys. A124, 169 (1969).
7. R. E. White, H. Grïebler, V. König, R. Risler, A. Ruch, P. A. Sclmelzbach and P. Marmier, Nucl. Phys. A180, 593 (1972).
8. J. S. C. McKee, H. E. Conzett, R. M. Larimer and Ch. Leemann, Phys. Rev. Lett. 29, 1613 (1972).
9. A. Fiore, J. Arvieux, Nguyen Van Sen, G. Perrin, F. Merchez, J. C. Gondrand, C. Perrin, J. L. Durrand and R. Darves-Blanc, Phys. Rev. C 8, 2019 (1973).
10. S. C. Pieper, Phys. Rev. C 8, 1702 (1973).
11. M. H. MacGregor, R. A. Arndt and R. M. Wright, Phys. Rev. 182, 1714 (1969); R. A. Arndt, J. Binstock and R. Bryan, Phys. Rev. D 8, 1397 (1973); J. Binstock and R. Bryan, Phys. Rêv. D 9, 2528 (1974).
${ }^{12} 1_{1}$ The constrained solution values of ε and $\delta\left({ }^{1} P_{1}\right)$ as given in Table VII, MacGregor et al., Ref. 11, were used.
12. J. J. Malanify, J. E. Simmons, R. B. Perkins and R. L. Walters, Phys. Rev. 146, 532 (1966); C. L. Morris, R. Rotter, W. Dean and S. T. Thornton, Phys. Rev, C 9, 1687 (1974).
13. S. C. Pieper, Phys. Rev. C 9, 883 (1974).

VECTOR-TO-VECTOR POLARIZATION TRANSFER IN DEUTERON-PROTON ELASTIC SCATTERING*

F. N. Rad, J. Birchall, ${ }^{\dagger}$ H. E, Conzett, and R. Roy ${ }^{\ddagger}$

We report here on the first significant comparison between experimental and theoretically calculated vector-to-vector polarization transfer coefficients in nucleon-deuteron elastic scattering.

Considerable theoretical progress has been made recently in fitting the nucleon analyzingpowers measured in N_{-}d elastic scattering at energies below $50 \mathrm{MeV} .^{1-3}$ These three-nucleon calculations, based on the Faddeev equations with separable nucleon-rucleon interactions, have also provided predictions of the deuteron vector and tensor polarizations and, more recently, of polarization transfer coefficients ${ }^{4}$ at energies up to $\mathrm{E}_{\mathrm{N}}=23 \mathrm{MeV}$. Subsequent determinations of the deuteron analyzing-powers were in good agreement with the calculations. 5 These studies showed that the P -wave part of the N - N interaction was chiefly responsible for the vector annlyzing power, whereas in addition, the two-body ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$ tensor force was required in order to provide agreement with the observed tensor analyzing powers.

As a further test of the theoretical predictions, we report on measurements of the polarization of the recoil protons in d-p elastic scattering with incident 45.4 MeV vector polarized deuterons. These ${ }^{1} \mathrm{H}(\mathrm{d}, \mathrm{p})^{2} \mathrm{H}$ measurements provide determinations of the vector-to-vector polarization transfer coefficient, $K Y(\theta)$, defined by the equation ${ }^{6}$

$$
\begin{equation*}
P_{y^{\prime}}=\left(A_{y^{\prime}}+\frac{3}{2} p_{y} K_{y}^{y^{\prime}}\right) /\left(1+\frac{3}{2} p_{y} A_{y}\right), \tag{1}
\end{equation*}
$$

where p , is the polarization of the purely vector polarized incident deuteron beam, py^{\prime} is th? observed polarization of the outgoing (recoil) proton, and Ay and Ay' are, respectively, the deuteron vector analyzing power and the proton analyzing power in $\mathrm{d}-\mathrm{p}$ elastic scattering. The Madison convention ${ }^{7}$ is followed in defining the cartesian forms of the polarization and analyzing
power, and the y and y^{\prime} axes are taken along $\vec{k}_{d} \times \vec{k}_{p}$ Fron time-reversal invariance, the same coefficient describes the transfer of vector polarization in the inverse ${ }^{2} \mathrm{H}(\mathrm{p}, \mathrm{d})^{1} \mathrm{H}$ scattering process at the equivalent proton energy of 22.7 MeV .6 Thus, our measurements can be compared directiy with Pieper ' s^{4} calculated $X Y^{\dagger}(\theta)$ at that energy.

Our experimental arrangement is shown in Fig. 1. The polarized deuteron beam from the Berkeley 88-inch cyclotron passed through a hydrogen gas target, positioned in a 36-inch diameter scattering chamber. Two silicon polarimeters, described in detail elsewhere, were used to detemine the

Fig. 1. Schematic diagram of the experimental arrangement, showing the left and right silicon polarimeters. The detectors labeled L and R are the left and right silicon analyzers, respectively. $\mathrm{LL}, \mathrm{IR}, \mathrm{RL}$, and RR are the silicon side detectors of the polarimeters
(XBL 7410-4413)
polarization of the scattered protons. They were positioned at equal scattering angles to the left and right of the beam axis. For each determination of KY (θ), data were taken with the spin vector of the beam orientated altemately up and down with respect to the scattering plane. The relative yield of elastic doubly-scattered protons into the LL detector of the silicon polarimeter is given by:

$$
\begin{equation*}
L L^{ \pm}=\left(1 \neq 3 / 2 p_{y} A_{y}\right)\left(1+p_{y}, A_{2}\right) \tag{2}
\end{equation*}
$$

where the (+) and (-) superscripts correspand to the incident heam spin -ientation of up and down, respectively, and A_{2} is the silicon proton analyzing power in the second scattering. ${ }^{9}$ Inserting $P_{y}{ }^{\prime}$ from Eq. (1),

$$
\begin{equation*}
L L^{ \pm}=1 \mp 3 / 2 P_{y} A_{y}+A_{z} A_{y}, \pm 3 / 2 A_{2} p_{y} K_{y}^{y^{\prime}} \tag{3}
\end{equation*}
$$

From this and similar eipressions for the relative yields $L R^{ \pm}, \mathrm{RL}^{ \pm}$, and RR^{t} one obtains

$$
\begin{align*}
& 3 / 2 \mathrm{p}_{y} A_{z} \mathrm{~K}_{y}^{y^{\prime}}=\frac{\left(L L^{+}-L L^{-}\right)-\left(L R^{+}-L R^{-}\right)}{L L^{+}+L L^{-}+} \frac{L R^{+}+L R^{-}}{} \tag{4a}\\
& =\frac{\left(\mathrm{RR}^{-}-\mathrm{RR}^{+}\right)-\left(\mathrm{RL}^{-}-\mathrm{RL}^{+}\right)}{\mathrm{RR}^{-}+\mathrm{RR}^{+}+\mathrm{RL}^{-}+\mathrm{RL}^{+}} \tag{4b}\\
& =\frac{\left(\mathrm{LL}^{+}-\mathrm{RR}^{+}\right)-\left(\mathrm{LR}^{+}-\mathrm{RL}^{+}\right)}{\mathrm{LL}^{+}+\mathrm{RR}^{+}+\mathrm{LR}^{+}+\mathrm{RL}^{+}} \tag{4c}\\
& =\frac{\left(\mathrm{RR}^{-}-\mathrm{LL}^{-}\right)-\left(\mathrm{RL}^{-}-\mathrm{LR}^{-}\right)}{\mathrm{RR}^{-}+\mathrm{LL}^{-}+\mathrm{RL}^{-}+1 \mathrm{R}^{-}} \tag{4d}
\end{align*}
$$

First order systematic errors due to instrumental asymmetries and bean misalignpents were eliminated by averaging the values of Ky (θ) from Eqs. (4a) and (4b), and similarly from Eqs. (4c) and (4d). The tho average values obtained in this way agreed to within ± 0.006 at all angles. The effective proton analyzing power A_{2} of the silicon polarimeter was determined with polarized protons elastically scattered from ${ }^{4} \mathrm{He}$ and ${ }^{12 \mathrm{C}}$, for which $\mathrm{K}^{\prime \prime}$ (θ) $=1.0$. With Py known Eq. (4) then results in a value for A_{2}.

Our experimental results are shown in Fig. 2, where the errors indicated are purely statistical. The solid curve is Pieper's calculation, and it is seen that the agreement with experiment is excellent. Since this constitutes the first significant comparison between experimental and calculated polar-ization-transfer coefficients in N-d elastic scattering, this agreement represents yet another substantial success of the three-body calculations, particularly in view of the fact that there has been no adjustment of the two-body input parameters in order to fit these data.

Despite the excellent agreement between these experimental and predicted values of $\mathrm{K}_{\mathrm{Y}}^{\mathrm{M}}(\theta)$, it recently has become clear that further calculations are necessary to address urresolved questions in

Fig. 2. The vector-to-vector polarization transfer coefficient, K K (0), in d-p elastic scattering at $\mathrm{E}_{\mathrm{d}}=45.4 \mathrm{MeV}$. The solid curve is the calculated result from Ref. 4.
(XBL 748-3862)

N-d scatterjng. Pieper compared his perturbative calculation ${ }^{4}$ with Doleschall's exact calculation ${ }^{2}$ for the same input $N-N$ interactions, and he found that there were significant differences between the two calculations of the nucleon polarization near 23 MeV . In his most recent canlculation, Doleschall 3 improved the P -wave and the ${ }^{3} \mathrm{~S}_{1}$ - ${ }^{3} \mathrm{D}_{1}$ tensor interactions to give better agreement with the N - N phase-shift parameters. This ressulted in improved fits to the nucleon and deuteron 10 vector analyzingpower data. An appropriate question, then, is the extent to which such improved $\mathrm{N}-\mathrm{N}$ interactions would change the cafculated values of $K Y(\theta)$. As has been suggested, $, 10,11$ an important program now is to specifically examine the sensitivities of the various analyzing-powers and polarization-transfer coefficients to the details of the input two-body interactions.

We are grateful to R. M. Larimer for her assistance during the crurse of the experiment.

Footnotes and References

${ }^{\text {* }}$ Condensed from publication in Phys. Rev. Letters 33, 1579 (1974).
${ }^{\dagger}$ Present address: Physies Lepartment, University of Basel, Switzerland.
$\dagger_{\text {National }}$ Research Council of Canada Post Doctoral Fellow.

1. S. C. Pieper, Nuc1. Phys. A193, 529 (1973).
2. P. Doleschall, Nuc1. Phys. A201, 264 (1973).
3. P. Doleschall, Nucl. Phys. A220, 491 (1974).
4. S. C. Pieper, Phys. Rev. C 8, 1702 (1973).
5. J. S. C. Mckee, H. E. Conzett, R. M. Larimer and Ch. Leemann, Phys. Rev. Letters 29, 1613 (1972); A. Fiore, J. Arvieux, Nguyen Van Sen, G. Perrin, F. Merchez, J. C. Gondrand, C. Perrin, J. L. Durand and R. Darves-Blanc, Phys. Rev. C 8, 2019 (1973).
6. G. G. Ohlsen, Rep. Prog. Phys. 35, 717 (1972).
7. Polarization Phenomena in Nuclear Reactions, edited by H. H. Barschall and W. Haeberli (Univ. of Wisconsin Press, Madison, 1971), p. xxv.
8. J. Birchal1, H. E. Conzett, W. Dalme, J. Arvieux, F. N. Rad, R. Roy and R. M. Larimer, Nucl. Instr. and Methods 123, 105 (1975).
9. For the spin-up orientation, the negative sign in the first term of Eq. (2), and correspondingly in the denominator of Eq. (1), results from the fact that the incident deuteron is scattered to the right, so P_{y} is opposite to $\vec{k}_{\mathbf{i}} \times \vec{k}_{\mathbf{f}}$.
10. F. N. Rad, J. Birchall, H. E. Conzett, S. Chintalapudi and R. Roy, Phys. Rev. Letters 33, 1227 (1974).
11. H. E. Conzett, Proc. Int ${ }^{\text {1 }}$ 1. Conf, on Few Bady Problems in Nuclear and Particle Physics, Laval University, Quebec, Canada (August 27-31, 1974), in press.

POLARIZATION EFFECTS IN THE NUCLEON-DEUTERON BREAKUP REACTION

H. E. Conzett, F. N. Red, R. Roy,* and J. Birchall ${ }^{\dagger}$

The present status of studies of polarization phenomena in the N-d breakup transition to threenucleon final states is comparable to that which existed for the elastic channel almost ten years ago. That is, only a few experiments have been done which even show the presence of polarization effects, and theoretical interpretation and predictions via exact three-body calculations have not, as yet, been made. Such calculations ${ }^{1}$ have been successful in fitting N-d breakup cross sections, but they have so far been limited to S-wave $\mathrm{N}-\mathrm{N}$ input interactions. It appears that experimental evidence of significant polarization effects in the breakup channel are required in order to encourage, or even compel, the addition of the tensor force and P-wave contributions to these calculations.

Perhaps the first polarization effects seen in the breakup reaction below 100 MeV were those observed by Arvieux et al in the reaction $D(p, 2 p) n$ at $10.5 \mathrm{MeV} .^{2}$ Their results are shown in Fig. 1. The open circles are their measurements of the proton analyzing power for the transition to the sp final-state-interaction region of the 3 -body continumm spectrum, in their case selected to be the region of relative $n p$ energies $\mathrm{E}_{\mathrm{np}}<0.5 \mathrm{MeV}$.

Fig. 1. Open circles: proton analyzing power in the $D(\hat{p}, \angle p) n$ reaction at 10.5 MeV . Solid dots: proton analyzing power in \vec{p}-d elastic scattering at 11 MeV . Fron Ref. 2.
(XBL 748-1345)

They noted, for comparison, the similarity of the trend of these data to that of the elastic channel analyzing power at 11 MeV , as shown by the solid dots connected by the dashed line. Recently, Blyth et al. ${ }^{3}$ reported an investigation of the deuteron vector analyzing, power at several angles in the same reaction $H(d, 2 p) n$, but now induced with a bean of 12.2 MeV vector polarized deuterons. Their reported values are all consistent with zero, within errors of ± 0.01 to ± 0.03, but it should be noted that in this case the elastic channel analyzing power at the nearby deuteron energy of 11.5 MeV has a maximm value of less than 0.05 . 4 We have very recently obtained sane results for the deuteron vector analyzing power in the same inelastic transition at $\mathrm{E}_{\mathrm{d}}=45.4 \mathrm{NeV}$. These are shown in Fig. 2. Again, for conparison, the elastic scattering analying power is shown as the smooth curve. Here the similarity between the inelastic and elastic analyzing powers is quite definite. This similarity is

Fig. 2. Deuteron vector analyzing power in the $\mathrm{H}(\mathrm{C}, \mathrm{p}) \mathrm{np}$ reaction at $\mathrm{E}_{\mathrm{d}}=45.4 \mathrm{MeV}$. The c.m. production angle of np pairs with near-zero relatiye erergy is θ_{c}. The smooth curve represents the $d-p$ elastic scattering analyzing power. (XBL 748-3890)
rather unexpected in view of the results that were reported by Brücknann et al., in their analysis of cross section data in this reaction at the slightly higher energy $E_{d}=52.3 \mathrm{NeV}, 5$ Their findings are displayed in Fig. 3. In their analysis they determined the separate contributions of $n-p$ singlet and triplet pairs to the observed final-stateinteraction peak at the relative $n-p$ energy $E_{n p}=0$. These separate contributions are shown in the figure. The solid curve, which is in excellent agreement with the cross section for production of n-p triplet pairs, represents a Born approximation calculation in which the final state $n-p$ wave function used was effectively that of a deuteron with binding energy $E_{B}=0$. If triplet $n-p$ production were the major contribution to the cross section, we coulr. expect the similarity between inelastic

Fig. 3. $H(d, 2 \mathrm{p}) \mathrm{n}$ cross sections at $\mathrm{E}_{\mathrm{d}}=52.3 \mathrm{MeV}$, from Ref. 5 ,
(xbL 748-1344)
and elastic vector analyzing powers. However, in just the backward angular region of naximum analyzing powers, Fig. 3 shows that the major cross section contribution is the production of $n-p$ singlet pairs. Thus, one is led to the conclusion that the contribution to the inelastic analyzing power from the production of n-p singlet pairs has an angular distribution similar to that of the elastic analyzing power. Since Ebenhoh's three-body calculation ${ }^{1}$ quite successfully reproduces the form of the singlet $\mathrm{n}-\mathrm{p}$ contribution to the cross section shown in Fig. 3, it would be of considerable interest to add to such a calculation the $\mathrm{N}-\mathrm{N}$ spin dependent interactions that are necessary for the calculation of these analyzing powers.

Footnotes and References

*National Research Council of Canada Post Doctoral Fellow.
${ }^{\dagger}$ Present address: Physics Department, (miversity of Basel, Switzerland.

1. R. T. Cahill and I. H. Sloan, Nucl. Phys. Al65, 161 (1971); W. Ebenhöh, Nucl. Phys. Al91, 97 (1972).
2. J. Arvieux, J. L. Durand, J. C. Faivre, D. Garreta, A. Papineau, J. Sura and A. Tarrats, Nucl. Phys. Al50, 75 (1970).
3. C. O. Blyth, N. T. Okmasoglu, N. Berovic and J. S. C. McKee, Proc. Int'l. Conf. on Few Body Problems in Nuclear and Particle Physics, Quebec, Canada (August 27-31, 1974), in press.
4. R. E. White et al., Nucl. Phys. A180, 593 (1972).
5. H. Brücknann, W. Kluge, H. Matthäy, L. Schänzler and K. Wick, Nucl. Phys. Al57, 209 (1970).

POLARIZATION PHENOMENA IN THE THREE-NUCLEON SYSTEM*

H. E. Conzett

There has been an impressive quantity and quality of polarization data acquired during the past few years on the mass 3 to mass 6 systems, essentially with beans of polarized protons and deuterons. I have chosen, in this paper, to limit the discussion of polarization effects to those of the three-nucleon system. I do this for two reasons: 1) There is now a rather extensive variety of experimental results on this system, and the ever more detailed three-body calculations of these polarization effects have been remarkably successful. Thus, a description of the past developments and present statas of this research, in the detail that is warranted by this substantial progress, will take my allotted time. 2) Certainly a central role in this and in the past few-body conferences has been that of the "exact" threebody theory, which calculates the three-nucleon observables from the two-nucleon interaction. Thus, there is, so far, a natural separation
between descriptions of three-nucleon data and those of mass 4 and higher. Polarization results are certainly important in the latter systems, but the appropriate theoretical descriptions are generally those of R-matrix analysis, and the direct connection to the nucleon-nucleon force is not made.

The first comparison, some 10 years ago, between the calculated ${ }^{1}$ and experimental ${ }^{2}$ proton analyzing power in N -d scattering below 100 MeV is shown in Fig. 1. This was at 40 MeV . This impulseapproximation calculation was quite inadequate to explain the data. In fact, the discrepancy between the experimental and the calculated results increased in going to the more complete versions of the calculation. Soon thereafter the early threenucleon calculations, based on the Faddeev equations with simple S-wave nucleon-nucleon potentials, were very successful in fitting the elastic N -d

Fig. 1. The proton analyzing power in $\vec{p}-d$ elastic scattering at 40 NeV . The experimental data are from Ref. 2, the theoretical curves from Ref. 1.
(MB-2813)
differential cross section data up to about 50 MeV . Since only S-wave forces were used, those calculations could not provide the observed polarizations. There was already a substantial amount of nucleon analyzing-power data up to 50 MeV and a few measurements of the deuteron vector and tensor analyzing powers at lower energies. Only within the past three years have more realistic $\mathrm{N}-\mathrm{N}$ potentials been used in efforts to fit the polarization data. Aarons and Sloan ${ }^{3}$ used a two-body force with separable terms corresponding to both the ${ }^{1} S_{0}$ and the coupled ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}$ (tensor) interactions. This calculation gave deuteron tensor polarizations in qualitative agreement with experiment over the range $E_{N}=5-11 \mathrm{MeV}$. Soon thereafter Pieper ${ }^{4}$ and Doleschal1 ${ }^{5}$ independently included 5 - and P-wave interactions, and the improvement over the previous calculations of the vector polarizations was dramatic. The nucleon polarizations were in excellent agreement with the experimental data up to 14 MeV , and qualitative agreement was achieved beyond that to 40 MeV . Almost concurrent$1 y$ with these calculations, more precise determinations were made of the deuteron vector analyzing powers at $\mathrm{E}_{\mathrm{d}}=20$ and $30 \mathrm{MeV}, 6$ and these were in good agreement with the calculations. These calculations have also provided very good fits to the recently measured tensor analyzing p.wers. ${ }^{7}$

At this point, then, these three-nucleon calculations had shown very considerable success in fitting the several available $\mathrm{N}-\mathrm{d}$ elastic scattering observables. A1so, it was clear that the polarization data required the use of the mere realistic, i.e. more detailed and more complicated, $\mathrm{N}-\mathrm{N}$ interactions, and thus provided the more sensitive and significant tests of the calculations. The conclusions then were that 1) the $\mathrm{N}-\mathrm{N}$ - wave interactions were chiefly responsible for the obseryed vector poiarizations, whereas 2] the $3_{S_{1}}-3_{D_{1}}$ tensor force was the source of the N -d tensor polarizations.

The stage was now ready for an examination of the sensitivity of the calculated N -d observables
to changes in the $\mathrm{N}-\mathrm{N}$ input interactions. Certainly, the first goal of the three-body theory has been to reproduce three-nucleon data with calculations that use two-nucleon forces. Clearly, a second goal is to pursue the possibility of deducing, from $N-d$ scattering and the three-body calculations, infomation on the $\mathrm{N}-\mathrm{N}$ interaction which has not been available from $\mathrm{N}-\mathrm{N}$ scattering itself. Very recent imvestigations have suggested that this possibility exists. In contrast to the two quite definite conclusions noted above, there have been conflicting opinions concerning the effect of the $\mathrm{N}-\mathrm{N}$ tensor force on the $\mathrm{N}-\mathrm{d}$ vector polarizations. Pieper ${ }^{8}$ reported only slight changes with the addition of the tensor force, and he suggested that changes in the ${ }^{3} \mathrm{~S}_{1}-{ }^{-3}{ }_{D_{1}}$ potential would have little effect on the mucleon polarization. This conjecture was based on Sloan and Aarons result, 9 which demonstrated that none of the N -d polarizations were very sensitive to reasonable changes in the tensor interaction, However, that calculation did not include P-waves, so the vector polarizations were unrealisțically small. Doleschall's earlier calculations showed a substantial change in the vector polarizations with the addition of the tensor force to the S - and P -wave interactions, and his most recent calculation ${ }^{10}$ demonstrates that the vector polarizations are quite sensitive to the details of the ${ }^{3} \mathrm{~S}_{1}-{ }^{-3} D_{1}$ potential used. We very recently made measurements 11 at Berkeley of the deuteron vector analyzing power, iT_{11}, in $\mathbb{\mathrm { d }}$-p scattering at $E_{d}=45.4 \mathrm{MeV}$ for direct comparison with the calculated vector polarization at the equivalent nucleon energy of 22.7 MeV . Our data are compared in Fig. 2 with the calculated results for the different $\mathrm{N}-\mathrm{N}$ interactions. The dotted curve is the result with S - and P-waves plus one

Fig. 2. The deuteron vector analyzing power, $\mathrm{iT}_{11}(\theta)$ in $\mathrm{d}-\mathrm{p}$ elastic scattering at 45.4 MeV . The curves are calcul- ed results from Ref. 10 with different nucieon-nucleon interactions.
(XBL 744-2770A)
tensor potential; the dashed line, with another; the solid line, with the addition of the ${ }^{3} \mathrm{D}_{2}$ terms to the second case. The angular region forwand of $\theta_{c}=120^{\circ}$, wherein the remaining discrepancies between experiment and theory exist, is just the region of greatest sensitivity to the details of the ${ }^{3} \mathrm{~S}_{1}-3_{\mathrm{D}_{1}}$ tensor interaction. Clearly, it would be most interesting and useful to do the calculation with a tensor force which simettaneausly reproduces the $\mathrm{N}-\mathrm{N}^{3} \mathrm{D}_{1}$ phase shift and the mixing parameter ε_{1}.

I must now dipress momentarily in order to connect these results with a problem of rather long standing in $n \sim p$ scattering. NacGregor et al., in their phase shift analyses of $n-p$ data five years ago, fould that the ${ }^{1} P_{1}$ phase shift $\delta\left({ }^{1} P_{1}\right)$ and the mixing parameter E_{1} were strongly correlated and poorly determined below 80 MeV .12 Neither, in fact, was near the theoretical expectation. Arndt, Binstock and Eryan ${ }^{13}$ have recently examined this problem in considerable detail near 50 MeV , including in their analyses some more recently available n-p data. They did not find a strong $\varepsilon_{1_{-}}-\delta\left[{ }^{1} P_{1}\right]$ correlation. Concerning ε_{1}, they show that the present $\mathrm{n}-\mathrm{p}$ data (o o $P(e)$) near 50 MeV Ieave E_{1} undetemined between -10° to $+3^{\circ}$. They also examine the sensitivity of other experimental observables to ε_{1}, and they find that the neutron-to-proton polarization transfer coefficient D_{f} combines fairly high sensitivity with reasonable experimental feasibility. With the assumed ± 0.01 absolute error on D_{t}, be assured that such an experiment, if reasonable, is difficult.

Let us return now to the three-rucleon calculation. Ir view of the demonstrated sensitivity of the vector polarizations to the $\mathrm{N}-\mathrm{N}$ tensor interaction, it should be possible, with a tensor fo ree which simultaneously reproduces the $\mathrm{N}-\mathrm{N}$ $\delta\left({ }^{3} D_{1}\right)$ and ε_{1}, to vary ε_{1} in a search for improved fits to the N-d vector analyzing power data. It seems possible that this procedure could more vasily provide a better deternination of the low energy values of E_{1} than is possible via the more difficuit measurement of D_{t}. If this should prove to be so, one would indeed have deduced from the three-nucleon imvestigations specific information about the two-nucleon interaction that has not yet been attainable.

We have noted the considerable progress that has been made during the past two years in both the experimental and theoretical determinations of polarization observables in N -d elastic scattering. It seems to me that an important undertaking now is to specifically examine the sensitivities of
the various analyzing powers and transfer coefficients to the details of the input two-body interactions; for examisie, sensitivity to variations of $\delta\left({ }^{1} P_{1}\right)$ and ε_{1}, and to the addition of a complete set of D-wave interactions in the exact calculation. This would provide invaluable guidance in the choice of further experiments, since it is clear that many of the polarization observables can now be measured to just about whatever accuracy is required for specific and detailed comparison with predictions.

Footnotes and References

*Excerpted from LBL-2995, Invited Paper, Proc. Int'1. Conf. on Few Body Problems in Nuclear and Particle Physics, Quebec, Canada (August 27-31, 1974), in press.

1. K. L. Kowalski and D. Feldman, Phys. Rev. 130, 276 (1963).
2. H. E. Conzett, H. S. Goldberg, E. Shield, R. J. Slobodrian and S. Yamabe, Phys. Lett. II, 68 (1964).
3. J. C. Aarons and I. H. Sloan, Nuc1. Phys. A182, 369 (1972).
4. S. C. Pieper, Nucl. Phys. Al93, 529 (1972).
5. P. Dolescha11, Nuc1. Phys. A201, 264 (1973).
6. J. S. C. McKee, H. E, Conzett, R. M. Larimer and Ch. Leemann, Phys. Rev. Lett. 29, 1613 (1972).
7. A. Fiore, J. Arvieux, Nguyen Van Sen, G. Perrin, F. Merchez, J. C. Gondrand, C. Perrin, J. L. Durand and R. Darves-Blanc, Phys. Rev. C B, 2019 (1973).
8. S. C. Pieper, Phys. Rev. C 6, 1157 (1972).
9. I. H. Sloan and J. C. Aarons, Nucl. Phys. Al98, 321 (1972).
10. P. Doleschall, Nuc1. Phys. A220, 491 (1974).
11. F. N. Rad, J, Bìrchal1, H. E. Conzett, S. Chintalapudi and R. Roy, Phys. Rev. Lett. 33, 1227 (1974).
12. M. H. MacGregor, R. A. Aindt and R. M. Wright, Phys. Rev. 182, 956 (1969).
13. R. A. Arndt, J. Binstock and R. Bryan, Phys. Rev. D 8, 1397 (1973); J. Binstock and R. Bryan, Phys. Rēv. D 9, 2528 (1974).

FINAL STATE INTERACTION IN THREE NUCLEON SYSTEM*

F, N. Rad, D. P. Saylor, ${ }^{\dagger}$ and Mahevir Jain ${ }^{\boldsymbol{+}}$

The dynamics of three-nluleon system, is well as the interaction between the particles on and off the energy shell can be studied by the processes leading to three nucleons in the final state. There are several approximate descriptions of the three-nucleon breakup process which are often used. Each is useful in providing an understanding of and insight into the qualitative features of the breakup process in a limited part of phase space. The final state interaction (FSI) mechanism is appropriate for understanding that part of the breakup spectrum in which one of the three outgoing pairs of nucleons has a lok relative energy. Typically, the cross sections are enhanced. The FSI theory of Watson and Migdal is often used to describe these enhancements. Theoretical calculations ${ }^{1}$ based on separable S-wave potentials give results in good agreement with the Watson-Migdal form of ref final state peak. These calcalations also predict a rather complex angular dependence of the FSI which may prove to be sensitive to the energy shell behavior assumed in the model.

Several attempts ${ }^{2-5}$ have been made to estimate the size of model dependent effects in N-d breakup reactions. The recent results of Brayshaw ${ }^{4}$ and of Haftel and Peterson ${ }^{5}$ (HP) are of particular interest because these estimates were based on comparison of models which gave identical on-shell twonucleon scattering. For $\mathrm{Ecm}_{\mathrm{cm}} \leqslant 20 \mathrm{MeV}$ Brayshaw and HP have found that significant modei dependent variations were restricted to three-body ${ }^{2}$ S-waves. They also found that if it is required that the $\mathrm{N}-\mathrm{d}$ doublet scattering length, a2, is held fixed the remaining variability is much reduced. Brayshaw believes that his analysis indicates that the two nucleon observables and a determine the low energy trinucleon reactions to high precision for any plausible interaction. It would be significant if this expectation were to be experimentally verified. The conclusions of HP are different from that of Brayshaw while they provide a basis for selecting experiments. HP have found substantial variability in the ${ }^{2}$ S partial wave even with a fixed doublet scattering length. The sensitive region is concentrate? where singlet FSI dominates. The variability in tie anmlitudes results in variations of the FSI dngular distributions and spectra which are of sufilicient magnitude to be significant experimentally. In regard to these $H P$ expectations
the experiment and ant'ysis of Brückman et a1. 6 (BNUSW) should be part. cularly valuable. They found that ti.e breaky cross section in the np FSI region couid be fitted very accurately by

where $\mathrm{F}_{\mathrm{H}}^{\mathrm{S}}$ and $\mathrm{F}_{\mathrm{Tp}}^{\mathrm{t}}$ are the singlet and triplet Watson-Kigdal enfancement factors. Enpirically BKISW have found that the triplet FSI angular distribution, $\mathrm{x}_{\mathrm{fp}}^{\mathrm{t}}\left(\theta_{3}\right)$, was the same as the experimental d-p elastic angular distribution and that t're magnitude of the triplet FSI cross section colid be successfully related to the elastic cross 3 :-tion. Their application of the Watson-Migdal analysis shows internal consistency with the np low-energy parameters. other experiments which should be particularly valuable in isolating the $n p$ singlet FSI are the measurenents of the vector to vector spin transfer parameters K ${ }^{\prime}{ }^{\prime}$ in $1_{\mathrm{H}}(\mathrm{d}, \vec{p})$ and ${ }^{2} \mathrm{H}(\vec{p}$, 古) for slightly inclastic p d scattering. These experiments when combined with kinematically incomplete cross section measurements should allow one to extract $X_{p p}^{s}\left(\theta_{3}\right)$. Assuming the validity of the Watson-Migdal analysis,

$$
K_{y}^{y^{\prime}}=\frac{{ }^{s} K_{y}^{y^{\prime}} x_{n p}^{s} F_{n p}^{s}+{ }^{\mathrm{t}} y_{y}^{y^{\prime}} x_{n p}^{\mathrm{t}} \mathrm{~F}_{n \mathrm{p}}^{\mathrm{t}}}{\mathrm{X}_{n p}^{\mathrm{s}} \mathrm{~F}_{n \mathrm{p}}^{\mathrm{s}}+\mathrm{X}_{n p}^{\mathrm{t}} \mathrm{~F}_{n \mathrm{p}}^{\mathrm{t}}}
$$

where ${ }^{s} \mathrm{X}_{\mathrm{Y}}{ }^{\prime}$, and ${ }^{\mathrm{t}} \mathrm{K}_{\mathrm{Y}}{ }^{\prime}$, are the spin-transfer parameters for the singlet and triplet components respectively. Using the simplified structure of the breakup amplitudes, ${ }^{7}$ characteristic of the Amado model, it is easy to show that

$$
\begin{array}{lll}
s_{x} y^{\prime}=1 & \text { for } & \mathbf{1}_{\mathrm{H}(\mathbb{d}, \overrightarrow{\mathrm{P}}), \text { and }}{ }^{1} \mathrm{H}(\vec{\square}, \vec{n}) \\
\mathrm{s}_{\mathrm{K}} y^{\prime}=-\frac{1}{3} & \text { for } & { }^{2} \mathrm{H}(\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{p}}), \text { and }{ }^{2} \mathrm{H}(\overrightarrow{\mathrm{p}}, \stackrel{+}{\mathrm{n}})
\end{array}
$$

$\mathrm{t}_{\mathrm{K}} \mathrm{y}^{\prime}$ will depend on angle and energy but an implication of BKWSW is that ${ }^{t}{ }_{K} Y^{\prime}$ is nearly the same as the KY' parameters for elastic scattering. However in tefms of the breakup amplitudes?

$$
\begin{aligned}
& \left.\left.t_{K} Y_{Y}^{\prime}=\frac{\frac{5}{2}|q|^{2}-\frac{1}{12}\left|d_{1}\right|^{2}-\frac{1}{4}\left|d_{2}\right|^{2}-\frac{2}{3} \operatorname{Req}^{*} d_{1}+\sqrt{\frac{4}{3}} \operatorname{Req}^{*} d_{2}+\sqrt{\frac{1}{12}} \operatorname{Red}_{1}^{*} d_{2}}{2|q|^{2}+\frac{1}{4}\left|d_{1}\right|^{2}+\frac{3}{4}\left|d_{2}\right|^{2}-\sqrt{\frac{3}{4}} \operatorname{Red}_{1}^{*} d_{2}} \text { for }{ }^{1} H\right) d, \vec{p}\right) \\
& t_{K_{Y}}^{y^{\prime}}=\frac{\frac{1}{9}|q|^{2}+\frac{1}{36}\left|d_{1}\right|^{2}+\frac{1}{12}\left|d_{2}\right|^{2}+\frac{8}{9} \operatorname{Req}^{*} d_{1}-\sqrt{\frac{64}{27}} \operatorname{Req}^{*} d_{2}-\sqrt{\frac{1}{108}} \operatorname{Red}_{1}^{*} d_{2}}{3|q|^{2}+\frac{1}{4}\left|d_{1}\right|^{2}+\frac{3}{4}\left|d_{2}\right|^{2}-\sqrt{\frac{3}{4}} \operatorname{Rec}_{1}^{*} d_{2}} \quad{ }^{2} H(\vec{p}, \vec{p})
\end{aligned}
$$

where q is the amplitude for breakup in the quartet state $(S=3 / 2)$, and d_{1} and d_{2} are the doubletstate ($\mathrm{S}=1 / 2$) amplitudes in which the two identical nucleons are coupled to spin 1 or 0 , respectively.

To a first approximation the slightly inelastic k paraneters can be computed on the basis of a decomposition of the breakup cross section similar to that of BKOSW and a measurement of the corresponding K for, elastic scattering. Thus a measurement of the KY ' parameters have additional interest in that they provide additional checks of the final state interaction theory. We are currently working on the theoretical predictions using a computer code which solves the three particle Faddeev equation for separable spin dependent s-wave nucleon nucleon interactions. 8

Footnotes and References

"To be published in Proceedings of the Int'1, Conf. on Few Body Problems in Nuclear and Particle Physics, Quebec, Canada (27-31 August 1974).
${ }^{\dagger}$ Physics Department, Worcester Polytechnic Institute, Worcester, Mass. 01609
${ }^{\dagger}$ Guest Scientist, Los Alamos Scientific Laboratory,

University of Caliornia, Los Alamos, New Mexico 87544

1. R. T. Cahill and I. H. Sloan, Nucl. Phys. A165, 161 (1971); W. Ebenhöh, Proc. of the Int'l. Conf. on Few Particle Problems in the Nuclear Interactions, Los Angeles, Califomia (1972) edited by Slaus et al. (North-Holland, Ansterdan, 1972), pp. 325-328.
2. W. M. Kloet and J. A. Tjon, Nucl. Phys. A210, 380 (1973).
3. Mahavir Jain, J. G. Roger and D. P. Saylor, Phys. Rev. Letters 31, 338 (1973).
4. D. D. Brayshaw, Phy: , Rev. Letters 32, 382 (1974).
5. M. I, Haftel and E. L. Peterson, Bull. Am. Phys. Soc. 19, 505 (1974).
6. H. Brücknan, W. Kluge, H. Mattäy, L. Schänzler and K. Wick, Nucl. Phys. Al57, 209 (1970).
7. D. P. Saylor and F. N. Rad, Phys. Rev. C 8, 507 (1973).
8. Mahavir Jain and G. D. Doolen, Phys. Rev. C 8, 124 (1973).

H. E. Conzett

In a recent paper, Rohrer and Brown ${ }^{1}$ reported measurements of the proton analyzing power, $A(E, \theta)$, in the ${ }^{3} \mathrm{Li}(\hat{p}, \mathrm{n})^{7} \mathrm{Be}$ reaction between $\mathrm{E}=2.05$ and 3.00 MeV . Their comparison with existing data ${ }^{2}$ on the neutron polarization, $P(E, \theta)$, induced in the same reaction $1 \mathrm{i}(\mathrm{p}, \overrightarrow{\mathrm{n}})^{7}$ Be with unpolarized protons, showed a near equality between $P(E, \theta)$ and $A(E, \theta)$. They suggested that the simplicity of this result indicated a simple explanation, which would have the further useful purpose of providing a means of optimizing the figure of merit, $\mathrm{p}^{2} \mathrm{G}$, when using this reaction as a source of polarized neutrons at angles where no neutron polarization measurements exist, but for which $A(\theta)$ had been determined.

The purpose of this report is to provide the expected simple explanation for the near equal ity of P and A, which, in fact, applies to all (p, π) reactions that connect states that are members of an isospin doublet. The result follows from time reversal invariance and charge-symmetry of the interactions responsible for the reaction. Specifically, consider the reaction $B(p, n)$ Between nuclear states B and B '. The polarization-analyzing power theorem for reciprocal or time-reversed reactions ${ }^{4}$ provides that

$$
\begin{array}{lll}
P(E, \theta) & \text { in } B(p, \vec{n}) B^{\prime} & \text { is equal to } \tag{1}\\
A(E, \theta) & \text { in } B^{\prime}(\vec{n}, p) B
\end{array}
$$

Also, in the restricted case that B and B^{\prime} are members of an isospin doublet (mirror states), charge-symmetry proviles that

$$
\begin{align*}
& A(E, \theta) \text { in } B^{\prime}(\vec{n}, p) B \quad \text { is equal to } \\
& A(E, \theta) \text { in } B\left(\begin{array}{l}
+ \\
(n)
\end{array} B^{\prime} .\right. \tag{2}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
P(E, \theta)=A(E, \theta) \tag{3}
\end{equation*}
$$

in the $\mathrm{B}(\mathrm{p}, \mathrm{n}) \mathrm{Br}^{\prime}$ reaction. It is seen that this result follows from the fact that the inverse to the (p, n) reaction between members of an isospin doublet is, also, its charge-symetric reaction. This argument can be extended to include a larger group of $\{p, n$) reactions by imposing isospin conservation. The condition (2) then applies when B und B^{\prime} are adjacent members of any isospin multiplet. Thus, the result (3) includes transitions between any two members, B and B^{\prime}, of an isospin multiplet that can be connected ty the (p, n) or (n, p) reaction, i.e., for a $\Delta T_{2}=1$ transition.

The exact equality (3) holds, of course, only under conditions of ei act charge-symunetry or exact isospin conservation for the particular transition
considered. Since the weaker assumption of chargesyanetry is known to be better than that of charge independence in the nucleon-nucleon interaction, it is expected that (3) will be more nearly satisfied when B and B' are members of a doublet rather than members of a larger isospin multiplet.

Tvo examples of $\mathrm{P}(\mathrm{E}, \theta)$ and $\mathrm{A}(\mathrm{E}, \theta)$ measurements in (p, n) transitions between states which form an isospin doublet are the quoted ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n}){ }^{5} \mathrm{Be}$ data and the reswlts from the ${ }^{3} \mathrm{H}(\mathrm{p}, \mathrm{n})^{3} \mathrm{He}$ reaction. ${ }^{3}$ No such data seem to exist for transitions between members of a larger multiplet. The ${ }^{71 i}(p, n) \ni$ Be data indicate a possible deviation from the equality (3) at energies near 2.3 MeV , and the ${ }^{3} \mathrm{H}(\mathrm{p}, \mathrm{n})^{3} \mathrm{He}$ data show about a 17% relative diŕference between P and A in the energy range from 1.7 to 4.0 MeV . These deviations are not unexpected, since the Coulomb interaction breaks the exact charge symmetry between the states B and B^{1}. That is, the radial wave function describing the neutror: bound in B may be somewhat different from that of the proton bound in B^{\prime}, so the condition (2) is nut exact; hence, the equality (3) is not exact. This circumstance might be considered a disadvantage. On the contrary, it offers the promise of a means to determine, for example, just such differences in nucleon bound state wave functions as are caused by the coulcmi interaction. Calculations should seek to explain the observed deviations from the $P=A$ equality in terms of the Coulomb effect in breaking the exact chargesymmetry between the mirror states involved.

It should be noted that Ref. 5 presented a plausibility argument for $\mathrm{P}=\mathrm{A}$ in the ${ }^{3} \mathrm{H}(\mathrm{p}, \mathrm{n}){ }^{3} \mathrm{He}$ reaction based on $\mathrm{P}=\mathrm{A}$ for elastic scattering and the quasi-elastic nature of the ${ }^{3} \mathrm{H}(\mathrm{p}, \mathrm{n}){ }^{3} \mathrm{He}$ reaction.

Footnotes and References.

${ }^{*}$ Published in Phys. Letters 51B, i, (1974).
${ }^{+}$We follow the Madison convention (Ref, 3) in the use of "analyzing power" rather than the less specific term "asymetry".

1. U. Rohrer and 1. Brown, Nucl. Phys. A217, 525 (1973).
2. A. J. Elwyn and R. O. Lane, Nucl. Phys. 31, 78 (1962) ; S. T. Thornton, C. 1. Marris, J. R. Smith ant R. P. Fogel, Nucl. Phys. A169, 131 (1971).
3. Polarization Phenonena in Nuclear Reactions, ed. by H. H. Barschall and W. Haeberli (Univ. of Wisconsin Press, Madison, 1971), p. xow.
4. R. J. Blin-Stoyle, Proc. Phys. Soc. A65, 452 (1952); G. R. Satchler, Nuc1. Phys. 8, ó5 (1958).
5. R, C. Haight, J. J. Jarmer, J. E. Simnons and J. C. Martin, Phys. Rev. Letters 28, 1587 (1972); and references therein.

DEPOLARIZATION AND THE SPIN-SPIN INTERACTIOR IN $\mathbf{p}^{*}{ }^{\mathbf{B}} \mathrm{B}$ ELASTIC SCATTERING*

d. Birchan, ${ }^{\dagger} H_{B}$ E. Conzett, J. Arvieux, ${ }^{\ddagger}$

W. Dahme، ${ }^{\text {R }}$ M. Latimer

We report on definite evidence for the existence of a spin-spin term in the nucleon-nucleus optical model potential, which was first suggested by Feshbach. ${ }^{1}$ For a nucleon of spin $\vec{\sigma} / 2$ scattering from a nucleus of spin I, both a spherically symmetric spin-spin term,

$$
\begin{equation*}
\mathrm{U}_{\mathrm{SS}}(\mathrm{r})=-\mathrm{v}_{\mathrm{SS}} \mathrm{~F}_{0}(\mathrm{r}] \vec{\sigma} \cdot \mathbf{I} \tag{1}
\end{equation*}
$$

and a tensor term, ${ }^{2}$ analogous to the classical potential between two magnetic dipoles

$$
\begin{equation*}
\mathrm{U}_{\mathrm{ST}}(\mathrm{r})=-\mathrm{V}_{\mathrm{ST}} \mathrm{~F}_{\mathrm{T}}(\mathrm{r})[3(\overrightarrow{\mathrm{O}} \cdot \hat{\mathrm{r}})(\mathrm{f} \cdot \hat{\mathrm{r}})-\overrightarrow{\mathrm{o}} \cdot \mathrm{t} \mid / 2 \tag{2}
\end{equation*}
$$

may be present.
Several investigations have been made of the spin dependence of total cross sections of polarized neutrons on polarized ${ }^{16,5} \mathrm{Ho}$ and ${ }^{59} \mathrm{Co}$ in attempts to determine the strength of $V_{S S}$ of the spherical interaction (1). The ${ }^{59} \mathrm{Co}$ results, sumarized by Fisher et al, 3 showed the larger effects. However, the information obtained on Vss was ambiguous because the calculation, which followed the treatment of Davies and Satchler, ${ }^{4}$ was unable
to reproduce the energy dependence of the data from 0.3 to 8 NeV .

The presence of spin-spin effects can also be detected by measurements of the depolarization parameter $D, 5$ which has the value 1.0 for direct elastic scattering in the absence of a spin-spin interaction. Thus, deviations of D from unity can be evidence for the existence of such an effect. Batty and Tschalär ${ }^{6}$ and Beurtey et al ${ }^{7}$ have measured D in the scattering of 50 and 20 MeV protons, respectively, from nuclei. Only the latter results showed values of D differing significantly from unity, but these measurements were for a single scattering angle.

In recent calculations Sherif and Hussein ${ }^{8}$ have included beth the spinerical (1) and tensor (2) spin-spin terms in the optical potential. The depolarizations calculated with the spherical term alone were consistently different from the experimental values near 20 MeV , suggesting that contributions from the tensor term were important. These calculations showed that angular distributions of D were needed to determine the strength of the censor interaction, They also showed that the

D-parameter was the elastic scattering observable most sensitive to the spin-spin interacion.

We have neasured D at several angles in the elastic scattering of 25 MeV polarized protons from ${ }^{9} \mathrm{Be}$. With an incident bean of polarization p_{0}, the polarization P_{1} of the scattered protons is given by

$$
\begin{equation*}
p_{1}(\theta)=\left[A_{1}(\theta)+D(\theta) p_{0}\right] /\left[1+p_{0} A_{1}(\theta)\right], \tag{3}
\end{equation*}
$$

Where $A_{1}(\theta)$ is the analyzing power of ${ }^{9} \mathrm{Be}$. Both measured polarizations are perpendicular to the scattering plane and positive along the direction $\vec{k}_{i} \times \vec{k}_{f}$. The ${ }^{9}$ Be target was approximately 1 MeV thick. The polarization $p_{1}(\theta)$ of the scattered protons was measured with a high efficiency, good resolution silicon polarimeter. It consisted of an analyzer in the form of a silicon detector and two side detectors positioned at left and right scattering angles of 27°. The analyzer detector was 1 nom thick, giving good scattering efficiency to the side detectors. The detectors in each combination of analyzer and side detector were operated in coincidence as a $\Delta F-E$ telescope, msuring good intrinsic energy resolution and reduction of background. Thus, even though the analyzer was some 4.5 NeV thick to 23 MeV protons, resolution of $260-270 \mathrm{keV}$ resolution was achieved in the polarimeter spectra at analyzer detector counting rates near $10^{5} / \mathrm{sec}$. The polarimeter was calibrated with protons of known polarization elastically scattered from ${ }^{12} \mathrm{C}$. In the scattering fron a spin-zero nucleus D has the value 1.0; so, with P_{0} and A_{1} measured, p_{1} is detemined from eq. (3). The measured left-right asymmetry then determines the analyzing power of the polarimeter.

Our results are shown in Fig. 1. Deviations of D from unity are small but significant. The solid and dashed carves represent calculations by Sherif. Both the depth, $V_{S S}=0.1 \mathrm{MeV}$, and a Woods-Saxon form for $F_{0}(r)$ were fixed from singleparticle model estimates. For the tensor form, a Woods-Saxon form was taken for $\mathrm{F}_{\mathrm{T}}(\mathrm{r})$, and the depth $V_{\text {ST }}$ was determined by fitting the single data point $D\left(63.5^{\circ}\right)=6 \wedge^{\wedge} \pm 0.016$ at 21.4 MeV . As

Fig. ${ }^{\text {1 }}$ Angular distribution of the D-parameter for $\overrightarrow{\mathrm{p}}^{-9} \mathrm{Be}$ elastic scattering at $2 b \mathrm{MeV}$. The curves are calculated values from Ref. 9, the solid curve with $V_{S S}=0.1 \mathrm{MeV}, V_{S T}=-3.75 \mathrm{MeV}$ and the dashed curve with $\mathrm{V}_{\mathrm{SS}}=0.1 \mathrm{MeV}, \mathrm{V}_{\mathrm{ST}}=+3.8 \mathrm{MeV}$.
(XBL 7410-4476)
seen in Fig. 1, these ralculations at 25 MeV , with the same values of $V_{S S}$ and $V_{S T}$ that wer: used at 21.4 MeV , provide good fits to our data for either sign of V_{ST}. At 21.4 MeV the predicted ${ }^{8}$ vilue of $D\left(63.5^{\circ}\right)$ was 1.0 for $V_{S T}=0$, so these data clearly indicate the need for the tensor interaction term in the calculation. is was noted by Husseir! and Sherif, 8 the magnitude of V is much greater than expected, since Satchler's $10{ }^{1}$ estimate for ${ }^{59} \mathrm{Co}$ predicts the tensor strength to be weaker than that of the spherical interaction. It remains to be seen whether some other effect can explain the apparently large tensor strength.

The calculated results displayed in Fig. 1 show relatively little sensitivity to the sign of V_{SI}. However, the calculated D-parameter values in ${ }^{-10}$ - ${ }^{10}$ scattering show much more sensitivity, so measurements there can provide more definite and detailed information on the spin-spin tensor interaction. We have recently made measurements ${ }^{11}$ to compare with the $\mathrm{p}^{-10} \mathrm{~B}$ predictions, and these results and their analysis will be reported in forthcoming publication.

We are most grateful to W. Haeberli for his considerable contributions to the planning and the early stages of the experiment, and to H.. S. Sherif for providing the calculated results at 25 MeV .

Footnotes and References

*Condensed from publication in Phys. Letters B53, 165 (1974).
${ }^{\dagger}$ Present address: Physics Department, University of Basel, Switzerland.
中resent address: Institute of Nuclear Science, University of Grenoble, France
${ }^{\boldsymbol{\xi}}$ Present address: Physics Department, University of Munich, Garching, Germany.

1. H. Feshbach, Nuclear Spectroscopy, Part B, ed. by F. Ajzenberg-Selove (Academic Press, New lirk, 1960), p. 1033.
2. G. R. Satchler, Phys, Letters 34B, 37 (19:1).
3. T. R. Eisher, H. A. Grench, D. C. Healey, J. S. McCarthy, D. Parks and R. Whitney, Nucl. Phys. Al79, 241 (1972).
4. K. T. R. Davies and G. R. Satchler, Nucl. Phys. 53, 1 (1964).
5. L. Wolfenstein, Ann. Rev. Nuc1. Sci. 6, 43 (1956).
6. C. J. Batty and C. Tschalär, Nuc1. Phys. A143, 151 (1970).
7. R. Beurtey, P. Catillon and P. Schnabel, J. de Phys. 31 Suppl. C2, 96 (1970); P, Catillon, Polarization Phenomena in Nuclear Reactions, ed. by H. H. Barschall and W. Haeberli (Univ. of Wisconsin Press, Madison, 1971), p. 657.
8. H. S. Sherif and A. H. Hussein, Plys. Letters 41B, 465 (1972) ; A. H. Hussein and H. S. Sherif, Priys. Rev, C 8, 518 (1973).
9. If. S. Sherif, private commancatim
10. G. R. Satchler, Particles and Nuclei 1, 397 (1971).
11. J. Birchall, H. E. Comett, F. N. Rad, S. Chintalapudi and R. M. Larimer, Pull. An. Phys. Soc. 19, 477 (1974).

TWO PROTON TRANSFER ON ${ }^{44}$ FI STUDIED MITH HIGH ENERGY HEAVY ION REACTIONS ($\left.{ }^{18} \mathrm{O},{ }^{14} \mathrm{C}\right)$ AND ($\left.{ }^{12} \mathrm{C},{ }^{10 \mathrm{Be}}\right)$

H. Homeyar, © F. D. Becehetti,t B. G. Harvey, D. L. Hendrie, D. G. Kover, \ddagger J. Mahonay and W. von Oertzen*

Two nucleon transfer reactions into ${ }^{56} \mathrm{Ni}$ ${ }^{5}{ }^{4} \mathrm{Fe}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{56} \mathrm{Ni} 1-3$ and the ${ }^{5}{ }^{3} \mathrm{Ni}(\mathrm{p}, \mathrm{t}){ }^{56} \mathrm{Ni} \mathrm{H}_{-7}$ reactions in order to determine encrgies and J^{π} values of the excited levels and to test nuclear models, especially the pairing vibretional model. In light ion reactions $\mathrm{L}=0$ and $\mathrm{L}=2$ transfers show up very strongly whereas higher angular
monentun transfers are suppressed tue to kinenatic reasons and the J^{π} assignments for the respective levels are sometimes doubtful. The heavy ion reactions thot should preferentially excite higher spin states have so far been greatly restricted by Q-window effects at $10 w$ bombarding ener $3 y^{8}$, or by poor energy resolution. ${ }^{9}$

Fig. 1 , Energy spectra of ${ }^{54} \mathrm{Fe}\left({ }^{16} 0,{ }^{14} \mathrm{C}\right)^{55} \mathrm{Ni}, \mathrm{E}\left({ }^{16} 0\right)=104 \mathrm{MeV}$ and $\left({ }^{12} \mathrm{C},{ }^{16} \mathrm{Be}\right), \mathrm{E}\left({ }^{12} \mathrm{C}\right)=78 \mathrm{MeV}$ at 12° and 11° respectively.

We report here high energy two proton transfer on ${ }^{54} \mathrm{Fe}$ using the reactions $\left({ }^{16} \mathrm{O},{ }^{4} \mathrm{C}\right)$ at $\mathrm{E}_{16_{\mathrm{O}}}=104 \mathrm{MeV}$ and (${ }^{12} \mathrm{C},{ }^{10} \mathrm{Be}$) at $\mathrm{E}_{12} \mathrm{C}_{\mathrm{C}}=78 \mathrm{MeV}$. Reaction products were analyzed in the focal plane of a dispersion matched magnetic spectrometer. 10 Position, time of flight (TOF), and specific energy loss ($\mathrm{dE} / \mathrm{dx}$) for each event were measured to allow complete particle separation for all reaction products considered, Details of the experimental setup are described in Ref. 11 and references therein. For the (${ }^{16} 0,{ }^{14} \mathrm{C}$) reaction improved versions 12 of the $\mathrm{dE} / \mathrm{dx}$ and 70F detectors were used.

Targets consisted of self-sipporting isotopica. ${ }^{1} \mathrm{ly}$ enriched ${ }^{54} \mathrm{Fe}$ foils of $\approx 150 \mathrm{\mu g}$ thickness. The energy resolution obtained was ($90-150$) keV for the ${ }^{12} \mathrm{C},{ }^{10} \mathrm{Be}$) reaction and ($12 \mathrm{l}-180$) keV for $\left({ }^{16} 0,{ }^{14} \mathrm{C}\right.$), mainly due to target thickness. Energy calibration was performed relative to the elastically scattered particles swept across the focal plane by varying the magnetic field. This procedure reproduced the position of the ground state within 100 keV . The energies of the excited states were then taken relative to the ground state transition and were consistent to within 20 to 50 keV at all angles, depending only on the statistics of the levels.

Energy spectra of the reactions for (${ }^{16} 0$, ${ }^{14} \mathrm{C}$) and (${ }^{12} \mathrm{C},{ }^{10} \mathrm{Be}$) are shown in Fig. 1. The same levels or groups of levels are selectively excited in both heavy ion reactions up to 9 MeV excitation energy in ${ }^{58} \mathrm{Ni}$. The re?ative intensities of the states, however, tum out to be considerably different in the two reactions. At some angles increased background at energies where excited ${ }^{10} \mathrm{Be}\left(2^{+}\right.$at 3.37 MeV) or ${ }^{14} \mathrm{C}$ ($6.09 \mathrm{MeV}, 1^{-}, 6.59$ $\mathrm{MeV}, \mathrm{0}^{+}$) are expected was observed.

Fig, 2 shows the angular distributions of the ground state and the first three excited states in ${ }^{56} \mathrm{Ni}$ for the $\left({ }^{16} \mathrm{O},{ }^{14} \mathrm{C}\right)$ reaction. They show a very pronounced L-dependence similar to those found in a recent (${ }^{27} 0,{ }^{14} \mathrm{C}$) study on ${ }^{49} \mathrm{Ca},{ }^{13}$

Fig. 3 compares the integrated cross sections (integrated from 8° to 15° for $\left({ }^{16} \mathrm{O},{ }^{14} \mathrm{C}\right.$) and 13° to 25° for (${ }^{12} \mathrm{C},{ }^{10} \mathrm{Be}$)) for the two heavy ion reactions with peak cross sections (0° for $L=0$ and 20° for $\mathrm{L}=2$) obtained in (${ }^{3} \mathrm{He}, \mathrm{n}$) at $\mathrm{E}=13 \mathrm{MeV}^{2}$ and a recent high resolution ${ }^{5}{ }^{6} \mathrm{Ni}(\mathrm{p}, \mathrm{t})^{56} \mathrm{Ni}$ study ${ }^{7}$ (peak cross sections). For the (p, t) reaction only those states are listed that had spin assignments. The density of levels populated by (p, t) above $E_{X}=6$ MeV is so high that one can always find one state that lines up with one seen in the heavy ion reactions. Though at first glance it seems that the heavy ion reactions populate more or less the same states as (${ }^{3} \mathrm{He}, \mathrm{n}$), this is true only for the ground state and the first excited 2^{+}state. Since the structure factors are the same for the three different two proton transfer reactions within a factor of $2,1,14$ it is mainly the kinematics that cause selective excitation of different levels in the respective reactions (see next section). In ${ }^{38} \mathrm{Ni}(\mathrm{p}, \mathrm{t})^{56} \mathrm{Ni}$ a $4^{+} / 0^{+}$doublet is found at 3.92/3.95 MeV . Comparing angular distributions and strength relative to the ground state transition it is innediately clear that we see the 4^{+}state and (${ }^{3} \mathrm{He}, \mathrm{n}$) the 0^{+}, and $\mathrm{L}=4$ being highly suppressed

Fig. 2. Angular distributions for the ground state and the first three low lying states of ${ }^{56} \mathrm{Ni}$ from the (${ }^{16} \mathrm{O},{ }^{14} \mathrm{C}$) reaction.
(XBL 7412-8355)
in (${ }^{3} \mathrm{He}, \mathrm{n}$) at 13 MeV incident energy. The same argument holds for the $6^{+} / 2^{+}$doublet at 5.34/5.35 MeV . Comparing intensities of neighboring states together with spins and L-values foumd in (p, t) and (${ }^{3} \mathrm{He}, \mathrm{n}$) I eads to the assumption that all states above $E_{x}=6 \mathrm{Mov}$ excited in the heavy ion reactions have spins larger than 3 . Without going into details, two examples may be mentioned: In both (p, t) and (${ }^{3} \mathrm{He}, n$) a 3^{-}state is found at $E_{x}=7.56 \mathrm{MeV}$. There is no evidence that we see a state at that energy, so the neighboring states at 7.4 and 7.6 MeV should not be the 0^{+}and 2^{+} seen in (${ }^{3} \mathrm{He}, \mathrm{n}$). Strong $\mathrm{L}=2$ transitions were observed in (${ }^{3} \mathrm{He}, \mathrm{n}$) at 9.4 and 10.8 MeV . We see no evidence for these states in the heavy ion spectra.

Fig. 3. Comparison of cross sections for two nucleon transfer reactions into Ni:
a) ${ }^{5}{ }^{54} \mathrm{Ni}(\mathrm{p}, \mathrm{t})^{56}{ }^{\mathrm{NS}} \mathrm{Ni}$ (peak zross sections) ${ }^{7}$
b) ${ }^{54} \mathrm{Fe}{ }^{3} \mathrm{He}, \mathrm{n}^{56} \mathrm{Ni}$ (peak cross sections 0° for 0^{+}and 20^{6} for 2^{+}and 3^{-}states)
c) ${ }^{56} \mathrm{Fe}\left({ }^{16} \mathrm{O},{ }^{14} \mathrm{C}\right)^{56} \mathrm{Ni}$ (integrated $\left.8^{\circ}-15^{\circ}\right)$
d) ${ }^{54} \mathrm{Fe}\left({ }^{12} \mathrm{C},{ }^{\left.1{ }^{10} \mathrm{Be}\right)}{ }^{5{ }^{5} \mathrm{Ni}}\right.$ integrated $13^{\circ}-25^{\circ}$)
(XBL 7412-8352)

Calculations were performed with the DHBA code BRUNHILD ${ }^{15}$ taking recoil effects into account. The optical model parameters were chosen to fit the elastic cross section and the transfer to the low lying states reasonably well, and were: $V=100$ $\mathrm{MeV}, \mathrm{W}=30 \mathrm{MeV}, r_{O V}=r_{\mathrm{OV}}=1.15 \mathrm{~mm}, a_{V}=r_{W}=$.55 fm . The form factor for the two proton transfer was constricted assuming the transfer of a two proton cluster in a relative s-state. The fits reproduce the experimental distributions fairly well for both reactions, Sample fits to the (${ }^{3} 0$, ${ }^{14} \mathrm{C}$) reaction are displayed with the data in Fig. 2.

The relative spectroscopic feature for the low lying states nomalized to 1.0 for the transition to the 6^{+}state at 5.3 MeV agree approximately with the errors for both heavy ion reactions and are also consistent with the 0^{+}gs to $2^{+}, 2.7 \mathrm{MeV}$ ratio extracted from (${ }^{3} \mathrm{He}, \mathrm{n}$). This indicates that the DWBA calculations account for the dominant kinenatic effects involved in the different types of reactions, at least for the low excitation region.

Based on the empirical systematics and the DNBA results, we propose the j^{π} values for the excitation energies seen in Fig. 4. Comparison is made, where available, with the shell model calculations of Jaffrin. 16 It remains to make a

Fig. 4. Comparison of the experimental results of this experiment (energies and spins) with predicted shell model states of the study of Jaffrin. ${ }^{22}$
(XBL 757-3436)

detailed comparison between theory and the full range of experimental results.

Footnotes and References

*Present address: Hahn-Neitner Institut, Berlin, Germany.
${ }^{\dagger}$ Present address: University of Michigan, Ann Arbor, Michigan.
${ }^{\dagger}$ Present address: Argonre National Laboratory, Argonne, Illinois.
*Present address: Hahn-Meitner Institut, Berlin, Germany.

1. D. Evers, W. Assmann, K. Rudolph, S. J. Skorka, and P. Sperr, Nucl. Ph .. A198, 268 (1972).
2. H. Fuchs, K. Grabisch, D. Hilscher, U. Jahnke, H. Kluge, T. G. Masterson and H. Morgenstern, Phys. Lett. 49B $^{2} 47$ (1974).
3. R. P. J. Winsborrow and B. E. F. Macefield, Mucl. Phys. Al82, 481 (1972).
4. H. P. Alford, R. A. Lindgrem and D. Elmore, Phys. Lett. 42B, 60 (1972).
5. W. G. Davies, J. E. Kitching, W. McLatchie, D. G. Montague, K. Ramavatran and N. S. Chant, Phys. Lett. 27B, 363 (1968).
6. G. Bruge and R. F. Leonard, Phys. Rev. C2, 220 (1970).
7. iH. Nann and W. Benenson, Report MSUCL-136 (1974), to be published.
8. P. R. Christenson, V. I. Manko, F. D. Becchetti, and R. J. Nickles, Nucl. Phys. A207, 33 (1973).
9. F. Pougheon, P. Roussel, P. Colombani, H. Doubre and J. C. Roynette, Kuc1. Phys. A193, 305 (1972).
10. B. G. Harvey, J. Mahoney, F. G. Pülhofer, F. S. Goulding, D. A. Landis, J. C. Faivre, D. G. Kovar, M. S. Zismar: J. R. Neriwether, S. W. Cosper and D. L. Hendrie, Nucl. Instr. and Meth. 104, 21 (1972).
11. F. D. Becchetti, D. G. Kovar, B. G. Harvey, D. L. Hendrie, H. Homeyer, J. Mahoney, H. von Dertzen and N. K. Glendenning, Phys. Rev. C9, 1543 (1974).
12. H. Honeyer, J. Mahoney and B. G. Harvey, Nucl. Instr. and Meth. 118, 311 (1974).
13. W. Henning, D. G. Kovar, B. Zeidman, and J. R. Erskine, Phys. Rev. Lett. 32, 1015 (1974).
14. B. Sфrenser, Phys, Lett 53B, 285 (1974).
15. P. Bram-Hunringer, H. L. Harney and Henneis, to be published.
16. A. Jaffrin, Phys. Lett. 32B, 6 (1970).

STUDY OF THE $\left.{ }^{142} \mathrm{Nd}^{14} \mathbf{1 8}^{16}{ }^{16}\right)^{144} \mathrm{NA}$ REACTION
K. Yegi,* B. Harvay, D. Hendria, U. Jehnke,t C. Mapuire, J. Mehoney and D. Scott

Two neutron pickup and stripping reactions, (p, t) and (t, p), on various rare earth nuciei have yielded very dissimilar excitation strengths for populating low-lying 2^{+}excited states. 1 Recently it has been proposed that these results could be explained in the framework of the quadrupole pairing vibrational model. ${ }^{2}$ A consequence of the theory is that two neutron stripping reactions on nuclei with neutron number $N \geqslant 82$ should strongly excite the 10 west 1 ying $2^{\boldsymbol{+}}$ residual state.

The heavy ion two neutron stripping reaction, ${ }^{142} \mathrm{Nd}\left({ }^{16} 0,{ }^{16} 0\right)$ [44 Nd , was studied at 99.2 NeV incident energy. The ${ }^{16} 0$ products were monentum analyzed in a magnetic spectrometer with a proportional counter-scintillator detector at the focal surface. Angular distributions were obtained for the ground and first excited state of ${ }^{144} \mathrm{Nd}$, and for the ground state of ${ }^{143} \mathrm{Na}$ in the (${ }^{15} 0,{ }^{13} 0$)
reaction as illustrated in Fig. 1. As expected, the 2^{+}state is strongly excited, in fact, more strongly than the grotmd state. The angular width of the two neution transfers is also wider than the one-neutron transfer. This is a consequence of the stronger binding of the two particle form factor giving a higher localization of the reaction region in radial and thus angular monentum space. The narrower angular momentum width of the reaction results in a broader angular distribution,

Calculatious are now being made for this reaction, the same as for the ${ }^{15}{ }^{4} \mathrm{Nd}\left({ }^{12} \mathrm{C},{ }^{14} \mathrm{C}\right){ }^{142} \mathrm{Nd}$ experiment described elsewhere in this annual report. ${ }^{3}$ In addition to the pairing correlations, second order processes may be interfering constructively with the direct transition and, hence, further enhancing the 2^{+}yield.

Footnotes and References
*On leave from Osaka University, Osaka, Japan.
${ }^{\dagger}$ On leave from Hahn Meitner Institut, Berlin, Germany.

1. W. Oelert, G. Lindströre and V. Riech, Nkel. Phys. A233, 237 (1974).
2. R. Broglia, O. Hansen and C. Riedel, Adv, in Nucl. Phys. 6, 287 (1973).
3. K. Yagi, D. L. Hendrie, L. Kraus, C. F. Maguire,
J. Mahoney, D. K. Scott, Y. Terrien, T. Udagawa,
K. S. Low and Tamura; contributors to this report.

Fig. 1. The dijferential cross sections for the ${ }^{14}{ }^{2} \mathrm{Nd}\left({ }^{1}{ }^{0} 0,{ }^{16} \mathrm{O}\right)^{14}{ }^{14} \mathrm{Nd}$ reaction leading to the ground and first 2^{+}excited state (0.695 NeV) Also shown is the angular distribution for the ${ }^{142} \mathrm{Nd}\left({ }^{18} 0,{ }^{30} 0\right)$ ${ }^{14}{ }^{3} \mathrm{Nd}$ reaction going to the (7/2) ground state.
(XBL 749-4270)

ONE. AND MULTI-STEP PROCESSES IN THE ${ }^{144} \mathrm{NDI}^{12} \mathrm{C},{ }^{14} \mathrm{C}$) REACTIONS*

K. Yag, † D. L. Hencipia, L. Kraus, \ddagger C. F. Meguire, J. Mmoney, D. K. Scott, Y. Terien, ${ }^{\text {S }}$ T. Udegam, 1 K. S. Lowl and T. Tanmpal

In previous work ${ }^{1,2}$ on the ${ }^{144} \mathrm{Nd}(\mathrm{p}, \mathrm{t})^{142} \mathrm{Nd}$ reaction, the excitation of the ground (0_{0}^{+}) state, the first excited (2^{\dagger}) state, the $2.98 \mathrm{Mel}\left(\mathrm{O}_{2}^{+}\right)$ state and the $3.49 \mathrm{NeV}\left(2 \frac{1}{2}\right)$ state in ${ }^{1142} \mathrm{Nd}\left(\mathrm{N}^{2}=82\right)$ was investigated. The purpose of the present work is to study these and additional states via the ${ }^{164} \mathrm{Nd}\left({ }^{12} \mathrm{C}_{\mathrm{F}}{ }^{3} \mathrm{C}\right)^{142} \mathrm{Nd}$ reaction. Our interests are to learn to what extent the light-ion and heavyion induced two-rkutron pickup reactions are similar and to detemine the effects $\%$ multi-step processes in heavy-ion transfer reactions.

The most remarkgble feature found in the previous (p,t) work ${ }^{2}, 2$ was that the transitions to the $0_{1}^{+}, 0_{2}^{+}$and z_{2}^{4} final states were strong and were of one-step nature, while the transition to the 2_{1}^{+} state was much weaker and aiso had an anomatous angular distribution markedly different from what was expected for a one step $1,=2$ transition. The difference in the behavior of the $2{ }^{+}$and 24 transitions was attributed to the following distinct properties of those states. 2 The 2% state is a collective two-neutron hole state in the $\mathrm{N}=82$ closed shell, i.e. a stecond order quadrupolepairing vibrational state ${ }^{3}$ which can be excited strongly by a dizect $\mathrm{L}=2$ type (p, t) reaction. On the other hand, the 2_{1}^{+}state consists dominantly of a proton particle-fiole quadrupole-vibrational
configuration; tris a direct (p, t) process is substantially inhibited and higher ơder processes may contribute significantly. Indeed, the anomalous behavior of the 2 cross section, which defied explanation in temss of DNBA calculations, was well accounted for by coupled-channel Born approximation (CCBA) calculations, which took into aceount the effect of inelastic scattering. ${ }^{2}$

The ${ }^{14 h} \mathrm{Nd}\left({ }^{12} \mathrm{C}^{14} \mathrm{C}\right)$ experinent was performed using a $78 \mathrm{MeV}{ }^{22} \mathrm{C}$ beam from the Berke1ey 88 -Inch Cyclotron. Reaction products were detected in the focal plane of a magnetic spectronater. ${ }^{4}$ Particle identification and energies of the reaction products were obtained by a combination of magnetic rigidity, dE/dx, total energy and time-of-flight. Angular distributions of the ${ }^{14} \mathrm{C}$ groups leading to $0_{1}^{+} 2_{1}^{+}$, $00_{2}^{2}, 2{ }_{2}^{+}$states and a group at about 2.08
 ${ }^{\theta} 1 \mathrm{ab}=8^{\circ}$ to 55^{*} in 2.5^{*} steps.

Figure 1 gives the measured differential cross sections of the five ${ }^{162} \mathrm{Ne}$ groups, and one may conclude that the data have the following properties: 1] The $0_{\mathrm{g}}^{+}, 0_{2}^{+}$and 25 states are excited strongly and have bell-shaped angular distributians which are characteristic of one-step transitions, with peaks appearing at $\theta_{\text {cm }} * \mathbf{4 5}^{*}$;

Fig. 1. Expe -imental and theoretical angular distributions of cie ${ }^{144} \mathrm{Nd}\left({ }^{12} \mathrm{C},{ }^{14} \mathrm{C}\right.$) reaction at $\mathrm{E}_{1 \mathrm{ab}}=$ 78 MeV . Each curve is labeled with a nomalization factor N , so chosen that $\mathrm{N}=1$ for the $\mathrm{o}_{\text {, state. }}$ (\#ithout this renomalization, all the theeretical cross sections are to be reduced by a factor 9.)
2) The 2 transition is strongly inhibited and has a quite anomalous (flattened) angular distribution; 3) Below the excitation energy of $3.5 \mathrm{NeV}, \mathrm{O}_{\mathrm{B}}^{+}, \mathrm{O}_{2}^{+}$ and $2 \frac{1}{2}$ are the only srates that are excited strongly, in spite of the sact that there are about 25 states in ${ }_{5}$ this energy range known from other experiments. 5 All these features are very much reminjscent of the situation for the (p, t) reaction. 1,2

The cross section for the 0_{0} and $2{ }_{1}$ final states vere obtained by performing exact finiterange (EFR)-CCBA calculations, in which $0^{+}-2^{+} \mathrm{Nd}$
states were coupled in both incident and final chamne1s, with $\beta_{2}=0.125$ and 0.096 for ${ }^{144} \mathrm{Nd}$ and ${ }^{142} \mathrm{Md}$, respectively. As seen in Fig. 1 good sinultaneous fits to both bell-shaped 0_{g}^{+}and flattened $2{ }_{1}^{+}$angular distributions are oftained. A corresponding EFR-DHBA cross section is also given by a dotted lino for the $2{ }_{1}^{+}$state, which is seen to have a completely different shape from the experimental angular distribution. The DWRA 0_{g}^{+} cross section, which is also given by a dotted ${ }^{\text {b }}$ line, will be discussed later.

It is worth emphasizing that not only the angular distribution, but also the relative magnitude of the EFR-CCBA $0^{+}+$and $2{ }_{1}^{+}$cross sections were obtained correctly. It is worth noting further that the CCBA $2 I$ cross section (solid line) was obtained as a restilt of destructive interference betreen the one-step DWBA process and the two twostep processes; $0_{g}^{+}\left({ }^{1{ }^{4}} \mathrm{Nd}\right) \rightarrow 0_{g}^{+}\left({ }^{142} \mathrm{Nd}\right) \rightarrow 2{ }_{1}\left({ }^{142} \mathrm{Nd}\right)$
 cross section given by a broker line was obtained by considering only these two-step processes. The very anomalous angular distribution results from this interference.

The calculation of the $0 \frac{1}{2}$ and 2_{2}^{+}cross sections was made in tems of EFR-DWRA, assuming that the excitation takes place only via pairing vibrational components in these states which have monopole and quadrupole sature, respectively. ${ }^{6}$ As is expected the resultani cross sections (Fig. 1) are basically bell-shaped, and agree satisfactorily with experimental angular distribitions. The relative normal ization factors $N=0.92$ and $N=0.85$, respectively, for these tho states are sufficiently close to unity, indicating that the wave functions we used to describe these two states are basically correct.

It should be finally noted that, both experimentally and theoretically, the peak of the bellshaped angular distribution for the $0 \frac{1}{2}$ state appears at 45°. On the other hand, the experisiental peak for the 0_{g}^{+}state appears at 43°, i.e., a shift by 2° to forward angle takes place and our OCBA calculations explain this. The corresponding DWRA cross section, however, has the peak at 45° (in agreenent with that for the 0t state) and the angular distribution (dotted line) fits the experinent rather poorly. The origin of the shift of 2° of the peak position in going from Drish to CCBA is the destructive interference in the latter between the two-step $\mathrm{O}_{\mathrm{g}}^{+}\left({ }^{144} \mathrm{Na}\right) \rightarrow 2_{1}^{+}\left({ }^{(144} \mathrm{Na}\right) \rightarrow 0_{\mathrm{g}}^{+}$ $\left({ }^{162}{ }^{2} \mathrm{Nd}\right)$ amplitude and the one-step $\mathrm{O}_{\mathrm{g}}^{+}\left({ }^{164} \mathrm{Nd}\right) \rightarrow 0^{+}$ (${ }^{10}{ }^{2} \mathrm{NL}$) anplitude. This destructive interference is stronger (weaker) for partial waves whose orbital angular momentum ℓ is smaller (larger) than the grazing angular momentum ℓg. Thus, the effective value of ℓ for CCBA is larger than that for DWBA which resules in the shift of the peak position to a smalier angle.

In sumary, 1) The mechanism of the ${ }^{144} \mathrm{Nd}$ $\left({ }^{12} \mathrm{C}^{14}{ }^{14} \mathrm{C}\right)$ reaction is anite analogous to that of the luaNd (p, t) reaction; 2) The comparison of the transitions to the tho types of 2^{+}states gives a definite eqidence for the importance of two-step processes; ${ }^{3,8} 3$) Since the direct transfer signasture for this systen is a clear bell-shaped angular
distribution, the anomaious nature of the 2_{1} excitation is much more conspicuous than that observed in the (p, t) case; 1,2 and 4) The coupling effect can be significant in predicting the correct angular distribution, in particular the peak position, even when the angular distribution has a sinple bell shape. This was exemplified in our 0_{g}^{+}cross section.

Footnotes and References
*Condensed from Phys. Rev. Letters 34, 96 (1975).
${ }^{\text {ton }}$ On leave from Osaka University, Osaka, Japan.
*an leave from CRN and Universite Pasteur, Strasbourg, France.
${ }^{5}$ On leave from CEN, Saclay, France.
"Center for Nuclear Studies, University of Texas, Austin, Texas 78712.

1. K. Yagi, Y. Aoki, J. Kawa and K. Sato, Phys. Lett. 29B, 647 (1969).
2. K. Yagi, K. Sato, Y. Aoki, T. Udagawa and T. Tanura, Phys. Rev. Lett. 29, 1534 (1972).
3. A. Bohr, Proc. Int. Symposium on Nuclear Structure, Dubña, 1968 (IARA, Viems, 1968), p. 179
4. B. G. Harvey, J. Mahoney, F. G. Pühlhofer, F. S. Goulding, D. A. Landis, J.-C. Faivre, D. G. Kovar, M. S. Zisman, J. R. Meriwether, S. W. Cosper and D. L. Hendrie, Mucl. Inst. Heth. 104, 21 (1972).
5. J. F. Lemming and S. Raman, Nuclear Data Sheets 10, 309 (1973).
6. The probability of the pairing vibrational corponents in 0_{4}^{1} and 2_{2}^{+}states we used are 734 and 75% respectively. These numers were taken from the experimental fact that
$\sigma\left({ }^{144} \mathrm{Nd}(p, t)^{142} \mathrm{Nd}, \mathrm{O}_{2}^{+}\right) / \sigma\left({ }^{142} \mathrm{Nd}(p, t)^{160} \mathrm{Nd}, \mathrm{D}_{\mathrm{g}}^{+}\right)=0.73$
and
$\sigma\left({ }^{144} \mathrm{Nd}(p, t)^{142} \mathrm{NA}, 2_{2}^{+}\right) / \sigma\left({ }^{142} \mathrm{Nd}(p, t)^{160} \mathrm{Nd}, 2_{1}^{+}\right)=0.75$.
See Ref. 2 for the experimental data.
7. T. Tamara, K. S. Low and T. Udagawa, Phys. Lett. 51B, 116 (1974).
8. R. J. Ascuitto and N. K. Glenderning, Phys. Lett. 45B, 85 (1973).

OPPOSITE INTERFERENCE EFFECTS OBSERVED IN THE
${ }^{142} \mathrm{Sm}\left({ }^{15} \mathrm{O},{ }^{10} \mathrm{O}\right)^{150} \mathrm{Sm}$ AND THE ${ }^{150} \mathrm{Sm}\left({ }^{16} 0 .^{110}\right)^{148} \mathrm{Sm}$ REACTIONS
C. Maguirt, B. Harvey, D. Hendrie, H. Homeyar, U. Jahnike,
J. Maboney, D. Scott, and N. K. Glendenning

The presence of nulti-step processes in heavyion transfer reactions has been confinned in a nutiber of recent experiments. 1 These reactions are extremely interesting hecause 1) experinentally the signature of multi-step transitions is very clear and 2) theoretically the effect of mulci-step transitions is a sensitive function of the nuclear structure calculations for the target and residual systems. Depending on the muclear structure model. the multi-step anplitudes nay have the same or opposite sign as the pure direct anplitudes thus resulting in constructive or destructive interference respectively. 2

Heavy-ion reactions on medium heavy muclei (A = 150) are an excellent means of studying these processes because, as a function of angular nonentun, the direct transition anplitudes typically have a broad peak about the grazing partial wave leacing to classical bell-shaped angular distributions. The indirect applitudes are more sharply peaked but still have their maxina at approxinately the grazing partial wave. Since the indirect anplitudes can be of opposite sign to the direct, however, cancellations will occur leading to anomalously weakened, flat angular distributions.

The theoretical description of vibrational states, bpsed on their mieroscopic description makes a very dofinite prediction that interference between direct and indirect modes will be of the
opposite sense for stripping as compared to pickup reactions. However, the question as to which case is the interference constructive and which case destructive, depends upon the relative importance of the so-called forward and backward going graphs. For nuclei close to closed shells, the forwardgoing graphs dominate. The tin isotopes are an example of this situation. There the stripping reaction leading to a vibrational seate will exhibit ciestructive interference between the direct and indirect modes, while the pickup reaction will exhibit constructive interference as predicted by calculation ${ }^{2}$ and confirmed by experiments. ${ }^{3}$ The Samarium isotopes are rich in possibilities. At the light end, the neutron shell is near magic; a situation that is expected to lead to dominance of the for-ward-going graphs. In the middle, they have open shells in both neutrons and protons and moreover they span the transition region from vibrational to rotational nuclei. Both of these facts suggest the possibilities that the backward-going graphs may dominate the forward-going graphs. If they do then the sign of the interference is intercharged with respect to stripping and pickup reactions. In fact, this experiment exhibits just this opposite behavior for the spherical intemediate mass samarium isotopes as compared with tin.

The ${ }^{150}$ sen $\left({ }^{16} 0,{ }^{18} 0\right)$ reaction was studied with a $104-\mathrm{MeV}$, bean from the 88 -Inch Cyclotion with the outgoing 100 ions monentum-analyzed in a magnetic

Fig. 1. Experimental angular distribution for the ${ }^{148}$ Sin $\left({ }^{18} 0,160\right){ }^{150} S_{\text {m }}$ two-neutron stripping reaction and the reverse pick-lp reaction. The lines through the data are to guide the eye.
(XBL 751-2144)
spectrometer and detected by in a solid state position-sensitive detector placed at the focal surface. Identification of the 10 w yield ${ }^{180}$ group was exceptionally good as the detector afforded 600
keV total energy resolution and the nearest contaninant group, 13 N, was 5 MeV away on the low energy side, the $148 \sin (180,160)$ group was identified by Bo ${ }^{2}$, and TOF. (This system was not used in the (160×180) reaction because the high background of 160^{7+} inelastic events tails into the much lower yield 180^{8+} group.) The extracted angular distributions for the gromd and first 2^{+}excited states are shown in Fig. 1. As in the tin data, three of the four angular distributions have a normal grazing ang1e shape, while the fourth is flattened and nuch weaker. Hore, though it is the pick-up reaction that is anonalous, in tin it was the stripping reaction that had destructive interference.
 these isotopes have $\mathrm{N}=32$ and 80 respi-iively, the structure could revert to "forward" dorinance gain, just as in the tin isotopes. Calculations will be performed for all these data to test nxelear structure models in the samarivm isotopes.

References

1. K. Yagi, D. L. Hendrie, L. Kraus, C. F. Maguire, J. Mahoney, D. K. Scott, Y. Terrien, T. Udagawa, K. S. Low, and T. Tamura, Phys. Rev. Lett, 34, 96 (1975) ; K. Erb, D. Hanson, R. Ascuitto, B. Sorenson, ${ }^{J}$. S. Vaagen, and J. Kolata, Phys. Rev. Lett. 33. 1102 (1974).
2. R. J. Ascuitto and N. K. Glendenning, Phys.lett. 47B (1973) 33.
3. B. G. Harvey, LBL-2366 (1974).

THE INTERFERENGE BETWEEN DIRECT AND INDIRECT MODES in Twornucleon transfer reacticns with heavy ions

B. G. Harvey, D. L. 'Hendrio, U. Jehnke," L. Kraus,t C. F. Mequire, J. Mahoney, D. K. Scott, Y. Terimen, \ddagger K. Yapi, \& and N. K. Glenderning

The presence of indirect transitions in twoneutron traisfer reactions to vibrational states in the S_{n} isotopes has been prodicted to have the interesting consequence that the interference between direct and indirect modes is destructive in stripping and constructive in pick-up. 1,2 This offect has not been demonstrated in conver* ional, lightion induced reactions owing to the difficulty of perforing inverse reactions of the type (p, t), (t, p) at the stme center of mass cnergies, but the flexibility of heary-ion induced transfer opens up severat possifilitries Here wediscuss the reactions ${ }^{122} \mathrm{Sn}\left({ }^{10} 0,{ }^{12} 0\right)^{122} \mathrm{Sn}$ and ${ }^{120} \operatorname{Sn}(180,160){ }^{122} \mathrm{Sn}$ to the ground and lowest collective 2^{+}excitations. The incident energies of 104 MeV for the 160 bean and $99 \mathrm{~N} / \mathrm{V}$ for thi 1^{180} bem gave equal center of mass energies of 89 MDV for the renctions.

Some data for the $\left.{ }^{120} \operatorname{San}^{(18}{ }^{18},{ }^{16} 0\right)^{122} \mathrm{Sn}$ reaction at 100 MeV were reported previously. ${ }^{3}$ Since this reaction has a positive Q-value of 2.78 MeV , counter telescope techniques were adequato at backward angles to separate the O^{+}and 2^{+}states $\mathrm{fr} \mathrm{m}^{\boldsymbol{m}}$ the in-
tense elastic scattering. For more forward angle data (which is the important region for the indirect effects) and for the corresponding transitons in the inverse pick-up reaction ${ }^{122} \mathrm{Sn}(160,180){ }^{120} \mathrm{Sn}$, the reaction products from 104 MeV 160 and 99 MeV 180 ions from the 88 -Inch Cyclutron were detected with the Berkeley QSD magnetic spectromoter.

The differential cross sections for the twoneutron transfer reactions are shown in Fig. 1 along with the predictions of the reaction theory described in Refs. 1 and 2 . The ground state transitions correspord to time-reversed reactions and are ddentical. (Absolute cross sections were measured for both reactions using the spectrometer; the date taken with the counter telescope for the $1{ }^{18}$, 16_{0}) reaction, were normalized to the spectrometer data for the ground state). The distributions for the ground sfetes and for the 2^{2} state in the pickup reaction $122_{5 n}(160,180){ }^{120} \mathrm{Sn}$ are all sindlar in shape, exhibiting a "bell-shmped" maximm at approxinateiy ${ }^{904}=38^{8}$, corresponding to a grazing collision in the conbined Coulomb and tuclear fields.

Fig. $1 \frac{1}{}$ The differential cross sections for ${ }^{120}{ }_{S n}$ $\left.{ }^{18} 0,{ }^{16} 0\right)^{12} 2_{\text {Sn }}$ and the reverse pick-w reaction. The solid line is the CCBA prediction for the stripping reactions, and the dashed line the fit to the pick-up reactions. The data designated with the dotted circles was taken at Berkeley, the open circles from Ref. 3.
(XBL 751-2083)

This distribution is the well-known characteristic of a single-step, direct transition in beavy-ion induced transfer reactions at moderate onergy above the coulonj barrier. In the stripping reaction ${ }^{120} \operatorname{Sn}(180,160){ }^{122} \mathrm{Sn}_{\mathrm{n}}$ the 2^{+}transition has a smaller cross section and shows no clear grazing maximum. Instead the cross section at forward angles is rather flat in excellent agrement with the predicted shape. To explain the contrasting bohevior observed in the cross sections for stripping and pick-up to the vibrational states, wo review the discussion of Refs. 1 and 2, by referting to Fig. 2. In the production of the 2^{4} state, transitions 1 and 4 are indirect and are common to both the stripping and pick-up process, while 2 is the direct transition for pick-up and 3 is the direct transition for stripping. The amplitudes for these last two transitions have opposite sign according to the microscopic theory of vibrational states,1,2 It is this opposite sign which leads to a constructive interference between the direct and Indirect modes in the one reaction and destructive in the other. Destructive interference between two mplitudes, both of which are peaked near the grazing angle, i leads to distortion of the grazing peaked maular distribution, while a constructive intarference retains the characteristic peak. The exporimental cross sections for the 2^{+}vibrational states obviously confirm the theory. That the two ground state cross

Fig. 2. Schematic diagram showing the different routes, direct and indirect, in a woo-particle transfer reaction.
(XBL 745-905)
sections are identical follows from the fact that they are time reversed reactions. That they also retain the characteristic grazing peak, undistorted by interforence from higher order processes can also be understood in terns of Fig. 2. In this case, for either ground state tri sition, both 2 and 3 enter the two lowest order andirect modes, and since they have opposite signs they tend to cancel each other, resultirg $\underset{\sim}{-1}$ little higher order contributions to the ground state cross sections. This explains why three of the cross sections have grazing peaked angular distributions while the fourth is distorted.

The coupled channels calculation described in Ref. 2 requires the deformation constants, both nuclear and Coulomb, to determine the strength of the inelastic excitations through which the indirect transitions proceed. Theso and the optical model potential parameters as well were obtained by fitting sirinltaneously the $160+122_{S_{n}}$ elastic and first $2+$ inelastic angular distributions. These data were also taken kith the QSD spectroneter. Table 1 lists the final parameters which give the fits illustrated in Fig. 3. When applied to the reactimn calculation the predicted ground state yields were approximately a factor of 2.5 too low. The fits shown in Fig. 1 have been normalized to the experimental ground state cross section but the relative magnitudes predicted for the $0+$ to $\mathbf{2}^{+}$ cross sections are retained.

We have thus demonstrated here the predicted opposite interference characteristic; between direct and indirect modes for the pick-Lp and s.tripping reactions. The opposite interference is associated with the underlying microscopic structure of the vibrational states. Heavy ion reactions such as these my prove to be a sensitive probe of inelastic modes of excitation wich are not directly observable, and ultimately of deformation shapes and raclear struature.

Table 1. Reaction parameters.

		Optical potential				Deformations	
Term	Depth	r_{N}	${ }^{\text {R }}$	Diff	Nucleus	B_{N}	${ }^{\text {B }}$ C
Real	87.9	1.293	1.2	0.502	${ }^{120}{ }_{\text {Sn }}$	0.13	0.09
Imag.	24.2	1.10	--	0.67	${ }^{122}$ Sn	0.124	0.095

Fig. 3. The predicted fits to the ${ }^{160}+{ }^{122} \mathrm{Sn}$ olastic and inelastic data based on the parameters of Table 1 .
(XBL' 751-84)

Footnotes and References

*On leave from Haln-Meitner Institut, Berlin, Germany.
${ }^{\dagger}$ On leave from CRN and the Universite Pasteur. Serasbourg, France.
${ }^{\dagger}$ On leave from CEN, Saclay, France.
${ }^{5}$ On ledve from Osaka University, Osaka, Japar.

1. N. K. Glendenning and R. J. Ascuitto, Symposium on Heavy-Ion Transfer Reactions, Argonne Informa! Report PHY-1973B, P. 513.
2. N. K. Glenderning and R. J. Ascuitto, Phys, Lett. B47 (1973) 33.
3. N. Anyas-Heiss, et al., Proceeding of the International Conference on Nuclear Physics, eds. ${ }^{\top}$. de. Boer and H. J. Mang (North Holland, 1975) Yol. 1, p. 485.
4. N. K. Glendenning, Classical and Quantum Mechanical Descriptions of Heavy-Ion Interactions in International Conference on Reactions between Conplex Mhiclei, Nashiville, Tennessee, ed. by (Academic press, 1974).

THE MULTINUCLEON TRANSFER REACTION ${ }^{12} \mathbf{C l}^{20} \mathrm{No}$, al ${ }^{18} \mathrm{Si}$

C. F. Mayife, d. Mathoney, Y. Tarion,t mad K. Yeif 8

The excitation of new rypes of correlation in nuclear mocion is an attractive possibility for direct miltirmcieon transfor roactions with heavyions. However when coplete angular distributions wise first megured for one such reaction, viz. ${ }^{12} \mathrm{C}\left({ }^{4} \mathrm{~N}, 6 \mathrm{Lt}\right) \mathrm{ZD}$ ve at 76 MoV , it was found that the component for the direct transfer of el ght nucieons was very sma11, and that the reaction was dominated by a compound mechanism. 1 Subsequently many reactlons of this trpe have been successfully analyzed using Hauser-Feshbach theory. 2 It is now of interest to extend the study of multinucleon transfer ieactions to higher energies in order to see if the
direct transfer mechanism becomes significant.

Abstract

we have commenced experiments on the ${ }^{12} \mathrm{C}\left({ }^{20}{ }^{20}\right.$, a) ${ }^{28}$ Si reaction, in which the projectile has a large spectroscopic probability for decomposition in $160+a$. Our 1 in was to see if direct transfer of 10_{0} onto the ${ }^{12} \mathrm{C}$ core might populate quasirolecular atates in 28 Si, formed by the 100 orbiting the ${ }^{12}$ c core. So far such states have been observed as intermediate resonances in the excitation functions for elastic and inelastic heavy-ion scattering.

The experiments were performed at an incident
energy of 100 MeV and the a-particles were detected using the magnetic spectrometer. The spectrum in Fig. 1 shows that discrete states are observed superimposed on a large continum (presumably from compound and break-up processes), beginning at 17MeV excitation, of typical width 300 keV . If these states are populated by the decay of a high spin compound nucleus ${ }^{32}$, which must be formed at an excitation of 56 MeV with $\mathrm{J} \approx 26 \mathrm{~h}$, the decay would lead to differential cross sections symuetrical about 90° and of the form $1 / \sin \theta$. Our preliminary

Fig_{30} 1. Energy spectrum for thr reaction ${ }^{12} \mathrm{C}\left({ }^{20} \mathrm{Ne}\right.$, a) 285 at $E_{1 a b}=100 \mathrm{MeV}$ and $\theta_{1 a b}=8^{\circ}$.
(XBL 749-4234)
data for do/d Ω indicate that the distributions are not of this form. The reaction was also studied at a lower incident energy of 93 MeV (corresponding to a change of 3.6 MeV in the center of mass) and over the excitation region up to 23 MeV the same set of states appear to be excited.

Hauser-Feshbach calculations will be undertaken to see of the observed cross sections ≈ 100 $\mu \mathrm{b} / \mathrm{sr}$ could be accounted for on the model. However our initial conclusion is that multinucleon transfer reactions of the type $\left\{{ }^{20} 1 \mathrm{Ne}, \alpha\right)$ at high incident energies may have a sizeable direct component.

Footnotes and References

On leave from Hahn-Meitner Institut, Berlin, Germany.
${ }^{+}$On leave from CRN and Universite Pasteur, Strasbourg, France.
On leave fror CEN, Saclay, France.
${ }^{5}$ On leave from Osaka University, Osaka, Japan.

1. T. A. Belote, N. Anyas-Weiss, J. A. Becker, J. C. Corne11, P. S, Fi sher, A, Nenchaca-Rocha, A. D. Panagiotou, and J. K. Scott, Phys. Rev. : эtt. 30, (1973) 450.
2. R. G. Stokstad, Reaction Between Complex Nuclei (Nashville, 1974), ed. by R. L. Robinson, F. K. NeGowar, J. B. Bail, and J. H. Hamilton (NorthHolland, 1974), p. 327 and references therein.

THE ENERGY VARIATION OF MULTINUCLEON TRANSFER REAGTIONS WITH HEAVY IONS

D. K. Seott, D. L. Hendrie, U, Sahnke * L. Kraus, ${ }^{\dagger}$
C. F. Mapuire, J. Matroney, Y. Terfith, \ddagger and K. Yad $\$$

Recontly it was discovered that two, three and four nuxcloon transfer reactions with heavy-ion beans of approximately $10 \mathrm{MeV} /$ mueleon apear to be highly selective in exciting clustar states in light nuclei. 1 This observation is one of the promising aspects for spectroscopy with rinltinucleon trunsfer reactions induced by heavy-ions. Unfortunately the difforential cross sections for heavy-ion transfer reactions $; t$ high energies are often rather poor signatures of the J-value of a state, 1 Here we describe a method of combining the high selectivity of the reactions with study of the energy veriation of the cross section over a wde range, to select systematically states of progressively higher spin in the cluster rotationil bind.

As a test cara re chose the reaction ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C}\right.$, $\left.9_{\mathrm{Be}}\right)^{15}{ }^{5}$, since $\left({ }^{12} \mathrm{C},{ }^{5} \mathrm{Be}\right.$) has been than to be very fayorable for spotially syinetric 3je transfer.2 The resction was studied at thret bomberding energies, of 78, 104, and 187 MeV . The spectrnin, calken
at 187 MeV , in Fig. 1, illustrates the p . . ounced excitation of states at 15.08 and 13.87 MeV , which have been assigned ${ }^{2} J^{\pi}=13 / 2^{+}$and $11 / 2^{-}$. Fon the cluster modol these states correspond to $3_{\text {Hit }}$ orbitals $L=5$ and 6 , and are the quper nembers 3 of rotational bands with $2 N+L=6$ and 5 , where N is the number of nodes. As the incident energy is decreased, lower memers of the bands are more strong1y excited. This effect is illustrated in Fig. 2, which shows that at the iowest energy of 78 MeV , representative states of $\mathrm{J}^{\pi}=1 / 2^{-}, 5 / 2^{+}$and $13 / 2^{+}$ are excited with comprabie, intensity, but at 187 NeV there is a factor of 10^{3} between the $1 / 2^{-}$and the propored $13 / 2^{+}$state. This variation if accounted for by reaction dymaics, can be used to infer JII values.

We have used a seniclassical theory ${ }^{1}$ to calcu1ate the transition probability between cluster states in the projectile and rasidual nucleus, assuming straight line orbits. The results of the

Fig. 1. Energy : vectrm for the ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{9} \mathrm{Be}\right){ }^{15} \mathrm{O}$ reaction at $E_{L}-.97 \mathrm{MeV}$ and $\theta_{\mathrm{L}}=\mathrm{f}^{\circ}$.
(XBL 746-3473)

Fig. 2. Energy variation of cross sections for states of different $J^{\pi 1}$ in the reaction $12 \mathrm{C}(12 \mathrm{C}, 9 \mathrm{ke})$ 150 . The dotted lines are to guide the eye through the experimental points, and the solid lines are the theoretical predictions of semiclassical theory. The hatched areas represent the predictions for the $1 / 2^{-}$and $13 / 2^{+}$states using zero range $D W B A$, arbitrary normalised to the $13 / 2^{+}$state.
(XBL 749-4233)
predict lower menbers of the $2 \mathrm{~N}+\mathrm{L}=6$ and 5 bands of $J^{\pi}=9 / 2^{+}$and $7 / 2^{-}$in the region of 11 and 10 MeV excitation, ${ }^{3}$ respectively, which correspond to 3 He orbitals L $=4$ and 3. Figure 1 shows that only two states are appreciably excited in this region, viz., at 10.42 and 11.66 HeV . The relative intensities reverse between 104 and 187 Mei , implying a higher orbital for the 11.66 MeV state. Thes 3 states are therefore likely candidates for the $9 / 2^{+}$ and 7/2 cluster states. This principle of energy variation is particularly useful for distinguishing two states of different spins close together in excitation energy. For states of better known spin, a cass is illustrated in Fig. 3, which compares the excitation of \ddagger wo-proton "cluster" stazes of 3° at 6.29 MeV and $4^{+} \mathrm{ai} 10.8 \mathrm{Moy}$, in the ${ }^{12}{ }^{2}\left({ }^{12} \mathrm{C},{ }^{10} \mathrm{Be}\right)$ 140 reaction at 114^{1} and 187 MeV . The intensities of these $L=3$ and $L-4$ orbitals reverse at the higher energy. A further interesting case, beyond the range of the present experinents, is the $11 / 2^{+}$ and $9 / 2$ members of the bands which are the components of the $13 / 2^{+}$and $11 / 2^{-}$states, raised by the spin-orbit 3 He potential to over 20 MeV in excitation.

The location of these cluster states in mass 15, and in other regions of the periods teble, possibly involving more massive clusters than He or ${ }^{4} \mathrm{He}$, is an interesting area of research for multinucleon transfer renctions with heavy-ion beams on high energy accelerators of readily variable energy. A fuller accome of this work is given in Ref. 4.

Fig. ${ }^{3}$ Energy spectra for the reactions ${ }^{12} C\left({ }^{12} C\right.$, 10 Be) 14_{0} at 114 MeV and 187 MeV . (XBL 749-4231)

Footnotes and References

${ }^{\text {© }}$ Or. leave from Hahm-Meitner, Institut, Berlin, Germany.
${ }^{\dagger}$ On leave from CRN and Université Pasteur, Strasbourg, France,
${ }^{\ddagger}$ On leave fron CEN, Saclay, France.
*On leave from Osaka University, Osaka, Japan.

1. N. Anyas-Weiss et al., Physics Reports 12C, 201 (1974).
2. D. Kurath and D. J. Millener, to be published.
3. J. P. Vary and C. B. Dover, Phys Rev. Lett. 31, 1510 (1973), and B. Buck, C. B. Dover, and J. P. Vary, to be published.
4. LBL Preprint-3445.

SPECTROSCOPY OF EXOTIC NUCLEI USING HEAVY-ION TRANSFER REACTIONS

D. K. Scott, B. G. Harvey, D. L. Hendrie, L. Kraus, ${ }^{\text {t }}$
C. F. Maguire, J. Mahoney, Y. Terrien,t and K. Yagł \ddagger

Th: known limit of particle stabilizy of neutron-excess nuclei extends far beyond the region accessible to nuclear spectroscopy in conventional light-ion induced reactions, 1 With the (t, p) reaction, nuclei only two neutrons removed from stable targets can be studied, whereas on the neutron deficient side of stability three, and four ${ }^{1}$ neutron transfers are possible by the (${ }^{3} \mathrm{He},{ }^{6} \mathrm{Hfe}$) and (${ }^{4} \mathrm{He}$, \&tie) reactions. Comparable transfers to neutronexcess muclei are made possible by heavy-ion reactions. lisere we present our finat results on a reaction for $3 n$ stripping ${ }^{-1}$ the $\left(1_{B}, 8 B\right)$ reaction on targets of $26{ }^{2} 8$ and ${ }^{28} \mathrm{Si}$, both to provide a precise measyrement of the mass-excess of the $T_{2}=5 / 2$ nuclide 29 Mg for comparison with theoretical mass predictions, and to stuxy the feasibility of using 3n transfor for studies of nuclear structure. The
 also lead to exotic nuclei currently the object of nuclear modol calculations, ${ }^{2}$ and these wore studied simultaneously. The expr rimental nothod and the advantages of detecting ${ }^{-}{ }_{B}$, were described in last year's Annual Report. ${ }^{3}$ a more detalled sccount of tha: work is given in Ref. 4.

The prime objective of cive present work was the precise mass moasurement of 29 Hg . Although the messes of all T_{Z} a $5 / 2$ nuclides from 210 to 35 p have recently been measurer ${ }^{1}{ }^{1}$ mainly by production in heavy-Ion compound nuelear reactions followed by B-Y activity measurcrents, this technique was difficult to apply in the case of 29_{Mg} and resulted in a large error. The 3 transier reaction is capable of high precision, but it is important to establish that the ground state of the reaction is populated. To charify this point we studied the same reaction on ${ }^{2}$ Si which differs from 26 Ng by the addition of
a proton pair, and therefore the reaction might be expected to populate states with similar neutron structures. As Fig. 1 (b) shows, the ground state of ${ }^{3}$ Si is excited (do/ $\alpha=80 \mathrm{nb} / \mathrm{sr}$), and we assume that the highest energy peak in the 29 Mg spectrum in Fig. 1 (a) corresponds also to the ground state (here the cross section is only $15 \mathrm{nb} / \mathrm{sr}$). The predicted location of the gromen state from the massexcess of Ref. 5 is also shomn. Careful malysis of this peak, after corrections including energy

Fig. 11 Energy spectra for the reactions (a)
 by $86 \mathrm{MeV} 11_{\mathrm{B}}$ igns at $11^{(4}$. The cut-off at -5 MeV excitation in 2 Ng is instrumental. The ground state predicted from the mass excess for $2^{9} \mathrm{Mg}_{\mathrm{g}}$ in reference 7 is shom in (a). (XBL 744-2895)
losses in the target and "time-zero" foil, gave a Q-value of $-19.72 \pm 0.05 \mathrm{MeV}$, corresponding to a massexcess for ${ }^{29} \mathrm{Mg}$ of $-10.75 \pm 0.05 \mathrm{MeV}$. The accuracy of the method, including the calibration of the magnetic field of the spectroneter, was checked using other reactions of known Q-value, $e_{\text {. }}$. ($1_{B}, 1 \mathrm{~N}$), which in sone cases were measured with fields identical to that for the ${ }^{26} \mathrm{Mg}\left({ }^{11}{ }_{\mathrm{B}},{ }^{8} \mathrm{~B}\right){ }^{29} \mathrm{Mg}$ reaction. Our result is within the error of the mass-excess quoted in Ref. 5 , of $-10.589 \pm 0.400 \mathrm{NeV}$, differs by 0.83 MeV from the revised Garvey-Kelson prediction 6 and is in excellent agreement (within 50 keV) with the results of the modified shell-model predictive scheme of Jelley et al. 1,7

The low cross section for $3 n$ transfer follows the trend of high energy heavy-ion reactions of favoring the transfer of boum? clusters. However the selectivity of the reaction shows that sone correlation is still present. For example, in 315 Si only two states are populated in the first 4 MeV of excitation: the ground state, which has dominant structure $\left(s_{1 \prime}\right)^{2} \quad\left(\mathrm{~d}_{3 / 2}\right)$ both in the simple and the extended sheli-model calculations, ${ }^{8}$ and a state at 3.15 MeV of dominant structure $\left(s_{1 / 2}\right)^{2} f_{7 / 2}$. The reaction appears to proceed by direct transfer of a 2n cluster in an internal $[=0, S=0, T=1$ state, with the transfer of the third neutron to the lowest available orbitals. This interpretation is consistent with the absence of the $0.75\left(1 / 2^{+}\right)$and 1.70 $\mathrm{MeV}\left(5 / 2^{+}\right)$states, which are accessible in direct $3 n$ transfer only by the $\left(\mathrm{s}_{1 / 2}\right)\left(\mathrm{d}_{3 / 2}\right)^{2}$ components ${ }^{8}$ in the wave functions, for which the $2 n$ cluster component is maller. At higher excitation, in a region of level density greater than 15 levels/ $/ \mathrm{MeV}$, the few strongly observed states are likely to be associated with higher shell-model orbitals, and other cluster configurations.

The spectrum for ${ }^{29} \mathrm{Mg}$ in Fig. 2 (a) has excited states at $1.38,2.34,3.07$, and 4.27 MeV . $(\pm 90 \mathrm{keV})$.

 duced by $86 \mathrm{MeV}{ }^{11} \mathrm{~B}_{\mathrm{B}}$ ions at 11°. (XBL 744-2897)

A recent calculation ${ }^{2}$ of energy spectra of exotic nuclei in the sd-shell predicts positive parity configurations in 29 Mg of $\mathrm{J}^{\pi}=1 / 2^{+}, 5 / 2^{+}, 7 / 2^{+}$, and $3 / 2^{+}$at $0.02,1.89,2.53$, and 3.19 MeV respectively. If the observed level at 1.38 MeV corresponds to the $5 / 2^{+}$configuration, its strong excitation in 29_{Mg} compared to ${ }^{31} \mathrm{Si}$ implies that the overlap of the three neutrons with the ${ }^{26} \mathrm{Mg}$ and ${ }^{28} \mathrm{Si}$ is very different. Since 26 Mg and ${ }^{28} \mathrm{Si}$ have opposite deformations, 13 an alternative interpretation is that of transfer to different Nilsson orbitals.

In addition to ${ }^{8}{ }_{B}$, the reaction products ${ }^{11} C$ and ${ }^{1}{ }^{3} \mathrm{~N}$ were clearly identified and the Q-values permitted all three ground states to be encompassed by the 25% energy hite of the fogal plane detector.
 shown in Fig. 2 (b). Since ${ }^{13} \mathrm{~N}$ has no particle stable excited states the reaction is favorable for spectroscopic studies of 2 p pick-up. The cross sec tion ($80 \mu \mathrm{~b} / \mathrm{sr}$ for the $\mathrm{g} . \mathrm{s}$,) is also substantially greater than that of the (${ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}$) reaction. ${ }^{1}$ On uccoumt of these advantages, and because the reaction is umusual in having conparable amplitudes for transfer of two protons in spatially symmetric and antisymmetric states, 10 this reaction may be suitable for deternining the importance of the antisymmetric states.

The spectrum for the ${ }^{26} \mathrm{Mg}\left({ }^{11} \mathrm{~B},{ }^{11} \mathrm{C}\right)^{26} \mathrm{Na}$ reaction in Fig. $2(a)$ exhibits excited states at 0.23 , 2.10 , and 4.79 MeV . ($\pm 150 \mathrm{keV}$), although the 1atter two are somewhat ambiguous owing to the close proximity of ${ }^{11} \mathrm{C}$ excited states at 1.995 and 4.794 MeV . The selectipity of the reaction appears to be similar to that 11 of ($7 \mathrm{Li}, 7 \mathrm{ge}$) and quite different from the (t, He) reaction, 12 which established excited states at 88,241 , and 420 keV . Although the detailed mechanism of these rearrangement reactions is poorly understood at present, it appears that the heavy-ion case preferentially excites high spin states. ${ }^{13}$ A comparison of the quadruplet of levels near the ground state, excited in lightand heavy-ion induced reactions could possibly be used to infer the spin sequence, thereby distinguishing between rotational and shell model interpretations of ${ }^{26} \mathrm{Na}$.

Footnotes and References

*On leave from CRN and Universite Pasteur, Strasbourg, France.
ton leave from CEN, Saclay, France.
*on leave from Osaka University, Osaka, Japan.

1. "Exotic Reactions in the Light Elements", by J. Cerny in Proceedings of the Conference on Reactions Between Complex Nuclei (Nashville 1974), (Worth-Holland).
2. B, J. Cole, A, Watt and R. R. Whitehead, J. of Phys. A 7, 1399 (1974).
3. LBL Nuclear Chemistry Annual Report (1973), LBL, Report-2366 (1974), p. 102 and p. 434.
4. D. K. Scott, B. G, Harvey, D. L. Hendrie, L. Kraus, C. F. Maguire, J. Mahoney, Y. Terríen, and K. Yagi, Phys. Rev. Lett. 33, 1343 (1974) and LBL 2996.
5. D. R. Goosman, C. N. Davids, and D. E. Alburger, Phys. Rev. C8, 1331 (1973) and references therein.
6. C. Thibault and R. Klapisch, Phys. Rev. C9,798 (1974).
7. N. A. Jelley, J. Cerny, D. P. Stahe1, and K. H. Wilcox, to be published.
8. B, H. Wildenthal, J. B. McGrory, E. C. Halbert, and H, D. Graber, Phys. Rev. C4, 1708 (1971).
9. D. Schwalm, A. Bamberger, P. G. Bizzeti, B. Povh, G.A.P. Engelbertink, J. W. Olness, and E. K. Warburton, Nuc1. Mys. A192, 449 (1972).
10. D. Kurath, Comments on Nuclear and Particle Physics V, 55 (1972).
11. G. C. Ball, W. G. Davies, J. S. Forster, and J. C. Hardy, Phys. Rev. Lett. 28, 1068 (1972).
12. E. R. Flym and J. D. Garrett, Phys. Rev. C9, 210 (1974).
13. D. Sinclair, private commuication, 1974,

A MORE ACCURATE MASS FOR ${ }^{5} \mathrm{He}^{*}$

Joseph Gerny, N. A. Jalley,t D. L. Handrie, C. F. Maguire, J. Mahoney, D. K. Scott, and R. B. Weisenmiller

With the advent of large solid-angle magnetic spectrometers, multipeutron transfer reactions, such as ($\alpha,{ }^{8} \mathrm{He}$) or (${ }^{3} \mathrm{He},{ }^{8} \mathrm{he}$), producing highly neutron-deficient reaction products will be of increasing experimental interest. As an example, quite receptly Ropertson et al. 1 peasured the masses of B C and 2 Mg via the ($\alpha, 8 \mathrm{He}$) reaction on ${ }^{12} \mathrm{C}$ and 24 Mg . Since such studies rely directly on the previousiy measured $2-3$ mass of ${ }^{8} \mathrm{He}$, it was felt to be of interest to improve the accuracy of the earlier results.

Two different experimental approaches have been employed in determining the trass-excess of ${ }^{8} \mathrm{He}$ Cern' et al. ${ }^{2}$ utilized an $80-\mathrm{MeV}$ alpha-particle beam and counter-telescope techniqurs to observe the ${ }^{26} \mathrm{Mg}\left(\alpha,{ }^{8} \mathrm{He}\right)^{2} 2 \mathrm{Mg}$ reaction $[(Q-v \ldots, \ldots \sim-45 \mathrm{MeV}$, obtaining a mass-excess for ${ }^{6} \mathrm{He}$ of $31.65 \pm 0.12 \mathrm{MeV}$. In addition, Batusov et al. 3 reported a mass-excess of $31.0 \pm 0.4 \mathrm{MeV}$ for 8 He by observing in photographic emulsions the production (and decay) of He nuclei produced by capture of stopped π^{-}mesors in carbon and oxygen nuclei.

This reinvestiggtion of the mass-excess of ${ }^{8} \mathrm{He}$ again employed the ${ }^{26} \mathrm{Mg}\left(\alpha,{ }^{8} \mathrm{He}\right)^{22} \mathrm{Mg}$ reaction. An cnergy-analyzed 110.6 MeV a-particle beam from the 88 -Inch Cyclotron was used to bombard a $1 / 2 \mathrm{mg} / \mathrm{cm}^{2}$ 26 Mg target. Reaction products were detected at 10° lab with, at 1.4 msr solid angle, the focal plane of a magnetic spectrometer with a position sensitive propgrtional counter backed by a plastic scintillator. Unambiguous particle identification was obtajned by measuring Bo (position), differential energy loss ($\Delta E / \Delta X$), tine of flight (TOF) and the pulse height from a dynode of the scincillator (denoted E and proportional to energy, but with a further dependence on charge and mass).

The energy calibration of the focal plane was obtajned by concurrently measuring orfe events from the ${ }^{2} \mathrm{Ng}\left(a^{6}, 6 \mathrm{He}\right)^{24} \frac{1}{2}$ reaction. Transitions to the $24 \mathrm{NB}(6.010 \mathrm{MeV})$ state ${ }^{5}$ Iie an quoumt equiyatent to only $\sim 200 \mathrm{keV}$ away rom the ${ }^{26} \mathrm{Mg}\left(0,{ }^{8} \mathrm{He}\right)^{2} \mathrm{Mg}$ (ground state) reaction. The dispersion across the
focal plane was obtained frog the positions of the transitions populating the ${ }^{26} \mathrm{Mg}\left(a,{ }^{2} \mathrm{FHe}^{24} \mathrm{Mg}^{*}{ }^{(1.369,}\right.$ 4.123 , and 6.010 MeV) states.

Figure $\frac{1}{2}$ presents the energy spectrum from the $26 \mathrm{Mg}\left(\alpha,{ }^{8} \mathrm{He}\right)^{22} \mathrm{Mg}$ reaction. As in the earlier experiment ${ }^{2}$ at 80 MeV , transitions were observed to both the gromd and the first excited state ${ }^{5}$ of 22 Mg ; the ground state cross section at 110.6 MeV was $\sim 10 \mathrm{mb} / \mathrm{sr}$ lab. A strong transition was also observed to a new state (or states) at 8.6 MeV excitation. This state should still be of $\mathrm{T}=1$ character since Coulorb lisplacement energy calculations ${ }^{6}$ place the lowest $\mathrm{T}=2$ state in ${ }^{2} \mathrm{Mg}$ near 14.0 MeV excitation.

These resuits establish a new mass-excess for ${ }^{8} \mathrm{He}$ of $31.57 \pm 0.03 \mathrm{MeV}$ (based on a ${ }^{22} \mathrm{Mg}$ mass-excess

Fig. 1. The energy spectrum from the $\left.{ }^{26}{ }_{\mathrm{Mg}(\alpha,}{ }^{8}{ }^{8} \mathrm{He}\right)$ 22等 reaction at 10° lab using 110.6 NeV incident α-particles.
of $-396 \pm 2 \mathrm{kev}^{\prime}$), which agrees very well with the earlier measurements. He_{H} is then bolnd by 2.17 MeV with respect to its lowest break-up channel of $6^{\mathrm{He}}+2 \mathrm{n}$.

The mass of ${ }^{8} \mathrm{He}$ has considerable theoretical interest, initially because of questions of the possible existence of a bound state, and currently as one of the inmortant tests of theories predicting binding energies of light nuclei, particularly with regerd to the symnetry energy of the force employed. Table 18,9 piesents results from a broad
sample of these theoretical predictions of the mass-excess of 8 te (where applicable, calculations were updated using the 1971 atomic mass tablelio). Of the calculations prior to the first measurement of the mass-excess of $8_{\text {He, }}$ the approach of Goldanskii ${ }^{9}$ and the intermediate coupling calculations of Barker ${ }^{8}$ agree best with experiment. The more recent theoretical calculations of Barker ${ }^{8}$ agree best with experiment. The more recent theoretical calculations generally predict masses for a number of even helium isotopes, in many cases so far subtantially disagreeing with experiment.

Table 1. Theoretical predictions of the mass-excess of ${ }^{8} \mathrm{He}$.

$\begin{gathered} \text { I Experinental ve } \\ \text { Calculated } \\ \text { mass-excess (Mey) } \end{gathered}$	$t e=31.57 \pm 0.03 \mathrm{MeV} ; \quad \mathrm{mbl}$ iype or calculation	Ind at 33.74 MeV Reference
32.2 ± 0.4	Neutron pairing energy systematics	V. I. Goldanskii, $\text { Ref. } 9 .$
34.2 ± 2	Symmetry and pairing energy systenatics	J. Jänecke, Nuc? Phys. 73, 97 (1965)
29.8	Independent particle model (recursion relations)	G. T. Garvey and I. Kelson, Phys. Rev. letters 16 , 197 (1966).
31.2	Intermediate coupling she11 model	F. E. Barker, Ref. 8.
~ 30.6	Thomas-Fermi caiculation	R. J. Lombard, Phys. Letters 35B, 493 (1971).
33.4	Constrained spherical Hartree-Fock calculation	X. Campi and D.W. Sprung, Nucl. Phys. A194, 401 (1972).
29.3	SJ_{4}	C. Maguin, Nuovo Cimento 19A, 638 (1974).

Footnotes and References

*Condensed from LBl-2984. Phys. Rev. C (in press).
${ }^{\dagger}$ Now at the Nuclear Physics Laboratory, University of Oxford, England.

1. R. G. H. Robertsan, S. Martin, W. R. Falk, D. Inghan, and A. Djaloeis, Phys. Rev. Letters 32, 1207 (1974).
2. J. Cerny, S. W. Cosper, G. W. Butler, R. H. Pehl, F. S. Goulding, D. A. Landis, and C. Detraz, Phys. Rev. Letters 16, 469 (1966).
3. Yu. A. Batusov, S. A. Bunyatov, V. M. Sidorov, and V. A. Yarba, Phys. Letters 22, 487 (1966); and Sov. Journal of Nucl. Phys. 7, 20 (1968).
4. B. G. Harvey, J. Mahoney, F. G. Puhihofer, F.S. Goulding, D. A. Landis, J, C. Faivre, D. G. Kovar,
M. S. Zisman, J. R. Meriwether, S. W. Cooper, and D. L. Hendrie, Nucl. Instr. Methods 104, 21 (1972); fi. Homeyer, J. Mahoney, and B. G. Harvey, ibid. , 118, 311 (1974).
5. P. M. Endt and C. van der Leun, Nucl. Phys, A214, 1 (1973).
6. J. C. Haxdy, H. Brunnader, J. Cerny, and J. Jínecke, Phys. Reir. 183, 854 (1969).
7. J. C. Hardy, H. Schmeing, W. Benenson, G. M. Crawley, E. Kashy, and H. Nann, Phys. Rev. C9, 252 (1974).
8. F. C. Barker, Nucl. Phys. 83, 418 (1966).
9. V. I. Goldanskii, Soviet Physics JETP 11, 1179 (1960).
10. A. H. Wapstra and N. B. Gove, Nuclear Data A9, 267 (1971).
${ }^{1} \mathrm{Li}+{ }^{\text {Ti REACTION STUDIES LEADING TO MULTI-NEUTRON FINAL STATES }}$
Joseph Carny, R. B. Waisenmiller, N. A. Jelloy,t
K. H. Wilcox, and G. J. Worniak

Although there has been extensiv: historical intereşt in questions of the possible stability of 3_{n} or 4 , and of the location of umbound resonances in these systems, no bound states nor uncontroversial multi-neutron resonance effects have so far been established in either of these systems (see Ref. 1 for a review of the 3 n system; Ref. 2 for the 4 n). Nonetheless, since certain heavy-ion reactions observing neutron-deficient reaction products afford a new look at these (and other ${ }^{3}$) multineutron final states, we nave investigated one of
 ${ }^{12} \mathrm{C}+2 \mathrm{n}, 1 \mathrm{C}+3 \mathrm{n}$, and $10 \mathrm{C}+4 \mathrm{n}$. By also measuring the energy spectra and cross-sections of the ppron isotopes in the better-established ${ }^{12_{B}+d}$, ${ }_{11}+\mathrm{t}$ and $1 \mathrm{D}_{\mathrm{B}}+\mathrm{H}_{\mathrm{H}}$ channe1s (but ones in which the 1 ight product nuclei have lower T_{2}), one can hope to obtain some criteria by which to evaluate the yield in the carbon exit channels. Four of these reactions are discussed below; unfortunately, reactions on target contaninants preciuded usefut analysis of the ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li},{ }^{12} \mathrm{C}\right) 2 \mathrm{n}$ and $\mathrm{Li}\left({ }^{7 \mathrm{Li}},{ }^{10} 0_{\mathrm{B}}{ }^{4} \mathrm{H}\right.$ results.

A bean of $79.6 \mathrm{NeV}^{7} \mathrm{Li}^{+2}(\sim 150 \mathrm{nA})$ from the Lawrence Berkeley Laboratory ${ }_{2} 88$-Inch Cyclotron was used to bambard a $110 \mu \mathrm{gm} / \mathrm{cm}^{2}{ }^{2} \mathrm{Li}$ target. Reaction products were observed in two similar counter telescope systems placed at opposite sides of the beam. The data reported below cane from the system placed at 7.4° (1ab) with a 0.086 msr solid angle; it consisted of two transmission (ΔE) detectors, 18 and
 rejection 4), a $190 \mu m E$ detector, and a reject detector. Although equivalent results were obtained with the second system, which was placed at 9.6°, they were of poorez suality. Other experimental details were similar to those described previously: ${ }^{5}$ a comparison of two particle identification signais was employed to reduce background, with a stringent comparison rejecting $\sim 50 \%$ of the events traversing the telescope. Flectronic and bean energy stability were monitored continuously, and the absolute beam energy was deiermined using a precision analyzing magnet.

Results from the ${ }^{7} \mathrm{Li}\left({ }^{7}{ }_{\mathrm{Li}},{ }^{11} \mathrm{~B}\right) \mathrm{t}$ and ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li}\right.$, ${ }^{11}$ C] $3 n$ reactions are compared in Fig. 1 (a) and $1(\mathrm{~b}-\mathrm{c})$, respectively. Transitions to a number of the bound H_{B} final states can be seen; in particular the ground state transition has a cross section of $23 \mathrm{ub} / \mathrm{sr}$ c.m. However, the ${ }^{{ }_{\mathrm{Li}}} \mathbf{(1)}{ }^{7} \mathrm{Li},{ }^{11} \mathrm{C}$) 3 n data per se in Figs. 1(b) and 1 (c) present no discernible structure. At this small forward angle the ${ }^{11} \mathrm{C}$ energy region that would correspond to a bound 3 n system is free from reactions on target contaminants, and an upper limit of $7 \mathrm{Q} \mathrm{nb} / \mathrm{sr} \mathrm{c} . \mathrm{m}$. can be set for production of a bound 3_{n}. Two imm perfect comparisons are available: this 1 imit is a factor of ~ 300 less than the yield of the XI
 ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li},{ }^{11} \mathrm{C}\right){ }^{8} \mathrm{Li} \mathrm{g}$.s. reactions at forward angles (obtained from separate experinents). With regard

Fig. 1. Spectra from the ${ }^{7}{ }^{7} \mathrm{Li}+{ }^{7}$ Li reastion at 79.6 MeV . (a) ${ }_{\mathrm{Li}}\left({ }^{7} \mathrm{Li}, 1_{\mathrm{B}}\right) \mathrm{t}$. Dashed arrows denote the expected location of contaminant reactions. (b) ${ }_{\mathrm{Li} i(} 7_{\mathrm{Li}}, 11^{11 \mathrm{C}) 3 \mathrm{n} \text {. See (a). An arrow with an }}$ asterisk denotes the location of a known state from either a ${ }^{12 \mathrm{C}}$ or 100 contaninant. Also indicated is the II C energy that would correspond to transitions to a three neutron system with zero binding energy (B.E.). (c) A detail of the high-energy part of (b).
(XBL 745-3298)
to those transitions corresponding to an unbound $3 n$ system, one sees in Fig. 1(c) that the ${ }^{11} \mathrm{C}$ energy spectrum encompassing up to $\sim 7 \mathrm{MeV}$ excitation of three neutrons (before the bulk of the transitions from target contaminants begins) is well fit by fourbody phase space.

Figure 2 presents an energy spectrum from the attenpted three-proton transfer ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li}^{10}{ }^{10} \mathrm{C}\right) 4 \mathrm{n}$ reactions. Independent experiments on the 160 (Li ,
 observed the transfer of three protons with comprrable ground state cross sections, averaging ~ 450 nb/sr c.m. Peaks from reactions on these target contaminants account for the observed structure in the $4 n$ conitinuman region of Fig. 2; the underlying background appears to be adequately fit by fivebody phase space. Again, at this forward angle, contaminant reactions do not interfere in the region of the 10 C energy spectrum corresponding to

Fig. 2. An energy spectrum from the ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li},{ }^{10} \mathrm{C}\right)$ in reaction at $79,6 \mathrm{MeV}$ and 7.4°. Known contaminant reactions are indicated either explicitly or by an arrow with an asterisk.
(XBL 745-5306)
transitions leading to a bound ${ }^{4} n$. (The known mass of ${ }^{8} \mathrm{He}$ sets an upper limit to the total binding energy of 4_{n} (see Ref.2), The very minor background observed in thus region arises from the ${ }^{11} \mathrm{C}$ "leakthrough" remaining in this energy spectimp; however, it is still possible to set an upper limit of 30 $\mathrm{nb} / \mathrm{sr} \mathrm{c} . \mathrm{m}$. for the cross section of this reaction leading to a bound in system. The only available comparison is to note that this limit is a factor of ~ 15 less than the yield of the observed three-proton transfer reactions on ${ }^{12} \mathrm{C}$ and $1_{0} 0$.

These results set stringent 1 innits ${ }^{1,2}$ in failing to observe transitions to a bound ${ }^{2} \mathrm{n}$ or ${ }^{4} n$; further, no resonamice structure was evident in these heavy-ion studies of the umbound $3 n$ and $4 n$ systems. With the better particle identification and larger solid angles of magetic spectrometers one wound be
more sensitive to bound 3_{n} or 4_{n} systems; and better data of. the ubound $4 n$ system (requiring rigid maintenance of the ${ }^{7} \mathrm{Lj}$ target purity) would pemit an interesting comparison with the ${ }^{4} \mathrm{He}\left(\pi^{\prime}, \pi{ }^{+}\right) 4 n$ studies, ${ }^{6}$ in which a possible final state interaction is observed between one neutron pair in the exit channel. Clearly the above approach can also be extended to search for bound or unbound suructure in higher neutron configurations.

Footnotes and References

${ }^{\text {* }}$ Condensed from LBL- 3407.
Present addiess: Nuclear Physics Laboratory, University of Oxford, England.
l. L. M. Delves and A. C. Phillips, Rev. Mod, Phys. 41, 497 (1969). G. Paic, Few Particle Problems in the Nuclear Interaction, ed. 1. SIaus, S. A. Moszkowski, R. P. Haddock, and H. H. T. van Oers (North-Holland Pub1. Co., Ansterstan, 1972) p. 539.
2. S. Fianman and W. E, Meyerhof, Nuc1. Phys, A206, 1 (1973). Yu. A. Bacurov, Zh. Ganzorig, L. Gmm nerova, I. V. Dudova, V. M. Sidorov, V. A. Khalkin, and D. Chultem, Dubna preprint P1-7475 (1973).
3. J. Cerny, Reactions Between Complex Nuclei, Vol. 2. ed. R. L. Robinson, F, K. McGowan, and J. B. Ball (North-Holland Publ. Co., Amsterdam, 1975).
4. J. D. Bowman, A. M. Poskanzor, R. G. Korteliag, and G. … Rıtler: Phys. Rev. C9, 836 (1974).
5. K. H. Wilcox, N. A. Jelley, G. J. Woznial, R. B. Weisenmi11er, H. L. Harney, and J. Cerny, Phys. Rev. Lett. 30, 866 (1973).
6. F. Becker and Yu. A. Batusov, Rivista del Nuovo Cimento, Ser. 2, 1, 309 (1971), and reforences therein.

STUDY OF T=2 STATES IN ${ }^{12}$ C ANTE ${ }^{12} \mathrm{~B}$

D. Ashery,* G. W. Goth, \dagger G. J. Wozniak, M. S. Zisman, and J. Cerny

The double analog $T=2$ states in self-conjugate nuclei have been intensively investigated because of interest in the isospin multiplet mass relations and in isospin-forbidden decay propert ies. 1 The 10west $0^{7} \mathrm{~T}=2$ state in ${ }^{12} \mathrm{C}$, has been ten atively identified in the ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{t})^{12} \mathrm{C}$ reaction 1,2 at an excitation energy of $27.50 \pm 0.1 \mathrm{MeV}{ }^{1}$ and 27.595 ± 0.02 MeV .2 Attempts to form this state as a resonance in the ${ }^{11} \mathrm{~B}+\mathrm{p}$, $10_{\mathrm{B}+\mathrm{d}}$ and ${ }^{\mathrm{Be}+{ }^{3} \mathrm{He} \text { systems have failed. }{ }^{3} \text {. }{ }^{2} \text {. }}$ In a recent study of the $\left.{ }^{10} \mathrm{Be}^{3}{ }^{3} \mathrm{He}, \mathrm{n}\right)^{12} \mathrm{C}$ reaction 4 a peak corresponding to an excitation energy of $27.611 \pm 0.020 \mathrm{MeV} \mathrm{i}_{2} 12 \mathrm{C}$, identified as the $0^{+} T=2$ state, was observed at 0° but not at any other angle.
in the present work the ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{t}){ }^{12} \mathrm{C}$ and ${ }^{14} \mathrm{C}$ ($\mathrm{p},{ }^{3} \mathrm{He}$) ${ }^{12 \mathrm{~B}}$ reactions were studief at 54 MeV bom-
barding energy over the angular range of $14^{\circ}-50^{\circ}$ in the laboratory systern. The target was prepared by passing ${ }^{+4} \mathrm{C}$-enriched methyl-iodide through an electrical discharge system. Details of this method are described elsewhere. 5 A $450 ~ \mu g / \mathrm{cm}^{2}$ target, supported on a $560 \mu \mathrm{~g} / \mathrm{cm}^{2}$ gold foil was used in this experiment. The outgoing triton and ${ }^{3} \mathrm{He}$ particles were letected by two detector telescopes coupled t s'andard particle identification systems.

Figure 1 shows the triton and ${ }^{3}$ He spectra obtained at 23° (lab). Two peaks are clearly observable in each spectrum, corresponding to excitation energies of 27.50 ± 0.06 and $29.5 \pm 0, \frac{1}{2} \mathrm{MeV}$ in ${ }^{12} \mathrm{C}$ and of $12,8 \pm 0.06$ and $14.9 \pm 0.1 \mathrm{MeV}$ in 12_{B}, In Fig. 2 the angular distributions for these four states are

Fig. 1. Triton and ${ }^{3}$ Ke energy spectra from the ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{t})^{12} \mathrm{C}$ and ${ }^{14} \mathrm{C}\left(\mathrm{p},{ }^{3} \mathrm{He}\right.$) ${ }^{12}$ B at 23°. (XBL 754-2656)
presented. There is an uncertainty of about 30% in the absolute cross sections, due mainly to uncertainties in varget isotope enrichnent. The state at 12.8 MeV in ${ }^{12} 2_{\mathrm{B}}$ has been identified ${ }^{1}$ as the lowest $\mathrm{0}^{+} \mathrm{T}=2$ state in this nucleus. The state at 27.5 MeV in ${ }^{2} \mathrm{C}$, having the correct excitation energy and a similar anguiar distribution (consistent with an $\mathrm{L}=0$ transition) is therefore identified as the lowest $0^{+} \mathrm{T}=2$ state in ${ }^{12}$ C. The ratio of crosssections for the population of these two states is also consistent with the theoretical predictions. 6 The states at 14.9 MeV in 12 B and 29.5 MeV in $12 \dot{\mathrm{C}}$ are both at an excitation energy of about 2 ± 0.1 MeV above the $0^{+} \mathrm{T}=2$ state in their respective nucleus. In a recent study of the $14 \mathrm{C}(180,12 \mathrm{Be})$ 20, Ne reaction ${ }^{7}$ a state was observed in ${ }^{12} 2_{\mathrm{Be}}$ at an

Fig. 2. Angular distributions of the $\mathrm{T}=2$ states in ${ }^{12 \mathrm{C}}$ and 12 A .
(XBl 754-7655)
excitation energy of $2.09 \pm 0.05 \mathrm{NeV}$. It is therefore suggested that these two states are both $\mathrm{T}=2$ states, analogs of the 2.09 NeV state in ${ }^{12} \mathrm{Be}^{\mathrm{Be}}$.

Footnotes and References

*On leave from Tel-Aviv University, Israel.
${ }^{\dagger}{ }_{\text {Present }}$ address: Department of Chemistry, San Jose State University, San Jose, Califomia.

1. J. Cemy, Anmual Review of Nuclear Science, Vol. 18 (1968) 27.
2. P. H. Nettles, C. A. Barnes, D. C. Hensley, and C. D. Goodnan, Buil. Ar. Phys. Soc. 16, 489 (1971).
3. E. K. Warburton, H. M. Kvan, D. E. Alburger, and K. A. Snover, Phys. Rev. C6, 375 (1972) zuld references therein.
4. D. R. Goosman, D. F. Geesaman, F. E. Cecil, R. L. McGrath, and P. Paul, Phys. Rev. C10, 2325 (1974).
5. J. L. Gallant, Nuc. Inst. Meth, 102, 477 (1972).
6. J. Cerny and R. F. Peni, Phys. Rev. Letí. 12, 619 (1964).
7. G. C. Bell, J. G. Costa, W. G. Davies, J. S. Forster, J. C. Hardy, and A. B. MCDonald, Thys. Lett. 49B, 33 (1974).

IS $\left\{a^{8}{ }^{8} B_{6}\right.$) A DIRECT REACTION AT HIGH ENERGIES?

N. A. Jelley,* G. J. Woznibte, and J. Cerny

To conclusively determine the direct nature of the ($\alpha,{ }^{8} \mathrm{Ee}$) reaction near 65 Moy bombarding energy, an excitation function of the ${ }^{12} \mathrm{C}\left(\mathrm{a},{ }^{8} \mathrm{Be}\right){ }^{8} \mathrm{Be}(\mathrm{gs})$ reaction was obtained. Measurements in small angular steps were taken over the maximum in the angular

Fig. 1. Angular distributions of ${ }^{8}$ Be nuclei emitted from the ${ }^{12} \mathrm{C}\left(\alpha,{ }^{8} \mathrm{Be}_{\mathrm{g}} \mathrm{s} .\right)^{8} \mathrm{Beg}_{\mathrm{s}} \mathrm{s}$ reaction at $\mathrm{E}_{\alpha}=63.2,65.2,65.8,66: 6$, and 67.3 MeV .
distribution at $\theta^{\text {c.m. }}=35^{\circ}$ (Ref.1) to see if the shape or magnitude changed substantially with bombarding energy. Data measured at $\mathrm{E}_{\mathrm{c}}=63.2,65.2$, $65.8,66.6,67.3 \mathrm{MeV}$ are shown in Fig. 1. The angular width of each data point is $\sim 1^{\circ}$, and the error bars shown are entirely statistical. Upon examining Fig. 1, it is clear that the magnitude of the differential cross section is a smooth and slowly decreasing function of the bombarding energy. The shape of the two observed maxima seems to also vary slowly with the incident energy.

The above behavior is in marked contrast to that observed ${ }^{2}$ at incident energies of 35.5-41.9 MeV for the differential cross sections for the $160\left(a, 8^{3 e}\right)^{12} \mathrm{C}$ reactions to the ground and first excited state of ${ }^{12} \mathrm{C}$. In the latter case, both the shapes and magnitudes of the cross sections changed substantially, causing Brown et al. to conclude that in this energy region statistical processes dominated direct ones. At the 10 w bombarding ener-
 seems to be dominated by cormpound processes. 3

From the above, it seems that in the region of $20-40 \mathrm{MeV}$ incident energies conpound processes are important for the ($\alpha, 8_{\mathrm{Be}}$) reaction mechanism, but at higher energies a direct mechanism is the major process, substantiating the conclusion of an earlier study. ${ }^{1}$

Footnote and References

*Present address: Nuciear Structure Lab, Kreble Road, Oxford, England.

1. G. J. Nozriak, N. A. Jelley, and J. Criny, Phys. Rev. Lett. 31, 607 (1973).
2. R. E. Brown, J. S. Blair, D. Bodansk;, N. Cue, and C. D. Kavaloski, Phys. Rev. 138, B1394 (1965).
3. P. Chevallier, F. Scheibling, E. Goldring, I. Plesser, and M. W. Sachs, Phys. Rev. 160, 8:1 (1967). P. Martin and T. R. Ophe1, Nucl Phys. A194, 491 (1972). F. Brochard, P. Chevallier, D. Discier, G. Rudolf, and F. Scheibling, n. 204 in Proceedings of the Inter, Conf, on Nuc1. Phys., ed. by J. de Boer and H. J. Mang (North-Hol1and 1973) Vol. 1.

a.TRANSFER STUDIES VIA THE $\left(a,{ }^{6} \mathrm{Be}\right)$ REACTION ON ${ }^{15} \mathrm{~N}$ AND ${ }^{14} \mathrm{~N}$

G. J. Wozniak, N. A. Jelley, *and J. Cerny

An investigation of the α-cluster components in the ${ }^{15} \mathrm{~N}$ and ${ }^{14} \mathrm{~N}$ ground state wave functions was undertaken utilizing the ($\alpha,{ }^{8} \mathrm{Be}$) reaction. Our ${ }^{8} \mathrm{Be}$ detection techrique ${ }^{1}$ was adapted ${ }^{2}$ for use with a gas target through use of an unusual gas collimator, which consisted of two divided collimators in a standard pattern (see Fig. 1). As usual the front collimator defines the extent of the target and eliminates the possibility of detecting reaction products directly scattered from the cell entrance and exit. To reduce the singles counting rate in the twin ΔE detector, a 0.5 -mm partition connected the posts of the two collimators. This partition eliminited particles that might otherwise have passed through different sides of the front and back collimators. In addition both the comster tele scope and gas collimator were encased in an aluninum housing to shield the detectors from slitscattered beam.

Fig. 1. A schematic diagram of a gas cell, the ${ }^{8} \mathrm{Be}$ gas collimator and ${ }^{8} \mathrm{Be}$ identifier.
(KBL 742-2319)

Using the above apparatus, the ${ }^{15} \mathrm{~N}\left(a,{ }^{8} \mathrm{Be}\right)^{11} \mathrm{~B}$ reaction was studied at an incident energy of 72.1 MeV on an isotopically enriched (998) ${ }^{15} \mathrm{~N}_{2}$ gas target. Because of the small vertical size of the position sensitive detector, it was necessary to place the comter telescope close to the gas cell wall to obtain a sizeable detection efficiency. The large $\mathrm{dE} / \mathrm{d} \mathrm{\theta}$, poor position resolution (0.8 mm FWrM), and the extended target gave an experimental energy resolution of $\sim 800 \mathrm{keV}$ which is a factor of 2 worse than that attained with solid targets.

In Fig. 2 is shown a typical spectrum of the ${ }^{15} \mathrm{~N}\left(\mathrm{a},{ }^{8} \mathrm{Be}\right)^{1 i_{B}}{ }^{1}$ reaction. The backgrownd level above

Fig. 2. A ${ }^{8} \mathrm{Be}$ energy spectrum from the ${ }^{15} \mathrm{~N}(\mathrm{a}, 8 \mathrm{Be})$ 11 B reaction at $\theta_{\text {lab }}=19^{\circ}$. The locations of possible transitions to natural parity states below $\sim 9 \mathrm{MeV}$ are shown (see text).
(XBL 746-3555)
the ground state is caused by intra-beam-burst pileup events which are not eliminated because subnanosecond pileup rejection was not employed. Stiong transitions are clearly seen to the $3 / 2^{-}$ground and $1 / 2^{-} 2.12 \mathrm{MeV}$ states ${ }^{3}$ of ${ }^{11} \mathrm{~B}$, which are consistent with their calculated α-structure factors. 3 The $5 / 2^{-} 4.44 \mathrm{MeV}$ and $3 / 2^{-} 5.02 \mathrm{NeV}$ levels are not resolved in this spectrum and were only resolved at $\theta_{1 a b}=15$. However, from the measured excitation energy of $4.50 \pm 0.07 \mathrm{MEV}$ for the third peak in the spectra, it seems that at all angles the $5 / 2^{-}$state were populated strunger than the $3 / 2^{-}$one. This is consistent with their theoretical o-structure factors.

No evidence was observed for transitions to the two rusitive parity states at 7.30 and 8.00 MeV . Thus a third positive parity level at 6.79 MeV was assumed not to be populated even though it could not be seen due to the strong transition to the $7 / 2^{-}$level at 6.74 heV . This $7 / 2^{-}$state is made very strongly at $\theta_{1 \mathrm{ab}}=15^{\circ}$. There is also evidence that two states at 8.57 and 8.92 MeV are being made although their weak strength and the large backgrownd hindered their observation. Theoretical a-structure factors would indicate that they should be made with a strengtn similar to what was observed.

To calculate the experimental cross sections for the observed transitions, the probability of detecting a ${ }^{8}$ Be nucleus from a gas target must be determined. This value was calculated by making a simple first order correction to the solid target detection efficiency and by using oxygen gas and
solid target data to nomalize the cross sections. In Fig. 3 are shown angular distributions of the first four peaks shown in Fig. 2. As the ${ }^{15} \mathrm{~N}$ ground state is spin $1 / 2$ the transfers to all final states correspond to unique L values. Little structure is seen in these angular distributions; particularly noteworthy is the constrast between this $\mathrm{L}=0$ transfer to the $1 / 2^{-} 2.12 \mathrm{leV}$ state and the oscillating $\mathrm{L}=0$ transfer to the ${ }^{8} \mathrm{Be}$ or ${ }^{12} \mathrm{C}$ ground states. ${ }^{1}$ [The large angular acceptance (1.6° in the lab) of ${ }^{8}$ Be events will tend to wash out minima,

A brief survey of the ($\alpha,{ }^{8}$ Be) reaction on a ${ }^{14} \mathrm{~N}_{2}$ gas target was carried out at an incident energy of 72.1 MeV . In Fig. ${ }^{4}$ is shown an energy spectrum taken at $0_{1 a b}=18^{\circ}$ with the predicted locations of transitions to $T=0$ states indicated. No evidence was observed for the excitation of the $\mathrm{T}=1$ states occurring at 1.74 and 5.17 MeV in accordance with the $\Delta T=0$ selection rule. Strong transitions were observed to the $3+$ ground, $1+2.15-\mathrm{MeV}$, $2+3.59-\mathrm{MeV}$ states and to a state at $6.07 \pm 0.06 \mathrm{MeV}$ which are in qualitative agreenent with calculated α-structure factors. The observed state at 6.07 MeV probably corresponds to the known 4^{+}level at 6.02 MeV which has a large theoretical α-structure

Fig. 3. Cross section data for four ($\alpha,{ }^{8} 8 \mathrm{Be}$) transitions to states in ${ }^{11}$ B. See discussion in text.
(XBL 747-3620)

Fig. 4. A ${ }^{8}$ Be energy spectrum from the ${ }^{14} \mathrm{~N}\left(\alpha,{ }^{8}\right.$ Be) 10_{B} reaction at $\theta_{1 a b}=18^{\circ}$. The locations of possible transitions ${ }^{18}$ natural parity states below $\sim 6 \mathrm{MeV}$ are shown (see text).
(XBL 746-3554)
factor. Weak transitions were observed to the $\mathbf{1}^{+}$ $0.72-\mathrm{MeV}$ and $3^{+} 4.77-\mathrm{NeV}$ states and no evidence was observed for the excitation of the $1^{+} 5.18-\mathrm{MeV}$ state, which is consistent with their small theoretical α-structure factors. No evidence for the population of discrete states above $-6-\mathrm{MeV}$ excitation energy was observed, however, the large level density and poor resolution hindered this search.
Λ systematic feature which emerged from a previous study of the ($\mathrm{c},{ }^{8} \mathrm{Be}$) reaction on: $\mathrm{If}_{\mathrm{B}},{ }^{12 \mathrm{C}}$, and 160 was the strong population of only those states which are predicted to have significant α structure factors. This selectivity is evident in the above study of 14 N and 15 N and is additional evidence that the ($\alpha,{ }^{8}{ }_{\mathrm{Be}}$) reaction proceeds via a simple a-cluster pickup process.

Fontnote and References

*Present acdress: Nuclear Structure Lab, K-eble Road, Oxford, England,

1. G. J. Hozniak, N. A. Jelley, and Joseph Cerny, Phys. Rev. Lett. 31, 507 (1975).
2. G. J. Wozniak, N. A. Jelley, and Joseph Cerny, Nuc1. Instr. and Meth. 120, 29 (1974).
3. F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys, A114, 1 (1968) and A227, 1 (1974).
4. D. Kurath, Pnys. Rev. C7, 1390 (1973).

SPECTROSCOPIC STUDIES IN THE 1p-SHELL BY THE (${ }^{6} \mathrm{Li}^{\mathrm{B}}{ }^{\mathrm{B}}$ B) REACTION

R. B. Weisenmiller, K. H. Wilcox, N. A. Jelley,*
G. J. Wozniak, D. Ashery, ${ }^{\dagger}$ and J. Cerny

Two-nucleon transfer reactions (such as (p, t), ($p, 3 \mathrm{He}$), (d, a), and their complementary stripping reactions) have been used extensively to study twoparticle and two-hole states. ${ }^{1}$ In light nuclei with an excess of protons or neutrons, Hartree-Fock calculations demonstrate that this type of correlation plays a major role in the effective nuclear interaction. Only with the advent of heavy ion beans has there been any practical reaction, such as (${ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}$), to supplement the (${ }^{3} \mathrm{He}, \mathrm{n}$) reaction by probing two-proton-hole states in neutron-excess nuclei.

While a variety of possible heavy ion twoproton pick-up reactions are now feasible, the (${ }^{2} \mathrm{Li}, 8_{B}$) reaction presents the fewest experimental difficulties. Both ${ }^{7}{ }_{\mathrm{B}}$ and 9_{B} are particle unbound. thus allowing :san separation of the ${ }^{{ }^{8}} \mathrm{~B}$ particles by particle identification with solid state detector telescopes. Since 8_{B} has no bound excited states, its energy spectra lack the shadow peak anbiguity of, e.g., the (${ }^{18} 0,{ }^{20}$ Ne) reaction. Noreover, it is the lightest of the possible two-proton pick-up reactions and thus has the mallest kinematic effects (which are the major component of the energy resolution in the $1 p$-shell).

The general techniques of producing a lithium beam at the 88 -Inch Cyclotron and the identification of the reaction products have been previously described. 3 Because of the highly negative Q-values of these reactions we used an 80 MeV beam to facilitate the detection of the 8_{B} exit particles. Due to the low cross sections of these reactions (see Table 1) a triple particle identifier was used to reduce the background. A telescope of 15,10 , and $200 \mu \mathrm{~m}$ (backed bya 1 - mm reject detectory was typically used.

We decided to focus our study on the $1 p$-shell since the relevent two-nucleon fractional parentage coefficients and spectroscopic factors have been calculated ${ }^{4}$ (see Table 1). In principle this allows a rather stringent test of the reaction mechanism as to the degree of single-step versus "hualti-step" transfer of the two protons. Also this comparisori could allow a better undersitanding of the effects of the projectile's structure, which is clearly more complicated than for the lighter two-nucleon transfer reactions. For example, 6 Li would be a ${ }^{3} \mathrm{~S}\left(1^{+}\right)$configuration and B_{B} a $\mathrm{3}_{\mathrm{p}}\left(2^{+}\right)$configuration, as calculated in a pure L.S coupling basis. 5 However, since this mass region is lnown to be better described by an intermediate coupling schente, ${ }^{6}$ not only do the projectile and ejectile spins enter in a complicated fashion, but the proton pair may, aiso be transferred in a 1D or 3p relative state, 7 racher than a 1 S .

On $T_{z}=0$ targets there is an obvious symmetry among the two-nucleon transfer reactions. An example of this symmetry is that the (p, t) reaction
probes two-neutron-hole states in proton-excess nuclei, while the (${ }^{6} \mathrm{Li},{ }^{8}{ }_{\mathrm{B}}$) reaction probes 2 wo-pro-toin-hole states in their mirror nuclei. This analogy is less than perfect because of the previously mentioned structural differences in the projectiles and also because of different kinematic effects in the two reactions. Figure 1 shows a typical spectrum of the 160 (${ }_{l},,^{8}$ B) ${ }^{14} \mathrm{C}$ reaction. It indicates the strong selectivity of this reaction. Besides the strong population of the g.s. 0^{+}and the 2^{+}state at 7.01 MeV , the other natural parity states are also populated (see Table 1). Campared to the (p, t) data, 8 both reactions show the same general selectivity. From this similarity it is possible to suggest the $8.32-\mathrm{MeV}$ state as a 2^{+}, as the spacing between the lower 2^{+}at 7.01 MeV and this state agrees well with the spacing of the analogous 2^{+}states in 140 (at 6.59 and 7.78 MeV). This assignment agrees with that from the ${ }^{12} \mathrm{C}(\mathrm{t}, \mathrm{p})$ ${ }^{14} \mathrm{C}$ reaction, ${ }^{9}$ but differs with the 1^{+}assignment from neutron resonance work. ${ }^{10}$ The population ratios of these two sets of states are different, however, since the upper 2^{+}state is populated slightly more than the 1ower 2^{+}state by the (p, t) reaction (see Table 1) while it is down a factor of four from the lower 2^{+}state in the ($6 \mathrm{Li}, \mathrm{B}_{\mathrm{B}}$) reaction. As the calculated spectroscopic factor for the predicced higher 2^{+}state is alnos six times larger than that for the lower 2^{+}state, the anomalous population ratio of these states in the (p, t) data was explained by Fleming et al. ${ }^{8}$ as being due to higher shell configuration mixing.

Fig. $\frac{1}{8}$. Energy spectrum from the reaction ${ }^{16} 0$ ($6,{ }_{L}{ }^{8}$) ${ }^{14} \mathrm{C}$ obtained from a partially oxidized 142Nd target. Spectra were collected at $\theta_{\text {Iab }}=14.5^{\circ}$ (8550 liC). The 18.3° data were kinematically shifted to correspond to the 14.5° data and added to them.
(XBL 7412-7823)

Table 1. Comparisons of $\left({ }_{L i},{ }^{8} B\right)$ data with both analogous (p, t) data and with Collen and Kurath calculations.

Final mucleus	J^{π}	Excitation energy (MeV)		```Peak cross sections (}\mp@subsup{}{}{L}\textrm{Li},\mp@subsup{9}{}{9}\mathrm{ B) (\mub/sr c.m.)```	Integrated cross sections (p, t) (mb)	Spectroscopic factors SSHAG IMACㅁa
		Known levels	$\begin{gathered} \text { Predicted } \\ \text { levels } \end{gathered}$			
${ }^{14} \mathrm{C}$	0	g.s. ${ }^{\text {b }}$	g.S.	$19.4 \pm 1.6^{\text {C }}$	$388.5{ }^{\text {d }}$	2.21
	1_{+}^{+}	6.09	g.s.	1.5 ± 0.6		
	0^{+}	6.58		2.0 ± 0.6		
	$3-$	6.73				
	O_{+}^{+}	6.89				
	${ }^{+}$	7.01	6.83	4.3 ± 1.0	242.2	12.72
	$\mathrm{2}^{-}+$	7.34				
	$(1,2)^{+}$	8.32	15.19	1.0 ± 0.6	323.2	2.28
	etc.					
${ }^{8} \mathrm{Li}$	2^{+}	g.s. ${ }^{\text {e }}$	g.s.	$3.0 \pm 0.3^{\text {f }}$	1178	0.73
	${ }_{1+}^{+}$	0.981	0.91	1.1 ± 0.2		0.00
	3^{+}	2.26	1.63	9.6 ± 0.5	225	0.751 .31
	etc.					
${ }^{9} \mathrm{Li}$	(3/2)	$8.5{ }^{\text {e }}$	g.s.	1.7 ± 0.2^{h}		0.671 .44
	(1/2)	2.69	3.88			0.03
	(5/2) - ${ }^{-1}$	4.31	3.79	0.4 ± 0.1		0.51
	(3/2)-	5.4	4.88	0.2 ± 0.1		0.140 .06
	$(7 / 2)^{-1}$	6.41	6.18	0.5 ± 0.1		0.00
$11_{\text {Be }}$	$1 / 2^{+}$	g.s. ${ }^{\text {j }}$				
	142	0.320	g.s.	2.38 ± 0.2^{k}		1.96
	$(1 / 2,3 / 2)^{+}(5 / 2)_{+}^{+}$	1.785				
	$(1 / 2,3 / 2)^{ \pm}(5 / 2)^{+}$	2.69	2.60(3/2)	0.5 ± 0.3		0.19
	$(1 / 2,3 / 2)^{ \pm}(5 / 2){ }^{+}$	3.41				
		3.89	$4.98\left(5 / 2^{-}\right)$	0.75 ± 0.2		1.84
		3.96				
	etc.		$5.25\left(3 / 2^{-}\right)$			1.40

[^2]Figure 2(a) shows a spectrum of the ${ }^{10}{ }_{B}$ (${ }^{6} \mathrm{Li}, 8_{B}$) 8 li results. These data show the same general selectivity as the analogous (p, t) data. ${ }^{11}$ For both reactions, this is one of the few targets in the 1p-shell in which an e.cited state is populated more strongly than the ground state. Another typiFil spectrum is given in Fig, 2(b), which shows ine $\mathrm{II}_{\mathrm{B}}\left({ }^{\mathrm{Li}},{ }^{8} \mathrm{~B}\right) 9_{\mathrm{Li}}$ reaction. These results can be compared to the data from the $7_{\mathrm{Li}}(\mathrm{t}, \mathrm{p}){ }^{9} \mathrm{Li}$ reaction populating the same final nucleas, 9,12 The state at 2.69 MeV is weakly populated in the (t, p) reaction and populated slightly, if at all, in the (${ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}$) reaction. From the population ratio of this state relative to the ground state, it has been assigned tentatively as a $1 / 2$ state. 12 while it is impossible to conclude anything definite about this state from our data without using a DWRA analysis to remove any kinematic effects of the reaction, the $1 / 2$ state does have a very low spectroscopic factor for population by two-proton

Fig. 2. Energy spectra from: (a) the ${ }^{10}{ }_{B}\left({ }^{6} L i,{ }^{8} B\right)$
8_{Li} reaction at $0_{\text {lab }}=12.3$; and (b) the ${ }^{11}{ }_{\mathrm{B}}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right)$
$9_{1 i}$ reaction at $\theta_{1 a b}=$
$15.0^{\circ} \quad(3480 \mu \mathrm{C})$.
(XB1, 7412-8399)
pick-up reactions. 4 An alternative explanation would be that it is a prsitive parity state. If a simple pair transfer mechanism is postulated, then the ($6 \mathrm{~L},{ }^{8} \mathrm{~B}$) reacticn on odd mass 1p-shell targets should only populate negative parity states. The (t, p) reaction dees not have this inherent selectivity since it can also populate positive parity states with higher shell configurations,

This effect is demonstrated in Fig. 3 for the ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li}, 8 \mathrm{~B}\right)$ 11 Be reaction. In 1_{Be} it is known that the ground state is a $1 / 2^{+}$state and the first excited state (at 0.34 MeV) is a $1 / 2^{*}$ state. 13 This unusual level ordering was predicted by Talmi and Unal4 as a consequence of the two-body component of the residual inicxaction depressing the energy of the $1 / 2^{+}$state. These data show the $1 / 2^{\circ}$ state is populated strongly, while the $1 / 2^{+} \mathrm{g} . \mathrm{s}$. is populated weakly if at all,

The angular distriturions of the $\left({ }^{6}{ }_{\mathrm{Li}},{ }^{8}{ }_{\mathrm{B}}\right)$ reaction are monotonically decreasing with angle. This is consistent with the cross sections being peaked near the grazing angle (as is the case for the ${ }^{142} \mathrm{Nd}\left({ }^{6}{ }_{\mathrm{Li}},{ }^{8}{ }_{\mathrm{B}}\right){ }^{140} \mathrm{Ce}$ data for the ground state transition), which on these light targets is at an inaccessibly forward angle. Also, a J $=0$ transfer has a steeper envelope than a higher J transfer. While one woulci hope eventually to extract spectroscopic information from this reaction, presently high-energy lithium beams are a novelty and optical model parameters are nonexistent. This precludes a really meaningful comparison between the calculated spectroscopic factors ${ }^{3}$ and experimental data at this time. However, even by qualitative comparisons to existing two-nucleon transfer data it is possible to exterd our knowledge and understanding of the states in neutron-deficient nuclei.

Fig. 3. Energy spectrum from the reaction ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li}_{\mathrm{i}}\right.$, $\left.{ }^{8} \mathrm{~B}\right) 11_{\mathrm{Be}}$ at $\partial_{\text {lat }}=11.9^{\circ}(6847 \mu \mathrm{C})$.
(XBL 7412-7822)

Footnotes and References

*Present addreis: Nuclear Physics Laboratory, University of CXiond, England.
${ }^{t}$ On leave from the Tel Aviv University, Israel.

1. e.g. The Symposium on Two-Nucleon Transfer and Pairing Excitations, Argonne Physics Division Informal Report PFY-1972H (1972); Norman K. Glendenning, in Nuclear Spectroscopy and Reactions, Part D, edited by Joseph Cerny (Academic Press, N.Y., 1975).
2. G. Ripka, Advances in Nuclear Physics, Vol. 1, edited by M. Baranger and E. Vogt Plenm Press, N. Y., 1968).
3. K. H. Wilcox, N. A. Jelley, G. J. Mozniak, R. B. Weisenmiller, H. :., Harney, and Joseph Cemy, Phys. Rev. Lett. 30, 865 (1973).
4. S. Cohen and D. Kurath, Nuc1. Phys. Al4i, 145 (1970).
5. F. C. Barker, Nuc!. Phys. 83, 418 (1966).
6. D. Kurath, Phys. Rev. 101, 216 (1956);
S. Cohen and D. Kurath, Hacl. Mys. 73, 1 (1965).
7. D. Kurath, Comments on Nuclear and Particle Physics V2, 55 (1972).
8. D. G. Fleming, J. C. Hardy, and Jaseph Cerny, Nuc1. Phys. A162, 225 (1971).
9. R. Middleton and D. J. Pullen, Micl, Phys. 51, 63 (1964).
10. H. O. Cohn, J. K. Blair, and H. B. Willard, Phys. Rev. 122, 534 (1961).
11. G. T. A. Squier, A. R. Johrston, E. W. Spiers, 5. A. Blarbison, ard N. M. Stewart, Nucl. Phys. A141, 158 (1970).
12. P. G. Young and R. H. Stokes, Phys. Rev. C4, 1597 (1971).
13. F. Ajzenberg-Selove and T. Lauritsen, Bucl. Phys. Al14, 1 (1968).
14. I. Talnii and I. Unna, Phys. Rev. Lett. . A, 469 (1960).

CROSS SECTION LIMITS FOR THE PRODUCTION OF SOME

 HIGHLY NEUTRON.EXCESS S AND CI ISOTOPESK. H. Wilcon, N. A. Jeloy,* R. B. Whisenmilter, and J. Cermy

The predictions of mass excesses of light muclei by various models may diverge substantially as we leave the line of β-stability. 1 There has consequently been a considerable interest in measuring mass excesses of very neutron-rich isotopes in the lower-2 nuclei in order to test the theoretical assumptions underlying these models. Due to the successful observation ${ }^{2}$ of $45,45,46 \mathrm{Ar}$ vin the ($\alpha, 9^{\mathrm{Be})}$) ($\alpha,{ }^{7 \mathrm{Be}}$) and (${ }^{\mathrm{Li}},{ }^{8}{ }^{\mathrm{B}}$) reactions on ${ }^{48} \mathrm{Ca}$, we have irradiated a $400 \mu \mathrm{~g} / \mathrm{cm}^{2} 48 \mathrm{Ca}$ target with H $110-\mathrm{MeV} a$ bean and observed the $8,10,11_{\mathrm{B}}$ and $10-13_{\mathrm{C}}$ exit particles, finich populate the residual nuclei $44,42,41 \mathrm{Cl}$ and $42-39 \mathrm{~S}$, respectively. Ground state Q values for these reactions vary from about -20 to -44 MeV .

The three-counter, double particle identification technique ${ }^{3}$ was used to observe boron isotopes at angles of 10° and 30° in the laboratory systen and carbon isotopes at 10° and 35°. No positively identifiable peak was seen for the foamation of the ground state of any of the Cl or S is tropes. Figure 1 shows the energy spectra obtained from ${ }^{10} \mathrm{~B}_{8}$ exit particles detected at 10° and 30°, and from 8_{B} particles at 30°. The expected positions of the ${ }^{42} \mathrm{Cl}$ and ${ }^{44} \mathrm{Cl}$ ground states are indicated.
$10,11_{C}$ The energy region of interest for ${ }^{8}{ }_{B}$ and $10,11 \mathrm{C}$ at 10° was obscured by the large contribution from ${ }^{12} \mathrm{C}$ and $\mathbf{1 6 0}^{0}$ contaminants on the target.

Fig. 1. Energy spectra for the ${ }^{48} \mathrm{Ca}\left(\alpha,{ }^{10}{ }_{\mathrm{B}}\right)^{42} \mathrm{Cl}$ reaction at (a) 10° and (b) 30°, and (c) the ${ }^{48} \mathrm{Ca}[a, 8 \mathrm{~B}){ }^{44} \mathrm{Cl}$ reaction at 30°. (XBL 745-3296)

For the other reactims, however, the background level was very low, permitting the determination of strict upper limits for the cross sections of these reactions populating the ground state. Upper limits for formation of the Cl isotopes were from 15 to 30 $n \mathrm{n} / \mathrm{sr}$ at 10° and from 5 to $10 \mathrm{nb} / \mathrm{sr}$ at 30°. Linits for the S isotopes were about 5 nb ; sr at 10° 2ind ranged from 1 to $10 \mathrm{nb} / \mathrm{sr}$ at 35°. The very large angular momentum mismatches imvolved ($5-8 \mathrm{~h}$ as calculated semi-classically, including the Coulomb potential) may have contributed to extremely low ct is sections for many of these reactions.

Footnotes and References

*Present address: Nuclear Physics Laboratory, University of Oxford, England.

1. N. A. Jelley, J. Cerny, D. P. Stahel, and K. F. Wilcox, Phys. Rev. C11, 2049 (1975).
2. N. A. Jelley, K. H. Wilcox, R. B. Weisenmiller, G. J. Hozniak, and J. Cerny, Phys. Rev. C9, 2067 (1974).
3. F. S. Goulding, D. A. Landis, J. Cemy, and R. H. Pehl, IEef Trans. Mucl. Sci. 13, 514 (1966).

PREDICTIONS OF THE MASSES OF VERY PIEUTRON-EXCESS LIGHT NUCLEI

N. A. Joltay, Joseph Cerny,
D. P. Stahel, and K. H. Wiloox

(wer the last few years the masses of many very neutron-rich lighr nucleil ($\mathrm{T}_{2}>5 / 2,450$) have been determined. on comparing these results with theoretical predictions basod on the transverse relation of Garvey-Kelson, 2,3 pourer agreement is generally found than was the case for nuclei nearer B-stability. For example, in the s-d shell there are several $1_{2}=5 / 2$ nuclei for which there is a significant discrepancy ($>500 \mathrm{keV}$) between the experimental and the crilculated mass-excese.

Following the simple shell model approach of Goldstein and Talmi. 4 we have derived 5 an alternative schene, similar in approach to the method of Garvey et al. ${ }^{2}$ but taking nore explicit account of shell effects, which more successfully accounts for many of the observed masses of neutren-excess light nuclei. The mass of a nucleus, $\mathrm{N}(2, N)$, with m_{i} protons in the πj_{j} shell and n_{k} neutrons in the higher $v j_{k}$ shet1, is given by what will be denoted the modified shell model mass equation:

$$
\begin{equation*}
N(Z, N)=U(Z)+W(N)+\sum_{i k} m_{i} n_{k} v\left(j_{i} j_{k}\right)\left[m_{i} n_{k} \text { even }\right\} \tag{1}
\end{equation*}
$$

where $U(Z)$ and $W(N)$ are arbitrary functions of the number of protons and neutrons, respectively, and the sum \sum_{k} is over the neutron-proton interaction $V\left(\mathrm{j}_{\mathrm{i}} \mathrm{j}_{\mathrm{k}}\right)$.

Equation (1) is similar to the Garvey-Kelson transverse mass equation ${ }^{2}$:

$$
\begin{equation*}
M(Z, N)=F(Z)+G(N)+H(A) \tag{2}
\end{equation*}
$$

where F, G and H are arbitrary functions of the nurber of protons, neutrons and nucieons, respectively. Comparison of chese equations shows that the tho methods differ mainly in their parameterization of the residual neutron-proton interaction. In the method of Garvey et al. 2 much of this inter-ac-im is given by the function $H(A)$, while in Eq. (1) more explicit account is taken of shell structure by the temm $\sum_{i k} m_{i} n_{k} V\left(j_{i} j_{k}\right)$. Also, implicit in Eq. (2) is the assumption that the re-
sidual neutron-proton incuraction is independent ${ }^{6}$ of T_{2}. These different assumptions allow the transverse mass equation to be more general than the modified mass equation, both in predicting masses of odd-odd nuclei and in being able to predict masses farther fron stability. In both cases predictions are carried out by determining the parameters of the mass equations by a least-squares fit to known masses.

As a means of comparing these two approaches when applied to light neutron-rich nuclei, the masses of the $\mathrm{I}_{2}=5 / 2$ nuclei in the $s-d$ shell have been predicted, and their relative agreenent with the experimental values is shom in Fig, 1. Trans. verse mass equation predictions were taken from the calculations of Thibault and Klapiscll ${ }^{3}$, who included as input from the s-d shell only known $\mathrm{T}_{2}<2$ nuclei. For the other predictions the modified mass equation was used except for the values for 210 and ${ }^{23} \mathrm{~F}$, where the simple shell model ${ }^{7}$ was employed, since insufficient masses are known for Eq. (1) to be used. Only known non-odd-odd

Fig. 1. Two comparisons of the differences between experimental and predicted mass-excesses for the $\mathrm{T}_{\mathrm{Z}}=5 / 2$ nuclei in the $2 \mathrm{~s}-1 \mathrm{~d}$ shel1. See text.
(XBL 745-3304A)

Table 1.
94
Comparisons with experiment of the predictions of the transverse（T）and the modified（M）mass－equations．

2	H	EL	A	Mage Excent （MEVIHOV）			Binding Fanargy （NeV）				
				Experinental	Calculated		Itheutron		Exper imentis ${ }^{2}$	Caleukated	
					T	H	\boldsymbol{T}	H		t	\cdots
1	6	HE	9	$31.57 \pm .03$	31.57	31．53	2.61		2.17		
2	7	HE	9	U（1）unhound	42.61	43.49	－2．97	－3． 85		－．3x	
2	8	HE	10	0	52.00	52.34	－． 32	－． 78		－2． 29	－4．62
3	7	1.1	10	U	33.25		－． 21			3.84	
3	8	II	11	40．94土．38	40.94	41.14			． 17		
3	0	LI	12	U	52.94		－3．93			－3． 35	
4	日	EF	12	25．03土． 05	25.02	24．75	3.22		3.72		
4	9	EE	1.3	0	35.39	34，60	－2．31	－1．77		． 94	1.84
4	10	BE	14	B m bound	40.72	41．09＊	2.74	1.58		． 44	－． 20
5	9	3	14	$23.66 \pm .03$	27.66		． 90		5.86		
5	10	B	15	B	28.75	29.89	2.97			3.97	2.66
5	11	8	16	U	37.97		－1．14			1.83	
6	11	c	17	B	2.127	20.86	． 50	． 90		4.75	S． 34
6	12	c	18	B	25.50	24.57	3.84	4.36		4.34	5.27
7	12	N	19	B	16.27	15.32	5.07			7.74	8． 51
7	13	N	20	B	21.60		2.75			7.82	
8	13	0	21	$(9.30 .3)$	8.74	$8.39+$	3.08	3.48		10．80	11.09
6	64	0	22	$(11.5=.2$	9．42	9．35＊	7.39	7.11		10．47	10.59
8	25	0	73	$\mathrm{B}^{\text {（ }}$	25.48	15.40	2.01	2.02		9.40	9.13
${ }^{4}$	14	F	23	3.364 .17	3.40	3，36	7．54		12.74		
9	15	F	24	B	8． 04		3.44			10.69	
10	15	NE	25	－2．16 $\pm .10$	－1，95	－2．12	4.20		13.15		
10	16	NE	26	8	． 17	－． 27	5.95	6.23		9.89	10．43
11	15	H	25	－6．90 $\pm .02$	－6．94		5.62		24.63		
11	16	HA	27	－5．62 2.06	－5．71	－5．73	6.79		12.41		
11	17	Hh	28	－1．14 $\pm .08$	－1．02		3.59		10.38		
11	18	Hh	29	$2.65 \pm .10$	2.32	2． 66	4.28		7.87		
11	19	H	30	$0.37 \pm .20$	6． 50		2.35		6.61		
11	20	EA	31	（10．6 $\pm .8)$	12．70	14．38	3.87			5.76	4.42
11	21	NA	32	（16．4 11．1）	21.02		－． 25			3.62	
11	22	HA	33	B	26，90		2.19			1.94	
12	17	MG	29	$-10.75 \pm .05$	－10．70	－10．75	3.80		12．31		
12	18	H6	30	s	-9.37	－9．21	6.75	6.54		10.56	10.42
13	18	N2	31	－15．014．10	－15．00	－15．05	7.15		12.94		
13	19	AL	32	B	－11．14		4.21			11.50	
14	19	51	33	－20．57 $\pm .05$	－20．71	－20．67	4.55		13.76		
14	20	SI	34	B	－20．57	－2i． 32	7.93	7.72		12.77	12.42
15	20	P	35	－24．r． 4.08	－24．90	－24，0i	8.45		14.74		
15	21	P	36	3	－20．8B		4.05			12.46	
16	23	\＄	39	B	－23．07	－23．21	4.33	4.35		12.24	12.31
16	24	S	40	s	－22．50	－22．64	7.50	7.51		11.93	11.85
17	24	CL	41	8	－27．43	－27．39	7．64			17.65	13.67
17	25	CL	42	B	－24．68		5.32			13.16	

＊Assumed value，see text．
${ }^{\dagger}$ caleulated using simple shell model．Sne Ref． 4.
$\mathrm{T}_{2} \leqslant 2$ nuclei, together with ${ }^{29} \mathrm{Na}$, with configura-
 and $\pi S_{1 / 2} \mathrm{wl}_{3} / 2$ were included as input. (The mass of 29 Na detefmines the interacticn parameter $Y\left(\pi d_{5 / 2} \quad \mathrm{vd} 3 / 2\right)$.) As seen in Fig. 1 , conzirerably better agreement was ubtained with the approach of this work tian with the transverse mass equation: quantitatively the ms deviations between experiment and calculation are 260 keV and 626 keV , respectively (excluding tive mass of 210 because of its large error). Another example is discussed in Ref. 8 where the masses of the argon isotopes ${ }^{43-46} \mathrm{Ar}$ are compared with the predictions of eqs. (1) and (2); better agrecment is also found using Eq. (1).

Table 1 precents predictions of mass excesses and one- and two-neutron binding energies of selected neutron-excess nuclei at or just beyond the limits of current investigation obtained through a recalculation with Eq. (2), the tratsiverse mass equation, as well as with Eq. (1), the modified mass equation, denoted T and M, respectively. Experimental values are given when available (see Ref. 6 for sources) aciet those nuclei only inown to be bound ur unbound are indicated by the symbol "B" or 'rr'. A complete tabulation of the results is given in Ref. 7.

Calculated T and M values in Table $\underline{1}$ arise from a least-squares fitting progran which employed wich equal weight the appropriate particle-stable nucleill with $\mathrm{N}>2$ whose mass-excesses are krown to $\leqslant 200 \mathrm{keV}$; those fnown with less sccuracy were not used in these calculations and are shom in the table enclosed in parentheses. All known nuclei (271) with $2<2<35$ and $4<N=50$ were used in obtaining the transverse mass equation values. Compared to the recent calculation, ${ }^{3}$ the ten knownt $\mathrm{s}-\mathrm{d}$ she11, $\mathrm{T}_{\mathrm{Z}}>5 / 2$ nuclei given in Table 1 were the additional nuclei in-luded. For Eq. (1) the known nen-odd-odd muclei (74) with configurations

 k buth masses required assumed values for the massexcesses of $21_{0}, 220$ and ${ }^{14} \mathrm{Be}$: for ${ }^{21} 0$ and 220 the simple shell model ${ }^{7}$ was used and (to deternine the interaction paraneter $V\left(\pi p_{3 / 2}{ }^{\mathrm{Nd}_{5} / 2}\right)^{\mathrm{j}}$, the mass-excess of 14 Be (known to Be_{e} boffo) 12 was taken to equal ${ }^{12} \mathrm{Be}+2 \mathrm{n}=41.09 \mathrm{seV}$, close to the value obtained with the transverse equation of 40.72 MeV .

In order to compare how well these two approaches account for known masses, one can evalwate the mis deviation in each case. For muclei with $2<2 \leqslant 17$ the transverse mass equation yiclds an ims deviation of 220 keV and the modified mass equation 200 keV . Though these values are very similar it does not necessarily follow that the predictive validity of the two approaches will be the same (compare the results in Fig. 1).

Fron Table 1 it can be seen that the differences between the T and M approaches observed in the $s-d$ shell for the $T_{7}=5 / 2$ nuclei persist to lighter nuclei since the predictions for $13 \mathrm{Be}, 15 \mathrm{~B}$ and 19 N differ by more than 750 A . Those nuclei lying on the edge of stability as predicted by this rezalculation with the transverse equation differ from those of Ref. 3, which did not employ iny $\mathrm{T}_{2}>5 / 2$ nuclei from the $\mathrm{s}-\mathrm{d}$ shell, in that a) $23 \mathrm{~N}^{2} 260,40 \mathrm{Ng}, 43 \mathrm{Al}$ and 48 Si are predicted to be the last nucleon-stable isotopes, con-
pared ${ }^{3}$ to ${ }^{25} \mathrm{~N}_{1} 28 \mathrm{~m}_{\mathrm{m}} 42 \mathrm{yg},{ }^{45 \mathrm{~N}}$ and $46 s ;$ and b) ${ }^{28}$ F, ${ }^{29}$ Ne and ${ }^{3} 3_{42}$ are predicted tis be the first unbound isotopes, compared ${ }^{3}$ to 30 . SNe and 41_{Mg}. Results from the modified mass equation are less extensive than those from the trensverse equation, generally joit predicting the edge of stability; however, for the iighter muclei 260 is calculated by Eq. (3) to be unbound by 240 kcV , predicting 240 as the last stable oxygen isoterpe. Also 29 is calculated to be unbound to 2 n decay by 910 keV , compared to the prediction of the transverse equation that it is bound by 770 kev .

The approach employing the modiried mass equation cescribed above appears to be a useful alternate predictive scheme for the masses of very neu:-tron-excess light nuclei. Further mass measurenents of nuclei far from stability such as for examy ? the nucleon-stable isotopes 15 B and 19 N will afford particularly interesting new comparisons of this method and thet of Garvey et al. 2 with experiment.

Footnotes and References

${ }^{*}$ Present address: Nuclear Physics Laboratory, Thiversity of Oxfori, England.

1. J. Cerny, Reactions Between Complex Nuclei, Vol. 2, ed. R. C. Robinson, F. K. McGowan aid J. B. Ball (North-Holland Publ. Co., Arsterdani, 1975.
2. G. T. Garvey, W. J. Gerace, R. L. Jaffe, 1. Talmi and I. Kelson, Rev. Mod. Phys. 41, Sl (1969?.
3. C. Thibault and R. Klapisch, Phys. Rev. C9, 793 (1974).
4. S. Goldstein and I. Talmi, Phys. Rev. 105, 995 (1957).
5. N. A. Jelley, Joseph Cerny, D. P. Stahey, and K. F. Hilcok, Phys. Rev. C11, 2049 (1975).
6. J. Jänecke and H. behrens, Phys. Iev. C9, 1276 (1.974).
7. N. A. Jelley, J. Cerny, D. P. Stahel, and K. H. Wilcox, Lawrence Berkeley Lakoratory Rewor: LAL-34i4.
8. N. A. Jelley, K. H. Wilcox, R. B. Hzisonmiller, G. J. Hozniak and J. Cemy, Phys. Rev. Cg, 2067 (1974).
9. R. Klapisch, C. Thibautt, C. Rigand, A. M. Poskanzer. L. Lessard, and W. Reisaiorf, Inter. Conf. on Nuel. Physics, Merich, Vol. 1, ed. J. de Boer and H. J. Mang North-Holland Pub1.Cc.. Amsterdam, (1973) $3 z 5$ and private commenication (to be published).
10. A. G. Artukh, G. F. Gridnev, V. L. Mikheev, V. V. Volkov, and J. Wilczynski, Ni-1. Phys. Ai92, 170 (1972).
11. Masses were generally taken from A. H. Wapstra and N. B. Gove, Nucl. Data A9, 265(1971). References to most new masses of interest are given in Table 1 ; a fey other new or revised rasses (for 34 P , $388_{5}{ }^{4} 3^{-2}-46{ }^{2 r}$, and 58 Mn) are cited in Ref. 7 . In addition, in order to deternine all the parameters, it was necessary to use the mass of the particle-mstable nuclide ${ }^{7}$ He.
12. J. D. Bownan, A. M. Poskanzer, R. G. Korteling and G. W. Butler, Phys. Rev. C9, 836 (1974).

D. J. Viaira, R. A. Gough, and J. Cerny

The series of $A-4 n+1, T_{z_{1}}=-3 / 2$ betadelayed protor emitters is $\mathrm{know}^{2} 1,2$ from ${ }^{9} \mathrm{C}$ to 49 Fe . To extend the series to heavier nuclei a pulsed beam experiment was perfomed in search of ${ }^{53} \mathrm{Ni}$.

A $1.2-\mathrm{mg} / \mathrm{cm}^{2}$ natural calcium target at a tar get angle of 70
bean was bombarded widh a $65-\mathrm{Nev} 1 \mathrm{co}^{+}+3$
whe bean provided by the $88-$ Inch Cyclotron. A slotted
rotating wheel ${ }^{3}$ was used to control the pulsing of the beam and to shield the detector while the target was being irradiated. After an irradiation time of 150 msec the bean was turned off and an 18 $\mu \mathrm{m} \Delta E-107 \mu \mathrm{~m} E$ counter telescope was used ta detect particles passing from the target through a slot in the wheel. During the 200 msec counting period. events which were in fast $\Delta E-E$ coincidence ($2 \mathrm{~T}=30 \mathrm{nsec}$) were fed into a particle-identifier; those which identified as protons were stored in an analyzer as a function of time.

The delayed proton spectrum obtained pfter $12,900 \mu \mathrm{C}$ is shown in Fig. 1. The large group at $E_{0}($ Lab $)=1.56 \mathrm{MeV}$ results from the direct proton decay of ${ }^{53} \mathrm{Com}$ produced by the ${ }^{40} \mathrm{Ca}\left({ }^{16} 0, \mathrm{p}^{2 n}\right){ }^{53} \mathrm{Co}^{\mathrm{m}}$ reaction. ${ }^{4}$ This group was useful as an internal monitor and as an energy calibration point. Other calibration points were obtained from the production of ${ }^{41}$ Ti by bonbardment of Ca with $29.5 \mathrm{NeV}{ }^{3} \mathrm{He}$. The observed half-1ives of 41_{Ti} and ${ }^{53} \mathrm{Co}^{\mathrm{m}}$ were 84 ± 3 msec and $257 \pm 15 \mathrm{msec}$, respectively. These agree well with the previous measurements of $80 \pm 1 \mathrm{msec}{ }^{5}$ and 247 ± 12 msec. 4

A new and very weak activity was observed at an energy of $1.83 \pm 0.05 \mathrm{MeV}$ (lab) after correcting for energy losses in the target and detector dead

Fig, 1. An identified-proton energy spectrum resulting from the bombardment of Ca with 65 MeV 160 . The two groups labeled with dashed arrows are believed to arise from the decay of ${ }^{29}$ S (see text). The herizontal arrevs denote the proton energy region of possible " $\because \mathrm{mizitions}$ to the ${ }^{52} \mathrm{Fe}$ ground state following the ady of ${ }^{53} \mathrm{Ni}$.
layers. The half-life exhibited by this group is $45 \pm 15 \mathrm{msec}$, thereby precluding the possibility that the events result from pile-up associated with the decay of 53 com . Furthermore, the half-life is distinctly different from the 75 ± 10 msec 6 half-life of 49 Fe which can be produced at this energy by the ${ }^{40} \mathrm{Ca}\left({ }^{16} 0, \alpha 3 n\right)$ reaction. Two small groups labeled in Fig. 1 by dashed arrows are believed to be delayed protons enitted from 29 S which are produced via the $150(160,3 \mathrm{n})$ reaction on the slight oxygen contaminant present in the target. Other possible impurity reaction products are unable to account for this new activity since the energy and halflife of this group are not compatible with the known properties of any other delayed proton precursors.

The $1.88 \pm 0.05 \mathrm{MeV}$ activity is consistent, however, with beta-delayed praton eqnission expected from ${ }^{5}{ }^{3} \mathrm{Ni}$ produced by the ${ }^{40} \mathrm{Ca}\left({ }^{15} 03 \mathrm{n}\right)$ reaction. A preliminary decay scheme is presented in Fig, 2. The figure shows the super-allowed geta decay of 53_{Ni} to the lowest $\mathrm{T}=3 / 2$ state in ${ }^{53} \mathrm{Co}$, which in ${ }_{5} \mathrm{~L}_{\mathrm{m}}$ proton decays to the first excited state in 52_{Fe}. Dacay to this $2+$ state rather than to the ground state was assumed since this gave the best agreement bettyen the excitation energy of the $T=$ $3 / 2$ state of ${ }^{53} \mathrm{Co}$ and its mirror state in ${ }^{53} \mathrm{~F}_{\mathrm{Fe}}$. Further support is given by the fact that both ${ }^{45} \mathrm{Cr}$ and ${ }^{49} \mathrm{Fe}$ shou sinilar preference for decay to the $2+$ state. Based on this assumption no evidence for decay to the ground state of ${ }^{52} \mathrm{Fe}$ was observed (see Fig ${ }_{5} 1$. Using the masses of the analogue states of ${ }^{53} \mathrm{Co}$ and ${ }^{53} \mathrm{Fe}$, together with the ground state mass of ${ }^{5}$ 3n, the isobaric muitiplet mass equation predicts the mass excess for ${ }^{5} 3_{\mathrm{Ni}}$ to be -29.48 ± 0.19 MeV . This agrees with the Coulomb energy predictions of $-29.654 \pm 0.009 \mathrm{MeV}$.

Due to the contrast in magnitude of the ${ }^{53} \mathrm{Co}^{\mathrm{m}}$ group compared to the 53 Ni group, it is interesting to compare the observed production ratio to the predicted ratio. Using the evaporation code GROGI 2^{3} the cross section ratio of 53 com to ${ }^{53} \mathrm{Ni}$ at this

Fig. 2. The proposed decay scheme of ${ }^{53} \mathrm{Ni}$. The bold faced arrow represents the proton decay of ${ }^{53} \mathrm{Com}$, while the nomal arrows represent the β delayed proton decay of $53^{3} \mathrm{Ni}$.
(XBL, 743-613)
energy was calculated to be $\sim 6,500: 1$. Assuming the branching ratio for proton decay of $53 \mathrm{Co}{ }^{\text {mi }}$ is $1.5 \%, 4$ and a branching ratio for 53 Ni of $65 \%, 9$ the experimental cross section ratio turns out to be ~ 11.000 : 1. Considering the large uncertainties in both the experimental and theoretical ratios, this difference is not unreasonable. Thus, all the results indicate this new activity cap be attributed to the β^{+}delay ed protor decay of ${ }^{53} \mathrm{Ni}$.

Footnotes and References

1. J. C. Hardy, Nucl. Data Alll, 327 (1973).
2. K. P. Jackson, J. C. Hardy, A. Schmeing, R. L. Grahan, J. S. Geiger, K. W. Allen, Phys. Lett., 49 B 341 (1974).
3. Similar to the rotation wheel used in reference 4 except. with a much larger solid angle of 0.4 sr .
4. .T. Cermy, R. A. Gough, R. G. Sextro and J.E. Esterl, Nuc1. Phys. A18B, 666 (1972).
5. R. G. Sextro, R. A. Gough, and J. Cerny, Nuc1. Phys. A234, 130 (1974).
6. J. Cerny, C. N. Cardina1, H. C. Evans, K. P. Jackson, and N. A. Jelley, Phys. Rev. Lett. 24, 1128 (1970).
7. J. Jänecke, Nucl. Phys. Ali4, 433 (1968).
8. J. Gilat, GROGI2, Brookhaven National Laboratory Report No. BNL50246 (1970) unpublished.
9. Assuning a $\log \mathrm{ft}=3.3$ for the supera11owed beta transition, the observed delayed protons could account for approximately 65% of the total decays.

ARGON-INDUCED TRANSFER REACTIONS AT coulomb barrier energies

R. C. Eggers,* J. O. Resmussen, and W. S. Ribbe ${ }^{\dagger}$

In the last few years there have been some theoretical investigations on semi-classical transfer theory (SCIT) for calculating heavy-ion transfer reactions at near Coulonb barrier energies. 1 While it is generally conceded that the methods under investigation lack some of the rigor of the coupled channel Born approximation (CCBA) or the distorted wave Born appronimation (DWBA) methods, the attempt is to retain most of the essential features while reducing the computational complexities of the traditional methods. Perhaps the most important advance of the theory was the powerful addition theorem developed by Buttle and Goldfarb which reduced the complexities of the six-dimensional T-matrix integral into a product of two three dimensional integrals. 2 The authors of the SCIT have extended this work to simplify the calculation of the more complex of the two integrals by assuming a classical hyperbolic orbit for the projectile. Both of these simplifications depend quite heavily on the fact that the incident energy is low.

We have made experimental measurcments which can be compared to these theories and we can probe the limitations of the theories. Our experiments were done with a small 11.7 cm diameter scattering chamber lined with aluminum catcher foils. The foils were gamma counted off-line after irradiation with an argon beam from the SuperHILAC. We used the intensity of the known gama-ray lines of radioactive nuclei in the region around Argon to pick out the various products and calculate the crosssection based on the Faraday reading and the efficiency of the gamma-ray counter. Pribripal products observed were ${ }^{41} \mathrm{Ar}, 39 \mathrm{Cl}$ and 38 S . We ran at 183 MeV and 209 MeV with thin targets of $91 \mathrm{~g} / \mathrm{cm}^{2}$ and 400 g/cm ${ }^{2}$ for tantalum and gold, respectively. Our foils were divided into 30 degree conical sections for the angular distribution determinations. Taible 1 summarizes the reaction cross-section for the gold and tantalum experiments.

TMALE 1
THE FIRST LIME FOR EACM GRODUCI GIVES TNE REACTIOM

To compare with the SCTT we show in Fig. 1 the angular distribution for the most prominent product, ${ }^{41} \mathrm{Ar}$, for both energies and both targets. The angular distribution of the theory is given an arbitrary scaling factor, since there are good reasons to expect that it won't be quantitative in this respect. 3

Fig. 1. Experimental and theoretical angular distributions of the neutron pick-up reaction by ${ }^{40} \mathrm{Ar}$ bombardment of gold and tantalum targets. Experimental results are given by the points and represent yield sumited over all bound states in the radioactive product ${ }^{4}{ }^{1} \mathrm{Ar}$. The theoretical curves are semiclassical transfer theory coupled with optical model calculations following fonmulas of Alder et al. 1 The absolute normalization of the theoreticai curves is arbitrary. (XBL 743-2714, XBL 743-2715, XBL 743-2711, XBL 743-2712)

As is readily apparent the SGiT only works well at or below the Coulonb barrier, which occurs for the lower energy on gold. The other three cases correspond to energies up to a few tens of MeV above the barrier. For these above-barrier cases a 'background" cross-section not strongly dependent on angle arises. (We are cautious about the high points at the most forward angle, since it is possible that some beam particles hit the catcher foil.) The general picture of Wilczynski may fit our observations. 4 At or below barrier only quasielastic transfers with minimal internal excitation

Fig. 2. Angle-integrated cross sections for observed trissfer reactions or a function of bombarding energy of ${ }^{40} \mathrm{Ar}$ beam.
(XBL 748-3859)
occur, peaking at the semi-classical grazing angle, according to the SCTT. At higher energies for impact parameters decreasing from the grazing values, translational energy may be lost to internal excitation and these inelastic products are sprayed to angles increasingly forward of the grazing peaks. It was not feasible for us to measure energies of the products, so we cannot directly test the interpretation that the broadly distributed products are lower energy than the grazist peaks.

One other interesting aspect of our data is that is shows preliminary evidence for the conjectured effect of deformation on heavy-ion reactions. Of course, the absolute cross-sections are subject to the uncertainty that impurities in the argon beam could give erroneous Faraday readings. Figure 2 shows the excitation function for these reactions and denonstrates a steeper threshold for the spherical gcld nucleus than for the deformed tantalum. It is reasoned that this effect cones from the tips of the deformed nucleus which, because they stick further out, can make reaction at lower energy where the projectile does not approach the nucleus so closely. One other feature of these excitation functions, that is, why the higher energy point for the 385 excitation function drops is not fully understood.

Our conclusion is that the theory that we are comparing with here, the SCIT, is probably quite good for total transfer near the Coulomb barrier, but products with broad angular distribution appear as soon as the energy is increased very much. This most likely is due to internal excitation, as some theorists now are calculating by friction terms in the classical trajectories.

Footnotes and References

*Present address: Cyclo:. on Laboratory, Texas A.gM. University, College Station, Texas.
†'Present address: Stadt Rudolf-Virkchow KrankenNucl. Phys. A19I, 399 (1972).

1. K. Alder, R. Morf, M, Pauli and D. Trautmann, Nucl. Phys. A191 399 (1972).
2. P. J. A. Buttle and L. J. Goldfarb, Nucl. Phys. 78. 409 (1966).
3. J. S. Blair, R. M. DeVries, K. G. Nair, A. J. Blatz, and W. Reisdorf, Phys. Rev. C10 1856 (1974).
4. J. Wilczynski, Phys. Lett. 47B, 124 (1973).

CROSS SECTIONS OF (p, pxn) REACTIONS ON ${ }^{208} \mathrm{~Pb}$

H. Kawakemi," M. Koike,* K. Komura," N. Yoshikewa,* M. Sekal," and J. O. Remmussen ${ }^{\dagger}$

The $52-\mathrm{MeV}$ extracted proton beam from the synchrocyclotron at the Institute for Nuclear Study (INS), Giversity of Tokyo, was used to irradiate enriched 208 Pb at $24-, 36-$, $44-$ and $52-\mathrm{MeV}$. The incident proton energy was adjusted by carbon plate absorbers. The average bean current was about 1 nA. The target used was metallic foil of an enriched isotope (99.9%) of 208 Pb . A target foil of 8.3 $\mathrm{mg} / \mathrm{cm}^{2}$ thickness (for the excitation function) was prcpared by electrodeposition. A thicker one used for the life-time measurement at 44 MeV was made by rolling and was $12.8 \mathrm{mg} / \mathrm{cm}^{2}$ thick.

The Ge(Li) detector used was $40 \mathrm{~cm}^{3}$ in effective volume. The energy resolution was 2.5 keV [FWMM at 1.33 MeV . The detection efficiency E_{y} was cailibrated with IAEA standard sources 137 CS and ${ }^{60} \mathrm{Co}$ placed at the target position. Overall errors for the cross sections were estimated to be 25\%. The γ-ray spectra were analyzed with an automatic peak search program. The computer used was the TOSBAC 3400 at INS. The FM cyclatron pulse width of 0.078 mis was used with dalayed ganma rays counted in the 1.06 ms interval between beam pulses.

The delayed 802.9-keV ($2_{1}^{+}-0_{p}^{+}$) γ-rays were counted from 0.053 to $0.352 \mathrm{~ms}(0.299 \mathrm{~ms})$ in the decay curve after the bean pulse. The prompt r-rays have completely decayed out earlier than 0.053 ms . ?"e cross section for fomation of the 0.12 ms 7 -isoner at 2.2 MeV in 206 pb , was calculated from the intensity of the $802.9-\mathrm{keV}$ gamma ray. The excitation curve for the reaction ${ }^{208} \mathrm{~Pb}(\mathrm{p}, \mathrm{p} 2 \mathrm{n})^{206} \mathrm{pb}$ measured through the 802.9 keV ($2_{1}^{+}-0_{g}^{+}$) r -ray is shom in Fig. 1.

${ }^{208} \mathrm{~Pb}(\mathrm{p}, \mathrm{pn}){ }^{207} \mathrm{~Pb}$ Excitation Function

The excitation function for the reaction ${ }^{208} \mathrm{~Pb}$ (p, pn) ${ }^{207 \mathrm{mpb}}$ ($\mathrm{i}_{13 / 2}$ isomer of $0.80-\mathrm{sec}$ half1ife at 1.623 MeV) was measured with the $1063.7-$ and $569.8-\mathrm{keV} \gamma$-gama rays. The half-1ife of this state has been reported to be 800 ms . The decay correction was not made for the calculation of the cross sections, since this half-1ife 800 ms is much longer than the duty cycle. The excitation function obtained is shown in Fig. 2.

Discussion

The $p, p n$ cross sections at relativistic energ': $;$ have long been something of a mystery in that they are substantially larger than theory. The theoretidal calculations of sophisticated Monte Carlo cascade evaporation type are satisfactory for most observed reactions but not $p, p n$. We speculated that some direct excitation by p, p^{\prime} to states above the neutron binding energy might play a role.

As a basis for possible future higher-energy studies we felt p,pn excitation functions at lower

Fig. 1. Excitation function for the 7 -isomeric state of ${ }^{206} \mathrm{~Pb}$,
(XBL 756-1714)

Fig. 2. Excitation function for the 13/2-isomeric state of ${ }^{207} \mathrm{~Pb}$.
(XBL. 756-1715)
energy would be useful. The lack of a distinct peok and the flatness of excitation functions at higher energy clearly shows the direct interaction nature. The cross sections are surprisingly large for such pa: cial yields to high spin isoners, but high neutron pick-up cross sections by heavy ions on ${ }^{208} \mathrm{~Pb}$ have been noted earlier.

Pootnotes

*Institute for Muclear Studies, University of Toko, Tanaski, Tokfo, Japan.
${ }^{\dagger}$ Lawrence Berkeley Laboratory, sumner visitor at INS, Tokyo; travel supported by the Japan Society for Promotion of Science.

X RAY MEASUREMENTS OF ANGULAR DISTRIBUTIONS IN HEAVY ION REACTIONS

J. Moutton, R. Babinet,
L. G. Moretto, and S. G. Thompson

Heavy ion reactions in which the projectile kinetic energy is distributed over the single particle and the collective modes of a compound nucleus, are expected to produce OM angular distributions symmetric around 90°. These distributions approach $1 / \sin \theta$ for reactions proceeding with large angular momentum and breaking up into large fragments. Our group has investigated angular distributions in several heavy ion systens, using solid state and gas ($\mathrm{E}-\mathrm{AE}$) detectors. ${ }^{1}$ (Projectiles: $\mathrm{N}, \mathrm{Ne}, \mathrm{Ar}$. Targets: $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$. Energies: 7 to 12 $\mathrm{MeV} / \mathrm{nucleon}$). In these experiments the resolution of individual atomic numbers is limited to 2 less than 36. Significant asymmetry is observed, the angular distributions being forward peaked, especially for fragments close in 2 to the projectile. Because of this deviation from symetry about 90°, it is important to pursue these experiments further.

This report discusses preliminary results of a technique which measures the relative angular distributions for heavier fragments ($Z>40$). A thin metal target is suspended inside a small cy1inder, which has been lined with 3 to 5 mil Al foil. A carton collinator is attached, and the assembly is placed in the Faraday cup of a scattering chamber. (This set-up allows us to carry out tho simultaneous experiments: one in the scattering chanber and one in the Faraday cup). The reaction products emitted from the metal target are enbeddet in the Al foil. After 24 to 48 hours of bombardment, the target assembly is removed, and the A1 foil is cut into strips concentric with the beam path. Strips upstream of the target cover backward angles, while strips downstrean cover forward angles. The geometry of the inside of the cylinder determines the exact angles subtended. Each strip contains either the isotopes emitted in the solid angle subtended by the strip, or their decay products. The fragments are quite excited, coning from a campound systerin whose temperature was 2 to 3 MeV .2 Early evaporation of several neutrons leading to beta decay and K capture is expected, so that X -ray emission can be observed. The characteristic X rays can then be measured, in order to determine the relative cross section as a function of angle for each 2. The X ray intensity is measured three times from each strip over a period of 10 to 14 hours after removal from the beam. One strip is used as a standard and measured 10 to 12 times during the counting period, to establish a decay curve for each peak. Intensities can then be extrapolated to

Fig. 1. X-ray spectra from 340 MeV Ar on Ag. Peak labels indicate ka line unless otherwise indi. cated. (a) $30^{\circ}-35^{\circ}$ lab angles. (b) $12^{\circ}-30^{\circ} 1 \mathrm{ab}$ angles. Note the absence of products above Sb in (a).
(x8L-752-2383)

Fig. 2. X-ray spectrum from $288-\mathrm{MeV}$ Ar on Au. $12^{\circ}-30^{\circ}$ 1ab angles. Peak labels indicate main ($K \alpha_{1}$) component. Unlaheled peaks are $K ~ \alpha 2$ or $K \beta$ peaks. All elements from Ag to Pb are present except Pm .
(XBL 752-2384)
an arbitrary zero time. The yields for each element observed are compared from one strip to the next, to establish a relative cross section as a function of angle. While the shape of the angular distribution can be determined, the absolute magnitude of the cross section can not be established readily. This is because the population of fragments of a given 2 consist of several isotopes, each decaying with a different half life, and with different branching ratios for K capture vs beta enission; gamma decay vs intermal conversion; and X-ray fluorescence vs Auger iacay. Thus the relation between X-ray yield and the actual cross section is very complex. A furtner complexity is that the population of one 2 is fed by beta decay of neighboring elements, which in turn are fed likewise.

Data have been collected for three systems, and analysis is now in progress. The systems are: $340-\mathrm{seV}$ Ar on Ag, $288-\mathrm{MeV} \mathrm{Ar}$ on Au , and $175-\mathrm{MeV} \mathrm{Ne}$ on Au. Fragnents below $2=40$ are poorly detected be duse of the low efficiency of detection of weak (less than 15 keV) X rays, and the short coumting times necessitated by numerous Al strips. The Ax on Ag system produced little information of interest:
the large CM velocity resulted in the high- 2 cross section being peaked very much forward, so little activity behind 30° was observed (other than from quasi-elastic few particles transfer, see Fig. 1). The $268-\mathrm{MeV} \mathrm{Ar}$ on Au system yielded activity from all elements between Ag and Pb , covering lab angles 12° to 78°. A typical X-ray spectrum is shom in Fig.2. More backward angles were not measured. The $175-\mathrm{MeV}$ Ne on Au system produced only low activity because of 10 w Ne bean current, but foils subtending forward angles ($12^{\circ}-30^{\circ}, 30^{\circ}-38^{\circ}$) and backward angles ($150^{\circ}-168^{\circ}, 142^{\circ}-150^{\circ}$) appeared to display comparable activity for Z 's somewhat above symmetric division. Except for quasi-elastic tians fer products around Au, other products were not observed. Quantitative analysis of this data is not yet complete.

References

1. S. G. Thompson et 11 , , 'Macroscopic Aspects of Heavy Ion Reactions", ! BL-2940.
2. Calculated as $\mathrm{T}=\left(\mathrm{E}^{\star} / 8\right)^{1 / 2}$.

PARTICLES EMITTED IN THE INTERACTION OF Cu WITH $20^{\circ} \mathrm{NE}$ AT 252 MNV BOMBARDING ENERGY

R. Jared, L. G. Moretto, R. Bubinet, J. Galin, J. Hunter, R. Schmitt, J. Moultan, and S. G. Thompson

The interest in studying this reaction is quite similar to that illustrated for the reaction of $\mathrm{Ag}+\mathrm{Ne}$. An added advantage is that with the available 2 resolution ($2 \approx 33$) the charge distribution can be detemined up to and beyond the symmetric splitting ($2=19-20$). A slight disadvantage arises from the unfavorable kinematics which compresses all the cross sections in the forward direction and prevents the detection of large Z's at large c.m. angles. The experimental equipment used in this study is the same as that used in the $\mathrm{Ag}+\mathrm{Ne}$ case.

In Fig. 1 the cross sections are shown as a function of Z for various laboratory angles. It is interesting to notice that the charge distributions appear to be fairly flat; very little increase is seen in the cross sections close to the symmetric splitting, while the cross sections appear to increase substantially for $2<10$ at the very forward angles. This is mainly due to the very dramatic forward peaking occurring for atomic numbers below 10. In Fig. 2, the center of mass angular distributions are shown for the various at mic number. As in the case of $\mathrm{Ag}+\mathrm{Ne}$, the \therefore gular distributions for $2<10$ are very strongly forward peaked. At the extrene forward angles there is some contribution due to the quasi-elastic component of the cross section. Nevertheless, there is no doubt that the relaxed component is also strongly forward peaked. The rapid damping of the forward peaking for $Z<10$, visible in ike $+A g$, is also visible here. Still, the symnetric splitting occurs at $z=19-20$ and therefore only very close to the symuletric division does one observe an angular distribution possibly consistent with $1 / \sin \theta$.

As in many other cases one has here very strong evidence of incomplete relaxation in the mass/charge asymmetry degree of freedom. In fact, it is not clear whether there is any compound nucleus cross section at all hidden in the present data. Thus it is very inportant for the understanding of these data to revise and extend the current theorims on reaction mechanisms.

Fig. 1. Cross sections as a function of 2 for various laboratory angles.
(XBL 752-2299)

Fig. 2. Center of anass angular distribution for various Z's.
(XBL 352-2300)

PRELIMINARY STUDY OF THE PARTICLES EMITTED IN THE REACTION BETWEEN CU AND $288+h o V$ AND 340 PMeV ${ }^{\circ}{ }^{\circ} \mathrm{Ar}$
L. G. Monetro, R. C. Jared, R. Babinat, J. Galin, J. Hunter, ani S. G. Thempsent

This cominination of target and projectile has been briefly investigated in our survey carried out throughout the periodic table. The purpose of this investigation is to learn about the broad systematics of the heavy ion reaction. The kinetic energy distribution shows the now familiar two components: the high energy quasi-elastic component and the 10 w energy relaxed component. The overall charge distributions appear to be fairly similar to those observed in the Ar + Ag reactions. The main features (Fig. 1) are: an overall increase of the cross section with increasing Z as one moves towards symmetric splitting; a minimm in the crass section at and around $2=9$; and an increase of the cross section for lower atonic numbers. Furthermore, the cross section presents an even-odd altemation, also typical of similar reactions. The unfavorsble kinematics make it hard to obtain complete angular distributions.

In conclusion, the present reaction appears to be consistent in its features with the Ar + Ag reaction, without indicating any special nev: feature.

Fig. 1. Cross section as a function or atamic number for various lab angles at $288-\mathrm{MeV}$ and $340-\mathrm{NeV}$ bambarding energy.
(XBL 752-2303)

R, Eabinet, J. Galin, M. Fowler, R. Jared.
J. Hunter, L. G. Mortito, and S. G. Thompion

As it has previously been shown for the Ag 414 N system ${ }^{1}$, in important fraction of the reaction cross section is associated with products whose charges range from $Z=1$ to $Z \approx 18$ with kinetic energies which renind us of the fission process. However the angular distributions of most of these products are not symmetric about 90° c.m. Instead, the megular distribution is more strongly peaked forvind thar backward, thus indicating that we are dealing with a much faster reaction mechanism than that assocjated with the formation of a completely equilibrated compound nucleus. The asymmetric angular distribution of the products observed proviously by borbarding Ag with if N is the indicator of a process accurring in a time seale smal) it than the rotational period of the system (10^{-21} to $10^{-2}{ }^{-2} \mathrm{sec}$).

The reason for choosing a No induced reaction on Ag to be compared with N -induced reactions on Ay, is the following. The difforence of 6 nucleons out of 122 does n, t change the composite system significantly. llowever the miss or charge asymnetry of the entrance channel is quite different in the tho systens. If this miss (or charge) asymetry degree of freedon wer: completely relaxed during the equilibration prociss, one should not obserye any significant difference in the relative abundanco of the products obrained in both reactions.

On the other hand, if the mass asymmetry degree of freedon were not completely equilibiated, the mass/charge asymmetry of the entrance channels should be reflected in the 2 distribution of the products. Indeed, a glance at the potential energy of the composite systen versus asymmetry shows (Fig, 1) that the injection point for the $N+A g$ systen is located on a steep potential energy slope, while it appears to be close to the maximm in the $\mathrm{Ne}+\mathrm{Ag}$ system. If the products are to be anitted very rapidly before completion of the relaxation process, most of them should be foum in elements below $Z=7$ in nitrogen induced reactions and more evenly distributed around $Z=10$ in neon induced reactions.

The thin ($\sim 300 \mu \mathrm{~g} / \mathrm{cn}^{2}$) self supporting natural silver targets were bombarded with the ${ }^{20} \mathrm{Ne}$ bean obtained from the 88 -Incil Cyclotron and tho bombarding energjes were 175 MoV and 252 NmV . At both energies Ne6t ions were accelerated in order to avoid possible $12 c^{3+}$ or 160^{4+} contamintat ions which are likely with $20 \mathrm{Ne}^{5+}$ heans.

The reaction products were identified by means of two aE-E telescopos. The AE counter is an ionization chumer Eilled with oither a methanc-argon mixing or pure methane under a well stobilized pressurc of 6 to 8 cm of mercury. The fonization

Fig. 1. Potential energy of the combined system as a function of the atomic mmber of one of the fragnents for $\mathrm{Ag}+14 \mathrm{~N}$ and $\mathrm{Ag}_{\mathrm{g}}+{ }^{20} \mathrm{Ne}$. The injection point is indicated by means of an arrow.
(XBL 752-2308)
chamber allows us to carry out the 2 identification up to $z=32-34$.

The observed kinetic energy distributions contain a high energy component (quasi-elastic) and a low energy component close to the Coulonb barrier (relaxed). The quasi-elastic component prevails close to the grazing angle and for 2 's close to that of the projectile (Fig, 2). At angles different from the grazing angle, the relaxed component, in which we are specifically interested, is the only component observed.

Argular distributions have been measured in the range $15^{\circ}<\theta$ lab $<155^{\circ}$. However, due to the thickress of the ΔE counter ($-1 \mathrm{mg} / \mathrm{cn}^{2}\left(\mathrm{Ar} \cdot \mathrm{CH}_{4}\right)$. or $\sim 0.5 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Cr}_{4}$) there is an energy threshold in the detection of the different products. Thus, for obvious kinenatical reasons, the range of identified products without 10 w energy cut off is typically $z=5-30$ at $\theta=20^{\circ}$ and only $z=5-10$ for $\theta=150^{\circ}$. Therefore, as shown in Fig. 3, we are able to measure angular distributions ranging at least from forward to $90^{\circ} \mathrm{c}$.m. for $20 \mathrm{Z}^{\prime} \mathrm{s}$ between $2=5$ and $2=24$. In Fig. 3 only the cross sections for the relaxed component are given where it can be sepurated from the quasi-elastic component. This explains why experimental values are missing around the grazing anglo for the projectile's neighoors.

The angular distributions exhibit roughly the same patterns as the N induced reactions (Fig. 4). For the atomic mumers below the projectile and slightly above, a strong forward peaked distribultion is observed, while for the highest atomite numbers the angular distribution is consistent with a $1 / \sin \theta$ distribution.

A glinpse at the potential enctgy versus asymmotry indicates that the system is driven more rapidly toward larger than smallor asymetries. Therefore if the separation of the systen were

Fig. 2. Exanples of kinetic energy distributions. The quasi-elastic and the relaxed components are visible. (XBL 748.4081, XBL 748-4082)

Fig. 3, Cress sections for the production of particles of various atonic numbers at different angles.
(XBL 752-2310, XBL 7412-8427)

Fig. 4. Center of mass angular distributions for various Z 's at 170 MeV and 250 keV bombarding energies.
(YBL 752-2309)
achieved in a time much shorter than the rotation period, most of the products would be lighter or slightly heavier than the projectile and kould be enitted in the forward direction. On the contrary it takes a longer time for the system to evolve toward a more symetric configuration. Following the angular distributions from $Z=11 \mathrm{up}$ to $Z=24$ a change toward a $1 / \sin \theta$ distribution appears gradually, indicating that the time needed by the former projectile in order to gain 5 or 6 charges is of the order of magnitude of the rotation period.

A comparison between the angular distributions at the two bombarding energies shows a stronger forward peaking of the distribution at the lower energy. This might indicate a difference in the ℓ waves involved in such interactions. At the higher
energy the average 2 value appears to be higher than at the lower energy, thus increasing the mean rotation velocity and allowing more particles to be enitted backward.

As long as the angular distributions are very strongly forward peaked, there is no way to evaluate and compare the relative cross sections integrated over θ for a given 2 and for the two energies. But from $Z=15$ or 16 to $Z=24$, the cross sections tend to become very close in value at both energies.

The last point worth emphasizing is related to to the relative cross sections of the products at different aagles (Fig. 3). In contrast with the N induced reactions there is no tremendous increase of the cross section around and specially below the Z of the projectile. This points out the particular influence of the entrance channel in the interactions, strongly indicating a partial relatation of the charge (or mass) asymetry degree of freedom.

In conclusion, it has been shown how the study of angular distributions of the products is a very convenient way to obtain information regarding the time involved in the interactions under study. However as soon as the times involved become larger than the rotational period we are no longer able to distinguish between only several or a mulititude of rotational periods. As a consequence the $1 / \sin \theta$ dependence cannot be considered, as it has been ofter in the past, as the signature of compound nucleus formation.

In the case of Ne induced reactions on Ag , at both energies a complete equilibration of all the degrees of freedom of the system followed by the emission of a particle with $2>5$ seems very improbable. Instead most of these products are enitted by a composite system which is not conpletely relaxed in all its degrees of freedom.

References

1. S. C. Thampson, L. G. Moretto, R. C. Jared, R. P. Babinet, J. Galin, M, M. Fowler, R. C. Gatti and J. Hhunter, LBL•2940, JLine 1974.

STUDY OF THE FRAGMENTS EMITTED IN THE INTERAGTION BETWEEN Ag AND ${ }^{40}$ Ar AT $288 \cdot \mathrm{MoV}$ AND 340 MoV BOMBARDING ENERGY

d. Galin, R, Bebinet, M. Fowler, R. Jered, R. Gatti, S. G. Thompion, and L. G. Moretto

The previous study of $288-\mathrm{BleV}$ Ar induced reactions on $A B$ has been completed and extended to a higher bombarding energy ($340-\mathrm{MeV}$). The increase in bombarding energy has two effects. The first is to increase the reaction cross section by opening new entrance channels associated with higher $\&$ waves, The second is to increase the available energy and thus the nuclear temperature for those procosses where a complete relaxation of the kinetic energy occurs. Also, the choice of a very high borkharding energy is very helpful in separating the
relaxed from the quasi-elastic component of the kinetir energy distributions.

The experimental set-up is similar to that duscribed for the experiments carried cut at the 88 -Inch Cyclotron. The experiment at $288-\mathrm{HeV}$ Ar was performed with a ΔE proportional counter. With such a device it was not possible to resolve products above $2=18$. The higher energy experiment was performed with a ΔE ionization chamber with superior performance which allowed us to attain good atomic mmber resolution up to $2=32$.

Some examples of the kisetic energy distributions illustrating the presence of both high energy (quasi-elastic) and low energy (relaxed) connponents are skown in Fig. 1.

Fig. 1. Examples of kinetic energy distributions at $288-\mathrm{MeV}$ bonbarding ener.
(XBL ;44-2775, XBL 744-2774)

The cross sections as a function of \ddot{z} for various laboratory angles are shown in Fig. 2. These cross sections do not contain the quasielastic components of the cross section. The corresponding center of mass angular distributions are shown in Fig. 3. One can notice that the cross sections are very similar at both energies for Z's close to the projectile, while around $z=8$ the cross sections at $340-\mathrm{MoV}$ are 50 to 80% higher than at $288-\mathrm{MeV}$. The cross sertions terd to increase with increasing 2 . This is in definite contrast both with the $\mathrm{Ne}+\mathrm{hg}$ case and the $\mathrm{N}+\mathrm{Ag}$ case. In the first case the cross sections are quite constant and in the second case the cross sections actually decrease with Z. The angular distributions are more forward peaked than backwand feaked for all tho 2 's, more forward peaked close to $2=18$. The excess forward peaking shows that the decay occurs in a time comparable to the rotational period ($10^{-20}, 10^{-21} \mathrm{sec}$). Tho decreased forward peaking for products farther removed From the projectile indicates that the products close to the projectile are populated sooner than those farther removed from it and conssquently can be enitted sooner.

Fig. 2. Cross sections as a function of Z for various laboratory angles at $288-\mathrm{MeV}$ and $340-\mathrm{MeV}$ bombarding energy. (XBL 7411-8216A, XBL 752-2301)

Fig. 3. Center of mass anguint disiributions for various 7 's at $288-\mathrm{MeV}$ and 340 NeV bombarding energy.
(XBL 752-2302)

In conclusion, the evidence seems to support the hypothesis of a short-lived intermediate complex (instead of a compow nucleus) that decays before all the degrees of frection, in particular the mass asymnetry degree of freedom, have had the time to undergo complete relaxation.

COINCIDENGE EXPERIMENT IN THE REACTION ARGON (340 MeV) ON SILVER, uSing a sclid state position sensitive derector and a particle telescope

R. Bahinat, Z. Fraenkel, P. Russo, R. Jared,
L. G. Moretto, and S. G. Thompson

Coincidence experiments with and without a position sensitive detector (PSD) have been usod in the early study of the fission-1ike process observed in heavy ion reactions, 1,2,3 In a typical experiment both energies and angles of the two complementary fragnents are measured. From these measurements the two-dimensional mass-energy distribution of the products may be deduced, provided several a priori assumptions on the process itself are made. However, even if these assumptions were justified, this general approach suffers, in the case of heavy ion reactions, from uncertainties associated mainly with a large center of mass motion and, with the poor knowledge of surface barrier detector response to heavy ions, especially with a PSD. On the other hand, through the recently rizeloped ionization ΔE counter telescope, 4 which allows charge determinations up to 30 or more, detailed information regarding both the quasi-elastic and the relaxed components in heavy ion reactions has been obtained from measurements on the light fragment alone, 5 iulependently of any constraint on other products of the reactions. Information on correlated distributions may be obtained, with no loss of efficiency, by conbining these two techniques. The information on the charge of the light fragment is expected to improve greatly the quality of such experiments. In this framework, we have considered first the hypothesis of binary division. The main evidence for binary division in the relaxed component of hervy ion reaction cross sections comes from the kinetic energy of the light fragnents. Pre:ious experimental results ${ }^{5}$ indicate that the aver $\lrcorner g e$ kinetic energies of all products detected, except for a few Z's around the projectile Z where a high energy component associated with the transfer of a few nucleons is present, are consistent with the energy expected from the Coulonb repulsion of two complenentary fragnents. However, a systematic shift of the average kinetic energy by a few MeV seems to show up between forward and backward angles in the angular distribution, thus indicating that the assumption of a binary division should be much more carefully checked. In order to investigate this point, we have started at the SuperHILAC, a coincidence experiment between all ionization telescope and a position sensitive fetector (PSD). We were then able to measure the energy and identify the charge of the light fragment as well as to detemine the energy and the position of the heavy partner in the PSD.

The ORIEC position sessitive detector used in this experiment is 7 mm high and 45 mm wide, giving an angular acceptance of 24° in the reaction plane. Protection against bean induced electron background was obtained by magnetic deflection which we have found more effective and more convenient than an electrostatic shielding. The ionization telescope has been described elsewhere. 4 Improvement in the collection time for the ΔE signal with so loss of resolution has
been obtained using pure methane (in place of argon + methane) as gas for the ionization part of the telescope. The $340-\mathrm{MeV}$ Ar bean with an intensity of about $2 \times 10^{10} \mathrm{pps}$ was used to bombard a 300 ug self-supporting silver target. Precision pulses were recorded in and out of the bean pulse during the run in order to check for pile-up effects. The position signal of the PSD was calibratedusing a collimator with seven holes, the distance between the center of two consecutive holes was 5 mm . The linearity of the position signal as a fumetion of the energy signal was found to be ercellent, while on the other hand the differential linearity of the position signal as a function of the true position in the detector for a given energy is about 138 between hole No. 1 and hole No. 7. This can be easily corrected for, once measured, but it has nevertheless been ignored in the preliminary analysis of the data. A summary of the results is presented in Table 1 for four different sets of PSD and ionization telescope angles. The last two colums refer to the distribution of the

Fig. 1. Center of mass angle for the light fragment versus that of the heavy fragment. The three curves correspond to three different pulse height defects in the posicion sensitive detector (0,5 and 10 MeV). The Z of the light fragnent for each point is written next to it.
(XBL 752-2387)

Table 1 .

$Z_{\ell}: Z$ of the light fragment.
$\bar{F}_{\ell}^{c m} \quad \sigma_{E_{\ell}}$: Average and variance of the center of mass $1 i g h t$ fragment energy distribution.
$\bar{E}_{\mathrm{h}}^{\mathrm{cIm}}, \sigma_{\mathrm{E}_{\mathrm{h}}}$: Averape and variance of the center of mass heavy fragnent energy distribution.
$\theta_{h}{ }^{3} \sigma_{\theta}$: Average and variance of the heavy fragnent lab angle distribution.
N_{ℓ} : Number of coincidences recorded for this particular Z,
$\overline{\theta_{l}^{c m}+\theta_{h}}, \sigma_{\theta_{l}+\theta_{h}}: \begin{aligned} & \text { Average and variance of the distribution of the sum of the c.m. } \\ & \text { fragnent angles. }\end{aligned}$
sum of the c.m. angles for the two fragments. The average $\theta_{Q}^{\text {Cn }}+e_{h}^{\text {Cn }}$ should evidently be 180° for a binary process. The discrepancy ($\sim 15^{\circ}$) between this value and the measured one is expected to be accounted for by neutron evaporation and pulse height defect. The influence of the prise height defect is shown on Fig. 1, where the c.m. light fragment angle is plotted versus that of the heavy fragment for different pillse height defects. (A value of 6 MeV was measured for silver ions of 30 MkV and the adopted value in Table 1 is 5 MeV .) No atterpt has been made yet to correct for neutron evaporation. The variance of the distribution $\left(\theta_{\mathrm{l}}^{\mathrm{m}}+\theta_{\mathrm{h}}^{\mathrm{cln}}\right)$ is rather broad. If this is associated with neutron (or particle) evaporation, a similar width should be observed in the azimuthal distriution. Bore over, such a broad distribution in azimuthal angle also means that we lose many coincidence events (compared to the singles rate), due to pure geonetrical effects. Thus a more quantitative analysis of the data (comparison of the coincidence events cross section with single event cross section) requires the knowledge of the azimuthal distribution. We have just made such a measurement and some resuits are shown in Figs. 2 and

Fig. 2. Azimuthal angular distributions in the Laboratory and center of mass systems.
(XBL 752-2386)
3. The width of the azimuthal distribution is substintially lower than that observed for the radial angular distribution. However, the variance of this last distribution includes a contribution from the $\theta_{l}^{\mathrm{cn}}+\theta_{h}^{\mathrm{cn}}$ as a function of the number of evaporated neutrons, and this is expected to broaden the distribution. Indeed this could even give some measure of the distribution of the evaporated neutrons.

In sumary, preliminary results indicate that the hypothesis of binary division is well founded, and that a more quantitative result can be obtained. However, the energy dependent efficiency of coincidence detection, not only complicetes the analysis of the data but also introduces same imprecision in the results. More striking is the indirect information on the reutron evaporation, which seems to be produced in this experiment. It is clear that such results would be of grea: interesi for the general understanding of the leep inelastic process. In this respect, we conclude that this type of experiment seems very appealing.

Fig. 3. Comparison between the azimutha: angular distribution of the heavy fragment and the associate radial distribution for the sum of the c.m. angles of the two fragments.
(XBL 752-2385)

References

1. F. Hanappe, C. Ngo, J. Peter and B. Tamain, Proceedings of the Third IAEA Symposium on the Fhysics and Chemistry of Fission, IABA,-3M 174-42, Vol. 2, p. 289. International Atomic Energ) Agency, Vienna 1974.
2. R. Plasil, R. L. Ferguson, Ibid., IAEA SM 174-71 Vo1. 2, p. 319.
3. K. L. Woif, J. P. Unik, ü. R, Fhizenga J, Birkelund, H. Freiesleben and V. Viola, Phys. Rev. Lett. 33, 1105 (1974),
4. M. Fowler R. C. Jared, Nucl. Instr. Meth, 124 , 341 (1975).
5. See papers in this annual report.

STUDY OF THE FRAGMENTS EMITTED IN THE INTERACTION BETWEEN
 ${ }^{19}{ }^{\circ}$ Au AND ${ }^{40} \mathrm{Ar}$ AT $288 . \mathrm{MeV}$ AND 340 MOV BOMBARDING ENERGY

L. G. Moretto, R. Babinst, J. Galin, R. Schmitt, 2. Frsenkel, A. Jared, J. Hunter, and S, G. Thompson

The study of the reaction products obtained in the boabardment of Ag with N, Ne and Ar projectiles has shown the following systematics. A large fraction of the cross section las completely relaxed kinetic energy distributions. The same component of the cross section is characterized by an excess forward peaking, more enilanced for products close to the projectile. The excess forward peaking disappears more rapidly for fragments with z larger than that of the projectile than for fragments with Z smaller than that of the projectile. For instance, in the Ne induced reaction, the angular distributions are already consistent with $1 / \sin \theta$ 5 atomic nunbers above that of the projectile (at $Z=15$). This is presumably due to the fact that the entrance channel asymmetry corresponds to a potential energy of the intermediate complex sloping in the direction of increasing asymmetrics. The diffusion process is expected to drive the system rapidly in the direction of decreasing potential energies, leading to a rapid decay and to a forward peaking of the fragments with 2's lower than that of the projectile. The diffusion also spreads slowly towards higher potential energies thus allowing the system to emit fragments with 2 's larger than that of the projectile over a longer time span and with a synnetric angular distribution. The choice of Au as a target should reverse the above situation to some extent. The injection asymmetry corresponds now to a potential energy sloping towards synmetry. Therefore one should expect a substantial excess in forward peaking which is retained well above the projectile. Furthermore, the bombardment of a Au target has an additional purpose. With such a heavy target one should obtain nuclei with fission barriers much lower than with an Ag target. A very large cross section for fission as understood in the traditional sense should be observed, on the other hand, if a large excess forward peaking should be observed over a large range of products, one should be led to believe that indeed a new preess distinct from the traditional compound nucleus process is involved in the reactions. The experiments have been carried out at 288 MeV and at 340 MeV with a set-ip similar to that used in Ne and Ar induced reactions on Ag.

Close to the grazing angle it is somerimes easy to single out the relaxed corponent of the kinetic energy since two distinct peaks (quasi-elastic and relaxed) are observed (see Fig. 1). One must notice that the quasi-elastic contribution is not the same below and above the projectile. The quasi-elastic cross section is vanishing and can be neglected with regard to the reloxed component for $\mathrm{Z}>21$, at all angles. Put for Z's as low as 12 or even lower, the energy spectra exhibit a much broader FWWM and a higher ncan energy in the forward direction than in the backward direction, well outside the grazing angle. Thus here at erves indeed a higher energy component which seems to be added to the relaxed one. Yet it is quite puzzling to consider the exchange of

Fig. 1. Some examples of kinetic energy distributions.
(XBL 752-2304)

12 nucleons (6 protons and a similar number of neutrons) or more as a quasi-elastic phenomenon. For $z=7$ or 8 the energy spectra remain the same inside the grazing angle as they are well outside this angle.

Furthermore the nost probable energies appear to be slightly shifted toward higher values (several MeV) when observing the products more and more forward. This seems to occur for all the products, although it is more difficult to reach such a conclusion for the products affected by the quasielastic contribution. Thus for the products emitted in the forwerd direction the energy thermalization process is not as complete as it is elsewhere. That gives a more accurate idea of the time needed for the kinetic energy to attain complete relaxation. It is actually more than a quarter or even half the time of a rotation period.

It is clearly seen in Figs. 2 and 3 that the relative cross section of the products is strongly dependent on the bombarding energy. It is interesting to notice that above the projectile, higher cross sections are found for the lower bombarding energy. The increase of bombarding energy results

Fig. 2. Dependence of the cross section upon 2 for various laboratory angles at two bombarding energies.
(XBL 752-2305) (XBL 752-2306)

Fig. 3. Center of mass angular distributions for various atomic numbers at the two bombarding energies.
(XBL 752-2307)
in an increase in the temperature of the composite system. This has the effect of smoothing the differences in the potential energy of the system. Therefore the relative distribution of the products is expected to be aiso smoothed by an increase in the energy, as observed.

Concerning the angular distributions (Fig. 3), several conments must be giver. Distributions are more forward than backward peaked and nowhere has a $1 / \sin \theta$ distribution been foumd as it was for example in the case of Ne induced reactions on Ag. In the case of $288-\mathrm{MeV} \mathrm{Ar}$ on Au this means in particular that all the fragments up to $Z=29$ and consequently a mass around 65) cannot be accounted for in tenns of the fission of a completely relaxed conpound nucleus as has been done so far.

Furthermore, the retained forward peaking up to $2 * 29$ indicates that the system is diffusing, as expected, on a downward sloping potential enenergy, towards symmetry.

PRELIMINARY STUDIES ON THE REACTION Cu + ${ }^{\text {B }} \mathrm{Kr}$ AT $606 \cdot \mathrm{MeV}$ BOMBARDING ENERGY

L. G. Moretto, R. Babinat, R. Jared, K. C. Gatti, J. Moultom, and S. G. Thompson

A very preliminary investigation of the reaction between Cu and $606 \mathrm{MeV}{ }^{84} \mathrm{Kr}$ has been carried out. The papose of this study is to compare both the particle cross sections and their kinetic energies with the reaction $\mathrm{Ag}+40_{\mathrm{Ar}}$ at $288-\mathrm{MeV}$ bombarding energy. The combined system is the same in both cases. The differences in the center of mass energy are minor. The main differences are of course in the angular momentum and especially in the entrance channel mass-charge asymmetry.

The data have been collected with particle telescopes described in the $\mathrm{Ne}+\mathrm{Ag}$ reaction report. The experimental results show an amazing similarity between the two reactions. In Fig. 1

Fig. 1. Comparison of the c.m. kinetic energy distributions for $Z=16$ in the reaction $\mathrm{Ar}+\mathrm{Ag}$ and $\mathrm{Cu}+\mathrm{Kr}$.
(XBL 745-32II)
the center of mass kinetic energy distributions for a $2=16$ fragment obtained from both reactions is shown. The two peaks appear to be identical within the experimental uncertainty. This is not too surprising, in as far as these "relaxed" components in the kinetic energy distribution find their origin in the Coulanb repulsion of the two fragments. More surprising is the similarity of the two reactions in the cross sections as a function of the fragment Z (Fig. 2). The cross section appears to increase with increasing atomic number and is modulated by the usual even-odd effect. A full comparison of the two reactions is possible only after many more angles are measured and a complete augular distribution is available.

Fig. 2. Lab and c.m. cross section as a function of atomic number.
(XBL 745-3210)

FISSION EXCITATION FUHCTIONS IN AEDIKN.KEAYY HUCLEA

L. 7. Morefto, R. C. Catti,

R. P. Sehmitt, and \& G. Thompron

The measurement of fission barriers is important in the study of smoothly varying maclear properties such as those described by the liquid drop and droplet models. A straichtformand aud powerful tecinique for obtaining fission barriers is through the analysis of excitation functions.

Since fission barriers tend to decrease with increasing z^{2} / A (neglecting shell effects), many of the heavier elements have already been stadied. The virgin territories lic in the regton around ${ }_{20}^{20} \mathrm{~Pb}$, in the area just preceding it and extending into the lanthanide regioft. It is the purpose of this work to fill in some of the gaps around ${ }_{2}{ }^{2} \mathrm{~Pb}$ remaining from our previous work and to extend the measurencnts into the rare earth region. A good deal of data has already been taken using 4he and to a lesser extent iff projectiles on variof targets.

In order to obtain menningful results, forgets free of heavy element contamination (e.g.. 232 Th , $238 \mathrm{U})$ must be used. The 壮 isotopes are well suited for use in this instance because their low boiling point allows them to be vaporized relatively free of contamination. Despite the obvious difficulty involved, targets have been prepared by first amalganating the Hg with: Ag and then covering the target with thin layers of Pd hhich does not fom an amalgam but does prevent evaporation of the tig.

The experimental apparatus is depicted in Fig. 1. The beam enters the chamber from the left through an isolation foil and the two Geneva wheels in whici. various aggrading foils are mounted. The rean traen passes through a long collinator jon in o iamet er, strikes a thin ($>1 \mathrm{mg} / \mathrm{cm}^{2}$) targot mosuted at 45° with respect to the beam direction and is collected in a Faraday cup. Fission events are recorded using $1-\mathrm{cn}^{2}$ mica detectors mounted 1 inch from the center of the chamber and at 135° with respect to the beam axis. There are four such detectors, any of which can be rotated into position without breaking the vacum.

The angular distribution for the bi, ary fission of a rotating nucleus is approximatrely proportional to (sine) ${ }^{-1}$ where θ is not close to either 0° or 180°. Such an angular distribution yields the same integrated cross section as an isotropic distribution nomalized at 140.5°. Because of the kinematical shift and the deviation form ($\sin \theta)^{-1}$, we chase to position the track de-

Fig. 1. Experimental apparatus.
(XBL 742-2460)
tectors nt 135° in the lab. The geometry factor of this configuraition is easily obtained usinn a Au target becpuse the if + Au and die * har systems have bien well stadicd.

The experimental dita as it exists at prosent are shom in Fis. 2. All the excitation functions are seen to rise rapidly with Incrassing oxcitation energy. One stribinty fouture of the dinte is the behutior of the lis isotopes. The cross sections are depressed dranatically as the emgnic mmbers N $=136$ and $\geq=12$ are appronched, thas beautifully dJustartine the effect of shell closure on the fission barrier hoight. The lis fsotopes are very interesting for quite mother reason: after taking nutron binding energies into account, one cun obtain a direct estimate of the cross section for firse chance fission in several different enses. The inclusion of a 198 l g target will scrve to linprove the data in this respect.

The data obtuined from the study of lif-induced fission are still in the preliminary stuges. Upon its completion, a great doal will hise been added to our understanding of smoothly varying nuelear properties not to mention a ven' close look at the closed neutron and proton shells at $\$=126$ and $\hat{z} \div \mathbf{3 2}$ respectively.

Fig. 2. Fission cross sections as a function of excitation energy.
(CBL 752-2378)

Refercncos

A. L. G. Moretta, S. G. Thompson, J. Moutti, and R. C. Gatei, Fhys. Leterers 383, 471 (1972).
2. L. G. Moretto, Invised Paper prasented at the Third Symposive on the Fhysice and Ghatetry of Fission, Mochester, Now York, hyut 13-17, 19\%3: Lamence Eerkeley Laboratory maport LLL-1914.

The complete fusion min total reaction cross sections for colyisions batwen 175-and 25z-N4V 20se ions and 33 have been macured ar the 515Inch Cyclotron in onder to study the depanimece of octop as a function of eacitation enery. Here we dine ocp as the cross section for fission resultiftr from fractions in which there is complete trans. fer of projectile linear momentum ro the target pro. fectile systom; of is she cotal mueleur reaction cross section. The fission-frampent matiar corrodation technique was used to dotermine complete fusion cross sections. Both planar and non-planar mezouraments ware performed usime a positicn-sensicite semiconduetor detector (PSD) covered with a unlei-slit colitimfor. The plariar correlation finc-

Fig. 1. Fragent angular correlation from fisyion of 23 SU with $175-\mathrm{MeV} 20$ ite ims. A defining detector (11) was placed at -55.0° with respect to the beam axis and corrciated fragments (ψ_{2}) were observed with a PSD placed at appropriate angles. Data represent only planar confributions to the correlation function.
(XBL 757-3437)
tiere a definine detector mesplaced at -55.00 and the PSD at appropriate correlation meles. The nonpisater correlasion fumctions are found to be much broeder at correlation meles naar 170-100 ($\mathbf{1} 2=115$ -125), indicatiny a larper contribution from incomplete fusion trents chan indicated in the plumar correlation fuction.

Tozal reaction cioss soctions were datenined In two waya: i) by masurint che retal fission cross section 1 ond becmest of the smy high fissionability of 233 , , sssumine of $=$ oris and 2) by maturliss the elastic scatterint of 20 . and deter. fining op usins the $1 / 4$ - point recipe based on Frestel scarterine thoory. ${ }^{2}$ Elastic scattering data were aiso obrained using a position-sonsitive detector, and ploss of opiequic/toucherford are show in Fig. 2 as function of ciater of atd mbe. From the elastle scatterint data we obtain the followins total nuelear reaction cross sactions, ong and maxIrem angilar momention values, Rmax: at 175 -Mev,

Fig. 2. Ratio of elastis scattering ($\sigma_{e l}$) to patherford scattering cruss soction (obuth) as a function of center-of-miss angle for $175-1$ ny 20 No ions incident on 235 U (upier curve) and $252-\mathrm{MeV}$ 20nve ions on 235 J (lower curve). (cor 757-3438)
$\mathrm{gR}=1900 \mathrm{mb}$ and hax $=91.8$, and at $252-\mathrm{MeV}$, or $=$ 2810 and R max 134 . Preliminary analysis of the angular correlation results at $175-\mathrm{MeV}$ yields a value of ocr/or $=0.75 \pm 0.05$. This value corresponds to a critical angular momentum, $\ell^{\prime} c=76.5$. This is to be compared with a yolue of $\ell_{c}=84.5 \mathrm{ge}$ rived previously with $208-\mathrm{HoV} 20$ ive ions and a 238 U target. 3 The dependence of the ratio $\sigma_{C F} / \sigma_{R}$ and ℓ_{c} on excitation energy will be studied using current potential model predictions, 4 The elastic scattering fita are also being apalyzed in terms of Fresnel scattering theory and various heavy ion optical model potentials.
tUniversity of Maryland, College Park, Md.

1. V. E. Viola, Jr. and T. Sikkeland, Phys, Rev. 128, 767 (1962).
2. W. E. Frahn, Fiys. Rev. Lett. 26, 358 (1971); Arn. Phys. 72, 524 (1972).
3. T. Sikkeland and V. E. Viola, Jr., Proc, of 3rd Conf. on Reactions between Complex Nuclei (U. of Califormía Press, Berkeley, 1963) p. 232.
4. J. Wilczyñski, Nuc1. Phys. A216 (1973) ; R. Bass, Phys. Lett. 47B, 139 (1973); D.H.E. Gross and H. Kal inowski, Phys. Lett. 48B, 302 (1974); J. Galin, D. Guerreau, M. Lefort and X. Tarrago, Phys. Rev. C9, 1018 (1974).

COUNTER EXPERIMENTS IN THE THIN TARGET AREA AT LAMPF

G. W. Buther.*D. G. Perry.* A. M. Poskenzer,
J. B. Natowitz, F. Plasil, ${ }^{\dagger}$ and L. P. Romsberg \S

A collaborative effort has been initiated to conduct coumter experiments in the main proton bean line at the Los Alamos Meson Physics Facility. The $800-\mathrm{NeV}$ protion beam, with present intensity of $10 \mu \mathrm{~A}$, irradiates a uranium target $3.5 \mathrm{mg} / \mathrm{ca}^{2}$ thick. Fraggints were identified by $\Delta \mathrm{E}-\mathrm{E}$ silicon counter telescopes located 4.6 m from the target. Energy spectra have been measured for He, Li , Be, and B fragnents at 45°, 90°, and 135° to the bein. It is expected that the data will be useful in describing the low deposition energy production of these fragments for comparison to higher energy reactions at the Bevatron and Bevalay.

Preliminary results, when compared to the previous work with 5 -Gel protons, 1 indicate that the energy spectra peak at higher kinetic energies and fall off more steeply above the peak.

A second experiment, utilizing a silicon $\Delta E-E \sim T O F$ telescope, 2 was installed at 90° to the beam and sone test data were taken. Both the time of flight between the ΔE and E detectors and the
time of the ΔE signal relative to the $R F$ of the linac were recorded. At LAAPF the proton beam cones in 0.2 ns wide bursts every 5 ns . It is planned to use the time of flight between the silicon detectors to sort out which beam micropulse the fragment came from. Thus it should be possible to do TOF identification from the RF over a 4-1/2 meter flight path.

Footnotes and References

*Los Alamos Scientific Laboratory.
$\dagger_{\text {Texas } A}$ \& M University.
${ }^{\ddagger}$ Oak Ridge National Laboratory.
${ }^{5}$ Brookhaven National Laboratory.

1. A. M. Poskanzer, G. W. Bulter, and E. K. Hyde, Phys. Rev. C3, 882 (1971).
2. G. W. Butler, A. M. Poskanzer, and D. A. Landis, Nucl. Instmu. Methods 89, 189 (1970), and newer fast electronics designed by D. A. Landis.

A. M. Zobolma, A, M. Pogkenzw, d. D. Bowmen, ${ }^{\dagger}$
R. G. Eaxtro, and V. E. Yiole, dr. ${ }^{7}$

An aspect of high energy proton reactions with complex nuclei that has energed recently is that the gross features of this interaction are independent of proton bombarding energy from a few GeV up to 300 GeV . 1 That is, it appears that above a few GeV , increasing the proton energy does not deposit any more energy in the target rucleus. The orientation of the present work is to detemine if the gross features change when one keeps the energy of the projectile at a few $\mathrm{GeV} / \mathrm{mucleon}$ but increases the mass of the projectile. The preliminary results of Sullivan et al. ${ }^{2}$ indicate that significant changes occur. We have previously made extensive studies of the energy spectra and angular distributions of He through Ng fragments from heavy targets irradiated by high energy protons. 3,4 This work shows that the energy spectra of the products Li and heavier are sensitive indicators of high deposition energies in the nucleus. Thus a comparison of the energy spectra of these fragments produced by heav'ions and protons should bear on the problem of energy deposition. In the present work energy spectra and crude angular distributions were measured for He to B fragments from a uranium target irradiated by the $2.1 \mathrm{GeV} / \mathrm{mucleon}$ deuteron and alpha beans from the Bevatron, in orde: to allow a careful comparison with proton-induced reactions, data were remeasured with the same equipment using 4.9 GeV protons. Most of the experimental details are described more fully in Ref. 3. In general, the detector telescopes used consisted of a transmission ΔE detector, and E detector, and an anti-coincidence detector.

The energy spectra from the alpha particle reactions and the proton reactions are shown in Fig. 1. The peak cross sections of the proton-induced reactions have been normalized to those of the alpha-induced reactions in order to illustrate the more prominent high energy tails and somewhat increased yields at low energies in the alpha data. The data show gross features already noted for proton irradiations: ${ }^{3}$

1) The peaks in the spectra shift towards higher energy as the atomic mumbers of the fragments increase, in accord with an increasing Coulomb barrier.
2) The spepctra of the neutron-deficient isotopes ${ }^{2}$ Li and ${ }^{7}$ Be exhibit more prominent high energy tails than do the other isotopes of these elements.

Laboratory angular distributions are shown in Fig. 2. Shown with the proton-induced data are the previously published data ${ }^{3}$ at five angles, showing that a straight line through the data is adequate for integration. The distributions were integrated according to the straight lines drawn between the data points to give the total cross sections listed in Table 1 .

As in Ref. 3 an attempt was made to fit the energy spectra in terms of an evaporation model in

Fig. 1. Laboratory energy spectra at 90° for alpha and proton irradiations. The incident proton data are shown as dashed curves and have been nommalized at their peaks to the incident alpha data.
(XBL 745-2985)
order to extract certain parameters, such as effective Coulonb barriers and apparent muclear temperatures. The parameters obtained with incident protons were consistent with those obtained previously. ${ }^{3}$

From the analysis of the alpha induced data it was found that the fragments are forward peaked in the system of the emitting nucleus and that this effect is more pronounced than observed previously

Fig. 2. Laboratory angular distributions for alphaand proton-induced resctions. The dashed lines go through the incident proton dita. The circles are from the present work while the data represented by triangles come from Ref. 3.
(XBL 745-2985)

Table 1. Total cross sections for the alphainduced reactions and ratio of alpha- and deuteroninduced reactions to proton induced reactions.

Isotope	$\begin{gathered} \sigma_{a} \\ (m b) \end{gathered}$	$\sigma^{*} / \sigma_{\rho}$	${ }_{\text {c }} / \sigma_{\text {p }}$
${ }^{4} \mathrm{He}$	10600	2.9	$1.4{ }^{\text {a }}$
${ }^{6} \mathrm{He}$	310	3.1	$1.5{ }^{\text {b }}$
${ }^{6} \mathrm{Li}$	297	3.3	$1.3{ }^{\text {b }}$
${ }^{7} \mathrm{Li}$	650	3.8	$1.5^{\text {a }}$
$8_{\text {Li }}$	210	$4.2{ }^{\text {b }}$	$1.2{ }^{\text {b }}$
${ }^{9} \mathrm{Li}$	≈ 60	$3.8{ }^{\text {b }}$	$1.5{ }^{\text {b }}$
$7_{\text {Be }}$	67	4.3	$1.5^{\text {a }}$
${ }^{9} \mathrm{Be}$	157	3.4	$1.3{ }^{\text {a }}$
${ }^{10} \mathrm{Be}$	196	4.0	$1.6{ }^{\text {a }}$
${ }^{11}$ Be	≈ 21	$4.3{ }^{\text {b }}$	
${ }^{12} \mathrm{Be}$	* 11	$4.5{ }^{\text {b }}$	

[^3]with incident protons. 3 Adlitionally, it was found thit the effective Coulomb barriors that were already anomiously low with incident protons, huve dropped another 158 for incident alphas; the apparent temperatures, which were unbelievably high for ircident protons, have climbed mother 1-1/2 HeV on the average for incident alphns; and finally, the smoaring parameters, witch deseribe the disipersion in the Coulomb barrier, have incresesed almost a factor of 2.

In sumary, we find that although the cross sections for the production of fragments from uranium are a factor of 1.5 higher with deuterons than with protons, the enorgy spectra of these frapments are not significantly different. However, in the interaction of alpiaz particles with uraniln there are many indications of increased deposition energy. The cross sections fior producing the fragments are a factor of 3 to 4 higher. The effective cullomb barriers are lower, the apparent temperatures are higher, the smearing of the energy spectra has increased, ond the angular distributions are more fomard naaked.

Footnotes and Referencos

*Condensed from LBL-3427, P:iysical Review C. 11, 1280 (1975).
${ }^{\dagger}$ Present address: Los Alamos Scientific Laboratory, Los Alamos, NM 87544.
${ }^{\dagger}{ }^{\text {Penmanent }}$ address: University of Maryland, College Park, MD 20742.

1. S. K. Chang and N. Sugarman, Phys. Rev. C9, 1138 (1974). Y.W. Yu and N, T. Porile, Phys, Rev. C10, 167 (1974).
2. J. D. Sullivan, P. B. Prise, H. J. Crawford, and M. Whitehead, Phys. Rev. Lettors 30, 136 (1973).
3. A. M. Poskanzer, G. W. Butler, and E. K. Hyde, Phys. Rev. C3, 882 (1971).
4. E. K. Hyde, G. W. But1er, and A. M. Poskanzer, Phys. Rev. C4, 1759 (1971). R. G. Korteling, C. R. Toren, and E. K. Hyde, Phys. Rev. C7, 1611 (1973).

STLUDIES AT THE BEVATROM OF FRACMERTE FROM C, A, AL. AND U TARGETS OASERVED WITH A GASEOUS $\triangle E$ COUHTEA

R. G. Extro, A. M. Zebeimen, and A. M. Pockenser

Previous counter telescope studies of fragments frou rise high energy proton bombardment of Al (Rex. i), Ag (Ref. 2), and U (Ref, 3) targets have been restricted in the range of fragment energies observed because of the low energy cut-off caused by the thickness of the AE counter. Gilly the high energy tails were observed for all iragments from the Al target and for the fragments heavier than C from the Ag and U targets. This caused serious oraissions in both the energy spectra and the cross-sections.

In the present experiment we have used a thin gascous ionization counter as a ΔE jetector, along with a 100 rn E detector in a counter telescope to study fragnents from $\mathrm{C}, \mathrm{A1}, \mathrm{AB}$, and U targets. While the previous measurements had low-energy cut-offs ranging from $1.5 \mathrm{MeV} / \mathrm{n}_{\mathrm{n}} \mathrm{cleon}$ for the lighter fragnents to $2.5 \mathrm{keV} /$ nucleon for the heavier fragnents, the present data extend down to 0.6 Nel/nucleon for all fragments observed.

The ionization counter was adopted from one designed by Fowler and Jared, ${ }^{4}$ and used successfully in studies of heavy-ion induced reactions. Fragnents entered the gas counter through an $8-\pi m$ diameter entrance window of $50 \mu \mathrm{H} / \mathrm{cm}^{2}$ Formvar (supported by a wire grid), traversed a 7.1 cm flight path through an $\mathrm{Ar}^{-\mathrm{CH}_{4}}$ gas mixture ($\mathrm{P}-7$) at 50 Torr pressure, and struck the E detector located inside the gas. The total gas thickness of $n 0.76$ $\mathrm{mg} / \mathrm{cm}^{2}$ is equivalent to $n 3 \mu \mathrm{~m}$ of silicon. The first stage of the preanplifier was located inside the gas counter, giving a typical ΔE pulser resolution of $16-20 \mathrm{keV}$ Find . The gas flowed continvously through the counter at ~0.6 Torr-1iters/ sec, and the pressure was stabilized to within \pm 18 using a cartesian manostat on the counter exit. The coincidence time resolution between the ΔE and E counters was measured to be 160 nsec FWM for the $8-\pi n$ diameter window, and was found to be a direct function of the size of the window. This is consistent with the expected electron drift velocities in the gas.

The neasurements consisted of three sets of experiments. The first used the 4.9 GeV proton beam to borbard self-supporting $C\left(68 \mu \mathrm{~g} / \mathrm{cm}^{2}\right.$ polystyrene) and Al ($168 \mu \mathrm{~g} / \mathrm{cm}^{2}$) targets. Energy spectra for all products were obtained at 20,45 , 90,135 , and 160°. The second set of experiments used a 2.1 GeV proton beam on the same targets, but with energy spectra acquired only at 20, 90, and 160°. The final part used the 4.9 GeV proton beam to irradiate Ag and U targets. For the former ($530 \mu \mathrm{~g} / \mathrm{cm}^{2}$ self-supporting Ag), energy spectra for fragments from B to Ar were observed only at 90°. Nore complete information was obtained for the U target ($715 \mu \mathrm{~g} / \mathrm{cm}^{2}$ as UF_{4} on 0.25 mil Mylar), with energy spectra for N to Ar fragnents observed at 20,90 , and 160°.

A $\Delta \underset{F}{ }$ vs E spectrum is shown in Fig. 1 for the Al target. Element ridges can be clearly seen for

He up to Na , with an indication of some M events. The maxim in the ridge lines for the low mang. hoavy eleaents is cmused by the noutralization of the atoms as they slow down. Resolvins elemats at energies below the maxim my be difficult. An indication of the elemental resolution from the analog particle identifier (PI) cmin be obtained by riastricting the fregment energies to a fairly narrow bund above 5 MeV. Such a spectrum is shom in Fig. 2;

Fig. 1. Two-dinensional plot of ΔE vs E showing distinct ridges for different elenents. The contcur level has been adjuster for each element separately for clarity.
(XBL 757-3446)

Fig. 2. Analog particle identifier spectrum for fragments with energies between 5 and 10 MeV .
(XBL 757-3447)
elements heavier thin Ne are off-scale to the right.
urrently off-line digital PI techniques are being used to atteupt to separate isatopes for the very light fragments, and to achieve element resolution independent of particle energy for all fragents. It is anticipated that energy spectra and cross-sections will then be obtained. The data from Al +2.1-CeV P will be compared to cascade evaporation ciliculations. The data from $\mathrm{C}+2.1-5$ $\mathrm{GeV} p$ will complement the results of cork et al, 5 where a hydrogen [$\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{C}$ difference] target was bowharded with a 2.1 Gellonucleon C beam. All of the light target data will be of interest to astrophysics, find the heavy target data to the study of high deposition energies in high energy nuclear reactions.

References

1. A. M. Poskanzer, G. W. Butter, and I: K. Hyde, unpublished data.
2. E. K. Hyde, G. W. Butler, and A. N. Poskanzer, Phys, Rev. C4, 1754 (1971); R. G. Kortel ing, C. A. Toren, and E., K. Hyde, Phys. Rev. C7, 1611 (1973).
3. A. M. Poskanzer, G. W. Burler, and E. K. Myde, Phys. Rev. C3, 882 (1971).
4. M. M. Fowler and R. C. Jared, Mucl. Instrum. Methods 124, 341 (1975); see alsc Sec. 4 of this Annual report.
5. P. Lindstrum, D. Greiner, II. Ikckman, B. Cork, and F. Bieser, LBL-3650 (Feb. 1975); D. Greiner, P. Lindstrom, H. lleckman, B. Cork, and F. Bieser, LBL-3651 (MaF . 1975).

N. P. Jecok, J. ond S. S. Merkowitz

This work reports the results for ($p, 2 \mathrm{p}$) excitation functions of 48 Ti and ${ }^{74} \mathrm{Ge}$, both medium mass nuclei anenable to analysis without chemical separation. Since the predominant mechanisn for ($\mathrm{p}, 2 \mathrm{p}$) reactions involves a "quasi-free" klockout ${ }^{1}$ of a target proton, it has been used to illustrate free-pp scattering structure in the ($p, 2 \mathrm{p}$) excitation functions deternined by activation. The purpose of this particular study was to supplenent the several prior excitation function studies ${ }^{2-4}$ and gain a more complete notion of the systematic variation of free-particle structure in such reactions.

The targets for this work were prepared by high temperature vacum evaporation of enriched $48 \mathrm{TiO} 2(99.13 t)$ and ${ }^{74} \mathrm{CeO}_{2}$ (94.5\%) to thicknesses of $0.7-1.5 \mathrm{mg} / \mathrm{cm}^{2}$ on $0.0013-\mathrm{cm}$ aluminum foil. All targets were activated in the internal proton beans of the Lawrence Berkeley Laboratory (184-Inch Synchrocyclotron at energies from 0.3 GeV to 0.73 GeV , and the Bevatron for energies from 1.0 GeV to 4.6 GeV . Subsequent gamma ray counting of the foils with high resolution $\mathrm{Ge}(\mathrm{Li})$ detectors and analysis by computer code permitted cross sections to be calculated. The details of the experinental procedure are described elsewhere. 5

The final, $[p, 2 p$) cross sections are sumparized in Table 1 and plotted as a function of incident proton energy in Fig. 1. The cross sections for the monitor reaction $27 \mathrm{~A} A$ ($p, 3 \mathrm{pn}$) ${ }^{24} \mathrm{Na}$ used to calculate the reaction cross sections were taken from the review article of Cuming. ${ }^{6}$ The uncertainty quoted with each ($p, 2 \mathrm{p}$) result is the mean standard deviation and is derived from the individual determinations.

As seen from Fig. 1 and Table 1, the phenonenon of quasi-free pp scattering is observed for these medium mass nuclei. Previously measured ($p, 2 p$) excitation functions in the FeV energy

Fig. 1. Excitation fumctions for the ${ }^{48} \mathrm{Ti}(\mathrm{p}, 2 \mathrm{p})$ ${ }^{475 \mathrm{c}}$ and ${ }^{74} \mathrm{Ge}(\mathrm{p}, 2 \mathrm{p}){ }^{73} \mathrm{Ga}$ reactions. The open circle at 0.155 GeV is taken from Ref, 7. The total cross seciton for pp scattering is also plotted for comparisom. Bolow 0.5 GeV , the free-particle curve was taken from Ref. 8 and above 0.5 GeV , the data from Ref. 9 were used.
(XBL 74.0-4498)
region have also reflected the rise in cross section between 0.4 and 1.0 GeV , corresponding to an increase in the free-particle pp cross section over the same energy region. ${ }^{2-4}$

In Table 2, the ratio of the cross section at 1.0 GeV to that at 0.4 GeV for prior and present work is summarized. The increases in relative cross section observed in the present study are in good ggreement with that determined by Reeder ${ }^{4}$ for the $25 \mathrm{Mg}(p, 2 p){ }^{24} \mathrm{Na}$ reaction. From the tabulated results, we note that the cross section or "reduced free-pp" ratio has a roughly constant mean value
 othervime.

$\begin{aligned} & \text { Enargy } \\ & \text { (Cav) } \end{aligned}$	${ }^{40} 81\left(y_{1} 3\right)^{47}{ }^{48}$		${ }^{74} \mathrm{e} \cdot(\mathrm{p}, \mathrm{mb})^{73} \mathrm{~cm}$		$\begin{gathered} \text { Froe pp } \\ \text { (m) } \end{gathered}$	Meniter crosal cacticn (n)
	Fedividul Erote Anctionit (sb)		Frividmal Crome Enctions (th)	$\begin{gathered} \text { Averepezs, } \mathrm{d} \text {. } \\ \text { (Sb) } \end{gathered}$		
0,30020.012	$\begin{aligned} & 33.3,37.9,2 \mathrm{E} . \mathrm{E}_{4} \\ & 32.9,24.5 \end{aligned}$	13.320.7			22.314.5 ${ }^{4}$	10.1 10
0.40010 .016			19.4.20.2	13.810.6	24.021.0	10.5
0,52020.022	$\begin{aligned} & 27.3,25,5,27, \omega_{4} \\ & 26.9 \end{aligned}$	26.921.0			34.0 ± 0.2	10.3
0.73080 .029	$\begin{aligned} & 37.9 .26 .4 .20 .1_{4} \\ & 39.5 \end{aligned}$	20.5*0.7	23.9,21.2	22,621.9	46.020 .2	10.0
1.0020.01	29,4, 310.10	29.150.4	23.5.22.3	22.9 0.0	47.810.3	10.5
2.6010 .02		20.5=0,3	22,9.20.7	21.3:0,0	46.4き0.2	20.0
2.00r0.03	25,3,23,9	25.251.6	26.A.20.0	19.730.0	13.090.2	9.2
4.6220 .05	25.4.26.6	26.080 .7	20.5,16.1	17.324.7	40.920 .1	-. 8
Cata^{8}						
bret. 6.						

Hecery		maferthea
4row pp	1.9850.00	8,9
25mpip. 2p ${ }^{24} \mathrm{~cm}$	2.4910.05	4
	1.1710.04	Prement Mork ${ }^{\text {a }}$
${ }^{57} \mathrm{Fe}(\mathrm{p}, \mathrm{if})^{56} \mathrm{Fin}$	1.4010 .31	2^{6}
	1.4820 .22	${ }^{6}$
	1.1690 .05	Present mork
${ }^{142} \mathrm{Ce}(\mathrm{P}, 2 \mathrm{P})^{1+2} \mathrm{~L}$	1.4790.23	5

*crusp eacti in at 0.4 gev is tnempolated fras arcization tunction.
This ratio repreagen $0.77^{10} 0.72^{\circ}$.
of 1.31 ± 0.06 for the reactions. This fact may imply that an increasing nuclear surface, where simple krockout reactions are thought to occur, may nearly compensate for particle attenuation scattering, which would also increase with mass number.

To date, there exists no ($\mathrm{p}, 2 \mathrm{p}$) cross section calculations in the literature above the meson threshold of about 370 MeV . The results of such a calculation would be of considerable interest in demonstrating the theoretical behavior of ($\mathrm{p}, 2 \mathrm{p}$) cross sections in the GeV energy region.

Therefore, as part of this study, ($p, 2 \mathrm{p}$) cross sections were calculated for 48 Ti and ${ }^{4}$ Ge up to 1.0 GeV incident proton energy using the Monte Carlo intranuclear cascade model of Harp ${ }^{10}$ coupled to the evaporation code of Dostrovsky et al. 11 The cascade model allows for inelastically prudiced $(3,3)$ isobars and their subsequent intersition or decay in the nucleus. Only single isobar production is considered and thus cross section values above 1.0 GeV , where double pion production and double isobar formation become a possibility, were not calculated.

A plot of experimental and calculated values is presented in Figs. 2 and 3. Calculated ($p, p \mathrm{p}$) cross sections are included for comparison.

Fig. 2. Calculated and experimental ($\mathrm{p}, \mathrm{2p}$) cross sections for the ${ }^{48} \mathrm{Ti}(\mathrm{p}, 2 \mathrm{p}){ }^{47 \mathrm{Sc} \text { reaction. The }}$ 48^{Ti} ($\left.\mathrm{p}, \mathrm{pn}\right)^{47} \mathrm{Ti}$ cross sections, calculated using the same model (Ref. 10) are also added to the plot for comparison.
(XBL 747-3690)

Fig. 3. Calculated and experimental ($p, 2 \mathrm{p}$) cross sections for the ${ }^{74} \mathrm{Ge}\left(\mathrm{p}, 2 \mathrm{p}\right.$) ${ }^{73} \mathrm{Ga}$ reactich. The ${ }^{74} \mathrm{Ge}(\mathrm{p}, \mathrm{pn})^{73}$ Ge cross sections, calculated using the sane model (Ref. 19), are also added to the plot for comparison.
(XBL 74703691)

A conciso sumary of experimental and theoretical work emphasizing excitation function shapes and trends is illustrated in Fig. 4. The "experimental" and "calculated ($p, 2 p$) curves" were obtained by nomalizing the ${ }^{74 \mathrm{Ge}}(\mathrm{p}, 2 \mathrm{p}) 73 \mathrm{Ga}$ results to the $48 \mathrm{Ti}(p, 2 p] 47 \mathrm{Sc}$ results up to 1.0 GeV . In a similar fashion, the ($p, p n$) Monte Carlo results for the ${ }^{74} \mathrm{Ge}$ were normalized to those for ${ }^{48} \mathrm{Ti}$ to yield the smooth "calculated ($p, p n$) curve." Plotted at the botton is the free-pp cross section over the same energy region. This normalization analysis leads to the following inmediate conclusions. 1) The experimentally observed rise in $\sigma(p, 2 p)$ for ${ }^{4} 8_{\mathrm{Ti}}$ and ${ }^{7}{ }^{4} \mathrm{Ge}$ between 0.3 GeV and 1.0 GeV is substantially smaller than predicted by the Monte Carlo calculation. Quantitatively, the relative increases in $\sigma(p, 2 p)$ are $(25 \pm 3) \%$ experimentally compared to (51 ± 19) \% theoretically. 2) The experimental and theoretical $\sigma[p, 2 p$) rise is significantly smaller than the $\sigma(\mathrm{pp})$ rise over the same

Fig. 4. Comparison of cross section changes and excitation function shapes. The "experimental" and "calculated ($p, 2 \mathrm{p}$) curves" were obtained by nommalizing the ${ }^{74} \mathrm{Ge}(\mathrm{p}, 2 \mathrm{p})^{73} \mathrm{Ga}$ results to the ${ }^{48} \mathrm{Ti}$ ($\mathrm{p}, 2 \mathrm{p}$) ${ }^{47 \mathrm{Ge}}$ were nommalized to those for ${ }^{48} \mathrm{Ti}$ to yield the smooth "calculated ($p, p n$) curve". plotted at the bottom is the free pp cross section over the same energy region.
(XBL 7410-4099)
energy region. These observations may be interpreted as evidence for attenuation of the incoming projectile and outgoing particles by nuclear matter matter. 3) Although the shapes not only of the two experimental ($p, 2 \mathrm{p}$) excitation functions but also of the theoretical ($p, 2 p$) excitation functions are similar, the nomaizzations show the 48 Ti ($p, 2 \mathrm{p}$) 47 Sc experimental cross sections to be systematically about 278 larger than those for the 74 Ge ($p, 2 \mathrm{p}$) ${ }^{73} \mathrm{Ga}$ reaction. The Monte Carlo calculations predict a $\sigma(p, 2 \mathrm{p})$ increase for ${ }^{48} \mathrm{Ti}$ in the same direction, but only of 6\%. 4) The "calculated (p, pn) curve" shows a significant drop above 0.3 GeV as opposed to rising "experimental" and "calculated ($\mathrm{p}, 2 \mathrm{p}$)" curves. Calculations also predict 94 large (p, pn) cross section for ${ }^{48} \mathrm{Ti}$ than for ${ }^{74} \mathrm{Ge}$ by about 11%.

Footnotes and References

*Condensed from LBL-2381. Phys. Rev, C11, 541 (1975).

1. J. R. Grover and A. A. Caretto, Jr., Ann. Rev. Nuci. Sci. 14, 51 (1964).
2. P. L. Reeder, University of California, Lawrence Radiation Laboratory Report, UCRL-10531, unpublished (1962).
3. S. Meloni and J. B. Curming, Phys. Rev. 136, B 1359 (1964).
4. P, L. Reeder, Phys. Rev. 178, 1795 (1969].
5. N.P. Jacob, Jr. and S. S. Markowitz, Phys. Rev. C 11, 541 (1975).
6. J. B. Cumming, Ann. Rev. Nuc1, Sci. 13, 261 (1963).
7. J. P. Cohen, G. Albuoy, and N. Poffe, J. Phys. (Paris) 26, 427 (1965).
8. V. S. Barashenkov and V. M. Maltsev, Fortschr. Physik 9, 549 (1961).
9. D. V. Bugg, D. C. Salter, G. H. Stafford, R. F. George, K. F. Riley, and R. J. Tapper, Phys. Rev. 146, 980 (1966).
10. G. D. Harp (Phys. Rev. C, 10,2387 (1975). This program is an extension to 1.0 GeV of the model developed by G. D. Harp, K. Chen, G. Friedlander, Z. Fraenkel, and J. M. Mi11er, Yhys. Rev. C 8 , 581 (1973),
11. I. Dostrowsky, Z. Fraenke1, and C. Fried1ander, Phys, Rev. 116, 683 (1959).

NUCLEAR REACTIONS OF C, AI, AND F WITH RELATIVISTIC HEAVY IONS AT THE BEVALAC

D. L. Murphy and S. S. Markowitz

A new area of experinental physics has been opened by the successful acceleration of heavy ions to relativistic energies at the Bevalac (0.25 $2.1 \mathrm{GeV} / \mathrm{nuc}$ leon). The study of the interaction of relativistic nuclei with sinple and complex nuclei is an area which promises to be a stimulating new region of nuclear research, pertinent to elementary particles, nuclear structure, and astrophysics.1,2,3

Ea:ly studies of the reactions of relativistic heavy icis have indicated that significantly different processes are important compared to those at 10 heV/nucleon. For example, fragmentation of projectiles has been observed 4 to lead to particles of lower mass and charge which have very nearly the sane velocity and direction as the incident ion. Hecknan et al. found also that the spectra and relative yields of projectile fragmentation products do not appear to depend on the target nucleus. They interpret these results in terms of two concepts from the theory of multiparticle reactions at high energy, limiting fragmentation and factorization. Limiting fragnentation states that, at high energies, the production cross section for the i th fragnent is independent of energy. Factorization states that in the inclusive reaction,

$$
A+B+X+\text { anything }
$$

the partial cross sections factor according to the rule

$$
\sigma_{A B}^{*} \rightarrow \gamma_{A}^{*} \gamma_{B}
$$

where the function γ_{A}^{*} depends only on the beam nucleus and γ_{B} only on the target nucleus.

Cumming et al., ${ }^{5}$ in their comparison of the relative product yiolds for the spallation of Cu induced by $3.9-\mathrm{GeV} 14 \mathrm{~N}$ and $3.9-\mathrm{GeV}$ protons, said the results of their study could be considered as giving support to the factorization hypothesis.

In order to further test the applicability of these hypotheses to nucleus-nucleus collisions in the GeV/rucleon energy region, a study of target fragnentation has begm by looking at specific inclusive reactions which lend themselves to observation after irradiation. For example, the inclusive reaction

$$
x+{ }^{12} C \rightarrow{ }^{11} C+\text { anything }
$$

where $\mathrm{X}=$ relativistic heavy ion, can be studied via conventional β-counting, Light targets such as $A 1, F$, and C have been used since the induced activities are primarily β-emitters with resolvable half-lives. Gamma spectroscopy has been utilized to study the $\mathrm{fef}_{\mathrm{t}}$ long-lived emitters which can be produc. f in the interaction of the relativistic heavy ion with the light target nuclei. Beam monitoring is done with a gas ionization chamber, whose characteristics we spent some time studying.

Some preliminaty results of a $2.1 \mathrm{GeV} / \mathrm{nucleon}$ 12c bcinbardment are presented in Table 1 and compared with proton results. Experiments have been performed with $20 \mathrm{Ne}(0,4 \mathrm{GeV} / \mathrm{nucleon})$, 14 N ($1 \mathrm{GeV} /$ nucleon), and ${ }^{40} \mathrm{Ar}$ ($1.8 \mathrm{GeV} / n u c l e o n$).

Before any definite conclusjons can be drawn, these reaction cross sections must be detemined for more heavy ions. In addition, they will be measured at several different incident energies in order to determine if the region of ljmiting fragmentation has been reached.

Table 1. Formation cross sections (in mb) for 2-GeV/nucleon p and ${ }^{12} \mathrm{C}$.a

	protons ${ }^{\text {b }}$	${ }^{12} \mathrm{C}$
$\left.{ }_{0} \mathrm{C}^{(11} \mathrm{C}\right)$	27.2	68
${ }_{0} \mathrm{C}^{(78 \mathrm{Be}}{ }^{\text {(}}$	10.5	20
$\sigma_{F}\left({ }^{18} \mathrm{~F}\right)$	$24.0{ }^{\text {c }}$	58
$\sigma_{F}\left({ }^{13} \mathrm{~N}\right)$	-	8
$\sigma_{\text {Ai }}\left({ }^{24} \mathrm{Na}\right)$	9.5	16
$\sigma_{\text {Al }}\left({ }^{22} \mathrm{Na}\right)$	$12.3{ }^{\text {d }}$	29
$\sigma_{\mathrm{Al}}\left({ }^{18} \mathrm{~F}\right)$	7.3	21
$\left.\sigma_{\mathrm{Al}} \mathrm{l}^{13} \mathrm{~N}\right)$	$1.3{ }^{\text {d }}$	8
$\sigma_{A 1}\left({ }^{11}{ }^{\text {c }}\right.$)	$5.2{ }^{\text {d }}$	16
$\sigma_{\mathrm{Al}}\left({ }^{7} \mathrm{Be}\right)$	$7.8{ }^{\text {e }}$	22

${ }^{a}$ The convenient notation $\sigma_{Z}(Y)$ denotes the cross section for the producing of Y from the target Z. $\mathrm{b}_{\text {Results }}$ nommalized to Al monitor cross section of 9.5 mb from Ref. 6.
$c_{\text {Ref. } 7} \quad{ }_{\text {def. }} 8 \quad e_{\text {Ref. }} 8,2.9 \mathrm{GeV}$.

References

1. H. H. Hecknan, Lawrence Berkeley Laboratory Report LDL-2052 (1973).
2. H. M. Steinler, Lawrence Berkeley Laboratory Report LBL-2144 (1973).
3. E. K. Hyde, Lawrence Berkeley Laboratory Report LBL-3049 (1974).
4. H. H. Heckman, D. E. Greiner, P. J. Lindstrom, F. S. Beiser, Phys. Rev. Lett. 28, 926 (1972).
5. J. B. Cuming, P. E, Haustein, R. W. Stoenner, L. Mausner, and R. A. Naumarn, Phys. Rev. C 10, 739 (1974).
6. J. B. Cumminy, Ann. Rev, of Nucl. Science 13, 261 (1963).
7. S. S. Markowitz, F. S. Rowland, and
G. Friedlander, Phys. Rev. 112, 1295 (1958).
8. J. B. Cuming, J. Hudis, A. in. Poskanzer, and S. Kaufman, Phys. Rev. 128, 2392 (1962).

EXCITATION FUNCTIONS FOR SIMPLE PION INDUCED NUCLEAR RFACTIONS ON ${ }^{14} N,{ }^{16} \mathrm{O}$, AND ${ }^{19} \mathrm{~F}$

N. P. Jacob, Jr., and S. S. Markowitr

The use of π mesons in nuclear reaction studies has proved to be a vaiuable tool in elucidating the mechanism of these reactions at high energies. In contrast to the relatively structureless nucleon-nucleon cross sections, pion-nucleon cross sections display several broad resonances. This picture is illustrated in Fig. 1, showing the well studied $\mathrm{T}=3 / 2, \mathrm{~J}=3 / 2$ rescnance at $\sim 180 \mathrm{HeV}$ (also referred to as the (3,3) resonance) and several smaller resonances at 600 and 900 NeV incident π-energy. Therefore, the significance of these resonances in the study of pion interactions with nuclei may manifest itself in two ways 1) The excitation functions for knockout type reactions of the form ($\pi, \pi N$), where N is the nucleon removed, should exhibit these structures if a pion-nucleon initial interaction has oscured. 2; The ratio of π^{-}to π^{+}induced cross sections leading to the same product in knockout reactions would yield sone additional insight into reaction mechanisms. For example, the ratio o $\left.\left.{ }^{\mathrm{A}} \mathrm{X}\left(\pi^{+}, \mathrm{F}^{-} \mathrm{n}\right)^{\mathrm{A}-1} \mathrm{X}\right] / \sigma \mid{ }^{\mathrm{A}} \mathrm{X}\left(\pi^{+}, \pi \mathrm{N}\right)^{\mathrm{A}-1} \mathrm{X}\right]$ detemined experimentally would be anticipated to be approximately equal to the ratio of free particle cross sections $\sigma\left(\pi^{*} p\right) / \sigma\left(\pi^{-} p\right)=\sigma\left(\pi^{-} n\right) / \sigma\left(\pi^{+} n\right)$, according to a simple inupulse approxination picture. The most fanous case is at the $(3,3)$ resonance where the reactions

$$
\begin{aligned}
& \text { 1. } \pi^{+}+p+\pi^{+}+p \\
& \text { 2. } \pi^{*}+p \rightarrow \pi^{*}+p \\
& \text { 3. } \pi^{*}+p \rightarrow \pi^{0}+\pi
\end{aligned}
$$

Fig. 1. The total free-particle πN cross sections.
(XBL 754-2685)
are_in the ratio $9: 1: 2$, Since $\sigma\left(\pi^{+} p\right)=\sigma\left(\pi^{-} n\right)$ and $\sigma(\pi-p)=\sigma\left(\pi^{+} n\right)$ by charge symetry, the ratio $\sigma\left(\pi^{-} n\right) / \sigma\left(\pi^{+} n\right)=9 /(1+2)=3$ at 180 MeV .

Thus, the ratio of π^{-}to π^{+}induced neutron knockout cross sections at about 180 MeV incident energy should be about 3 .

The pioneering work of Reeder and Markowitz ${ }^{1}$ denonstrated the appearance of the $(3,3)$ resonance in the ${ }^{12 C}\left(\pi^{-}, \pi^{-} n\right)^{11} C$ excitation function. The first preliminary investigation using positive and negative pions on light nuclei was first performed by Chivers et al. 2 This particular work found the surprising result that the $\sigma_{\pi-} / \sigma_{\pi-}$ ratios for $(\pi, \pi n)$ reactions of ${ }^{12} \mathrm{C}, 14 \mathrm{~N}$ and 160 were all 1 ± 0.1 at 180 MeV rather than the predicted simple impulse approxination valtue of 3 . A number of theoretical models incorporating contributions from inelastic scattering and final state interactions were proposed to explain this deivation, but none satisfactorily could produce the ratio of $1.2-6$

The aim of this project, then, was multifold: 1) to recheck the activation results of Chivers for $(\pi, \pi n)$ reactions on $14 N$ and 160 , both $N=2$ nuclei, 2) To search for appearance of the (3.3) resonance in the light nuclei $14 N$, 100 and $1 S_{F}$. And 3) to provide an extensive set of $\sigma_{\pi^{-}} / \sigma_{\pi^{+}}$ ratios for 14 N and $160(\mathrm{~N}=2)$ and for ${ }^{19} F(N \neq 2)$ for theoretical interpretation. These light nuclei were chosen as targets because the constituent nucleons are essentially all on the "surface" region, where knockout reactions are thought to occur.

This mork was performed at two national laboratories. The initial phase of research used the secondary pion oeans at the Lawrence Berkeley Laboratory 184-Inch Synchrocyclotron. Secondary pion fluxes averages $105 / \mathrm{sec}$. The pion work was completed in conjunction with a pion monitoring experiment at the new Clinton P. Anderson Meson Physics Facility at Los Alamos, New Mexico. While fluxes in the future are expected to reach a conservative $10^{9} \pi / \mathrm{sec}$, the work here was performed at fluxes of $5 \times 10^{5} \pi / \mathrm{sec}$ or greater. Several exposures with $10^{7} \pi / \mathrm{sec}$ were made.

The targets used in this work took the form of discs, generally $1^{\frac{1}{5}}-2$ inches in diameter and from $1 / 8$ - $\frac{1}{2}$ inch thick. Thicknesses were varied with increasing or decreasing flux to achieve greater counting rates and tos study the effect of potential secondary contributions to the final cross section fron thick targets. Primary targets for ${ }^{19} \mathrm{~F},{ }^{14} \mathrm{~N}$,
and ${ }^{160}$ were, respactively, discs of CF_{2}, machined BN , and boric aci4 $\mathrm{H}_{3} \mathrm{BO}_{3}$ in a thin aluminum can. Usually only 1 target was run at a time. In order to monitor the bean, a plastic scintillator or polyethylene disc equal in size to the target was exposed simultaneously. Subsequent counting of the monitor and target discs with a 511-511 keV coincidence detector and least squares fitting of de.. cay curves permitted reaction cross section to be calculated.

The excitation functions are shown graphically in Figs. 2-4. The cross sections for the monitor reaction ${ }^{12} \mathrm{C}(\pi, \pi N){ }^{11} \mathrm{C}$ used to calculate the reaction cross sections were accurately redetermined by the Los Alanos Nuclear Chenistry pion-monitoring group. ${ }^{7}$ Horizontal error hars are root-mean-zquare combinations of π energy resolution and loss in energy from face of target to its center. Vertical error bars are statistical in nature.

As seen from Figs. $2-4$, the $(3,3)$ resonance is preserved in the ($(\pi, 7 n)$ reactions on these light nuclei. Plendl et al, B observed a resonance in che ${ }^{19} \mathrm{~F}\left(\pi^{-}, \pi^{-n}\right)$ reaction that is about 25% lower in cross section and much narrower than this work. flogstrom et al. 9^{9} finds a resonance in the $19_{\mathrm{F}}\left(\pi^{+}, \pi^{+} \mathrm{N}\right) 18 \mathrm{~F}$ reaction, but also too narrow. Based on the strurls nucleon momentum, it can be

Fig. 2. Excitation functions for the ${ }^{19} \mathrm{~F}(\pi, \pi N){ }^{18} \mathrm{~F}$ reactions.
(XBL 755-2872)

Fig. 3. Excitation functions for the $14^{1}(\pi, \pi N)^{13} 3_{N}$ reactions.
(XBL 755-2866)

Fig. 4. Excitation functions for the ${ }^{16} 0(\pi, \pi N){ }^{15} 0$ reactions.
(XBL 755-2870)
shown that the free-particle iN resonance should be broadened 100 MeV , from about 150 MeV to 250 MeV , for ($\pi, \pi N$) reactions in light muclei, 1

The most serious disagreement with Chivers et al. ${ }^{2}$ is noted. The $0^{-} \sigma^{+}$ratios at the $(3,3)$ resonance at 180 MeV for ali ${ }^{+}\left(\pi_{3} \pi n\right)$ reactions on the light nuclei studied in the present work are 1.7 ± 0.2 as compared to the 1.0 ± 0.1 ratio of Chivers et al. 2 Also in disagreenent are the magnitudes of the $14 N(\pi, m) \quad 13^{N}$ cress sections, which are a factor of 4 lower in this work. The results in this report are believed to be consistent with the phenomenon that excited states of ${ }^{13} \mathrm{~N}$ are umbound. Therefore, only formation of 13 N in its ground state is observed.

An important preliminary theory has recently been advanced by Sternheim and Silbar ${ }^{10}$ to explain the present σ_{0} / σ^{+}cross section ratios as a function of eflergy. Their work begins with the assumption, originally made by Hewson, 4 that the following single-nucleon knockout reactions can occur in the mucleus:

Primary Interaction	Outgoing Particles	Relative Section to Observed Pr
π^{-n}		$\sigma_{1}(1-\mathrm{X})$
$\pi{ }^{-1}$		$\sigma_{2} \mathrm{X}$
$\pi^{+} \mathrm{p}$	[]$_{\pi^{+}+\mathrm{p}}^{+}$(N.C.E.)	$0_{1}{ }^{x}$
$\pi^{*} n$	$\left[\begin{array}{l} \pi^{0} p \\ \pi^{+}{ }^{+} \text {n } \\ \pi^{*} p \end{array}\right. \text { (N.C.E.) }$	$\sigma_{3} \sigma_{2}(1-x)$

where

$$
\begin{aligned}
& \sigma_{1}=\pi^{-}+n \rightarrow \pi^{-}+n=9 \text { (relative } \\
& \sigma_{2}=\pi^{+}+n \rightarrow \pi^{+}+n=1 \\
& \sigma_{3}=\pi^{+}+n \rightarrow \pi^{0}+p=2
\end{aligned}
$$

and $X=$ probability of a nucleon charge exchange $(n+p, p+n)$, N.C.E. Thert, for producing a ($\pi, \pi n$) product
$R=\sigma_{\pi^{-}} / \sigma_{\pi^{+}}=\frac{\sigma_{1}-X\left(\sigma_{1}-\sigma_{2}\right)}{\sigma_{2}+\sigma_{3} X\left(\sigma_{1}-\sigma_{2}\right)}=\frac{9-8 \mathrm{X}}{3+8 \mathrm{X}}$,
Sternheim and Silbar ${ }^{10}$ have ${ }_{0}$ included in the above possible channels the ($\pi, \pi N$) depletion reaction. Then

$$
R=(9-8 p) /(3+6 p)
$$

Fig. 5. Comparison between experimental and theoretical cross section ratios. Solid line represents the calculation, and filled circles are experimental.
(XBL 756-1572)

Where $p=$ probability of a jucleon charge exchange (following Sternheim-Silbar notation) and
$P\left(T_{\pi}\right)=\frac{1}{2}\left\{1-\exp \left[-A \rho_{0} \sigma_{N C E}\left(T_{\pi}\right) p\left(T_{\pi}\right)\right]\right\}$
where
$\begin{aligned} A= & \text { mass number of target } \\ D_{0}\left(\mathrm{~T}_{\pi}\right)= & \text { nuclear density } \\ \mathrm{O}_{\mathrm{EX}} & \text { a Eunction of pion pion kinetic energy, } \mathrm{T}_{\pi} \\ \mathrm{D}\left(\mathrm{T}_{\pi}\right)= & \text { distance traveled by the initially } \\ & \text { struck nucleon as a function of pion } \\ & \text { kinetic energy } \mathrm{T}_{\pi} .\end{aligned}$
The above expression is slightly modified for $\mathrm{N}=\mathrm{Z}$ nuclei. The details of its derivation are described elsewhere. 10

The theoretical $\sigma_{\pi} / \sigma_{\pi^{+}}$ratios predicted by the above simple model ${ }^{\pi}{ }^{-2 r e}{ }^{\pi}$ compared with the experimental ratios for each target mucleus in Fig. 5. Within experimental error, agreement between theory and experiment is very good. Some deviation from the theory is found for the case of ${ }^{19} F\left(\pi^{-}, \pi^{-} n\right)^{18} F$ at lower energies.

On the basis of this good agreement, we conclude that the nucleon charge exchange model for ($\pi, \pi N$) reactions neatly accounts for experimental $\sigma_{\sigma} / \sigma_{p+}+$ ratios. This theory, in addition, lends credefice to the possibility of "unclean" knockout contributing significantly to any type of knockout reaction.

Footnotes and References

1. P. L. Reeder and S. S. Markowitz, Phys. Rev. 133, B6.59 (1964).
2. D. T. Chivers et al., Nuc1. Phys. Al26, 129 (1969)
3. V. M. Kolybasov, Phys. Letters 27B, 3 (1968).
4. P. W. Hewson, Nuc1. Phrs. A133, 659 (1969).
5. D. Robson, Ann. Phys. 71, 277 (1972).
6. R. Seki, Nuovo Cimento 9, 235 (1972).
7. B. J. Dropesky, G. W. Butler, C. J. Orth, R, A. Williams, G. Friedlander, M.A. Yates, and S. B. Kaufman, Phys. Rev. Letters, 34, 821 (1975).
8. H. S. Plendl et al., Nucl. Phys. B44, 413 (1972).
9. K. R. Hogstron et al., Nuc1. Phys. A125, 598 (1973).

10 M. Sternheim and R. R. Silbar, Phys. Rev. Letters 34, 824 (1975).

DROPLET MODEL DESCRIPTION OF NUCLEAR MASSES, FISSION BARRIERS AND RAOII*

W. D. Myers

In our earlier work ${ }^{1,2}$ we had fitted a more or less convertional liquid drop model mass formula to the snooth mass surface that results when shell corrections (of the type proposed by Swiatecki ${ }^{3}$) are applied to the experimental masses. Besides the usual liquid drop model tems (which are the volume energy, symmetry energy, surface energy, Coulomb energy and the empirical even-odd mass correction) a surface symmetry energy and Coulonb diffuseness correction were i.sed. Liquid drop model fission barriers were also compared with experiment as a part of the fitting procedure. The inclusion of fission barriers permits more accurate determination of the separate values of the Coulomb and surface energy coefficients, which are highly correlated in a fit to ground state masses alone. In this way the separate values of these two coefficients can be more accurately determined. We found that the Coulomb energy coefficient (which is inversely proportional to the nuclear radius constant r_{0}) determined in this way differs by $6-108$ from that obtained in electron scattering measurements of nuclear sizes. A real discrepancy was seen to exist since both methods were expected to be accurate to one or two percent.

In Ref. 4 we undertook a study to detemine whether this discrepancy might not be due to the omission of higher order terms (such as conqressibility and surface curvature effec ss) in the liquid drop model. The droplet model was developed in the course of our investigation of these higher order terms and some preliminary applications of it have already been made.

The purpose of the present work is to detemine the droplet model coefficients by fitting to masses, fission barriers, and radii. The predictions of the model are then compared with experiment to give ar indication of its range of applicability. One gratifying result of this work is the apparent resolution of the radius constant discrepancy mentioned above. The value of this conscant obtained in the droplet model fit no longer differs from that obtained in electron scattering experiments.

The primary data employed for the determination of the droplet model coefficients were the experimental atomic masses with $\mathbf{A}>10$. These were supplemented by 62 experimental fission barriers, 109 ground state deformations and 6 nuclear charge radii. The actual fit was weighted $3 / 4$ to the masses and $1 / 4$ to the fission barriers. If we had given each datum equal weight the large number of masses would have doninated leaving the barriers with little influence on the results. The radii were only used in the fitting procedure for rounding off the firal set of coefficients. The deformations are determined largely by the coefficients in the shell effect function whose values were taken from our previous work. 2 The resulting droplet model predictions for all of these quantities are discussed in the following sections.

Mass Differences

One way of displaying the differences between the experimental masses and the theoretical predictions is to plot the individual mass differences versus the neutron number as is done in Fig. 1.

Fig. 1. The experimental and zalculated shell effects and their difference are shown as functions of the neutron mumber. Isotopes of an element are comnected by a line. The large negative deviations at the beginning of the periodic table are for nuclei outside of the fit region, which began at $A=10$. A small histogran to the right of part (c) shows how the final errors are distributed for nuclei in the fit region. The substantial weight given to fitting fission barriers is presumably responsible for pulling the error distribution slightly to ane side so that the mass residuals are not equally distributed about zero. (XBL 7412-8341)

This plot, which should be compared with similar ones in our previous work, ${ }^{2}$ shows how poor our shell correction function is at the end of the rare earth region. The agrement between our shell function and the experimental one is also poor for the heary elements. Microscopic methats for calculating shell effects such as the Strutinsky procedure were expected to give a better account of these features but their overall agreenent with experiment was found to be about the sane.

Fission Barriers

In Fig. $2(a)$ the experimental fission barriers have been plotted relative to the ground state mass. The droplet model saddle masses for the same nuclei are shown in Fig. 2 (b) and the residual errors in Fig. 1 (c). The calculated values are seen to differ from the experimental ones in a systematic faimost linear) way as one moves through the periodic table. If we had included shell corrections at the saddle point our calculatad values would have agreed better in the actinide region but would not have changed much for the 1 ighter nuclei. Negative values of the curvature correction coefficient, and a modified type of surface energy functions were both found effective in reducing the differences in saddle masses but they made the fit to gromen state masses worse. So far no satisfactory explanation for these deviations has been found.

Fig. 2. Experimental and calculated saddle masses and their differences plotted against neutron number N .
(XBL 7412-8338)

Deformations

As in our previous work one of the results of the calculation of shell effects is a prediction of nuclear ground state deformations. During the fitting proceciure the calculated valves were compared with the experimental ones. Figure 3 shows that there is rough agreement between theory and experunent for nuclei in the rare-earth and actinide regluns. The main deviations seems to be associated (as with the mass deviations) with the inability of our shell currection function to adequately portray the behavicr of nuclei at the upper end of the rareearth region.

Fig. 3. Calculated and experimental quadrupole muments for nuclei in the rare-earth and actinide region are plotted against neutron number.
(XBL 7412-8335)

Radii

The droplet model parameters chosen to give the best fit for nasses and fission barriers also lead to predictions of nuclear charge radii in quite good agreement with experiment. The droplet model fit seems to have resolved the discrepancy that existed between the nuclear radius constant inferred from a liquid drop model fit to masses. and that obtained from electron scattering measurenents of nuclear charge radii. Figure 4 shows how. the effective sharp radii of the neutron and proton diseributions are expected to vary for nuclei along beta-stability and how these radii are related to the radius constant r_{0}.

Renarks
The differences that remain when the droplet model is used to calculate ground state masses seem to be due to inadequate shell corrections, but this is not the case for fissicn barriers. For barriers, the differences vary smoothly as one

Fig. 4. Various quantities characteristic of the radial extent of spherical nuclei are plotted versus the mass number A. The dashed lines labeled N and 2 correspond to the droplet model predictions for the quantities ($\mathrm{R}_{\mathrm{n}} / \mathrm{A}^{1 / 3}$) and $\mathrm{R}_{2} / \mathrm{A}^{1 / 3}$) for nuclei along the bottom of the valley of betastability. The solid line, which is the weighted mean of the neutron and proton lines, represents the value of ($\mathrm{R} / \mathrm{A}^{1 / 3}$) for the total nucleon density. The solid dots correspond to the experimental values of $\left(\mathrm{R}_{\mathrm{z}} / \mathrm{AI} / 3\right)$. Solid triangles indicate the droplet model value of ($\mathrm{R}_{\mathrm{z}} / \mathrm{A}^{1 / 3}$) for these same nuclei. For comparison a dot-dashed line is drawn across the figure at 1.18 fm which is the value of r_{0} determined by the fitting procedure.
(XBL 7412-8333)
moves up the periodic table indicating that some effect of a statistical nature may still be missing

In so far as some of the cocfficients we have evaluated here (the yolume energy coefficient, symmetry energy coefficient, surface energy coefficient and nuclear radius constant, for exarple) are constunts of nature, we feel that they are probably nore accurately determined from the experimental data than was possible with the liquid drop model. When the droplet matel is used there is less need for these coefficients to assue slightly incorrect values to compensate for missing higher order terms. The droplet model also provides a more accurate way for extrapolating far from beta-stability because of the higher order effects that are included. Since a number of higher order shape dependencies (such as the shape depernlence of the Coulamb redistributian energy or surface symetry energy) are included, the droplet model will be important in calculations of heavy-ion collisions where highly distorted shapes are involved.

Footnote and References

*Condensed from L.BL-3428.

1. W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1-60 (1966).
2. W. D. Myers and W. J, Swiatecki, NucIIdes Far Off the Stability Line, Proc. of the Lysekil Symposium, 1965, Arkiv Fysik 36, 343-352 (1967).
3. W. J. Swiatecki, Proc. Conf. on Nuclidic Masses, Vienna, 1963, ed. by W. H. Johnson, Jr. (SpringerVerlag, Wein-New York, 1964) p. 58.
4. W. D. Myers and W. J. Swiatecki, Arn. Phys. (NiY.) SS, 395-505 (1969).
5. H. J. Krappe and J. R. Nix, Proc. Third Int. Conf. on Physics and Chemistry of Fission, (IAEA, Vienna, 1974) paper IAEA-3M-174/12.

MACROSCOPIC ASPECTS OF HEAVY.ION REACTIONS*

W. D. Myars

The overall status of the macroscopic approach to heavy-ion reactions was reviewed to determine how much progress has been made in this field and the range of applicability of the calculations that have been undertaken. The rate at which publications employing this approach are appearing in the scientific literature seems to be growing exponentially for a number of different reasons. (For recent reviews see refs. (1-3].) The most jnportant is the increasing experimental interest in these reactions associated with the search for superheavy elements and the availability of new heavy-ion accej rators. Another reason is that, not only is a ne Lroscopic approaich possible (because both the target and projectile are composite systems with $\AA \gg 1$), but classical or semi-classical methods are applicable as well (because the "action" $\gg 1 \mathrm{~h}$).

Much of the work going on is at the relatively primitive stage of trying to establish plausible links between phenomena which actually require a dynanical description (such as compound nucleus formation for a particular target, projectile combination, energy and angular momentun) and soine feature of the one dinensional (radial separation) potential energy (i.e., does the potential contain a minimm in which the system may be trapped, etc.).

Various attempts are now being made to include dynamical effects. Progress along these lines is based on the familiar procedure of: 1) choosing the degrees of freedom, 2) formulating the equations of motion (inertias, and forces both conservative and non-conservative), 3) performing the (classical or quantum mechanical) calculations for determining
the dynanical evolution of the system, and 4] conparing the results with experiment, after which one re-cycles through frcm the beginning as new and previously unexplained phenomena are observed.

Degrees of Freedom

The most anhitious calculations being undertaken seek to describe the collision behavior by numerically following the time evolution of a set of fluid elements initially distributed over a grid so as to represent the incoming ions. ${ }^{4}$ Substantial simplification occurs if the nuclear shapes are parameterized. One seeks to employ a nulti-dinensional family of shapes that is flexible enough to represent the natural dynamical evolution of the system but has as few paraneters as possible. It has often been stressed that at least three degrees of freedom are absolutely essential if the paranetrization is to be generally applicable. These are: 1) a separation or elongation coordinate, 2) a necking or fragment distortion coordinate, and 3) a mass asympetry coordinate. In addition to the shape, other degrees of freedon may be important under certain circumstances.

The ultimate simplification occurs if the nuclear density distributions are simply "frozen" in their original form and are constrained to remain unchanged during the collision. This severe limitation on the degrees of freedom allowed (only the distance between the nuclei and their angular orientation need be considered) drastically restricts the range of applicability of the model. None the less, most of the semi-classical calculations of heavy-ion reactions have employed this nodel because of its tractability. The scope of the model is generally tested against the experimental results and other degrees of freedom are sometines introduced as perturbations to explain some particular result.

Frozen Density Distributions

Once the distance between the nuclei and their orientations have been chosen as the only degrees of freedom to be treated explicitly (by freezing the densities), the next step is to formulate the equations of motion. Classical mechanics often applies and the inertial parameters are often taken to be the reduced mass of the system and the rigid body monents of inertia. For both the conservative and non-conservative forces that act a wide variety of somewhat similar alternatives have been proposed.

Partly because these approaches are all so similar we have no strict criteria for choosing between them. However, there are some purely geonetrical considerations that one should be aware of and one unifying principle that would greatly simplify these calculations if it were more widely employed.
a. Geometrical Considerations. The error most commori, made in these calculations is to assume that sone radial location (such as the half density point or the optical patentijal hair value point) is strictly proportional to $A 1 / 3$. The principle of nuclear saturation, which forms the basis for such assumptions, should be more closely adhered to. It is based on the observation that the bulk density in the central regio:i of nuclei throughout the periodic
table is nearly constant. If this is the case then only the equivalent sharp radius R is proportional to $A^{1 / 3}$. For a spherical density distribution with a diffuse surface, purely geonetical considerations govern the relationship between this quantity and the location of the point at which the density has half its central value.

In a similar way, misleading results can be obtained if the half-value point of the single particle optical potential is assumed to be proportional to Al/3 rather than relating its location to the density distribution of the nucleus it is supposed to represent.
b. Proxinity Force Theorem. The potential between various sizes of target and projectile interacting via a two-body force can be expressed in terms of a single universal function which is easily obtained. This is because of the fact that,

> "The force between rigid gently curved surfaces is proportional to the potential per unit area between flat surffaces."

This theorem and its appl"cations to heavy-ion potentials is discussed fuither elsewhere in this report (also see Annual Report 1973).
Static and Dynamic Considerations
The gross features of heavy-ion elastic scattering are described rather well by assuming that all the inconing projectiles whose energy and angular momentum permit them to pass over (or penetrate through) the barrier in the potential energy are removed from the entrance chamel. For light projectiles and energies not too far above the Coulonb barrier most of the nuclei which pass over the barrier actually combine with the target to form a compound nucleus. For these systems the hollow in the one-dimensional potential energy disappears when the incident angular momentum is too large, and the compound nucleus cross-section seems to be limited by the critical angular momentum at which this oceurs.

Even though alsorption (and hence compound nucleus formation) is almost symonymous with trapping for lighter mass projectiles, substantial difficulties arise whin the mass asymmetry between target and projectile: is reduced. We have to extend our thinking to the other essential degrees of freedom if we want to understand the origin of these difficulties.

Figure 1, which includes a "necking" degree of freedom \tilde{a}_{4} as well as a separation coordinate $\tilde{\alpha}_{2}$, serves to remined us that the two fragnent valley of two colliding nuclei does not lead directly to the ground state configuration of the compound system. Indeed, if the trapping configuration corresponds to a point in this two-dimensional space like like the one labelled A then ro hope of compound nucleus fommation exists unless enough additional energy is added to drive the systen over the intervening ridge toward the spherical ground state at point H. Even then a compound nucleus might rot result because the energy in the collective degrees of freedom would be sufficient to bring the system out over the fission barrier at point S .

Plon view
Fig. 1. See text.
(XBL 7111-4852)

New Phenomena

The considerations of the previous section make it abundantly clear that when heavier projectiles are used compound nucleus formation is no longer expected to be the primary result of bringing two nuclei into contact. A host of new phenomena are expected to arise because the time constants for various types of collective motion (rotation, vibration, neck healing, mass asymuetry, etc.) are roughly conmparable. Of course this is also true for 1ighter projectiles, but the interchange of energy among the various collective degrees of freedon and the damping into intrirsic states is not experimentally obServable because the end result of the collision is usually a compound nucleus. The important difference is that systems formed with heavier projectiles are expected to re-disintegrate giving us the opportunity to observe the consequences of interaction of the various degrees of freedon during the collision.

In the scattering of ${ }^{40} \mathrm{Ar}$ on ${ }^{232} \mathrm{Th}$ at a center of mass energy of 331 MeV the energing K nuclei (one proton and perhaps a few neutrons are picked up fram the target) have the energy and angle distributions shown in Fig. 2,5 This kind of distribution might be generated by viscous forces acting on projectiles that pass close to the nucleus. Trajectories corresponding to impact paraneters smaller than those that lead to grazing collisions will not only be slowed down but will also be deflected forward to smaller angles.

When the periods for vibration (or neck healing) and rotation become comparable certain types of focusing can take place. Figure 3 is the angular distribution of light products (assumed to be similar to the ${ }^{84} \mathrm{Kr}$ projectile) scattered from ${ }^{209} \mathrm{Bi}$ having energies distinctly lower than the bonbarding energy. 6 These products seen to correspond to collisions where radial motion of the incoming projectile is completely stopped and the system rotates with the incident angular monentum while sone other collective vibration (such as neck healing and

Fig. 2 The yield contours for the reaction $\left.{ }^{232} \mathrm{Th}^{4}{ }^{4}{ }_{\mathrm{Ar}} \mathrm{Ar}\right), \mathrm{E}_{1 \mathrm{ab}}=388 \mathrm{MeV}$ are plotted azainst the center-of-mass energy and deflection angle.
(XBL 746-963)

Fig. 3. The angular distribution of products from the indicated reaction that have an energy much lower than the incident energy. The energy observed is approximately that of Coulamb repulsion from a configuration of contact with the target лucleus.
(XLB 746-966)
reforming) takes place. The vibration and rotation rates for different incident angular monentum seem to be correlated in such a way as to focus all the products into a rather narrow range of forward angles.

Footnote and References

*Condensed from LBL-2945, to be published in the Proceedings of the International Conference on Reactions between Conplex Nuclear, Nashville, Tenn., June 1974.

1. M, Blam, Proceedings of the International Conference on Nuclear Physics, Munich, August 1973, North-Holland Publishing Co.
2. F. Plasil, Paper DB2, Anerican Physical sciety Meeting, Washington, D.C., April 1974.
3. A. Fleury and J. M. Alexander, preprint, May 1974.
4. Carol Alonso, Nuclear Chemistry Annual Report 1973, LBL-2366.
5. F. Hanappe, M. Lefort, C. Ng8, J, Peter, and B. Tanain, Phys. Rev. Letters 32, 738 (1974).

A CLASSIFICATION OF HEAVY ION REACTIONS

C. F. Tsung

The availability of heavy ion beams has opened up many new areas of research in heavy ion teactions, New phenonena, such as deep inelastic collisions, have been observed and well established processes, such as compound nucleus formation, are being studied in greater detail. Hence it is useful to have at the back of one's mind a picture classifying these processes with different designations. This not only helps to clear up confusions in discussions (so that we know we are referring to the same or different processes), but also provides a general background from which appropriate models nay be cons.ructed for each phenomenon.

Figure 1 was developed* for this purpose. It is based on a macroscopic view of the collisions between heavy nuclei. The two major elements entering into the construction of the figure are the energy of collision and the irpact paraneter. The macroscopic approach to heavy ion physics is discussed elsewhere in this annual report, as well as in other well known references. ${ }^{1}$ Figure 1 illustrates the six major processes that may occur when two heavy nuclei collide-this is what we call "the six-fold "uj." When the impact parameter is large, the nucle: do not even touch each other and all that may hap:n are Rutherford scattering and Coulonb excitations. This may be called "Distant Collision." As we decrease the inpact parameter, the two nuclei begin to touch; i.e., the tails of the respective density distributions overlap each other. This is the "Grazing Collision," an example of which is the one or two nucleon transfer reactions. When the impact parameter is decreased further and the collision energy is large enough (higher than the coulomb barrier energy), solid contact may be made, by which we mean that, for instance, the half-density

Fig. 1. The six-fold way,
points of the respective density distributions overlap each other. At this point, depending on collision conditions, two things may happen. If the energy is larger then the binding energy of the projectile or target, we have what we call the "Hit-and-Run Collision", examples of which are Poskanzer's target fragnentation, Hecknan's projectile fragnentation for relativistic heavy ions, as well as Miller's experiments with lighter ions at non-relativistic energies. If the energy of collision is not too large, then there is a possibility for the system to get stuck, which means that in a velocity distribution (or rapidity diagram), instead of the two sharp peaks corresponding to the initial velocities of the colliding nuclei there is now only one bump. Now the controlling factor is the neck degree of freedon. If the neck growth is slower than the separation (or fission) speed, we have "the Two-body System" where the two bodies are quite distinguishable even though significant nu-cleon-transfer may have taken place. An example is given by experiments of Volkov, Huizenga, Moretto, Wolf, and others. It is referred to by a variety of names: deep-inelastic reactions, relaxed peaks, and strongly danped processes, which all refer to the same thing. On the other hand if the neck growth degree of freedom is faster, then we may obtain a fused system, which means that in a spatial distribution, instead of two bumps centered around the respective centers of mass of the two nuclei, there is now only one broad bump, and the two nuclei are no longer distinguishable from each other. On a potential energy surface such a system is well within the scission point. However, depending on the dynanical conditions, the system may or may not be trapped in the compound nucleus well in the potential energy surface. We call the system not trapped in the well the composite system, which may divide with mass distribution essentially symmetric. Some memories of the entrance channel may renain, in which case the products may be distinguished from ordinary compound nucleus fission by their angular distributions. Examples of "Composite Systems" are found in experiments of Lefort, Blann, Plasil, and others. They are sometimes referred to as fusion-fission products. For a system trapped in the compound nucleus well we have the "Compound Systen" which may de-excite by evaporation of a few particles or mdergo the well-known compound nucleus fission. These are studied in the experiments of Flerov, Ghiorso, Stephens, Lefort, Natowitz, and others.

While the classification in Fig. 1 cannot claim to take into account many detailed dymanical aspects of the heavy ion collisions, it is useful to relate the many possible processes in a simple and intuitive way, and to provide a background for detailed studies of these processes.
*The work was done in collaboration with W. J. Swiatecki.

1. See contributions of W. D. Myers and N. K. Glendenning in this anmal report. See also W. J. Swiatecki, Phys. Rep. 4, 325 (1972); Joumal de Phys. Colloque C5, Supp. 8-9, 33, C5-45 (1972); Invited talk at Nobel Symposiun Ronneby, Sweden, June 1974.

EXACT TREATMENT OF THE DYYRA DY ANALYTIC MEANS FOR PARTICLE TRANSFER BETWEEN HEAVY IONS*

N. K. Glendenning and M, A. Nagarajan

Introduction

Reactions between complex nuclei in which one or several nucleons are transferred to form discrete states in the product nuclei are though to be direct reactions, analogous to light ion reactions such as the (d, p) reactions. ${ }^{1}$ In this case, in lowest order, the reaction may be computed by the distorted wave Born-approximation (DWEA).

The DWBA involves the evaluation of multidimensional integrals, which is difficult because the integrands consist of products of a number of fanctions which depend on different vector coordinates, with, however, onlt several of them being independent. In the case of light nuclide reactions, such as (d,p), the evaluation is simplified by neglecting the effect of the finite size of the light ruclide (d in the case of (d, p) reaction). For reactions between complex nuclei, the neglect of their finite size is not justified, howerver. In addition to this, the small de Broglie wavelength of typical heavy-ion reactions requires that the particular dependence of the functions in the integrand on their vector coordinates be retained with an accuracy commensurate with the wavelength. Evaluation of the integrals which approxinate the vector dependences of the integrands while retaining the finite range ${ }^{2}$ are referred to as no-recoil approximations. (The zero-range approximation of the integrals autonatically neglects recoil.)

There appear to be three distinct approaches to evaluating the DWBA integral without making either the zero-range or recoilless approximation. These are usually referred to as "exact", the sense of the word being that any errors are due to the finite accuracy of the numerical methods, and not to the neglect of physical effects. One approach evaluates directly the multidimensional integral. A second approach employs a Legendre expansion in two vectors by which the angle integrals can then be done in closed form. There remains a doubleradial integral. The third approach expands the functions of the dependent coordinates in tems of functions for which a separation into the independent coordinates is possible. The most transparent way of achieving this is the expansion of the distorted waves on a plane wave basis. Then the coordinates separate trivially.

So far the direct evaluation of the multidimensional integrals for heavy ion reactions has been done only for angular momentum transfer equal to zero, perhaps because the method takes much computer time. Conputer programs based on the second
approach also have turned out to be costly to execute. In this connection, Iow and Tamura have dis cussed how to choose the integration regions judiciously so as to save computer tine, apparertiy at the cost of accuracy in absolute, though sot in relative, cross sections. Of the third approach, the expansions of Sawaguri and Tobocman converge slowly and have consequently been applied only to light systems ($\mathrm{N}+0$). The exparsion in plane waves used by Charlton has been thus far applied only to very light ion reactions.

In view of the above critique there is evidently a need for a fast and accurate method of evaluating the DHRA integrals. He p upose the method discussed in detail in the next stition, which appears to us to be a fast method, and me in which the convergence with respect to recoil angular momentum can be exploited. The method is based first on the existence of an addition theorem for the product cf a spherical Bessel function and spherical hamonic, analoguous to that for a Hankel function. This addition theorem which is the vehicle for the separation of coordinates, can be exploited by representing the fumctions whose coordinates are to be separated, by a Fourier-Bessel series. Our approach belongs to the third category mentioned above. A virtue of our particular fommlation is that the recoil angular monentum appears as the natural expansior parameter. This fact can be exploited in numerical calculations by trmeating the series when satisfactory convergence is achieved.

The DWBA amplitude for the reaction is involves the evaluation of an integral like

$$
\begin{gather*}
t \equiv \iint \psi_{k_{p}}^{(-)^{*}}\left(R_{p}\right) \phi_{L_{2} S_{2} J_{2} M_{2}\left(R_{A N}\right) V\left(R_{P N}\right)} \times \phi_{L_{1} S_{1} J_{1} M_{1}}{ }^{\left(R_{P N}\right)} \psi_{k_{D}}^{(+3}\left(R_{D}\right) \xrightarrow{d R_{D}} \stackrel{d R_{P N}}{ }
\end{gather*}
$$

The difficulty mentioned above of evaluating this six-dimensional integral is now apparaent. The coordinates of integration, B_{D} and B_{DN}, appear as argunents of only three of the functions, but appear in the other two in the combinations (see Fig. 1):

Fig. 1. The coordinates for the reaction $A+(N+P) \rightarrow(A+N)+P$, with $D=N+P, B=A+N$. We choose to represent all vectors in terms of the two shown by heavy lines.
(XBL 745-3031)

$$
\begin{align*}
R_{P} & =\frac{A}{B} R_{D}-\frac{N}{B} \frac{M}{D} R_{P N}, \\
R_{A N} & =R_{D}+\frac{P}{D} R_{P N} \tag{2}
\end{align*}
$$

(In this context we use A to denote the mass of nucleus A etc., and M denotes the total mass.) The recoilless approximation consists in neglecting the second term on the right side of R_{p}. Aside from the trivial scaling factor A / B, the arguments of two distorted waves are then the same. This sin; 1ifies the integration very much. However, this neglect would be justified only when $\psi_{k_{p}}\left(R_{p}\right)$ varies
slowly over distances

$$
\begin{equation*}
d=\frac{N}{D} \frac{M}{B} r_{D} \tag{3}
\end{equation*}
$$

where we use r_{D} to denote tl:e radius of D which is the approximate bound on ${ }_{8}{ }_{p N}$ inposed by the presence of $V\left(R_{\text {pN }}\right)$ in (1). Hence recoild effects will be small only if the de Broglie wavelength $h=1 / k_{p}$ is large compared to d, i.e.,

$$
\begin{equation*}
x \equiv \frac{N}{D} \frac{M}{B} k_{p} r_{D} \ll 1 \tag{4}
\end{equation*}
$$

This inequality is rarely satisfied (see Table 1).
To evaluate the integral (1) without making the zero-rars or recoilless approximation, we

Table 1. For a few typical reactions the parameter x which gives a measure of the inportance of recoil (Eq. 4) is listed. The largest recoil angulr momentum ℓ_{R} is given by $\sqrt{\ell_{R}\left(\ell_{R}+1\right)}=x$ which for such a rough estimate we solve is $R_{R}=x$.

$$
\mathrm{E}_{\mathrm{Lab}}(\mathrm{MeV}) \quad \mathrm{x}=\ell_{\mathrm{R}}
$$

${ }^{13} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{13} \mathrm{C}\right)^{12} \mathrm{C}$	87	2
${ }^{208}{ }_{\mathrm{Pb}}\left({ }^{16} \mathrm{O},{ }^{15} \mathrm{~N}\right){ }^{209} \mathrm{Bi}$	104	2
${ }^{120} \mathrm{Sn}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}^{122} \mathrm{Sn}\right.$	100	4
${ }^{12} \mathrm{C}\left({ }^{20} \mathrm{Ne},{ }^{16} \mathrm{O}\right)^{16} \mathrm{O}$	78	5

seek to express the functions $\psi\left(R_{p}\right)$ and $\phi\left({ }_{\sim}^{*}{ }_{N}\right)$ each as the product of a fimetion of R_{j} and of R_{PN}. To this end we first introduce, as usual, the partial wave expansions

$$
\begin{aligned}
& \psi_{K_{D}}^{(+)}\left(R_{D}\right)=4 \pi \sum_{L_{D}{ }_{D}} e^{i \sigma_{D}}{ }_{i} L_{D_{F_{L}}}\left(K_{D}, R_{D}\right) Y_{L_{D}}{ }^{*}\left(\hat{K}_{D}\right) Y_{L_{D}}^{\mu_{D}}\left(\hat{R}_{D}\right)
\end{aligned}
$$

If $F_{L_{P}}\left(k_{p}, R_{P}\right)=\sum a_{n}^{L_{P}} j_{L_{p}}\left(\alpha_{P}^{L_{P}} R_{p}\right) \quad\left(0<R_{P}<R_{m}\right)$.
n

We show in Fig. 2 how accurately a typical partial wave can be represented by a five - and ten-term series of this type.

Fig. 2. A typical scattered wave function corresponding to $\ell=84$ in an inelastic channel 2^{2} of $180+120 \mathrm{Sn}$) is shown by solid line. The best fiveand ten-term Bessel series, Eq. (6), fitted to the function over the region $0<R<15 F$ are shown by circles and squares respectively. (XBL 756-1558)

Similarly, if we denote the radial part of $\Phi_{L_{2}} S_{2} J_{2}\left(\mathrm{~B}_{\mathrm{AN}}\right) 1, y \mathrm{u}_{\mathrm{L}_{2} \mathrm{~J}_{2}}$

$$
\phi_{L_{2} S_{2} J_{2}}\left(\mathcal{R}_{A N}\right)=u_{L_{2} J_{2}}\left(R_{A N}\right)\left[Y_{L_{2}}\left(\hat{R}_{A N}\right), S_{2}\right] J_{2}
$$

we can expand it

$$
\begin{equation*}
L_{L_{2} J}\left(R_{A N}\right)=\sum_{m} b_{m}^{L_{2}} j_{L_{2}}\left(\theta_{m}^{L_{2}} R_{A N}\right) \tag{7}
\end{equation*}
$$

The addition theorem is written for these as

$$
\begin{align*}
& j_{L_{P}}\left(\alpha R_{P}\right) Y_{L_{P} \mu_{P}}^{*}\left(\hat{R}_{P}\right)=\sum_{\ell_{P} \ell_{R}} A_{Q_{P} R_{R} L_{P}(-)^{\ell_{P}} j_{Q_{P}}\left(\alpha \alpha_{B}^{A} R_{D}\right)} \\
& \times j_{\ell_{R}}\left(\alpha \frac{N}{D} \frac{M}{B} R_{P N}\right)\left[Y_{\ell_{P}}\left(\hat{R}_{D}\right) Y_{\ell_{R}}\left(-\hat{R}_{P N}\right)\right]_{L_{P}{ }^{\mu_{P}}}^{*} \tag{8}
\end{align*}
$$

and
$j_{L_{2}}\left(B R_{A N}\right) Y_{L_{2} M_{2}}\left(\hat{R}_{A N}\right)=\sum_{X \lambda} A_{A \ell L}(-)^{\wedge} j_{A}\left(B R_{Y}\right)$

$$
x \quad j_{\ell}\left(B \frac{P}{D} R_{P N}\right)\left[Y_{\Lambda}\left(\hat{R}_{D} ; Y_{\ell}\left(R_{P N}\right)\right] L_{2} M_{2}\right.
$$

Now the angular integrals in (1) can be done in closed form, and the radial integrals reduce to a sum of products of one dimensional integrals of the form,

$$
\int_{0}^{R_{n}^{n}} j_{\sim_{R}}\left(x_{n}^{L} P \frac{N}{D} \frac{M}{B} r\right) j_{i}\left(\sigma_{m}^{L_{2}} \frac{P}{D} r\right) V(r) u_{L_{1} J}(r) r^{2} d r
$$

$$
\begin{equation*}
\times \int_{0}^{R_{m}} j_{\ell_{P}}\left(\alpha_{n}^{L_{P}} \frac{A}{B} R\right) j_{A}\left(\beta_{m}^{L_{m}} R\right) F_{L_{D}}\left(k_{D}, R\right) R^{2} d r \tag{9}
\end{equation*}
$$

The wain result of our paper is expressed in here. The six-fuid integral representing the t-matrix has been rediced to products of two one-dimensional integrals. I

It is a convenient feature of this formalisn that the recoil angular momentum appears explicitly Eecause we anticipate that this quantity is restricted to small values. Thus, the convergence irr this variable can be exploited in manerical calculations to reduce the number of integrals (9) that need to be evaluated. It therefore appears that we have developed a method für evaluating the direct reaction anplitude for heavy ion reactions that will prove to be fast and therefore economical.

Footnote and References

* n bridged version of LBL-237B, in press in Nuclear Physics.

1. For a review and references to the literature see N. K, Glendenning, One and two Nucleon Transfer Reactions, in Nuclear Spectroscopi edited by J. Cerny (Academic Press to be published).
2. P. J. A, Buttle and L. J. B. Goldfarb, Nucl. Phys. 78, 409 (1966).

HOW WELL CAN THE INTERACTION BETWEEN HEAVY IONS BE DETERMINED BY ELASTIC AND INELASTIC EXPERIMENTS**

N. K. Glendenning

It has been asserted that the elastic scattering cross section for heavy ions is sensitive only to the tail region of their mutual interaction. The opinion has also been expressed thit inelastic scattering would provide a more sensitive probe. Here we intend to determine more precisely what can be leamed from these reactions. The existence of the grazing angle in the classical deflection function for scattering from a potential provides a hint as to how to proceed. This angle is the invariant quantity that all potentials mast possess if they are to reproduce this feature of the cross sections. Accordingly we focus on the penetration depth $D\left(f_{g}\right)$ of the grazing orbit, 2 g . Taking the ${ }^{18} 0+120 \mathrm{Sn}$ scattering at $E=100 \mathrm{MeV}(1 \mathrm{oh})$ as a concrete example, this depth turns out io be about 12 F .

We adopt as a standard potential one suggested by Becchetti (the $40-\mathrm{MeV}$ potential of the table). The value of \because is potential at the above mentioned
grazing distance is 0.36 MeV . We generate set of potentials which pass through this point, and lie within something like ± 30 of the standard potential within an intermal of $\pm 1 \mathrm{~F}$ around the grazing distance. There is a continuous infinity of potentials having such a specification, of which the tail region of a few are shown in Fig. 1, while a larger selection is shown in Table 1. (The parameters refer to a Woods-Saxon form.) For each real potential we have used a search routine to provide an imaginary part of the potential such that all potentials yield the indistinguishable cross sections down to several orders of magnitude below the peak. The compacted elastic cross sections for the two extreme potentials listed in the table are shown in Figs. 2 and 3 at two different energies. In addition we show the cross sections for exciting the 2^{+} state in tin. It is evident that the cross sections are indistinguishable even for the extrene potentials of Table 1 down to several orders of magnitude

Fig. 1. The tail region of the real part of potentials which, together with the imaginary parts listed in Table 1, yield elastic cross sections which are indistinguishable. The central value of the depth is in each case indicated and can be used to identify the corresponding entry in Table 1. These are menbers of a continuum of potentials. V car have any value lying between these curves, and possibly beyond.
(XBL 745-3282)

Fig. 2. Flastic and inelastic 2^{+}cross section for $100-\mathrm{MeV} 18_{0}+10_{\text {Sn }}$ cannot distinguish between the two extreme potentials of Table 1 (first and last entry). The two scales refer to the two curves. For the inelas + ic cross section, our calculation for $\theta<15^{\circ}$ is inaccurate because only the contributions for $\ell<215$ and $\mathrm{R}<30 \mathrm{~F}$ were computed at this energy. Cross sections throughout are in mb/sr.
(XBL 745-915)
below the peak. We may conclude therefore that unless it becomes possible to make very precise measurements for very low cross sections, neither the

Table 1. A selection from a continuum of potentials which yield elastic scattering cross sections which are indistinguishable for $100-\mathrm{MeV} 180+{ }^{120} \mathrm{Sn}$. Reacticin cross sections are equal within -3%. In each case the Coulonb radius is $r_{c}=1.2$. The $40-$ NeV potential is our standard one.

v	r_{u}	${ }_{4}$	\pm	${ }^{1} \mathbf{H}$	a_{4}	c_{R}
-300	1.125	0.53	- 0.9	1.334	0.5323	1800
			-48.5	1.203	0.5316	
-214	1.125	0.55	- 8. 18	1.148	0.5433	1820
-149	1.19	0.5	- 6.44	1.137	0.5224	1795
- 8	1.22	0.5	- 7.404	1.354	0.4936	1785
			-33.34	1.212	0.5001	1745
- 67	2.24	0.5	- 5.613	2.176	0.5117	1605
- 40	1.35	0.45	-15	1.12	0.45	1760
- 24	1.12	0.48	- 4.666	4.401	U.4631	1790
- 10.7	1.39	0.45	- 8,063	1.305	0.4179	1734
- 5.49	1.46	0.38	- 3.763	1.424	0.1276	1790

Fig. 3. Elastic and inelastic cross sections for $160 \mathrm{MeV} 180+120_{\mathrm{Sn}}$ cannot distinguish between the two extreme potentials of Table 1 (first and last entry).
(XBL 745-912)
elastic nor inelastic cross sections provide more than a very approximate specification of the interaction in the tail response. That is to say, no potential falling within the wide bounds between the curves of Fig. 1 can be distinguished save by the most precise of elistic or inelastic experiments.

Footnote

*Excerpted from an Invited Paper in Proceedings of Intemational Conference on Reactions Between Complex Nuciei, Nashvilie, Vo. 2; ed, by R. L. Robinson et al. (North Holland, Ansterdan, 1974) p. 137.

TWO-NUCLEON TRANSFER BETWEEN HEAVY IONS, deEp orbits and secondary peaks*

N. K. Giendanning

We learned in the preceding paper that neither elastic nor inelastic cross.secticns carry information about the interaction between nuclei except in ties tail region. A consideration of the form factois for various reactions between nuclei reveals that several nucleon transfer should be nore sensitive to the interior region. Indeed for two nucleon thansfer, the form factor is peaked at a separation distance of the centers corresponding to a total immersion of one nucleus within the other (Fig.8). Whether the nuclei in such close collisions survive to emerge again in simple direct reaction channels with sufficient probability to be observed is as yet an unsettled question. If they do, the carry information about that region, and we must learn how to interpret it.

For orientation we consider first the two extreme potentials of Table 1 of the preceding paper whose elastic and inelastic cross sections were compared at two energies in Figs. 2 and 3 of that paper and found to be indistinguishable under usual experimental conditions. In contrast the two-neutron transfer cross sections leading to the ground and 2^{+}states in ${ }^{122} \mathrm{Sn}$ are very different and easily distinguished at angles away from the grazing angle (Fig. 1). At this point we emphasize that the grazing angle is ideal for detemining spectroscopic information in transfer reactions, because it depends so weakly on the interaction. However, it is only by making measurements away from the grazing angle that information about interior conditions

Fig. 1. Cross sections for two-neutron transfer to the ground and 2^{+}vibrational state easily distinguish between the two extreme potentials of Table 1 of the preceding paper. The two scales refer to the two states.
(XBL 745-914)
can be determined. The S-matrix at $E=100 \mathrm{MeV}$ for the ground state transition for both potentials are shown in Fig. 2 and reveal a very large contribution coming from small angular minentum collisions in the case of the deep potentia:.. Whether such a large contribution for strongly averlapping collisions is realistic we cannot tell from either elastic or inelastic experiments, but the opportunity for leanning this is certainly afforded by transfer reactions. In addition to plotting the amplitude of S, which mast transparently reveals the importint regions of ℓ, we have also plotted S itself in the complex plane and joined these points. The

Fig. 2. The S-matrix for the ground state transfer are compared for the two extreme potentials. The corresponding cross sections are in Fig. 1. The amplitude of S is plotted in the top part of the figure, and S iteself is plotted in the complex plane in the bottom part. Note the resonant behavior in the lower $\&$ region in the case of the deep potential, signalled by the rapid rotations, (XBL 745-903)
resonant behavior of the deep potential signified by the rapid rotation of the trajectory around the origin is in contrast with the shallow potential. These are potential or shape resonance like thosse known from neutron scattering. This behavior appears also in the elastic S-matrix but since it is in the low $\&$-region, where S is several orders of magnitude less than inity, it does not manifest itself in elastic scattering, but rather in several nucleon transfer reactions.

Perhaps it is not so surprising that such different potentials as the two compared above could be distinguished. Therefore, we turn our attention to two which are more conventional. The one is the standard that we adopted at the beginning of this article and which was the basis for the potentials of Table 1 in the preceding paper. It was employed by Becciotti in the $0+\mathrm{Pb}$ reaction. The other one is due to Morrison which he used for $0+$ Ca. They are labeled B and M in Table 1 of this paper. It m? be noticed that the Morrison potential is very similar to one (97) in Table 1 of the preceding

Table 1. The Becchetti and Morrison potentials and their reaction cross sections at two energies. The primed potentials have weaker absorption. Fairwise they have close to the same reaction cross sections. Coulonb radius paraneter is $r_{c}=1.2$. (Energy, lengtit and cross sections are quoted in iov, F and mb.)

	V	r_{0}	a	W	σ_{R}	
					$\mathrm{E}=100$	$\mathrm{E}=160$
B	-40	1,31	0.45	-15	1760	2525
M	-100	1,22	0.5	-40	1750	2510
M'	-40	1.31	0.45	-10	1720	2465
M	-100	1.22	0.5	-27	1700	2450

paper, and it is not surprising therefore that they cannot be distinguished by elastic and inelastic scattering. In fact, the two-neutron transfer reaction at $E=400 \mathrm{MeV}$ shom in Fig. 3 does not distinguish between them either. The S-matrix for the Becchetti potential reveals no interior contributions. Onily a narrow band of angular momenta centered at the critical angular monentum le are important. Knowing that the imaginary potential is poorly determined we have reduced it for both potentials but in such a way that the reaction cross sections remain about equal for the two potentials. This roughly insures that we are dealing with equivalently absorbing potentials. They are labsled B^{\prime} and M^{\prime} in Table 1. All four yield indistinguishable elastic and inelastic cross sections, and even at the reduced absorption we cannot distinguish easily the two-neutron transfer cross sections (Fig. 4).

Fig. 3. Gross sections for two-neutron transfer to the ground and 2 vibrational state. The tho cases refer to the Becchetti and Morrison potentials of Table 1.
(XBL 745-913)

Fig. 4. Cross sepctions for two-neutron transfer to the ground and 2^{+}vibrational state computed for the reduced absorptions indicated by potentials B^{\prime} and M' in Table 1. Experiment could not easily distinguish between these.
(XBL 745-911)

At this point we turn to the classical orbits to assist us in deciding what to look for that can distinguish between these two potentials. Their
classical deflection functions are compared in Fig, 5 at several energies. It can be seen that for $\ell>\ell c$ they give rise to the same classical cross section. However, the inner region below ℓ_{C} is different in the two cases. Such differences are obscured in the quantum elastic ard inelastic scattering by the inaginary potential, even when it is week.

Our attention is attracted by the flat regions around $\& \sim 30$ in the case of $160-\mathrm{MeV}$ scattering because flat regions of the deflection function give rise to large cross section, there being nany waves that scatter near the sane angle. Classically, therefore, the deep potential would produce a peak at $\theta=15^{\circ}$, while the shallow potential would produce a peak at $\theta \approx 45^{\circ}$. Since the grazing angle, $\theta_{\mathrm{g}} \times 23^{6}$ is so far forward at this energ) the presence of a secondary peak at 15° is likely to be obscured. However, because the cross section normally drops off quickly beyond θ_{g}, the secondary peak at $\theta=45^{\circ}$ produced by the weak potential may be observable if absorption is not so strong as to danp altogether the interior partial waves. It turns out that for the absorption strengths originally quoted for the Becchetti and Morrison potentials, the secondary structure is not visible. However, the twonucleon transfer cross sections shown in Fig. 6 clearly distinguish between the deep and shallow potentials for the case of weaker absorption. In particular for the shallow potential we see the secondary peak at $\theta \sim 45$ as anticipated from 'he classical discussion. The corresponding S -matrix is showm in Fig. 7 and here we see, again in agreement with the classical picture, a subsidiary peak at $\ell \sim 30$.

Thus by this consideration of classical scattering, we have been led to suggest how two-nucleon transfer reactions may be used to distinguish between potentials which are equally acceptable as far as elastic and inelastic scattering is concerned. For this is possible, however, the absorption must not be too strong (unless the real potentials are

Fig. 5. Deflection function at several energies are compared for the potentials indicated. The singularities mark the value of the critical angular momentum at each energy. The grazing angle θ_{g} and angular momentum ℓg correspond to the maximum ${ }^{8}$ just above ℓ_{c} in each case.
(XBL 745-930)

Fig. 6. Cross section for two-neutron transfer to the ground state computed at $\mathrm{E}=100 \mathrm{MeV}$ for the Becchetti and Morrison potential with reduced absorption (B^{\prime} and M^{\prime}) of Table 1. Note the secondary structure in the one case occurring at $\ell=45^{\circ}$ in correspondence with the classical deflection function of Fig. 5, which predicts such a peak arising from deep orbits around $\ell \sim 30$. (XBL 745-917)

Fig. 7. S -matrix at $\mathrm{E}=160 \mathrm{MeV}$ for the ground state two-neutron transfer corresponding to the Becchetti potential with weak absorption (B) in Table 1). Note the broad structure around $\ell=30$. Corresponding cross section is in Fig. 6. Inset shows S plotted inthe complex plane from $\ell=60$.
(XBL 745-931)
extreme such as 308 and 5 in Table 1 of the preceding paper. We note in this connection that the reduction in W shown in Table 1 does not reduce the reaction cross section proportionally. We saw in Table 1 of the preceding paper a selection of potentials which are equivalent for elastic and inelastic
scattering. Therefore, we add that for potentials with a real depth somewhat weaker than the Becchetti potential, the secondary peak would move to larger angles, and in the reverse direction for stronger ones. The appearancd in experiment of such a secondary peak would indicate that the absorption is 'weak" and the real potential shallow. The absence of such a peak would be inconclusive.

We have seen a sample of two-nucleon cross sections which are widely different, depending upon the potential acting between the nuclei at distances corresponding to appreciable overlap. The differences show up at angles away from the grazing angle. This is natural, of course, since the grazing angle is so called because it is only modestly perturbed by the nuclear field. A reexamination of our figures reveals how inportant it is to perform measurements at small angle intervals and with good resolution and statistics. This make the experiments slow, but they should prove very rewarding. Clear-

1y much more information is potentially available here than is elastic or inelastic experiments. Of course, the latter play their role in defining the strength of the inelastic branch of multiple-step transfer anmlitudes. But they carry very little information about the nuclear field that is mique.

I stress that the attention to twomucieon transfer and the tin isotopes is for illustrative purposes only. For other multi-nucleon transfer reations, and for other mass region the same type of classical analysis is expected to be fruitful.

Footnote

*xcerpted from an Invited Paper in Proceedings of International Conference on Reactions Between Complex Nuclei, Nashville, Vol. 2; ed. by R. L. Robinison et al. (North Holland, Amsterdam, 1974) p. 137.

TWO-FOLD NATURE OF COULOMB-NUCLEAR INTERFERENGE IN HEAVY ION INELASTIC SCATTERING

N. K. Glendenning

The so-called Coulomb-nuclear interference phenomenon has been a subject of a number of experimental papers and has also been discussed in theoretical papers, In some of the latter papers, wave interference explanation of the phenomenon. given that, together with the opposite source of the nuclear and Coulomb parts of the interaction, yields an explanation of the phase relationship observed in oscillations in the elastic and inelas. tic cross sections. 1 The experimental papers often allude simply to a cancellation arising from the opposite source of the fields. ${ }^{2}$

Actually there are in fact two distinct aspects of the phenomenon. The weve interference aspect can be understood in terms of the deflection function shown in Fig. 1. The position is indicated of three orbits, 1,2 , and 3, all of which scatter to the same angle. The outer most one, labeled 1, can excite the nucleus only through the long-range quadrupole conponent of the Coulomb field, whereas orbits 2 and 3 penetrate to the region where the nuclear field is strong. The superposition principle ensures the interference of the amplitude of such waves and it is the opposite sense to the elastic scattering.

The second aspect could be called the inpulse cancellation effect. Along certain orbits in a very narrow band of angular monenta the integrated effect of the alternating sign of the Coulomb-nuclear-Coulomb quadrupole field sums to a negligible impulse. This appears explicitly in an exanination of the S-matrix for the inelastic process shown in Fig. 2. There the amplitude, and S-itself, plotted in the complex plane, is shown for a pure Coulonb and a pure nuclear quadrupole field in the second and third colums of the figure. An examination of S in the complex plane reveals that for

Fig, 1. Deflection function from which the classical scattering angle of a trajectory with angular monentum $\&$ can be read for $100 \mathrm{MeV} 180+120 \mathrm{Sn}$. The back scattering for small ℓ is caused by the repulsive Coulonb core which at this energy is not sumounted. The singularity occurs at the critical angular monentum l_{c}. The three regions I, II, and III correspond to orbits which i) turn away from the nucleus, ii\} turn partly around the edge of iii) plunge through the surface into the interior.
partial waves in the vicinity of $\ell=60$ the Coulomb and nuclear contributions are in opposite quadrants. This leads to their approximate cancellation indicated in the first column of the figure by the sharp minimum in the amplitude of S, and the twist in S itself.

Fig. 2. For inelastic scattering to the collective 2^{+}state the amplitude of the S-matrix. are shown for the complete process and for pure nuclear and pure Coulomb excitation. Below, the S-matrices themselves are plotted in the complex plane as points, which are joined. Dots mark intervals of 5 units. The vector swo of the nuclear and coulomb parts at corresponding ℓ yield (to lowest order) the complete S. The points corresponding to $i=55$ and 60 are marked and the others can be located by counting. Note that the ℓ-scale for the nuclear S amplitude is expanded. In the first part of the figure, it is the spike at $\ell \sim 57$. Also note the slow convergence of high $\&$ as revealed by the density of points and their slow approach to the origin.
(XBL 745-902)

The corresponding cross sections for the separate contributions and combined Coulomb and Nuclear excitation are shown in Fig. -3, where the elastic and inelastic cross sections are seen to be out of phase in the region of angles less than the grazing one, as discussed above. Of course the uncertanity relationship existing between 2 and e does not permit the location in angle of the impulse cancellation with any precision because of the narrowness of the mininum in S (Fig. 2). It is manifest in an overall reduction of the cross section in a broad θ region as compared to pure Coulonb excitation.

Fig. 3. The phase relation between elastic and inelastic cross sections can be seen. Pure nuclear and Coulomb excitation cross sections for the 2^{-} state are also shown. (Cross sections are in $\mathrm{mb} / \mathrm{sr}$.)
(XBL 756-1559)

References

1. R. A. Malfleet, S. Landdowne, and V. Rostokin, Phys. Letters 44B, 238 (1973).
2. R. Videbalk, I. Chernov, P. R. Christensen, and E. E. Gross, Phys. Rev. Letters 28, 1072 (1973).

QUANTAL ANALOG OF THE CLASSICAL DEFLECTION FUNCTION FOR HEAVY ION COLLISIONS

N. K. Glendenning

A fascinating aspect of heavy ion reactions that has been discussed at length is the usefulness of classical ideas in understanding the quantum mechanical description of the reaction and in some cases the relationship of the physical assumptions made in a quantum calculation and the cross section details. Not only this, but classical physics can sometimes be used to suggest what kind of experiments need to be performed to settle specific questions. ${ }^{1}$

An essential part of the classical description is the deflection function, which is a plot of the scattering angle in a collision as a function of the impact parameter, or equivalently the angular momentum of the relative motion. A recent paper has questioned the relevance of this classical quantity in interpreting heavy ion reactions, and has shown examples where the classical deflection function and its quantal analog do not correspond very closely. This would be disappointing development if it were generally, or unqualifiedly true. It is our aim here to investigate the question in detail.

We first define what is meant by the quantal analogue of the deflection function. The scattering amplitude for any (non=elastic) process contains, aside from geometrical factors, a sum over

$$
e^{i\left(\sigma_{\ell}+\sigma_{l}^{\prime}\right)} S_{l}, \ell_{\ell}^{m_{1}}
$$

where σ_{0} and σ_{q}, are Coulomb phase shifts for the incident and exit' channels and $S_{\ell}{ }^{\prime} \ell$ is the S matrix, the amplitude in the exit channel ℓ " per unt incident flux in the incident channel ℓ. We define the amplitude and phase of S by

$$
S_{\ell^{\prime}, \ell}=\Pi_{\ell^{+}, \ell} \exp \left(2 i \delta_{\ell^{\prime}, \ell}\right) .
$$

By replacing'the spherical harmonic by its assymptolie expression valid for large ℓ, one finds that the above product involves

$$
\Pi_{\ell^{\prime}, \ell}\left[\exp \left(\mathbf{i} \phi_{\ell^{\prime}, \ell}^{+}\right)+\exp \left(\mathbf{i} \phi_{\ell^{\prime}, \ell}^{-}\right)\right]
$$

where

$$
\phi_{\ell^{\prime}, \ell}^{ \pm}=2 \theta-\frac{\pi}{4}\left(2 \delta_{\ell^{\prime}, \ell}+\sigma_{\ell}+\sigma_{\ell}+\sigma_{\ell^{\prime}}\right)
$$

For large ℓ the exponentials are rapidly oscillating functions of θ. The main contribution to the sum of which the above is a term (aside from other factors irrelevant to our argument) therefore comes about when the phase is stationary; i.e.,

$$
\frac{d}{d h} \Phi_{l^{\prime}, n}^{ \pm}=0 .
$$

This gives us

$$
\theta=\frac{d}{d \ell}\left(2 \delta_{\ell^{\prime}, \ell}+\sigma_{\ell}+\sigma_{\ell},\right)
$$

which we refer to the quantal analogue of the deflection function. It is understood to be a function of l.

Harney et a1. 2 compared the above analogue computed for elastic scattering from a complex potential with the classical deflection function computed from the real part of the potential. Such a comparison is made in Fig. 1 for two different absorption strengths the potential 1 of Table 1 . Indeed one sees that there is very little resemblance. If however instead of making the comparison for the quantum elastic scattering, it is made for some other quasi-elastic process such as two-neutron transfer, then one finds as in Fig, 2 a greater similarity when the absorption is not too strong. The reason why the disagreement in the elastic chamel is so pronounced is clear. The quantion elastic channel has in it the shadow scattering arising from the black sphere caused by the absorbing complex potential. It is only by going to non-elastic channels that we can avoid this highly non-classical deflection fumetions resemble each other. The resemblance is in some case more pronounced than in others. If the absorption is too strong, there is little resemblance. Otherwise only in the region of the critical angular momentum does the quantum result differ from the classical. In particular the rainbow angle is preserved, as is the shoulder above the critical angular momentum. Interestingly, in connection with the predictions made in "Two-Nucleon

Fig. 1. For the elastic channel in ${ }^{18} \mathrm{O}+{ }^{120} \mathrm{Sn}$ at $\mathrm{E}=100 \mathrm{MeV}$ the quantal deflection functions for a weak (W) and strong (S) absorbing potential is compared with the classical result (C). (XBL 753-681)

Fig. 2. For the two nucleon transfer channel
${ }^{18} 0_{0+}{ }^{120} \mathrm{Sn}+{ }^{16} \mathrm{O}^{+}{ }^{122} \mathrm{Sn}$ (2^{+}) the quantal deflections functions for a weak (W) and strong (S) absorbing potential are compared with the classical result (C) at $E=100 \mathrm{MeV}$.
(XBL 753-685)

Fig. 3. For $E=160 \mathrm{MeV}$ the quantal deflection functions in the elastic (E) and two nucleon transfer channe1 (R) referred to in Fig. 2 are compared for weak absorption with the classical result (C).
(XBL 753-685)

Transfer Between Heavy Ions, Deep Orbits and Secondary Peak;," we compare the quantum and classical deflection functions at $E=160 \mathrm{NeV}$ in Fig. 3. In the region of the critical angular momentum the correspondence is porr, but for the reaction, the quantal deflection function traces the classical function very accurately in the regions where it is flat. These are precisely the important regions since they yield relatively large contributions to the cross section.

We conclude that the classical deflection function provides quite an accurate picture of its quantal analogue in the regions where it is of greatest
interest, namely the flat regions corresponding to large cross section. Therefore we can continue to take advantage of this as a device both for understanding as well as predicting phenomena in heavy ion collisions. ${ }^{1}$

References

1. N. K. Glendenning, International Conference on Reactions Between Complex Nuclei, Nashvijte (North Holland) p. 137 (1974).
2. H. L. Harney, P. Brown-Mmzinger, and C. K. Gelbke, 2. Physik 269, 339 (1974).

A SEPARABLE EXPANSION FOR THE NUCLEAR FORM FACTORS

M. A. Nagarajen and W. L. Wang

We discuss a technique to obtain a separable expansion for the nuclear form factors The form factors $F\left(k^{\prime}, k\right)$ for a local density $\rho(\vec{r})$ is gener-
 where \vec{k}^{\prime} and \vec{k} are two momenta:

$$
\begin{equation*}
F(\vec{q})=\int e^{-i(\vec{k} \cdot-\vec{k}) \cdot \vec{r}} \rho(\vec{r}) d \vec{r} \tag{1}
\end{equation*}
$$

We shall show that a good approximation may be devised to represent such a form factor in terms of
products of functions depending on \vec{k} and \vec{k}^{\prime} separately.

For density distribution of interest, we may write

$$
\begin{equation*}
\rho(\vec{r})=\rho_{0}(r)+\sum_{I} \rho_{I}(r) Y_{I 0}^{*}(\hat{r}), \tag{2}
\end{equation*}
$$

Where $P_{Q}(r)$ is the spherical density and $\rho_{\mathrm{I}}(r)$ are the multiple density distributions of order ${ }_{I}$. The form factors for $\rho(r)$ of Eq. (2) may be written as

$$
\begin{align*}
& F(\vec{q})=\sum_{\substack{\ell, \ell^{\prime} \\
m, m^{\prime} \\
I, M}} C\left(\ell, \ell^{\prime}, m, m^{\prime}, I, N\right) \lambda_{I}^{\ell \ell^{\prime}}\left(k, k^{\prime}\right) Y_{\ell m}(\hat{k}) \tag{3}\\
& \times Y_{\ell^{\prime} m^{\prime}}^{\star}\left(k^{\prime}\right),
\end{align*}
$$

where we have lumped all the arpular momentum coefficients in the factor C; $\lambda^{\ell \ell}\left(k, k^{\prime}\right)$ is defined as

$$
\begin{equation*}
\lambda_{I}^{\ell \ell^{\prime}}\left(k, k^{\prime}\right)=\int_{0}^{\infty} j_{\ell}(k r) j_{\ell},\left(k^{\prime} r\right) \rho_{I}(r) r^{2} d r \tag{4}
\end{equation*}
$$

where $\mathbf{j}_{\ell}(x)$ are the spherical Bessel functions of order ℓ.

We observe that the integral in Eq. (4) nay be cut off at sone radius, say R, where the radial density becones negligibly small. Within such a finite domain, i.e., r $\leqslant \mathrm{R}$, we introduce the Fourier-Bessel expansion for $j_{\ell}(k r)^{1}$
$j_{\ell}(k r)=\sum_{n=1}^{N} A_{n}^{\ell}(k) j_{\ell}\left(\alpha_{n}^{\ell} r\right) \quad$ for $0 \leqslant r \leqslant R$,
where $a^{\ell} R$ is the n-th zero of the spherical Bessel functiof of order ℓ. The expansion coefficients $A_{n}^{\ell}(k)$ may be obtained in an analytic form, Using Ea, (5), we find the following separable form for $\lambda_{I}^{R}\left(k, k^{\prime}\right)$:

$$
\begin{equation*}
\lambda_{I}^{\ell L^{\prime}}\left(k, k^{\prime}\right)=\sum_{\substack{m=1 \\ n=1}}^{M_{n}} A_{n}^{\ell}(k) A_{m}^{\ell^{\prime}}\left(k^{\prime}\right) K_{I}\left(\alpha_{n}^{\ell}, \alpha_{m}^{\ell^{\prime}}\right), \tag{6}
\end{equation*}
$$

Table 2. The values of $\lambda_{I=2}^{\ell \ell}\left(k, k^{\prime}\right)$ for $k=0.5 \mathrm{fm}^{-1}$ and $k^{\prime}=1.5$ fm^{-1}, for $\mathrm{I}=2$ (Quadrupole) derivative Woods-Saron density with $r_{0}=4 \mathrm{fm}$ and $a=0.6 \mathrm{fm}$. The density is not nomalized, but is taken to be $\rho_{I=2}(r)=\left(r_{o} / \rho_{0}\right) \frac{d \rho_{0}(r)}{d r_{0}}$. The values of N are the order of expanision in $E q$. (7) with $M=N$. The exact values are obtained from Eq. (4).

ℓ	ℓ^{\prime}	$N=6$	$\mathrm{N}=10$	$N=14$	Exact
0	2	0.1999	0.19999	0.1998	0.1995
	1	-1.842	-1.857	-1.859	-1.853
1	3	1.537	1.531	1.531	1.526
	0	0.3552	0.3761	0.3756	0.3738
2	2	-0.7736	-0.7919	-0.7921	-0.7888
	4	1.513	1.514	1.513	1.505
3	1	-0.2331	-0.2268	-0.2265	-0.2220
	3	0.01569	0.01116	0.01148	0.009036
	5	0.6825	0.6822	0.6820	0.6809
4	2	-0.1071	-0.1069	-0.1068	-1059
	4	0.1072	0.1064	0.1064	0.1050
	3	-0.01179	-0.01200	-0.01204	-0.01243
5	5	0.04218	0.04195	0.04193	0.04182

References

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards

Publication (1970).
2. M, A. Nagarajan and W, L. Wang, Phys. Rev. C10, 2205 (1974).

COUPLED-CHANNEL PION-NUCLEUS CHARGE EXCHANGE REACTIONS

M. A, Nagarajan and W. L. Wang

In this report, we discuss a coupled-channel approach to pion-nucleus charge-exchange reactions near the $(3,3)$ resonance region. These processes are of particular interest because they are dominated $b ;$ the $\Delta(1231)$ isobar formation in the nucleus. In the distorted wave Born approrimation ($\mathrm{D} H \mathrm{HA}$), the effects of the $(3,3)$ resonance on the single and double charge exchange reactions have been studied in detail. 1 Within similar approxinations, we show that the channel coupling effects may also be treated without much complication. The sinplifying hypotheses are quite similar to these used in the isobar-doorway model, ${ }^{2}$ which was used in the DWBA calculation of Ref. 1.

We first discuss a coupled-channel formalism using the concept of isobar-doorway states in the elastic and charge exchange channels. We use an adiabatic approximation to simplify our coupled equations, and obtain a formal expression of the T-matrix in terns of a resonant and a nonresonant contriblicions. We then explicitly introduce the approximations of the isobar-doorway model and obtain solutions of the coupled-channel equations algebraically in a closed form. The resonant couplings may be treated exactly by an N-point integration, or approximately by introducing a separable
expansion of the particle wave nuclear form factors. 3

It is of interest to study the effects of the channel couplings on the elastic and charge exchange scattering by comparing the result of the present formulation with the DWBA as proposed in Ref. 1. We should note, however, that the coupledchannel formalism here depends on the "exact resonance" approximation. Otherwise, the two formalisms are identical. We may diminish the uncertainty due to the exact resonance approximation by applying the theory to larger nuclei, and study the true channel-coupling effects.

References

1. M. A. Nagarajan and W. L. Wang, Lawrence Berkeley Laboratory Report LBL-2934 (1974); Phys. Rev. C10, 2125 (1974).
2. L. S. Kisslinger and W. L. Wang, Phys. Rev. Letters 30, 1071 (1973).
3. M. A. Nagarajan and W. L. Wang, LBL-2986; Phys. Rev. C10, 2206 (1974).

HEAVY ION INDUCED TRANSFER REACTIONS LEADING TO WEAKLY BOUND FINAL STATES

M. A. Nagarajan

The theory of nucleon transfer leading to unbound states in light ion induced reactions has, been formulated by Huby et al. 1 and by others. 2 The method that has been used is either to describe the unbound state as a quasibound state or, if the unbound state is in the vicinity of a resonance, to describe it as a Ganow state. Both of the mothods lead to an expression for the transition amplitude which resembles the one for transfer to bound states. In light ion reactions, one further assumes a zero range approximation which simplifies the evaluation of the cross-section considerably.

In the case of heavy ion induced transfer reactions, the zero range approximation is not applicable. One thus has to face the problem of evaluating ingegrals which are two dimensional. In the early application of the distorted wave Born approximation (D.W.B.A.) to heavy ion induced reactions,

Buttle and Goldfarb ${ }^{3}$ invoked a "no-recoil" approxination, which involves eliminating all terms of the order of the ratio of masses of the transferred nucleon to either of the cores. This approximation allows one to evaluate the two dimensional integral in two parts, firstly, the evaluation of the form factor and sc ondly the evaluation of the distorted wave integral. The no-recoil approximation was equivalent to assuming the transfer of the nucleon to occur when the twa nuclei were at rest relative to one another. Recently the problem of neutron transfer to unbound states has been studied by Baur and Trautuan, 4 who explicitly calculated the features of Sub Coulonb transfer. During recent years, experiments ${ }^{5}$ have indicated the ronadequacy of the no-recoil approximation, and approxinate ${ }^{6}$ and exact ${ }^{7}$ calculations of recoil corrections have been made. These calculations exhibit the ingortance of the translational motion of the transferred nucleon.

In the present note, we wish to extend the theory of transfer to weakly bound final states incorporating the finite range and the recoil effects.

For the sake of simplicity, we shall use the notation of Buttle and Goldfarb' 3 and represent the reaction as

$$
\underbrace{\left(c_{1}+n\right)}_{a_{1}}+c_{2}+\underbrace{\left(c_{2}+n\right)}_{a_{2}}+c_{1} .
$$

The co-ordinate system will be identical to that of ref. 3. The DWBA transition amplitude of the transfer is given by

$$
\begin{aligned}
& \left.x^{(x)}\left(k_{i}, x_{i}\right) \phi_{c_{2}} r^{(5)} \psi_{a_{1} \alpha_{1}}\left(\zeta_{1} \pi\right)\right\rangle .
\end{aligned}
$$

One can integrate over the internal co-ordinates of the cores introducing the spectroscopic factors as follows:

$$
\begin{align*}
& \left.\left\langle\psi_{a_{2} \alpha_{2}}\left(\xi_{1} n\right) \mid \Phi_{c_{2} \gamma_{2}}(\xi)\right\rangle \equiv \int d \xi \psi_{a_{2} \alpha_{2}}{ }^{*}{ }^{(\xi} 1^{n}\right) \Phi_{c_{2} \gamma_{2}}(\xi) \\
& =\theta_{j_{2}{ }_{2}}^{1 / 2} \sum_{\lambda_{2} \sigma_{2}}\left\langle c_{2} \gamma_{2} j_{2} \zeta_{2} \mid a_{2} \alpha_{2}\right\rangle\left\langle\varepsilon_{2} \lambda_{2} s_{2} \sigma_{2} \mid j_{2} \zeta_{2}\right\rangle \\
& X U_{\ell}\left(r_{2}\right) Y_{\ell_{2} \lambda_{2}}{ }^{*}\left(r_{2}\right) X_{S_{2 \alpha_{2}}}^{+}(s) \tag{2}
\end{align*}
$$

and a similar expression for the parentage expansion of the projectile wave function $\psi_{a_{1}} \alpha_{1}\left(\zeta_{1}{ }^{n}\right)$. In Eq. (2), the function $X_{S_{2} \sigma_{2}}(s)$ is the $1_{5 p i n}$ wave function of the nucleon in the residual nucleus, and $61 / 2$ is the spectroscopic factor. The transition anpliftude becomes

$$
\begin{aligned}
& T_{f i} \vec{k}_{f}, \vec{k}_{i}=\xi_{j_{1} \ell_{1}}^{1 / 2} \theta_{j_{2}{ }_{2}}^{1 / 2} \sum_{\hat{L}_{1} \lambda_{2}}(-1)^{\ell_{1}-s-\zeta} 1 \frac{\hat{j}_{1} \hat{j}_{2}}{s \hat{\ell}} U^{\left(\ell_{1} j_{1} \ell_{2} j_{2} ; S L\right)} \\
& x\left\langle j_{1}-\zeta_{1} j_{2}{ }_{2} \mid L M\right\rangle\left\langle\varepsilon_{1} \lambda_{1} I M \mid \varepsilon_{2} \lambda_{2}\right\rangle \\
& x\left\langle c_{1} \gamma_{1} j_{1} \zeta_{1} \mid a_{1} \alpha_{1}\right\rangle\left\langle c_{2} \gamma_{2} j_{2}^{\zeta_{2}} \mid a_{2} \alpha_{2}\right\rangle \\
& x \int d^{3} r \int d^{3} r_{1} X^{(-)^{\prime}}\left(\vec{k}_{f}, \vec{r}_{f}\right) U_{Q}\left(r_{2}\right) \\
& \times \quad Y_{l_{2} \lambda_{2}} *\left(\hat{r}_{2}\right) V\left(r_{1}\right) U_{l_{1}}\left(r_{1}\right) \\
& \times \quad Y_{\ell_{1} \lambda_{1}}\left(r_{1}\right) x^{(+)}\left(\vec{k}_{i}, \vec{r}_{i}\right) \text {. }
\end{aligned}
$$

To derive Eq. (3), we have assuned that the interaction $V\left(r_{1}\right)$ is spin independent.

If the nucleon is very weakl; bound in the residual nucleus, one would expect that, in view of the strong absorption in the elastic channels, the transfer would occur in the asymptotic region of the nucleon wave function in the final nucleus. One could therefore approximate the function $U_{£ 2}\left(r_{2}\right)$ by a spherical Harkel function, i.e.,

$$
\begin{equation*}
u_{l_{2}}\left(r_{2}\right) \geqslant N_{\ell_{2}} h_{\ell_{2}}^{(1)^{*}}\left(i x_{2} r_{2}\right) \tag{4}
\end{equation*}
$$

where the decay constant X_{2} is defined by

$$
\begin{equation*}
\frac{h^{2} x_{2}^{2}}{2 m}=\varepsilon_{2} \tag{5}
\end{equation*}
$$

8 being the separation energy. One can use the addition theorem

$$
\begin{aligned}
& \left.h_{\ell}^{(1)^{\star}}\left(\mathrm{ix}_{2} r_{2}\right) Y_{\ell_{2} \lambda_{2}}{ }^{*} \hat{r}_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& x\left(\ell^{\prime} \ell_{2} \mid \ell^{\prime} \circ\right) j_{\ell^{\prime}}^{*}\left(\mathrm{i}_{2} \mathrm{r}_{1}\right) \tag{6}\\
& \left.\times Y_{\ell ' \lambda}{ }^{*} \hat{(r}_{1}\right) h_{\ell}^{(1)^{*}}{ }_{\left(i \chi_{2} r\right) Y_{\ell \lambda}}\{r] .
\end{align*}
$$

We now define what we refer to as weak binding. The integration over the r_{1} is restricted by the range of the interaction $V\left(r_{1}^{1}\right)$. One would expect it to be of order of the radtus of the projectile. We use the criterion

$$
x_{2} R_{1}<1
$$

where R_{1} is the radius of the projectile, to define weak binding. If Eq. (7) is satisfied, one can verify that in Eq. (8), the spherical Bessel functions satisfy the condition

$$
\begin{gather*}
\int_{\ell^{\prime}}^{*}\left(\mathrm{ix}_{2} \mathrm{r}_{1}\right)=\delta_{\ell^{\prime} 0} \tag{B}\\
h_{\ell_{2}}^{(1)^{*}}\left(\mathrm{iX}_{2} \mathrm{r}_{2}\right) Y_{\ell_{2} r_{2}}^{*}\left(\hat{r}_{2}\right)=(-)^{\ell}{h_{\ell_{2}}^{(1)^{*}}}_{(\mathrm{B})}^{\left.\left(\mathrm{iX}_{2} \mathrm{r}\right) Y_{\ell_{2} \lambda_{2}}{ }^{(} \hat{\mathrm{r}}\right) .} \tag{9}
\end{gather*}
$$

Equation (9) implies that under the weak binding condition, Eq. (7), the wave function of the nuclean in the final nucleus has no component in the
direction of τ_{1}, and that in the no-recoil approximation the transfer amplitude would identically vanish or be extremely small.* This is a particular case where the reaction proceeds entirely through the effect of recoil.

At high energies, where one could expect the diffraction model to be valid, the integrals considerably simplify. We use the model of Dodd and Greider ${ }^{8}$ for simplicity. The elastic scattering wave function is described by

$$
\begin{equation*}
x^{(+)}\left(\vec{k}_{i}, \vec{r}_{i}\right)=\exp \left(i \vec{k}_{i}, \vec{r}_{i}\right) \quad 0\left[r_{i}\right] . \tag{10}
\end{equation*}
$$

Where $\theta\left(r_{i}\right)$ vanishes in the region of overlap of the ions and in the shadow region. With the use of Eqs. (9) and (10) the integral in Eq. (3) becones

$$
\begin{align*}
& (-)^{\ell} 2_{N_{l_{2}}} \int \hat{d} r_{1} e^{-i k_{R} \cdot \vec{r}_{1}} V\left(r_{1}\right) U_{\ell_{1}}\left(r_{1}\right) \\
& \times \int d \vec{r} e^{i \vec{q} \cdot \vec{r}} h_{2_{2}}^{(1)^{\star}}\left(i X_{2} r\right) Y_{l_{2} \lambda_{2}}{ }^{n}(r) \theta(r) . \tag{11}
\end{align*}
$$

there

$$
\begin{equation*}
\stackrel{\rightharpoonup}{q}=\vec{k}_{i}-\frac{M_{c_{2}}}{M_{a_{2}}} \vec{k}_{f} \tag{12a}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{k}_{R}=m\left(\frac{\vec{k}_{i}}{M_{a_{1}}}+\frac{\vec{k}_{f}}{M_{a_{2}}}\right) \tag{12b}
\end{equation*}
$$

It can be verified that \vec{k}_{R} is the recoil momentum, and the first integral in Eq. (11) is the Fourier transform of the product of the potential and the projectile wave function. The differential cross section becomes

$$
\begin{align*}
& \frac{d o}{d \Omega}=\frac{\mu_{i} \mu_{t}}{\left(2 \pi h^{2}\right)^{2}} \frac{k_{t}}{k_{i}} \frac{\left(2 a_{1}+1\right)}{\left(2 C_{2}+1\right)} \times \frac{(4 \pi)}{(2 S+1)\left(2 \ell_{2}+1\right)} \tag{13}\\
& \quad \times \theta_{\ell_{1} j_{1}} \theta_{\ell_{2} j_{2}}{ }^{\left(N_{\ell_{2}}\right)^{2}\left|G_{\ell_{1}}\left(k_{R}\right)\right|^{2} \sum_{\lambda_{2}}\left|B_{\ell_{2} \lambda_{2}}\right|^{2} .}
\end{align*}
$$

Where

$$
\begin{equation*}
G_{\ell_{1}}\left(k_{R}\right)=\int_{0}^{\infty} r_{1}{ }^{2} d r_{1} j_{\ell_{1}}\left(k_{R} r_{1}\right) V\left(r_{1}\right) U_{\ell_{1}}\left(r_{1}\right) \tag{14a}
\end{equation*}
$$

Equation (13) is valid for transfer of particles with intrinsic spin of $1 / 2$ or 0 . The factorization of the cross-section into the tho terms $G_{\ell_{1}}$ (k_{f}) and $\mathrm{B}_{2} h_{2}$ is characteristic of a reaction of the type ($\mathrm{p}, 2 \mathrm{p}$). If the final binding energy is small, the final channel behaves like a three body channel and the result in Eq. (13) is not surprising.

The above treatment can also be applied to reactios where the transferred particle is in a resonant, tate in the final system. An example of this type would be one where one the two ions in the final system is 8 Be , which is composed of two alpha particles in a s-wave resonance at about 90 keV above the threshold. The wave function of the particle will then be of the form

$$
\begin{equation*}
\mathrm{U}_{\mathrm{L}_{2}}\left(\mathrm{r}_{2}\right)=\mathrm{N}_{\mathrm{l}_{2}} \frac{\sin \left(\mathrm{k}_{2} r_{2}+6\right)}{\mathrm{k}_{2} \mathrm{r}_{2}} \tag{15}
\end{equation*}
$$

which satisfies an addition theorem similar to Eq. (6), and the final result would be identical.

In order to obtain the simple result of Eq. (13), we had ignored the dependence of the distorted wave integral, $\beta_{2} \lambda_{2}$ on χ_{2}. If the transfer process is assumed to be peripheral, the distorted wave integral is dependent upon $X_{\text {, }}$ approximately as $1 /\left(X_{2} R\right)^{l+1}$ where $\&$ is the angular $2_{\text {monentam }}$ transfer and R is the sum of radii of the ions. The dependence of the nuclear overlap integral on; x_{2} on the other hand can be approximated as $\left(x_{2} \mathrm{R}_{1}\right)^{\mathrm{P}^{\prime}}$. Hence, the contribution from the higher order tern will be of the order of $\mathrm{R}_{1} / \mathrm{R}$ of the leading term calculated in Eq. (11). If the target is heavy in comparison with the projectile, the ratio R_{1} / R is likely to be samall. The feature of factorization of the differential cross section expressed by Eq. (13) would result if the masses of the projectile and target are very different and if the Q of the reaction is close to the optimm value. The latter condition is necessary if one assumes the reaction to be peripheral.

Foomnote and References

1. R. Huby and J. R. Mines, Rev. Mod. Phys, 37,406 (1965); R. Huby, Nuc1. Yhys. A138, 442 (1969); R. Huby, Phys. Letters 33B, 323 (1970); B. J. Cole, R. Huby, and J. R. Mines, Phys. Letters 33B, 320 (1970).
2. C. M. Vincent, Phys. Rev. 175, 1309 (1968); T. Berggren, Kuc1. Phys. A109, 265 (1968); J, Jang and J. Zimanyi, Nuc1. Phys. A139, 534 (1969).
3. P. J. A. Buttle and L. J. B. Goldfarb, Nucl. Phys. 78, 409 (1966).
4. G. Baur and D. Trautnamn, Nuc1-Phys. A211, 333 (1973).
5. D. G. Kovar et al., Phys. Rev. Lett, 29, 1023 (1972); 30, 1075 (1973).
6. D. M. Brink, Phys. Lett. 408, 37 (1972); M. A. Nagarajan, Nucl. Phys. A196, 34 (1972): A209, 485 (1973): A. J. Baltz and S. Karana, (to bē published).
7. R. Bock and H, Yoshida, Nucl. Phys, Al89, 177 (1972).
B. L. R. Dodd and K. R. Greider, Phys. Rev. 180, 1187 (1969).

PION-NUCLEUS CHARGE EXCHANGE REACTIONS IN THE ISOBAR-DOORWAY MODEL

M. A. Nagarajan and W. L. Wang

In this work, we discuss the application of the isobar-doorway model to the charge exchange reactions. It is appropriate to recall the main ideas of the model. One separates the pion-nucleon interaction into a resonant and a nonresonant part. One assumes that the resonant part of the interaction creates an isobar conpound state, i.e., a nucleon hole and a Δ particle in the target. One further assumes that the scattering and reaction phenomena are largely detemined by the detailed properties of the isobar is formed in the elastic channel and then decays into both elastic and inelastic channels. The doorway state picture emerges if one as sumes that the coupling between the elastic and inelastic channels is solely through the isobar compound state.

The formalism we present in the following section will be applicable to elastic (leading to the grownd state of the final nucleus) as well as inelastic charge exchange reactions, leading to quasibound excited states of the final nucleus. Breakup of the final nucleus is considered only through a paraneterization of the omitted channels. The formalism is within the spirit of the usual DNBA calculations where the initial and the final states wave functions are assuned to be determined from the elastic scattering experiments in the respective channels. in our model, we obtain such elastic scattering wave functions from the isobar-doorway model.

For SCX (Single Charge Exchange) reaction, we consider the following process:

$$
\begin{equation*}
\pi_{1}+A_{1} \longrightarrow \pi_{2}+A_{2} \tag{1}
\end{equation*}
$$

where 1 and 2 denote the initial and final charge states of the pions. The incident channel has a ${ }^{4} 1$ (π^{+}or π^{-}) interacting with the target nucleus A_{1}; the outgoing channel has a π_{2} (generally π° for SCX reactions) with the residual nucleus A_{2}. The Hamiltonian of the system may be written as

$$
\begin{equation*}
H=H_{b}+K_{\pi}+V \tag{2}
\end{equation*}
$$

where $H_{b}\left(r_{1}, r_{2} \ldots r_{A}\right)$ is the baryon Hamiltonian with baryon coordinates $r_{1}, \ldots r_{A}$. The baryon flamiltonian also describes the motion of the excited state of the nucleon (i.e., isobar). We allow at most one isobar in the system. In Eq. \{2\}, the pion
kinetic energy operator is K_{π} and the r-rucleus interaction is V. This π-nucleus interaction V describes the elastic srattering as well as tho charge exchange process, along with all other reaitions. We may separate this interaction into two parts:

$$
\begin{equation*}
v=v_{o}+V_{R} \tag{3}
\end{equation*}
$$

where the non-resonant interaction V_{0} contains oper ators of the following forn

$$
\begin{equation*}
v_{D}=f_{\pi N} a_{\pi}^{+} a_{N}^{+} a_{N}^{A} A_{\pi} \tag{4}
\end{equation*}
$$

with $f_{\pi N}$ as the strength of the interaction a^{+}and a_{N}^{+}are ${ }^{n N}$ reation operators of a pion and a nuc1 1 eon, respectively). The Coulomb interaction is included in V_{o}. The resonant interaction V_{R} has the following form

$$
\begin{equation*}
V_{R}=G_{\pi N \Delta} a_{\Delta} a_{N}^{+} a_{\pi}^{+}+h, c \tag{5}
\end{equation*}
$$

where $G_{\pi i N}$ depends on the coupling strength and the quantum numbers of π, N and Δ. The nonresonant interaction contains the π-nucleon s-wave and $T=1 / 2 j$-wave interactions. The resonant interaction is the $\mathrm{T}=3 / 2 \mathrm{p}$-wave interaction.

To formulate our problem, it is useful to use the projection-operator techniques of Feshbach. We have two charge states in the P -space, so we separate the P-space into two parts: P_{1} and P_{2}, which project onto the initial and the final nuclear states, respectively. We next define the Q-space operator, Q, which projects onto the isobar-doorway states $\left|\phi_{n \alpha}\right\rangle$. We finally define the q-space operator, Q, which projects onto the rest of the Holbert space (the compound inelastic states). In order to exhibit the important dynamical effects of the isobar resonance, we choose to introduce a distorted wave Born app uxination (DWBA) for the T-matrix. The DIVBA SCX amplitude is defined as

$$
\tau=\left\langle x_{2}^{(-)}\right| x_{21}\left|x_{1}^{(+)}\right\rangle
$$

where the distorted wave functions $\left|x_{i}^{(\pm)}\right\rangle$are the
homogeneous solutions of

$$
\left(E-k_{i i}\right)\left|x_{i}^{(\pm)}\right\rangle=0 \quad i=1,2
$$

where $\mathcal{X}_{i j}=P_{i}{ }^{\mathcal{F}} \mathrm{P}_{\mathrm{j}}$ and

$$
X=H+H\left(E-\tilde{H}_{Q Q}\right)^{-1} H
$$

with

$$
\tilde{H}_{\mathrm{Qq}}=\mathrm{H}_{\mathrm{qQ}}+\mathrm{H}_{\mathrm{Qq}}\left(\mathrm{E}-\mathrm{H}_{\mathrm{qq}}\right)^{-1} \mathrm{H}_{\mathrm{qQ}} .
$$

Formally our results so far are rather similar to the (p, n) reactions. However, for the case of pion-nucleus charge exchange reactions, both the wave functions $\mid x^{(+)}>$and the interaction \mathcal{F}_{21} have strong energy dependence due to the $(3,3)$ resonance. The fact that the π-nucleus interaction is strong and resonating indicates inportant initialand final-state interactions.

We shall not discuss the details of the fonmulation here. They may be found in kef. 2. However, it is appropriate to sumarize our results as fol1ows.

We have extended the isobar-doorway model for pion-nucleus scattering to the charge exchange reactions. We have shown that energy dependence of the SCX and DCX reaction amplitude in DNBA may be conveniently separated from the parts which contain nuclear structure information. The energy dependence depends on the pion optical potential, or the self-energy effects in the nuclear medium; it is therefore shown to be closely related to the elastic scattering anplitude.

Within the model, the single anr' double charge exchange reactions may be treated r_{a} the same footing as the elastic scattering witil conmon factors
depending only on the energy and therefore may be consistently described by a simple parametrization from the energy dependence of the total cross sections. These factors may eventually be evaluated by a more detailed interaction model, such as a microscopic theory where the motion of the isobar is explicitly taken into account. The model we present is general enough to allow variations in the detailed assumptions of the pion-nucleon interaction in the medium.

The same procedure as described in this work may also be applied to separate the resonant and nonresonant components in an optical-model calculation. This separation of the optical potential, of course, is an extension of the usual DWBA calculation; for the case of pion-nucleus scattering, this approach may be useful in order to gain more insight into the roles of the $(3,3)$ resonance in the optical potential. However, this type of opticalmodel approacin will be fommal y equivalent to our formulation if the optical-model wave functions used are obtained from fomally exact optical potentials, since our wave function formally contain all orders of multiple scattering.

Finally, we would like to point out that our model has the distinctive feature of displaying explicitly the roles c. the $[3,3]$ resonance in the reaction dynamics, including the initisl and final state interactions. The effect of the norresonant background interactions is also properly retained in the formalism.

References

1. [., S. Kisslinger and W. L. Wang, Phys. Rev. Letters 30, 1071 (1973).
2. M. A. Nagarajan and H. L. Wang, Phys. Rev. C10, 2125 (1974).

FACTORIZATION IN RELATIVISTIC HEAVY-ION SCATTERING

W. L. Wany

We have calculated the total cross sections for relativistic nucleus-nucleus scattering in the Glauber theory and conclude that there will be no factorization, due to the s ort-range nature of nucleon-nucleon interaction as compared to the sizes of the criliding nuclei. In the optical limit, the elastic scattering amplitude $F_{A B}\left(q^{2}\right)$ is given as, ?

$$
\begin{equation*}
\left.F_{A B}\left(\overrightarrow{4}^{?}\right)=\frac{i k}{2 \pi} \int \mathrm{~d}^{2} \vec{b} \operatorname{expl} i \vec{q} \cdot \vec{b}\right] \tag{1}
\end{equation*}
$$

where η is the momentum transfer and k is the incident momentum. The two-dimensional densities $T(b)$ are related to the nuclear density distribution $\rho(\stackrel{F}{\mathrm{r}})$ by

$$
\begin{equation*}
T_{A}(\vec{b}) \int_{-\infty}^{0} \rho_{A}(\vec{r} \equiv \vec{b}+\vec{z}) d z \tag{2}
\end{equation*}
$$

where $\rho_{A}(\vec{r})$ is nomalized to mity. The unte.action parameter x is related to the nucleon sulileon totai cross section $\sigma_{\pi \Omega}$ by
$\left.x\left\{1 \quad \sin !i r \int d^{2} \vec{b}^{\prime} \cdot T_{A}\left(\vec{b}^{\prime}\right) T_{A}\left(\vec{b}^{\prime} \cdot \vec{b}^{\prime}\right)\right]\right\}$
where A and B are the mass numbers of the colliding nuclei, α is the ratio of real to imaginary parts of the nucleon-nucleon elastic scattering anplitude. In our calculation we use $\sigma_{\mathrm{nn}}=44.5 \mathrm{mb}$ and $\alpha=-0.2$. The nuclear density distribution $\rho(\vec{r})$ is taken to have the spherical Woods-Saxon form.

For simplicity, we define the "factorizability" Γ_{AB} for $\mathrm{A}-\mathrm{B}$ scattering as

$$
\begin{equation*}
\Gamma_{A B}=\frac{\left(\sigma_{A B}\right)^{2}}{\sigma_{A A} \sigma_{B B}} \tag{4}
\end{equation*}
$$

where $\sigma_{A B}$ is the total cross section for A-B scattering. $A B_{\text {We may obtain the total cross sections }}$ from $\mathrm{F}_{A B}(\vec{q})$ of $E q$, (1) through the optical theoren.

We now show our results of the total cross section as a function of the effective radius

$$
\begin{equation*}
R_{e f f}=r_{0}\left(A^{1 / 3}+B^{1 / 3}\right) \tag{5}
\end{equation*}
$$

with $r=1.25 \mathrm{fm}$. From these results, it is clear that the Glauber theory gives qualitatively the same results as predicted by a simple blacksphere model.

In the case of the black-sphere model, the factorizability becones

$$
\begin{equation*}
r_{A B}=\frac{\left(1+Y_{A B}\right)^{4}}{16 Y_{A B}^{2}} \tag{6}
\end{equation*}
$$

where $\gamma_{A B}$ is the ratio of the radii of the two
nuclei

$$
\begin{equation*}
r_{A B}=R_{A} / R_{B} \tag{7}
\end{equation*}
$$

We now show the results of $\sigma_{A B}$ and $\Gamma_{A B}$ from our nunerical calculations (using Eqs. (i) and (4)) in

Table 1, where we also list the factorizabilities as obtained from the black-sphere model, (6) and (7).

As concluding remarks, we would like to note that Eq. (1) is obtained with an explicit assumption that the range of nucleon-nucleon interaction (The interaction radius) is much smaller than the niclear radius. This is the reason that the reiative sizes of the colliding objects remain important and the scattering process is still determined by the geonetrical properties of the objects. It is therefore clear that there will be no strict $\Gamma_{A B}=1$ factorization in the nucleus-nucleus scattering as long as the sizes of the colliding objects remain much large: than the range of nucleon-nueleon interaction.

Table 1. Total Cross Section and Factorizability, Nucleus-nucleus total cross sections (mm^{2}) calculated in the optical model. The average nucleonnucleon cross section $\bar{\sigma}_{n n}=44.5 \mathrm{mb}$ and $\alpha=-0.2$ (see Eq. (3)). The nuclear density is of a Fermi distribution. The factorizability (the lower left table) is defined by Eq. (4). The values in the parentheses are from EqS, (6) and (7).

3	4	12	15	27	32	40	88	200
4	35.2	03	104	169	200	221	315	502
12	$\begin{gathered} 6.52 \\ \{1.29\} \end{gathered}$	148	165	260	321	342	443	659
16	$\begin{gathered} 1.63 \\ 11.411 \end{gathered}$	$\begin{gathered} 0.07 \\ (1.011 \end{gathered}$	199	298	369	389	493	720
27	$\begin{gathered} 2.34 \\ \{2.80\} \end{gathered}$	$\begin{aligned} & 1.40 \\ & 12.08\} \end{aligned}$	$\begin{gathered} 1.44 \\ \{1.04\} \end{gathered}$	386	405	424	523	754
32	$\begin{gathered} 2.78 \\ (2.03) \end{gathered}$	$\begin{gathered} 1.70 \\ {[1.14]} \end{gathered}$	$\begin{aligned} & 1.76 \\ & \text { (1.08) } \end{aligned}$	$\begin{aligned} & 1.01 \\ & {[1.01]} \end{aligned}$	409	428	530	762
40	$\begin{gathered} 2.93 \\ (2.21) \end{gathered}$	$\begin{gathered} 1.06 \\ (1.10) \end{gathered}$	$\begin{gathered} 1.69 \\ (1.11) \end{gathered}$	$\begin{aligned} & 1.25 \\ & {[1.4 ?\}} \end{aligned}$	$\begin{aligned} & 0.94 \\ & 1.001 \end{aligned}$	474	573	819
明	$\begin{gathered} 3.64 \\ \{2.9 \mathrm{EJ} \end{gathered}$	$\begin{gathered} 1.74 \\ \{1.40\} \end{gathered}$	$\begin{gathered} 1.66 \\ (1.26) \end{gathered}$	$\begin{aligned} & 1.09 \\ & \{1.10\} \end{aligned}$	$\begin{gathered} 0.08 \\ 1.055 \end{gathered}$	$\begin{gathered} 0.91 \\ 11.03) \end{gathered}$	775	1051
2008	$\begin{gathered} 5.36 \\ 14.341 \end{gathered}$	$\begin{gathered} 2.32 \\ (1,82) \end{gathered}$	$\begin{gathered} 1.98 \\ 12.611 \end{gathered}$	$\begin{gathered} 1.26 \\ (1.29) \end{gathered}$	$\begin{aligned} & 1.03 \\ & 12.201 \end{aligned}$	$\begin{gathered} 1.02 \\ \{1.15\} \end{gathered}$	$\begin{aligned} & 1.0\} \\ & \{2.04\} \end{aligned}$	1363

Reference

1. W. Czyi and L. C. Maximon, Ana. Phys. (N.Y.) 52, 59 (1969).

CHARGE TRANSFER IN HIGH.ENERGY ATOMIC COLLISIONS*

M. Kleber ${ }^{\dagger}$ and M. A, Nagerajan

Introduction

The theory of charge transfer in high-energy atomic collisions has remained an intriguing problem over a long period of time. Different methods have been used to predict electron transfer cross sections, but the success in explaining cross sections does not by itself constitute a criterion of the yalidity of a theory. In fact, Greider and Dodd ${ }^{1}$ have pointed out that the DWBA is questionable
as a first approximation to rearrangement scattering. In this note, we show that the conditions for the validity of DWEA are considerably relaxed in the high-energy limit.

The Fornalism

In DIVBA, the prior form of the transition amplitude is given by

$$
\begin{align*}
T_{f_{i}} & =\int d \vec{r}_{a} d^{*}{\underset{b}{b}}_{x_{i}}^{(-)^{*}}\left(\vec{r}_{f}\right) \psi_{f}^{*}\left(\vec{r}_{b}\right) \\
& \times v_{i} \psi_{i}\left(\stackrel{r}{r}_{a}\right) x_{\vec{k}_{i}^{(+)}}^{\left(\vec{r}_{i}\right)} \tag{1}
\end{align*}
$$

In Eq. (1), \vec{r}_{2} and \vec{r}_{h} are respectively the coordinate vectors of the electron relative to the residual particle (target minus electron) and to the positive ion. $\psi_{i}\left(\vec{r}_{a}\right)$ and $\Psi_{f}\left(\vec{r}_{b}\right)$ represent the bound states of the electron in its initial and final system. $x_{k_{i}}^{++}\left(r_{i}\right)$ and $\chi_{\vec{k}_{f}^{(-)}}^{\left(r_{f}\right)}$) describe the relative motion of the colliding particles in the initlal and final states, \vec{r}_{i} and \mathbf{r}_{f} being the respective channel vectors. The Coulomb interaction between the positive ion and the residual particle (target minus electron) is explicitly utilizec in constructing the distorted wave functions ${\underset{\vec{k}}{i}}_{(+)_{i}}^{\left(r_{i}\right)}$ and ${\underset{\vec{k}}{f}}_{(-)}^{\left(\vec{r}_{f}\right)}$. The perturbation causing the ${ }^{k_{i}}$ transition is therefore

$$
\begin{equation*}
r_{i}=z_{e f f}^{\left(f_{j}\right)} \frac{e^{2}}{r_{b}} \tag{2}
\end{equation*}
$$

where $Z(f)$ is the effective charge of the positive ion, and ${ }^{\text {eff }} \mathrm{V}_{i}$ denotes the Coulomb interaction between the electron and the positive ion.

In momentum space, Eq. (1) reads

$$
\begin{align*}
& \times \quad \tilde{\phi}_{\mathbf{f}}^{*}\left(\frac{M_{2}}{M_{2}+m} \vec{p}_{f}-\vec{p}_{i}\right) \phi_{i}\left(\vec{p}_{f}-\frac{M_{1}}{M_{1}+m} \vec{p}_{i}\right) \tag{3}
\end{align*}
$$

M_{1}, M_{2} and m refer to the masses of the target, the projectile and the electrra respectively.

In the high-energy limit the momentum wave functions $\psi_{\mathrm{k}_{i}}^{(+)}\left(\mathrm{F}_{\mathrm{i}}\right)$ and $\psi(-)\left(\overrightarrow{\mathrm{p}}_{\mathrm{f}}\right)$ are strongly peaked around $\vec{p}_{i}=\vec{k}_{i}$ and $\vec{p}_{f}=\vec{k}_{f}$, respectively. If at these values of the momenta the functions ϕ_{i} and $\widetilde{\phi} f_{\rightarrow}$ are not zero, one may replace the varjabies \vec{p}_{i} and \vec{p}_{f} in ϕ_{i} and $\hat{\phi}_{f}$ by the values \vec{k}_{i} and $\overrightarrow{\mathbb{k}}_{f}$. The resulting expression for the transition amplitude becomes

$$
\begin{aligned}
& T_{f_{i}}=(2 \pi)^{3} \phi_{i}\left(\vec{k}_{f}-\frac{M_{1}}{M_{1}+m} \vec{k}_{i}\right) \tilde{\phi}_{f}^{*}\left(\frac{M_{2}}{M_{2}+m} \vec{k}_{f}-\vec{k}_{i}\right) \\
& x_{\vec{k}_{f}^{(-)^{*}}}^{(\vec{r}=0)} x_{\vec{k}_{i}^{(+)}}^{(\vec{r}=0)} .
\end{aligned}
$$

The assumption used in deriving Eq. (4) is that the momentundistribution of the bound states is much wider and more slowly varying than the spread of the scattering wave packets. If the bound state wave function has nodes, the peaking approximation becomes invalid in the vicinitv of the nodes, but it should not affect the evalurion of the total cross section, In order to verify the nature of the spreading of the scatțering wave packet, we used the representation of $\psi_{\mathbf{k}}(\overrightarrow{\mathrm{p}})$ given b : Bethe and Salpeter, ${ }^{2}$
which is valid at high energies, and found that even after the subtraction of the delta function term, $\delta(k-p)$, the remajning tern is still very strongly peaked over $\vec{p}=\vec{k}$.

The transition armilitude, Eq. (4), depends upon the value of the scattering wave functions at $r=0$. At $r=0$, these functions are dominated by the Coulomb repulsion between target and projectile. At these distances, the effect of the electron-ion interaction is negligible, and the question of the best auxiliary potential, which according to Greider and Doddl is important for the convergence of the DWEA, does not enter into Eq. (4).

Using the result that

$$
\begin{equation*}
\left.\mid{\underset{x}{k}}_{(\pm 7}^{(\vec{r}}=0\right)\left.\right|^{2}=\frac{2 \pi \eta}{\exp (2 \pi n)-1} \tag{5}
\end{equation*}
$$

where in is the Sormerfeld parameter

$$
\begin{equation*}
\eta=z_{i} z_{f} \frac{e^{2}}{\hbar v} \tag{6}
\end{equation*}
$$

with Z_{i} and Z_{f} representing the nuclear charges of the colliding particles and v their relative velocity, one obtains for the total cross section

$$
\begin{equation*}
\sigma=\sigma^{B K}\left[\frac{2 m}{\exp (2 \pi n)-1}\right]^{2} \tag{7}
\end{equation*}
$$

where σ^{BK} is the Brinkman-Kramers cross section. The effect of screening on the estimate of the cross section was investigated in the case of proton-hydrogen atom collision. A screened Coulomb potential ${ }^{3}$ of the form

$$
\begin{equation*}
U(\tau)=\exp (-\alpha r) \frac{e^{2}}{r}\left(1+\frac{\alpha r}{2}\right) \tag{8}
\end{equation*}
$$

where α is twice the inverse Bohr radius, was used to calculate the scattering wave functions. It was found that at a proton energy of 100 keV , the cross section showed a 18 deviation from Eq. 7).

In the one-electron approximation, the average Brinkman-Kramers cross section for an electron capture from a hydrogen-1ike target from an initial state with principal quantum number n_{i} into an empty hydrogen-like shell of principal quantum number n_{f} is given by (McDowell and Coleman, page 379). ${ }^{4}$

$$
\begin{equation*}
\sigma^{B K}=\frac{2^{18} \pi k^{8} \kappa_{i}^{5} \kappa_{f}^{5} n_{f}^{2}}{5\left(k^{4}+2 k^{2}\left(\kappa_{i}^{2}+\kappa_{f}^{2}\right)+\left(\kappa_{i}^{2}-\kappa_{f}^{2}\right)^{2}\right]^{5}} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
k=m v / h \tag{10}
\end{equation*}
$$

and

$$
\kappa_{a}=\frac{m c^{2}}{h c} \frac{z_{\text {eff }}^{(a)} e^{2}}{h c} \frac{1}{n_{a}} \quad ; \quad a=i, f
$$

Approxination (7) should remain valid as long as the electron cloud does not get deformed during the collision with the ion, i.e., if

$$
\begin{equation*}
m \leq 1 \tag{11}
\end{equation*}
$$

Comparison With Experiment

The total cross section for electron papture at high energies is obtained by suming o ${ }^{B K}$ in Eq. (9) over all values of n_{f} and by inserting the result in Eq. (7). For a proton incident on hydrogen, the condition mo $\leqslant 1$ means that (7) should be valid for proton energies exceeding 250 keV . In Figs. 1

Fig. 1. Total cross sections for electron capture by protons from atomic hydrogen. Curve 1: Impulse approxiration. 10 Curve 2: Continum distorted wave method. 11 Curve 3: High-energy DWBA linit (Eq. (11)). Curve 4: Brinkman-Kramers approximation (Eq. (13)). Experimental results: Ref. 12, Δ Ref. 8, 4 Ref. 13, 0 Williams 1967, © Ref. 14.
(X8L 757-3503)
and 2, the theoretical predictions are shown for the reaction

$$
\mathrm{H}^{+}+\mathrm{H}(1 \mathrm{~s}) \longrightarrow \sum_{\mathrm{n}, \ell} \mathrm{H}(\mathrm{n} \ell)+\mathrm{H}^{+} .
$$

Also plotted are the experimental results for protons incident on H_{2} nultiplied by 0.5. It is, however, not obvious that the hydrogen molecule could be considered as equivalent to tho independent hydrogen atoms. Tuan and Gerjuoy ${ }^{5}$ showed that in the high-energy linit the ratio of charge transfer from atomic hydrogen to charge transfer from H_{2} tends towards a value between 0.6 and 0.7. In spite of the scatter in the experimental points, we can see from the figures that a scaling factor between 0.6 and 0.7 will improve the agreenent between the highenergy DWBA (7) and the measured capture cross sections.

In order to avoid the problem of scaling factors, we investigated the nonresonant electron capture in proton-helium collisions:

$$
\mathrm{H}^{+}+\mathrm{He}\left(\mathrm{is}^{2}\right) \longrightarrow \sum_{n, \ell} \mathrm{H}(\mathrm{nl})+\sum_{\mathrm{n}^{\prime} \ell}, \mathrm{He}^{+}\left(\mathrm{n}^{\prime} \ell \ell^{\prime}\right) .
$$

In this reaction the high-energy approximation (7) should be valid for proton energies exceeding 1000

Fig. 2. Total cross sections for electron capture by protons from atomic hydrogen. Details as in Fig. 1.
(XBL 757-3502)
keV . We note that the simultaneous transfer of one He electron and the Coulomb excitation of the remaining electron is not included in DWBA, but as a second-order process it should not be important at high impact energies. By comparison with correlated two-electron wave functions, Bransden and Sin Fai Lam ${ }^{6}$ found that the single-electron wave function which belongs to 2 京 $=1.6875$ is adequate for the calculation of electron capture in heliun. We therefore used this effective charge to calculate the intrincic momentun k_{i}. The calculated cross sections are compared with the experimental cross sections in Table 1.

Table 1. Total cross sections σ^{BK} (Eq. (13)) and o (Eq. (11)) for electron capture by protons from helium.

E	$\sigma^{\text {RK }}$	σ	σ (experinent)	Ref,
1.063	$11.3^{-5 \dagger}$	1.22^{-5}	$(2.9 \pm 0.4)^{-5}$	8
2.45	11.8^{-7}	2.91^{-7}	$(3.2 \pm 0.4)^{-7}$	8
2.99	3.81^{-7}	1.08^{-7}	$(1.2 \pm 0.1)^{-7}$	8
5.41	12.4^{-9}	4.97^{-9}	$(5.4 \pm 0.6)^{-9}$	8
6.45	4.42^{-9}	1.93^{-9}	$(2 \pm 0.4)^{-8}$	9
10.5	2.52^{-10}	1.32^{-10}	$(1.2 \pm 0.4)^{-10}$	9

Proton energy E in MeV , cross sections in $10^{-16} \mathrm{~cm}^{2}$.
${ }^{+}$The superscript indicates the power of ten by which the number is to be multiplied.

Conclusion

The non-relativistic high-energy DIVBA approximation reproduces very well the experimental situation in the energy ranges under consideration. This agreement is, of course, no proof for the reliabiifity of the theory. Nevertheless, it should be realized that the DWBA capture rate in the case of 10.5 MeV protons on He is in accordance with the result of more advanced scattering methods as described by Begum et al. 7 The high-energy electron transfer is not only a test for the correctness of the scattering theory used in a calculation, but it simultaneously probes the asymptotic tail of the momentum distribution of the bound electron. Since Hartree-Fock calculations are not very sensitive to
the asymptotic region of the electron momentum distribution, the reliability of theoretical capture cross sections for complex targets will be obscured at high energies.

Footnotes and References

*Abstracted from Jourral of Physics B (Atomic and Molecular Physjes).
${ }^{\dagger}$ Physik-Department, Technische Universität Sinchen 8046 Garching, Germany.

1. K. R. Greider and L. R. Dodd, Phys. Rev. 146, 671-5 (1966).
2. H. A. Bethe and E. E. Salpeter, Encyclopedia of Physics, Vol. 35, (Springer, Berlin, 1957) p. 131.
3. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962) p. 24 .
4. M.R.C. McDowe1I and J. P. Coleman, Introduction to the Theory of Ion-Atom Collisions (North Holland, Amsterdam, 1970).
5. T. F. Tuan and E. Gerjuoy, Phys, Rev. 117, 75663 (1960).
6. B. H. Bransden and L. T. Sin Fai Lam, Proc. Phys. Soc. 87, 653-5 (1966).
7. S. Begum, B. H. Bransden, and J. Coleman, J. Phys. B: Atom. Molec. Phys. 6, $837-840$ (1973).
8. L. M. We1sch, K. H. Berkner, S. N. Kaplan, and R. V. Py1e, Phys. Rev. 158, 85-92 (1967).
9. K. H. Berkner, S. N. Kaplan, G. A. Pautika, and R. V. Pyle, Phys. Rev. 140, A729-31 (1965).
10. J. P. Coleman and M.R.C. McDowe11, Proc. Phys. Soc. 85, 1097-108 (1965).
11. \&. Salin, J. Phys, B: Atom, Molec. Phys. 3, 937-51 (1970).
12. C. F. Barnett and H. K. Reynold, Phys. Rev. 109, 355-9 (1958).
13. U. Schryber, Helv. Phys. Acta 40, 1023-51 (1968).
14. L., H. Toburen, M. Y. Nakai, and R. A. Langley, Phys. Rev. 171: 114-22 (1968).

the nuclear seyler-blanchard model ! THE hartree apprioximation

J. Randrup*

Introduction

The nuclear model introduced by Seyler and Blanchard ${ }^{1}$ in 1961 has proved a very useful tool for the study of macroscopic properties of nuclei. The model is based on a simple phenomenological two-nucleon interaction (often referred to as the Seyler-Blanchard interaction),

$$
\begin{equation*}
v_{12}=-\operatorname{cg}\left(\frac{r_{12}}{a}\right)\left(1-p_{12}^{2} / \mathrm{b}^{2}\right) \quad g(r)=\frac{e^{-r}}{r} . \tag{1}
\end{equation*}
$$

Here r_{12} is the distançe betrveen the two interacting nuclei and $\mathrm{p}_{12}=\mathrm{p}_{1}-\mathrm{p}_{2}$ their relative momantum. The spatial part of the Seyler-Blanchard interaction is a Yukawa function of range a. The interaction strength C depends on whether the two nucleons are 'like' (i.e., two neutrons or tho protons) or 'unlike' (i.e., a neutron and a proton). In addition, the strength of the interaction depends on the relative momentum p $_{12}$ of the two nucleons; it becones weaker as p_{12} increases and for some value b (the 'saturation' momentum) it changes from attractive to repulsive.

The fact that one wishes to extract information about the macroscopic nuclear properties only, permits the use of relatively simple approximations for the treatment of the associated many-body problem. Up to now, the model has been studied almost exclusively within the Thomas-Fermi approximation. This approximation leads to a very sinple description of the nuclear system.

The Seyler-Blanchard mode1, in its Thomas-Fermi formulation, has a wide range of applicability, and because of its great mathematical simplicity it is a very helpful tool for the study of macroscopic nuclear properties. It is obvious, however, that in the nuclear surface region, where the potential varies rapidly, the Monas-Ferni approximation is rather crude as it neglects the phase correlations imposed by the surface as well as the penetration of particles into the classically forbidden region. Considering the great virtue of the model, it is valuable to clarify, in a quantitative way, how much a more proper treatment of the quantum-mechanics would affect the results.

We have studied the Seyler-Blanchard model within the Hartree approxination, At the same time the model is formulated in more general terms so that it applies also to the general situation of non-static systems. The Hartree approxination treats the quan-tum-mechanics in an exact way, within the restriction that the many-particle system be described by a product wave function. Like the Thomas-Fermi approximation, the Hartree approximation neglects effects associated with the correlation between individual particles, and it constitutes a natural basis for studying the macroscopic properties of a quantum system.

The development of the Seyler-Blanchard model in the Hartree approxination provides us with a possibility for determining the accuracy of the Thomas-Fermi approximation for nuclear matter. Moreover, it makes it possible to obtain more accurate values for the various macroscopic nuclear properties, as for example, those represented by the Droplet-Model coefficients. ${ }^{2}$

In addition to thus yielding a more detailed insight into the properties of isolated static nuclear systems, the development of the model presented here has irportance for more general situaitons encountered, for example that of two colliding nuclei.

Quantization

The quantization of the Seyler-Blanchard interaction is rather straightforward, the only problem being associated with the proper quantum ${ }_{2}$ representation of the momentum-dependent part, $\mathrm{p}_{\mathrm{g}}^{2} \mathrm{Cr}$. The
貼 or some combination) may be elininated after a closer analysis of the situation. The crucial point is the requirenent that the resulting expression for the interaction-energy density continues the nomentum distribution of the system only in terns of the total local momentum, which is the only measurable wiantity. This requirement leads to the result that the momentum-dependent part of the SeylerBlanchard interaction should be quantized as the average of the two alternatives mentioned above; this may be written $p^{2} g+\frac{1}{4}\{\mathrm{p},\{\mathrm{p}, \mathrm{g}\}\}$, where $\{a, b\}=\frac{1}{2}(a b-b a)$ is the anti-communicator.

We can not here go into further details of the Hartree formulas but we mention below some-results for semi-infinite nuclear matter.

Density Profiles

For the paraneter values specified in Ref. 2 we have calculated the self-consistent solution to the derived Hartree equations. In Fig. I we display the resulting matter density distribution $\rho(x)$. For comparison we also show the corresponding density distribution as obtained in the Thomas-Femi approximation. The two densities are plotted such that their surface locations x_{s} coincide. The Hartree density exhibits two new features relative to the Thomas-Ferni density. One is the tail outside the system due to the finite depth of the nuclear potential. The other feature is the density ripples due to the phase correlations imposed by the presence of the surface.

We observe that the Thomas-Femi density represents the average trend of the Hartree density quite well, being most markedly off in the tail region. The surface diffuseness, measured in terms of the 10-90\% distance, increases by around 11\% from 3.17a

Fig. 1. Matter density distributions in units of the bulk density p_{0}. The sinooth curve is the Thomas-Fermi result and the oscillating curve is the Hartree result. The dashed density corresponds to an infinite wall located such that the wiggles are in phase with the Hartree wiggles deep inside the system. The scale has been enlarged by a factor of ten for $\mathrm{k}<-7 \mathrm{Fa}$ in order to exhibit the density wiggles.
(XBL 749-4326)
to 3.51a. This increase is almost entirely due to the density tail which moves the 10% point outwards by 0.46 a . The 90% point is almost maffecied by the quantization because it happens to be located right between two oscillations. We observe that the amplitudes of the ripples are considerably smaller than those corresponding to a sharp surface. This is due to the diffuse surface. This is due to the diffuse surface which disturbs to some extent the perfect phase correlations of the wave functions at the surface and thereby inhibits the undulations. However, as one goes away from the surface region deeper into the system the effect of the surface profile is felt to a decreasing extent and the wiggles becone more and more similar to those pertaining to a sharp wall. This phenomenon is illustrated in Fig. 2 where we have plotted the amplitude versus the depth from the surface. Thus the asymptotic behavior does not depend on the detailed profile of the surface but follows in general the infinite-wall expression.

This fact has some impact on the possibility of describing the density profile in terms of surface moments along ${ }_{3}$ the lines suggested by SUssmarn for finite nuclei ${ }^{3}$ The nuclear density profile is described in terms of surface moments of the density distributions, the surface diffuseness being given in terms of the second moment, the surface skewness (flare) in terms of the thind moment, and so on. Any two distributions may then be compared by comparing their respective surface moments. However, as we have seen above, the density anplitudes are asymptotically inversely proportional to the square of the depth. It follows that all higher monents, from the second and up, are not mathematically well defined. In fact, they all exhibit an oscillatory behavior as function of the lower limit of the integral (the cut-off depth x_{-}), the corresponding amplitude being constant for the second moment, increasing linearly for the third moment, and so on. Hence it is not possible to directly extract the surface-moment information about a semi-infinite

Fig. 2. Doubly logerithmic plot of the relative amplitude of the Hartree density wiggles as function of the depth. The straight lines corresponds to the inverse square dependence pertaining to an infinite wall while the curved line joins the actual results, from the third to the seventeenth undulation. The vertical scale extends from 0.01 to 0.0005 .
(XBL 749-4319)
quantur density distribution. For real nuclei, of course, the problem does not occur because of the finite size. But it is of general interest to study semi-infinite systems. And since this type of density ripple is a quite general feature in a Hartree description of such system, it would be desirable to generalize the concept of surface moments to cover this case as well. Such a generalization could conceivably be brought about by defining some appropriate averaging procedure by which the convergence would be ensured. In doing so one might benefit from the general knowledge of the behavior of the ripples in the asymptotic limit.

In Fig, 3 we have made a similar plot of the kinetic-energy densities obtained in the Hartree

Fig. 3. Kinetic-energy density distributions in units of $b^{2} / 2 \mathrm{~m} \rho_{0}$. The full curve is the Hartree result and the dashed curve the Thomas-Fermi result.
(XBL 749-4325)
and Thomas-Fer in approxinations. We observe here in particular how the kinetic-energy density is negative in the outer surface region, But apart from this region it follows rather closely the oscillations of the matter distribution plotted in Fig. 1.

Surface Energy

For the self-consistent Hartree solution we have calculated the surface-energy density distribution $a_{5}(x)$. The surface energy represents the binding-energy deficit due to the presence of a surface for the system. Hence $a_{s}(x)$ is given by

$$
\begin{equation*}
a_{s}(x)=e(x)-\frac{e_{0}}{\rho_{0}} \rho(x) \tag{2}
\end{equation*}
$$

where $e(x)$ is the total energy density and $\rho(x)$ the matter density. The subscripts o refer as usual to the bulk values. The surface-energy coefficient a_{s} is the integral of this density, multiplied by the 'nucleon' surface area,

$$
\begin{equation*}
a_{s}=4 \pi r_{0}^{2} \int_{-\infty}^{\infty} a_{s}(x) d x . \tag{3}
\end{equation*}
$$

In Fig. 4 we show the calculated surface-energy density together with the one pertaining to the Thomas-Femi system. Figure 5 shows the decomposition of these densities into their kinetic and interaction parts. For the Hartree system those latter partial densities exhibit oscillations in the deeper part of the system. They are opposite to each other so that the combined density $a_{s}(x)$ has considerably smaller oscillations. The Thomas-Fermi densities all go to zero at the end-point $x_{0} \simeq 1.90 \mathrm{a}$ while the Hartree densities extend out in the tail region. We notice that in this region the two parts tend to cancel each other resulting in a rather negligible, slightly negative, value of the total sur-face-energy density.

The kinetic-energy contribution to the surfaceenergy density is negative (apart from the small bulk oscillations). Its behavior in the tail region reflects the fact that it is very advantageous for a particle to be in this region as it has here

Fig. 4, Surfaçe-energy density distributions in units of MeV/a3. FuIl line: Hartree, dashed line: Thomas-Fermi.
(XBL 749-4324)

Fig. 5. Kinetic and interaction parts of the sur-face-energy density distributions displayed in Fig. 4.
(XBL 749-4323)
very suall or even negative kinetic energy. Further inside the system the Hartree contribution is less negative than the Thomas-Fermi contribution. This is due to the quantum localization effect which prohibits low-momentum particles from getting as close to a potential wall as high-momentum particles. This exclusion of the $10 w$-momentum particles from the potential surface results in a relative excess of high-momentum particles and a corresponding higher kinetic energy in that region. In the ThomasFemi approximation, with its phase averaging, this effect is not taken into account. In the extreme case of a sharp wall, the kinetic-energy contribution to the surface energy would be positive; the fact that it remains negative in the actual case is due to the diffuseness of the surface.

The interaction-energy contribution to the sur-face-energy density follows more closely the ThomasFermi curve, with some wiggles reflecting the matterdensity oscillations relative to the Thomas-Femi density. For example, the fact that $\mathrm{ax}_{\mathrm{x}}{ }^{1 n t}$ (x) is smaller than the Thomas-Fermi curve on the inside slope (around-3a) is a consequence of the first density hump which brings the density closer to the ideal bulk value and consequently lowers the energy deficit. In the tail region there is an appr iable contribution because the particles here are not very well bound. As we noticed, it so happens that this contribution to a large extent cancels the kineticenergy gain in the taîl.

The curve for the total surface-energy density then follows rather well the Thomas-Fermi curve. The largest deviation occurs near the peak and from the discussion above it follows that this increase should be mainly ascribed to the lack of lowmomentum particles near a quantum surface.

The integrated quantities corresponding to the mrious densities discussed above are listed in Table 1. For the surface-energy coefficient a_{s} we find a 10% increase from the Thomas-Fermi value of 18.56 MeV to 20.51 MeV . In an earlier study by Köhler ${ }^{4}$ of nuclear mayy-body calculations it is stated that the surface-energy coofficient would increase by $3.3 \pm 1 \mathrm{MeV}$. This trend is confirmed by

Table 1, Various characteristic surface quantities as obtained within the Thomas-Fermi and Hartree approximations. The quantities are: $10-90 \%$ surface diffuseness of matter density, the similar diffuseness based on the second surface moment, the kinectic part of the surface-energy coefficient, the interaction part, the total surface-energy coefficient, the $10-90 \%$ diffuseness of the mass function, and the 10-90\% diffuseness of the potential. The last columin shows the relative change (in percent) in going from the Thomas-Femi to the Hartree approximation.

Quantity	$\begin{aligned} & \text { Thamas- } \\ & \text { Fermi } \end{aligned}$	Hartree	$\begin{gathered} \text { Change } \\ {\left[{ }^{\circ}\right]} \end{gathered}$
${ }^{10-90}{ }^{[a]}$	3.17	3.51	10.7
b [a]	1.39	1.47	5.8
$\mathrm{a}_{\mathrm{s}}^{\mathrm{kin}}[\mathrm{Mel}]$	-16.22	-16.88	4.1
$\mathrm{a}_{\mathrm{s}}^{\text {int }}$ [MeV]	34.79	37.38	7.4
$\mathrm{a}_{\mathbf{s}} \quad[\mathrm{MeV}]$	18.50	20.51	10.5
$\mathrm{t}_{10-90^{\text {[}}}{ }^{\text {a }]}$	4.30	4.95	15.1
$\mathrm{t}_{10-90}^{\text {U }}$ [a]	4.55	5.10	12.1

the present more accurate finding that the increase is $1.95 \pm 0.01 \mathrm{MeV}$; because of the large error quoted by Köhler we do not attempt a detailed comparison.

Our study of the semi-infinite nuclear system may be concluded by the following remarks. For the various density distributions. the Thomas-Fermi anproximation vields a good average representation of
the Hartree results. This sumports the amplication of the Thomas-Fermi approxination for studies of macroscopic nuclear properties. In this connection we recall the criterion derived in Ref. 2 that the Thonas-Ferni approximation yields the correct density to within 10% provided $|\nabla \rho| / \rho^{4} / 3<10$. In the nuclear case this relation holds good through the surface region out to a point wiere the density has dropped to one-sixth of its central value. 2 Our results, displayed in Figs. 1 and 3, are seen to confirn this criterion which was obtyained on the basis of a study of linear potentials. 5 Furthermore, we can state that the Thomas-Fermi approximation underestimates the surface diffuseness as well as the surface energy by around 10%. This could be rough$1 y$ compensated for by increasing the range parameter $\frac{a}{3}$ by this relative anount (keering the value of Ca^{3} constant) when using the Thomas Fermi approximation.

Footnotes and References

* On leave from the University of Aarhus, Aarhus, Denmark.

1. R. G. Seyler and G. H. Blanchard, Phys. Rev. 124, 227 (1961).
2. W. D. Myers and W. J. Swiatecki, Ann. Phys. 55, 395 (1969).
3. G. Süssmann, "Description of the Nuclear Surface by Moments," Lawrence Berkeley Laboratory Reprint LBL-1615 (1973).
4. H. S. Köhler, Nuc1. Phys. A139, 353 (1969).
5. IW. J. Swiatecki, Proc. Phys. Soc. A68, 285 (1955).

NUCLEAR HYDRODYNAMICS

C. T. Alonso

The incoming data from very heavy ion experiments have indicated that the collisions of heavy nuclei may be strongly influenced by macroscopic dynamic effects' 1 Exciting prospects are associated with future studies of the bulk properties of heavy, almost macroscopic drops of the unique nuclear fluid. Thus it is of interest to investigate whether the techuiques of classical hydrodynamics can describe the buik flow of very heavy nuclei. During the past ten years dynamic studies of nuclear fission, assuming irrotational and inviscid flow, have been carried out by Nix and his collaborators. 2 In this decade we are interested in nuclear collisions, which probably involve rotational as well as viscous flow, and new methods for solving the corresponding flow equations are needed. Therefore we have developed a numerical solution of the Navier-Stokes equation that describes the rotational or irrotational flow of charged viscous drops scaled to nuclear dinensions. ${ }^{3}$ The computer code SQUISH that performs this numerical calculation can simulate the surface oscillations, fissions, and fusions of classical
charged liquid drops. The free surface of these drops is not restricted by any parameterization and therefore it can assume any shape necessary for the solution of the differential flow equations. In particular it should be able to follow distorted collisions of liquid drops.

In previous papers we have discussed certain aspects of the rheological properties of the nuclear liquid. 3,4 We have concluded that slow processes involving many nucleons like fission and fusion should be described by a liquid model. The nuclear drop is an emerging hydrodymanic system; that is, heavy ion accelerator experiments can 1 ie in the transition regions between the quantum mechanical and the classical and between the microscopic and the macroscopic. Therefore we should expect that our classical macroscopic model will need quantum-mechanical or microscopic adjustment in certain cases. Our primary purpose is to explore how far a full hydrodynamical treatment can be taken in the description of nuclear processes. I^{+}= interesting to note
that recent studies in the field of molecular dymanics have indicated that small systems containing several hundred particles pass into the hydrodynamic regine much fast-r than had been previously thoughts This may indicate that a hydrodynamic nuclear model will be more appropriate than has been anticipated.

In cases where a hydrodynamic model applies, the transport coefficient of greatest interest is the viscosity because of its sensitive microscopic origins. The nuclear viscosity is probably highly temperature dependent. In Fig. 1 on the left is shown the observed temperature dependence of the neutral Fermi liquid He ${ }^{3}$, which is not dissimilar to the nuclear liquili. On the right of Fig. 1 is a speculation macerning the temperature dependence of the viscosit, of nuclear matter. At low temperatures the pairing correlatirn in nuclear matter may introduce a superfluid component that brings the viscosity down. This could mean that cold processes like spontaneous nuclear fission have an effective viscosity that is quite different from hot processes like accelerator collisions.

In the spirit of the classical macroscopic assumption, we have carried out a full solution of the Navier-Stokes equation for a charged viscous liquid drop. The hydrodynamic equations and surface bouddary conditions have been described in a previous report. 3,4 In Fig, 2 is illustrated the

Fig. 1. (a) Measured temperature dependence of the viscosity of the Ferni liquid He^{3}. (b) Speculation of the tem m_{2} rature dependence of the viscosity of nuclear matter. A superfluid component could force the viscosity to zero at low temperatures.
(XBL 749-4939)

SQUISH-HOW IT WORKS

on Fres surface
marker
e- Lagranglan
particie
Velocities
stord on cell
bcundaries
siesultent
foree appited
at cell canter
I.

	1. Forces calculated from free-flow shape (surfoce tension and coulont forces)
	2. Yelocities coleulated from Navier-Stokas aquotion $\left(\frac{s}{\Delta i}+\bar{U} \cdot \bar{\nabla}\right)^{0}=-\frac{1}{P} \overline{\nabla P}+\frac{E_{n}}{\rho}+\frac{n}{\rho} \nabla^{2} 0$
	3. volume conservid frem Incempressibilify vatu 0
	4. Move celt particles and surface mafkurs and advante time to $1+8 t$

The SMaC method (Horlow and Amsden.Les Alomes)
Fig. 2. A schematic description of how the twodimensional code SQUISH solves the finite-difference cquations for fluid flow while satisfying the boundary conditions at the free surface of a viscous incompressible liquid.
(XBL 748-4016)
numerical solution as it is carried out ly the code SQUISH. An axially symetric drop is placed on a fixed Eulerian mesh, and movable Lagrangian particles representing liquid volume elements are injected into the drop at $t=0$. The code calculates the Coulomb forces and the surface tension from the free surface and its derivatives, which are obtais:ed from a cubic spline fit on a special set of Lagrangian markers that follow the free surface. The method of G.B. Foote is used for applying the surface tension to the drop. 6 We have usnd the SMAC method of Harlow and Ansden for the hydrodynamic solution.? In this method the mesh j - first adjusted to contain the correct vorticity and then the code deposits the correct velocities on the cell boudaries. The particles are moved according to the weighted local velocities, the time is incremented by a small step dt , and in this manner the program cycles, tracing out the flow of the drop as a function of time.

Our studies of drop dynamics fall into three categories: 1) surface oscillations, 2) fissions, and j) fusions. In order to check the accuracy of the code we have relied heavily on experimental and ther tetical research from such other fields as meteorology, fluid dynamics, astrophysics, and even. space science. In Fig. 3, for example, are two frames of colliding water drops filmed in the Skylab space station. Conversely, we find that this code has applications in all of these fields.

Surface oscillations have been described in previous reports, 3,4 We find that our code obeys the Rayleigh theory quite well and that it can reproduce such quantities as the critical viscosity, the period, the damping, and the amplitude with good accuracy for both charged and meharged drops. We are presently using the code as a research tool to study the effects of short-time solutions of

Fig. 3. Colliding water drops in the Skylab space station. This system soon fused into a stable compound drop.
(CBB 751-454)

Rayleigh oscillations as well as studies of the flow in large-amplitule oscillations for which no theory exists. In Figs. 4 and 5 are shown the imderdamped and overdamped motions of an uncharged 152 Sm nucleus, and in Fig. 6 is the underdgmped oscillation of a charged ${ }^{152}$ Sm nucleus.

Fission studies of charged drops that move beyond the saddle point are harder to check because there are no direct experimental da a for comparisor. We have available only the inviscid calculations of Nix^{2} and some asymptotic data fron nuclear fission experiments. Due to practical 1 Imitations involving the expense of running the code, we can make numerical simulations only in a certain range of viscosities that includes the critical viscosity for surface oscillations. Therefore we cannot simulate the inviscid Nix calculations directly. By

Fig. 4. Underdamped surface oscillations of a viscous liquid drop scaled to the dimensions of uncharged ${ }^{152}$ Sin nuclei,
(XBE 748-5739)

Fig. 5. Overdanped surface oscillations of the drop represented in Fig. 4. The viscosity has been increased by a factor of ten.
(XBB 748-5740)
increasing the charge on a drop we can determine the atonic number at which it stops oscillating and starts to fission, and we do find that the code predicts correct saddle point charges. In Fig. 7 are shown two fission simulations initiated at rest beyond the saddle point and using the two viscosities that producet the und "damped and overdanped oscillations of $\mathrm{F}-3.4$ and 5. We find that at these viscosities this highly charged drop ($Z=160, A=300$) does not scission but elongates with a thin cylindrical neck. Similar recent simulations of real

Fig. 6. Underdanped surface oscillations of a charged ${ }^{152}$ Sin nuclear drop.
(XBB 748-5738)
 viscous fission stmutations isotept ${ }^{900} 160$ fissility $=1.56$

Fig. 7. Simulations of nuclear fission of the mythological isotope 160^{300}, which was started at rest with a shape outside the saddle shape. The drop on the top is ten times more viscous than the drop on the bottom. The central time scale applies to both simulations.
(XBB 749-5975)
nuclei indicate that these viscous drops also do not achieve scission at the times predicted by Nix for inviscid drops. This results in a lower fragment velocity as infinity, and preliminary results indicate that the lowered veloc.ities do not correspond to experimental velocities. The problem of viscous fission is still under study at this time.

Fusion studies such as that shown in Fig. 8 are also under way. There are no experimental or

Collision of wiscous charged droplats

Fig. 8. Preliminary simulation of the fusion of two viscous charged drups.
(XBL 746-3368)
theoretical data for comparison except some generalized results from heavy ion accelerator collisions. Our preliminary observation from fusion simulations is that colliding viscous drops develop a lot of heat in their fusing neck that causes them to lose their forward momentum before they have fused to within the saddle shape, with the result that they do not fuse into a stable compound drop but rather break up after a short time. The implication for heavy ion physics is that nuclear drops would not fuse to make compound nuclei if their viscosity is appreciable.

Re $\frac{5}{2}$ erences

1. W. D. Myers, 'Racroscopic Aspects of Heavy Ion Reactions", Proceedings of the International Conference on Reactions Between Complex Nuclei, Nashville, Ternessee, June 10-14, 1974.
2. J.R. Nix,"Further studies in the liquid drop theory of nuclear fission,' Nuc Phys. A130, 241
(1969) ; also A. J. Sierk and J.R. Nix, Dynamics of fission and fusion with applications to the formation of superheavy nuclei", LA-UR-73-931, (1973).
3. C, T. Alonso, "The Dynamics of Viscous Nuclear Drops;" LBL-2992 (1974).
4. C. T. Alonso,"The Dynamics of Cl arged Viscous Liquid Drops,"LBL- 2366 (1973).
5. B. J. Alder, "Computer dynamics" Ann Rev. Phys. Chem. 24, 325 (1973).
6. G. B. Foote, A numerical method for studying liquid drop behavior", J. Comp. Phys, 11, 507 (1973).
7. N.A. Amsden and F.H. Harlow," The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows, "LASL-LA-9370, (1970).

SIMILARITIES AND DIFFERENCES BETWEEN VOLUME-CHARGED (NUCLEAR) DROPS AND CHARGED CONDUCTING (RAIN] DROPS*

C. F. Tsang

The liquid drop model of nuclear fission was suggested thirty five years ago. The model has been very useful for the understanding of nuclear fission data and has recently bsen found to be an important element in what has come to be known in nuclear physics as the Strutinsky method by which the predictions on the masses and stability of the yet-undiscovered superheavy nuclei are made.

With all that has been developed in the nuclear fission problem, it would be interesting to apply it to actual macroscopic rain drops which are electrically conducting and consider their shapes of equilibrivm. This has the great advantage over the nuclear case that direct measurements in the laboratory on a drop can be made. Besides studying the rain drops on its own merit, a parallel theoretical and experimentul study of the conducting dirop
may also tirrow light on the nuclear drop. Of course properties of the charged conducting drop is not a new area of study. In 1882, Lord Rayleigh 1 published a paper on the stability of a charged conducting drop under small osçillations. Other studies are made more recently. ${ }^{2}$ However, in the present hork we make a close comparative study of the nuclear irop and the rain drop using methods developed in the liquid drop theory of nuclear fission.

It is straightforward to apply the methods developed in nuclear fission theory to the study of a charged conducting drop. Thus the fissility parameter x can be defined similarly as the ratio of the Coulcmb energy to twice the surface energy for a sphere with given charge and volume. The equation for the energy excess ξ over a spherical drop will be the same as for the volume charged drop case. Of
course, the Coulomb energies will now be evaluated on the assumption that the drop is conducting.

Three simple similarities may be pointed out.
(a) For $x=0$, there is no charge on the drop so that the equilibrium shapes are the same whether the drop is conducting or not. Also, it turns out nontrivially that as in the case of a volume charged drop, $x=1$ represents the transition point where the spherical drop is stable for $x<1$ and is unstable for $x>1$.
(b) A second similarity is apparent if we look at the energy difference ξ_{R} betreen the initial and the tinal state when the drop is divided into equal spheres. It has been shown by Swiatecki that for a volume charged drop.

$$
\xi_{R}=\left(n^{1 / 3}-1\right)+2 \times\left(n^{-2 / 3}-1\right)
$$

When re make a similar study for a conducting drop, we get , completely identical equation and the corresponding disucssions are applicable. The reason is that only spherical shapes are involved in both the initial and final states, and the Coulomb energy of a vclume charged sphere (which is $3 / 5 Q^{2} / R$) ar.d that of a conducting sphere (which is $1 / 2 Q^{2} / R$) differ by only a numerical factor, $6 / 5$, that is the same for both states.
(c) It also turns out that the Coulomb energy of a volime charged ellipsoid and that of a conducting ellipsoid is given by

$$
E_{c}=\frac{1}{4} Q^{2} \int^{\infty}\left[\left(a^{2}+\lambda\right)\left(b^{2}+\lambda\right)\right]^{1 / 2} d \lambda
$$

so that
$B_{c}=\frac{E_{c}}{E_{c}^{(0)}}=\frac{1}{2} R \int_{0}^{\infty}\left[\left(a^{2}+\lambda\right)\left(b^{2}+\lambda\right)\left(c^{2}+\lambda\right)\right]^{1 / 2} d \lambda$
where a, b, and ${ }^{\text {a }}$ are the lengths of the axes of an ellipsoid and $E(0)$ is Coulomb energy of a sphere with same volume ${ }^{\text {and }}$ and charge. This integral may be carried out analytically in the case of a spheriod where two of the axes are equal. B_{c} for a volume charged case is given by exactly the same formula. Hence, if we make the drop to take on only ellipsoidal shapes, then any conclusions about the statics of the volume charged drop will be true for the conducting drop.

The first difference between the volume charged drop and a conducting drop can be found if we consider the division of the drop into two unequal spheres at an infinite distance apart, one with volume gV and the other with volume (1- β)V. In Fig. 1 is plotted the energy change ξ_{R} between the initial and final states as a function of β for various values of the fissility parameter x. for $\beta=0$ and B=1 we get a sphere with volume V which is just the initial state. For $\beta=0.5$, we get two equal spheres. The energy change turns out to be zero at $x=0$. 3^{\prime}, for $\beta=0.5$. For a conducting drop Fig. 2 is found.

We note that here again the energy is zero at $x=0.35$ for $\beta=0.5$. However, except for the points at $B=0$, 0.5 , and 1.0 the curves in the two figures are very different. A potential minimum for a volume charged drop oicurs at $B=0.5$ for $x>0.2$, but a potential maxime for a conducting drop occurs at $\beta=0.5$ for all x values less than one. In the latter case minima occur at points where the fragments are unequal.

The major reason for the above differences is that the charge to mass ratio for a volume charged drop is a constant, but for a conducting drop it is not required to be a constant. This is also the

Fig. 1. The energy change in the division of a volume-charged drop into two spheres as a function of the fractional volume of one of the spheres for various values of x.
(XBL 694-245B)

Fig. 2. Same as Fig. 1 for the case of a charged conducting drop.
(XBL 694-2459)

Fig. 3. Shapos in the symnetry $N=3$ family of equipotential surfaces.
(XBC 693-2278)
underlying cause for the second difference that appears when we try to find the configuration with the absolute lowest energy for a drop with a given fissility paraneter x. For a volume charged drop, this configuration is n equal droplets at infinity and the number n depends on the x values of the drop. One would at first expect that the same conclusion might hold for a conducting drop. But, as it can be shown, for a conducting drop, the configuration at the lowest energy is one with all the charges Q on the drop taken off and distributed anong many infinitesimal droplets at infinity. The total energy of the droplets may be made to vanish and only the surface energy of the original drop is left.

In our work we next try to determine the equilibrium shapes of a charged conducting drop to be compared with those for a volune-charged drop.

The calculation of the Coulomb energy of a conduciing drop with an arbitrary shape is in general a diff, rult problem. However, it can be side-stepped by requiring the drop to assume a prescribed fanily of shapes, in fact, making the calculation of its Coulomb energy a trivial matter. It is well-known from the theo.-, of electrostatics that the electric potential due to a system of charges (total charge Q) at any point o. le a given equipotential, is the same as that due ℓ, a charged conductor with the shape of this equipotential having a charge Q. Hence, if we require the drop to assume the shape of an equipotential of potential a, its Coulomb energy is just $1 / 2$ aQ. If R is the radius of a sphere that has the sane volume as the drop and possesses the same amount of charge, its Coulomb energy is $1 / 2$ Q^{2} / R. Hence we get

$$
B_{c}=\alpha \mathrm{F} / \mathrm{Q} .
$$

The surface energy relative to tiat of the sphere, B_{S}, can simply be found by calculating : s area numericaily. Hence for a given fissility x the energy of the drop is calculated, and equilibrium shapes, whose energies are stationary, are then determined numerically.

For illustration, the shapes of equipotentials that enclose three equal points charges are shown
in Fig.3, where the volumes of the shapos have been nomalized to the same value. The symmetric equilibrium shapes of a charged conducting drop we calculated based on a fansily of shapes generated by two, three up to six point charges are shown in Fig. 4. The abscissa gives the fissility parameter x fr im 0 to 1. The ordinate givos Rum/R and RMy/R as a measure of the shape, where the minimum radius RMIN is

Fig. 4. The maximum and minimm radii of the symmetric saddle point shapes of a charged conducting drop as a function of the fissility parameter x. Differuit curves correspond to the restriction to different families of shapes indicated hy the values of N .
(XBL 694-2462)
the minimm radius of the neck of the drop and the maximam radius Ryax is the distances from cie senter of the neck (at its minimom radius) to the ends o: the drop.

Let us take the $N=6$ curves at its face value and examine its main features. As the value of x goes from 1 toward small x values, the equilibrium shape elongates from a sphere, i.e., RWAX/R increases with decreasing x in the region near $x=1$. This is in constrast to cases of small x values ($x \leq 0.7$) where $P_{\text {MAX }} / \mathrm{R}$ is slowly decreasing with decreasing values of x. The shapes in the latter case are long and look like a dumbel.1. Similar to the volume charged drop case there exists a region where there is a rapid change of shape, but it occurs at $x \approx 0.9$ in the present case. Actually the curve for RMAy/R even turns back at $x=0.887$ and again at $x=0.906$, However, we are able to show, by an independent variational test, tiat our results in this region are much less reliable than regions with larger or smaller x values, so that the dcuble turn may be spurious. (It is interesting to note that similar uncertainty once existed in the volume charged case).

The nature of these equilibrium shapes may be found by looking at the signs of the second derivatives of their energy with respect to all the parameters. The following results are found when the shapes are restricted to only the degrees of freedom that allow reflection symmetric shapes. For

$$
1>x>0.887 \text { the energy of the drop is a maximm }
$$ in one degree of freedom, but a mininum in the other symmetric degree of freedon. Between the bends, for $0.887<x<0.906$, the energy is a minitum. For values of x sinaller than 0.906 , it is again a maximum in one degree of freedom. With respect to the degrees of freedom that describe reflection asymmetric deformation, the energy of the drop is a minimum from $x=1$ to $x=0.892$. From $x=0.892$ to $\mathrm{x}=0.68$, it is a maximun in one ders of freedom. Below $\mathrm{x}=0.68$ it appears to be a maximem in two degrees of freedom. Hence, the equilibrium point is a saddle from $x=1$ to $x=0,892$. From $x=$

0.892 to $x=0.887$ it is a mountain top (unstable in more than one direction). Between the bends at $x=$ 0.887 and $x=0.906$ it is again a saddle. For x smaller than 0.906 , it turns out to be a moumtain top also. As discussed before the shapes close to $x=1$ is fairly well deternined, but at the bends the results are not reliable.

In conclusion, it is interesting to note that even some ninety Years after Lord Rayleigh's study of a charged conducting drop, the whole problem is still a very open subject. The present calculations have been able to determine the saddle points of a charged conducting drop for values of x from 0.892 to 1 where they are reflection symetric. But for the region $u p$ to 0.892 , one is still very ignorant of the saddle point shapes and energies of a charged conducting drop.

Footnote and References

*Condensed version of LBL-2970. Invited paper at the International Colloquim on Drops and Bubbles at Pasadena, California, August 28-30, 1974.

1. Lord Rayleigh, Phil. Mag. XIV, 184 (1882).
2. B. Vonnegut and R. L. Neubaeur, J. Collid. Sci. 7, 616 (1952), S. A. Ryce and R. R. Wymah, Can. J. Phys. 42,2185 (1964). S. A. Ryce and D. A. Partiarche, Can. J. Phys, 43, 2192 (1965). S. A. Ryce, Nature 1343 (1966).
Proceedings of the International Smapositm on Electrodynamics at Massachusetts Institute of Tectmology, March 31-Apri1 2, 1969). (International Unions of Theoretical and Applied Mechanics, Pure and Applied Physics).
P. R. Brazier-Smith, M. Brook, J. Latham, C. P. R. Saunders, and M. H. Snith, Proc. Roy. Soc. A322, 523 (1971). P. R. Brazier-Snith, Phys. Fluids 14, 1 (1971). P. R. Brazier-Snith, Quart. J. R. Met. Soc. 98, 434 (1972). C.P.R. Saumders and B. S. Wong, J. Atmos. Terr. Prys. 36, 707 (1974).

FURTHER STUDIES ON PROXIMITY FORCES

J. Randrup, W. J. Swiatecki,* and C. F. Tsang

For certain physical systems such as honogeneous solids, iluids or the heavier atonic nuclei, made up of elements interacting by short-range forces and possessing a surface region which is thin compared to the size of the obejct under consideration (leptodermous systems), the potential energ/ of the system may be decomposed into a volume term and a surface term. The surface tern is proportional to the area of the surface bounding the object. For a simply-connec ted system the above deconposition is accurate if the principal radii of curvature of the surface are everywhere much larger than the thickness of the surface region. Moreover, when this condition is satisfied, correction terms to the surface energy (such as the curvature correction) may be derived by exparsions in powers of the ratio of the thiclmess of the surface to the size
of the system, thus naking the expression for the potential energy even more accurate. Such a series expansion has been useful in discussing the average binding energies (masses) of atomic nuclei, and one might have thought that, epart from effects associated with the discreteness of nucleons (shell effects) there was no more to the problem of average nuclear energies than the calculation of the above series expansions to a sufficiently high order. This is not the case. Thus, when the surface of the system becomes contorted into features whese characteristic dimensions are of the order of the thickness of the surface region itself, the above series expansions becone useless. This failing is by no means of merely academic interest: it may be serious for a system with a thin neck, on the verge of dividing into two fragments (as in nuclear fission),
or in the case of two sub-systens about to come into contact (as in collisions between heavy nuclei). In the latter case in particular, when the system is not simply-connected, a calculation of the surface energies of the two pieces, no matter how accurately it is corrected for the curvatures of the two surfaces, can never give rise to the (strong) attraction that in practice appears when the two surfaces approach to within a distance conparable with the surfaces thickness.

Various attempts to remedy these failings have been made in the past. They range from microscopic computer calculations on indiyidual pairs of nuclei (by Greiner and collaborators ${ }^{1}$ and Brueckner and collaborators ${ }^{2}$) through various folding prescriptions where a more or less realistic pctential well is folded ${ }_{3}$ into a more or less realistic density distribution ${ }^{3,4}$ to direct estimates of certain aspects of the nucleus-nucleus iorce in tenns of the experimentally klown surface-energy coefficient. ${ }^{5}$

In line with the latter developments we have found it possible to derive simple expressions for the additjonal potential energy (or forces) associated with certain of the more important types of violently contorted surfaces, which should enable one to complement in a useful way the usual series expansions of the nuclear energy. We shall call these additional forces "Proximity Forces" because they arise from the proximity of elements of the contorted surface, the contortion being such that different pieces of the surface actually face each other across a small gap or crevice. In particular we have derived a theorem that makes it possible to relate (approximately) the interaction between two finite nuclei to the interaction between two flat parallel slabs of semi-infinite nuclear matter--a problem that is simpler, and can be solved (in a suitable approximation) once and for all.

The Proximity Force Theorem states that, under certain assumptions, the force $F(s)$ between curved surfaces, as a function of the least separation s, is proportional to the interaction potential per unit area e(s) between two flat surfaces, the proportionality factor being 2π times a certain mean radius of curvature characterizing the two surfaces at the point of closest approach. The theoren was proved and discussed in the last year's Annual Report. The result may be expressed as follows:

$$
F(s)=-\frac{d V_{P}}{d s}=2 \pi R e(s),
$$

where, in the case of two spherical surfaces with radii C_{1} and C_{2}, the mean curvature radius R is given by

$$
R=\frac{C_{1} C_{2}}{C_{1}+C_{2}},
$$

a kind of "reduced radius" of the two spheres (like a reduced mass $\mathrm{M}_{7} \mathrm{M}_{2} /\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)$. Thus the Proximity Potential is given by

$$
\begin{equation*}
V_{P}(s)=2 \pi K \varepsilon(s) \text { where } \varepsilon(s)=\int_{s}^{\infty} e\left(s^{\prime}\right) d s^{\prime} \tag{1}
\end{equation*}
$$

Caution should be exercised in using the Proximity Theorem. The proper domain of applicability of the theorem derived above is to the mapping of the average nuclear potential energy (for not too small systems) in a small sub-space of the total configuration space, defined by specifying certain deformation co-ordinates. In trying to compare the potential V_{p} directly with results of nucleusnucleus scattering experiments one should remember that nuclei are not undefornable, so that at each instant of time, the formula show up in scattering experiments at sufficiently high energies (especially in grazing collisions) where there might not be enough time during the collision for the nuclear density distributions to deform appreciably. It might also be argued that in the malysis of elasitic nucleus-nucleus collisions a formula based on tine assumption of undeformability is actually the relevant one, since ary excitation of the degrees of freedon of the individual nuclei would tend to take the system out of the channel for elastic scattering.

A second reservation on the indiscriminate use of Eq. (1) stems from the assumption that C_{1} and C_{1} should be much latger than the thickness of the nuclear surface. Even for heav; nuclei this condition is not satisfied very accurately, and when ore of the nuclei is as light as oxygen or neon, serious corrections to Eq. (1) might be expected.

In this connection it seemed for a while, as a result of comparisons of our Proximity Foŗce Theorem with calculations of Krappe and Nix, ${ }^{3}$ that even though correct in principle the theorem might be useless in practice for applications to nuclei, because actual nuclear radii are not sufficiently large compared to the diffuseness of the surface. These difficuities and their resolution are illustrated by the following considerations.

In Ref. 3 Krappe and Nix give a formula for the interaction potential between two non-overlapping sharp spheres of radii R_{1} and R_{2} whose volume elements interact by a Yukawa attraxtion of a certain strength (sa, K) and range a. We rewrite the formula as follows
$V=-16 \pi a^{2} \gamma\left(\frac{R_{1}}{u} \cosh \frac{R_{1}}{a}-\sinh -\frac{R_{1}}{a}\right)\left(\frac{R_{2}}{a} \cosh \frac{R_{2}}{a}-\sinh -\frac{R_{2}}{a}\right)$

$$
\begin{equation*}
\frac{\exp \left[-\left(R_{1}+R_{2}+s\right) / a\right]}{\left(R_{1}+R_{2}+s\right) / a} \tag{2}
\end{equation*}
$$

Here Y stands for $2 \pi a^{4} \mathrm{~K}$ and, as shown by Krappe and Nix, this is the surface energy per unit area associated with the sharp surface and the Yukawa interactions underlyir: their model. The separation between the two sharp surfaces is denoted by s. When R_{1} and R_{2} are sufficiently large compared to a the conditions for the validity of the Proximity Force Theoren are satisfied and, as remarked by Krappe and Nix, the limiting form of \bar{V}

$$
\begin{equation*}
V \rightarrow-4 \pi \gamma \frac{R_{1} R_{2}}{R_{1}+R_{2}} \text { a } e^{-s / a} \tag{3}
\end{equation*}
$$

is, indeed, in accordance with our theorem since the interaction energy per uit area between two KrappeNix semi-infinite systems with flat surfaces can be shoin to be given by

$$
\begin{equation*}
e(s)=-2 \gamma e^{-s / a} \tag{4}
\end{equation*}
$$

If, however, one attempts to use Eq. (3) as an approximation to Eq. (2) for values of $\mathrm{R}_{1}, 2$ /a of the order of two to four, one finds discrepancies of the order of a factor of three to two! (The Krappe-Nix range a is of the order of $1-1.5 \mathrm{fm}$; it should not be confused with the range a in the Seyler-Blanchard model [8], whose value is about 0.6 fn.) This poor accuracy of Eq. (3) was traced to the fact that the relevant effective radius of a Krappe-Nix sphere (i.e., or a sharp density distribution of radius R generating a diffuse potential well), is significantly smaller than R, and by applying the Proximity Theorem to these effective objects with smaller radij. a dramatic inprovement was obtained.

The crux of the matter is that the location of the profile of the potential well of a Krappe-Nix sphere (as given by the half-value radius or Sussmann's central radius CV_{V}) is inside the density radius R as is seen from the formula

$$
\mathrm{C}_{\mathrm{V}}=\mathrm{R}\left[1-\frac{\mathrm{b}^{2}}{\mathrm{R}^{2}}+\cdots\right]
$$

Here b is the Suissmann width of the diffuse potential surface. In the Krappe-Nix case it can be shown to be given by $b^{2}=2 a^{2}$.

The location of the effective profile of a Krappe-Nix sphere 1 taken as the mean between the density and potential profiles because the density and potential enter symmetrically in the formula s Vo for the (interaction) energy] is therefore

$$
\begin{equation*}
C_{\text {effective }}=\frac{1}{2}\left(C_{V}+C_{\rho}\right)=R\left(1-\frac{a^{2}}{R^{2}}+\cdots\right) . \tag{J}
\end{equation*}
$$

(Note that in the case of the density the half-value or central radius C_{ρ} is equal to R hecause the diffuseness is zero.)

Applying the Proximity Force Theorem to the effective spheres with radii given by Eq. (5) we find
$V_{P}=-4 \pi a \gamma \frac{\left(R_{1}-\frac{a^{2}}{R_{1}}\right)\left(R_{2}-\frac{a^{2}}{R_{2}}\right)}{R_{1}-\frac{a^{2}}{R_{1}}+R_{2}-\frac{a^{2}}{R_{2}}} \exp \left(-\frac{s}{a}-\frac{a}{R_{1}} \cdot \frac{a}{R_{2}}\right)$
to be compared with the exact result Eq. (2). Figure 1 shows the comparison for the case of equal spheres $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}$. In that case the Krappe-Nix interaction V and the Proximity Potential V_{p} may be written as

$$
V / 4 \pi a^{2} \gamma=-4(\rho-\sinh \rho)^{2} \frac{e^{-\sigma-2 \rho}}{\sigma+Z \rho}
$$

and

$$
V_{p} / 4 \pi a^{2} \gamma=-\frac{1}{2}\left(\rho-\frac{1}{\rho}\right) e^{-\sigma-(2 / \rho)}
$$

where $p=R_{1} / a=R_{2} / a$, and $\sigma=s / a$.

On the left in Fig. 2 these expressions are plotted as functions of the separation s/a for

Fig. 1. Two curved surfaces whose distance of closest approach is s (along the z-axis). The gap width $D(x, y)$ is a function of the transverse coordinates x and y.
(XBL 7412-8381)

Fig. 2. A comparison of the exact interaction between two equal Krappe-Nix spheres (solid lines) and the approximation resulting from the Proximity Theorem applied to properly chosen effective spheres (dashed lines and crosses). The dot-dashed line corresponds to a poor choice for the radii of the interacting objects.
(XBL 7412-8382)
three radii: $R / a=3,2,1$. At contact $(s=0)$ the Krappe-Nix potential V and Proximity Potential $V P$ are reasonably close; the fommer then falls off sonewhat more rapidly with s than the latter. On the right the values of V and V_{P} at contact are compared as a function of R / a. The Proximity Potential is zero at $\mathrm{R} / \mathrm{a}=1$ whereas the exact ir sult has a small tail extending to $\mathrm{R} / \mathrm{a}=0$. Otherwise the correspondence between the two curves is close. The dot-dashed curve is given by Eq. (3). It eventually achieves the correct Iimiting value, but is useless for $\mathrm{R} / \mathrm{a} \sim 2$ 2-4. We made similar comparisons of V and V_{p} for unequal spheres with a ratio of radii $2: 1$ and the close agreement was preserved.

These comparisons illustrate the importance of recognizing the proper location of the surface profiles of the curved objects to which the Proximity Theorem is being applied. This has to do with the importance of properly $\mathrm{m} \cdot$ 'ching the parallel flat surfaces (underlying the roximity Theorem) to the profiles of the curved suriace elements that the flat surfaces are supposed to represent. In the Krappe-Nix case this proper matching makes all the difference between the theorem being a useless curiosity, or providing a semi-quantitative tool for predicting in certain cases the results of a calculation without carrying out the somewhat involved nultiple integrations associated with folding in (Yukawa) interactions. k : should renark, however, that the Krappe-Nix case, with a sharp density but a diffuse potential, is a situation that exaggerates this aspect of the problem. It is only because the density is sharp that its profile stays at R, whereas the potential profile moves in by b^{2} / R as the surface is curved. In a self-cohesive system (such as a nucleus), where the density generates the potential and the potential determines the density in a self-consistent way, the widths of the potential and density profiles are approximately equal, and so the density and potential profile locations do not move appreciably with respect to each other as the surface is curved. Applying the Proximity Theorem simply to the density radii C_{ρ}, as was done implicitly, should then be a fairly adequate proceture.

Concerning the relation of our Proximity Potential to nucleon-nurleon potentials obtained by folding (either us schematic models of the BrinkRowley [4] type) the most inportant difference is that the Proximity Potential takes account of the saturating character of nuclear interactions (built into the Proximity Theorem by way of the saturating properties of the semi-infinite systems). The nonsaturating folding procedures of the Brink-Rowley type tend to give potentials much too deep by the time the two nuclei are in contact. In the KrappeNix case the potential is effectively nomalized to give the right attraction at contact (by adjusting the properties of the Yukawa force so that it reproduces the surface tension coefficient). The nonsaturating character is then in evidence in a more subtle failing of the force function, namely in that $e(s)$ in Eq. (4) is not a minimum near $s=0$, and consequently that V in Eq. (2) does not have a point of inflexion near contact.

Footnote and References

${ }^{*}$ LBL Theory Group.

1. W. Greiner, Proceedings of Heavy-Ion Summer Study at Oak Ridge National Laboratory, June 12 July 1, 1972, p. 1.
2. K. A. Brueckner, J. R. Buchler, S. Jorna, and R. J. Lomba.d, Phys. Rev. 171, 1188 (1968).
3. H. J. Krappe and J. R. Nix, Proceedings of the Third IAEA Symposiun on Physics and Chemistry of Fission, Rochester, New York, August 1973, p. 159.
4. D. M. Brink and iN. Rowley, Nucl. Phys. A219, 79 (1974); R. A. Broglia and A. Winther, Phys. Reports 4, 153 (1972).
5. J. Wilczynski, Nucl. Phys. A216, 386 (1973); R. Bass, Phys. Lett. 47B, 139 (1973).

POTENTIAL ENERGY SURFACES

J. P. Blocki*

breat progress has been made in heavy ion physics during the last few years. On the one hand a lot of experiments have been done using many different combinations of target-projectile systems with different relative angular momenta and energies. On the ohter hand there are many theoretical descriptions theit attempt to interpret the results of these experiments and predict some main features of heavy ion collisions, such as probabilities of scattering (elastic and deep inelastic) and formation of compound systems. However, it has been found that there is a lack of some basic calculations, namely of potential energy surfaces for different targetprojectile comb:rations. This should obviousl' be
a starting point in all theoretical considerations. In this note we intend to describe our approach to the solution of this fundamental problem.

The basic model assumed for calculation of the potential energy is a simple liquid drop model (Coulonb plus surface terms). The shape of the drop is described by three smoothly joined portions of quadratic surfaces of revolution, which are two spheres connected by hyperboloidal (spheroidal) reck (see Fig, 1).

The equation for a drop surface in a cylindrical coordinates system is written as:

Fig. 1. An iliustration of a shape described by two spheres conrected by hyperboloidal neck.
(XBL 757-3507)

$$
\rho^{2}\left\{\begin{array}{lc}
R_{1}^{2}-\left(z-d_{1}\right)^{2} & -d_{1}-R_{1} \leqslant z<z_{1} \tag{1}\\
a+b z+c z^{2} & Z_{1}<z<z_{2} \\
R_{2}^{2}-\left(z-d_{2}\right)^{2} & z_{2}<z<d_{2}+R_{2}
\end{array}\right.
$$

There are seven parannters describing the shape ($\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{~d}_{1}, \mathrm{~d}_{2}, \mathrm{a}_{1}, \mathrm{~b}, \mathrm{c}$), four of which can be eliminated by imposing the constancy of the volume, the smooth connection between surfaces at points z_{1} abd z_{2}, and fixed position of the center of mass. Essentially, there remain three independent degrees of freedom in describing the shape and it was decided to choose for these: asymnetry

$$
A=M_{1} /\left(M_{1}+M_{2}\right)=R 1 /\left(R_{3}^{3}+R_{2}\right),
$$

where M_{1} and M_{2} are the masses of two separated fragments, distance between spheres centers $D=d_{2}$ - di, and so called "neck variable" $\sigma=\Delta V_{\text {peck }} / V_{o}$ which is the excess of the volume of the hyperboloidal (spheroidal) neck over the nominal one expressed in units of total volume V_{0}. By nominal volume of the neck we understand the volume that corresponds to the overlapping velume of two spheres. To make the situation more clear the fanily of shapes for asymetry $A=0.2$ is prosentes in Fig. 2.

Fig. 2. The fanily of shapes for asymetry $A=0.2$ (the \mathbf{R} in the figure is the radius of the compound sphere).
(XBL 757-3497)

The potential energy is parametrized additionally by the fissionability parameter x, which essentially defines the proportion in which Coulomb and surface terms should be mixed in total energy E

$$
\begin{equation*}
E=B_{s}-1+2 x\left(B_{c}-1\right) \tag{2}
\end{equation*}
$$

where B_{s} and B_{C} are the ratios of surface and Coulonb energies respectively, to those of the conpound sphere and E is expressed in units of surface energy of the compound sphere.

We decided to present the results of our calculations of E in the form of the sets of twodimensional plots $E=E(T, D)$, for definite values oí asymetry A and x. inn example of such a plot for $A=0.2$ and $x=0.7$ is shown on Fig. 3 .

Fig. 3. Plot of potential energy surface for asymmetry $A=0.2$ and fissionability parameter $x=0.7$;
(XBL 757-3501)

The distance be'ween the sphere's centers D is expressed in units of the radius R of the compound sphere. The saddle point for fission was indicated by x. The big mourtain around $\sigma=0$ and $D \approx 1.55$ corresponds to the barrier for fusion in head-on collisions of two nuclei. Looking at this plot, one could make the first estimate as to what the probability of the compound system formation in head-on collisions is, and at the same time what the competition of fission process is. It is obvious, that in order to make this last estimation one should have the whole set of plots for all different values of asymnetry A at fixed x, as the fission process maylead to other more energetically convenient values of asymmetry. Besides, to answer the questions of fusion probability and fusion-fission competition more precisely the problem of dymanics should be solved.

Nevertheless, it is hoped, the calculations of the potential energy surfaces presented here will be helpful to experimentalists as a guide for determining values of potential energies in various heavy ion experinents, while they should also be a hase for further theoretical considerations.

Footnote

*On leave from Institute of Nuclear Reseirch, Poland.

A SIMPLE MODEL FOR DEEP-INELASTIC HEAVY ION SCATTERING

F. Back*

INTRODUCTION

The accurrence of highly inelastic direct scattering in heavy ion reactions well above the Coulonb barrier represents a new and outstanding gross feature of such reactions: when sumed over relatively narrow distributions of charge- and mass-tiansfers in the reaction products the deep inelastic events peak at a (kinetic) energy-loss of the order of 100 MeV , well separated from the quasi elastic scattering. In scme cases there is also a peaking in the angular distribution at a scattering angle sorrewhat smaller than the grazing angle. ${ }^{1-4}$

It has been pointed out by several authors ${ }^{5}$ that heavy ion reactions well above the Coulomb barrier car be treated in a classical approximation. Quantum corrections to the so derived classical cross sections then show up in typical oscillations, or in rainbow scattering, in regions where the classical trajectories vary strongly with the impact parameter. They can be treated in a semiclassical way by anending the classical trajectories with WKB phases and constructing a scattering amplitude. 6,7 In deep inelastic heavy ion scattering, however, one sums over a large menber of reaction chanrels, and quantum effects wish out completely. Thus a purely classical treatment, in terms of a classical deflection function $\theta(b)$, seems sufficient, frum thich the scattering cross section is derived accoriing to

$$
\begin{equation*}
\frac{d \sigma}{d \pi}=\frac{b}{\sin 5} \cdot\left|\frac{d b}{d \theta}\right| . \tag{1}
\end{equation*}
$$

In such a description the inglasticity is introduced by assuming, in addition to the conservative Coulomb and muclear forces, a friction force representing statistically the transfer of kinetic energy to internal excitations of the reaction partners.

The heavy ion reaction cross sections have been studied in a classical dissipative treatment by several authors. 8-11 The models discussed so far are characterized by (a) a rather strony nuclear attraction inside the Coulonk barrier (or the order of the nucleon-rucleus potential), (b) a friction form-factor which peaks in the muclear surface, and, in one case, 8 extends well to separation distances outside the nuclear interaction region and (c) the same forces are assumed for the entrance and exit chanrels. The deep inelastic events are then attributed to "negative angle scattering", and the cross section rises continuously to the quasi-elastic peak near the grazing angle. Thus in this form the model is unable to separate the deep inelastic scattering in energy or angular distribution from the quasi elastic scattering, contrary to the observations.

In the schematic calculation reported here no precise fit to experinental data is intended. The Gmphasis lies rather in employing a fairly simple, analytically solvable, scattering problem, and to
study the influence of various assumptions about the nuclear interactions. On the other hand, the model is flexible enough to include, and to vary, the main qualitative features of the conservative and dissipative forces along a prescribed trajectory in the entrance and exit channels of heavy ion collisions.

The Scattering Model

The schematic model is characterized by three features which differ to some extent from previous calculations: (a) the interactions and interaction radii differ in the entrance and exit channels. Bondorf ${ }^{12}$ already pointed out that the formation of a neck has to be expected in heavy ion scattering forming a strongly interacting contact area which allows considerable mass-, charge-, and energytransfer between reaction partners. 13 (b) The interaction potential for heavy ions inside the touching radius is shallow due to the strong Coulomb repulsion and may even become repulsive in the density overlap region. (c) Energy dissipation is only present in the interaction region. Thus the friction force is exactly zero before touching in the entrance channel and after scission in the exit channel.

For the sake of generating analytically sinple soluble equations of motion the potentials $V(r)$ of the conservative forces FC' (r) are either step potentials or vary $\sim \mathbf{r}^{-1}$ (modified Coulonb potentials; r is the distance between centers of gravity of the two fragments).

The friction is assuned to be purely redial and the corresponding force is

$$
\begin{equation*}
F^{d}(\mathrm{r})=-\lambda \sqrt{8 \mu} \frac{1}{\mathrm{r}^{2}} \frac{\mathrm{dr}}{\mathrm{dt}} ; \quad \mu=\frac{\mathrm{H}_{1} \mathrm{M}_{2}}{\mathrm{M}_{1}+\mathrm{H}_{2}} \tag{2}
\end{equation*}
$$

in the regions where dissipation is present. The choice of the friction form factor $\sim r^{-2}$ is again dictated by practical argunents of solubility may be even not so unphysical. The practical action of that force is anyhow restricted to the nuclear surface (cf. Fig. 5).

With these assumptions four radial regions can be defined:

Region I: Entrance channel: $\boldsymbol{r}_{\mathbf{i n}}>\mathrm{R}_{\mathrm{i}}$

$$
\begin{aligned}
& V(r)=\frac{q^{2}}{r} ; q^{2}=z_{i} z_{2} e^{2} \\
& F^{d}=0
\end{aligned}
$$

Region II: Entrance channel: $R_{i} \leqslant T_{i n}<R_{c}$

$$
\begin{aligned}
& V(r)=f_{n i} \frac{q^{2}}{r}+c_{i} \\
& F^{-1}(r)=-\lambda_{i} \sqrt{\beta \mu} \frac{1}{r^{2}} \frac{d r}{d r}
\end{aligned}
$$

Region III: Exit channeI: $\quad R_{c}<r_{\text {out }}<R_{\text {sc }}$

$$
\begin{aligned}
& V(r)=f_{n i} \frac{q^{2}}{r}+c_{o} \\
& F^{d}(r)=-\lambda_{0} \sqrt{8 \mu} \frac{1}{r^{2}} \frac{d r}{d t}
\end{aligned}
$$

Region IV: Exit channel: $r_{\text {out }}>\mathrm{R}_{\mathrm{sc}}$

$$
\begin{aligned}
& V(r)=\frac{q^{2}}{r} \\
& F^{d}=0
\end{aligned}
$$

The substitutions $d \theta=\left[1 / m r^{2}\right] \cdot d t$, which follows from the integration of the tangential equarion ($L=$ const, no tangential friction!), and $Y(\theta)=1 / r(\theta)+\mu \cdot f_{n} \cdot q^{2} / L^{2}$ lead to the radial equation in the forth (prime denotes differentiation with respect to θ)

$$
\begin{equation*}
Y^{\prime \prime}-2 \frac{\lambda}{b \cdot E_{C=1}^{1 / 2}} V^{\prime}+Y=0 \tag{3}
\end{equation*}
$$

which has solutions in terms of elementary functions. The total scattering solution results from continuation of the individual solutions through regicns I - IV.

Choice of Potential Parameters

The two deep inelastic scattering experiments that have been discussed in most of the theoretical work so far are chosen also in this calculation as a basis for comparison:

$$
\begin{aligned}
& \text { (A) } 84_{\mathrm{Kr}}+{ }^{209} \mathrm{Bi} \text { at } \mathrm{E}_{\mathrm{cm}}=374 \mathrm{MeV}^{3,4} \\
& \text { (b) } 40_{\mathrm{Ar}}+{ }^{232} \mathrm{Th} \text { at } \mathrm{E}_{\mathrm{cm}}=331 \mathrm{MeV}^{1}
\end{aligned}
$$

The radius paraneters $R_{j}, R_{s c}$ and the potential steps at $r=R_{i}$ werc taken ffom a licuid drop calculation of ruclear energies including a neek degree of freedom. 14 The liquid drop parameters are those given by Myers and Swiatecki at the lysekill Conference. 15 In addition to this a repulsive core was introduced to represent the increase in energy hhere the densities overlap strongly. It consists of an adjustable soft core and a hard corc at $r=R_{c}$.

The resulting model potentials are shown in Figs. 1 and 2, respectively, for the two compound systens, and for three different choices of the soft core strength.

Results

The results of the model calculation are presented in Figs, 3 to 7. The deflection functions (Figs. 3 and 6) show that the assumptions in this model lead to a sepiration of the deep inelastic peak from the quasi-elastic scattering. The discontinuity in the deflection functions near the graztine impact paraneter reizults from the discontinuity in the potential at $r=\mathbf{R}_{\mathbf{i}}$.

The cross sections show in the Kr case a pronounced angular praking below the grazing angle

[ig. 1. Potentials of the conservative force in the regions I - IV for the systen $84 \mathrm{Kr}+209 \mathrm{Bi}$ and three different choices of the soft core $\left(\mathrm{V}_{\mathrm{R}_{\mathrm{C}}}=300\right.$, $400,600 \mathrm{MeV}$, resp.). The entrance channel coordinate, $r_{\text {in }}$, is plotted to the left, the exit channel coordinate, rout, to the right. (XBL 745-829)

Fig. 2. The same as Fig. 1 for the system $40 \mathrm{Ar}+232 \mathrm{Th}$.
(XBL 754-828)

Fig. 3. Deflection functions $\theta(b)$, resp $\theta(l)$ with $Z=2 \cdot h$) for the $s y s t=[24 \mathrm{Kr}+209 \mathrm{Bi}$ at $\mathrm{E}_{\mathrm{Cn}}=374 \mathrm{MeV}$. The parameters are the friction constants $\lambda_{i} / \lambda_{0}$ in units $\mathrm{MeVl} / 2$, firm. The soft core has the value $V_{R_{c}}=400 \mathrm{MeV}$.
(XBL 754-827)

Fig. 4. Differential cross section for deep inelastic scattering; ${ }^{84} \mathrm{Kr}+209_{\mathrm{Bi}}$ at $\mathrm{E}_{\mathrm{cm}}=3 / 4 \mathrm{MeV}$. $\lambda_{i}=100 \mathrm{MeVI} / 2$. fm, $\lambda_{0}=100 \mathrm{MeV} / 2$. . m. The cross section is plotted for different strengths of the soft core and the firal energies at the peak value are also indicated. The dot-dashed curves give the experimental results, ref.3].
(XBL, 754-826)

Fig. 5. The effective potential $V^{\prime}(r)=V(r)$ $+L \dot{2} / 2 \mu r^{2}$ for two differents values of $1(-L / h)$ and the energies of the corresponding trajectories. The origin of the focussing and the inportance of the difference in the entrance and exit channel potentials for a relatively small spread in the energy loss cal be seen frem this picture. The example is $84 \mathrm{Kr}+209 \mathrm{Bi}$.
(XBL 754-825)

Fig, 7. The same as Fig. 4 for ${ }^{40} \mathrm{Ar}+{ }^{232}$ Th. $\mathrm{E}_{\mathrm{cm}}=331 \mathrm{MeV} ; \lambda_{i}=50 \mathrm{MeVl} / 2 . \mathrm{fm}, \lambda_{0}=30$ Mev1/2.fm. The experimental cross sections are given for selected reaction products.
(XBL 754-823)
4. le in the Ar + Th system the peak has moved to forward angles and is no longer pronounced. No negative angles are involved in the scattering, due to the rather shallow nuclear potentials resulting from the liquid drop fit.

The observed inelasticity can be achieved by fixing the friction constant to the weak friztion case (in the teminology of Bondorf et al.9). The friction force (2) can be written in the form

$$
\begin{equation*}
F(r)=-\lambda \frac{\sqrt{8 \mu c^{2}}}{R_{i}^{2}}\left(\frac{R_{i}}{r}\right)^{2} \frac{v_{r}}{c} \tag{4}
\end{equation*}
$$

For $v_{r} \approx 0.05 . c$ (at the Coulamb barrier), and $r=R_{j}$ one has the following correspondence in the $\mathrm{Kr}+\mathrm{Bi}$ case

$$
\begin{aligned}
& \lambda=50 \mathrm{MeV}^{1 / 2}, \mathrm{fm} \leftrightarrow \mathrm{~F}^{d}\left(R_{i}\right)=10 \mathrm{MeV} / \mathrm{fm} \\
& \lambda=250 \mathrm{MeV}^{1 / 2} \cdot \mathrm{fm} \oplus \mathrm{~F}^{\mathrm{d}}\left(R_{i}\right)=51 \mathrm{MeV} \mathrm{fin}
\end{aligned}
$$

The enployed frietion force constants are all in the range $30 \mathrm{MeVI} / 2_{\text {fim }}<\lambda<100 \mathrm{NeVI} / \mathrm{Z}_{\text {. fin }}$.

Conclusion

The schenatic nodel that was investigated here shows that the characteristic features of deep inelastic heavy ion scattering can qualitatively be reproduced if a difference between entrance and exit channeis together with the rather shallow nuclear potentials experted for heavy ions because of Coulonb and density overlap effects are enployed.

In conerast to purely elastic scattering where the interior region is masked by strong absorption in the surface, deep inelastic heavy ion
scattering offers a unique experimental tool to investigate the nuclear potential energy landscape in the vicinity of the fusion-fission valley.

Footnote and References

On leave from Institut für Kerophysik, Technische Hochschule Darmstadt, 61 Darmstadt, Gemany.

1. A. G. Artukh, G, F. Gridnev, V, L. Mikheev, V. V. Volkov, and J. Wilczyगski, Nucl, Phys. A215 91 (1973).
2. M. Lefort, C. Ngo, J. Peter, and B. Tamain, Nuc1. Phys, A216 166 (1973).
3. F. Hanappe et al., Proc. Int. Conf. on Reactions between Complex Nuclei, Vol. 1, North-Holland (1974) P. 116.
4. J. Huizenga, Talk presented at the GSI Seminar, Darmstadt (1974).
5. For a discussion of this approximation see, for example, R. A. Broglia and A. Winther, Physics Reports 4, 153 (1972).
6. K. W. Ford anc I. A. Wheeler, Ann. Phys. (N.Y.)

7, 259, 287 (1959).
7. W. H. MiLler, Advan. Chem. Phys. 25, 69 (1974).
8. D. H. E. Gross and H. Kalinowski, Phys. Lett. 48B 302 (1974).
9. J. P. Bondorf et al., Preprint, Copenhagen (1974).
10. C. F. Tsang, LBL-? 3 ? 8 (1974).
11. J. R. Nix, private commuication (1975).
12. 3. P. Bondorf, Proc. Int. Conf. on Reactions between Complex Nuclei, North-Holland (1974).
13. W. Norenberg, Report to the Int. Workshop on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg (1975).
14. J. Blocki and W. J. Swiatecki, this Annual Report, and private commanication.
15. W. D. Myers and W. J. Swiatecki, Arkiv Fysik 36343 (1967).

THEORETICAL ESTIMATES OF SPONTANEOUS-FISSION HALF-LIVES FOR SUPERHEAVY ELEMENTS

J. Rendrup, S. E. Lmson.* P. MËlime*
A. Soblczewnki, ${ }^{+}$and A. Tuknaink ${ }^{+}$

Introduction

The first extensive and realistic estinates of the stability of super-heavy elements (SFE) mas given by the Berkeley-Lund-Warsaw group 1,2 in 1968 on the bisis of the modified-oscillator (M, O,) model. Since then, many other calculations (which wa do not attenpt to revicw here) have been msde on the stability of this region of muclei. In particular, we iny refer to similar studies made by Fiset and Nix 3,4 using the Folded-Yukawa (F,Y.) single-particle model and by Brack et al. 5 using a Woods-Saxon type of potential. These calcwations suggest considerably longer half-lives than those of finfs. 1 and 2.

Progress has been made on several crucial points involved in such calculations. Firstly, the description of the smooth macroscopic part of the deformation energy is now more detailed and has reached a higher degree of sophistication in the recently developed shape-dependent droplet ...odel of Myers and Swiatecki. 6 Secondly, detailed studies 7,8 of the fluctuating nicroscopic-correction energy have now established that the fission of SHE may procced through axially asymatric shapes with a corresponding reduction of the fission barrier by up to a few HeV. As an altemative to a multi-dimensional barrier-penctration treatment, considered by pauli 9 and $52 y m a d i s k i, 10$ we have taken a semt-empirical approach to the problen. In an earlier study we found that the ob-
served spontaneous-fission half-1ives could be well reproduced in terns of such an approach, 11,12 and it is believed that such a method which appears reliable just outside the presently known actinide region, 3y also be used for an extrapolation to the superleavy region.

These developnents make it desirable to reconsider the stability quastion for the SHE's. Furthemore, it has been realized that the singleparticle potential parameters, in particular the spin-orbit coupling strength used in the original study, 1,2 probably should be slightly modified also to account for informition from the spherical Pb region. In the present calculations the spon-taneous-fission half-1ives arc calculated on the basis of the recently introduced seni-empirical approach 11 with the snooth inertial-mass function refitted as in Ref. 12 ,

Calculation of Fission Barriers

The calculations have been carried out within the framework of the M.O. model, as doscribed in Ref. 7. However, we have here considered two alternative sets of single-particle potential-parameters. One is the conventimal "A $=298^{\prime \prime}$ set of Ref. 2 (here denoted by SPL-1) based on a linear extrapclation through known deformed regions while the other set (SPL-2) corresponds to a somewhat reduced spin-orbit coupling strength as the spherical Pb region indicates. 18 He have investigated a
spin-orbit coupling strength k reduced by 15% with $\mu^{\prime}=\kappa \mu$ fixed). See Table 1. Calculations based on the previous parameter set are given for comparison. For the macroscopic part of the energy we use the shape-dependent droplet model with the newly determined values of the coefficients. 6

Table 1. Alternative single-particle potential-paraneters for the superheavy region of nuclei.

	K_{p}	μ_{p}	$\boldsymbol{K}_{\mathrm{n}}$	$\boldsymbol{\mu}_{\mathrm{n}}$
SPL-1	0.0534	0.686	0.0634	0.256
SPL-2	0.0454	0.807	0.0539	0.301

Spherical Shape. Since the superheavy region largely consists of near-spherical nuclei, the subsheils corresponding to purely spherical shapes deserve particular attention. Figure 1 displays the proton and neutron single-particle levels for the two alternative parameter sets SPL-1 and SPL-2. For the protons the $Z=114 \mathrm{gap}$ is slightly reduced in going from SPL-1 to SPL-2 due to the reduced $2 f$ and 1 i spin-orbit splittings. For neutrons the main effect is the opposite one. A decrease in κ actually increases the $N=184$ gap as the $h_{11 / 2}$ state is raised. The $N=184$ gap thereby becones' more pronoumced at the expense of the $\mathrm{N}=196$ gap. The resulting spectra, both for neutrons and protors, are more similar to those obtained by Fiset and Nix ${ }^{3}$ in the F.Y. model. The extracted microscopic-correction energies are displayed in Fig. 2. The shape of the superheavy island is mainly determined by these ground state energies.

Deformed Shapes. We now proceed to study the potential energy for deformed shapes. Single-particle levels are calculated in the (\mathcal{E}, E_{4}) plane in a 90 -point grid: $\varepsilon=-0.05(0.05) 0.80$, $\varepsilon_{4}^{\hbar}=-0.08(0.04) 0.08$ where $\varepsilon_{4}^{\dot{\star}}=\varepsilon_{4}+$
$\frac{0.11}{0.85} \varepsilon$. Defomation-energies are detemined by means of the Strutinsky shell-correction method 13,14 The pairing strength G is assumed independent of deformation.

From the deformation-energy surfaces we construct one-dimensional fission-barriers by smoothly joining the minima and saddle points with polynomials of degree three. These polynomials are calculated as functions of r, the center-of-mass separation coordiante. One or more additional points beyond the last barrier peak are also used in the construction of the fission barriers (this procedure is described in Ref. 11). These barriers are subject to corrections, taken from Ref. 8, due to the axial-asymmetry degree of freedom. The resulting fission barrier heights, with corrections from E_{4} and γ included, are displayed in Fig. 3.

Inertial-Mass Parameters. The spontaneous-fission decay, in parallel with the alpha decay mode, piays a decisive role in detemining the total half-lives for the SHE's. We have employed two alternatives for the calculation of spontaneous-fission halflives. Rather than taking an average value of the inertial-mass parameter B , we have considered the deformation dependence.

The hydrodynamical method, based on the use of a smooth semi-empirically determined inertialmass function, was found to give very satisfactory
(a)

Fig. 1. Stngle-particle levels for spherical shane, Left-hand sides are obtained with the paramoter choice SPL-1 and the right-hand sides with SPL-2. Independent variations of the parancters k and u have teen performed. The leveis labeled $k>$ correspond to a 108 increase in κ (keeping u fixed) and u, indicates a similar $10 t$ iacrease of μ with κ fixed.
(a)

(b)

(c)

(d)

Fig. 2. Microscopic-correction energies as composed of the pairing-correction energies and the Strutinsky shell energies. Thece encrgies have a rather smooth A dependerce.
(XBL 743-2723, XBL 743-2724, XBL $;+3$-2725,
X6̆ 743-2727)
(a)

(b)

Fig. 3. Fission barrier heights (in MeV), according to the sets SPL-1 and SPL-2, with the axial-asymmetry correction included.
(XBL 743-2733,XBL 743-2734)
results in the actinide region. Actually, the spontanenus-fission half-lives were there rmproduced to within a factor of 80 on the aven 9.12

In this seni-enpirical approach tine inertialmass function is assumed to be described by the following expression

$$
\begin{equation*}
B_{r}=\left(1+k \frac{17}{15} e^{-\left(r-\frac{3}{4} R_{0}\right) / d}\right) \tag{1}
\end{equation*}
$$

The inertial r.ass is defined in terms of the center-of-mass separation coordinate r. Furthermore, μ is the reduced nass of the two-fragment systen and d the fall-off parameter indicated by irrotation-flow calculations. In a recent investigation for the actinides the factor k was determined from a fit to the half-1ife data as $k=10.0$. This k-value is assumed to hold for the SHE's as well.

As is shown in Ref. 11 a relatively good reproduction of the actinide fission hat-1ives may
be obtained by using microscopically calculated inertial-mass parameters renomalized through one contmon a posteriori common factor (of around 0,8). A preliminary estimate indicates that the predicted fission half-1ives in the superheavy region calculated by use of the microscopic inertias renormalized, by a factor 0.8 , differ from those calculated by use of the seni-empirical inertias by less than a factor 100. A more detailed calculation based on the microscopic inertias is in progress.

Results and Discussion

In summary, the following conclusions can be drawn: 1) The shape of the superheavy island depends extensively on the single-particle parameter set used and considerably less an which of the two altemative inertias is used for the calculation of the half-lives. 2) For SPL-1 the island extends "eastwards' or towards N -values in excess of $\mathrm{N}=184$, as a consequence of the significant $\mathrm{N}=196$ gap while the SPL-2 results (see Figs. 3 and 4) exhibit a larger similarity with the results of Ref. 3. In fact, the island exhibits a rather strong aligument along $N=184$. 3) When comparing the balf-li res based on the use of the extrayolated smooth inertias with those based on microscopic calculat: ons we find in a preliminary estimate that they 1 ffer by less than a factor 100. This discrepanc may be taken as a measure of the uncertaincy in L e theoretical half-life estimates, 4) The SPL-1 Salf-lives are around four orders of magnitude shorter than the SPL-2 results in the island center.

The (in our opinion) most reliable fission half-1ife estimate, based on the single-particle schene SPL-2, and the semi-empirically calculated inertia values predicts for 298114 a fission halflife of 10^{8} years. These half-1ives are somewhat shorter than the previous estimates of Nilsson ot al. $2,16,17$ and in particular Nix of a1, 3,4 and Brack et al. 5 Part of these differences is due to the inclusion of the γ-corrections which reduces the barrier heights by 1-2 MeV .

In the superheavy region the alpha process is a progressively important conpeting mode of decay. From the calculated ground-state energies the alpha half-lives may be estimated. 19 The combined alpha and fission half-lives are shown in Fig. 4. The decrease in alpha stability with increasing 2 has the consequence that the nucleus with the longest total talf-1ife is 294110 rather than 298114 with a total half-1ife of 10^{5} years.

Accepting the present culculations at their tuce value, it appears excluded that one should be abie to find SHE's in terrestial matter.

Two recently studied effects, not included in these calculations, appear to work in the direction to increase the half-lives. Une represents the coulonb shell-corrections associated with the nonhanogenous charge distribution. The other derives from the inclusion of non-isotropic terms in the poiring matrix elements. These effects are expected to adjust the estimntes somerhat upward (see Ref. 20) in the vicinity of 298114.

Fig. 4. Combined diagram of half-iives with respect to spontaneous fission and alpha decay, as obtained for the paraticer set SPL-2 with the semiampirical fission inertial-mass function and the alpha half-lifis formula of Taggepera and Numia. ${ }^{19}$

Footnotes and References

*Department of Nathematical Physics Lund Institute of Technology Lund, Sweden
${ }^{\dagger}$ Institute for Miclear Research Hoza 69 Warsaw, Poland.

1. S. G. Nilssen, J. R. Nix, A. Sobiczewski, 2. Szymariski, S. hyceck, C. Gustafson, P. Mốller, Nucl. Phys. A115, 545 (1968).
2. S. G. Nilsson, C. F. Tsang, A. Sobiczewsk, 2. Szynaiski, S. Wyceck, C. Gustafson, I.-L. Lamm, P. Môler, and B. Nilsson, Nuc1. Phys. A131, 1 (1969).
3. E. O. Fiset and J. R. Nix, Nuc1.Phys. A192, 647 (1972).
4. J. R. Nix, Ann. REv. Nucl. Sci. $\underline{22}$ (1972).
5. M. Brack J. Damgaard, A. S. Jensen, H. C. Pauli, Y. M. Strutinsky, and C. Y. Woug, Rev. Mod. Phys. 44, 320 (1972).
6. W. D. Myers, and W. J. Swiatecki, Ann, of Phys. 55, 395 (1970); Perkeley Preprint LAL-1957 (1973) to be published.
7. S. E. Larsson, and G. Leander, Ihysics and Chemistry of Fission, IAEA, Rochester, 1973.
8. S. E. Larsson, P. Höller, and S. G. Nilssor, Contribution to this Symposium.
9. Hi. C. Pauli, Contribution to this Symposium.
10. 2. Szymafiski, Contribution to this Symposium.
1. J. Randrup, C. F. Tsang, P. Möller, S. G. Nilsson, and S. E. Larsson, Nuc1. Phys. A217, 221 (1973).
2. J. Randirtip, S. E. Larsson, and A. Sobiczewski, to be sulmitted to Phys. Rev. C, 1974.
3. V. M. Strutinsky, Nuc1. Phys. A95, 420 (1967).
4. V. M. Strutinsky, Nucl. Phys. Al22, 1 (1968).
5. A. Sobiczewski, 2. Saymanski, S. Wyceck, S. G. Nilsson, J. Q. Nix, C. F. Tsang, C. Gustafson, P. Möller, and B. Nilsuon, Nucl Phys. A131, 67 (1969).
6. C. F. Tsang, and S. G. Nilsson, Nucl. Phys. 1140, 289 (1970).
7. T. Johansson, S.G. Nísson, and Z. Szymatiski, Am. Phys. 5, 377 (1970).
8. I. Ragnarsson, and S. G. Nilsson, private conmunication, 1973.
9. B. Taagepera, and M. Numia, Ann. Acad. Sci. Fennicab, ser. A VI, 78, 1 (1961).
10. S. E. Larsson, G. Leander, and I. Ragrarssen, Contribution to this Symposium.

STUDIES IN THE SUPERFLUID ENHANCEMENT OF FISSION BARRIER PENETRATION

L. G. Moretto, R. P. Babinet, and J. J. Sventek

A description of sone preliminary work in this area has been already published. After a brief review, we wish to describe extensions hhich have been made.

We are attenpting to determine the effect of the pairing interaction on the penetrability of fission barriers in the WKB approximation, It is well known that the gap parameter Δ is usually detemined by minimizing the expectation value of the BCS Hamiltonian with respect to Δ :

$$
\begin{equation*}
\frac{\partial H\rangle}{\partial \Delta}=0 . \tag{1}
\end{equation*}
$$

Equation I is usually referred to as the Gap Equation. The gap parameter is then a constant Δ_{0} which characterizes the stationary nucleus. When dealing with barrier penetration, the asslamtion of constant A_{0} is no longer valid, since the penetrability is determined from a dymanical principle (the Least Action Principle), while the value of Δ_{0} was determined fan static considerations. It secms that the gap parmeter Δ should be defined in the framework of the more general dynamical principle.

In the WKB approxination, the penetrability is given by $P=\exp (-2 S / h)$. The action integral S is given by:

$$
\begin{equation*}
S=\int_{a}^{b} \sqrt{A B(V-B)} d a \tag{2}
\end{equation*}
$$

where α is the defomation cuordinate, a and b are classical tuming points, B is the inertia associated with the coordinate a, V is the potential energy, and E is the total crergy. This expression depends upon the gap param-ter Δ through both the inertia B and the potential V.

The Least Action Principle requires that the path taken by the system in getting from point a to point b be such that S is an extremun, i.e., dS $=0$. In our case, S will be a minimen.

Our task is to find the path $\Delta(\alpha)$ that minimizes Eq. (2), which can be formally rewritten as:

$$
\begin{equation*}
\int_{a}^{b} F(\Delta(\alpha), \Delta(a), \alpha) d \alpha \tag{3}
\end{equation*}
$$

where $\dot{\Delta}(\alpha)=\frac{d \Delta(\alpha)}{\alpha}$. The differential equation for $\Delta(\alpha)$ that minimizes Eq. (3) is:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial F}{\partial \dot{\Delta}}\right)-\frac{\partial F}{\partial \Delta}=0 \tag{4}
\end{equation*}
$$

This is Euler-Lagrange Differential Equation well known in the calculus of variations. In our particular case,

$$
F=\sqrt{2\left(\mathrm{~B}_{\alpha \Delta}+2 \mathrm{~B}_{\alpha \Delta} \dot{\Delta}+\mathrm{B}_{\Delta \Delta}(\dot{\Delta})^{2}\right)(V-E)}
$$

where the $\mathrm{Bi}_{\mathrm{i}}, \mathrm{j}$'s are the elements of the inertia tensor, each of which depends upon a and Δ, as does V. After carrying out the necessery straightforward algebra in Eq. 4, we get the following differential equation for Δ :

$$
\begin{gather*}
0=f_{1}(\alpha, \Delta) \ddot{\Delta}+f_{2}(\alpha, \Delta)(\dot{\Delta})^{3}+f_{3}(\alpha, \Delta)(\dot{\Delta})^{2} \\
+f_{4}(\alpha, \Delta) \dot{\Delta}+f_{5}(\alpha, \Delta) \tag{5}
\end{gather*}
$$

where

$$
f_{5}(a, \Delta)=\left\{\begin{array}{lr}
2 \varepsilon\left(a c-b^{2}\right) & i=1 \\
\varepsilon\left(b c_{\Delta}-2 c b_{\Delta}+c c_{a}\right)-\varepsilon_{\Delta} b c+\varepsilon_{\alpha} c^{2} & i=2 \\
\epsilon\left(a c_{\Delta}-2 b b_{\Delta}-2 a_{\Delta}+3 b c_{\alpha}\right)-\varepsilon_{\Delta}\left[2 b^{2}+a c\right]+3 \varepsilon_{\alpha} b c & i=3 \\
\varepsilon\left(-c a_{a}+2 b b_{\alpha}+2 a c_{\alpha}-3 b{ }^{3}\right)+\varepsilon_{d}\left[2 b^{2}+a c\right]-3 \varepsilon_{\Delta} a b & i=4 \\
\varepsilon\left(-a a_{\Delta}+2 a b_{a}-b a_{\alpha}\right)-\varepsilon_{\Delta} a^{2}+\varepsilon_{\alpha} a b & i=5
\end{array}\right.
$$

and $a=B_{\alpha \alpha}, b=B_{\alpha \Delta}, c=B_{\Delta \Delta}, E=V-E$,

$$
x_{a}=\frac{d x}{d a} \text { and } x_{\Delta}=\frac{d x}{d a} \text { for } x=a, b, c,
$$

$$
\ddot{\Delta}=\frac{\mathrm{d}^{2} \Delta}{d \alpha^{2}}, \quad \dot{\Delta}=\frac{d \Delta}{d \alpha} .
$$

Once we know the functional forms of $B_{\alpha a}$, $B_{\alpha A}, B_{\Delta \Delta}$, and V on α and Δ, we can solve the differential equation by the nomal numerical methods after we specify the value of Δ at the two endpoints. When considering spontaneous fission, it would seem reasonable that the value of Δ when the fissioning systen enters and leaves the barrier should be the one detemined by the Gap Equation, Δ_{0}.

For the -alculations below the following forms have been usci:

$$
\begin{aligned}
& B_{\alpha \alpha}=\frac{k_{\alpha}}{\Delta^{2}}, B_{\Delta \Delta}=\frac{k_{\Delta}}{\Delta^{2}}, B_{\nabla \Delta}=0 \\
& V(a, A)=V_{0}(\alpha)+g\left(\Delta-\Delta_{0}\right)^{2}
\end{aligned}
$$

The inertias have been ottained from the cranking model and the potential has been approximated to second order in $\left(\Delta \sim \Delta_{0}\right)$.

In Fig. 1 a single-humped potential barrier $V_{0}(\alpha)$, and the corresponding $\Delta(\alpha)$ from solving Eq. 5 are shown. The value of Δ is quite enhanced as we proceed into the barrier, and the corresponding enhancenent of the penetrability over that when Δ is constant is approximately a factor 10 ? Figure 2 shows a barrier similar to that of an actinide mucleus, and the corresponding $\Delta(a)$ from Eq. 5. The gap parameter tends to follow the general form of $V_{0}(\alpha)$. In this case, the penetrability is enhanced approximately by a factor of 1013 over that obtained when Δ is a constant.

The code used to solve Eq. 5 is now used with the potential energies and mass parameters calculated from a Nilsson Hamiltonian including pairing
and with the Cranking model expressions for the mass parameters. Further studies of the type of enhancenent in barrier penetrability described here are planned for these more realistic potentials and mass paraneters.

Fig. 1. Single-humped fission barrier and dynamical value of the gap parameter as a function of defomation.
(XBL 752-2379)

Fig. 2. Double-humped fission bartier and dynamical value of the gap parameter as a function of defomation.
(XBL 752-2380)

References

1. I. G. Moretto and R. P. Babinet. Large superfluidity enhancement in the penetration barrier, Phys. Lett. 49 B 147 (1974).

A THEORETICAL APPROACH TO THE PROBLEM OF PARTIAL EOUILIBRATION IN HEAVY ION REACTIONS

L. G. Moretto and J. S. Sventak

The present work is concerned with explaining the observed foatures of the "relaxed" or "deepinelastic" cross section observed in heavy ion reactions by many groups. ${ }^{1-3}$ The main features of this large fraction of the total reaction cross section are:

1) Fully reluxed kinetic energy spectra,
2) A mass-charge asymetry distribution sot wholly
consistent with statistical equilibrium, and 3) Center-of-inass angular distributions which are forward peaked and whose forward peaking depends upon the distance in atomic number between the emitted fragnent and the projectile.

These general features appear to be consistent with the following qualitative, three-step mechanism:

1. Promptiy after the initial collision, friction brings the two nuclei to rest one with respect to the other, while the initial kinetic energy is dissipated into the internal degrees of freedon, leading to the formation of an intemediate complex of well-defined asymmetry.
2. A diffusion process leads to the exchange of particles between the two touching fragnents, thus generating a time-dependent distribution in the asymmetry of the internediate complex.
3. The conplex decays randonly with a time constant comparable to or shorter than the rotational time.

The central aspect of the model is the diffusion of the 17termediate complex along the asymmetry degree of freedom. The time-dependent-population $\phi_{Z}(t)$ of the macroscopic state whose asymmetry is characterized by the atomic number Z of one of the fragments, can be described by a Master Equation:

$$
\Phi_{2} \sum_{z^{\prime}}\left(\Lambda_{22}, \phi_{2},-\Lambda_{z 2}, \Phi_{z}\right)
$$

Using Golden Rule No. 2 , we can express the macroscopic transition probablitities ($\Lambda_{\mathrm{ZZ}}{ }^{\prime}$) in tems of the microscopic transition probabilities ($\lambda_{2} z^{\prime}$) and the level density of the macroscopic states $\left(\rho_{2}\right)$ as:

$$
\Lambda_{2 z^{\prime}}=\lambda_{2 z}, \rho_{z}
$$

The level density of the internediate complex is a function of the excitation energy of the complex, which is equal to the total energy minus the potential energy necessary to form the intermediate complex. Due to the finite transfer rate between the two fragments in contact, the $\lambda_{z z}$'s must obey some sort of a sum rule, and for lack of better knowledge, we asswe

$$
\lambda_{22^{\prime}}=\lambda_{0} /\left[\rho_{2} \rho_{z},\right]^{\frac{1}{2}} .
$$

The level densities can be expanded as follows

$$
\rho\left(E-V_{z}\right)=\rho(E) e^{-V_{z} / T}
$$

where

$$
T^{-1}=\left.\frac{d \ln \rho(x)}{d x}\right|_{x=E}
$$

to give the final version of our Master Equation:

$$
\phi_{z}=\lambda_{0} \sum_{z^{\prime}} \mathrm{e}^{\left(\mathrm{V}_{2}+V_{z^{\prime}}\right) / 2 \mathrm{~T}}\left[\phi_{2}, \mathrm{e}^{-V_{z} / T}-\phi_{z^{2}} \mathrm{e}^{-V_{z}, T \mathrm{~T}}\right]
$$

We assume that the sum over 2 ' is 1 inited to $Z \pm 1$, since the temperatures commonly encountered (2 -3 MeV) are sufficiently high to rule out 2 nd and higher order correlations among transferred particles.

The potential energies V_{z} used are liquid drop potential energies for saddle point shapes of a given asymetry. The potential energies are calcuLated by means of the liquid drop model using a rigid body moment of interia. Types of saddle point shapes considered to date include touching spheres, touching spheriods, and spheres connected by an hyperbolcid of revolution. The diffusion constant λ_{0} shouid be shape dependent, and we assume it to be propoitional to the cross-sectional area of the neck through which particles are expected to diffuse.

For the initial part of the mechanism, we assume that after the collision, the target and projectile slip over each other by an angle θ_{s}, which is proportional to the tangential velocity at point of impact. The kinetic energy is dissipated as the slippage takes place. After the slippage, the complex rotates with the rigid monent of inertia.

In the final stage, we assume that, after a given contact time t, the fragment is emitted at an angle θ with a new $Z=Z_{\text {exit. }}$. This information allows one to calculate the impact parameters b which satisfy these conditions. The final cross section is given by:

$$
\frac{d \sigma}{d \sigma!}(\theta)=\int_{0}^{\infty} \frac{d t}{T} e^{-t / T}\left\{\sum_{\phi_{z}}(b, t) \frac{b P(b)}{\left|\sin \theta \frac{d \theta}{d b}\right|}\right\}
$$

where T is the mean lifetine of the complex and the sum is carried over the aforementioned b values. The quantity $P(b)$ or $P(\Omega)$ represents the probability ($0<p \leqslant 1$) that a given ℓ-wave will lead to a reaction of the kind we have described. It seems safe to assume that $P(\ell)$ will be substantially different from zero for rather large \&-waves, since the 10 w \&-waves are certainily associated with the formation of a compound nucleus, and thus responsible for the evaporation residue cross section. The highest ℓ-waves are associated with direct or quasi-elastic cross sections. We have made the rather bold assumption that no sizeable amount of fission is present in the reaction cross section, since, for low $\&$-waves, the fission barrier is large and, for high ℓ-waves, the componnd nucleus is not formed. We establish $P(l)$ from the experimental data.

Using this formalism, we have tried to fit the data for $\mathrm{Ag}+288-\mathrm{NeV} \mathrm{Ar}$; We have used a step function for $P(\ell)$, with sligh1y rounded edges, the lower bound defined by the evapration residue cross section of $670 \mathrm{mb}, 4$ and the upper bound defined by the sum of the evaporation residue and relaxed cross sections, which is $\sim 2000 \mathrm{mb}$.

Figure 1 is a plot of the potential energy, V_{n}, measured with respect to the rotating ground state, as a function of asymmetry (here specified by the Z of one fragment for three representative 2 -waves in the reaction $107,109 \mathrm{Ag}+288-\mathrm{MeV} 40 \mathrm{Ar}$. The arrows show where the sysiem starts, its diffusion along the mass asymnetry coordinate. It seems apparent that the system is more likely to

Fig. 1. Potential energy V as a function of Z for the system ${ }^{107,109} \mathrm{Ag}+{ }^{40} \mathrm{Az}$. ${ }^{\text {as }}$ (XBL 752-2381)
diffuse towards symmetric fragments, and that this tendency is larger for higher \&-waves.

Figure 2 is a comparison of experimental relaxed cross sections (triangles) with the cross sections calculated using this theory. The values of the previously defined parameters that went into this calculation are: $T=5 \times 10^{-21} \mathrm{sec}$, $\lambda_{0}=30 \mathrm{sec}^{-1}$, and $\theta_{5}=70$. All the theoretical cross sections have been multiplied by a factor of three to achieve numerical agrement, It can be seen that the theory produces the right general trends in the angular distributions. The scaling that was necessary seems to be an artifact of the saddle point shape parameterization (two touching spheres). Preliminary results using spheres with an hyperboloid neck parameterization not only reproduce the shapes of the angular distribution, but also reproduce the absolute cross sections as well for sinilar values of the theoretical constants. These results will be published in the near future.

In sumary, an attempt at describing the various stages of relaxation of the collective modes

Fig. 2. Comparison of experimental cross section (Δ) with theoretial cross sections calculated for the system $107,109 \mathrm{Ag}+288 \mathrm{MeV} 40 \mathrm{Ar}$. (XBL 752-2382)
excited in heavy-ion reactions has been made using a Master Equation appraoch. The results are seen to be reasonable, and further work on this and other reaction systems is presently being pursued.

References

1. S. G. Thompson, L.G. Moretto, R. C. Hared, R. P. Babinet, J. Galin, M. M. Fowler, R. C. Gatti and J. B. Hunter, Nobel Symposium on Superheavy Elements, June 1974, Ronneby Brmun, Sweden (Lawrence Berkeley Laboratory Report LBL-2940, June 1974).
2. K. L. Wolf, J.P. Unik, J. R. Huizenga, V. E. Viola, J. Birkelund and H. Freiesleben, Phys. Rev. Lett. 331105 (1974).
3. F. Hanappe, M. Lefort, C. Ngo, J. Peter and B. Tanain, Phys. Rev. Lett. 32, 738 (1974).
4. H. H. Gutbrod, F. Plaisil, H. L. Britt, B. H. Erkkila, R. M. Stokes and M. Blann. Third Symposium on the Physies and Chemistry of Fission, August 1973, Rochester, N.Y., U.S.A., IAEA-SM-174/59.

STATISTICAL EMISSION OF LARGE FRAGMENTS - A GENERAL THEORETICAL APPROACH*

L. G. Moretto

A theory for the statistical emission of large fragments has been developed. In analogy with the fission saddle point, a ridge line is defined, which controls the oecay width of the system into any given fragment. The normal moues at the ridge are classified into three classes: decay modes, amplifying modes, and non-amplifying modes. The amplification refers to the fact that the thermal fluctuations along an amplifying mode are amplified into a mach broader kinetic energy distribution. Arolytical expressions for the kinetic energy distributions are developed for various combinations of amplifying and non-amplifying modes. The limit for large amplifications is a Gaussian kinetic
energy distribution. The linit for no amplification is a Maxwellian. Thus the formalism comprehends the fission decay on one hand and the neutron evaporation on the other. The angular dist: ibutions are evaluated in tems of the ridge-1ine principal monents of inertia. The analytical expression for the angular distribution predicts, correctly in both limits, the neutron evaporation and the fission angular distribution.

Footrote

* Condensed from LBL-3457.

THERMODYNAMICAL PROPERTIES OF A PAIRED NUCLEUS WITH A FIXED NUMBER OF QUASI-PARTICLES

L. G. Moretto

Introduction

The statistical properties of a system with a fixed number of excitations (quasi-particles) are of interest in the study of relaxation phenomena in nuclei. By far the widest use of these properties has been made in the description of preequilibrium emission of nucleons. 1-4 However, one can forecast a multiplicity of cases where the statistical properties of a fixed quasi-particle systern may be of interest. For instance, in the description of the width of a doorway state (single particle or collective in nature), the coupling of such a state with a certain class of particle-hole states needs to be considered In systens with unrestricted quasi-particle number of the residual interaction is very important only at low energy. 5-8 In this paper it will oe shown that, at smail quasi-particle numbers, the pairing correlation is present even at very high excitation energies and that it plays a dominant role during the relaxation process leading from a small quasiparticle number to its equilibrium value.

The Hamiltcrian

In this paper we shall use the sinplest form of a pairing Hamiltonian with constant pairing strength:

$$
H^{\prime}=\Sigma\left(\epsilon_{k}-\lambda-E_{k}\right)+2 \Sigma n_{k} E_{k}+\Delta^{2} / G
$$

where λ is the Lagrange multipliter introduced to fix the particle umber; $\boldsymbol{r}_{k}={ }^{=} b_{j} b_{k}$ is the quasipa:ticle occupation number for the level k ; E_{k} are the quasi-particle energy eigenvalues, and the quantity A, called pairing gap, is given by the equation

$$
\frac{2}{G}=\Sigma \frac{1-2 n_{k}}{E_{k}}
$$

In order to fix the mean number of quasi-particles we introduce a new awciliary Hamiltonian:

$$
H^{\prime \prime}=H^{\prime}-5 Q
$$

where ξ is the Lagrange multiplier necessary for this particular constraint.

Explicitly, the new Hamiltonian can be written as

$$
H^{\prime \prime}=\Sigma\left(\varepsilon_{k}-\lambda-E_{k}\right)+\frac{\Delta^{2}}{G}+2 \Sigma n_{k}\left(E_{k}-\xi\right)
$$

The Grand Partition Function obeained from the Hamiltonian $\mathrm{H}^{\prime \prime}$ is:

$$
\Omega=-\beta \Sigma\left(\varepsilon_{k}-\lambda-E_{k}\right)-\beta \frac{\Delta^{2}}{G}
$$

$$
2 \Sigma \ln \left\{1+\exp -B\left(E_{k}-\xi\right)\right\}
$$

From this expression, all the other thermodynanical functions can be obtained by differentiation.

Application of the Fonnalism to the Uniform Model
The model is completely described by the single-particle level density g, which defines the independent particle aspect of the problem and by the ground state gap parameter Δ_{0}, which defines the pairing residual interaction. A great advantage of this model is the fact that the particle
chemical potential λ is a constant due to the symnetry of the single-particle spectrum. 'Thus one can set $A=0$ and disregard the particle equation.

In the graphs p.esented from here on, the gap parameter will be expressed in tems of the ground state gap parameter Δ_{0}; the nnergy and free energy in wits of the condensation energy
$C=\frac{1}{2} g \Delta_{0}^{2} ;$ the tenperature in tems of the critical temperature $\mathrm{T}_{\mathrm{cr}}=2 \Delta_{0} / 3.5$; the quasi-larticle number in terms of the mose probable quasi-particle number at the critical temperacure $Q_{C r}=4 g T_{c r} \ln 2$; the entropy in terms of the entropy at the critical point $\mathrm{S}_{\mathrm{cr}}=2\left(\pi^{2} / 3\right) \mathrm{g} \mathrm{T}_{\mathrm{cr}}$.
Limiting Properties for $T=0(B+\infty)$
The Gap Equation. The gap equation in the uniform model can be rewritten as foilows:
$2 g \int_{0}^{S} \frac{\tanh y_{3} B(E-\xi)}{E} d \varepsilon=\frac{2}{6}=2 g \int_{0}^{S} \frac{\tanh \xi_{2} B E}{E} d \varepsilon$.

In the limit of $\beta+\infty$ the following expression for the quasi-particle chenical potential is obtained in tems of Δ :

$$
\xi=\frac{1}{2} \sqrt{\frac{\Delta}{\Delta_{0}}}\left(\Delta+\Delta_{0}\right)
$$

The Quasi-Particle Equation. Similarly the quasiparticle number equation can be written as:

$$
\mathrm{Q}=4 \mathrm{~g} \int^{\infty} \frac{\mathrm{de}}{1+\exp \beta\left(\mathrm{E}-\bar{E}_{j}\right)}
$$

In the Iimit of $\beta \rightarrow \infty$ one ontains the following analytic rerlt:

$$
\begin{aligned}
& Q=4 g \sqrt{\xi^{2}-\Delta^{2}} \\
& Q=2 g \sqrt{\frac{\Delta}{\Delta_{0}}}\left(\Delta_{0}-\Delta\right) .
\end{aligned}
$$

or

Discussion on the Phase Stability. Figure 1 shows that Δ is a triple valued function of Q cone trivial and two non-trivial solutions) in the in-
 anco it is single-valued $(\Delta=0)$ for $Q>Q_{C r}$.

The larger solution starts at $\Delta=\Delta_{0}$ when $Q=0$; it decreases as expected fron this ${ }^{0}$ value down down to $1 / 3 \quad \Delta_{0}$ at $Q=Q_{\mathrm{cr}}$. Similarly the maller nontrivial solution starts at $\Delta=0$ for $Q=0$ and increases with increasing Q until it merges into the larger solution at $Q=Q_{c r}$.

This peculiar state of affairs must be resolved by deciding which of the three solutions is the stabie one.

Fig. 1. Dependence of the gap parametar and of the energy F upon quasi-particle number Q at $T=0$. The dashed lines correspond to the unstable solutions.
(XBL 742-2400)

An inmediate test on the two nontrivial solutions can be made by checking the sign of $\partial^{2} \mathrm{H}^{\prime} / \partial \Delta^{2}$. If $\partial^{2} \mathrm{H}^{\prime} / \partial \Delta^{2}$ is positive, then one $\mathrm{l}_{\text {tas }}$ indeed a mirimmm, while a regative sign implies that the solution is a maximum,

The second derivative calculated at the equilibrium value of $A, \partial H^{\prime \prime} / \partial \Delta=0$ is given by the following expression:

$$
\frac{\partial^{2} H^{\prime \prime}}{\partial \Delta^{2}}=2 g\left\{1-2 \frac{\Delta_{0}-\Delta}{\Delta_{0}+\Delta}\right\}
$$

This expression vanishes for $\Delta=\Delta_{0} / 3$, which is the value of Δ to which the larger and the smaller sclutions converge. For values of Δ larger than $\Delta_{0} / 3$ the second derivative is positive, thus indicating a stable solution. For values of Δ smaller than $\Delta_{0} / 3$, the second derivative is negative and the solution is unstable.

The Energy Equation. At this point one must decire on wich of the two remaining solutions, the paired or the trivial one ($\Delta \in 0$), is the stable solution. In order to detemine such a point, one must inspect the erergy equation.

In the Imit of $\beta+\infty$ and for the unifom model, the energy equation becomes

$$
\begin{array}{ll}
E^{*}=\frac{1}{2} g\left(\Delta_{0}^{2}-\Delta^{2}\right]\left[1+\frac{\Delta}{\Delta_{0}}\right] & \text { for } \Delta>0 \\
E^{*}=\frac{1}{2} g \Delta_{0}^{2}+\frac{Q^{2}}{8 g} & \text { for } \Delta=0
\end{array}
$$

The Existence of a First-Onder Phase Transition In Fig. 1 the excitation energy is plotted as a function of the quasi-particle mumber. As the gap parameter Δ goes from Δ_{n} to 0 , the energy follows a loop. The stable solution is the one with the least energy. Therefore the loop must be bypassed. At the bypass point the curves for the paired and the unpaired energies cross. The bypass coordinates are:

$$
\frac{\Delta_{x}}{\Delta_{0}}=\frac{1}{2} ; \quad Q_{x}=g \frac{\Delta_{0}}{\sqrt{2}}
$$

The excitation energy at the crossing is:

$$
E_{x}=\frac{9}{8} \frac{1}{2} g \Delta_{0}^{2}=\frac{9}{8} C
$$

where C is the pairing condensation energy.
In conclusion, for values of $Q<Q_{x}$ the paired solution is the stable one. At $Q=Q_{x}, \Delta$ goos abnuptly from the value $\Delta_{0} / 2$ to zero and it remains zero for any value of $Q>Q_{K}$.

On the Stability of the Aligred Configuration. A simple inspection of the equations indicates that for $\mathbf{T}=0$ the quasi-particles occupy the single-particle levels pajrwise with opposite spin projections. One may wonder whetner a configuration with one quasi-particle per level, like that occurring in the yrast line (aligned configuration), is more stable than the configuration described above (normal configration).

The ratio between the numier of quasi-particles necessary to give the same gap parameter in the two configurations is:
$\frac{Q_{\text {aligned }}}{Q_{\text {normai }}}=\frac{1}{2}\left[\sqrt{\frac{\Delta_{0}}{\Delta}}+\sqrt{\frac{\Delta}{\Delta_{0}}}\right]$.
This ratio is always slightly larger than one in the interval $1>\Delta / \Delta_{0}=0.5$, thus indicating that more quasi-particles are needed by the aligned configuration in order to obtain a given value of Δ.

The ratio of the energies for a fixed value of Δ is:

$$
\frac{E_{\text {aligned }}}{E_{\text {normal }}}=\frac{1}{2} \frac{3 \Delta_{0}^{2}+\Delta^{2}}{\Delta_{0}\left(\Delta_{0}+\Delta\right)} .
$$

This ratio is also slightly larger than one for $1>\Delta / \Delta 0>0.5$. The ratio of the energies at fixed Q is also larger than one in the same interval, thus proving that the aligned configuration never has the lowist energy at fixed Q .

Properties of the System for $T>0$

Solution of the Gap Equation. The dependence of the gap parameter Δ upon the quasi-particle number Q at various temperatures can be determined by soiving simultaneously the gap equation and the quasi-particle equation numberically. Such a dependence is illustrated graphically in Fig. 2. For temperatures smaller than the cricical temperature Trr two paired solutions exist. For temperatures above the critical temperature, only one paired solution exists. An increase in temperature has the effect of pushing the quasi-particles farther and farther away from the particle Fermi surface. The blocking due to the quasi-particles becomes less effective and the pairing corrieation is enhanced.

Fig. 2. Dependence of the gap parameter upon quasiparticle number at various temperatures. The inner isothem corresponds in $T / T_{\mathrm{cr}}=0.00$; the successive isotherms are spaced at intervals of 0.2 T/Tcr. The onset of the firsw arder phase transition is indicated by an open circle, the unstable solution at the same temperature is indicated by a solid point.
(XBL 7411-8555)

Free Energy and Phase Stability

A general view of Free Energy isotherms is available in Fig. 3. All of these isothems piesent a minimm which corresponds to the equilibriun

Fig. 3. Dependence of the Free Energy upoir quasiparticie number at various temperatures. The upper line corresponds to $T / T_{C r}=0.00$. The following lines are spaced at intervals of $0.2 \mathrm{~T} / \mathrm{T}_{\text {CF }}$. The open circles represent the region of the firstorder phase transition. The bypassed loops are not show.
(XBL. 7411-8557)
value of Q is no restriction is set upon the system. Such a minimum satisfies the condition

$$
\frac{\partial F}{\partial Q}=\xi=0 .
$$

The T, Q Phase Diagram and the Plots of Various Thermodymanical Functions. In Fig. 4 lines of of constant gap parameter Δ are projected in the T, Q plane. It is possible to appreciate two facts already pointed out before, Firstly, the gap parimeter at fixed Q actually increases and tends to go to its ground state value as T tends to infinity. Secondly, even for those values of Q for which $\Delta=0$ at $\mathrm{T}=0$, an increase in temperature eventually leads to the onset of pairing and to its increase towards the ground state value as an asymptotic 1 imit.

In Fig. 5, the lines of constant energies are projected on the same T, Q plane. At high temperatures one observes a nearly hyperiolic behavior typical of the Boitzmann limit. The change in the second derivative visible at low temperature in the unpaired region is due to the onset of the strong degeneracy limit. Similar considerations hold for the entropy plot shown in Fig. 6.

E, Q Diagrams and the Plots of Various Thermodyramical Quantities. The relevance of constant energy processes in nuclei makes it desirable to use the energy itself as an independent variable. The transformation can be done by mears of the energy versus quasi-particle number isotherm plot shown in Fig. 7. The first-order phase transition produces a discontinuity responsibl: for a gap in the E, Q plane.

Fig. 4, Lines of constant gap parameter in the T, Q plane. The solid line corresponds to $\Delta=0$; the lines to the left correspond to increasing values of Δ in steps of $0.05 \Delta / \Delta_{0}$.
(XBL 7411-8559)

Fig. 5. lines of constanc energy in the T, Q plane, The leftmost line corresponds to $E / C=0.5$. The lines to the right are spaced in steps of $0.5 \mathrm{E} / \mathrm{C}$. Notice the mismatch of the lines in the region of the first-order phase transition. (XBL 7411-8560)

Fig. 6. Lines of constant entropy in the T, Q plane. The leftmost line corresponds to $\mathrm{S} / \mathrm{S}_{\mathrm{cr}}=0.2$. The lines to the right are spaced in steps of $\mathrm{S} / \mathrm{S}_{\mathrm{cr}}=0.2$. Notice the missatch of the lines in the region of the first-order phase transition.
(XBL 7411-8561)

Fig. 7. Energy quasi-particle number isotherms. The lowest line for $T=0$ is the same as in Fig. 1. The higher isotherns are spaced in steps of 0.2 $T / T \mathrm{cr}$. The forbidden region, defined by the two dotted lines, originates at the phase transition for $T=0$ and terminates at $T=T_{C r}, Q=Q_{c r}$. The boundaries of this region converge into a single line for $T T_{c r}$. The locus of most probable Q is shown by the small and large dot line.
(XBL 7411-8562)

Fig. 8 Lines of constant entropy in the E, Q plane. The thick solid line corresponds to $\mathrm{S} / \mathrm{S}_{\mathrm{crit}}=0$. The lines above it are plotted in intervals of $0.125 \mathrm{~S} / \mathrm{Scrit}^{\text {crit }}$
(XBL 7411-8564)

In Fig. 8 the lines of constant entropy are plotted in the E, Q plane This graph is perhaps the most significant insofar as it provides information on the driving force along the path towards equilibrium at constant energy.

The entropy is small at very small quasiparticle numbers; it increases with increasing quasi-particle numbers and reaches a maximum at the $\xi=0$ line; a further increase in quasi-particle number leads to a decrease in entropy.

The maximum entropy at constant energy obviously represents the equilibrim condition.

The Level Density. In Fig. 9 the constant level density lines for a system characterized by $\mathrm{g}=7 \mathrm{MeV}^{-1}, \Delta 0=1 \mathrm{MeV}$ can be seen in an E, Q plot. The pattern is very similar to that of the entropy plot in the E, Q plane and the same comments apply.

A larger gap in the plot is visible due to the failure of the saddle-point method close to the region of phase transition.

Fig. 9. Lines of constant level densities in the E , Q plane. The calculation refers specifically to a nucleus with $\mathrm{g}=7.0 \mathrm{MeV}^{-1}$ and the $\Delta_{0}=1.0 \mathrm{MeV}$. The lowest level density line has a value lnf $=2.0$. The higher lanes are plotted in steps of $3.0 \mathrm{ln} \rho$.
(XBL 7411-8567)

References

1. 3. J. Griffin, Phys. Rev. Lett, 17, 478 (1966).
1. C. K. Cline and M. Blann, Nucl. Phys. Al72, 225 (1971).
2. M. Blann and A. Mignerey, Nucl. Phys. AI86, 245 (1972).
3. C. K. Cline, Nuel. Phys. A193, 417 (1972).
4. M. Sano and S. Yanasaki, Prog. Theor. Phys. 29 397 (1963).
5. P. Decowski, W. Grochulski, A. Marchinkowski, K. Siwek, and 2. Wilhelmi, Nuc1. Phys. A110, 129 (1968).
6. L. G. Moretto, Nucl. Phys. A182, 641 (1972).
7. A more complete list of references is available in J. R. Huizenga and L. G. Moretto, Ann. Rev. Nucl. Sci. 22, 427 (1972).

influence of pairine and of the spin projection distribution ON THE "CLASSICAL" ISOTHERMAL ROTATIONS OF A NUCLEUS"

L. G. Moratto

The properties of spherical, paired ruclei with finite angular momentum are discussed in terms of "classical" rotations. Rotarional quantities like the angular velocity and the moment of inertia are calculated both for the yrast line ($T=0$) and for higher temperatures. Particular attention is paid to the superfluid features associated with the pairing correlation. Three different models are considered. The first model is ciaracterized by a constant spacing in the single particle levels and by a constant spin projection, and it is treated analytically in the zero temperature limit. It is shown that this model leads to a very strong back-bending. Calculations accounting for the pairing fluctuations are shown. The second model differs from the first one in the spin projection
distribution which, in analogy with a spherical shell model nucleus, is taker to be rectangular. Analytical calculations show that, while strong superfluid properties remain, the back-bending seen in the previous model disappears. The third model used is the shell model. Numerical calculations of the angular velocities and of the moments of inertia are compared with the results obtained from the previous two models. A remarkable agreement is observed between the second model and the shell model.

Footnote

*Abstract of paper; Nuc1, Phys. A22G, 9 (1974).

STATIStical decay of gamma rays in $\left.\mathbf{n}_{\mathrm{gh}}, \gamma\right)$ REACTIONS*
E. Nard, ${ }^{\dagger}$ L. G. Moretto and S. G. Thompson

Isomer ratios obtained in doubly even targets in the ($n_{\text {th }}, \gamma$) reaction are calculated using realistic level densities and spin cut-off parameters. The calculations were performed Lising the MonteCarlo method and the general agreement betrieen the present calculations and experimental data is satisfactory. In one case the shape of the γ-ray spectrum was calculated and good agreenent with
experimental data was obtained.

Footnotes

${ }^{*}$ Abstract of paper; Nuc1، Phys. A259, 170 (1974).
${ }^{\dagger}$ present address: Israel Atomic Energy Commission, Soreq Research Center, Yavne, Israel and Weimmann Institute of Science, Rehovot, Israel.

SEMICLASSICAL CALCULATIONS FOR COULOMB EXC:TATION*

J. de Boer, ${ }^{\dagger}$ H. Massmann, and Aa, Winther ${ }^{\ddagger}$

The Coulomb excitation of a deformed target (index t) by a heavy ion (index p) involves many couplings. A fully quantum mechanical ($Q(M)$ treatment ${ }^{1}$ of, e.g., the excitation of the rotational levels in an even-even target by an inert projectile can therefore presently include only the ground state (level index $\mathrm{N}=1$) and the first five excited states ($N=2$ - 6). The interpretation of experiments involving more levels must rely on classica1 ${ }^{2,3}$ or semiclassica1 ${ }^{4}$ (SC) computational methods. The relative deviations of the cross sections (dosc-doge)/dosc have been found to increase with transferred angular monentum I_{N} and to be roughly proportional to the reciprocal Bohr parameter $1 / n$, where $n_{N}=z_{e^{2}} \mathrm{t}^{2} / \mathrm{e}^{2} v_{N}$ with v_{N} being the relative velocity ${ }^{\text {Nat }}$ infinity after excitirg level N .

In modern meriments, where spins in excess of 20 m have been coulomb-excited (e.g., ${ }^{84} \mathrm{kr}$ and ${ }^{136}$ Xe on 2384) ${ }^{6}$ the experimental accuracy of the measured cross-sections often matches or exceeds the accuracy with which older SC calculations ${ }^{4}$ can be corrected for expected $Q M$ erfects. 1,5 The accuracy of interpretation may thus be limited by the accuracy of the calculation. The present approximations presented hera strive to renedy this situation.

The semiclass:cal system of coupled differential equations in the amplitudes c_{s} can be written in the form

$$
\begin{aligned}
\frac{d c_{r}}{d t}= & \text { const. } \sum_{\lambda, s}^{\sim} M_{r s}^{(\lambda)} \cdot o_{r s}^{(\lambda)}(t) \\
& \times \exp \left\{\frac{1}{\hbar}\left[E_{N r}-E_{N s}\right) t\right\} c_{s}(t) .
\end{aligned}
$$

The indices r and s label the nuclear states $\left|I_{I} M_{r}\right\rangle$ and $\left|I_{i s} M_{S}\right\rangle$ with excitation energies E_{Nr} and $\mathrm{E}_{\mathrm{Ns}} ; \lambda$ is the multipole order and $M(\lambda)$ is the electric multipoie matrix-element. By spynetrization one denotes the choice of the orbit, given by $0(\hat{I})(t)$ which depends on the inpact parameter or ${ }^{\text {rithe }}$ initial orbital angular monentum J.h and winich may depend on the transitions $s+r$ considered. For a hyperbola, the orbital angular momentium $\&$ and the scattering angle θ are connected by $\ell=\eta \operatorname{ctg}(\theta / 2)$. The present symmetrization procedure uses a set of hyperbola with the following features:

1) All lie in the same plane ($x-y$ plane),
2) All have the same symnetry axis (x axis),
3) For each transition $s \rightarrow r$ the half-distance of closest approach $\mathrm{a}_{\mathrm{NrNs}}$ and the velocities $v_{\text {NINs }}$ are adjusted to the average excitation energy by choosing
$v_{\mathrm{NrNs}}=\sqrt{v_{\mathrm{Nr}} \cdot{ }^{\cdot{ }^{\mathrm{Ns}}}}$

$$
a_{r s}=\frac{z_{p} 2_{t} e^{2}}{v_{1}^{2} A_{p}} \cdot \frac{A_{p}+A_{t}}{A_{t}} \cdot\left(\frac{v_{1}}{v_{N r W S}}\right)^{2}
$$

4) For each transition $s+r$ the scattering angle θ_{rs} is adjusted to the average angular-momentum projection $\mathrm{KM}_{\mathrm{rs}}=(\mathrm{h} / 2)\left(\mathrm{M}_{\mathrm{r}}+\mathrm{M}_{\mathrm{s}}\right)$ along a z axis perpendicular to the orbital plane by choosing

$$
\left.\begin{array}{l}
\ell_{r s}=J-M_{r s} \\
n_{\mathrm{Nr}_{\mathrm{r}}}=n_{1} \cdot\left(v_{1} / v_{\mathrm{NrNs}}\right)
\end{array}\right\} \theta_{\mathrm{rs}}=2 \cdot \operatorname{arctg} \frac{\ell_{\mathrm{rs}}}{n_{\mathrm{MrMs}}}
$$

The results of three stages of symmetrization will be considered, namely

	$v_{\text {NrNs }}$	$\mathrm{Mrs}_{\text {rs }}$
1 No symmetrization	v_{1}	0
2 Symnetrization wit to energy transfer	$\longdiv { v _ { \mathrm { Nr } } \cdot \mathrm { v } ^ { \prime } }$	0

Symmetrization with respect
3 to energy and angular
momentin transfer $\sqrt{\mathrm{V}_{\mathrm{Nr}} \cdot \mathrm{v}_{\mathrm{Ns}}} \frac{1}{2}\left(\mathrm{M}_{\mathrm{r}}+\mathrm{M}_{\mathrm{s}}\right)$

The second symnetrization is the one used in Ref. 4. The WKB limit of the QM equations leads to the third one and allows an identification of the SC complex amplitudes c_{s} with the reaction matrix

For a projectile with $\eta_{1}=20$ exciting a rotational even-even nucleus the comparisons of the absolute values $|\mathbf{r}|$, multiplied with $\sqrt{2 j+1}$, and of the phases $\phi\left(\mathrm{r}=|\mathrm{r}| \mathrm{e}^{\mathbf{1} \phi}\right)$ for $J_{\mathrm{mj})^{2}} \leq J \leq 60$ $\left(2 J_{\text {min }}=M+1\right)$ with the QM_{M} values are shown for $\mathrm{I}=\mathrm{min}(\mathrm{N}=6)$ and $\mathrm{M}=-10,0,+10$ in the two figures. A marked improvement in $|r|$ is achieved, especially for $M=>I(M=+I$ is the largest sumand in $\mathrm{da}_{1}=\left\{\mathrm{d} \sigma_{\mathrm{m}}^{\mathrm{N}} \mathrm{J}\right.$. The main contribution to the cross section arises from channel spins $J \leq n$; the smooth behaviour of r allows interpolation in large steps. A larger number of comparisons 10 indicates that the $M_{r s}=(1 / 2) \cdot\left(M_{r}+M_{s}\right)$ symmetrization diminishes the deviations $\phi_{s c}(N)-\phi_{Q}(N)$.

Investigations tracing the origin of remaining deviations are in progress. There are indications that they stem from the detailed properties of the wave function rear the classical turning point ${ }^{11}$ rather than from the inaccurate shape of the orbit. Methods similar to the one used here can be used for non-hyperbolic orbits (nuclear plus Coulomb potential) as well as the approximate accounting for the transfer of mass. 12

Fig. 1. Reaction matrix for the excitation of a rotational 10^{+}state by a projectile with $\eta=20$, as a function of the chamel spin J. Only the values $M=J-\&=-10,0$, and +10 are displayed. The semiclassical results of three types of symnetrization are compared to the quantum mechanical values. The absolute values, multiplied with $\sqrt{2 J+1}$, are given in (a), whereas the phases are shown in (b). (XBL 756-1561, XBL756-1562)

Footnotes • and References

Work supported in part by the Ministry of Education and Science of the Federal Republic of Gemmay. Contribution preserited at the Internationial Workshop III an Gross Properties of Thelei and Nuclear Excitations, Hirschegg, Austria, January 13-18, 1975.
${ }^{\dagger}$ Sektion Physik, Universität München.
$t_{\text {Niels Rohr Institute, }}$ Copenhagen.

1. F. Roesel, J. X. Saladin, and K. Alder, "Quan-tum-Mechanical Coupled-Channels Code for Coulonb Excitation", University of Pittsburgh Progress Report, 1973; the code was expanded to include up to six levels (F. Roesel, Berkelcy, 1974).
2. H. Massmann and J. O. Rasmussen, Nucl. Phys. A243 (1975), 155.
3. S. Levit, U. Smilansky, and D. Pelte, Phys. Lett. 53B, 39 (1974).
4. Aa. Winther and 3 . de Boer, in "Coulonb Excitation", Perspectives in Physics, edited by K. Alder
and Aa. Winther, Academic Press, 1966, Pg. 303.
5. K. Alder, F. Roesel, and J. X. Saladin, Volume 1 of the Proceedings of the Corference on "Reactions Between Complex Nuclei", Nashville, Tennessee, 1974, pg. 28.
6. E. Grosse et al., to be published.
7. K. Alder and H. K. A. Pauli, Nuclear Physics A128, 193 (1969).
8. K. Alder and Aa. Winther, Chapter IX in "Elec. tromagnetic Excitation", to de published by North Holland Publishing Comprany, 1975.
9. R. A. Broglia et al., Phys. Reports 11C, 1 (1974).
10. J. de Boer, H. Massmann and Aa. Winther, to be published.
11. F. Roesel, private commancation.
12. R. A. Broglia and Aa. Winther, Phys. Reports 4C, 153 (1972).

UNIFORM SEMICLASSICAL ORBITAL CALCULATIONS OF HEAVY ION CONJLOAB EXCITATIUN*

H. Mastmann ${ }^{*}$ and J, O. Ratmugren

In recent years a new semiclassical method, the so called "unifom seniclassical approxination" (USCA) has been developed and applied to molecular scattering and reacticn preblems. $1-3$ Here we wish to report on applications of this method to multiple Coulomb excitation for backward scattering angles.

The equations of the USCA can be derived from Feymman's path integral formulation of quantum mechanics. The semiclassical limit of matrix elements of quantum mechanical operators is found by invoking the stationary phase method to evaluate integrals. By following this procedure one finds the following basic features of this method:

1) The dynanics of the system is completely classicul, that is the system follows the classical equations of motion.
2) By evaluating a phase along the classical trajectories one can extract. the so called "classical s-matrix" which then by the usual equations yields differential cross sections. In other words the quantum mechanical superposition principle is retained in the USCA since one adds probability amplitudes for indistinguishable processes rather than probabilities.
For the details of the theory we refer to the work of \mathfrak{K}. H . Miller. ${ }^{1-3}$

We consider here only the scattering of a projectile moving toward an even-even deformed target (initially in its ground state) with zero impact parameter ($\ell_{\text {in }}=0$). In this case since all
the motion classicaly takes place in a plane, one can describe the system by using only two variables simplifying the sumerical work considerably. However care must be taken to assure that one is solving the backscattering from a three-dimensional rotor and not from a two-dimensional rotor.

In Fig. 1 the excitation probabilities for backscattering ($\theta=180^{\circ}$ to the different final angular monenta I are plotted and a comparison is made with results obtained using the conventional de soer - Winther code for multiple Coulonb excitation. ${ }^{4}$ The agreement between the two seniclassical theories is very reasonable.

When writing the equations of motion for the system in terms of dimensionless quantities one finds that the evolution of the system depends only on the following three dimensionless parameters:
i) $\eta=z_{1} z_{2} e^{2} / h v_{0}$ (Somerfeld parameter) being a measure of the monopole-monopole interaction strength.
2) $\xi_{02}{ }^{=}{ }_{7 E}\left(E_{2}\left(2 E_{c o n}\right]\right.$ (Adiabaticity parameter) being a melsure of how adiabatic the collision is. E_{2} is the energy of the first excited rotational state. $502=0$ would represent a sudden collision.
3) $\frac{q_{2}}{q_{2}}=2 \mathrm{p}^{2} \mathrm{Q}_{0}(2) /\left(4 \mathrm{~h} v_{0} \mathrm{a}^{2}\right)$ (Quadrupole interaction strength parameter) being a measure of the quadrupole-monopole interaction strength. The ratio n / \bar{q}_{2} gives a measure of how close the trajectory wf the projectile corresponds to a hyperbola. For $\eta+\infty$ the orbit is a pure hyperbola

Table 1. The probabili:ies for excitation of rotational states in an even-even nucleus in the limit $\xi_{02}=0$ and $\eta=\infty$. Tabilated are the resuts of the USCA and the conventional semiclassical approximation (Ref. 5).

\bar{q}_{2}	USCA	A-W										
	P_{0}	P_{0}	P_{2}	P_{2}	${ }^{13} 6$	P_{6}	P_{10}	P_{10}	P_{14}	P_{14}	${ }^{P}{ }_{18}$	P_{13}
1.0	0.6339	0.6945	0.2518	0.2850	0.0703	0.0006						
1.5	0.3850	0.4300	0.4917	0.4812	0.0039	0.0057						
2.0	0.1940	0.2152	0.5733	0.5597	0.0203	0.0260	0.0000	0.0001				
2.5	0.0988	0.1021	0.1892	0.4842	0.0650	0.0750	0.0004	0.0006				
3.0	0.0842	0.0835	0.3084	0.3098	0.1485	0.1572	0.0022	0.0029				
3.5	0.1067	0.1108	0.1362	0.1389	0.2568	0.2563	0.0084	0.0104		0.0001		
4.0	0.1224	0.1317	0.0509	0.0514	0.3385	0.3554	0.0247	0.0286	0.0003	0.0004		
4.5	0.1115	0.1214	0.0622	0.0600	0.3571	0.3555	0.0581	0.0634	0.0011	0.0014		
5.0	0.0820	0.0881	0.1193	0.1158	0.2999	0.3006	0.1127	0.1171	0.0038	0.0046		
5.5	0.0553	0.0571	0.1569	0.1540	0.1911	0.1932	0.1829	0.1831	0.0107	0.0124		
6.0	0.0461	0.0463	0.1627	0.1412	0.0828	0.0848	0.2451	0.2436	0.0255	0.0283	0.0006	0.0007
6.5	0.0530	0.0547	0.0921	0.0917	0.0242	0.0250	0.2768	0.2757	0.0523	0.0558	0.0018	0.0022
7.0	0.0630	0.0671	0.0462	0.0459	0.0317	0.0312	0.2615	0.2616	0.0933	0.0961	0.0050	0.0058
7.5	0.0637	0.0687	0.0352	0.0343	0.0809	0.0798	0.2004	0.2014	0.1452	0.1455	0.0120	0.0134
8.0	0.0532	0.0570	0.0568	0.0552	0.1251	0.1242	0.1160	0.1174	0.1946	0.1938	0.0253	0.0274
8.5	0.0396	0.0413	0.0936	0.0819	0.1293	0.1292	0.0436	0.0446	0.2266	0.2258	0.047 ${ }^{\circ}$	0.0503
9.0	0.0324	0.0329	0.0892	0.0879	0.0925	0.0930	0.0124	0.0128	0.2277	0.22\%	0.0808	0.0828
9.5	0.0345	0.0355	0.0692	0.0685	0.0442	0.0447	0.0290	0.0286	0.1930	0.1935	0.1221	0.1223
10.0	0.0409	0.0432	0.0412	0.0408	0.0188	0.0189	0.0725	0.0719	0.1316	0.1326	0.1627	0.1622

Fig. 1. Calculatiens of Coulomb Excitation probebilities fo excite meniers of rotational groumd band in -58 J with the backscattering of 4 A Ar at $\mathrm{E}_{1 \mathrm{ab}}=170$. NkV on 2384. For this case: $\mathrm{E}_{2}=170.0$ $\left.\mathrm{MeV}, \mathrm{Q}()^{2}\right)=10.84$ barm, $\mathrm{O}(4)=0 \mathrm{bam}^{2}$,
$E_{02}=0.0196, \eta=127.0$ and $\bar{q}_{2}=5.574$. The black triangles correspond to the result obtained if the interference ters is neglected. The open squares correspond to the result for the backscattering from a 2 dimensional rotor.
(2BL 756-1563)
(as in the de Boer - Winther code).
The $n \rightarrow \infty, E_{02}=0$ limit can be found analytically for our exrdple and this linit is in very good agreonent with results published for this case using the conventional seniclassical approach ${ }^{5}$ as can be seen from Table 1.

In realistic scattering problems, η is finite and the projectile's orbit will differ from a pure hyperbola. Figure 2 shows the backscattering excitation probability for $\xi_{02}=0$ and $\bar{q}_{2}=9.0$ vs $1 / n$. The finite η corrections shown in Fig. 2 cone about because of the change in the projectile's orbit due to the angular mamentum transfer letween the target and the projectile. The angular mronentun transfer between target and projectile is not taken into account in the conventional de Boer = Winther code although work is currently being done to include it approximately. ${ }^{6}$

Fig. 2. Hackward scattering excitation proủailities to Coulonb Excite members of a ground rotational band of an even-even target. Results are shown ws n for $\xi_{02}=0$ and $\overline{q_{2}}=9.0$. The $n+\infty$ limit was evaluated analytically. (XBi 756-1564)

Footnotes and References

*Condensed from LBL-3440. Submitted to Nuclear Physics A (Novenber 1974).
ton Leave from Facultad de Ciencias, Universidad de Chile, Santiago, Chile, with a fellowship from Convenio Universidad de Chile - University of California.

1. H. H. Miller, J. Chem. Phys. 53, 1949 (1970),
2. W. H. Miller, I. Chem. Phys. 53, 3578 (1970).
3. H. H. Niller, "The classical S-matrix in molecuhar collisions" in Molecular Beans, ed. K. P. Lawley, Wiley; to be published (1975).
4. J. de Boer and An. Winther, in Coulanb Excitation ed. by K. Alder and Aa. Winther, Academic Ptess (1966).
5. K. Alder and Aa. Winther, Kgl. Danske Viderskab. Selskab, Mat. Fys. Medd. 32 8, (1960).
6. J. de Boer, H. Massmann and Aa. Winther. Proceedings of the Internstional Workshop III on Gross Properties of Nuclei and Nuclear Excitations. Hirschegg, Austria, January 1975.

TWO HYDRODYNANICAL LIMITS IN THE DESCRIPTION OF HIGH-SPIN YRAST CASCADES

J. Moyer \cdot ter-Vhn*

Experimental work on yrast cascades after heavy-ion reactions 1,2 indicates that these cascades proceed through a smooth band system and are spread over a least five separate bands. Mottelson has pointed out that the spectrum of a triaxial rotor can possibly explain these features. 3 On the other hand, Swiatecki and coworkers have studied the rotating iiquid drop and predict oblate equilibriun shafes for angular momenta $I<60{ }^{\circ} 4$.

The answer to the question which shape will occur critically depends on which kind of nuclear flow prevails in chese strongly rotating ruclei. As long as the shape deformation is not too large ($\beta<0.5$) so that the nuclear surface can be described by the first-order parameters B and γ, irrotational flow favors shapes of maximint γ symnetry ($\gamma=30^{\circ}$), whereas 'rigid' flow leads to oblate shapes ($Y=60^{\circ}$). Beyond a certain angular momentum, very elongated shapes are likely to appear for any kind of flow and these will finally lead to fission. In this region, which is expected fc: $\mathrm{I}>60 \mathrm{~h}$ in mediun-mass nuclei, the following arguments do not apply.

The aim of this note is to show that the rotational spectra and the decay properties of the two limiting model cases, (a) the $\gamma=30^{\circ}$ rotor with irrotational moments-of-inertia, and (b) the $Y=60^{\circ}$ rotor with rigid moments-of-inertia. can be treated in an elementary way, Neither of the se $\mathrm{t}+\mathrm{w}$ models is expected to descaibe actual yrast vascades quantitatively, but they represent two interesting approximations because they sharply illuminate a characteristic difference between irrotational and rigid flow models that is likely to be also present in more elaborate treatments and that allows one to same extent to distinguish between the two kinds of flow on the basis of the existing experimental data.

The moments-of-inertia corresponding to rigid flow and irrotational flow are given as functions of γ in Fig. 1. Maximm moments-of-inertia are obtained at $\gamma=60^{\circ}$ and $\gamma=30^{\circ}$, respectively, and

Fig. 1. Rigid (left side) and irrotational (right side) moments-of-inertia as functions of the asymmety parameter γ_{1} For illustrative reasons, a very large $\beta \approx 1$ has been assumed for the rigid case.
(abl 744-2732)
the two smaller monents-of-inertia are equat at exactly these $r^{\prime} s$ in both cases. Choosing the axes such that $J_{1}>\sqrt{2}_{2}=\mathcal{J}_{3}$, the rotor daniltonian

$$
\mathrm{H}=A \mathrm{I}_{1}^{2}+\mathrm{A}_{\perp}\left(\mathrm{I}_{2}^{2}+\mathrm{I}_{5}^{2}\right)
$$

with $A=1 / 2 f_{1}$ and $A_{\perp}=1 / 2 \mathbf{J}_{7}$, is axially symmetric about the 1 -axis (though'not necessarily the shape!). For this reason, standard rotor formulas ure applicable. The energy spectrun is

$$
E_{1, \alpha}=A \alpha^{2}+A_{1}\left[I(I+1)-\alpha^{2}\right]
$$

and the wavefunstions are

$$
{ }^{\Psi} I M, a=\sqrt{\frac{2 I+1}{16 \pi^{2}\left(1+\delta_{a, 0}\right)}}\left(D_{A a}^{(I)}+\left(-I_{D_{N}}^{(I)}\right)\right)
$$

where a denotes the angular momentum projection on the 1 -axis and has to be an even integer >0. The general expression for the $E 2$ transition probabilities is

$$
\begin{aligned}
& B\left(E 2 ; I_{1} \alpha_{1}+I_{2} \alpha_{2}\right)=\frac{5}{16 \pi} \cdot \frac{2 I_{2}+1}{\left(1+\delta_{\left.a_{1}, 0\right)} \int^{1+\delta_{a_{2}}, 0}\right)} \\
& \cdot\left\{\left(\begin{array}{ll}
1 & I_{2}^{2} \\
a_{1} & -a_{2} 0
\end{array}\right) q_{20}^{(1)_{+(-)^{I}}}\left[\begin{array}{lr}
1 & r_{2}^{2} \\
-a_{1} & -a_{2}^{0}
\end{array}\right) q_{20}^{(1)}\right. \\
& \left.+\left[\left(\begin{array}{ll}
I_{1} I_{2} & 2 \\
\alpha_{1}-a_{2}^{2}
\end{array}\right]+\left(\begin{array}{ll}
I_{1} I_{2} & 2 \\
a_{1}-\alpha_{2}-2
\end{array}\right)+(-)^{I_{2}}\left(\begin{array}{ll}
I_{1} & I_{2}^{2} \\
-\alpha_{1}-a_{2}^{2}
\end{array}\right]\right) q_{22}^{(1)}\right\}^{2} .
\end{aligned}
$$

Here, $q_{2 \mu}^{(1)}$ is the intrinsic quadrupole tensor related to the $\hat{1}$-axis. For the $\gamma=30^{\circ}$ case, it is convenient to introduce the so-called wobbling quaintum number ${ }^{n} n=I-a$, since, in this case, $\approx *$ ates with same n are connected by large $\mathrm{B}(E 2)^{\prime} \mathrm{s}$. Inserting $a=\mathrm{I}-\mathrm{n}$, the energy spectrus reads

$$
E_{I, n}=A I^{2}+A_{1} I+\left(A_{1}-A\right) n(2 I-n)
$$

The quantum number n labels a series of rotational bands parallel to the yrast band ($n=0$) as shown in Fig. 2. For a given level (I, n) there are j possible ways to decay via E2 transitions. These are also indicated in Fig. 2. For I >> 1, on.? obtains:
(a) $\mathrm{B}[E 2 ;(I, n) \rightarrow(I-2, n)] \frac{5}{16 \pi} q_{22}^{(1) 2} . \frac{2 I-n}{2 T}{ }^{4}$,

Fig. 2. Band structure of a triaxial rotor at $r=30^{\circ}$ assuming irrotationsl flow. Possible E2zrassitions from a given state ($1, \mathrm{n}$) are indicated.
(XBL 744-2779)
(c)

$$
S \mid E: 2 ;(I, n)+(1, n-2] \equiv \frac{5}{16} q_{22}^{(1) 2} \cdot \frac{3 n(n-1)}{(21)^{2}}
$$

(c) $\mathrm{B}\left[\mathrm{EL} ;(\mathrm{I}, \mathrm{n})+(I+1, n-1) \approx \frac{5}{16 \pi} q_{22}^{(1) 2} \cdot \frac{n(21-n)^{3}}{41^{d}}\right.$,
(d) $\mathrm{B}\left[\mathrm{E} 2 ;(1, \mathrm{n}) \rightarrow(1-1, \mathrm{n}-1] \cong \frac{5}{16 \pi} q_{20}^{(1) 2} \frac{3 n(1-n)^{2}(21-n)}{21^{4}}\right.$,
(e) $\mathrm{B}\left[\mathrm{E} 2 ;(1, n) \rightarrow(1-2, n-2) \times \frac{5}{16} \frac{(1)}{20} \frac{\operatorname{mn}(\mathrm{n}-1)(21-\mathrm{n})^{2}}{21^{4}}\right.$.

Fron these results, two inportant conclusions can be dramn:
(1) For triaxial shapes with $\gamma * 30^{\circ}$, favored by pure irrotational flow, one has $9(1)=0$ and a
$\operatorname{maximam} q_{22}^{(1)}=Q_{0} / \sqrt{2}$, where $Q_{0}=3 / \sqrt{57} \cdot R_{0}^{2}$ ZeB is
the intrinsic quadrupule moment. In the yrast region $n \ll 1$, transitions (a) along the n-bands are dominant, cross-transitions (b) and (c) are reduced by factors ($\mathrm{n} / \mathrm{I})^{2}$ and (n / I), respectively, and transitions (d) and (e) are completely suppressed. The 52 -cascade is therefore channeled through a number of bands parallel to the yrast band as needed to explain the experimental results.
(2) For oblite shapes with Y 6.", favored $^{\text {a }}$ by rigid flow, the energy spectrum hac the same structure as for the $y=30^{\circ}$ case, ber, the decay properties are decisively different due to the different shape. Since now $q_{20}^{(1)} Q_{0}$ has reached its maximm and $q[J]=0$, the cuscade procceds through the transitfons (d) and (e) and is trapped on the yrast line. Since the grast states correspond to rotation about the symmetry axis in this case, muclei in these states do net rad'ate pad form high-spin isomers. Even if the isaners would be relatively short-lived due to small deviaticas from pure oblate shapes, mose of the population after a beavy-ion reaction would quickly drop into the yrast band, and individual yrast transicions should be oiserved up to very high angular momenta. This is in clear contradication to the experimental evidence.

It is concluded that the $\gamma=30^{\circ}$ rotor based on irrotational llow is in qualitative agreenent vith experimental data on yrast cas:ajes, whereas the $Y=60^{\circ}$ rotor based in risid flow is not. This might indicate that the nuclear flow corresponding to the yrast region has a strong irrotational comiponent. Due to the large overall wi.lues of the mpirical monents-of-inertia, however, the flow cannot be completely irrotationil. This is known already from groundstate monests-of-inertia that lie between irrotational and rigid values. A tho fluid model accounting for a mixture of both kinds of flow is therefore suggested to describe the hydrodynanics of rotaring nuclei. An investigation in this direction based on classical work by B. Ricmann (1860) is now in progress.

Footnotes and Reterences

*On luave from Technische Universität Mïnchen, Mïnchen, hest Germany.

1. J. O. Newten, F. S. Stephens, R. M. Dianond, K. H. Kelley, and D. Hard, Nucl. Mys. 4141, 361 (1970).
2. P. O. Tjim, F. S. Stephens, R. M. Di:mond, J. de Boer, and W. E. Meyerhof, subxitted to Phys. Rev, Lecters (1974).
3. B. R. Nettelson, The Nuclear Stiucture Symposium of the Thousand iakes, Joutsa, Firland, 1970.
4. S. Cohen, F. Plasil, and W. J. Swiatecki, Annals of Physics 82,557 (1974).
5. B. Riemann, "Abh. 1. König1. Ges^11. der Wis. zu Göttingen, 9, 3-36 (1860).

THE TRIAXIAL-ROTOR-PLUSOUASIPARTICLE MODEL*

d. Moyer-ter-Vahn ${ }^{\dagger}$

Calculated energies, moments and transition probabilities of the triaxial-rotor-plus-quasiparticle model are presented in a series of plots (Figs. 1-9) to provide the basis for a systematic study of unique parity spectra in transitional odd- A nuclei in the $A=190$ and $A=135$ mass regions.

The mode?. Hamiltonian

$$
\begin{equation*}
H=\sum_{:=1}^{3} \frac{\left(I_{K}-j_{K}\right)^{2}}{2 G_{K}}+\sum_{v=1}^{\left(j+\frac{1}{2}\right)} e^{2} a_{v}^{+} v_{v} \tag{1}
\end{equation*}
$$

describes the core as a rigid triaxial rotor (Davydov approximation) and restricts the configuration space of the odd nucleon to one complete j-shell. The quasiparcicle energies

Fig. 1. The odd-A ener ${ }^{\prime}$: spectrum as a function of B for $\gamma=0^{\circ}, \lambda_{F}=\quad \varepsilon_{\ddots}$, ind $j=11 / 2$. The core states underlying the miiniplets at $\beta=0$ are indicated.
(XPL 749-4307)

$$
e_{v}=\sqrt{\left(\varepsilon_{v}-\lambda_{F}\right)^{2}+\Delta^{2}}\left(v=1,2, \ldots, j+k_{i}\right)
$$

are obtained from the Femi energy λ_{p}, the pairing gap Δ, and the single-particle energles E wich result from the diagonalization of the particlecore interaction

$$
H_{p}=-k B\left[\cos \gamma \quad Y_{20}+\frac{\sin \gamma}{\sqrt{2}}\left(\gamma_{22}+Y_{2-2}\right)\right] .
$$

The coupling strength k is taken as $k \cong 206$ $\mathrm{MeV} / \mathrm{A}^{1 / 3}$ consistent with the Nilsson model. The moments-of-inertia are chosen as

Fig. 2. Same as Fig. 1, but for $y=30^{\circ}$ and $\lambda_{F}=\varepsilon_{1}$:
(XBL 747-3731)

Fig. 4. The odd-A energy spectrum as a function of y for $\beta=A^{2 / 3}=5, \lambda_{F}=\varepsilon_{1}$,
and $j=11 / 2$.
(XBL 747-3734)

Fig, 3, Same as Fig. 1, but for $\gamma=30^{\circ}$ and $\lambda_{F}=\varepsilon_{2}$.
(XBL 747-3732)

Fig. 5. Samp, as Fig. 4, but for $B \cdot A^{2} 3^{3}=7$ and $\lambda_{F}=\varepsilon_{2}$.
(XBL 747-37ㅇ3)

Fig. 6. The odd-A energy spectrum as a function of λ_{F} for $\beta \cdot A / 3, \gamma=30^{\circ}$, and $j=11 / 2$.
(XBL 7410-4395)

Fig. 7. Spectroscopic quadrupole moments of the lowest odd- $A_{1} s^{+}$tes, including the second j state, as functions oi Y for $\beta \cdot A^{2 / 3}=5, \lambda_{F}=\varepsilon_{1}$, and $j=11 / 2$, given in units $Q_{0}:=\frac{3}{\sqrt{5 \pi}} \cdot R_{\text {QXBL }}^{2}$ 749-430 \quad.

Fig. 8. Redured Ez-transitior p-obabilities for the lowest odd-A states as functions of γ for $\beta \cdot A^{2 / 3}=5, \lambda_{F}=\varepsilon_{1}$, and $j=11 / 2$. (XBL 749-4304)

Fig. 9. Ratios $\delta=\left\langle I_{2}\right| \mid \sqrt{5 / 16 \pi}$
Q||I $\left.I_{1}\right\rangle /\left\langle I_{2}\right||M|\left|I_{1}\right\rangle{ }^{2}$ for the lowest odd-A states, including the second j state, as functions of γ for $\beta, A^{2 / 3}=5, \lambda_{F}=\varepsilon_{1}$, and $j=11 / 2$. The magnetic mit $\mu_{0}=\mu_{S}$ p. $-\mathrm{g}_{\mathrm{R}}-j$ with $\mu_{\mathrm{s}} . \mathrm{p}$. being the single-particie magletic moment.
(XBL 749-4305)

$$
g_{K}=9_{0} \cdot \frac{4}{3} \sin ^{2}\left(Y-\frac{2 \pi}{3} \kappa\right)
$$

with $k=1,2,3$ and T_{0} determined according to Grodzin's general empirical rule ${ }^{1} 2 /(290)$ $\approx 204 \mathrm{MeV} /\left(\beta^{2} \cdot \mathrm{~A}^{7 / 3}\right)$. Choosing furthermore $\Delta \cong 135 \mathrm{MeV} / \mathrm{A}$, consistent with even-odd mass differences in the region $100<.1<200$, and expressing all energies in units $\quad 2 /(290)$, the only free paraneters of the model are $\mathrm{B} \cdot \mathrm{A}^{2} / 3, \mathrm{Y}$, and λ_{F}. The final diagonalization of the Haniltonian
(1) invaives matrices of dimension ($\mathrm{I}+\frac{1}{1}$) $\left(\mathrm{j}+\frac{1}{2}\right)$ where I denotes the total angular momentur. The eigenvalues satisfy the important symetry $E\left(\beta, \gamma, \lambda_{F}\right)=E\left(\beta, 60^{\circ}-\gamma,-\lambda_{F}\right)$ which rele.tes particle and hole spectra, Earlier work on this model has been done by Pasbkevich and Sardanyan. ${ }^{2}$

The FORTRAN program ASQROT which calculates energies, monenta and transition probabilities of this model is available on request.

Footnotes and References

* Condensed from work to be published in Nuc1. Physics.
${ }^{\dagger}$ On leave of absence from Physik-Department, 130 , Technische Universität Minchen, Minchen, West Germany.

1. L. Grodzins, Phys. Letters 2, 88 (1962).
2. V. V. Yashkevich and R. A. Sardaryan, Nucl. Phys. 65, 401 (1965).

ON THE YRAST STATES OF $\boldsymbol{\gamma}$-UNSTABLE NUCLE

J. Mayer-ter-Vohn ${ }^{*}$

Judged from microscopic calculations of potential energy surfaces ${ }^{r}(\beta, \gamma)$, a wide class of nuclei is characterized by notentials which are rather soft in γ-directiors, In the basis of these potentials, one obtains collective wave functions which are spread all over the γ-range $0^{\circ} \leqq \gamma<60^{\circ}$. This resule holds for low angular momentum. Going to higher angular momenta, however, one expects the wave functions to localize more and more about $\gamma=30^{\circ}$ due to a dynamic stabilization ${ }^{1}$ - provided the moments-of-inertia depend on γ as those of irrotational flow

$$
J_{k}=4 B \beta^{2} \sin ^{2}\left(\gamma-\frac{2 \pi}{3} k\right), x=1,2,3
$$

In this case, the largest monent-of-inertia occurs for maximm asymetry at $\gamma=30^{\circ}$ and, of course, favors the $\gamma=30^{\circ}$ shape at high angular momenta. It should be recalled that the γ-dependence of irrotational moments-of-inertia is well supported empirically by spectra of odd-A muclei. ${ }^{2}$

The aim of this note is to show that the process of localization can be studied analytically in the limit of γ-unstable potentials $(V$ independent of γ). In this case, Bohr' ${ }^{1}$; collertive Hamiltonian ${ }^{3}$ separates in β and γ, and the total wave function can be written ${ }^{3}$ as

$$
\begin{equation*}
{ }^{Y} \mathrm{IM}, \mathrm{n} \lambda=\mathrm{f}_{\mathrm{n}, \lambda}(B) \cdot \phi_{\lambda, \mathrm{IM}}(\gamma, \Omega) . \tag{1}
\end{equation*}
$$

The γ-dependent part ϕ does not depend on the potential $V(\beta)$ and is common to all γ-unstable systeris, including the hamonic quadrupole osifillator $V \sim B^{2}$. Since the wavefunctions of the latter are known, it is relatively easy to construct $\phi .4$ For the yrast states with even I, one obtains

$$
\begin{align*}
& \phi_{\lambda}=\frac{I}{2}, \mathrm{TM}=\mathrm{I} \\
&=\left[\left(\frac{\alpha_{22}}{\beta}\right)^{\frac{I}{2}}\right]_{\mathrm{M}=\mathrm{I}} \tag{2}\\
&\left.=\left[\left(\cos \gamma \mathrm{D}_{20}^{(2)}+\frac{\sin \gamma}{\sqrt{2}} \int_{22}^{(2)}+\mathrm{D}_{2-2}^{(2)}\right)\right]^{\frac{1}{2}}\right]_{\mathrm{M}=\mathrm{I}}
\end{align*} .
$$

The easiest way to anal:ze this expression is to look for the solution in the range $60^{\circ}<\gamma<120^{\circ}$, where the monent-of-inertia has its maximum at $\gamma=90^{\circ}$. In fact, fron Eq. (2) one expects ϕ to have the assmptotic form

$$
\begin{equation*}
\phi_{\lambda}=\frac{I}{2}, I M=I^{\alpha[\sin \gamma)^{\frac{I}{2}}} \frac{1}{\sqrt{2}}\left\{D_{I I}^{(I)}+D_{I-I}^{(I)}\right\} \tag{3}
\end{equation*}
$$

for $I+\infty$, since $\cos \gamma \ll 1$ for $60^{\circ}<\gamma<120^{\circ}$. The completely coupled form of ϕ is
$\left.\phi_{\lambda=\frac{I}{2}, I M} \sum_{K^{2} 0}^{\lambda} g_{\lambda=\frac{I}{2},(I-2 K)}{ }^{〔}\right) \quad \Psi_{M,}, \mathbb{K N}^{(\Omega)}$
with

and
$\psi_{I M,} K^{(\Omega)}=\sqrt{\frac{2 I+1}{16 \pi^{2}\left(1+\delta_{K, 0}\right)}}\left(\mathrm{S}_{M}^{(I)}(\Omega)+\mathrm{D}_{M-K}^{(I)}(\Omega)\right)$
N_{λ} is a nomalization constant and [$\frac{\mu}{2}$] the largest integer snaller than $\frac{1}{2}$. The γ-density

$$
\rho_{I}(\gamma)=\int d \Omega\left|\phi_{\lambda=\frac{I}{2}, I M}(\gamma, \Omega)\right|^{2}
$$

is plotted for different I in Fig. 1. It is seen that the localization about $\gamma=30^{\circ}$ sets in rather slowly for $I \geqq 6$. For $I=2$ and 4 , the wave function is equally distributed over γ. For $I=40$,

Fig. 1. The distribution of γ-unstable wave functions over the coordinate. With increasing angular monentum the wave functions localize about $\gamma=30^{\circ}$ and approach the asymptotic limit (given for $I=40$ as broken Line).
(XBL 744-2780)
$\rho_{\mathrm{I}}(\gamma)$ is sharply peaked at $\gamma=30^{\circ}$ and has almost reached the asymptotic limit.

The yrast encrgies corresponding to Eq. (1) depend on $V(\beta)$. If the potential has a sharp β-minimul and localizes the wave function at a definite $\beta=\beta_{0}$, the spectrum for even I is

$$
E_{I}=\frac{h}{8 B \beta_{0}^{2}} I(I+6)
$$

But also in the case of an hamunic oscillator, the centrifugal term in the effective potential

$$
v^{e f f}(\beta)=\frac{C}{Z} \beta^{2}+\frac{h^{2}}{8 B \beta^{2}} I(I+6)
$$

tends to lacalize the wavefunction at

$$
B_{0}(I)=4 \sqrt{\frac{n^{2} I(I+6)}{d B C}}
$$

For $I+\infty$, the minima of $v^{\text {eff }}$ are just

$$
E_{I}=\sqrt{\frac{C}{B} \cdot \frac{N I}{2}}
$$

the exact yrast energies ori the harmonic o'jcillator.

It is concluded that the moments-ofinertia of irrotational type stabilize criaxial shapes at high angular momenta no matter how \boldsymbol{r}-soft the collective potential is. This process sets in, however, rather slowly. It cannot be responsible for triaxial shapes in the region I <10.

Footni 3 and References
*On leave from Technische Universität München, Nïnich, West Gemmany.

1. This has been realized earlier by B. Mottelson, private communication to F. S. Stephens.
2. J. Meyer-ter-Vehn, F. S. Stephens, and R. M. Dianond, Phys. Rev, Letters 32, 1383 (1974).
3. A. Boht, K. Danske Vidensk, Selsk, mat.-fys. medd. 26, No. 14 (1952).
4. L. Wilets and M. Jean, Phys. Rev. 102, 798 (1956).
5. D. R. Bes, Nucl. Phys. 10, 373 (1959).

THEORETICAL INVESTIGATION OF UNIOUE PARITY SPECTRA OF ODD-A NUCLEI IN THE A = 135 AND A = 190 MASS REGION*

J. Meyer-ter-Vohs ${ }^{\dagger}$

Unique parity spectra of transitional odd-A nuclei in the $A=135$ and $A=190$ mass regio: have been investigated based on the triaxial-rotor-plusquasiparticle model. 1 Triaxial shapes are indicated in these mass regions already by the low-lying second 2^{+}states in even nuclei. It is shown in this work that the odd-A spectra contain much more detailed evidence for triaxial shapes than the even ones. Here, only a brief sumary can be given. The comparison between experiment and theory is given for some representative cases in Figs: 1-10. Features of the spectra which are characteristic for the various triaxial regions are pointed out in the captions: References to the experimental data are given in the main publication. ${ }^{2}$

The calculated spectra represent essentially parameter-free calcularions. The parameters β and y are derived from the lowest excited states in
neighbouring even nuclei according to a standard procedure which is described in Ret. 2. In particular, the γ-parameter is derived from the ($A-1$) even neighbor for particle spectra (λ_{F} below the urique parity j-she 11) and from the ($\hat{A}+1$) neighbour for hole spectra (λF above the j-she11). The Fermi energy λ_{F} is estimated fron a Nilsson level scheme.

The surprising result of this work is that rather complex families of unique parity states can be reproduced theoretically on the assumption of triaxial shapes with fixed β and γ values. In particular, the odd-A spectra define γ rather sharply, and the values obtained in this way, coincide consistently within a few degrees with those derived from the even neighbors. This result suggests that a number of transitional nuclei are less soft than expected from existing theoretical calculations of potential energy surfaces.

$2 N$	110	112	114	116
76				$\begin{aligned} & 192 \mathrm{Os} \\ & \beta=0.20 \\ & \gamma=25.1^{\circ} \\ & \hline 10 \end{aligned}$
77			$191 \mathrm{ir}$ $h_{h 1 / 2}^{7 n}$	$193 \mathrm{If}$ $1 \overline{h 11 / 2}^{80}$
78		$\begin{array}{\|ll\|} \hline 190 \mathrm{Pt} & \\ \beta=0.17 & \frac{4}{2}=-{ }_{2}^{177} \\ \gamma=\left(30^{\circ}\right) & 0= \\ \hline 98 \\ \hline \end{array}$	$\begin{array}{ll} 192 \mathrm{Pt} \\ \beta=0.17 & \frac{1}{2}=-\quad 265 \\ \gamma=130^{\circ} 1 & 0=- \end{array}$	
79				
80	$\begin{aligned} & 190 \mathrm{Hg} \\ & \beta=014 \quad 2 \longrightarrow \\ & \gamma=\left(38^{\circ}\right)_{0}= \end{aligned}$	$\begin{array}{\|ll\|} \hline 192 \mathrm{Hg} & \frac{2}{4}=-=1102 \\ \beta=0.13 & 2=423 \\ \gamma=38_{121}^{0} & 0 \\ \hline \end{array}$		
81	$\left\{\begin{array}{c} 191 \mathrm{TI} \\ 15=-2148 \cdot . \\ 15=-713 \cdot \\ 11=-2-308 *: \\ 9-9 / 2 \end{array}\right.$		$\begin{aligned} & 195 \mathrm{TI} \\ & 18-\infty=1820 \\ & 13-190 \\ & 11=-190 \\ & 9-483 \\ & h^{9 / 2} \end{aligned}$	$\begin{aligned} & 197 \mathrm{TI} \\ & 15-1720 \\ & 13-1304 \\ & 11-298 \\ & 9-800 \\ & t y / 2 \end{aligned}$

Fig. 1. Systematics of experimental unique parity spectra built on the $h \frac{9}{2}$ and $h \frac{1}{2}$ shell of odd proton nuclei are shown for nuclei in the $A=190$ mass region. Lowest energies (in keV) of adjacent even nuclei and values for B and γ, derived fron these energies, are also given. The odd-A spectra confirm a graduel transition from prolate to oblate between Os and Hg . In such a transition, the theoretical spectra change from a decoupled type $((j+1)$ level above the $(j+2)$ level to a strongly coupled type $(\mathbf{j}+1)$ level below $(j+2)$ level) for particle spectra ar.a vice versa for hole spectra. This change is observed in the experimental spectra, e.gig those of $187 \mathrm{Tr}, 189 \mathrm{Au}$, and 191 TI where the h^{9} particle spectra are based on the $y=16^{\circ} 1860 \mathrm{~s}, ~ y=24^{\circ} 188 \mathrm{pt}$, and $Y=38^{\circ} 190^{\prime \prime} \mathrm{gg}$ cores and the hit hole spectra are built on the $18 \% \mathrm{pt}$ and 190 Hg cores, respective$1 y .18$ poth spectra are decapled in 189 Au because the h_{2}^{9} states are related to the prolate 18 BPt core and the $\mathrm{h} \frac{1}{2}$ states to the oblate 190 Hg core?
(XBL 7411-8166)

Fig. 2. Negative parity states in ${ }^{199}$ T1. Solid lines indicate the strongest observed or calculated decay transitions of each level. The calculation with standard parameters reproduces the experimental states. Strang eyidence for a triaxial shape is given by the second ${ }^{4}-2$ star is The criculation seems to identify the measured state at 1195 keV as the sernd $\frac{9-}{2}$ state.
(KRL 7411-8170)

Experiment

Fig. 3 Negative parity states in ${ }^{195}$ Aul built on the $\mathrm{h} \frac{1}{6}$ shell. Solid lines indicate transitions with so to 100 of the strongest decay intensity of each level. The level order of the 12 states above the basic $\frac{1}{2}$ states is almost completely reproduced by the standard calculation. This agreement depends sensitively on the γ-value $y=37^{\circ}$ derived from the 196 Hg core, in particular, for the close positions of the first $\frac{9-}{2}$ and $\frac{13}{2}$ state, the $\frac{17}{2}$ and $\frac{19}{2}$ state, and the second and ${ }^{2}$ third 11 ${ }^{2}$ states.
(XBL 749-4250)

Fig. 4. Negative parity states in ${ }^{191}$ Au. The decay scheme separates into tho systens, the one built on the $h \frac{11}{2}$ shell and the other probably on the $\mathrm{h} \frac{\mathrm{t}}{}$ shell. The two standard calculations suggest spin-values for all unassigned levels. The measured state at 1269 keV which decays to both systens is possibly a mixture of the second $\frac{9}{2}$ states which appear -- at least in the calculation -- at about the same energy in both systens and could be subject to an accidental resonance coupling.
(XBL 7411-8167)

Fig. 5 Positive parity states in ${ }^{193} \mathrm{Hg}$ built on the $i \frac{13}{2}$ shell. Evidence for a triaxial shape is provided by the second $\frac{19}{2}$ state which is foumd in right relative order in ${ }^{2}$ the calculation with the standard value $\gamma=38^{\circ}$, but not with an $\gamma=60^{\circ}$ core.
(XBL 7411-8171)

Theory
h $\frac{9}{2}$ - system

Experiment

$$
\beta=0.23 \quad \gamma=16^{\circ} \quad \lambda=0 \quad \Delta=0.7 \mathrm{MeV}
$$

Fig. 6. The h_{2}^{9} systen in ${ }^{187} \mathrm{Ir}$. The transition lines are defined as in Fig. 3. The large number of yrast states and the 5 non-yrast states which are observed in experiment are almost conpletely reproduced by the triaxial calculation with $\gamma=16^{\circ}$ derived from 1860 s . The vertical $\Delta I=1$ band structures in the calculated spectrum can be classified by approxinate K and Ω values. Sone higher members of these bands are seen in experiment.
(XBL 7410-4390)

Fig. 7. The h^{11} system in ${ }^{187}$ Ir. The transition lines are defined as in Fig. 3. The standard calculation reproduces the low-1ying $\frac{2}{2}$ state including its large $B\left(E 2 ; 7-\frac{11}{2}\right)=0.32$ (eb) ${ }^{2}$ which is found $=0.3$ (eb) 2 experimentally in ${ }^{2}{ }^{189} \mathrm{Ir}$. At the same time, it yields the strongly-coupled yrast band and the side bands. This result strongly supports a triaxial shape of ${ }^{187} \mathrm{Ir}$.
(XBL 749-9249)

Fig. 8. The $\mathrm{h} \frac{11}{2}$ family in ${ }^{135}$ Pr. This spectrum is characteristic for odd proton nuclei in the $A=135$ mass region. Sirailar spectra have been observed in $133,133 a \operatorname{la}$ and 129 Cs . The decoupled level structure indicates a prolatetype core deformation, the second and thind states of spin $\frac{1}{3}, \frac{9}{2}$, and $\frac{11}{2}$ observed for ${ }^{13 S_{p i} \text { change sharply in }}$ just below the $\frac{10}{-}$ stixis for the standard value $\gamma=23^{\circ}$, ${ }^{2}$ derived from $134_{C e}$, in agreement with experiment, but lie far too high for a $\gamma=0^{\circ}$ core.
(XBL 7412-8175)

Fig. 97 Negative parity states in ${ }^{137}$ Nd. Strongly-coupled yrast bands of the 13\rangle_{Nd} type have also been observed in ${ }^{35} \mathrm{Nd}, 133,135^{\mathrm{Ce}}$, and 131 Ba . These odd-neutron-hole spectra in $N=75,77$ nuclei are very similat to the $z=77$ odd-proton-hole spectra in Ir isotopes. In both mass regions, they indicate strongly triaxial shapes of prolate type. The additional level structure observed in ${ }^{137} \mathrm{Nd}$, which is shown in the three columns on the right of the experimental spectrum, is probably not based on the hil shell, but is tentatively attributed to the he $\frac{2}{2}$ shell and possibly the $\mathrm{f} \frac{72}{2}$ shell (levels at 1374 and 1788 keV).
(XBL 7411-8? ${ }^{2}$)

Fig. 10, the h^{11} tamily in ${ }^{133} \mathrm{Ce}$. Triaxiality of the core is indicated by the position of the second $\frac{15}{5}$ state. The model calculation with standard parameters as well as for $\gamma=0^{\circ}$ does not reporduce the low positions of the first $\frac{9}{2}$ state. This deficiency could be remedied by an attenuation of the Coniolis matrix elements which has not been used in the present calculation.
(XBL 7411-8172)

The present work has strong applications in the field of experiment. It provides a general frame for analyzing low-energy spectra of transitional odd-A nuclei. It predicts numerous states, their energies, moments, and transition probabil: ities. More experimental results are necessary to judge the range of validity of the present model. Certain discrepancies are expected due to shape fluctuations aid other effects. But the present work clearly points out that there is a simple general structure behind the odd-A spectra in the transitional regions and dhat triaxial nuclear deformations are a simple way to understand their
systematic behaviour.

Footnotes and References

${ }^{*}$ Condensed from LBL-3416 and Ref. 2.
${ }^{\dagger}$ On leave from Techn. Universität Minchen, Minich, West Germany.

1. J. Meyer-ter-Vehn, subnitted to Nuc1. Physics, see contribution to this report.
2. J. Meyer-ter-Vehn, submitted to Nuc1. Physics.

TEST OF MANYBODY METHODS IN AN EXACTLY SOLUBLE BACKBENDING MODEL

S. Y. Chu, E. R. Marshatok,* J. O. Pasmussan, and P. Ring ${ }^{\dagger}$

Much attention has been focused on the be, havior of the nuclear moment of inertia at high spins in the last few years. The sudden increase of the moment of inertia and the occurence of backbending has been studied in a number of exactly soluble models by Krmminde and Szymanski. 1 For realistic calculatiors the selfconsistent cranking model (SCC) has proved to be very successful. ${ }^{2}$ Some reasons for this success may be that the underlying wave fumctions are product wave fumctions and therefore simple enough to be applied for realistic calculations and general enough to contain all the necessary degrees of freedom, such as, changes in shape, pairing correlations and decoupling processes, which seem to be very important for these high-spin states.

There are, however, some serious shortcomings of that method: 1) The cranking wave functions violate symuetries; in particular they are not eigenstates of angular monentum and particle number. 2) There seen to be some regions in the backbending curve where one has great quantum fluctuations which cannot be handled within the cranking model.

One way to overcone sume of these difficulties is a particle-number projection which has to be carried out before the variation. Another method is the randon phase approximation (RPA) based on the cranking model basis. The RPA allows the inclusion of higher correlations and includes an approximate projection of angular momentim and particle number.

We therefore decided to study the cranking model and these tho nethods in an exactly soluble case. For this purpose we rook the $R(8)$-model of Kruminde and Szymanski. 1

The model consises of 2Ω identical femions, interacting via a pairing force, distributed anong two 2Ω-fold degenerate single particle lovels separated by an energy $2 e$ and coupled to an extemal rotor with fixed monent of inertia a^{-1}.

The Hamiltonian is

$$
\begin{equation*}
\mathrm{H}=\frac{1}{2} \mathrm{a}(\stackrel{\rightharpoonup}{\mathrm{I}}-\stackrel{\rightharpoonup}{\mathrm{j}})^{2}+\mathrm{H}_{\mathrm{sp}}+\mathrm{H}_{\mathrm{p}} \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
& H_{s p}=\varepsilon \sum_{v}^{\Omega}\left(a_{v}^{+} a_{v}+a_{v}^{+} a_{v}-b_{v}^{+} b_{v}-b_{v}^{+} b_{v}\right) \tag{2}\\
& H_{p}=-g \sum_{v}^{\Omega}\left(a_{v}^{+} a_{v}^{+}+b_{v}^{+} b_{v}^{+}\right) \sum_{v}^{\Omega}\left(a_{v} a_{v}+b_{v}^{-} b_{v}\right) \tag{3}
\end{align*}
$$

j_{k} are the components of the angular momentum of the particles.

For instance,

$$
\begin{equation*}
j_{x}+i j_{y}=\sqrt{3} \sum_{v}^{\Omega}\left(a_{v}^{+} b_{v}-b_{i}^{+} a_{v}\right)+2 \sum_{v}^{\Omega} b_{v}^{+} b_{v} \tag{4}
\end{equation*}
$$

As shown in !ef. 1, the Hamileonian is composed of generators of the gromp $R[8]$. This makes an exact solution of the model possible.
ble otishy small oscillations about a classically ratating solution: In lowest order

$$
\hat{\mathrm{I}}_{x}=1, \quad \hat{\mathrm{I}}_{y}=\hat{I}_{z}=0
$$

Applying the Hartreu-Fock-Bogolyubov factorization for the particle operators gives the cranking ociel

Hamiltonian the with the selfcomsistency relations

$$
\begin{gather*}
\omega=a\left(I-\left(j_{x}\right\rangle_{\omega}\right) \tag{5.a}\\
\Delta=g \sum_{v}^{\Omega}\left(\left\langle a-a_{v}\right\rangle_{w}+\left\{b_{v}^{-b}\right\}_{\omega}\right\} \tag{5.b}
\end{gather*}
$$

The diagonalisation of H_{ω} corresponds to the solution of the HFB-equations. It can be carried out analytically. Since the levels are half filled, the chemical potential λ is alwcys 0 . The four quasiparticle energies are

$$
\begin{equation*}
E_{i}= \pm \frac{\omega}{2}+E_{ \pm} \tag{6}
\end{equation*}
$$

with

$$
E_{ \pm}=\sqrt{\varepsilon^{2}+\Delta^{2}+w^{2} \pm \omega \sqrt{\varepsilon^{2}+4 \Delta^{2}}}
$$

Obyiously cre of them can go to 0 for certain values of Δ and w, wich corresponds to a gapless superconductivity. This happens also in realistic Calculations (ref, 2). To get selfcorsistency one has to solve the syrem (5), which can be writter as two transcendental equations for the variables ω and Δ. Within some ω-regions there can be two solu. ions for Δ. Within the cranking model the class. cal expression I is usually replaced by

$$
\sqrt{I(I+I)}
$$

On the basis of the crri:ing model we studied two methods to improve the reufis: The first method is a particle number projection before the variation. We used the method of contour integrals proposed in Ref. 3. Since time reversal symmetry is violated by the cranking operator wjx one has first to determine the conjugate states cf the BCStheory. This is dona by diagonalizing the density matrix which gives the canonical basis. Within this bas is the formulas of Ref. 3 are applied. For each pair of (ω, Δ) the projected energy

$$
\begin{equation*}
E_{p r o j}=\left\langle H_{\omega} P^{N}\right\rangle_{\omega, \Delta} \tag{7}
\end{equation*}
$$

is calculated and acconding to the cranking model the stationay points

$$
\begin{equation*}
\frac{\partial}{\partial \Delta} E_{\rho r o j} l_{\omega f i x e d}=0 \tag{8}
\end{equation*}
$$

are calculated, ω is determined by

$$
\begin{equation*}
\omega=a\left(\sqrt{I(1+i)}-\left(j_{x} p^{N}\right)\right) \tag{9}
\end{equation*}
$$

Figure 1 shows the surface o: the projected energy. For $\omega=0$ there is a minimumi $a_{i} \Delta=0.335$ (Mev) and a maximum at $\Delta=0$. With increasing w this minimum moves to smaller values of Δ (Coriolis antipairing effect). The solid line connects the stationary points (8). It approaches $\Delta=0$ for high ω-values. The dots on that line correspond to the integer even I-vaiues. The dashed line represents $\Delta(\omega)$ in the umprojected calculation, which has sharp transition to zero.

The second method is a generalized Holstein Primakoff boson exparsion in powers of Ω^{-1} (Refs. 4 and 5) and I^{-1}. Since one has two kinds of degrees of freedom, namely particle degrees of freedom and rotor degrees of freedom, one has two kinds of bosons: The particle bosons B^{+}are super-positions of two quasi-particle operators. The rotor boson b defines a wobbling motion of the nucleus around the steady rotation around the x-axis. The rotor wave function is written as

$$
\begin{equation*}
\left.\left\lvert\, I K>=\frac{\mathrm{e}^{\mathrm{iI} \mathrm{\Phi}}}{\sqrt{2 \pi}} \cdot \frac{\left(\mathrm{~b}^{+}\right)^{I-K}}{\sqrt{(I-K)!}} 10\right.\right) \tag{10}
\end{equation*}
$$

where ϕ is an azinuth around the x-axis, K is the projection of the angular momentum onto that axis and the boson is defined by

$$
\hat{I}_{x}=\frac{1}{i} \frac{\partial}{\partial \phi}-b^{+} b
$$

$$
\begin{equation*}
\hat{I}_{y}+i \hat{I}_{z}=b^{+} \sqrt{\frac{2}{i} \frac{\partial}{\partial \Phi}-b^{+} b} . \tag{11}
\end{equation*}
$$

The expansion of the Hamiltonian yields in zeroth order the selfconsistent cranking model. In the next order one has a bilinear form of bosons. The diagonalization corresponds to the RPA. It

Fig. 1, Surface of the particie number projected energy (7). The contour lines have an energ difference of 0.03 NeV .
(XRL 757-3500)
gives us vibrations for each point on the yrast ctive. The zero point correction of these vibrations is calculated. on the other hand, this kind of bosm expansion has the nice feature that it conserves the particle number anproximately. That means as long as $\Delta \neq 0$ one has a zero frequency mode which corresponds to a pairing rotation, The corresponding monent ois inertia and its contribution to the energy can be calculated. For $\Delta=0$ this mode is a pairing vibration and the frequency no longer vanishes.

In Fig. 2 the three methods are compared with the exact solution for $\Omega=4, a=0.0197$ (NeV),

Fig. 2. Moment of inertia F against the square of the angular velocity ω. The full points are the exact values, the full line corre:sponds to the KPA, the dashed line is the particle nimber projection and the dashed-dot line is the selfconsistent cranking model.
(XBL 757-3505)
$g=0.075(\mathrm{MeV}), \varepsilon=0.1(\mathrm{MeV})$. Outside the backbending region all three methods agree quite well with the exact result. One has a transition from the paired ground state to the nomal-fluid, highspin stater. Within the backbending region there are differences. Selfconsistent cranking gives a too strong backbending. This can be understood easily. Since the cranking wave functions are product wave functions, they do not contain enough correlations to describe the mixing of the two bands in the right way. Particle number projection gives an inprovement. However, for the upper branch ($\Delta \approx 0$) it corresponds nearly to the cranking solution. Obviously the parcicle number projected wave functions do not have the right type of correlations, which is inportant there. The best agreement with experiment is shom by the RPA curve. One has, however, to mention that there are points along that curve where the RPA gets untable.

Footnotes and References

*Permanent address: Physics Department, University of Notre Dame, Southbend, Ind.
${ }^{\dagger}$ Supported by the Deutsche Forschungsgemeinschaft.

1. J. Kruminde and Z. Szymanski, Ann, of Phys. 79, 201 (1973).
2. B. Banerjee, H.J. Mang and P. Fing, Nucl. Phy's. A211, 366 (1973).
3. K. Dietrich, H.J. Mang and J.H. Pradal, Phys. Rev. 135B, 22 (1964).
4. T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
5. E.R. Marshalek, Nuc1. Phys. A224, 221 (1974).

ATTENUATION OF THE CORIOLIS INTERACTION WITHIN THE CRANKING MODEL*

P. Ring ${ }^{\dagger}$ and H. J. Mang

The description of strongly distorted rotational bands within the cranking model allows an interpretation of the attenuation factors used in the particle plus rotor nodel. It turns out that they are not very much influenced by the residual interaction, but strongly dependent on the angular monentum. A simple model is proposed to calculate distorted spectra which are in rather good agreement with the experimental data and with the fully self-consistent calculation.

The description of very distorted rotational bands of odd mass deformed nuclei is possible within the particle plus rotor model ${ }^{1}$ (PRM) by the
coupling of particles to the collective rotation using a Coriolis interaction. Practical calculations, however, allow a reproduction of the experimental data oniy by neproducing the strength of this interaction. The attenuation factors R used for this purpose lie between 0.4 and 0.9.2 There exist attempts to give an interpretation of these factors by taking into account the coupling of the vutside particle to collective vibrations of the core. 3 A purely microscopic derivation of the Coriolis interaction is possible by using the method of angular momentiom projection after the variation. 4 Recently 5 it has been shown that the applicetion of the cranking model within the framework of the Hartree-Fock-Rogolyubov-Theory (HFB), which can be derived from a projection of the
angular momentum before the variation, 6 allows a quantitative sescription of these bands without any fit parameter. In particular, no extra attenuation of the Coriolis term has to be introduced.

Within the cranking model the internal wave function ϕ_{a} of the odd nucleus is calculated by the variational equation

$$
\begin{equation*}
\left\langle\delta \phi_{\alpha}\right| \hat{H}-\omega \hat{J}_{x}-E^{(\alpha}\left|\phi_{\alpha}\right\rangle=0 \tag{1}
\end{equation*}
$$

If cre restricts do $_{\alpha}$ to the HFB - functions, it corresponds to the blocked HFB - Equations ${ }^{7}$ in the rotating frame. One has to look for solutions of this system which have ald particle number parity 8 and which are eignfunctions of a rotation about 180° givund the x-akis

$$
\begin{equation*}
\epsilon^{i \pi J}{ }_{\phi_{\alpha}}=i(-)^{I-1 / 2} \phi_{\alpha} . \tag{2}
\end{equation*}
$$

I is the total angular momentum and the cranking frequency w is determined by the subsid.. y condition

$$
\begin{equation*}
\left.\left\langle\phi_{\alpha}\right| J_{x}\left|\phi_{\alpha}\right\rangle^{2}+\left.\left\langle\phi_{\alpha}\right| J_{z}{ }_{z}\right|_{\alpha}\right\rangle=I \cdot(I+1) \tag{3}
\end{equation*}
$$

Equation 1 is solved directly in Ref. 5 for ${ }^{159}$ Dy. For comparison with the particle plus rotor model,
however, it is useful to deccmpose $\$ \mathrm{a}$

$$
\begin{equation*}
\phi_{\alpha}=\gamma_{\alpha}^{+}\left|\phi_{0}\right\rangle=\sum_{K} C_{K}^{\alpha} \beta_{K}^{+}\left|\phi_{0}\right\rangle \tag{4}
\end{equation*}
$$

where ϕ_{0} is the underlying HFB - wave function of the even core and 暧 are the quasiparticle operators corresponding to this core, which diagonalizes the Hamiltonian (H^{2} diagonal). For $\omega=0, K$ is a good quantum number (it corresponds to the eigenvaiue of J_{Z}) because of the axial symnetry of the core. For higher ω this is not exactly true. In the лumerical calculation of ${ }^{159} \mathrm{Dy}$ (see Fig. 1) however, it turns out that for a large region of spin values ($\mathrm{I}<21 / 2$) the core stays nearly axially symmetric and K is a rather good quantum number. The variation (1) is therefore decomposed into a variation of the core function φ_{0} and a variation of the mixing coefficients $\mathrm{C}_{\mathrm{K}}^{\mathrm{K}}$

$$
\begin{align*}
& \left\langle\delta \phi_{0}\right| \gamma_{\alpha}\left(H-\omega J_{\chi}\right) \gamma_{\alpha}^{+}\left|\phi_{0}\right\rangle=0 \tag{5}\\
& \sum_{K}\left\{\left(\left\langle\phi_{0}\right| H-\omega J_{x}\left|\phi_{0}\right\rangle+E_{K}(\omega)\right) \delta_{K K^{\prime}}-\omega j_{K^{\prime}}{ }^{\prime}\right\} \\
& =E^{\alpha} C_{K}^{\alpha} \tag{6}
\end{align*}
$$

Fig. 1. The dependence of (a) the quasipartic? energies E_{K}, and (b) the matrix elements $\mathrm{j}_{\mathrm{KK}+1}^{11}$ of Eq. (6) on the angula. monentum I ; X fo $-1 / 2$ corresponds to the decoupling parameter. Full lines correspond to the favored solutions, dashed lines to the mfavored solutions (see Ref. 9).
\mathbf{j}_{X}^{11} is the one quasiparticle part of J_{X} corresponding to the operators β_{K}^{+}. Equation 5 corresponds to blocked HFB - equations for the determination of the core wave function to with even number parity. It is coupled by the blocking of γ_{a} to Eg. (6) which determines the mixing amplitudes $\mathrm{C}_{\mathrm{K}}^{\mathrm{K}}$.

The PRN replaces the calculation of ϕ_{0} by assuming a rotor with a fixed moment of inertia. Equation (6) corresponds to the diagonalization of the PRM for the calculation of the nixing amplituries.

Besides the fact that the cranking model gives energies in the rotating frame, there is a close analogy between Eq. (6) and the PRM concerning the amplitudes C_{K}.
a) Neglecting constants the diagonal elements are in both cases essentially the quasiparticle energies E_{K}. In the cranking model they depend on ω, but only very weakly, as shown in Fig. 1 (a).
b) The non-diagonal elements vanish exactly for $K \neq K^{\prime} \pm 1$ in the $P R N$ and approximately in the cranking model. In the latter model the frequency is $\omega=$ ($\left.\phi_{a}\left|J_{x}\right| \phi_{q}\right)$ / 'se. $_{s} \mathscr{S}_{s c}$ is the selfconsistently determined moment of inertia. Regarding Ea. (3) the elements $K^{\prime}=K+1$ are

$$
\begin{align*}
& \text { in the cranking model } \\
& -\frac{\sqrt{I(I+1)-\left(J_{z}^{2}\right)}}{\frac{Y}{S c}} \cdot j_{K}^{11} \quad(\omega) \tag{7}\\
& \text { in the PRM }{ }^{1} \\
& -\frac{\sqrt{(I+1)-K(K+1)}}{S_{\text {rotor }}} j_{X}^{11} \quad(\omega=0) \tag{8}
\end{align*}
$$

Both expressions are very similar. If one neglects the small w-dependence of the matrix elements $\mathrm{j}_{\mathrm{x}}^{1}$ in the cranking model (see Fig. $1(\mathrm{~b})$) and the fact that $\sqrt{I(I+1)-K(K+1)}$ is replaced by $\sqrt{1(1+1)-\left\{J_{2} 2\right\rangle}$ in the cranking model, there remains only one big difference between both Coriolis interactions explaining why one needs attenuation factors in the PRM but not in the cranking model: the cranking model uses a selfconsistently determined moment of inertia $\mathscr{F}_{\text {sc }}$, which includes the effect of the decoupling particle and whis is strongly I-dependent (see Fig. 2). For small I-values, where the particle is coupled to the core, it is very easy to gain angular momentum in x-direction by decoupling the particle. Therefore, the value of $\mathscr{S c}$ is large and the Coriolis interaction is strongly attenuated. This effect can also be seen in the simple Inglis formula for the odd nucleus in the state a

Fis. 2. Moments of inertia dependent o. .he angular monentum. $\mathscr{S}_{S C}=\left(\phi_{a}\left|J_{x}\right| \phi_{a}\right) / \omega$ and Fore $=\left(\phi_{0}\left|J_{x}\right| \phi_{0}\right\rangle$ correspond to the many body wave function $\left(K O_{C}\right.$ in Fig. 3], F_{0} and $F_{0}+\mathscr{F}$ correspond to the particle plus cranking model (see Eq. (10)).
(XBL 747-364. .

$$
\begin{equation*}
\mathscr{F}_{\alpha}^{i n g}=\sum_{K K^{\prime}} \frac{\left|J_{X_{K K}}^{20}\right|^{2}}{E_{K}+E_{K^{\prime}}}+\sum_{K a} \frac{\left|j_{X_{K}}^{11}\right| 2}{E_{K}-E_{a}} \tag{9}
\end{equation*}
$$

The first part comes from the core. The second part describes the particle. Because of the small energy denominator it can become much larger than the first part. In the case of 159 Dy , we found $. S_{\mathrm{sc}}=123.35=26.82+9\left(.53\left(\mathrm{MeV}^{-1}\right)\right.$.

Holesver, for higher spin values a perturbation theoretic treatment is no longer possible. The exact solution (see Fig, 2) shows that the particle is more and more aligned and its contribution to the moment of inertia becomes smaller and smaller. Therefore the self-consistent moment of inertia. Fsc diminishes with increasing spin. Only for very high spin values should it increase again because of the antipairing and the stretching effect of the core.

Figure 3 shows the experimental spectrum of the positive parity band in ${ }^{159} \mathrm{Dy}$ and different calculations. Kisc is the fully self-consistent solution of Eq. (1) as described in Ref. 5. It uses a pairing plus quadrupola force including the exchange term of the $\propto Q$-force, its contribution to the pairing potential and the contributions of tie pairing force to the self-consistent field. $K 2$ sc uses a similar force, which does not include the latter three teims and which is adjusted to reproduce the same energy gap and the same deformation.

Fig. 3. The positive parity band in ${ }^{159}$ Dy: Experiment (see Ref. 10) and different calculations as described in the text.
(XBL 745-3198)

	$-K 1$	$K 2$
$Q_{p}=Q_{n}$	-0.034	-0.034
$Q_{p n}$	-0.089	-0.089
G_{p}	-0.190	-0.195
G_{n}	-0.139	-0.148
$\Delta E_{n^{+}}(\mathrm{MeV})$	-0.25	-0.30

Units and details are given in Ref. 5.
In the column $K 0{ }_{c}$ the influence of the residual interaction is neglected, i.e., the calculation is done within constant fields Γ and Δ taken from $\mathrm{K} 2_{\mathrm{sc}}$ at $\omega=0$. This procedure changes the behavior of the spectrum at yery high spin values. However, the attentation of the Coriolis interaction is only very lictle influenced by the residual interaction.

We studied it in the following simple model (Colum: crank. + part) suggested by Eq. (6). One outside particle is coupled to a rotor with moment of inertia

$$
\left\{\phi_{0}\left|H-\omega J_{x}\right| \phi_{0}\right\rangle=-\frac{\mathscr{O}}{2} \omega^{2}
$$

Neglecting the u-dependence of E_{K} and $i \nless k$, one has to diagonalize

$$
\begin{equation*}
-\frac{\mathscr{b}}{2} \omega^{2}+E_{K}-\omega j_{K_{K K}}^{11} \tag{10}
\end{equation*}
$$

The subsidiary condition for ω is

$$
\begin{equation*}
\mathscr{F}_{0} \omega+\left\langle j_{x}\right\rangle=\mathscr{F}_{0}+\mathscr{F}_{\omega}=\sqrt{1(I+1)-\left\langle j_{z}^{2} ;\right.} \tag{11}
\end{equation*}
$$

Therefore the Coriolis interaction can be written as

$$
\begin{equation*}
H_{c o r}=-\operatorname{jij}_{x}^{11}=-\frac{\sqrt{I(I+1)-\left(j_{z}{ }^{2}\right)}}{\mathscr{F}_{0}} j_{x}^{11} \cdot R \tag{12}
\end{equation*}
$$

Compared to the PRM it is attenuated by a factor

$$
\begin{equation*}
\mathrm{R}=\frac{\mathscr{F}_{0}}{\mathscr{F}_{0}{ }^{+} \mathscr{G}_{\mathrm{P}}}=1-\frac{\left\langle\mathrm{j}_{\mathrm{X}}\right\rangle}{\sqrt{I(1+1)-\left(\mathrm{j}_{2}{ }^{2}\right\rangle}} \tag{13}
\end{equation*}
$$

$\mathcal{S}_{p}=\left\langle j_{x}\right\rangle / \omega$ is the contribution of the outside particle (see Fig. 2). Taking into account that there was no fit parameter used $\%$ is taken from KO_{c}), the agreement of this simple model with the experiment and with the fully self-consistent calculation is surprisingly good. The last two colums in Fig. 3 are calculations within the PRM, without attenuation (columin 7) and with a fit over 4 parameters (see Ref. 5).

Footnotes and References

*Published in Phys, Rev. Lett. 33, 1174 (1974),
${ }^{+}$Supported by the Deutsche Forschungsgeneinschaft. Physikdepartment der Technischen Universitaet Muenchen, West Germany.

1. A.K. Kerman, Mat. Fys. Medd. Dan. Selk. 30 , 15 (1956).
2. C.W. Reich and M.E. Bunker, Nucl. Structure Dubna Symposium, LAEA, Vienna, 119 (1968); S.A. Hjorth, A. Johnson and G. Ehrling, Nucl. Phys. Al81, 113 (1972); G. Lovhoiden et al., Nucl. Phys. A148, 657 (1970); Th. Lindblad, H. Ryde and D. Barneoud, Annual Report 1971 AFL, Stockholm, 43 (1971) and Nuel. Phys. AI93, 155 (I972); S.A. Hjorth, H. Ryde, et al., Nucl. Phys. A144, 513 (1970).
3. N.I. Pyatov, M.I. Chernej, M.I. Barnat, JINR, Dubna, E-4-5468 (1970).
4. F.R. May, L. Minchow, and S. Fravendorf, Preprint ZFK Rosendorf.
5. P. Ring, H.J. Mang, and B. Banerjee, Nuc1. Phys, A225, 141 (1974)
6. R. Heck, H.J. Mang, and P. Ring, Zs. Phys, 231, 26 (1970).
7. F, Ring, R. Beck, and H.J. Mang, 2s. Phys. 231, 10 (1970).
B. B. Banerjee, P. Ring, and H.J. Mang, Nucl. Phys. A221, 564 (1974).
8. F.S. Stephens, Proc. of the Intern. Conf, on Nucl. Phys., Munich, vol. 2 (1973). Ed, J. deBoer and H.J. Mang, North Holland Ansterdan (1974).
9. J. Boutet and J.P. Torres, Nuc1. Phys. Al75: 167 (1971).

MICROSCOPIC DESCRIPTION OF "BACKBENDING" IN Yb-NUCLEI*

H. R. Dalafi, ${ }^{\dagger}$ H. J. Mang ${ }^{\dagger}$ and F. Ring

Hartree-Fock-Bogoliubov theory with approximate projection of particle number is used to calculate the nuclear mament of inertia within the framework of the cranking model. In this paper the nuclei $166 \mathrm{Yb}, 168 \mathrm{Yb}$ and 170 Yb are studied. The calculation reproduces the experimental data in so far that ${ }^{166} \mathrm{Yb}$ and 170 Yb show the "backbending" effect in their ground state bands whereas 168 yb does not. Moreover, we find that "backbending" occurs at higher angular momenta for ${ }^{170} \mathrm{Yb}$ than for 166 Yb .

The ground state rotational bands of 166 Yb , 168 Yb and 170 Yb show a rather strange discontinuous behavior as a function of the neutron number. 1,2 While 166 Yb and 170 yb show the so called "backbending" effect, 168 Yb does not.

In this paper we atterme to reprodice such behavior within the Eramework of the self-consistent cranking model with inclusion of approximate projection of particle number, 3,4

The equations of the self-consistent cranking model are most easily obtained from a variation of the energy given by ${ }^{3}$

$$
\begin{equation*}
E_{J}^{N}=\langle\phi| H-\omega_{X}|\phi\rangle-\frac{\left.(\phi](H-\{\phi|H| \phi)) \Delta \hat{N}^{2} \mid \phi\right)}{2\left(\phi \mid\left(N^{2}|\phi\rangle+4\right.\right.} \tag{1}
\end{equation*}
$$

with subsidiary conditions

$$
\begin{gather*}
\langle\phi| J_{x}|\phi\rangle=\sqrt{J(\hat{J}+1)} \tag{2.a}\\
\langle\phi| \hat{N}|\phi\rangle=N \tag{2.b}
\end{gather*}
$$

where \hat{N} is the number uperator and $\Delta \hat{N}$ is defined as

$$
\begin{equation*}
\hat{\Delta N}=\hat{N}-\langle\phi| \hat{N}|\phi\rangle \tag{3}
\end{equation*}
$$

The condition (2.e) on $\langle\phi| J_{\chi}|\phi\rangle$ is equivalent to an approximate angular momentum projection. 5 Projection of particle ntmber is treated in a better approximation by not only having the condition ($2 . \mathrm{b}$) on $(\phi|N| \phi$) but also including the term $\triangle \mathrm{EN}$ in Eq. (1). From now on we shall use the short-hand rotation ΔE^{N} for $\frac{\left((H-\langle H\rangle) \Delta N^{2}\right)}{2\left(\Delta N^{2}\right)+4}$.

The moment of inertia θ is directly calculated from

$$
\begin{equation*}
\theta=\frac{\sqrt{J(J+1)}}{\omega_{J}} \tag{4}
\end{equation*}
$$

where aj is obtained from Eq. (2.b]. This inplies that we can calculate θ as a continuous function of ω.

A completely self-consistent solution of the HFB-equations which arise from a variation of EN^{N} (Eq. (1)) is however, very cumbersome. We therefore used the same approximation as in lef. 3. $I_{\text {Sp }}$ We define a single particle Hamiltonian,

$$
H_{s p}=\sum_{\alpha} E_{\alpha} C_{\alpha}^{+} C_{\alpha}-x \cdot \sum_{\alpha>0}^{\Sigma} C_{\alpha}^{+} C_{\alpha}^{+}
$$

$$
\begin{equation*}
-q \underset{\alpha, B}{\Sigma} \tau^{2} \cdot Y_{\alpha \beta}^{20} C_{\alpha}^{+} C_{B}-\sum_{\alpha \beta}^{\Sigma J_{\alpha \beta}^{(x)} C_{\alpha}^{+} C_{\beta}} \tag{5}
\end{equation*}
$$

Where the second term is a single-particle pairing potential and the third term is the usual quadrupole potential of Nilsson. 6 The diagonalization of H_{sp} provides wave functions which depend on three parameters K_{p}, K_{n} and q. A variation of Ef with respect to these parameters yields approximate solutions of the HFB-equations for every $w .3$

The Hamiltonian and the single particle configuration space were the same as used in Ref. 4, with the exception of the strength of the pairing force. The reason for this is that the inclusion of the tern ΔE^{N} effectively increases the pairing interaction, 7 The term $\triangle \mathrm{EN}$ depends, however, in a different way on the angular momentum. We therefore used

$$
G_{N}=0.125 \quad, \quad G_{p}=0.165
$$

Moreover one more approximation was introduced in order to keep the computing time within reasonable linits. 3 The actual variation was only performed with respect to K_{n}. This approximation was checked for some selected values of the cranking frequency w and found to be satisfactory, in the sense that all qualitative fatures were insensitive to this approximation.

Results are presented in Figs, 1 to 3. Figure 1 gives the comparison of experimental and theoretical moments of inertia plotted versus the square of the angular frequency (ω^{2}). The agreement is qualitative and certainly as good as one can expect from a model like the one we have used. The principal features of the experimental data are well reproduced in particular the differences between the "backbending" nuclei 165 Yb and 170 yb .

Fig. 1. Monent of inertia as a function of ω^{2}. (a) 166 Yb , (b) 16 Byb , (c) 170 Yb . (XBL $757-3504$)

Figure 2 shows the neutron 5 . orgy gaps Δ_{N} for different angular momenta. Δ_{N} is defined as:

$$
\Delta_{N}=G_{N} \cdot \sum_{K} U_{K} V_{K}
$$

where the sum runs over all neutron states K. This definition of c_{N} amounts to setting A_{N} proportional to the diffuseness of the Fermi surface $\mathrm{B}_{\mathrm{N}}=\sum_{\mathrm{K}} \mathrm{U}_{\mathrm{K}} \mathrm{V}_{\mathrm{K}}{ }^{8}$. The energy gap Δ_{N} defined in such a way does not necessarily coincide with the energy gap $\Delta_{K \bar{K}}$ which occurs in the formula for the occupation probabilities. 9 It is however a good measure for the overall strength of pair correlations. The reason for the difference is that the energy gap $\triangle \mathrm{KK}$ may be strongly state dependent. 4 Note that up to angular momenta $J=16$ the energy gap $\Delta \mathrm{N}$ decreases rather slowly with increasing angular momentum.

Figure 3 finally shows the contribution of neutrons of positive parity to the angular monentum ($\langle\phi| J_{x} N|\phi\rangle$) as a function of $\left(\phi\left|J_{x}\right| \phi\right\rangle$. It is interesting to note that from $\langle\phi| J_{X}|\phi\rangle=8$ on all curves are straight lines but with slightly different slopes. The slopes are

Fig. 2. Neutron energy gap ΔN as a function of angular momentum $\left\{J_{x}\right.$ \}.
(XBL 757-3511)

Fig. 3. Angular momentum $\left(\mathrm{J}_{\mathbf{X}} \mathrm{N}^{+}\right.$) of neutrons of positive parity as a function of $\left\langle J_{x}\right\rangle$.
(XBL 757-3510)

$$
\begin{aligned}
& 0.98 \text { for }{ }^{166} \mathrm{Yb} \\
& 0.85 \text { for }{ }^{168} \mathrm{Yb} \\
& 0.92 \text { for }{ }^{170} \mathrm{Yb}
\end{aligned}
$$

There is clearly a correlation between these slopes and the appearance of the "backbending" effect. The larger the slope the stronger the "backbending". This means that the spteed with which the alignoent of the neutrons of positive parity occurs, determine whether there is "backbending" or not.

Footnotes and References

$*_{\text {Submitted }}$ for publication in Physils Letters.
${ }^{\dagger}$ Physik-Department der Technischen Universtit Minchen, Garching, West Germiny.

1. H. Beuscher, W.F. thyidson, R.N. Liedor, C. Nayer-Bíricke, Phys. Lett. $40 \mathrm{~B}, 449$ (1972).
2. A. liaes\%ler, F. Grimer, L, Lin and J. Urbaro,

Phys. Lett. 488, 87 (1974).
3. H.R. Dalafi, B. Bancrjec, H.J. Mang and 1 . Ring, Phys. Lett. 44B, 327 (1973).
4. B. Banerjee, H.J. Nang and P. Ming, Nucl. Phys. 215, 366 (1973).
5. H.J. Rying, lectures given : : the stwner school in alikolajki, Poland, Sept. 1974. To be published in Nucleonika.
6. S.G. Nilsson, Iht. Hys. Skr. Den. Vid. Selsk. 29, 16 (195S).
7. II.F. Dajafi, P. Ring, to the published in Z.f. Phys.
8. II.J. Mang, K.J. Pogrenburg and J.O. Rasmassen, Nucl. Phys. 64,353 (196S).
9. B. Bancrjec, P. Ring and It.J. Mang, Nucl. Phys. ㅅ2ㄹ. 564 (1974).

APPROXIMATE PROSECTION OF ANEULAR MOAENTUM AND PARTICLE NUAHER IN HEAVY NUCLE:

H. R. Dolafi, ${ }^{+}$H. J. Mang ${ }^{\boldsymbol{*}}$ and F. Piny

The problem of symbtry violations in Hartree-Fock-Bogoliubov wave functions is handled by projection techniques. For the cases of strong and weak symbetry violations, approximate formulas of the projected energy are given. They allow an approximate projection before the variation for heavy nuclei. The methods are applied numerically to some model calculations for strong and weak deformations.

Nicroscopic descriptions of nuclear structure are based on a single particle model. The most general single particle moiel includes also pairing correlations and is given by the Hartree-Fock-Bogoliubov (HFB) theory. 1 This theory provides a simple tool for the description of many ground state properties in nuclei. Furctermore, it can be used as a basis of a microscopic treatment of collective states. 2,3 The reason for which the theory is working so well in many regions of the periodic table is, that often a very important part of the correlations within such nuclei; can be taken into account by considering symmetry violating single particle wave functions. The symmetries usually violated by the HFB theory are conservation of angular monentwin and particle number. The most general HFB wave functions are no eigenstates of the angular monentum operators \hat{J}^{2} and \hat{J}_{z}, since they are based on the deformed single particle wave functions, and are a mixture of differest particle number components.

The projection before variation, turns out
to be the most general extension of the Hifstheory, which fondles the symuecrics in the right way. Colculations within this projected HFB-theory have been. carried out in the region of light nuclei for shall basis spaces. ${ }^{4}$ The extension of these methods to deformed heavy nuclei and large configuration spaces, requires further restriction. Ore of the most conmonly used restrictions is that one takes into account only axial symatric shmpes of nuclei. 5 Tids assumption is rather well justified for the ground state, and many excited states in the well deformed heavy nuclei. In the transitional region, however, the nuclei are usunlly soft against triaxial deformations, and one should take into account this degree of freedom, For a description of high-spin states, decoupling processes of one and two particles play a very important role and require a mixing of k-values, $6-8$

The aim of this work is to formulate and test approximate methods for handling particle number and angular monentun projection, which are simple enouph to be applied for the most general HFB-functions of heavy nuclei. Purthermore, these methods are applied to some interesting nuclear problens.

The HFB solution $|\phi\rangle$ is, in general, not an eigenfunction of the angular momentur $\sqrt{2}$, though the Hamiltonian H of the systen is rotationally invariant. Wave functions, which are eigenstates of J^{2} and J_{z}, can be obtained by projecting $\mid \phi$) onto the eigenstate of angular momentum

$$
\begin{equation*}
\left|\nabla_{N}^{L}\right\rangle=r_{N}^{J}|⿱ 亠 䒑 𧰨| \tag{1}
\end{equation*}
$$

Accordint to the method of projection，before variasion，one lias to look for the tifin－wive fume． tion｜c！which ainimizes the expectation vilue of the projected ereris

$$
\begin{equation*}
E_{\text {proj }}^{J}=\frac{\left(y^{J}|t| \Psi^{J}\right)}{\left(q^{\prime}\right)} \tag{2}
\end{equation*}
$$

An approxinate axpression（Ref．A）that is valid for lange deforasition is

$$
\begin{align*}
& H_{p r o j}^{1}-(t)-\frac{J_{y}^{2}}{y_{y}^{2}} \cdot \frac{J_{x}^{2}}{0_{s c}}\left\{\sqrt{5(J+1)} \cdot\left(J_{x}\right\}\right. \\
& \cdot \frac{1}{24}\left\{\sqrt{2(3 \cdot T)} \cdot\left\{J_{x}\right\}^{2}\right. \tag{3}
\end{align*}
$$

wh

$$
\begin{equation*}
0_{y}=\frac{\left(3^{2}\right)^{2}}{\left\{(11-(10))_{y}^{2}\right)^{2}} \tag{4,2}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{e}_{s c}=\frac{\left(s_{y}^{2}\right)\left(3_{x}\right\}}{([1) \cdot(I))_{x}} \tag{A.b}
\end{equation*}
$$

Varying the projected energy ${ }^{4}$ with respect to the lifo－wave functiors，rather compliefted equa－ tions are obtained．In the case，however，that the lowertng tepm－\｛J，$\}_{10}$ y yaries only slowly with $J_{,}$it can be neglected in the variation． Then cive cranking model，which minilitas

$$
\begin{equation*}
\delta\left(H-4 \Gamma_{x}\right)=0 \tag{5}
\end{equation*}
$$

with the subsidury condition

$$
\begin{equation*}
\left\langle J_{x}\right\rangle=\sqrt{J(J+1)} \tag{6}
\end{equation*}
$$

provides an approximate soiution of the projected HFB equations．This is truc as long as one has no bie changes of the deformation．

If the lowering term $-\left(J_{y}^{2}\right) / \theta_{y}$ lies to be taken into account in the variation，it is no longer possible to carry out the variation iujly self－consistently．One can，however，use a set of trial waye functions，which depend only on a few deformation and pairing parameters．A mini－ nization of the projected energy with respect to these parnneters，corresponds to an approxigate projection in three dimensions．

In the ease of small defonmations，we rastrict ourselves 80 in 0．In this case，it has been shom in Paf． 9 that the oweriep $n(a)$ can be Eproximated by

$$
\begin{equation*}
n(n)=\exp \left\{-\frac{1}{2}\left(3_{y}^{2}\right) \sin ^{2} \theta\right\} \tag{7}
\end{equation*}
$$

An expantsion of the energy overip．malogous to Eq．（3）glves

$$
\begin{equation*}
\mathrm{EPrO}_{\mathrm{pr}}^{\mathrm{J}=0}=(H)-\frac{\left(h_{b}-(\hat{1}) J_{y}^{2}\right\rangle}{\left\langle J_{y}^{2}\right\rangle+3} \tag{8}
\end{equation*}
$$

Since the ixs wive fupctions are super－ position of different pirticie nubers，one has to cary ous a particle mober projection

$$
\begin{equation*}
p=\frac{1}{2 H} \int e^{I(N \cdot n) t} d i \tag{9}
\end{equation*}
$$

N is tie particle musider operator and n is the sctul particio muber．The corresponding energ＊ is

$$
\begin{equation*}
\mathrm{E}_{\text {proj }}^{N}=\frac{\int d s\left(H c^{i(N-n) g}\right.}{\int d s\left(e^{i(N-n) I}\right)} \tag{10}
\end{equation*}
$$

Since pairing correlations in musied are wunlly wery weak，one cen yse agan the limit of meak symutry violation． 9 Kithin this liate ore can show

$$
n(\phi)=\left(e^{x(N-n) \phi}=\operatorname{sex}\left\{-\frac{1}{2}(\Delta)^{2}\right) \sin ^{2}\right\}
$$

and

$$
\begin{equation*}
E_{\text {proj }}^{N}=(H)-\frac{\left(H-(H) \Delta N^{2}\right)}{2\left(\Delta N^{2}\right)+4} \tag{22}
\end{equation*}
$$

The numerical calculations were earried out with an pairing plus quadrupole force．23，24 With a set of trial wave functions $4(g, x)$（ 1 is a quadrupole defonimilion，x is a gepar meter） the expectetion value of the tiprojectut and that projected energy is calculated and a minim of these mergy surfaces are deternined．

Figure 1 shows the urprofected energy Eunpro and the particle muber projected energyt pro depondent on the pairing partweter x in thercese of ${ }^{262}$ Er．Particle muber projection favors stronger pairing correlations．The third curve in Fig． 1 shows a projection of anguler montum and particle number

$$
\begin{equation*}
E_{\text {pro }}^{J, N}=(H\rangle-\frac{\left((H-\langle H\rangle) J_{y}^{2}\right\rangle}{\left\langle J_{y}^{2}\right\rangle}-\frac{\left.(O \|-\langle H\rangle) \Delta N^{2}\right\rangle}{2\left(\Delta N^{2}\right\rangle+4} \tag{13}
\end{equation*}
$$

Fig. 1. Unprojected, particle number projected and angular momentim plus particle number projected energy as a furction of the pairing parameater x for the mucleus 168Er.
(CBL 757-3509)

In this approximution, the assumtion is made that buth projections can be carried out independently. The result is that the angular monentum projection gives a rather constant lowering, and that the projected ninimum is not changed very mach. The reason for this behavior is, that, the lowering term caused bj angutar monentum projection, is influenced only very little by changes of the pairing correlations. On the other hand, in the case of the variation of the deformation 9 (which is not shown in Fig. 1) it tums out, that the lewiering due to projection of particle number is a rather slow varying function of q, as compared to the lowering caused by angular moxentum projection.

We have carried out calculations on high-spin states in the model nucleus 168 Er as described above. Trial have furctions $\phi[q, x, \omega]$ were obtained by diagonalizing the single particle Hamiltonian in the rotating frame: $H_{0}-\omega_{x}$. Using these wave functions the particle number projected energy $E_{\text {pro }}^{N}=E_{\text {pro }}^{N}-\omega\left(J_{x}\right)$ in the rotating frame was calculated. The stationary points of the energy surface $E_{p r o}^{\prime N}(q, x)$ are approximate solutions of the particle number projected HFE-equations before variation. At the end ω is deternined by the subsidary condition (6).

Since changes of the deformation and of the proton pairing correlations are less important in this nuclei, we varisd for each ω only the pairing parameter of the neutrons x_{n} and kept q and χ_{p} at the optical values of the gromu state.

There is, however, a certain ω region (0.27 $\leqslant \omega<0.33 \mathrm{MeV}$) where three stationary points exist (two minina und one maximum). Therefore, one obtains for aarth w value within this region; three solutions wila different J values, one of these seems to be uistable. However, if one takes into account the otler degrees of freedom, it turms out to be a suddle point, and the conservation of angular monentum guarantees the stability of this solution.

Usually, one ploss in the back-bending region the monent of inertia

$$
\theta=\frac{\left\langle\dot{v}_{x}\right\rangle}{\omega}
$$

against the square of the angular velocity. This is done in Fig, 2 with and without particle number projection. Without projection one has a very steep increase of the moment of inertia; but not back-bending. It corresponds to a breakdown of the neutron gap, which vanishes for
$\omega>0.24 \mathrm{HeV}$ (Ref. 2), and to a simultaneous de-compling of one neutron pair in the $i_{13 / 2}$ shell. With particle number projection, one finds for the ground state a smaller monent of inertia, which corresponds to the stronger pairing correlations. In a certain region, one gets backbending. An analysis of the internal wave function shows, that it corresponds to a sudden decoupling of one neutron pair. Because of the blocking effect, the neutron pairing correlations are lowered by a certain amount, but they do not vanish up to $\omega=0.4$. This behavior agrees qualitatively with the result foum in a more realistic calculation of the nucleus ${ }^{162}$ Er (Ref. 7), without particle number projection. However, particle number projection introduces quantitarive changes of the back-bending curve. In particular, the region of back-bending is increased.

For a study of the angular monentum projection at small defomations we carried out calculations in the nucleus ${ }^{120} \mathrm{Sn}$.

For the angular momentum projection, the approximation of small deformations is used (Eq, (8)). The results are shown in Fig. 3. The unprojected and the angular momentum projected energy surface, are given depending on the quadrepole deformation Q. The unprojected energy has a minimm at zero deformation. The projected energy shows a qualitatively different behavior.

Fig. 2. Moments of inertia depending on the square of the cranking frequency ω^{2} with (proj.) and withoui (unproj.) particle number projection. The nucleus is 168 Er .
(XBL 757-3508)

Fig. 3. Unprojected and angular monentin projected $(J=0)$ energy as a function of the quadrupole monent Q for the nucleus 120 Sn .
(XBL
(XBL 757-3506)

It has two minima. The prolate one is slightly deeper. However, they are not deep enough to guarantee a stable deformation, therefore, this effect probably will be of very little importance. The situation may be quite different for $\mathrm{J} \neq 0$ and for nuclei with open proton and neutron shells, cases which are now under investigation.

Footnotes and Aoferences

©Submited for prolication in egitschrift fir Physik.
tPhysik-Departwent der techaschen Ihiversitat Minchen, Garching, Bunders ropablik Deutschiad.

1. M. Baranger, Phys. Rev. 122, 992 (1962).
2. P. Ring, R. Beck, and H.J. Mang, 2. Physik 231, 10 (1970).
3. R. Beck, H.J. Mang; and P. Ring, Z. Ptysik 231, 26 (1970).
4. K. Goeke, J. Garcia, and A. Fiessler, Nucl. Phys. A208, 437 (1973).
5. A. Faessler, F. Grlawer, L. Lin, and J. Urbano, Phys. Lett. 48B, 87 (1974).
6. F.S. Stephens and R.S. Simon, Nucl. Phys. A138, 257 (1972).
7. B. Banerjee, H. J. Mang, and P. Ring, Nucl. Phys. AZ15, 366 (1973).
8. P. Ring, H.J. Mang, B. Banerjee, Nucl. Phys. A225, 141 (1974).
9. R. Beck, 2. Physik 243, 409 (1971).

CORIOLIS EFFECTS AND ROTATION ALIGNMENT IN NUCLEI

F. S. Staphens

Coriolis effects in nuclei vary from small perturbations in good rotational spectra, to a point where they apparently doninate the lowenergy spectrum. The situation for a particular case depends on the relationship of the rotational energy to the energy coupling the particle to the non-spherical part of the potential. If the latter energy is much larger, good rotational spectra exist, whereas if it vanishes, the system is spherically symmetric leading to a spectrum with no energy splitting of the multiplets formed by coupling a particle to a core state. With the assumptions and simplifications outlined in the full report of this work, 1 it is easy to make calculations amwhere between these limits, Adjacent to each limit, one finds regions where a perturbation treatment could apply. This would be a particle-core weak-coupling model near the spherical limit, and a Coriolis perturbation approach near the good rotational region. If the Fermi surface is near high- Ω levels, these two perturbation regions merge into each other, and one changes rather suddenly from a spherical region into one of reasonably good rotors. But if the Fermi surface is near low-l states, then there is a broad region where neither of these schemes is very good. Due to a cancellation of
tems in this region, the solutions are approximately eigenfunctions of the Coriolis operator and these correspand to a third coupling scheme where the particle angular monentum has sharp values, a, along the rotation axis. Such a rotation-aligned coupling scheme seems to describe rather well the yrast states in many odd-mass nuclei. This coupling scheme probably also applies to non-yrast states, and it is at present a challenge to see how far the model can be extended in this direction.

In the even-ever nuclei, the rotation-aligned schene may also play an important role. It has been suggested that backbending in the light rare-earth region may be just the intersection of the groud band with such a rotation-aligned two-quasiparticle state composed of in3/2 neutrons. The observed backbending in odd-mass nuclei suggests that this explanation is correct in the light Er region. Whether this will prove to be the case in other regions is not $\because t$ clear.

Reference

1. F.S. Stephers, Rev. Mod. Phys. To be published, Jan. 1975.

T. Frambech

Wave Function of Relative Motion and Optical potential

In the α-decay theory ${ }^{1}$ the total nate function is approximated by

$$
\begin{equation*}
|\omega|=s\left|\theta_{A+4}\right\rangle+\int d=\cdot b\left[E^{\prime}\right] \mid \hat{F}_{E}, \tag{1}
\end{equation*}
$$

with the open channel state

$$
\begin{equation*}
\left|\phi_{E}\right\rangle=\left|A\left(U_{E}\left(\vec{k}_{a}\right) \theta_{a} \phi_{A}\right)\right\rangle \text {. } \tag{2}
\end{equation*}
$$

Here ϕ_{A+4} describes the parent nucleus which decays into the daughter nucleus ϕA and an α-particle. ϕ_{α} is the internal a wave function. ϕ_{A+4} and ϕ_{A} are localised sheli model states. \vec{R}_{α} means the center-of-mass coordinate of the a-particle. All stares ϕ_{A+4}, ϕ_{A} and ϕ_{a} are antisymmetrized and normalized. The antisymmetrization operator $A=\left[\left(\begin{array}{c}A\end{array}\right)\right]^{-1 / 2} \Sigma(-)^{P} P$ contains the rrivial normalization constants. This sum includes all permutations which exchange nucleons betriden the a-particle and the A-particle core.

The function of relacive motion \mathcal{U}_{E} is deternined by the contitions

$$
\begin{equation*}
\left\langle\phi_{E} \mid \theta_{\mathrm{E}},\right\rangle=\delta(E-E) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left\langle\phi_{E}\right| H \mid \phi_{E}\right\}=E \delta\left(E-E^{\prime}\right) . \tag{4}
\end{equation*}
$$

Physically, this mears that ϕ_{E} and U_{E}, respectively, describe the elastic scattering (without the presence of other open channe1s). Therefore, in actual applications the difficult Eqs. (3) and (4) are replinced by the assumption that V_{E} may be approximated by the solution of a Schrödinger equation with a real optical potential. This α-nucleus potential is extracted from experimental data. Sinitar assumptions are made in the Distorted Wave Borm Approximation (DWBA).

In the α-decay theory this approximation for UE is wrong by orders of magnitude. The reason for this is the nomplization of the basis states $\left|A \delta\left(\vec{R}-\vec{R}_{\alpha}\right) \phi_{a} \phi_{A}\right\rangle$ in (Z):

$$
\begin{gather*}
\left\langle A \delta\left(\mathbb{R}^{-}-\vec{R}_{\alpha}\right) \Phi_{\alpha} \Phi_{A} \mid A \delta\left(\vec{R}^{\prime}-\vec{R}_{\alpha}\right) \Phi_{\alpha} \Phi_{A}\right\rangle \\
=\delta\left(\vec{R}-\vec{k}^{\prime}\right)-K\left(\vec{R}, \vec{R}^{\prime}\right) \quad . \tag{5}
\end{gather*}
$$

This equation defines the qparator $\mathrm{K}\left(\vec{R}, \bar{R}^{\prime}\right)$. The propertios of $\mathrm{K}\left(\mathrm{R}_{\mathrm{K}}, \mathrm{K}^{\prime}\right)$ are discussed by fesilusach ${ }^{2}$ for the nucleon-nuclets case: \hat{R} is llemition and ints elgentalues between of and 1 . If we use realistic wate functions for the a-decay in the lead regiofi it turns out that \mathbb{k} has relevant eigenyalues which differ from 1 mly by 10^{-2} or 10^{-3}. K has no cigenvaluss equal to 1 and therefore we may ineroduce normalised hasis states

$$
\left.\left\lvert\, A \frac{1}{\sqrt{1-\hat{R}}} \delta\left(\mathbb{R}-\vec{R}_{a}\right) \theta_{a} \theta_{A}\right.\right) ;
$$

$$
\left.\left\langle A \frac{1}{\sqrt{1-\hat{\hat{h}}}} \delta\left(\vec{k}-\vec{R}_{\alpha}\right) \phi_{\alpha} \Phi_{\Lambda}\right| \hat{n} \frac{1}{\sqrt{1-\hat{k}}} \delta\left(\vec{R}^{\prime}-\vec{R}_{\alpha}\right) \phi_{\alpha} s_{h}\right)
$$

$$
\begin{equation*}
=\delta\left(\vec{k}-\vec{k}^{\prime}\right) . \tag{6}
\end{equation*}
$$

Then the open channel wave function can be written in various ways:

$$
\begin{align*}
\left|\varphi_{E}\right\rangle & \left.=\int d^{3}{ }_{R U_{E}}(\vec{k}) \mid A \delta\left(\vec{R}-\vec{R}_{\alpha}\right) \phi_{\alpha} \phi_{A}\right) \\
& \left.=\int d^{3}{ }_{R Q_{-}}(\vec{k}) \left\lvert\, \cdot \frac{1}{\sqrt{1-\hat{K}}} \delta\left(\vec{R}-\vec{R}_{\alpha}\right) \phi_{\alpha} \phi_{A}\right.\right) \tag{7}
\end{align*}
$$

with

$$
\Omega_{E}=\sqrt{1-\hat{\mathbf{K}}} \mathrm{U}_{\mathrm{E}} \cdot .^{2}
$$

We introduce the Hermitian operator $\hat{\mathrm{H}}$ by $H\left(\vec{R}, \vec{R}^{\prime}\right)=(\vec{R}|\hat{H}| \vec{R} \prime)=\left(A \delta\left(\vec{R}-\vec{R}_{\alpha}\right) \phi_{\alpha} \phi_{A}|H| A \delta\left(\vec{R}-\vec{R}_{e}\right) \phi_{a} \phi_{A}\right)$ where H is the total Hamiltonian. Then the exact equations (3) and (4) for U_{E} and Ω_{E}, respectively, read:

$$
\begin{gather*}
E U_{E}=(1-\hat{K})^{-1} \hat{H U_{E}} \tag{8}\\
E S_{E}=(1-\hat{\mathrm{K}})^{-1 / 2} \hat{H}(1-\hat{\mathrm{K}})^{-1 / 2} \Omega_{E} \tag{9}
\end{gather*}
$$

The approximation of U_{E} by a real local $\alpha-$ nucleus potential is inconsistent since it means the approximation of a non-Hermitian Hamiltonian (1- $\hat{\mathrm{K}})^{-1} \hat{H}$ by a Hermitian one. The inconsistency is easily seen in the nomalization:
 $\delta\left(E \cdot E^{\prime}\right)$.

Only the approximation of the new wave furction Pi by in optical potential leads to a cursistent theory: the effective llaniltonian $(1-\hat{k})^{-1 / 2} \hat{t}(\hat{1}-\hat{\hat{K}})^{-1 / 2}$ is liermitian, and the
 $\delta(E-E \cdot)$ are quivalent.

The Reduced Wiath Amplitude (Rad)
The usual a-decsy theory leads to a Pata

$$
\begin{equation*}
G(\vec{k})=i .\left\{\delta\left(\vec{R}-\vec{k}_{\alpha}\right) \varphi_{a} \phi_{A} \mid \varphi_{A+4}\right) \tag{10}
\end{equation*}
$$

which may be interpreted as the anglitude for finding the $a-p a r t i c l e$ in $\$ A+4$ at R with respect to a residual mucleus ϕ_{A}. The α-decay width is proportional to $|G|^{2}$.

Constructing a consistent theory ${ }^{3}$ which approximates re but not U_{E} by an optical potential, one has to replace G by
$G_{N}(R)=\left\{A \frac{1}{\sqrt{1-\hat{K}}} \delta\left(\vec{R}-\vec{R}_{\alpha}\right\} \phi_{a} \phi_{A}\left|\phi_{A+4}\right\rangle=\frac{1}{\sqrt{1-\hat{K}}} G\right.$

The RWA means something like the projection of $\$ A+4$ into the space of an o-particle plus ϕ_{A}, An inuediate way to derive the new formula (11) is provided by the easy verification (see (6)) that

Fig. 1. The RNA's for ${ }^{210} \mathrm{Po}+{ }^{206} \mathrm{~Pb}+$ a versus the radius R. The solid line is $R \cdot G \mathbb{N}$, the broken line is $10 \cdot R \cdot G$. The shell model configuration of the four nucleons is (1b 9/2) ${ }^{2}(3 p 1 / 2){ }_{0}^{2}$.
(XBL 757-3498)

$$
\begin{equation*}
\left.\hat{\mathbf{P}}=\int \mathrm{d}^{3} \mathrm{R} \left\lvert\, A \frac{1}{\sqrt{1-R}} \delta\left(\vec{R}-\overrightarrow{\mathbf{R}}_{\alpha}\right) \phi_{\alpha} \phi_{A}\right.\right\}\left(A \frac{1}{\sqrt{1-\hat{K}}} \delta\left(\vec{R}-\vec{R}_{\alpha}\right) \phi_{\alpha} \phi_{A}\right\} \tag{12}
\end{equation*}
$$

is a projection operator, which is not true for
$\left.\int d^{3} R \mid A \delta\left(\vec{R}-\vec{R}_{\alpha}\right) \phi_{\alpha} \phi_{A}\right)\left(A \delta\left(\vec{R}-\vec{k}_{\alpha}\right) \phi_{\alpha} \Phi_{A} \mid\right.$.
We calculated G for ${ }^{210} \mathrm{Po}+{ }^{206} \mathrm{~Pb}+a$. We used pure shell model configurations and oscillator states (oscillator constants $0.17 \mathrm{fm}^{-2}$ for Po and Pb , and $0.47 \mathrm{fm}^{-2}$ for a), The results are shown in Fig. 1. The shell model state $\$ \mathrm{~A}+4$ cannot describe the a-particle when it is outside the nucleus. Therefore a quantitatively reliable result can only be expected for radii $\$ 7 \mathrm{fm}$. Here $\left|\mathrm{G}_{\mathrm{N}}\right|^{2}$ is about 100 times larger thar $|\mathrm{G}| 2$. This leads to a quantitative agreement with the experiment for the considered decay.

We feel that Eq. (11) is the key to the longstanding problem of the quantitative description
of the α-decay. At large radii, where the α particle and the A-particle core are well separated, there is of course no difference between U_{E} and ${ }^{5} \mathrm{E}$. Here it is in principle possible to describe the tail of the α-particle wave function by in-
luding sufficient configuration mixing. A shell model basis is, however, not well suited for the description of an a-particle separated from the core.

Other Reactions

One of the most widely used approaches fo_{2} direct reactions is the DWBA. The antisymmetrization is usually not included in these calculations, that means the states

$$
\left.\mid U_{\gamma}\left(\vec{R}_{Y}\right) \phi_{\gamma_{1}} \phi_{\gamma_{2}}\right)=\int d^{3} R U_{\gamma}(R)\left|\delta\left(R-R_{\gamma}\right) \phi_{\gamma_{1}} \phi_{Y_{2}}\right\rangle
$$

are used for the open channels $\alpha, \beta, Y, 1$. . . Here the ${ }^{{ }^{1}} \mathrm{Y}_{1}{ }^{\circ}{ }_{Y_{2}}$ are internal wave functions. Similarly as in the a-decay theory, the Dhas approximates the wave functions of relative motion U by the optical potential solutions X_{y}. This leads to the transition anplitude
with a sul: ble interaction V.
In the light of the above discussion it is clear that tive introcuction of the antisymatrization cannot be done by simply insorting the operator A in the bra and ket of (13). The proper expression with antisymetrization would be

For shell model states $\varphi_{s n_{2} \gamma}$ rather than internal
states ϕ_{y}, and for slow velocitios (energy per
nucleon much smaller than the Fermi energy) the
iast expression is approximately
with the normalization constants

References

$$
N_{Y}(\overrightarrow{\mathrm{R}})=\left(A \phi_{\mathrm{Sm}, \gamma_{1}} \phi_{\mathrm{Sm}, \gamma_{2}} \mid A \phi_{\left.\mathrm{Sm}, \gamma_{1} \phi_{\mathrm{Sm}, \gamma_{2}}\right) .} .\right.
$$

1. H.J. Mang, Phys, Rev, 119, 1063 (1960); H.J. Mang, LSL report UCPL-8931.
2. H. Feshbach, Document on Modern Physics, Reaction Dynarice (Cordon and Breach, New York, 1973).
3. T. Fliessbach, Z. Pliys., A272, 39 (1975).

GRAPHICAL REPRERENTATION IN ALPHA DECAY RATE THEORY OF SPHEAICAL ODP-ODD RUCLEI - APPICATIAN TO ${ }^{214}$ At AND ${ }^{212}$ At*

Thecretical calculations of relative alphat decay rates for even-even and even-odi nuclei in the lead region have successfully been carried outl-3 using the one-level R-matrix alphe decay rate theury ${ }^{4}$ with shell-model wave functions. Using a simple deltr-function approximation for the algha particle intenal wave function ${ }^{3}$ gave greatiy simplified fommlas and essential agreement with sophisticated theories, though it overcstimates rate contributions from higher- j orbitols. The application of these formulas to the alpha decay of odd-oud nuclei requires, in general, carrying out the rather more involved angular mowenta recoupling and fractional parentage exparsion. However, by making use of the simele and elegant graphical representation techniques of Macfarlane et al., 5 one can reduce the conplexity of the calculation procedure. In addition, this technique helps one to gain more insight into the particular alpha decay case under study.

In the one-level R-matrix alpha decay theory, the Lth partial decmy constant, λ_{L}, is usually written as:

$$
\begin{equation*}
\lambda_{L}=\frac{2 Y_{L}^{2}}{\hbar} \times P_{L} \tag{1}
\end{equation*}
$$

where P_{L} is the alpha particle penetration factor through the Coulomo barrier (calculated from the nuclear surface, R_{0}, to infinity) and γ_{1} is the partial reduced alpha width, which gives the probability of finding an alpha particle at the nuclear surface. r_{L} is given by: 6
$P_{n+1} ; F_{m+2} ; \cdots P_{k}$. It will be sufficient here to linit the neutron and proton activa orbituls to two each, $i . e ., \rho_{1}, \rho_{2}$ (for neutrons), ρ_{3} and ρ_{4} (for protons). In the general case there will be n_{1} neutrons in orbital ρ_{1} (denoted $\rho_{1} n_{2}$), n_{2} in orbital p_{2}, and sinilarly n_{3} and n_{4} protons in orbital ρ_{3} and ρ_{4} respectively, β_{1}, β_{2}, etc. w. 11 desighate a certhin coupling scheme with all needed quantum numbers inplicitly contained for simplicity. The B_{1} and B_{2} state vectors are coupled to a vecter with J_{N}^{i} (aisular monentum), and β_{3} and β_{4} :oupled to J_{p}^{i}; and firally J_{N}^{i} and j_{F}^{i} are compled to give the parent-nucleus state vector, referred to as $\mid J^{M}$,. The neutron and proton state vectors, J_{N}^{i} and J_{p}^{i} are antisymmetric under exchange anong all the neutrons and protors, respectively. In the graphical representation this antisymnetry is denoted by a senicircle surrounding the state vector for the nucleons involved. Thus $\mid J^{M}$) is represented ly Fig. 1. The daughter state vector will be assumed to consist of an identical inert core plus $\mathrm{N}-2$ neutrons and $\mathrm{Z}-2$ protons distributed in some manuer anong the active neutron and proton orbitals. We will consider first the case of favored a-decay involving removal of two neutrons from one orbital, say P_{2}, and two protons from orbital ρ_{4}. The daughter-nucieus state vector $\left|\Psi_{J_{d}}\right\rangle$ can then be represented by Fig. 2. where J_{N}^{d} and J_{P}^{d} are the neutron and proton intemediate

$$
\begin{equation*}
Y_{L}=\int d \xi d \eta d \Omega r e l\left(\Phi_{J_{i}}^{N^{*}} X_{\alpha}(\xi)\right)\left\{Y_{l}^{M_{1}^{\prime \prime}(R / R) \Psi_{J_{d}}^{M-M^{\prime}}(\eta)}\right\}_{J}^{M} \times\left[\binom{N}{2}\binom{z}{2}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

where $\phi_{J_{i}}^{M},{ }_{J_{d}}$ and χ_{α} are tine antisymmetrized wave functions of the parent, daughter and a-particle, respectively. The overlap integral in Eq. (2) can be evaluated by expanding the parentnucleus state vector (wave function) in tems of those for the daughter nucleus and the four nucloors that form the alpha particle.

In the shell model, the parent-nucleus state vector can be thought of as consisting of an inert core of ructicons that is common with daughternucleus state vector plus N neutrons and Z protons distributed anong the active, eutron orbitals $p_{1}, D_{2}, \ldots D_{m}$ and the active proton orbitals

Fig. 1.
(XBL 7410-4467)

Fig. 2.
(XBL 7410-4466)
state vectors, respectively. We can now project the parent-nucleus state vector onto a product subspace of the daughter-nucleus state vector and the shell-model state vectors of the four nucleons that form the α-narticle, A typical basis vector of such a subspace 1 ppears as shown in Fig. 3. Thus the projection amplitude of the parent-nucleus state vector onto such a basis state vector can be represented by Fig. 4. According to Tomner and Hardy, 7 such a term (Fig. 5) is equal to:

$$
\left(\begin{array}{l}
n_{2} \\
2
\end{array}\right]^{\frac{1}{2}}\left(\begin{array}{c}
n_{2}+n_{2} \\
2
\end{array}\right]^{-k_{1}}\left[\begin{array}{c}
n_{6}{ }^{\frac{1}{1}} \\
2
\end{array}\right]^{n_{3}+n_{4}}
$$

Fig. 3.
(XBL 7410-4469)

Fig. 4.

(XBL 7410-4471)

Fig. 5.

(KBL 7410-4472)

Fig. 6.

(XBL 7410-4468)

We now expand $\left\{\rho_{2}^{n_{2}}\left(\beta_{2}\right)\right\rangle$ and $\left|\rho_{4}^{n_{4}}\left(\beta_{4}\right)\right\rangle$ in the parent-ncleleus state vector in terms of $\left|\rho_{2}^{n_{2}-2}\left(\beta_{2}^{\prime}\right)\right\rangle \Leftrightarrow\left|\rho_{2}^{2}\left(\alpha_{2}\right)\right\rangle$ and $\left.\left|\rho_{4}^{n_{4}-2}\left(\beta_{4}^{\prime}\right)\right\rangle \otimes \mid \rho_{4}^{2}\left(\alpha_{4}\right)\right)$ using two-particle cfp's (coefficient of fractional parentage). The projection amplitude will become equal to (Fig. 6):

$$
\sum_{B_{2}, \beta_{4}^{\prime}} b_{\beta_{2} B_{2} \alpha_{2}}^{n_{2}} b_{\beta_{4} \beta_{4}^{\prime} \alpha_{4}}^{n_{4}}\left[\begin{array}{c}
n_{2} \\
2
\end{array}\right]^{\frac{1}{2}}\left[\begin{array}{c}
n_{4} \\
2
\end{array}\right]^{\frac{1}{2}} \times\left[\begin{array}{c}
n_{1}+n_{2} \\
2
\end{array}\right]^{-\frac{1}{2}}\left[\begin{array}{c}
n_{9}+n_{4} \\
2
\end{array}\right]^{-\frac{1}{2}}
$$

where $\mathrm{b}_{\beta_{i} \mathrm{~B}^{\prime}{ }_{i} \alpha_{i}}$ represents the tro-particle cfp: ${ }^{8}$

$$
\begin{equation*}
b_{\beta_{i}}^{n_{i}} \beta_{i}^{\prime} \alpha_{i}=\left\langle\rho _ { i } ^ { n _ { i } } (\beta _ { i }) \left\{\left|\rho_{i}^{n_{i}-2}\left(\beta_{i}^{\prime}\right), \rho_{i}^{2}\left(\alpha_{i}\right)\right\rangle .\right.\right. \tag{3}
\end{equation*}
$$

The overlap bracket in Fig. 6 represents a (15-j)-symbol recoupling coefficient involving six basic angular momentum vectors, $\beta_{1}, \beta_{2}, \alpha_{2}$, β_{3}, β_{4} and α_{4}.

This expansion can now be made back in Eq. (2). If integration is then carried out, first over the
relative coordinates of the four nucleons of the alpha particle, using the delta-finction approximation for the spatial part of the α-particle wave function, followed by integration over the internal coordinates of the daughter nucleus and the alpha particle and over the angular coordinates of the relative motion (see Ref. 3 for details, definitions and notations), we get the following expression:
$\gamma_{L}=\sum_{\beta_{2}^{\prime}, \beta_{4}^{\prime}} C\{15-j\}\binom{n_{2}}{2}^{1 / 2}\binom{n_{4}}{4}^{1 / 2} b_{\beta_{2}}^{n_{2}} \beta_{2}^{\prime} \alpha_{2} b_{\beta_{4}}^{n_{4}} \beta_{4}^{\prime} \alpha_{4} x$
$R_{1} R_{2} R_{3} R_{4} \times F_{N}\left(j_{i}, j_{2}, j_{N}\right) F_{P}\left(j_{3}, j_{4}, i_{P}\right) G\left(J_{P} J_{N} J_{L}\right)$,
where we have used j_{i}, j_{2}, j_{3} and j_{4} to indicate the angular monentum of the two neutrons and two protons involved in a decay (in the previous notation $j_{1}=j_{2}=j\left(\rho_{2}\right)$ and $j_{3}=j_{4}=j\left(\rho_{4}\right)$), and expressions for C, F and G are given in Ref. 3.

For the most general unfavored alpha decay, we would have to extract one neutron each from the ρ_{1} and ρ_{2} orbitals and one proton each from the ρ_{3} and ρ_{4} orbitals. The derivation is basically the same and the results are similar to that of Eq. (4). However, we would end up with four oneparticle cfp's, a \{21 - j\}-synbol recoupling coefficient, and different binomial coefficients, i.e.,

$$
\begin{align*}
\gamma_{L}= & \sum_{\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}, \beta_{4}} C\{21-j\}\binom{n_{1}}{1}^{1 / 2}\binom{n_{2}}{1}^{1 / 2}\binom{n_{3}}{1}^{1 / 2}\binom{n_{4}}{1}^{1 / 2} b_{\beta_{1}}^{n_{1}} \beta_{1} \alpha_{1} b_{\beta_{2}}^{n_{2}} \beta_{2}^{\prime} \alpha_{2} b_{\beta_{3} \beta_{3}^{\prime} \alpha_{3}}^{n_{3}} \times \\
& b_{\beta_{4}}^{n_{4}} \beta_{4}^{\prime} \alpha_{4} \times R_{1} R_{2} R_{3} R_{4} \times{ }_{F_{N} F_{P} G}, \tag{5}
\end{align*}
$$

where ${ }^{b_{\beta_{i}}} \beta_{i}^{\prime} a_{i}$ represents the one-particle cfp: ${ }^{8}$

Application to the Alpha Decay of ${ }^{210}$ At and ${ }^{212}$ At
Using the above formulation, we have calculated the relative alpha decay rates from 210 At 5^{+}ground state to the lowest $4_{1}^{+}, 3_{1}^{+}, 5_{1}^{+}, 7_{1}^{+}$, and 2_{1}^{+}states in 206 Bi (unfavored decay). These states were assured to consist of a pure $\left\{\pi\left\{n_{9 / 2}\right) \cup\left(f_{5 / 2}\right)^{-2} v\left(p_{1 / 2}\right)_{0}^{-2}\right]$ configuration thereafter denoted configuration (1\}). 210At ground state was assumed to consist of a pure $i \pi\left(h_{9 / 2}\right)_{9 / 2}^{3}(v=1) \cup\left(p_{1 / 2}\right)^{-1} 1_{5^{+}}$configuration. ive have also calculated the relative alpha decay rates to the second 5_{2}^{+}and 4_{2}^{+}states in 206 Bi (favored decay), assuming they consist of a pure $\left[\pi\left(\mathrm{h}_{9 / 2}\right) \cup\left(\mathrm{f}_{5 / 2}\right)_{0}^{-2} v\left(\mathrm{p}_{1 / 2}\right)^{-1}\right]$ consiguration (hereafter dencted configuration $i z s$). The ($15-j\}$ and $\{21-i\}-s y m b o l$ recoupling coefficients that appear in EqS. (4) and (5) redince in this case to
predicts small relative alpha group intensities to the $3_{1}^{+}, 2_{1}^{+}$, and 4_{2}^{+}states that are below the intensity limits set from experiment for such possible alpha grours. 'However, with the present pure configuration assumption, the theory fails to reproduce the experimental relative alpha group intensities leading to the 4_{1}^{+}and 5_{1}^{+}states and slightly overestimates the intensity to the second 5_{2}^{+}state. This suggests that the pure configuration assumption for the $4_{1}^{+}, 5_{1}^{+}$, and 5_{2}^{+}and 4_{2}^{+} states in ${ }^{206}$ Bi is not vajid. No detailed shellmodel wave functions, with configuration mixing, are yet available for states of 206 Bi . However, we have attempted to use sone simple trial wave functions for the $4_{j}^{+}, 5_{1}^{+}, 5_{2}^{+}$, and 4_{2}^{+}, states with configurationmixing first limited to the two configurations, \{1\} and \{2\}, mentioned earlier.

By solving for the mixing parameters that reproduce the experimental results, we were able to arrive at two sets of wave furctions for the 5_{1}^{+}and 5_{2}^{+}states that gave improved agreement between calculated alpha decay rates and those experimentally measured for these two states (see Table 1). However, using this limited configuration space, it was not possible to generate a wave function for the ψ_{1}^{+}state that yield agreenent with experiment. This is due to the relativeiy small value for $\gamma_{2}\left(\{2\}_{4^{+}}\right)$which is illustrated in Table 2. In it we show the relative partial

Table 1. Comparison of theoretical and experinental relative alpha intensities wing mixed-configuration wave functions for the 5_{1}^{+}and 5_{2}^{+}states.

State	Wave Function		Relative α Intensity ${ }^{\text {(a) }}$		
			Calc.		Expt.
	Set I	Set II	Set I	Set II	
$\mid 5_{1}^{+}$,	$\sqrt{0.78}\{1\}+\sqrt{0.26}\{2\}$	$\sqrt{0.67}\{1\}-\sqrt{0.33}[2)$	83	83	95 ± 6
$\left\|5_{2}^{*}\right\rangle$	$\sqrt{0.22}\{1\}-\sqrt{0.78}\{2\}$	$\sqrt{0.33}\{1\}+\sqrt{0.67}\{2\}$	74	76	83 ± 6
${ }^{(a)^{C a l}}$	lated and experimental d state $\left(6_{1}^{+}\right)$group.	pha-group intensities	lative	to that	

a $\{6$ - j\}-symbol recoupling coefficient (favored decay) and a product of $\{0-j\}$ - and $\{9-j\}$-symbol recoupling coefficients (untuvored decay), respectively. The calculated relative alpha decay rates were compared to the experimental relative intersities of the alpha groups measured by Golovkov et al., 9 and were found to be in fair agrement with them. The agrecment is exceptionally good for the relative alpha group intensities to the G_{1}^{+}, and 7_{1}^{+}states, supporting the assumption of a pure configuration for the wave functions of these two states and of the $210_{\text {At }}$ ground state. Also impressive is the fact that the theory

Table 2. The relative reduced α-widths, γ_{L}.

State		Configuration		
$J^{\text {T }}$	L	(1)	\{2\}	(3)
4+	2	+0.65	+0.154	-0.88
S+	10	+0.24	-2.39	-0.145
	12	-0.64	+0.64	-0.73

reduced widths to the 4^{+}and 5^{+}components for configurations $\{1\},\{2\}$ and the $\left[\pi\left(\mathrm{h}_{9 / 2}\right) v\left(\mathrm{p}_{3 / 2}\right)^{-1} v\left(\mathrm{p}_{1 / 2}\right)^{-2}\right]$ configuration (the latter will be denoted configuration (3) hereafter). The large value of $\gamma_{2}\left([3\}_{4^{+}}\right)$immediately suggests the possibility of inproving the agreement with experiment for the 41 state by including some admixture of configuration (3) in the 41 wave function. Indeed we can achieve exact agreement with experiment if we choose the following mixture for the 4_{1}^{+}wave functions:

$$
\begin{equation*}
\left.\mid 4_{1}^{+}\right\}=\sqrt{0.92}\left|\{1\}_{4^{+}}\right\rangle-\sqrt{0.08}\left|\{3\}_{4^{+}}\right\rangle . \tag{7}
\end{equation*}
$$

Of course such a sinple description for the 4_{1}^{\dagger} is not realistic, as some mixture from the $\left.\mid\{2\}_{4^{+}}\right)$ has to be included, out this will not alter things by much as $\gamma_{2}\left(\{2\}_{4^{+}}\right)$is small compared to $\gamma_{2}\left(\{1)_{4}\right)$ and $\gamma_{2}\left(\{3)_{4^{+}}\right)$. Relative intensities for the 5_{1}^{+}and 5_{2}^{+}states can also be brought into a better agreenent with experimental values if admixtures from $\left.\mid\{3\}_{5^{+}}\right\}$are included in the description for s_{1}^{+}and 5_{2} state vectors. Thus we conclude that matching of the relative alpha decay rates to the $4_{1}^{+}, 5_{1}^{+}$, and 5_{2}^{+}in ${ }^{2066 \mathrm{Bi} \text { must require }}$ wave functions with appreciable adnixture from comfiguration $\{3\}$, which has a center of gravity of about 400 keV above the configuration $\{1\}$, in addition to admixtures from configurations (i) and (2\}.

Both the ${ }^{212}$ At ground state ($t_{1 / 2}=0.305 \mathrm{~s}$) and the ${ }^{212 \mathrm{~m}_{\text {At }}}$ isomer ($\mathrm{t}_{1 / 2}=0.1205 \mathrm{~s}$) have a 100% alpha decay mode, and both have large Q_{α} values ${ }^{10}$ (7.827 and 8.952 MEV , respectively). Alpha groups from decay of both states populate many states in $208_{\mathrm{Bi}} \mathrm{up}$ to 1.096 MeV .11 These states can be assumed to belong mainly to the

$$
\begin{gathered}
{\left[\pi\left(h_{9 / 2}\right) \cup\left(p_{1 / 2}\right)^{-1}\right]_{4,5^{+}},} \\
{\left[\pi\left(h_{9 / 2}\right) \cup\left(f_{5 / 2}\right)^{-1}\right]_{2,3,4,5,6,7^{+}}}
\end{gathered}
$$

and

$$
\left[\pi\left(h_{9 / 2}\right) \cup\left(\mathrm{P}_{3 / 2}\right)^{-1}\right] 3,4,5,6^{+}
$$

configurations, thereafter denoted as configuration \{1\}, \{2\} and \{3\}, respectively. The 5I ground state and the 41 first excited state can be assumed to consist, in zeroth order, of a pure configura ${ }^{-}$ tion $\{1\}$. The higher $6_{1}^{+}, 4_{2}^{+}, 5_{2}^{+}, 3_{1}^{+}, 7_{1}^{+}$and 2_{1}^{+} states can also be, gssumed to consist of a pure configua°.ion \{2\}. The ${ }^{21} 2_{\text {At }}$ ground state and the 212 mat
isomer are presumably' menbers of the $\left[\pi\left(h_{9 / 2}\right)_{9 / 2}^{3}(v=1) \cup\left(g_{9 / 2}\right)\right]$ configuration multiplet.

From conparison with ${ }^{208} 8_{\text {Bi }}$ level structure, which has two protons less, 1^{-}and 9^{-}spin and parity assigninents are most probable for ${ }^{212} 2_{\text {At groud }}$ state and 212 m At isoner, respectively.

With these assumptions, we have calculated the relative alpha decay rates from these two states to the low-lying $5_{1}^{+}, 4_{1}^{+}, 6_{1}^{+}, 4_{2}^{+}, 5_{2}^{+}, 3_{1}^{+}, 3_{1}^{+}$, and 2_{1}^{+} states in ${ }^{208} n_{n i}$. The results are shown in Table 3 which also shows the experimentally measured values ${ }^{11}$ for crmparison. One notes that there is generally good agreement between calculations and experinent for the 9^{-}isomer decay, particularly for the 6_{1}^{+}to 7_{1}^{+}alpha decay rate ratio and to a lesser extent for the 4_{1}^{+}to s_{1}^{+}ratio. In contrast to this, the calculation for the $1^{-} \mathrm{g} . \mathrm{s}$, decay shows very poor agrement with experiment. These results imply that the pure configuration assumption made for the parent and daughter states is valid for the $9-212 n A t$ and the 6_{1}^{9} and $7_{1}^{208}{ }^{20}$ states and to a lesser extent for the s_{1}^{+}and 4_{1}^{+} states in ${ }^{208}$ Bi. All other states, however, must have appreciable configuration admixtures.

Conventional shell-model calculations for ${ }^{298}$ Bi level strusture have been carried out by numerous authors. 12 No such calculations exist for 212At. However, its low-lying level structure is expected to be similar to that iff 210 Bi , except for two extra protons coupled to zero, Thus the available shell-model calculations for 210_{Bi} can be used to generate ${ }^{212}$ at wave functions by extrapolation. The last celum of Table 3 shows the percentage of the doninant configuration present in the wave functions of 208 Bi and 212 At (i.e., 210_{Bi}) states as calculated by Ma and True. 12 Their results are strikingly in full agreement with the conclusions of the comparison between the calculated relative alphy decay rates and experiment. Here again the $\mathrm{g}^{-}{ }^{21}$ At isomeric state is shown to have high configuration purity, similarly the $6{ }_{1}^{+}$ and $7_{1}^{+}{ }^{208}$ bi states are shown to be relatively pure, and so are the 4_{1}^{+}and $5_{1}^{+} 208 \mathrm{Bi}$ states, though to a lesser degree. Other ${ }^{212} \mathrm{At}$ and ${ }^{208} 8_{\text {Bi states }}$ are shown to have appreciable configuration admixtures (>108). In particular the $1^{-1}{ }^{212}$ At ground state is show to have about 408 admixtures from other configurations. This is probably the main reason for the above disagreement between calculation and experiment for its relative alpha decay rates. Calculations of relative alpha decay rates for the 1^{-}and 9^{-}212At states, using Ma and True ${ }^{12}$ configuration-mixed shell-model function are currently in progress.

Thus, alpha decay rate theory provides a sensitive probe of the sparsely known question of configuration mixing in odd-odd nuclei. We would hope that this worik can serve to stimulate further shell-model theoretical work and expanded knowledge of the effective shell model $n-p$ force.

Table 3. Relative alpha decay rates for 1^{-}and $9^{-}{ }^{212}$ At,

Dominant Configuration			$\begin{gathered} {\left[\pi\left(\mathrm{h}_{9 / 2}\right)_{9 / 2}{ }^{v}\left(\mathrm{~g}_{9 / 2}\right)\right]} \\ 212 \text { At States } \end{gathered}$				Percentage of Shell-Model Configuration ${ }^{(d)}$
	${ }^{208} 8$	Levels	1		9		$99 \% \text { for } 9^{-}$
$\left[\pi\left(h_{9 / 2}\right) \cup\left(p_{1 / 2}\right)^{-1}\right]$	$\mathrm{J}^{7(a)}$	Energy ${ }^{\text {(a) }}$	Theory ${ }^{(b)}$	Exp. ${ }^{\text {(c) }}$	Theory ${ }^{(b)}$	Exp. (c)	
	5_{1}^{+}	0.0	100	100	58	44 ± 1	95 \%
	4_{1}^{+}	0.0635	286	21 ± 6	100	100	92 \%
$\left[\pi\left(\mathrm{h}_{9 / 2}\right) \cup\left(\mathrm{f}_{5 / 2}\right)^{-1}\right]$	6_{1}^{+}	0.5103	31	41 ± 10	100	100	96 \%
	4_{1}^{+}	0.6028	100	100	5.3	17 ± 5	85 \%
	${ }_{1}^{+}$	0.629	10.5	<63	37	82 ± 10	898
	3_{1}^{+}	0.6344	2.2	79 ± 15	8.4	< 62	88:
	${ }_{1}^{+}$	0.6501	2.2	<16	119	94 ± 19	99%
	2_{1}^{+}	0.9256	23	6 ± 5	0.21	<3	28 \%

${ }^{(a)}$ Level energies and spin and parity assignments are taken from ReE. 11.
${ }^{(b)}$ Calculated relative alpha decay rates assuming pure configuration for parent and daughter states, nomalized as in (c).
${ }^{(c)}$ Relative alpha group intensities of Ref. 11 , normalized to 100 for strongest transition in each multiplet.
${ }^{\text {(d) }}$ Taken from Ma and True ${ }^{12}$ shell-model calculations.

Footnotes and References

*Based mainly on LBL-3409; Nuci. Phys. A244,435 (1975).
${ }^{\dagger}$ Present address: Argonne National Laboratory, Argonne, Illinois.

1. H.J. Mang, Z. Phys. 148, 582 (1957).
2. K. Harada, Progr. Theoret. Phys. 26, 667 (1961).
3. J.O, Rasmussen, Nucl. Phys, 44, 93 (1963).
4. R.G. Thomas, Progr. Theoret. Phys. 12, 253 (1954).
5. M.H. Macfarlane and J.B. French, Rev. Mad. Phys. 32, 567 (1960).
6. E.A. Rauscher, J.O. Rasmussen, an! K. Harada,

Nuc1. Phys. A94, 33 (1967).
7. 1.S. Towner and J.C. Hardy, Adv. Phys. 18, No. 74, 401 (1969).
8. A. de-Shalit and I. Talmi, "Nuclear Shell Theory" (Academic Press, New York, (1963)).
9. N.A. Golovkov, Sh. Guetkh, B.S. Dzhelepov, Yu. V. Norseev, V.A. Khalkin, and V.G. Chumin, Izv. Akad, Nauk. (Fiz. Ser.) 33, 1622 (1969) (translated page 1489).
10. S.C. Pancholi and M.J. Martin, Nuc1. Data Sheets B8, 123 (1972).
11. Paul L. Reeder, Phys. Rev. C1, 721 (1970).
12. Chin W. Ma and Willian W. True, Phys. Rev. C8, 2313 (1973); see also references therein.

KINETIC ENEFGY DENSITY OF A DEGENERATE FERMI GAS

H. Gräf*

The simple statistical relation stating the proportionality between the density and the $3 / 2$ power of the maximum kinetic energy for a completely degenerate gas obeying the Pauli principle has been of great value in atomic and nuclear problems. Unfortunately this approach fails completely at the surface region of any system and also the Weizsäcker correction term associated with the presence of density gradients turns out to be no improvement in that region. We found that this correction term and later modifications of it by Wilets ${ }^{1}$ and Kirznits ${ }^{2}$ have the wrong sign in some conmon applications.

Swiatecki ${ }^{3}$ has given a new generalization of the Thomas-Femi method, particularly suitable in the surface region. It can be stated in this way: Using the T.F. model in a problem where the potential is given, we approxinate to the true density it would have, if the potential were everywhere constant and equal to the actual potential at the point in questiofi, except for a final rise at infinity, necessary to keep the rarticles from dispersing. We generalize this now by replacing the actual potential at the point in question by a polynomial of the order n such that the actual value and the n first derivatives coincide. For $\mathbf{n}=1$ and $\mathrm{n}=2$ the solutions of the Schroedinger equation are well known and therefore we restrict ourselves to these two cases.

Linear Approxination

The calculations for the density were already dose by Swiatecki. For a potential $V(x)=-\left|V^{\prime}\right| x$, the Fermi energy equal to zero and counting only the spin degeneray we get for the density ρ and for the kinetic energy density t

$$
\begin{aligned}
& \rho(\xi)=\left(\frac{3}{2 \ell}\right)^{3} \frac{18^{-1 / 3}}{\pi}\left[\xi^{2} \alpha i^{2}(-\lambda \xi)\right. \\
& \left.+\frac{\xi}{\lambda} \mathscr{A}^{2}(-\lambda \xi)-\frac{1}{2 \lambda^{2}} \mathscr{A}(-\lambda \xi) \mathscr{A} i(-\lambda \xi)\right] \text {, } \\
& \tau(\xi)=\frac{\hbar^{2}}{2 \pi}\left(\frac{3}{2 \ell}\right)^{5} \frac{12^{1 / 3}}{10 \pi}\left[\left(\xi^{3}-\frac{1}{g} 2 \mathscr{A} i^{2}(-\lambda \xi)\right.\right. \\
& \left.+\frac{\xi^{2}}{\lambda} \mathscr{A} i^{2}(-\lambda \xi)-\frac{\xi}{2 \lambda^{2}} \mathscr{A}(-\lambda \xi) \mathscr{A}_{i(-\lambda \xi)}\right] \text {, }
\end{aligned}
$$

where $\ell^{3}=9 \hbar^{2} / 8 m\left|V^{\prime}\right|, \xi=x / \lambda, \quad \lambda=\left(\frac{3}{2}\right)^{2 / 3}$ and SAi is the Airy function in the nomalisation of Abramowitz. ${ }^{4}$

For a better understanding of these equations it is helpful to make expansions for $|\xi| \gg 1$. So is the limit $\xi \gg 1$ we have

$$
\begin{gathered}
\rho(\xi) \sim\left(\frac{3}{2 R}\right)^{3} \frac{\xi^{3 / 2}}{3 \pi^{2}}\left\{1-\frac{\xi^{-3}}{72}\left(1+6 \sin 2 \xi^{3 / 2}\right)\right\}, \\
\tau(\xi) \sim \frac{\hbar^{2}}{2 \pi}\left(\frac{3}{2 \ell}\right)^{3} \frac{\xi^{5 / 2}}{5 \pi^{2}}\left\{1-\frac{5 \xi^{-3}}{72}\left(1+2 \sin 2 \xi^{3 / 2}\right)\right\} .
\end{gathered}
$$

Neglecting the curled brackets, one has the old Thomas-Fermi model. However in this region we have additional tiny rapidly oscillating wiggles. If the actual potential is not a constant slope potential and the point of consideration is far from the turning point there may be no improvement at all, compared with the Thomas-Fermi results.

To make a connection to the Weizsäcler term we rewrite τ in this region by

$$
\tau=\frac{h^{2}}{2 m}\left\{\frac{3}{5}\left(3 \pi^{2}\right)^{2 / 3} \rho^{5 / 3}-\frac{1}{g} \cdot \frac{1}{4} \frac{\rho^{.2}}{\rho}\right\}
$$

where $\rho^{\prime}=\frac{d \rho}{d x}$.
Beyond the turning point, where the ThomasFami solution is identical to zero, one expects to get better results from this form of approximation. Expanding for $\xi \gg-1$ we find

$$
\begin{aligned}
& \rho(\xi) \sim\left(\frac{3}{2 \ell}\right)^{3} \frac{|\xi|^{-3 / 2}}{72 \pi^{2}} \exp \left(-2|\xi|^{3 / 2}\right) \cdot\left(1-\frac{35}{36}|\xi|^{-3 / 2}\right) . \\
& \tau(\xi) \sim \frac{\hbar^{2}}{2 \pi}\left(\frac{3}{2 \ell}\right)^{5} \frac{\mid \xi]^{-1 / 2}}{72 \pi^{2}} \exp \left(-2|\xi|^{3 / 2}\right) \cdot\left(1-\frac{23}{36}|\xi|^{-3 / 2}\right) .
\end{aligned}
$$

Again we rewrite τ,

$$
\tau \approx \frac{n^{2}}{2 m}\left\{\frac{3}{5}\left(3 \pi^{2}\right)^{2 / 3} 5 / 3-\frac{1}{4} \frac{\rho^{\prime 2}}{\rho}\right\}
$$

Wilets, ${ }^{1}$ Kirznits ${ }^{2}$ and others have shown, that one should multiply the Weizsäcker correction tenा $\frac{\mathrm{H}^{2}}{\mathrm{\gamma m}} \frac{\mathrm{q}^{12}}{\rho}$ by a constant fruior $1 / 9$. This is in disagreement with our results. At least for the simple constant slope potential this factor must be negative and it should vary between $-1 / 9$ and -1 .

Quadratic Approximation

Replacing a potential in a certain point by a parabola, we have to distinguish between two cases:

1) The parabola has a minima, that is the potential would be a harmonic oscillator potential. For seni-infinite distributions, we simply replace one branch of the parabola by a constant line.
2) The parabola has a maxima. Again we replace one branch by a constant line, since we are interested in the tail regien, where we assume a constant potential.

Let us assume a potential of the form $V(x)=$ $V^{\prime \prime} x^{2}$ for $x>0$ and $V(x)=0$ otherwise and a Femi energy $\frac{P_{0}^{2}}{2 \pi}$. In case 1) we find then the solutions for $x>0$
is the other parabolic cylinder function. k is determined by $1 / k=\sqrt{1+e^{2 \pi a}}+e^{\pi a}$,

$$
b=\frac{-\sqrt{a} y^{2}+\sqrt{2}}{\sqrt{a} \gamma^{2}+\sqrt{2}}, \quad r^{2}=\left|\frac{\Gamma\left(\frac{1}{4}+\frac{1}{2} i a\right)}{\Gamma\left(\frac{3}{4}+\frac{1}{2} i a\right)}\right| \quad \text { and }
$$

$$
w=b W(a, \Delta x)+W(a,-\Delta x)
$$

$$
\begin{aligned}
& \rho(x)=\frac{\Lambda^{3}}{2 \pi^{3}} \int_{0}^{P}(P-a) \frac{r^{2}\left(\frac{1}{4}-\frac{a}{2}\right) \Gamma^{2}\left(\frac{3}{4}-\frac{a}{2}\right.}{2 \Gamma^{2}\left(\frac{3}{4}-\frac{a}{2}\right)+a \Gamma^{2}\left(\frac{1}{4}-\frac{a}{2}\right)} \sqrt{2 a} 2^{a} u^{2}(a, N x) d a \quad, \\
& \tau(x)=\frac{h^{2}}{2 \pi} \frac{n^{5}}{2 \pi^{3}} \int_{0}^{P}(P-a)\left[\frac{1}{2}(P-a)-\frac{\Lambda^{2} x^{2}}{4}+a\right] \frac{\Gamma^{2}\left(\frac{1}{4}-\frac{a}{2}\right)}{2 \Gamma^{2}\left(\frac{3}{4}-\frac{a}{2}\right)+\frac{\Gamma^{2}\left(\frac{3}{4}-\frac{a}{2}\right)}{a^{2}\left(\frac{1}{4}-\frac{a}{2}\right)} \sqrt{2 a} 2^{a} u^{2}(a, A x) d a} .
\end{aligned}
$$

where $\Lambda=\forall \Omega m\left|V^{\prime}\right| / h^{2}, P=\frac{P_{0}^{2}}{h^{2} A^{2}}$ and $U(a, x)$ is a paraboli. cylinder-finction in the normalisation of Abranowitz. ${ }^{4}$ In the second case we find

$$
\begin{aligned}
\rho(x)= & \frac{\Lambda^{3}}{2 \pi^{2}} \int_{p}^{\infty}(a-P) \frac{k}{k^{2} l^{2}+1} w^{2}(a, \Delta x) d a \\
\tau(x)= & \frac{1_{1}^{2}}{2 m} \frac{\Lambda^{5}}{2 \pi^{2}} \int_{p}^{\infty}\left(a-p\left[\frac{1}{2}(a-P)+\frac{\Lambda^{2} x^{2}}{4}+a\right]\right. \\
& \frac{k}{k^{2} \ell^{2}+1} w^{2}(a, A x) \dot{a}
\end{aligned}
$$

Footnotes and References

${ }^{\text {H }}$ On leave frini: Inst. f. Kermigysik TH Carmstadt, F.R. Germany.
i. R.A. Berg and L. Wilets, Phys. Rev. 101, 201 (1956).
2. D.A. Kirznits, JETP (Sov. Phys.) 5, 64 (1957).
3. W.G. Swiatecki, Proc. Phys. Soc. A68, 285
(1955).
4. Handbook of Mathenatical Functions, Ed. M. Ahramovitz and I.A. Stegu, NBS Appl. Math. Serie 55 (1969), chapter 19.

PARABOLIC CYLINDER FUNCTIONS $Y(A>0, \pm X)$: EXPANSIOHS FOR ALL ARGUNENTS*

H. Graif ${ }^{\dagger}$

The two parabolic cylinder fumctions $W(a, x)$, $W(a,-x)$, with $x>0$ are the two symmetric solutions of the differsntial equation

$$
d_{x x} y+\left(1 / 4 x^{2}-a\right) y=0
$$

Expansions of $W(a, \pm x)$ which might be used for numerical calculations are e.g. given in Ref. 1.

In Fig, 1 the areas are shown in which all these expansions approximate the parabolic cylinder functions better than a relative 10^{-6} deviation. To cover the whole ($x, 20$)-plane ane has to include the asymptotic expansions in semps of Airy unctions. ${ }^{2}$ Infortunately its first correction sm includes the derivative of Airy functions, . ich are elaborate to calculate. But, moking a Taylor expansion, one is able to drop these derivatives conpletely. The results up to the order of $a^{-10 / 3}$ are

$$
W(a, x) \sim \sqrt{\pi}^{-}(4 a)^{-1 / 4} e^{-1 / 2 \pi a}\left(1-\frac{1}{4608 \cdot a^{2}}\right)\left(\frac{t}{\xi^{2}-1}\right)^{1 / 4} \operatorname{Bi}(-\tilde{T})\left(1-\frac{\tilde{A}_{1}}{4 a^{2}}\right)
$$

and

$$
W(a,-x) \sim 2 \sqrt{\pi}(4 a)^{-1 / 4} e^{1 / 2 \pi a}\left(1-\frac{1}{4608 \cdot a^{2}}\right)\left(\frac{t}{\xi^{2}-1}\right)^{1 / 4} A i(-\tilde{T})\left(1-\frac{\tilde{A}_{1}}{4 a^{2}}\right)
$$

where

$$
\left.\begin{array}{l}
\xi=\frac{x}{2 \sqrt{a}}, \\
+=(2 a)^{2 / 3} \tau=(3 / 4)^{2 / 3}\left\{\begin{array}{ll}
-\left[\arccos \xi-\xi \sqrt{1-\xi^{2}}\right]^{2 / 3} \\
{\left[\xi \sqrt{\xi^{2}-1}-2 n\left(\xi+\sqrt{\xi^{2}-1}\right)\right.}
\end{array}\right] \\
T=\text { for } \xi<I \\
\text { for } \xi>I
\end{array}\right\},
$$

and

$$
\mathrm{B}_{0}=-|\tau|^{-1 / 2}\left(\frac{\xi^{3}-6 \xi}{24 \sqrt{\left|\xi^{2}-1\right|^{3}}}+5 / 48|\tau|^{-3 / 2}\right)
$$

Fig. 1. The region where various expansions of the parabolic cylinder functions have at least a relative accuracy of 10^{-6} (as conputed on a $\operatorname{CDC} 6600)$.
p: Power series solution.
D_{1} : Darwin's expansion for $x^{2} \ll 4 a$.
D_{2} : Darwin's expansion for $x^{2} \gg 4 a$,
x : Exparsion for $x \gg 1$ in Ref. 3, the 10^{-6} area is actually much larger than $x \gg a$, as assumed by Ref. 3.
A: Uniform asymptotic expansion to the order a-10/3.
(XBL 748-3894)
while t is to second order

$$
t \approx 0.2 a^{2 / 3}(\xi-1)(\underline{v}+\xi)
$$

and $t /\left(\xi^{2}-1\right)$ may be written as

$$
\frac{t}{\xi^{2}-1} \approx a^{2 / 3}(7 / 5-2 / 5 \xi)
$$

Furthermore B_{1} can be replaced for all arguments by the much simpler expression

$$
B_{1} \approx-B_{0} \frac{0.43+0.2992 \cdot \xi_{\xi}}{0.44+1.23 \cdot \xi}
$$

without any significant loss of accuracy.

$$
\begin{aligned}
\mathrm{B}_{1}= & -|\tau|^{-1 / 2}\left(\frac{-4042 \xi^{9}+18189 \xi^{7}-28287 \xi^{5}-151995 \xi^{3}-259290 \xi}{414720 \sqrt{\left|\xi^{2}-1\right|^{9}}}\right. \\
& \left.+5 / 48|\tau|^{-3 / 2} \frac{-9 \xi^{4}+249 \xi^{2}+145}{1152\left|\xi^{2}-1\right|^{3}}+\frac{345}{4608}|\tau|^{-3} \frac{\xi^{3}-6 \xi}{24 \sqrt{\left|\xi^{2}-1\right|^{3}}}+\frac{85085}{663552}|\tau|^{-9 / 2}\right) \\
\tilde{A}_{1}= & \left(\frac{-9 \xi^{2}+249 \xi^{2}+145}{1152\left|\xi^{2}-1\right|^{3}-7 / 48|\tau|^{-3 / 2} \frac{\xi^{3}-6 \xi}{24 \sqrt{\left|\xi^{2}-1\right|^{3}}}-\frac{455}{4608}|\tau|^{-3}}\right) \times\left\{\begin{array}{l}
1 \\
-1 \\
5<1
\end{array}\right)
\end{aligned}
$$

Footnotes and References

For $\xi \rightarrow 1$ these expressions becone undefined, since both τ and $\xi^{2}-1$ tend to zero. But the coefficients can be analytically approximated when $(\xi-1)$ is in the interval -0.003 to 0.004 , by

$$
B_{0} \approx-0.0404974(1.484193-0.484193 \cdot \xi),
$$

and
*Condensed from LBL-2969.
${ }^{\dagger}$ On leave from Inst. f, Kernphysik, TH Darmstadt, F. R. Germany.

1. Handbook of Mathematical Functions, Ed. M. Abramowitz and I.A. Stegun, NBS Appl. Math. Series 55 (1969), 692, chapter 19.16.
2. F.W.J. Olver, Uni form asymptotic expansions for Weber parabolic cylinder functions of large order, J. Research NBS 63B, 2, 131-169 (1959).
3. Ref. 1, p. 693, chapter 19.19.

THE DYNAMIC r.PROCESS NUCLEOSYNTHESIS OF HEAVY and SUPERHEAVY ELEMENTS*

O. Johns ${ }^{\dagger}$

The r-process of nucleosynthesis produces neutron-rich nuclides of constantly increasing nuclear charge until it is cut-off at some maximus proton number by neutron-induced fission. Discussion of this cut-off, and in particular the question of the formation or non-formation of superheavy elements by the r-pracess, less largely been based on the assumptions that the proton number at cut-off is the same for all r-process events, and that it is independent of time during any single event. Since Seeger, Fowler, and Clayton 1 showed that there is a single r-process path in the $\mathrm{N}-2$ plane which best reproduces the peaks of element abundance at nucleon numbers 130 and 195, later workers have taken the proton number at which this "best" path first intersects a region of rapid neutron-induced fission to be the cut-off value. ${ }^{2-5}$ For exanple in Fig. I, which shows several possible r-process paths, the "best" path would have $\gamma \approx 2.5 \mathrm{MeV}$.

Recently, however, some attempts have been made $6-8$ to place the r-process in a more realistic setting by including a time dependence of mass density, neutron density, temperature, etc., during the r-process phase of a stellar expiosion. In particular, Sato ${ }^{9}$ has extended the analysis to include the effect of beta decay energy and fission energy depositions on the entropy.

The purpose of this paper is to examine critically the cut-off of the r-process in the light of these dymanic calculations. We use the

Fig. 1. The r-process paths in the $\mathrm{N}-2$ plane are shown for different Y values. (The paths are contours $\gamma=1 / 2 S_{2 n}(Z, N)$; see refi 10 . The Nyyers and Swiatecki 1967 mass law is used. 15 A path with $r>5 \mathrm{MeV}$ (top contour) would have urreasonably long beta decay lifetimes, but paths with $Y<0.5$ MeV are possible.
(XBL 7410-1855)
formalism developed in Johns and Reeves. 10 Two main conclusions result from this examination:
(1) It is found that the maximum atomic number reached before neutron induced fission cuts-off the r-process varies with the instantaneous values of neutron density and temperature, as shown in Fig. 2:. It thus varies with the time in dynamic r-process calculations, Fig. 3 . This

Fig. 2. The solid lines are contours of constant cut-off proton number $2_{\text {max. }}$. The γ is the parameter labeling the r-process paths, and n is the neutron density. The dotted line is the dynamic r-process trajectory of Sato 9 for 1/a-30 times the free-fall expansion rate, and initial neutronproton ratio of 20 . The crosses are freeze-out points of Sato's calculation for $n / p=20$ and $1 / a=10,30$, and 100.
(XBL 7410-1856)

Fig. 3. The cut-off procon number $2_{\text {max }}$ is plotted as a function of time for the Sato 9 dynamic r-process trajectory $n / p=20,1 / a=30$. The dotted line is the constant $Z_{\text {max }}=93$ cut-off assumed by Sato.
(XBL 7410-1860)
time variation of $Z_{\text {max }}$ may have significant effects on the rate of deposition of fission energy in calculations such as Sato 9 which treat explicitly the themodynamies of the r-process environment.
(2) Any discussion of the r-process formation of superheavy elements noust consider the possibility of their production by any of a range of different supemova events. The eventual maximm niclear charge produced in an r-process event depends on the reutron density and tempe:ature at freeze-out (i.e., temination of the r process). These freeze-out parameters in tum depend on the expansion time scale and on the initial mass density, 9 Three different possible freeze-out points are marked by crosses in Fig. 2 . The same points are marked in Fig. 4, which shows that superheavy element production is predicted for this mass law for those events with $1 / a>10$.

Taking the circim-core regions of gravitational collapse supemovae as a possible site of the r-process, 6 it is unlikely that all collapsing cores reach the same maximm density or that all of them explode with the same velocity. This diversity of r-process events is important because the detection threshold of current experimental searches for natural superheavy elements is very low, on the order of 10^{-15} grams per gram of sample. 11,12 At this level, superheavy elements of cosmological lifetime (if any) should be detectable if only a small fraction of r-process events actually have produced elements in the suf?rheavy mass range.

Recently, Howard and Nix, ${ }^{5}$ using a new mass and fission barrier detemination which combines the Nyers and Swiatecki 13 droplet model with the Strutinsky 14 shell-correction method, concluded that the static r-process cannot pioduce superheavy elements. Fig. 5, taken from Howard and Nix, 5 shows the contours of neutron induced fission threshold E_{t} calculated by these authors. The superimposed dotted contours are contours of constant neutron separation energy S_{n} also calculated by Howard and Nix but labeled by us with their equivalent γ values. (Over this restricted region of the $\mathrm{N}-2$ plane, the contours of constant S_{n} are not much different fram the r-process paths.) We note that all r-process paths with $\gamma<1.4 \mathrm{MeV}$ fall outside of the region treated by Howard and Nix. However, our analysis suggests that a supemova event could very easily freezeout near $\gamma=1.0$ or even 0.5 MeV . The charce that an extremely neutron rich r-process path will reach the superheavy mass range thus cannot be ruled out. To investigate this possibility, it would be necessary to survey the $Z=80$ to 120 regjen of the $\mathrm{N}-2$ plane from $N=184$ all the way out to the neution drip line (in fact, to the line $\mathrm{S}_{2 \mathrm{n}}=0$), which may be bcyond the $\mathrm{N}=228$ magic number. On the basis of the surveys so far published, it seems that the r-process production of superheavy elements remains a posisibility. It seens possible for nuclei with $A \equiv 330$ to be produced, at least temporarily. Their subsequent survival depends on the details of the final, ejection phase of the r-process which is not considered here.

Fig. 4. The same as Fig. 2 except that the solid lines are contours of Amax at cut-off. These values are taken as $A_{\text {max }}=Z_{\text {max }}+N Z$ and so do not include the effects of spread of the r-process path about its maximum N_{2} which could increase the $A_{\text {max }}$ by a few units. The solid curves here and in 5 Fig: 2 were calculated using an earlier mass law 5 and hence overestimate the $Z_{\text {max }}$ and $A_{\text {max }}$ compared to more recent mass and fission barrier deterninations.
(XBL 7410-1858)

Fig. 5. This figure is a composite of two figures from Howard and Nix5. The solid lines are contours of neutron-induced fission threshold E_{t}. The dotted lines are contours of one neutron separation energy S_{n} labeled by γ.
(XBL 7410-1861)

Footnotes and References
*Brief sumary of Laboratoire René Bernas report LRB 74/3, to be published.
${ }^{\dagger}$ Laboratoire Rene Bernas, Orsay, France, and Lawrence Berkeley Laboratory, Berkeley, CA .

1. P.A. Seeger, W.A. Fowler, and D.D. Clayton, Ap. J. Suppl. 11, 131 (1965).
2. D.N. Schram and W.P. Fowler, Nature 231, 103 (1971).
3. R, Boleu, S.G. Nilsson, R.K. Sheline, and K. Takahashi, Phys, Lett. 40B, 517 (1972).
4. D.N. Schranm and E.O. Fiset, Ap. J. 180, 551 (1973).
5. W.M. Howard and J.R. Nix, Nature 247, 17 (1974).
6. M. Delano and A.G.W. Cameron, Astro. and Space Sci. 10, 203 (1971).
7. K. Sato, K. Nakazawa, and S. Ikeuchi, Prog. of Theor. Phys. 49, 1166 (1973).
8. D.N. Schrarm, Ap. J. 185, 293 (1973).
9. K. Sato, Prog. of Theor. Phys. 51, 726 (1974).
10. 0. Johns and H. Reeves, Ap. J. 186, 233 (1973).
!1. C. Stephan, J. Tys, M. Sowinski, E. Cies1ak, M. Nemier, report. of Institut de Physique Nucleaire, Orsay, France (1973).
1. M. Epherre, O. Johns, and C. Stephan, Remarks concerning the experimental search for superheavy elements in nature, Orsay report LRB 74/2 (1974).
2. W. Myers and W. Swiatecki, Lawrence Berkeley Laboratory report LBL-1957 (1973).
3. V.M. Strutinsky, Nuc1. Phys. A95, 420 (1967).
4. W. Myers and W. Swiatecki, Arkiv for Fysik 36, 343 (1967).

THE LONG-LIVED RADIOISOTOPES AS MONITORS OF STELLAR, GALACTIC AND COSMOLOGICAL PHENOMENA*

H. Reeves ${ }^{\dagger}$ and O. Johns ${ }^{\ddagger}$

The possibility of time variation of the characteristic parameters of stellar evolution has been much discussed recently. In particular, in order to account for the paucity of low metal stars, important variations in the Initial Mass Function, the fractional amount of mass going into new stars of mass $M, 1$ has been suggested by Schnidt, 2 Truran and Caneron. 3 (See the discussions by Pagel, 4 Searle, 5 Tinsley, 6 etc.)

In this paper, we want to illustrate in a simple way, how the study of long-lived radioisotopes can shed some light on this question.

In the present approach we reglect the possibility of infall of extra-galactic matter into the galaxy after the birth of the first stars. We define $S^{\star}(t)$ to be the total mass of stars at time t, and $v(t)$ the total mass of gas and dust. Then $U(t)+S^{\star}(t)=M_{G}$, the galactic mass and $d U / d t=-d S^{*} / d t$.

The lifetime τ^{*} for depletion of the interstellar gas is given by

$$
\begin{equation*}
\frac{d S^{*}}{d t}=\frac{U(t)}{\tau^{*}(t)}=-\frac{d U}{d t} \tag{1}
\end{equation*}
$$

Next, we define $M_{i}(t)$ as the mass of nuclide i in gas and dust, hence $Z_{i}(t)=M_{i}(t) / U(t)$ is the mass fraction of i and $Z(t)=\sum_{i} z_{i}$ is the mass of "metals" ($A>4$) in gas and dust.

The elementary act of astration consists in
the following: an interstellar cloud, of metal abundance Z_{i}, collapses and forms stars. These stars live for a time $t(M)$ during which they produce some new metals by nuclear cooking. Part of this mntter is then rejected back into interstellar space. The "instant recycling approximation" can be made, which states that, as far as nucleosynthesis is concemed, we may consider that all the big stars ($\mathrm{N}>\mathbf{2}-3 \mathrm{Ms}_{\mathrm{s}}$) live instantaneously and immediately reject most of their matter in space while all the small stars live eternally. In other words, a fraction f of the cloud is immediately returned to space while a fraction (1 - f) remains locked in stars. The fraction f is in turn composed of fractions f^{p} and $f^{\mathbf{L}}$ in which new metals are produced or not produced respectively. Thus $f=\mathbf{f}^{P}+f^{\mathbf{L}}$. The mass fraction of isotope i in the fraction f_{p} will be denoted $\mathbf{z i}_{\mathbf{i}}$.

The isotopes to be considered here are $129 \mathrm{I}(2.3 \times 107 \mathrm{yr}), 244 \mathrm{Pu}\left(1.2 \times 10^{8} \mathrm{yr}\right), 235 \mathrm{U}\left(10^{9} \mathrm{yr}\right)$, $238 \mathrm{U}(6.5 \times 109 \mathrm{yr}), 232 \mathrm{Th}(2 \times 1010 \mathrm{yr})$. They are alí generated by the r-process. The time variation of the total mass $\left[U_{i}\right]$ of isotope i with radioactive life time T_{i} is given by:

$$
\frac{d}{d t}\left(U Z_{i}\right)=-z_{i} \frac{d S^{\star}}{d t}+y_{i} \frac{d S^{\star}}{d t}-\frac{1}{\tau_{i}}\left(U Z_{i}\right)
$$

where $y_{i}=\frac{\mathbf{z}_{\mathbf{i}} \mathrm{f}^{\mathrm{p}}}{1-f}$ is the "yield ${ }^{15}$ of isotope i per unit increase of the total stellar mass S^{*}. The solution to this equation at time T, the time of fomation of the solar system, can be written

$$
\tau_{i}=\left\{\frac{y_{i}}{T^{*}}\right\rangle \tau_{i} \tau_{i}\left(1-e^{-T / \tau_{i}}\right)
$$

where the brackets indicate an average of $y_{i} / \tau^{\text {* }}$ over a period τ_{i} before the formation of the solar system (i,e., from T - τ_{i} to T).

Information is best obtained by defining the following ratios pertaining to two isotopes i and j, to be called the astration probe parameter.
where T is the period of galactic nucleosynthesis of the solar system material, presumably extending
from the birth of the galaxy till the birth of the sum. From data pertaining to the oldest clusters ${ }^{7}$ we estinate T to be $6 \pm 2 \times 109$. Clearly from the definition of $\eta_{j i}$, if the IMF (and hence the $f^{\prime} s$) and also the life time $\tau^{\text {* }}$ were constant throughout the life of the galaxy, we should get $\eta_{j i}=1$ for all pairs. Conversely, any strong departure from one (outside of the uncertainties -- which are of the order of two on each side ..) should indicate the time variation of at least one of these parameters. Hence the name of astration probe paraneter.

Previous studies of the same data ${ }^{8-10}$ have tacitely assumed that constancy of these astration parameters and have obtained an age of the galany (from the so-called ensmochronology) which turns out to coincide moderately well with the age of the oldest clusters. Here we have taken a different point of view; we use the cluster age to evaluate $\eta_{j i}$ and test the time constancy of the astration parameters. It is quite remarkable that in Table 1 the only strong departure from $\eta_{\mathbf{j i}}=1$ is found for the shortest time scale of $\sim 2 \times 10^{7}$ related to 129 I. The decrease of $n_{j i}$

Table 1. p_{i} rameters for the interpretation of the data on the long-lived radioisot pes. (a)

j/i	$\underset{\text { (years) }}{\tau_{j} / \tau_{i}}$	z_{j} / z_{i}	z_{j} / z_{i}	$\frac{\left(1-e^{-T / \tau} j\right)}{\left(1-e^{-T / \tau} \frac{\tau_{i}}{}\right)}$	$\mathrm{n}_{\mathrm{j}} \mathbf{i}$
${ }^{22}{ }^{\mathrm{Pu}} /{ }^{235}{ }_{U}$	$\frac{1.2 \times 10^{8}}{1.0 \times 10^{9}}$	0.048	0.48 ± 0.14	$\frac{1}{0.99}$	$0.83{ }^{1.17}$
${ }^{235} \mathrm{u} /{ }^{238} \mathrm{u}$	$\frac{1.0 \times 10^{9}}{6.5 \times 10^{9}}$	0.32	1.94 ± 0.56	$\frac{0.99}{0.60}$	$0.65_{0.50}^{0.91}$
${ }^{338} \mathrm{U} /{ }^{232} \mathrm{Th}$	$\frac{6.5 \times 10^{9}}{2.0 \times 10^{10}}$	0.44	0.53 ± 0.11	$\frac{0.60}{0.26}$	$1.11{ }_{0}^{1.40}$
${ }^{244} \mathrm{Pu}{ }^{232} \mathrm{Th}$	$\frac{1.2 \times 10^{8}}{2.0 \times 10^{10}}$	0.007	0.49 ± 0.06	$\frac{1}{0.26}$	0.620 .71
${ }^{129}$ I $/ /^{127}$ I	$\frac{2.3 \times 10^{7}}{\infty}$	10^{-4}	$1.4{ }_{-0.4}^{+1.4}$	$\frac{1}{0}$	0.0190 .038

(a) z_{j} / z_{j} is the relative abundance of isotope i and j at the birth of the meteorites ($4.7 \times 10^{9} \mathrm{yr}$ ago) assuming that, in spite of chemical fractionation, one may reconstitute the true cosmic abundance through meteoritic studies. For Pu, U and Th this assumption may be hazardous. The ratios $\mathbf{z}_{\mathbf{j}} / 2_{\mathbf{i}}$ are the ratios of fomation in r-process synthesis. These ratios and their uncertainties are reviewed in a companion paper, 12 The next to last column is a correction tem for the finite duration of solar system nucleosynthesis ($\mathrm{T} \simeq 6 \times 109 \mathrm{yr}$). The last colum gives $\eta_{j i}$ the astration probe parameter discussed in the text.

The shorter-lived radioisotope is always placed in the numerator. Thus if τ is smaller at earlier galactic times (decreasing rate of star formation), the $\eta_{j i}$ would be less than mity. The same effect would be produced if $f_{p} r$ (and hence alf yir) were larger at earlier times.

The $\eta_{j i}$ values are calculated for $T \cong 6 \times 10^{9} \mathrm{yr}$. If $\mathrm{T} \cong 10 \times 10^{9} \mathrm{yr}$ is used ${ }^{13}$ $n_{j i}=1$ is ${ }_{\text {then }}$ within the calculated error range for all pairs except $1291 / 127_{I}$,
to $=0.01$ is most likely due not to a variation of the IMF during this short period, but to ant increise in τ^{\star} implying a decrease of the nucleosynthesis activity some $2 \times 10^{7} y$ before the formation of the meteorites. The reason why the $\eta_{j i}$ value for Iodine is low could be due to the fact that, in the last $\sim 10^{8} y$ before the birth of sum, the protosolar cloud (or clouds) was cruising between two anns of the galaxy where very little astration takes place. The last contribution to solar system 129I was incorporated to the protosolar cloud when it crossed the last are before its arrival in the ann where the sul was borm. 10

Analysis of the data on long-lived radioisotopes, together with the data on the metal abundances in stars, brings us to the following tentative conclusions.
(A) The data is consistent with no great variations (less than a factor of two) of the values of the partial rate of yields of r-process elements averaged over periods of $108 \mathrm{y}, 10^{9} \mathrm{y}$ and $6 \times 10^{9} y$ before the birth of the sum. This result is consistent with a constant initial mass function and a constant for stellar formation throughout the life of the galaxy.
(B) The meertainty in the data is large enough not to preclude the hypothesis of a large -- but brief -- increase of the rates of yields during the early days of the galactic life. Such an increase, lasting intil the interstellar metal abundance reached $\simeq 20 \%$ of the solar value, could account for the paucity of low-metal stars.
(C) The low iodine isotopic ratio suggest that, when considering periods of less than 10^{8} years before the birth of the sum, we should consider the effect of galactic rotation on the rate of yield of nucleosynthesis, as expected for instance in the density wave theory.
(D) The fraction of unastrated gas consistent with these data and analysis is about fifty percent. Hence, accepting the view that Detiterium originates in the Big Bang, we obtain from the calculation of Wagoner ${ }^{11}$ that the present universal density is $\approx 5 \times 10^{-31} \mathrm{~g} \mathrm{~cm}^{-3}$.

Footnotes and References

Condensation of a paper to be submitted for publication in The Astrophysical Journal.
${ }^{\dagger}$ Centre d'Etudes Nucleaires de Saclay, Institut d'Astrophysique de Paris.
${ }^{\dagger}$ Laboratoire René BERNAS - ORSAY and LBL.

1. E.E. Salpeter, The Rate of Star Formation in the Cz ? - xy, Ap. J. 129, 608 (1959).
2. M. Schmidt, The Rate of Star Formation, Ap. J. 137, 758 (1963).
3. J.W. Truran and A.G.W. Cameron, Ap, and Space Sci. 14, 179 (TC) (1971).
4. B. Yage1, mpublished (1973).
5. B. Searle, in 'L Age des Etoiles', Meudon I, A.U. Symposiun $N^{\circ} 30$ (ed G. Cayrel and A. Delpiace) (1973).
6. B. Tinsley, lecture notes, Erice, May 1974.
7. A. Sandage, Ap. J. 162, 841 (1970).
8. W.A. Fowler, in Cosmology Fission and Other Matters. A Memorial to George Ganow, ed. F. Reines (Colorado Assoc. Univ. Press, Boulder, C0, 1972).
9. D.N. Schraron, and G.J. Wassen iurg, Ap. J. 162, 57 (1970).
10. H. Reeves, Astron. Astrophys. 19, 215 (1972).
11. R.V. Wagoner, Ap. J. 179: 343 (1973).
12. 0. Johns and H. Reeves, The r-process production ratios of long-lived radionuclides, to be published in The Astrophysical Journal, 15 Niovenber 1975.
1. A Sandage, Quarterly Journal of the Royal Astronomical Society 13, 282 (1972).

ATOMIC PROCESSES IN HEAVY ION COLLISIONS

B. B. Triplatt, ' L. I. Chaso, Jr. \ddagger, R. Anhoit, \S and P. D. Eond!

Hork has been done at the Stanford University tandem accelerator, the Brookhaven National Laboratory tandem accelerator, and the Berkeley SuperHILlC. $\mathrm{Kr}, \mathrm{Br}, \mathrm{I}$, and Pb beams were used with a variety of targets and separated atom (SA) $\mathrm{Kx} \times$ ray; of the target and projectile were measured. Contjnum radiation due to molecular orbital (MO) x rays was observed in many cases. The fecus of our work is to explain the observed cross sections for SA $\mathrm{K} x$ ray production and the thick target yields of MD x rays. Through theories exist for proton and alpha particle excitation of SA x rays, none exist that quantitatively explains the cross sections for asymetric collisions where the atomic number of the projectile is comparable to that of the target atom. Universal curves have been developed that semi-emprically fit the observed data with a fair reliability. In addition, theories of the one and two collision yield have been applied successfully to cases where Br and I were used as projectiles.

This work has been described in the Annual Report of the Tandem laboratory at Stanford under the following headings.
A. K Vacancy Production in Symmetric Heavy Ion Collisions.
B. Electron Promotion Contribution to Symetric $K X$-ray Production for $Z>10$ by Two Collision Processes in a solid.
C. Measurement of KX -ray Yield in $100 \mathrm{MeV} \mathrm{Pb}+\mathrm{Pb}$ Collisions and Approximate Scaligg Law for K Vacarcy Production in Hewry Ion Collisions with $z>10$.
D. Theory of Molecular Orbital X-ray Formation in Heavy Ion Collisions.
E. Approximate Interpolation Procedure for the 1so Molecular Orbital Level in Asymetric Heavy Ion Collisions.
F. Impact Parameter Dependence of K-Vacancy Production in Heavy Ion Collisions.
G. Observation of Molecular Orbital $\mathrm{K} X$-ray in Heavy Ion Collisions.

Of these topics, C and G above are reproduced in the following articles of this annual report.

Footnotes and References

*On partial leave at Lawrence Berkeley Laboratory. ${ }^{\dagger}$ Deparment of Physics, Stanford University, Stanford, Ca 94305.
${ }^{\ddagger}$ Lockheed Palo Alto Research Laboratory, Paln AIto, Ca.
${ }^{8}$ Department of Chemistry, University of California and larrence Berkeley Laboratory.
'Physies Divisian, Brookhaven National Laboratory, Upton, New York.

1. Abstracts from Stanford Anmual Report of the Tandem Laboratory 3/1/73-2/28/74, 'Nuclear Structure Investigations with an FN Taudem Acceleratoratonic Processes in Heavy Ion Collisions"
August, 1974.

MEASUREMENT OF K X•RAY YIELD IN $100 \mathrm{MeV} \mathrm{Pb}+\mathrm{Pb}$ COLLIS!ONS AND AN APPROXIMATE SCALING LAW FOR K VACANGY PRODUCTION IN HEAVY-ION COLLISIONS WITH $Z>10$

W. E. Meyerhuf, R. Anhoit, ${ }^{*}$ T. K. Saylor and P. D. Bondt

In order to examine the scaling law proposed in Section IX.A of ref. 2 for higher 2 collisions, we have measured the $\mathrm{Pb} \mathrm{K} x$ ray yield from 88- and $107-\mathrm{MeV} \mathrm{Pb}+\mathrm{Fb}$ collisions using the Brookhaven Tandem Van de Graaff accelerator. We have also determined an upper limit for Pb Kx ray production in $107-\mathrm{MeV} \mathrm{Pb}+$ Ta collisions. Table 1 gives our results. Cross sections were determined from thick target yields by assuming that the yield y_{K} varies exponentially with the bombarding energy ${ }_{1} E_{1}\left(y_{K}\right.$ a $E{ }^{s}$) and then using a well known formula ${ }^{1}$ to extract the cross section. This gives, for a target of 45° to the beam direction and a detector placed at 90°, viewing the front of the target

$$
\begin{equation*}
\sigma=\frac{A_{2}}{N_{0}}=\frac{y_{k}}{E_{1}} \frac{d E_{1}}{d \rho x}+\frac{\mu}{\rho}, \tag{1}
\end{equation*}
$$

where $A_{2}=$ target atomic number, $N_{0}=$ Avogadro's number, $\rho=$ target innsity, $\mu={ }^{\prime}{ }_{x}$-ray absorption coefficient. Table 1 gives the experimental yields and derived cross sections ($s=6.5$).

Since, in accordance with the ideas presented in Section IX.A Pb K wacancies in $\mathrm{Pb}+\mathrm{Pb}$ collisions should be produced by 2po excitation and ionization (process (b)], we scaled the experimental cross sections according to Eq. (I) of Ref. 2. He found that the scaled cross sections are approximately two orders of magnitude below the points associated with 2po excitation.

It turns out that for $\mathrm{Pb}+\mathrm{lb}$ the relativistic 2po MO binding energy is much larger ${ }^{3}$ than one would expect fron non-relativistic scaling of the Mo energy levels. Furthermore, with the available

TABLE 1.

$\begin{gathered} \mathrm{E}_{1} \\ (\mathrm{MeV}) \end{gathered}$	$y_{x}^{(a)}$	$\begin{gathered} \sigma_{x} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	$E_{1} / \lambda U$	$z^{z^{2} \sigma_{K}}$	$E_{1} / \lambda G$
107.2	5.6×10^{-9}	1.9×10^{-27}	3.22×10^{-3}	$4,8 \times 10^{-7}$	1.47×10^{-3}
87.7	$1.5 \quad 10^{-9}$	5.5×10^{-20}	2.64×10^{-2}	1.4×10^{-7}	1.25×10^{-3}
${ }^{(a)}$ Thick target K x-ray yield per projectile. Error $\approx \pm 208$. ${ }^{(b)}$ Corrected for neutral atom fluorescence yield (0.96). $\left(1 \text { a.u. }=2.80 \times 10^{-27} \mathrm{~cm}^{2}\right)$					

bombarding energy the distance of closest approach D of the nuclei is much larger than that required to bring the Mo levels to their united-atom values. ience it occurred to us to replace the atomic binding energy U in Eq. (1) of Ref. 2 by the MD bincing energy G at the distance of closest approach. This changes the scaling law to read

$$
\begin{equation*}
Z^{2} \sigma_{K}=F\left(E_{1} \pi / G M_{1}\right), \tag{2}
\end{equation*}
$$

where $G=G(D)$ with $D=Z^{2} e^{2} /(1 / 2) E_{1}$.

Fig. 1. K vacancy yield for symmetric collisions scaled according to Eq. (2). Open symbols - 2po excitation cross sections, closed symbols - 1so excitation cross sections.
(XBL 756-1554)

Values of G were looked up or interpolated from relativistic and non-relativistic MD level calculations ${ }^{3,4}$ for all cases where the bombarding energy was insufficient to bring G to its mited atom 1 init. The $\mathrm{Pb}+\mathrm{Pb}$ cross sections, as well as all cross sections assigned to 2po [process ioj] and lso excitation [process (c)] were scaled according to Eq. (2). The resulting points are shown in Fig, 1. Two facts can be noted.
(1) The $\mathrm{Pb}+\mathrm{Pb}$ cross sections fall nicely into the band of points representing 2 po excitation. (2) Within an order of magnitude the cross sectioms assigned to 2po and to 1so excitation fall on a universal curve, extending from H to Pb .

The theoretical basis of Eq. (3) has yet to be examined. It appears, though, that the energy gap G between the MO and the continuon is the important physical quantity which detemines K vacancy production in heavy-ion collisions with $Z>10$. The type of coupling (radial or rotational) appears to play a less inportant role. ${ }^{5}$

We thank Dr . Thieberger for producing the Pb beam at the Brookhaven Tandem.

Footnotes and References

*Nuclear Chemistry Department, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720.
${ }^{\dagger}$ Physics Division, Brookhaven National Laboratory, Upton, New York.
${ }^{*}$ Department of Physics, Stanford University, Stanford, California 94305.

1. E. Merzbacher and H. W. Lewis, Handbuch der Physik, Vol. 34 (Springer Verlag, 1958) F. 166.
2. Stanford Annual Report of the Tandem Laboratory, March 1, 1973 to February 28, 1974 (August 1974), Section IX.A.
3. B. Më11er, J. Rafelski and W. Greiner, Phys. lett. 47B, 5 (1973).
4. F. P. Larkins, J. Phys. B5, 571 (1972).
5. V. SethuRaman, W. R. Thorson and C. F. Lebeda, Phys. Rev, A8, 1316 (1973).

OBSERVATION OF MOLECULAR ORBITAL K X-RAYS IN HEAVY ION COLLISIONS

W. F.. Meyerhof, T. K. Saylor, S. M. Lazarus, W. A. Little, B. B. Triplatt, L, F, Chase, Jr., and R. Anholt ${ }^{\dagger}$

Following up our earlier work ${ }^{1}$ we have made extensive measurements, partially published, ${ }^{2}$ of continum x ray spectra from heavy-ion collisions using $30-$ and $60-\mathrm{MeV} \mathrm{Br}$ beams and a $82-\mathrm{MeV}$ I beam. He compared our results with the theory of molecu-lar-orbital (MO) K x ray formation as outlined in the preceding three sections. We showed that the most significant backgrounds in the region of the MOK X-ray continum in our measurements are nucleus-nucleus bremsstrahlung ${ }^{3}$ and, at bonbarding energies above 30 MeV , Coulomb-excited nuclear gamma rays. Also, close to the atonic $K \times$ ray lines radiative electron capture produces an irportant continum. 4 The contimum in excess of these backgrounds is in quantitative agreement with the predictions of Eqs. (2) and (4) of Ref. 5.

For very asymmetric collisions at low bombarding energies the two-collision spectram should be very small, the one-collision spectrum is important only at low x ray energies, and ruclear coulomb excitation is very small so that here the continum spectrum well above the atomic $K \times$-ray lines should consist only of nucleus-nucleus bremsstrahlung. Figure 1 shows the continum spectrum from $30 \mathrm{MeV}{ }^{79} \mathrm{Br}+\mathrm{Al}$. Only room background has been subtracted from the experimental spectrum. The spectrum has been corrected for absorption and detection efficiency effects and has been unfolded using experimental line shapes ${ }^{6}$ (a $17-\mathrm{cc}$ GeLi detector was used in this work). Curves T and 0 are the conputed two- and one-ccllision spectral yields, B is the computed nucleus-nucleus bremsstrahlung spectrum. Since the latter depends on the square of the difference between the target and projectile charge to mass ratio ${ }^{7}$ it turns out that the conputed bremsstrahilung spectrum for ${ }^{79} \mathrm{Br}+\mathrm{Al}$ is 1.65 times more intense than for $81 \mathrm{Br}+\mathrm{Al}$, It is pleasing to note that the experimental spectrim agrees with the appropriate computer spectrum. This is a good check on our eurrent integration and absorber and efficiency corrections. The excess counts at the upper end of the spectrum could be caused by weak nuclear Coulmb-excited gama rays.

Figure 2 gives an example of appreciable nuclear Coulamb excitation typical of a higher bombarding energy. Fortumately the spectrom associated with MO K x ray production rises sharply at lower x-ray energies (note the \log scale), so that the "flat" Compton background can be subtracted with reasonable certzinty. The major uncertainty occurs at the upper end of the M0 spectrum. A detailer comparison of the 60 kgeV Br \rightarrow Ti spectrum with the theory is shown in Fig. 1 of the preceding section. In agreement with Table 1 of Ref, 5 the one-collision process daminates here since the collision is sufficiently asymmetric. The absolute fit is about as good as can be expected.

Fig. 1. Cantinume x ray spectrun from $30-\mathrm{NeV}$ ${ }^{7} 9_{\mathrm{Br}}+\mathrm{Al}$ (room backgroumd subtracted). T, 0 and B are the conputed two-collision, one-collision and bremsstrahlung spectra, respectively. The dark line is the sum $\mathrm{T}+0{ }^{\prime}+\mathrm{B}\left({ }^{79} \mathrm{Br}\right)$. (XBL $756-1545$)

Fig. 2, Detected puise height spectrum from $60-\mathrm{MeV}{ }^{79} \mathrm{Pr}+\mathrm{Tj}$ (room backgromid subtracted).
 seen. The region of the molecular orbital spectrum (0.0) is indicated, as well as the anresolved K X-ray peak of Br. A 17 cc Geli detector was used. For the interpretation of the MO spectrm stee Fig. IX.F.1. of Ref. S., Section IX.F.
(전 756-1546)

Figure 3 shows that for a symmetric collision with relatively low Z the two-collision mechanism is daminant, in agreement with the Table 1 of Ref. 5. The dominance of the two-collision process in this case can be tested directly by varying the target-aton density n. The test can be made with solid targets, ${ }^{8}$ provided the other target atoms dn not contribute to the MO yield. We have found that if K or Cl are bombarded with 30 MeV Br , the projectile K vacancy yield, which is due to direct 1so M0 excitation in that case, 9 is only 10^{-3} of the $30-\mathrm{MeV} \mathrm{Br}+\mathrm{Br} \mathrm{K}$ vacancy yield. Hence we bombarded targets of solid Br (on a refrigerated Al backing) and of $\mathrm{KBr}+\mathrm{KCl}$ mixtures (evaporated onto A1 backings) with $30-\mathrm{MeV} \mathrm{Br}$. After correction for absorber and efficiency effects the spectra shown in Fig, 4a are obtained. Subtracting the expected nucleus-nucleus brensstrahlung background [curves B , computed from Eq. (II,E.13) of Ref. 7] one can deduce the net integrated $10 \mathrm{~K} \times$-ray yields MDD . Figure 4 b shows that the ratio yo $\mathrm{C}_{\mathrm{x}}=27$ to 50 KeV$) / y_{K}$ is approximately proportional to n (normalized relatjve to pure solid Br). A better proportionality is obtained if the one-collision yield (0) is also subtracted. Figure 4 b indicates a dominant two-collision mechanism for $30-\mathrm{MeV} \mathrm{Br}+$ Er collisions confirming the direct spectral fits snown in Fig. 4a. These fits used a M0 level calculation of Miller et al. 10 for the $\mathrm{Br}+\mathrm{Br}$ system. To estinate τ_{x} we used the empirical relation ${ }^{11}$ between the radiative K vacancy lifetime for atoms and the $K_{\alpha} x$-ray energy. This yields the correct τ_{x}, at the separate and mited atem limits, but is only approximate between. The calculated curves T in Fig, 4a show that in situations in which the two collision process should dominate this prescription is reasonably successful in fitting the experimental results.

Fig. 3. Continuum x ray spectrum from $30-\mathrm{MeV}$ $79 \mathrm{Br}+\mathrm{Br}$. Notation as for Fig. 1. RC indicates the continum spectrum from radiative electron capture.
(XBL 756-1547)

Table 1 of Ref. 5 indicates that at higher 2 the one-collision process should doninate MO Kx -

Fig, 4. (a) Corrected x-ray spectra from $30-\mathrm{Mel} \mathrm{Br}$ bombaidment of various Br targets. Room background subtracted, Typical systematic errors are $\pm 30 \%$. The relative Br density corresponds to the following targets: 1.00; pure $\mathrm{Br}, 0.44$; pure $\mathrm{KBr}, 0.18$: $50 \% \mathrm{KBr}+50 \% \mathrm{KC1}, 0.03: 108 \mathrm{KBr}+90 \% \mathrm{KC1}$. In each case, B, O, and T are the computed brensstrahlung, one-two-collision Mo spectra, respectively. The darker curves give $B+0+T$. (b) Ratio of integrated MO $K x$-ray yield ($E_{x}=27$ to 50 keV) to beam K vacancy yield versus relative Br density. Lines (0) and (T) give the relationships expected for one- and two-collision mechanisms; respectively. Open symbols - total MO yield minus estinated one-collision contribution.
(XBL 756-1548)
ray fomation even in symmetric collisions. To check this, we bonbarded thick, evaporated NaI targets with $82-\mathrm{MeV}$ I (Fig Sa). Unfortunately nuclear ganma rays. from 127 I ($58,145,230 \mathrm{keV}$) are strongly Coulsmb excited. After convincing ourselves that the continum between the 58- and $145-\mathrm{keV}$ gama ra/s is not due to pileup, we have extracted an x-ray band which we believe to be due to the I + I Mo K x-rays (Fig. 5b). Theoretical curves were conputed using an $R_{1} E_{x}$ relation from Ref. 10. The fit to experiment is reasonable and suggests the dominance of one-collision lso excitation in MO K x-ray production in higher Z ($Z>50$) collisions.

Fig. 5. X-ray spectra from NaI bombarded by $82-\mathrm{MeV}$ I. (a) Roon-background subtracted data, 17-cc Ge(Li) detector, 0.3-mm stainless steel absorber. Iodine K lines and Coulonb excited gamma rays are indicated. Dashed line is arsumed background under continum; P is a backscattering peak. Arrows give UA K x-ray limits. (b) Corrected x-ray spectrum. Ahove 100 keV the spectral shape is mareliable. Notation as for Fig. IX.G.1. The dark curve gives $B+0+T$.
(XBL 756-1549)

Although, overall, the fit of the theory outlined in Section IX.D to the experimental spectra is satisfactory, further tisoretical and experimental studies are needed. In the fomer one must investigate the dynamic effects due to the nuclear motion, 12 in the latter better investigations of the various continnm backgrounds are important.

Footnotes and References
*Lockheed Palo Alto Research Laboratory, Palo Alto, Cailfornia.
${ }^{+}$Nuclear Chemistry Department, Lawrence Berkeler Laboratory, University of California, Berkeley, California 94720.
\dagger Department of Physics, Sranford University, Stanford, Califormia 94305.

1. N. E. Meyerhof, T. K. Saylor, S. M. Lazarus, W. A. Little, B. B. Triplet and L. F. Chase, Jr., Phys. Rev. Lett. 30, 1279 (1973); 32, 502 (1974).
2. W. E. Meyerhof, T, K, Saylor, S. M. Lazaxus, W. A. Little, B. B. Triplett, L. F. Chase, Jr. and R. Anholt, Phys, Rev, Let* 32, 1279 (1974).
3. T. K. Saylor, unpublished (June 1973); W. E. Meyerhof, Thind Int. Sem. on Ion-Atom Collisions, Gif-sur-Yvette, France ©July 1973), umpublished; C. K. Davis et al., Bull. Am. Phys. Soc. 18, 1406 (1973).

4, p. Kienle et al., Phys. Rev. Lett. 31, 1099 (1973).
5. Stanford Annual Report of the Tanden Laboratory, March 1, 1973 to February 28, 1974 (August 1974), Section IX.D.
6. T. K. Saylor unpublished. See also Section IX.B of Ref. 5 ,
3. K, Alder et al., Rev. Mod. Phys. 28, 432 (1956).
8. Jacob A. Aten, F.O.M. Institute, Amsterddm, private commanication.
9. W. E. Meyerhof, Phys. Rev. Lett. 31. 1314 (1973).
10. B. Miller, J. Rafelski and W. Greiner, Phys. Lett. 47B, 5 (1973).
11. W. Bambynek et al. , Rev. Mod. Phys. 44, 716 (1972).
12. W. Lichten, Phys. Rev. A9, 1458 (1974); K. Smith, B. Miiler and W. Greiner, to be pubblished; J. S. Briggs and J. Macek, J. Phys. B, to be published.

R. Anholt

The purpose of this note is to present semiempirical calculations of the one and two collision molecular orbital (MO) K X-ray yield. As opposed to discrete Ka or $\mathrm{K} \beta$ transitions in separated atoms (SA), MO K X-rays are observed in collisions as a continum stretching from the $K X$-ray peaks of the SA down to the KB transition energy in the united atom (UA). The theory of the two collision MD X -ray yield was given by Briggs and Macek and Meyerhof et al. 2 and the one collision yield by Meyerhof et al. 2 Although the Meyerhof group has presented calculations which fit the experimental observations very well, their calculation only includes the $2 \mathrm{p} \mathrm{\pi}-1 \mathrm{so}$ transition rate adjusted to the inverse of the total lifetime of a vacancy in the 1so orbital, and the transition energy was the 2p $\pi \rightarrow$ 1sq energy interpolated from one-electron, 4 non-relativistic ${ }^{3}$ and relativistic calculations, ${ }^{4}$ Other transitions from the $2 \mathrm{p} \mathrm{\sigma}, 3 \mathrm{p}, 3 \mathrm{p} \pi$, $4 \mathrm{p} \mathrm{\pi}$, etc. molecular orbitals are also important, and since the yields from these orbitals are expected to have a different shape from the $2 p \pi \rightarrow 1 s \sigma$, it is not clear if Meyerhof's procedure is entirely valid.

To check this, we have calculated transition rates as a function of the internuclear distance, R, using exact, one-electron $\mathrm{H}_{2}{ }^{+}$and Her ${ }^{+2}$ type wave functions. 3 Though one-electron calculations give fairly accurate values for transition rates and transition energies for intemediate atomic numbers $20<Z<100$, there is nevertheless a tendency for the transition energies to be lower (for $Z<50$) and higher for $Z>50$) than experiment and the transition rates to be higher than experiment. To correct for these deficiencies, we have adopted a semi-empirical procedure which is described below. In the following section we present theoretical expressions for the MO K. X-ray yield and calculations using these expre isions. Following this we describe our semi-empirical procedure and use it to calculate thick target itelds for $30 \mathrm{MeV} \mathrm{Br}+\mathrm{Br}_{2}$ and $60 \mathrm{MeV} \mathrm{Br}+\mathrm{Ti}$. These are compared with Meyerhof's method and with experiment.

The theoretical expressions for the one and two collision M0 K X-ray thick target yields are given in Table 1. This is for two states 1 and 2 only; for many states orbital 2 is replaced by j and the yield is sumned X-ray energy-wise over many other transitions, The form of $P(b, E)$ which we used is:

$$
P(b, E)=.2 \frac{\sigma_{1 s}(E)}{a^{2}}\left[1+e^{b / a_{1}-1}\right.
$$

where $a=2 a_{0}\left[Z_{1}+Z_{2} J^{-3}\right.$ with a_{0} equal to the Bohr radius and $\sigma_{\text {Is }}(E)$ is the cross section for making vacancies in the lso orbital. The transition energies $E_{X}(R)$ and rates $\lambda_{12}(R)$ are calculated using one-electron wave functions and experimental values for the cross sections (or thick target yíelds) are used. The Demkov theory allows us to calculate $W(2 p-1 s)$ etc.

Yields for $30 \mathrm{MeV} \mathrm{Br}+\mathrm{Br}_{2}$ and $60 \mathrm{MoV} \mathrm{Br}+\mathrm{Ti}$ are shown in Figs. 1 and 2. It should be noted that for the $3 p \sigma$ and $4 p \sigma$ orbitals the radiative dipole matrix element changes sign at $r .03 \mathrm{~A}$ which is where the transition energy is approximately 25 keV (for $\mathrm{Br}+\mathrm{Br}$), which explains the behavior of the X-ray yield as a function of $E_{X}(R)$ in those cases. Note that the quite different behavior of the orbital transitions makes a sort of bulge in the total two-collision yield which is not seen in the 2pir yield.

To correct these intensities for relativistic and many-electron effects, we have adopted the following procedure: At each internuclear distance the $2 p \pi$ transition energy and rate is calculated using one-electron wave functions. The energy is compared to $2 p+1 s$ energies in hydrogenic atoms which is then compared to experimental $2 p_{3 / 2}+1 \mathrm{~s}$ energies in atoms. A simple interpolation is performed to find a semi-empirical value for the 2 pr or $2 \mathrm{p}_{3 / 2}$ molecular orbital energy. For $2 p o$ transitions, $2 p_{1 / 2}$ energies for atoms are used, for $3 \mathrm{soj} 3 \mathrm{po}, 3 \mathrm{p} \pi, 4 \mathrm{so}$, etc. $3 s_{1 / 2}, 3 \mathrm{p}_{1 / 2}$,

Fig. 1. Thick target yields for $30 \mathrm{MeV} \mathrm{Br}+\mathrm{Br}_{2}$. Conponent two collision yields from π transition (dash lines) and σ transition (solid lines) are shown. Total one and two collision yields are shown as dash-dot-dash line.
(XBL 757-3572)

TABLE 1.
One Collision Yield

$$
\frac{d Y_{12}}{d E_{x}}=\int_{0}^{E_{1}} d E S(E)^{-1}{r_{2}}^{2} \int_{0}^{\rho} 2 \pi b d b P\left(b_{1} E\right) \frac{\lambda_{12}(R)}{v_{R}} \frac{d R}{d E_{x}}
$$

Two Collision Yield

$$
\frac{d Y_{12}\left(E_{X}\right)}{d E_{K}}=\int_{0}^{E_{1}} d E S(E)^{-1} n_{2} \sigma(E] f(\omega) \omega_{K} 4 m_{2} R^{2} \frac{d R}{d E_{X}} \frac{\lambda_{12}(R)}{\lambda_{1}}\left[1-\frac{d_{0}}{R}\right]^{1}
$$

dY al $_{X}$; Yield per projectile per unit energy.
$\mathrm{E}_{\mathrm{X}}^{12}(\mathrm{R}): \quad \begin{aligned} & \mathrm{X} \text { tay transition energy betwer. } 1 \mathrm{so}=1 \text { and molecular orbital } 2 \text { at internuclear } \\ & \text { distance } R .\end{aligned}$
S(E): Stopping power of the ion in the target with projectile energy E.
$n_{2}: \quad$ Target atom density.
$\sigma(E) f(\omega)=\sigma 2_{p \sigma}(E) \times \omega(2 p \sigma-1 s) \times \omega(1 s \sigma-1 s)+\sigma_{1 s}(E) \times \omega(1 s \sigma-1 s) \times \omega(1 s-1 s \sigma)$
$\sigma_{2 \mathrm{po}},{ }^{\sigma_{1 s e}}: \quad$ Is the cross section for making vacancies in the 2 po and 150 orbital, $\omega(2 \mathrm{po}-1 \mathrm{~s}), \omega(1 \mathrm{so}-1 \mathrm{~s})$ is the probability of transferring the vacancy from the 2 po, iso MD to the projectile 1 s orbital.
b: The impact parameter.
d_{0} : The distance of closest approach at $b=0$.
$\rho=\left(R^{2}-d_{\sigma} R\right)^{2_{1}}, \quad v_{R}=y_{1}\left(1-d_{o} / R-b^{2} / R^{2}\right)^{y_{1}}$, where v_{1} is the projectile velocity.
$\lambda_{12}(R)$: The radiative transition rate from orbital 1 to 2 .
λ_{1} : The total radiative transition rate into the $1 s$ orbital of the projectile.
$\mathrm{dR} / \mathrm{dE}_{\mathrm{X}}$: The change in nuclear distance with respect to the transition energy.
$P(b, E): \quad$ The probability of creating a 1 so vacancy at impact parameter b and projectile energy E.
E_{1} : The initial energy of the projectile.
$u_{\mathrm{K}}: \quad$ The neutral atom fluorescent yield for projectile K vacancies.

Fig. 2. Thick target yields for $60 \mathrm{MeV} \mathrm{Br}+\mathrm{Ti}$. Since the one collision yield is dominant here, only the component one collision yields from the σ (solid line) and π (dashed) transitions are shown. Total ane and two collision yields dash-dot-dash line.
(XBL 757-3574)
$3 p_{3 / 2}, 4 s_{1 / 2}$, values are used. Since the ratio of the transition rates calculated using one-electron and many electron wave functions ${ }^{6}$ doesn't vary much over $20<Z<100$, we do not correct for this manyelectron effect for the two-collision yield (since onl: the ratio of $\lambda(\mathrm{R}) / \lambda$ is used anyway). In the one-collision fommia, we multiply by $\lambda(M . E ., U A) / \lambda(O . E ., U A)$ which is the ratio of the total is transition rate in the united atom calculated using many-electron wave functions to that using one-electron wave functions.

Using these semi-empirical values, we calculate the thick target yield for $\mathrm{Br}+\mathrm{Br}_{2}$ and $\mathrm{Br}+\mathrm{Ti}$ and compare these with experiment and with Meyerhof's approximate calculations in Fig. 3. Both methods fit the experimental data faily well, though there is a tendency for our calculations to

Fig. 3. Semi-empirically calculated (dash 1ine) thick target yields for $30 \mathrm{MeV} \mathrm{Br}+\mathrm{Br}_{2}$ and 60 MeV $\mathrm{Br}+\mathrm{Ti}$. Meyerhof's calculations are shown by a solid line. $0=$ one collision, $T=$ two collision, $B=$ nucleus-nucleus bremsstrahiung, $S=T+0+B$. T or 0 not shown when $T \approx S$ or $0 \approx S$.
(XBL 757-3573)
overestinate the yield. This overestimation is not serious, however, and within the accuracy of the experimental data and the theory, it is probably inpossible to say whether our calculations ar Meyerhof's much simpler ones are better.

References

1. J. H. Macek and 3. S. Briggs, J. Phys. B7, 1312 (1974).

2, W. E. Meyerhof, T. K. Saylor, S. M. Lazarus, A. Little, L. F. Chase, Jr., R. Anholt, Phys. Rev. Lett. 32, 1279 (1974)
3. K. Helfrich and H. Harimann, Theor. Chim. Acta. 16,263 (1970).
4. B. Miller, J. Rafelski, and W. Greiner, Phys, lett. 47B, 5 (1973).
5. W. E. Meyerhof, Phys, Rev, Lett. 31, 134 (1973).
6. J. H. Scofield, Phys. Rev. 179, 9 (1969).

SECONDARY ELECTRON BREMSSTRAHLUNG YIELD IN SYMMETRIC HEAVY ION COLLISIONS

R. Anholt and J. O. Rasmussen

X-ray continua in $30-200 \mathrm{MeV} \mathrm{Br}, \mathrm{NL}$, Ni , and I bombardments of thick targets of the same atomic number have recently been observed by several groups. $1,2,3$ These continua are thought to be due to nolecular orbital (M) x-rays. The major background in these experiments is electron-nucleus and nucleus-nucleus bremsstrablung. Although nucleus-nucleus bremsstrahlung can be calculated quite simply, ${ }^{4}$ the calculation of electron-nucleus bremsstrahlung yields is more difficult because the yield of secondary electrons in the region above 10 keV rust first be calculated.

Recently a calculation by Folkmann et. a1. 5 has been used to estimate the yield of secondary electrons and the bremsstrahiung yield in symnetric ${ }^{2}$ and nearly symretric ${ }^{6}$ collisions. Folkmann's code uses the binary encounter approximation (BEA) to calculate the yield of secondary electrons and while this approcination gives good results for very asymnetric encounters where alpha particles and protons are the projectiles, there is less evidence of its applicability in the present cases. ${ }^{7}$

In the collisions of interest, the ratio of the projectile velocity to the velocity of the K electron of the lower-z collision partner is mulh less than wity, hence the electrons may readjust themselves to the presence of the added charge of the projectile, thereby forming molecular orbitals. The velocity distribution used in the BEA calcilations is no longer atomic, but is a molecular distribution; hence, this theory should not be applicable in these cases. Cleariy there is more fundamental justification to use the method of Perturbed Stationary States (PSS) rather than the BEA theory to calculate secondary electron yields.

The most extensive PSS calculation has been made for $100-500 \mathrm{eV}$ proton + hydrogen collisions by Thorson and co-workers. 8,9 The electron production cross sections obtained in their calculations for the dominant $2 \mathrm{po} \rightarrow$ continuum process are shown in Fig. 1 along with BEA calculations for the same system. Except for the results at lower bombarding energy, these is remarkable agreement in absolute magnitude between the BEA and PSS results, which suggests that despite doubts about the validity of the BEA theory, the theory nevertheless provides a fairly good estimate of electron production cross sections at least for the protom + hydrogen system at these energies.

To extend this comparison to the systems of interest, we first discuss the way in which these cross sections scale with bonbarding energy, electron energy, and atomic number. The BEA theory scales in the following manner:

$$
\begin{equation*}
\frac{d \sigma_{e}}{d E_{e}}\left(Z_{2}^{\hbar^{2}} E_{e}, A_{1} Z_{2}^{2} E_{3}\right)=\frac{Z_{1}^{2}}{Z_{2}^{\star}} \frac{d \sigma_{e}}{d E_{e}}\left(E_{e}, E_{1}\right) \tag{1}
\end{equation*}
$$

Fig. 1. Differential cross section for the production of secondary electrons in 100, 200, 350, and 500 eV proton + hydrogen collisions. Perturbed Stationary State calculation (dashed line) compared to binary encounter theory (solid line).
(XBJ. 757-3575)
where E_{e} and E_{1} are the electron and projectile energies in the proton + hydrogen calculation, A_{1} and Z_{1} are the mass (in a.m.u.) and atomic number of the projectile, and $2^{\kappa^{2}}=U_{K 2} / 0.0136$ where $U_{K 2}$ is the binding energy of the target K electron in keV .

The fork of Briggs and Macek, ${ }^{10}$ Meyerhof, ${ }^{11}$ and Thorson ${ }^{8}$, suggests that the PSS calculations may be scaled according to:

$$
\begin{equation*}
\frac{d \sigma_{e}}{d E_{e}}\left(Z_{2}^{\hbar^{2} E_{e}}, A_{1} z_{2}^{\hbar^{2} E_{1}}\right)=\frac{1}{z_{2}^{\hbar_{2}^{4}}} \frac{d \sigma_{e}}{d E_{e}}\left(E_{e}, E_{1}\right) \tag{2}
\end{equation*}
$$

which differs from the BEA scaling by an anount ($\left.Z_{1} / z_{2}^{*}\right)^{2}$. For symmetric encounters this ratio is of the order of mity (1.23 for $\mathrm{Br}, 1.15$ for I). The greatest deviations occur for very low atomic numbers ($2<20$) and very high atomic numbers ($Z>100$).

Using Eq. (1) and (2), the electron cross sections in Fig. I may be scaled up to $\mathrm{Br}+\mathrm{Br}$ encoumters. Then, given the yield of electrons of
energy E_{e}, standard brensstrahlung formulas 12 nay be used in orde: to calculate the secondary electron bremsstrahlung yields. We shall not describe this herein but will refer to Folhoman's paper, ${ }^{5}$ which we have closely followed.

Bremsstrahlung cross sections for 39.6 MeV $\mathrm{Br}+\mathrm{Br}$ (Scaled from $500 \mathrm{eV} \mathrm{p}+\mathrm{H}$) are shown in Fig. 2. The calculation was made considering only one K electron as in $\mathrm{p}+\mathrm{H}$. The agreement, like that for the electron cross section is very good and shows that the BEA theory can be used with a fair reliability for calculationg secondary electron bremsstrahiung cross sections over the range $20<2<100$ and for bombarding energies $100<\mathrm{E} / \mathrm{A}_{2} \mathrm{Z}_{2}{ }^{2}<500 \mathrm{eV}$.

For the many electron systems involved in the cases of interest we have still not shown that the BEA theory is reliable for predicting cross sections for excitation of electrons out of the L, M, and N orbitals. Calculations using the BEA theory however, show that the addition of the bremsstrahlung yield caused by electrons excited out of the L, M, and N orbitals increases the total cross section by a factor of 2 to 4 as is shown in Fig. 2. Because of the very good agreement with

Fig. 2. Differential cross sectian for the production of secondary electron bremsstrahlung in 39.6 $\mathrm{MeV} \mathrm{Br}+\mathrm{Br}$ collisions. One-electron REA calculations (solid line) compared to PSS calculations (points). Dashed line is for many-electron $\mathrm{Br}+\mathrm{Br}$. Dash-dot-dash line is for 4 K electron $\mathrm{Br}+\mathrm{Br}$.
(XBL 757-3571)
the K electron cross sections, it is mlikely that the L, M, and N cross sections differ from what is predicted by the BEA theory by more than a factor of two.

In conclusion, the BEA theory provides a fairly reliable way of estimating the secondaty electron bremsstrahlung yeild in symmetric heavy-ion collisions. He have calculated many electron thick target yields in a number of cases and find that it makes a negligible contribution to the total continum yield for $30-200 \mathrm{MeV} \mathrm{Br}, \mathrm{I}, \mathrm{Nb}$, and Ni collisions. For $30-\mathrm{MeV} \mathrm{Br}+\mathrm{Br}_{2}$, the bremsstrahlung yield lies two and a half to three orders of magnitude lower than the experimental yield. 1 for $60-\mathrm{MeV} \mathrm{Nb}+\mathrm{Nb}$, Gippner et. al. ${ }^{2}$ report a yield of 6.2×10^{-5} photors/projectile integrated between 16 and $30 \mathrm{keV} x$-ray energy. We disagree with their suggestion that this yield could be due to secondary electron bremsstrahlung for we calculate that this contributes only 9.4×10^{-9} photons/projectile to the total yield in that region.

References

1. W. E. Meyerhof, T. K. Saylor, S. M. Lazarus, A. Little, B. B. Triplett, L, F. Chase, Jr., Phys. Rev. Letters, 30, 1279 (1973) and 32, 502 (19:4).
2. P. Gippner, K. H. Kaun, H. Sodan, F. Stary, W. Schulze and Yu. P. Tretyakev, Physics Letters, 52B, 183 (1974).
3. J. S. Greenberg, C. K. Davis, P. Vincent, Phys. Rev. Lett., 33, 473 (1974).
4. K. Alder, A. Bohr, T. Hurs, B. Mottleson, and A. Winther, Review Modem Physics, 28, 432 (1956).
5. F. Folkmann, C. Gaarde, T. Hnis, and K. Kemp, Nuc. Inst. Methods, 116, 487 (1974).
6. F. C. Jundt, H. Kubo, and H. E. Gove, Phys. Rev. A10, 1053 (1974).
7. M. E. Ruxd, J. K. Macek, Case Scudies in Atomic Physics, 3, 47 (197i). The authors show that the BEA theory gives good agreement with experimental measurements of electron production cross-sections in 20-300 keV proton + He collisions.
8. W. R. Thorson, Phys. Rev. A to be published.
9. V. SethuRaman, W. R. Thorson, and C. F. Lebeda, Phys. Rev. A8, 1316 (1973).
10. J. S. Briggs, J. H. Macek, J. Phys. B6, 982 (1973).
11. W. E. Meyerhof, Phys. Rev, A10, 1005 (1974) and to be published.
12. H. W. Koch, J. W. Motz, Reviews of Modern Physics, 31, 920 (1959).

X-RAY CONTINUA IN 60 MeV Br AND 202 MeV Kr BOMBARDMENTS OF Au, Pb, AND U

R. Anholt, J. O. Rasmussen, H. Bakhru, ${ }^{*}$ N. Cue, *
T. K. Saylor, ${ }^{\text {S S. M. Lazarus, }}$, and A. Little \dagger

The discovery of molecular orbital (MO) x rays by Saris et al., 1 Ammbruster et al., ${ }^{2}$ and MacDonald et al. ${ }^{3}$ suggested the possibility that binding energies and x-ray transition energies in as yet undiscovered superheavy elements could be measured by finding the endpoints in the MOX-ray spectra. To this end, we examined $10-80 \mathrm{keV}$ x-ray continua in Kr and Br ion bombardments of Au, Pb, and U targets. In this reion, MOL x-rays corresponding to transitions to the $2 \mathrm{so}, 2 \mathrm{po}$, and 2 pm molecallar orbitals are expected (see fig. 1 for netation). In previous work the yield of MO x-rays was observed to be greatly enhanced around the matching of the $K-K$ and $L-M$ binding energies. We would expect a similar enhancement in the present cases since the target L shell binding energy approximately matches that of the projectile K shell.

A $60-\mathrm{MeV}{ }^{79} \mathrm{Br}$ beam from the Stanford tanden accelerator and a $202-\mathrm{MeV}{ }^{84} \mathrm{Kr}$ beam from the Berkeley Superhilac were used to bombard thick targets of gold, lead, and uranium. The target faced 45° to the beam and $17 \mathrm{CC} \mathrm{Ge}(\mathrm{Li})$ (at Stanford) and a 1 cc intrinsic Ge (at Berkeley and Stanford) viewed the front of the target through a $0,0025 \mathrm{~cm}$ beryllium window. Various absorbers were used to attenuate the separated atom (SA) x-rays. The bean current was measured by integrating the charge from the entire target chamber which was electrically insulated from the beam line. An electron suppressor located between the collinator and the target was used to prevent electrons from streaming into or out of the chamber.

In Fig. 2 we show the absolute yield of these continumm x-rays for $60-\mathrm{MeV} \mathrm{Br}+\mathrm{Au}, \mathrm{Pb}$, and U . The 202 MKeV Kr data are sinilar to the Br data and are not shown here. These spectra appear to be due to MOL x -rays. The x -ray energy is about right, stretching from the L x-ray transitions in the SA domn to approxinately the L transition energy in the united atom (UA). The endpoints are not quite right as will be discussed below. To establish that these are 10 x -rays we have shown in a number of additional experiments and calculations that this yield can not be due to other processes also giving x-ray continua: 1) electron-nucleus or nucleus-nucleus brensstrahiung, 2) Compton tails from strongly excited $K x$-rays and γ-rays of the target, and 3) electronic pileup.

1) Bremsstrahlung yields are shown in the figure; they have been calculated using the nucleusnucleus dipole bremsstrahlung formula of Adier et al. 4 and the secondayy electron bremsstrahlung code of Folkmann et.al,5 The applicability of the Folkmann code was recently examined by Anholt and Rasmussen. ${ }^{6}$ In both cases, bremsstrahlung make a negligible contribution to the continum yield.
2) By semi-enpiricaliy estimating the response function of the detector to high energy x-rays and γ-rays, we have shown that Compton tails from the $\mathrm{K} \times$-rays and Coulomb excited γ-rays of the target

Fig. 1. Molecular Orbital correlation diagram calculated using one-electron non-relativistic wavefumctions: For these high atomic numbers, $j-j$ coupling is more appropriate and we would denote 1 so by $\mathrm{ls}_{1} / 2$, $2 \mathrm{p} \pi$ by $\mathrm{Zp}_{3 / 2}$ etc.
(XBL 7410-4565)

Fig. 2. Absolute yields for $60 \mathrm{MeV} \mathrm{Br}+\mathrm{Au}, \mathrm{Pb}$, and U , Jagged solid line is experimental yield. Nucleus-nucleus and secondary electron bremsstrahlung yield shown as dash-dot and dashed lines respectively, $L \alpha, L B$, and $L \gamma$ arrows show transition energies in the mited atom. (L_{2}) arrow explained in text. The target $L x$ ray transitions are too intense to show on these plots and lie between 10 and 20 keV .
(XBL 7410-4562)
could not account for this yield either.
3) Lastly, in one rm , we used 62-, 82-, and 125-mil aluminum absorbers to attenuate the SA x-rays. When the observed coumts were corrected for these differing absorbers, the same absolute
yield was obtained to within 20\%. Since the addition of more attenuation decreased the counting rate and thus the pileup of the intense L. x-rays of the target by more than a factor of 1000 here, this experiment shows that pileup could not account for this continum yield.

Lastly, we discuss the endpoirits in the MO x-ray spectra. In the cases of MOK x-rays the largest possible transition energy occurs at the UA limit ($R \sim 0$) on the $M D$ correlation diagram. In the early experiments, 7 the MD x-ray yield was observed to approach zero around the Ko and $\mathrm{K} \beta \mathrm{x}$-ray energies of the UA and this not only confimed the assignment of this continum being due to M0 x-rays, but suggested that at least the KB transition energy in the UA could be foumd even in cases where the UA atonic number exceeds 110. Later experimeftal work and theoretical work by Briggs and Macek ${ }^{8}$ showed that due to dymamical line broadening considerations, the endpoint is not expected to be very sharp and in fact may not beg distinct at all in some cases. MacDonald et.al. ${ }^{3}$ saw that the 10 yield in carbon + carbon collisions overshoots the UA transition energy with no visible break around the expected endpoint. Greenberg ${ }_{9}$ and Davis observed the same in Ni - Ni collisions. 9

For these reasons, it is not surprising that the L MO yield in Fig. 2 overshoots the maximm UA transition energy (ly4 arrows in the figure). However, for these L MO x rays, there is the added complication that the transition energy at the UA is not the highest possible transition energy; there is a minimon on the 2po curve in Fig, 1 occuring at $\mathrm{R} \sim 0.03 \AA$ and hence the endpoint should be at approximately the binding energy of the 2pa orbital at that distance. In Fig. 2 that energy is shown as dotted L_{2} arrows and for probably the reasons we discussed earlier, the yield overshoots these points also.

Despite these anomalies, we conclude that the spectra observed in our experiments are due to MO L x-rays. We have ruled out the possibility
that bremsstrahlung, Compton tails, or electronic pileup could account for the yield of continuum x rays. The endpoints in these spectra are not well explained. Evidently, the effects that cause the continum endpoints to lie beyond the united atom L binding energies preclude any precise measurements of electron binding energies of superheavy elements by this techrique.

Footnotes and References

*Department of Physics, State University of New York, Albany, N.Y. 12222.
\dagger Department of Physics, Stanford University, Stanford, Ca. 94305.

1. F, W. Saris, H. F. van der Weg, H. Tawara and R. Laubert, Phys. Rev. Lett. 28, 717 (1972).
2. P. H. Mokler, H. J. Stein, and P. Ambruster, Phys. Rev. Lett. 29, 827 (1972).
3. J. R. MacDonald, M. D. Brown and T. Chiao, Phys. Rev. Lett. 30, 471 (1973).
4. K. Alder, A. Bohr, T, Yus, B. Mottleson, and A. Winther, Rev. Mod. Phys. 28, 432 (1956).
5. F. Folknam, G. Gaarde, T. Fuus, and K. Kemp, Nuc. Inst. Methods to be published.
6. R. Arholt, J. O. Rasmussen, to be published and herein.
7. H. E. Meyerhof, T. K. Saylor, S. M. Lazarus, A. Little, B. B. Triplett, L. F. Chase, Jr., and R. Anholt, Phys. Rev. Lett. 32, 1279 (1974).
8. J. H. Macek and J. S. Briggs, to be published Journal of Physics B,
9. C. K. Davis and J. S. Greenberg, private commanication.

RADIATIVE DECAY OF THE $2^{3} \mathrm{~S}_{1}$ AND $2^{3} \mathrm{P}_{2}$ STATES OF HELIUM-LIKE VANADIUM $(Z=23)$ AND IRON $(Z=26)^{*}$

H. Gould, R. Marrus, and P. J. Mohr

The study of radiative decay from the $2^{3} S_{1}$ and $2^{9} \mathrm{P}_{2}$ levels of the two-electron system offers an opportunity to test the theory of forbidden decay in a system where precise, unambiguous calculations of decay rates can be made. In this report, we describe some measurements designed to extend existing experimental information on the rates of these decays to the two-electron atoms V^{+21} and Fe^{+24}. We develop a theory for the $2^{3} \mathrm{P}_{2}$ rates which take into account leading order relativistic corrections and hyperfine effects. Our resu ts on vanadium show the first evidence for the influence of the hyperfine interaction on the radiative decay of an energy level belonging to the two-electronsystem.

Experimental work on the $2^{3} \mathrm{~S}_{1}$ levels of the two-electron system has established the singlephoton nature of the decay in Ar^{+16} (Ref. 1) and ordinary helium. ${ }^{2}$ The theory of ${ }_{3}$ this decay has been examined by several authors ${ }^{3}$ and detailed calculations of the raţes have been made by Drake ${ }^{4}$ and by Johnson and Lin ${ }^{5}$ using somewhat different starting points. Measurements of this decay rate have been made on $\mathrm{Ar}^{+16}, \mathrm{Ti}^{+20}$ (Ref. 6) and Cl^{+15} (Ref. 7). The measured rates in Cl and Ar differ from theory by several times the quoted error, whereas the result in Ti is in agreement. In order to establish the Z dependence of this discrepancy we report here measurements on $\mathrm{V}^{+2 \mathrm{~L}}$ and Fe^{+24}.

Interest in the $2^{3} \mathrm{P}_{2}$ levels centers mainly on the M2 decay mode to the $1^{1} S_{0}$ gromnd level which has a rate comparable with the E1 rate to $2^{3} S_{1}$ for ions with $Z=20$. The M2 decay was first observed in Ar^{+16} (Ref. 8) and rates have now been measured in S^{+24} (Ref, 9), Cl^{+15} (Ref. 10) and Ar^{+16} (Ref. 11). In this report we present evidence indicating that the decay of this level is strongly influenced by the hyperfine interaction in V^{+21} and give results for Fe^{+24}.

The liferimes were measured by the bean-foil time-of-flight method. Our apparatus has been described previously ${ }^{6}$ and the details are not repeated here. The vanadium $(Z=23)$ and iron ($z=26$) ions were obtained from the superiflac at an energy of $7.2 \mathrm{MeV} / \mathrm{AMJ}$. Excitation of the beams into the metastable states was done with a $50 \mathrm{\mu gn/}$ cm^{2} carbon foil. Decay curves are taken by varying the foil-detector separation. The total nunber of counts under the peak is integrated and nomalized to the integrated beam current collected in a Faraday cup. This quantity is plotted vs. foildetector separation. A semple decay curve is shown in Fig. 1.

Since the $2^{3} \mathrm{P}_{2}$ and $2^{3} \mathrm{~S}_{1}$ energy separations are small compared ${ }^{2}$ with the detector resolution. the decay curves ar ${ }^{2}$ composites, exhibiting fast components and slow components. The slow components are ascribed to the $2^{3} S$ decay and the fast components to decay from $2^{3} \mathrm{P}_{2}$: As discussed below, the slow and fast components are probably composites of tho or more exponentials as the result of hyperfine effects in V^{+21} and cascading effects in Fe^{+24}.

The isotope ${ }^{51} V$ has a nuclear spin $I=7 / 2$ and magnetic moment $\mu=5.15 \mathrm{~nm}, 12$ The resulting hyperfine structure (HFS) influences our decay
curves by admixing $2^{9} \mathrm{P}_{2}$ with $2^{3} \mathrm{P}_{1}$ and $2^{1} \mathrm{P}_{1}$. The $2^{3} \mathrm{P}_{2}$ level is split into five components with total angular momentus between $F=3 / 2$ and $F=11 / 2$ (Fig. 1). Because the hyperfine interaction is diagonal in F, the rates from both $F=3 / 2$ and $F=11 / 2$ are unaffected by hyperfine structure. However, the rates from $F=5 / 2,7 / 2$ and $9 / 2$ will all be altered. Hence, the observed decay curve will be a composite of four exponentials weighted according to the initial populations of erch oi che hyperfine levels.

The most abundant stable incin isotope has zero spin and hyperfine effects are not present. Hence the decay of $2^{3} \mathrm{P}_{2}$ is exclusively by El decay to $2^{3} S_{1}$ and $M 2$ to $1^{1} S_{0}$.

A problem arises in the interpretation of the $2^{3} \mathrm{~S}_{1}$ decay due to cascading from $2^{3} \mathrm{P}_{8}$. The lifetime of $2^{3} \mathrm{P}_{0}$ is calculated to be $\tau=2.7 \mathrm{nsec}$ which is close to that of $2^{3} \mathrm{~S}_{1}$. Hence cascading effects from this level may be unportant. The shape of the resultant curve will depend upon the relative population

$$
R \equiv \frac{N_{0}\left(2^{3} P_{0}\right)}{N_{0}\left(2^{3} S_{1}\right)}
$$

of the two states and ecay rates. It was found that the data could be fit to two exponertials for $0<R<0.8$. Varying the lifetimes of the tho exponentials, we find that the "best fit" values for $\tau\left(2^{3} \mathrm{~S}_{1}\right)$ varied between 4.2 ns and 5.3 ns , where 5.3 ns results from a single exponential fit ($\mathrm{R}=0$) and, hence, is an uper limis to the $2^{3} \mathrm{~S}_{2}$ lifetime. Similarly, the values for $\tau\left(2^{3} \mathrm{P}_{0}\right)$ varied between 1.3 ns and 3.3 ns . We note that the theoretical value of $\tau\left(2^{3} \mathrm{P}_{0}\right)=2.7 \mathrm{nsec}$ corresponds to $\tau\left(2^{3} \mathrm{~S}_{1}\right.$. $=4.8 \mathrm{nsec}$. We have chosen to take the mean valux

rig. 1. Sample decay curve obtained with V^{+}beam. The points beyond 2 22 cm are fit to a single exponential and ascribed to decay of the $2^{3} \mathrm{~S}_{1}$ level. The near points; are fit to a composite of four exponentials as docr-ibed in the text and are ascribed to decay of the $2{ }^{3} \mathrm{P}_{2}$ level.
(XBL 746-1022)
as the experinental value and to take cascading into account by using an increased error.

In Fig. 1, an experimental decay curve is shown for the γ^{21} beam. The decay curve is fit by identifying the data points beyond 22 cm with the $2^{3} \mathrm{~S}_{1}$ decay. These yield a lifetime $\tau\left(2^{3} \mathrm{~S}_{1}\right)=$ $16.9(7)$ nsec. When this decay is subtracted from the experimental curve it yields the points shown. These are fit to a composite decay curve constructed by assuming that each of the F states associated with $2^{3} \mathrm{P}_{2}$ has the theoretical lifetime shown in Table I. These lifetimes include effects due to hyperfine quenching. Noreover, the initial popuzations of the F states are taken as proportional to ($2 \mathrm{~F}+1$). The resultant fit to the experimental points is as shown and is seen to be quite good.

To calculate accurate theoretical rates for the $2^{3} \mathrm{P}_{2}$ level, the transition matrix elements are evaluated to zeroth and first order in the quantities z^{-1} and $(Z a)^{2}$. The zeroth order term is the non-relativistic hydrogenic approximation. The term of order Z^{-1} is the first correction in the nonrelativistic z-expansion of the matrix element. The leading relativistic correction, of order ($2 a)^{2}$, is obtained by evaluating the relativistic transi tion operator between states formed from properly symetrized products by hydrogenic Dirac wave functions:

For the M2 transition, the coefficient of 2^{-1} has been deternined by Drake 14 from the Z-expansion of Da1garno and Parkinson. 14 Taking his result together with the leading relativistic and finite wavelength (retardation) correction yields
$A_{M 2}\left(2^{3} P_{2}\right)=\alpha k^{5} \frac{2^{15}}{5 \cdot 3^{10}}(Z \alpha)^{-2}\left[1+.147 Z^{-1}-.640(Z \alpha)^{2}\right]^{2}$.
(in units where $m_{e}=c=h=1$) where k is the transition energy.

Because the nonrelativistic velocity fom of the matrix element for $n+n$ El transitions vanishes to lowest order in z^{-1}, the evaluation of the E1 transition rate $2^{3} \mathrm{P}_{2}+2^{3} \mathrm{~S}_{1}$ is simplified by making the dirole approximation and comverting the matrix element to the length form. The error in making this approximation is negligible due to the smallness of the transition energy: $\langle\hat{\mathrm{k}} \cdot \overrightarrow{\mathrm{t}}\rangle=0(\alpha)$. The conversion to length form is valid relativistically and so relativistic corrections may be obtained as described abowe. For this transition matrix element, the coefficient of Z^{-1} has been obtained by Cohen and Dalgarno. We thus have

$$
\begin{equation*}
A_{E 1}\left(2^{3} \mathrm{P}_{2}\right)=a \mathrm{k}^{3} 12(2 \alpha)^{-2}\left[1+.759 \mathrm{Z}^{-1}-.167\left(Z_{\alpha}\right)^{2}\right]^{2} \tag{2}
\end{equation*}
$$

The transition probability for the El decay 2 P 2 S , obtained as for the 2 P decay, is given by

$$
\begin{equation*}
A_{E 1}\left(2^{3} p_{0}\right)=\alpha k^{3} 12(Z \alpha)^{-2}\left[1+.759 Z^{-1}-.417(Z \alpha)^{2}\right]^{2} \tag{3}
\end{equation*}
$$

We note that the theoretical uncertainty in the expressions for the transition rates listed
above is expected to be of the order of 18 or less for Z in the range 10-40.

In the case of vanadium, which has a non-zero nuclear spin, the $2^{3} P_{2}$ and $2^{3} \mathrm{P}_{0}$ states undergo an E1 transition to the $1^{1} \mathrm{~S}_{\mathrm{l}}$ state due to hyperfin? mixing. ${ }^{16}$ An estimate of the transition rate i :; obtained in the following way. Nonrelativistic intermediate coupling wave functions are taken as the unperturbed basis. The hyperfine interaction which is diagonal in $\mathrm{F}=\mathrm{J}+\mathrm{I}$, is treated in firstorder perturbation theory. Only the effect of mixing of the $2^{3} \mathrm{P}_{2}$ and $2^{3} \mathrm{P}_{0}$ states with the rearby $2^{3} \mathrm{P}_{1}$ and $2^{2} \mathrm{P}_{2}$ states is included. The dipole transition operator has then a non-vanishing matrix elenent between the perturbed $2^{3} \mathrm{P}_{2}$ and $2^{3} \mathrm{P}_{0}$ states and ine $1^{1} S_{0}$ state which is proportional to the dipole matrix element between the LS coupled $2^{1}{ }^{1}$ state and the $1^{1} S_{0}$ state. The latter is evaluated with the ajd of the Z -expansion of Dalgarno and Parkinson. ${ }^{14}$ The hyperfine matrix elements are approximated by evaluating the contact interaction term between hydrogenic product wave functions. Energy differences are evaluated by means of the 2 expansion of the nonrelativistic energies, 17 together with the z expansion of the order a^{4} corrections. ${ }^{18}$ The transition rates thus obtained are added to the rates discussed above and the resulting values for the lifetime of the $2^{3} \mathrm{P}_{2}$ state are listed in Table I.

TABLE 1. Theoretical transition rates and 1ifetime of the $2^{3} P_{2}$ state in helium-like ions.

Z	$\underset{\left(\text { nsec }^{-1}\right)}{\mathrm{A}_{\mathrm{El}}}$	$\begin{gathered} \mathrm{A}_{\mathrm{M2}} \\ (\mathrm{nsec} \\ \\ \text {-1 } \end{gathered}$	F	$\begin{gathered} \mathrm{A}_{\mathrm{E} 1}^{\mathrm{HFS}} \\ (\mathrm{nsec} \\ -1) \end{gathered}$	$\begin{gathered} \tau \\ \text { (nsec) } \end{gathered}$
16	. 259	. 117			2.66
17	. 301	. 194	Al1	$<.007$	$\simeq 2.01$
18	. 352	. 312			1.51
22	. 687	1.64			. 429
			3/2	0	. 31.3
			$5 / 2$. 99	. 239
23	. 820	2.37	7/2	1.75	. 202
			9/2	1.69	. 205
			11/2	0	. 313
26	1.43	6.50			. 126

In Fig, 2 we compare all of the measured decay rates of $2^{3} \mathrm{P}_{2}$ with the corresponding theoretical rates. Agreement is seen to be very good over a wide range of 2 . For vanadiun, the theoretical rate includes the contribution fron hyperfise quenching. It is seen that the experimental and theoretical rates would be in serious disagreement without contributions from this mechanism. We take this as very strong evidence that hyperfine quenching is indeed present.

Fig. 2. Comparison between measured and calculated decay rates for the $2^{3} S_{1}$ level.
(XBL 742-295)

In Fig. 3 we conpare the measured $2^{3} S_{1}$ decay rates with the calculated rates. Agreement between theory and experiment is satisfactory fo: $Z=22,23,26$, but puzzling discrepancies exist at $2=17$ and 18 .

Te are indebted to Al Ghiorso and the staff of the SuperHILAC for their enthusiastic support of this work. The development of the vanadium and iron beans was a vital product of this support. Doug MacDonald gave valuable engineering support. One of us (P.J.M.) ,ratefully acknowledges helpful conversations with l'rofessors Charles Schwartz and Eyvind H. Wichmann.

Fig. 3. Comparison between measured and calculated $M 2$ rates for decay from the $2^{3} \mathrm{P}_{2}$ level. The point at $Z=23$ labeled 'without HFS' is obtajned by making a best fit to our vanadium data using a single exponential.
(XBL 746-1021)

Footnotes and References

${ }^{\text {* Submitted to Phys. Rev. Letters (LBL preprint }}$ LBL-2906).

1. R. Marrus and R. W. Schnieder, Phys. Lett., 32A, 431 (1970).
2. H. W. Moos and J. R. Woonorth, Phys. Rev. Lett. 30, 775 (1973).
3. G. Feinberg and J. Sucher, Hifs. Rev. Lett. 26, 681 (1971) ; H. K. Griem, Astrophys. J. 156, 1105 (1969) ; I. L. Beignan and V. I. Safronova;' Zh . Eksp. Teor. Phys. 60, 2045 (1971) [Sov. Phys. JETP 33, 1102 (i971)]; S. Feneuille and E. Koenig, Comptes Renues Acad. Sc. Paris 274, 46 (1972); G. W. F. Drake, Phys. Rev. A 5, 1979 (1972).
4. G. W. F. Drake, Phys. Rev. A3, 908 (1971).
5. W. R. Johnson and C. Lin, Phys. Rev. A 9, 1486 (1974).
6. H. Gould, R, Marrus and R. W. Schmieder, Phys. Rev. Lett. 31, 504 (1973).
7. C. L. Cocke, B. Curnutte and R. Randall, Phys. Rev. Lett. 31, 508 (1973).
8. R. Marrus and R. N. Schunieder, Phys. Rev, Lett. 25, 1689 (1970).
9. C. L. Cocke, B. Curnutte and R. Randal1, Phys. Rev. A 9, 1823 (1974).
10. C. L. Cocke, B. Cunnutte, J. R. MacDenald and R. Randall, Phys. Rev. A 9, 57 (1974).
11. R. Marrus and R. W. Schmieder, Phys. Rev. A 5, 1160 (1972).
12. W. F. Ransey, Molecular Beams, Oxford University Press, p. 173 (1963).
13. G. W. F. Drake, Astrophys. J. 158, 1199 (1969).
14. A. Dalgarno and E. M. Parkinson, Proc. Roy. Soc. A 301, 253 (1967).
15. M. Cohen and A. Dalgarno, Proc. Roy. Soc. A 293, 359 (1966).
16. A discussion of the history and calculations of this effect is given in R. H. Garstang, J. Opt. Soc. Am. 52, 845 (1962).
17. R, E. Knight and C. W. Sherr, Rev. Mod. Phys. 35, 431 (1963).
18. H. T. Doyle, Adv. At. Mol. Phys. 5, 337 (1969).

COHERENT ORIENTATION AND ALIGNMENT OF ION LEVELS BY A BEAM-TILTED-FOIL COLLISION

D. A. Church, W. Kolbe, and M. C. Michel

Based on symmetry considerations, noyel coherence effects were recently predicted and observed ${ }^{2}$ when ions are charge-changed and excited by passage through a thin, tilted foil. To investigate these predictions, we used a "quantum-beat" technique, which preserves such coherence, to study the light emitted from the levels of fast, excited He ators and ions. 3

A beam of He ions, accelerated to tens of keV energy and e / m analyzed by means of the Cascade Isotope Separator, was passed through thin ($n 6$ $\mu g / \mathrm{cm}^{2}$) carbon foils tilted at an angle β with respect to the beam direction (see Fig. 1): The ions were neutralized by the collision, which left many atons in excited levels. Light emittes downstrean was collected from a nerrow spatial region parallel to the foil surface. A uniform magnetic field was applied either parallel or perpendicular to the bean direction. Any moments present in the excited states precess in the field, producing intensity variations in the emitted light at multiples of the Larmor frequency w. Intensity valiations at 2ω are observed in linearly polarized light when the foil surface is perpendiculat to the bean direction, arising from partial excited state aligmment. With a tilted foil, we observed quantum beats at ω in both circularly and linearly polarized light, indicative of the predicted excited level orientation, and of new alignment components. 3 These effects appear in ion and atom levels with $L>0$. Th' observations anearly polarized light were not initially in agreement with the theoretical predictions, 1 but after publishing oir results we have ifarned that the pubiished equations were in error. ${ }^{4}$ The correetr $=$ equations are in agreement with our measuremeiss (see Fig. 2), and with them we can analyze our data to obtain a complete description of the monents of the excited leve1. 5

To understand the interaction responsible for the orientation, we have investigated the dependence of the magnitude of the new coherence effects on the foil tilt angle, the incident ion velocity, and the foil surface material. We find that the orientation is reduced by 308 when a thin layer of gold is applied to the final carbon foil surface, but little change is produced by aluminum. 3 A definite energy dependence of the orientation is observed in the energy range $15-80 \mathrm{keV} .6$ The orientation magnitude is proportional to $\sin ^{2} \beta$, where β is the foil tilt angle, while specific aligment components vary as sink or $\sin ^{2} \beta$.

The interaction is almost certainly electrostatic in nature. We have proposed ${ }^{5}$ either a moment precession due to electric field gradients, 7 or to static electric fields, as a source of the orientation. The latter effect has been proposed independently, 8 but recent measurement results are not in agreement with the predictions. When better understond, the experimental observations may serve as a novel and useful probe of certain surface effects in amorphous or crystalline materials.

Fig. 1. Apparatus configuration used in tiltedfoil quantum-beat measurements. A circular polarizer and a linear polarizer with axis at various angles ψ with respect to the beam direction are used to analyze the light emitted by the beam particles.
(XBL 746~3488)

Fig. 2. Theoretical curves and experimental points measured from quantum beats at various frequencies. ψ is measured relative to the beam direction. The angle-indepondent ciacular polarization data are shown by broken hori ${ }^{i}$ iaint lines. (XBL 751-2020)

Anather use of these coherence effects is in the study of fine- and hyperfine-structure of atom and ion levels by level-crossing and rf resonance methods. lie have studied the hyperfine interaction
in the $4 \mathrm{~d}^{3} \mathrm{D}_{2}(\mathrm{~F}=3 / 2,5 / 2)$ state of ${ }^{3} \mathrm{He}$ by applying magnetic fields sufficiently large to partially decouple the nuclear aud electromic moments. We observe a change in the magritude of the hyperfine g-values as a function of relative time after excitation, when quantum beats are observed as a function of magnetic field strength. 9 Levelcrossing measurements in nore complex states should be generally applicable, and should provide more precise results than those of other techniques.

References

1. U. Fano and J. H. Macek, Rev. Mbd. Phys. 45, 553 (1973).
2. H. G. Berry, L. J. Curtis, D. G. Ellis, and F. M. Schectran, Phys. Rev. Lett. 32, 751 (1974).
3. D. A. Church, W. Kolbe, M. C. Michel, and T. Hadeishi, Phys. Rev. lett. 33, 565 (1974).
4. J, H. Macek (private commication).
5. D. A. Church, N. C. Michel, and W. Kolbe, Phys. Rev. Letters 34, 1140 (1975).
6. D. A. Church, M. C. Michel, W. Kolbe, and T. Hadeishi, Bull. Am. Phys. Soc. II 20, 74 (1975).
7. U. Fano, Phys. Rev. 133, B828 (1964).
8. T. C. Eck, Phys. Rev. Lett. 33, 1055 (1974).
9. D. A. Church, W. Kolbe, M. C. Michel, and T. Hadeishi, Bull. Atr. Phys. Soc. II 19, $1 / 61$ (1974).

THE INFRARED EMISSION SPECTRA OF CURIUM, BERKELIUM AND CALIFORNIUM

J. G. Conway

The emission spectra of curium, berkelium and californium have been run on the high resolution Fourier transformance spectrometer at Laboratoire Amié Cotton in Orsay France. The elements were run as the iodide sealed in a quartz tube to form an electrodeless lanp. The lamps were 25 mm long and 6 mm inside diameter and operated in a cavity at 2450 M Hz with approximately 80 watts of input pawer.

For curiwn the isotope was 244 with about 34 246. The spectram was recorded between $3700-11800$ cm^{-1} and the rm took 12 hours and 800,000 data points were recorded. Figure l is a tracing of the curium line at $9482.390 \mathrm{~cm}^{-1}$ showing reversal of the strong line on the left and isotope shift, the weak line on the right. A total of 1743 lines have been ascribed to cirium and 87% of the lines have Luen assigned to transitions between known energy levels. At one point in the aralysis a check was made between observed and calculated energies. The root-mean square deviation was $1.8 \times 10^{-3} \mathrm{~cm}^{-1}$, However, from a check of inpurities common to several runs we found a difference of over $5 \times 10^{-3} \mathrm{~cm}^{-1}$. A complete report will appear as LBL-3401.

The berkeliun and californiun were run with extra coverage in the higher wave number range. There are a great number of lines exhibiting hyperfine structure and many are fully resolved, only two californium lines were fully resolved into 10 components. These two spectra, Ek and Cf, must be worked on together since the $B k$ decays into Cf and there are a number of Cf lines observed in the Hk spectrum. Also, the Cf was not sufficiently pure so we see Bk lines in the Cf spectrum.

An interesting feature of both the Om_{m} and Cf spectra is that each contains a forbidden line

Fig. 1. Curium 1 ine at $9482.390 \mathrm{~cm}^{-1}$.
which is a transition within the same multiplet of the same configuration. In Cm the line at 3922.316 cm^{-1} is a transition between the level at 1214.200 $a^{7} F_{5}$ and 5136.522 a ${ }^{7} \mathrm{~F}_{5}$ both belonging to $5 f^{9} 7 \mathrm{~s}^{2}$ configuration. In Cf a similar transition occurs between ${ }^{5} I_{8}$ and ${ }^{5} I_{7}$ or the $5 f^{10} 7 s^{2}$ configuration at $9078.149 \mathrm{~cm}^{-1}$.

HIGH IONIZATION SPECTRA EXPERIMENTS

G. V. Shalimoff and S. P. Davis*

We have investigated source conditions recessary to produce hiphly ionized spectra of some metallic elements. 1,2 A sliding-spark source capable of producing $\mathrm{V} V$, 败 VI, and Th IV yields rich spectra in the vacumm ultraviolet region, that is, below $2000 \AA$. However, the nomal incidence vacuma spectrograph at LEL is only able to photograph spectra down to around 500 A , thereby cutting off much of the wavelength region of interest. Although lines of lower wavelength can be observed in higher orders with this instrument, they are frequently intermingled with other lines an? are difficult to isolate and identify. Ideally a grazing incidence vacnm spectrograph capable of photographing the wavelength region below $500 \AA$ is required.

The National Bureau of Standards kindly permitted us to use their 10 -meter grazing incidence spectrograph to take spectrograms in the region of 200 to 600 A. He also used their 10 -meter normal incidence vacum spectrograph for the 540 to 2100 A region which corresponds to the usefill region of the LBL instrument but with a three times gain in dispersion. With the vacum sliding-spark source we photographed the spectra of $V, \mathrm{Nm}, \mathrm{Th}$, and U . Reference Fectrum of Y IV and V also from a slid-ing-spar: source was used in the grazing incidence region and Cu II from a copper hollow catilode was used for the nomal incidence region.

The spectrum of VV obtained at 1225 A peak current allows better measurement of the low wavelength lines reported by Van Deurzenl and subsequent better energy level assignment.

The sliding-spark source at the NBS produced a greater peal current (2500 A) in the excitation of NI than we have been able to produce at LBL. Consequently we were able to obtain Mn VI readily although isolation is still difficult. Even scme predicted lines of Mn VIII were observed.

The Th and U plates of the grazing incidence region continue to show many lines which complicates the identification of the ionization states.

We are grateful for the hospitality and assistance given us by the members of the spectroscopy Section of NBS, especially V. Kaufmann and J. Reader.

Footnotes and References

*Physics Department, University of California; Berkeley.

1. C. H. H. Van Deurzen, J. G. Conway, and S. P. Davis, J. Opt. Soc. Aml 64, 498 (1974).
2. See following article by W. H. King, S. P. Davis, and G. V. Shalimoff in this annual report.

SPECTRUM OF QUINTUPLY IONIZED MANGANESE (Mn VI)*

W. H. King, t S. P. Davis, \ddagger and G. V. Shalimoff

The spectiom of 縕 VI from 800 to $1600 \AA$ has been observed in a vacnom sliding-spark source. Although this work started out as an attempt to obtain the spectrum of MM VII, in the isoelectronic sequence, with Sc III and V V as reported by Yan Deurzen, 1,2 and Cr VI as reported by Ekberg, 3 it was not possible to excite and isolate Mn VII with our source conditions. Only NM III, IV, V and VI were easily isolated by observing their comon intensity behavior with variations in current and source parameters.

Same 50 lines ascribed to Mn VI were observed on spectra photographed with the LEL 3 -meter normal incidence vacum spectrograph having a plate factor of $2.78 \mathrm{~A} / \mathrm{mm}$. Ey taking many exposures with variations in the inductance and capacitance of the spark circuit and by studying the variations of line inteisities of knokn lower states of ionization and unknown lines, it was possible to isolate and designate lines belonging to Na VI.

Supplementary lines were obtained on spectrograms taken at che National Bureau of Standards
with the 10 -meter nomal incidence vacum spectrograph having a plate factor of $0.78 \mathrm{k} / \mathrm{mm}$. The sliding-spark source at the NBS was operated at higher current than was possible at LK. Though many of the spectrograms show broad lines, the wavelengths from plates made at the two sites agree well.

The sliding-spark circuit used was described by Van Deurzen and Conway. 4 For the MnVI spectrom, a peak current of 1800 A was obtained at LEL using $34 \mu \mathrm{~F}$ capacitance and no added inductance in the circuit. At the NBS a peak current of 2500 A was achieved using 64μ capacitance and no added inductance. The sircuit is critically damped. The manganese electrodes were $1 / 4$-inch diameter rods of hot pressed powder and withstood the spark discharge quite well.

In the sliding-spark source the electrodes are separated with spacers made of silica and boron nitride. The elements of the spacer material are also excited during the spark discharge and provide useful intemal wavelength standards for wavelength
measurements. The $\mathrm{B}, \mathrm{N}_{1} \mathrm{O}, \mathrm{Si}$, and C lines were particulerly useful below 1000 A.

The spectra were photographed on Kodak shortwave radiation (SWR) plates. In addition to the intemal wavelength standards, reference spectra of Cu II from a copper hollow cathode source were photographed with the manganese spectra. The spectral lines were measured on a Grant comparator and computed with a sixth degree polynomial. For most lines the error limits in the manganese wavelengths are estimated to be $0.007 \&$ with a fraction of them having twice this error.

Intens'ties were estimated visually from the plates on a scale of 1-1000.

The level analysis of Mn VI was begm by Cady ${ }^{5}$ in 1933 who established the grownd configuration of $3 \mathrm{~d}^{2}$ and some levels of 3 d 4 p . The level values that we developed are given in Table 1.

TABLE 1.

__Even Levels__		_-oad Levels _	
Symbol	$\begin{aligned} & \text { Energy } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Symbol	$\begin{aligned} & \text { Energy } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$
$\begin{array}{r} 3 \mathrm{~d} 4 \mathrm{~s}^{3} \mathrm{D}_{2} \\ { }^{3} \mathrm{D}_{2} \\ { }^{3} \mathrm{D}_{3} \end{array}$	250097.5	$3 \mathrm{~d} 4 \mathrm{p}^{1} \mathrm{D}_{2}$	319819
	250527.8		
	251402.8	${ }^{9} \mathrm{D}_{1}$	321694.7
		${ }^{3} \mathrm{D}_{2}$	322499.9
${ }^{1} \mathrm{E}_{2}$	255238.8	${ }^{3} \mathrm{D}_{3}$	323282.5
$\begin{array}{r} 3 \mathrm{~d} 4 \mathrm{~d}^{9} \mathrm{G}_{3} \\ { }^{3} \mathrm{G}_{4} \\ { }^{3} \mathrm{G}_{5} \end{array}$	432093	${ }^{3} \mathrm{~F}_{2}$	323798.0
	432654	${ }^{3} \mathrm{~F}_{3}$	324850.1
	433464	${ }^{3} \mathrm{~F}_{4}$	326372.6
		${ }^{3} P_{0}$	329730.7
		${ }^{3} \mathrm{P}_{1}$	329635.6
		${ }^{5} \mathrm{P}_{2}$	329992.0
		${ }^{1} \mathrm{~F}_{3}$	333052
		${ }^{1} P_{1}$	336129

Table 2 lists the 26 classified lines of Mn VI which we were able to assign from our line list at present, Additional lines fit into the level scheme but they have not yet been checked in detail to verify their assigntent.

The main difficulty in the work thus far has been the positive identification of the RM VI lines in the midst of lines of other states. Only after intensive examination of line intersity behavior can lines be added to the list and attempts made to fit them into a level schene.

TABE 2.

lavel Combination Od Even	Naverumber $\left[\mathrm{cm}^{-1}\right]$	Wavelengt (Å)	Intensity
$354 p^{3} F_{2}-3 d^{4}{ }^{3} G_{3}$	108295.4	923.400	55
${ }^{3} \mathrm{~F}_{3}-\quad{ }^{3} \mathrm{C}_{4}$	107803.5	927.614	60
${ }^{3} \mathrm{~F}_{3}-\quad{ }^{4} \mathrm{G}_{3}$	107241.4	932.476	5
${ }^{3} \mathrm{~F}_{4}-\quad{ }^{3} \mathrm{G}_{5}$	107091.0	933.785	90
${ }^{3} \mathrm{~F}_{4} \quad{ }^{3} \mathrm{G}_{4}$	106278.5	940.924	50
${ }^{3} F_{4}-\quad{ }^{3} \mathrm{G}_{3}$	105721.8	945.879	10
${ }^{1} \mathrm{P}_{1}-3 \mathrm{~d} 4 \mathrm{~s}^{1} \mathrm{D}_{2}$	80891.1	1236.230	230
${ }^{3} \mathrm{P}_{0}-\quad{ }^{3} \mathrm{D}_{2}$	79632.7	1255.766	90
${ }^{3} \mathrm{P}_{1}-\quad{ }^{3} \mathrm{D}_{1}$	79537.6	1257.267	
${ }^{3} \mathrm{P}_{2}-\quad{ }^{3} \mathrm{D}_{2}$	79465.2	1258.413	100
${ }^{3} \mathrm{P}_{1}-\quad{ }^{3} \mathrm{D}_{2}$	79107.6	1264.101	200
${ }^{3} \mathrm{P}_{2}-\quad{ }^{3} \mathrm{D}_{3}$	78588.9	1272.444	500
${ }^{1} \mathrm{~F}_{3}-\quad{ }^{1} \mathrm{D}_{2}$	77814.8	1285.102	700
${ }^{3} \mathrm{~F}_{4}-\quad{ }^{3} \mathrm{D}_{3}$	74969.6	1333.874	1000
${ }^{3} \mathrm{~F}_{3}-\quad{ }^{3} \mathrm{D}_{2}$	74322.1	1345.494	800
${ }^{3} \mathrm{~F}_{2}-\quad{ }^{3} \mathrm{D}_{1}$	73700.0	1356.852	600
${ }^{3} \mathrm{~F}_{2}-\quad{ }^{3} \mathrm{D}_{2}$	73269.2	1364.829	150
${ }^{3} D_{2}-\quad{ }^{3} D_{1}$	72312.6	1382.885	
${ }^{3} \mathrm{D}_{2}-\quad{ }^{3} \mathrm{D}_{2}$	71881.8	1391.173	500
${ }^{3} \mathrm{D}_{9}-\quad{ }^{3} \mathrm{D}_{3}$	71879.5	1391.218	750
${ }^{3} \mathrm{D}_{2}-\quad{ }^{3} \mathrm{D}_{1}$	71596.9	1396.708	180
${ }^{3} \mathrm{D}_{2}-\quad{ }^{3} \mathrm{D}_{2}$	71166.5	1405.156	55
${ }^{3} \mathrm{D}_{2}-\quad{ }^{3} \mathrm{D}_{3}$	71007.0	1408.312	120
${ }^{3} \mathrm{~F}_{2}-\quad{ }^{1} \mathrm{D}_{2}$	68556.1	1458.660	30
${ }^{3} \mathrm{D}_{2}-\quad{ }^{1} \mathrm{D}_{2}$	67170.2	1488.755	25
${ }^{1} D_{2}-\quad{ }^{1} D_{2}$	64581.5	1548.430	1000

Footnotes and References

*Reported at the optical Society of America meeting at Houston, Texas, October 1974.
${ }^{\dagger}$ School of Physics, University of Newcastle upon Tyne, England.
${ }^{\text {FPhysics Department, University of Californiu, }}$ Berkeley.

1. C. H. H. Van Deurzen, J. G. Conway, and S, P. Davis, J. Opt. Soc. An. 63, 158 (1973).
2. C. H. H. Vin Deurzen, J. G. Comway, and S. P. Davis, J. Opt. Soc. An. 64, 498 (1974).
3. J. O. Ekberg, Physica Scripta 8, 35 (1973).
4. C. H. H. Van Deurzen and J. G. Conway, Appl. spectrosc. 28, 223 (1974).
5. W. M. Cady, Phys. Rev. 43, 322 (1933).

SOME PROPERTIES OF $\mathrm{H}_{2} \mathrm{CN}^{+}$: A POTENTIALLY IMPORTANT INTERSTELLAR SPECIES*

P. K. Pearsont and H. F. Scheofer III

$A b$ initio quantum-mechanical electronic-structure calculations have been performed on the nolecular ion $\mathrm{H}_{2} \mathrm{CN}^{+}$. Geometries have been predicted for both the acetylove-like ($C_{\text {ovy }}$) and formaldehyde-like $\left(\mathrm{C}_{2 \%}\right)$ isomers. The linear structure $\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}^{+}$is predicted to lie lower by 3.0 eV . Thus the properties of the $\mathrm{H}_{2} \mathrm{CN}^{+}$ion are expected to be rather similar to those of acetylene. for the vibrational frequencies, this similarity is demonstrated theoretically as is seen in Table 1.

The inmlications of these results for interstellar chemistry are discussed, including the intriguing

TABLE 1. Theoretical vibrational frequencies (in Cm^{-1}) of $\mathrm{HC} \equiv \mathrm{CH}, \mathrm{DC} \equiv \mathrm{CH}, \mathrm{H}_{2} \mathrm{CN}^{+}$, and HDCN^{+}.

Parameter	HCCH	DCCH	HCNH^{+}	CDNH^{+}
$v_{1} \ldots \ldots$.	3675 (3374)	3641 (3336)	4300	4232
$v_{2} \ldots \ldots$	2139(1974)	1996 (1854)	2354	2082
$v_{3} \ldots \ldots \ldots$	3600 (3289)	2806(2584)	3507	2902
$v_{4} \ldots \ldots$.	847 (612)	865 (683)	1023	962
$v_{5} \ldots \ldots$.	889 (730)	683 (519)	922	774
Zero-point energy...	$6443(5661)$	5769 (5089)	7025	6344
Difference	673 (572)	681	

possibility that $\mathrm{H}_{2} \mathrm{NN}^{+}$may be the precursor of the tentatively identified (90.665 GH) ANC model. The surprisingly high observed DCN/HCN ratio is also discussed in teims of the interstellar D / H ratio (see Table 2). The $\mathrm{J}=0+\mathrm{J}=1$ rotational transition is predicted to occur at 74.8 Gt , with an expected reliability of 1.1 GHz .

TABLE 2. Dependence of predicted interste11ar D / H ratio on tenperature and $\Delta \mathrm{E}$ for the reaction $\mathrm{H}_{2} \mathrm{CN}^{+}+\mathrm{HD} \rightarrow \mathrm{HDCN}^{+}+\mathrm{H}_{2}$

$\Delta \mathrm{E}\left(\mathrm{cm}{ }^{-1}\right)$	40	60	80	100
263.	4.7×10^{-7}	1.1×10^{-5}	5.3×10^{-5}	1.4×10^{-4}
283	2.3×10^{-7}	6.8×10^{-6}	3.7×10^{-5}	1.0×10^{-4}
303	1.1×10^{-7}	4.2×10^{-6}	2.6×10^{-5}	7.7×10^{-5}
Footnotes				
*Published in The Astrophysical Journal 192, 33 (1974).				
${ }^{\dagger}$ Present address: Centre European de Calcul Atomique et Moleculaire, Batiment 506, Faculte de Sciences, 91-Orsay, France.				

POTENTIAL ENERGY SURFAGE FOR THE MODEL UNIMOLECULAR REACTION HNC \rightarrow HCN*

P. K. Pearson ${ }^{\dagger}$ and H. F. Schaefer III

$A b$ initio electronic structure theory has been used to determine the more important features of the potential energy surface for the simple isomerization reaction $H N C+H C N$. A qualitative view of the surface is seen in Fig. 1. Extended basis sets were used in conjunction with both self-consistentfield (SCF) and configuration interaction (CI) wave furctions. For nonlinear or C_{s} geometrical arrangements of the three atoms, the $C I$ included 11,735 configurations, i.e., all single and double excitations. This large scale CI reproduces the FIN ground state geometry quite accurately and has been used to tentatively identify INC in the interstellar medium. The SCF calculations predict HNC to lie $9.5 \mathrm{kcal} / \mathrm{mole}$ above HCN , khile CI yie1ds $14.6 \mathrm{kcal} / \mathrm{mole}$. Similarly, baritier heights of 40.2 and $34.9 \mathrm{kcal} /$ mole are predicted by SCF and CI.

Fig. 1.
(XBL 7310~4158)

Thus the SCF approximation is qualitatively reasonable for $\operatorname{HNC} \rightarrow$ HNN. If INC is designated by a reaction angle of 180° and HCN by 0°, then the saddle point or transition state is predicted to lie at 73.7°, significantly closer to HCN. A reaction parh is detennined from the SCF potential surface. The surface will be used in RRKM and classical trejectory studies of the dymanics of
this reaction.

Footnotes
${ }^{*}$ Published in J. Chem, Phys. 62, 350 (1975).
${ }^{\dagger}$ Present address: Centre Europeen de Calcul At.omique et Moleculaire, Batiment 506, Faculte des Sciences, 91-Orsay, France.

POTENTIAL ENERGY SURFACES FOR $\mathrm{H}+\mathrm{Li}_{2} \rightarrow \mathrm{LiH}+\mathrm{Li}$ GROUND STATE SURFACE FROM LARGE SCALE CONFIGURATION INTERACTION*

P. Siegbahn and H. F. Schaefer III

Lee, Gordon ari ferschbach ${ }^{1}$ have reported crossed molecular bean studies of the reactions of H and D atons with K_{2}, Rb_{2}, and Cs_{2}. From their results a number of important qualitative conclusions were drawn. For example, only a small fraction of the available energy appeared in product translation. Thus it seems likely that either the alkali hydride product MH is vibrationally and/or rotationally excited or the alkali atcm M must be electrosically excited. In addition, Lee, Gordon, and Herschbach ${ }^{1}$ concluded that there is an anisotropic reaction probability for $\mathrm{H}+\mathrm{M}$, with $\mathrm{M}-\mathrm{H}$ configurations more likely to lead to reaction.

The hydrogen aton plus alkali dimer reactions are of interest to theoreticians first because of the opportunity for fruitful interaction with experiment and second because these systens are among the simplest for which the dymamics frequently must be described in terms of more than a single potential energy surface. ${ }^{2,3}$ For the simplest such reaction at themnal energies only a single channel is energetically open:4

$$
\begin{equation*}
H+\operatorname{Li}_{2}+\operatorname{LiH}\left({ }^{2} \Sigma^{+}\right)+\operatorname{Li}\left({ }^{2} S\right) \tag{I}
\end{equation*}
$$

$$
\Delta H=-30 \mathrm{kcal} / \mathrm{mole} \mathrm{e}
$$

Hbwever, under the conditions utilized by Lee et al, namely $10 \mathrm{kcal} / \mathrm{mole}$ of H or D atom translational energy and $63 \mathrm{kcal} / \mathrm{mole}$ of alkali dimer vibrational excitation, a second pathway is possible: ${ }^{5}$

$$
\begin{align*}
H+L i_{2}+\operatorname{LiH}\left(\Sigma^{2} \Sigma^{+}\right)+ & \operatorname{Li}\left({ }^{2} P\right) \tag{2}\\
& \Delta H=+12 \mathrm{kcal} / \mathrm{mole}
\end{align*}
$$

From either an experimental or theoretical viewpoint then, it will be of great interest to determine the relative importance of these two competing seaction pathways. lersclibach's work, though not
definilive, suggested the former path (1) to be the dorinant one.

The potential beauty of a theoretical treatment of this reaction lies in the opportunity to study the product energy distribution as a function of initial conditions. While the molecular bean experintentalist will do splendidly to study this reaction under one particular set of circunstances, we are free to study it under whichever circonnstances appear most interesting. For example, the ratio of $\mathrm{LiH}+\mathrm{Li}$ to $\mathrm{LiH}+\mathrm{Li}^{\text {* }}$ can be studied as a function of H atom translational energy or as a function of Li_{2} vibrational energy. Even if the $\mathrm{LiH}+\mathrm{Li}^{*}$ pathriay is shovn to be umimportant, the partitioning ${ }^{\circ}$ of the available energy into translation, vibration, and rotation of $\mathrm{LiH}+\mathrm{Li}$ should be interesting.

Ab initio electronic structure calculations have been performed to determine the HEi_{2} potential energy surface. A contracted Gaussian bas is set was employed: $\mathrm{H}(5 \mathrm{~s} \mathrm{Ip} / 3 \mathrm{~s} \mathrm{lp}$), $\mathrm{Li}(8 \mathrm{~s} 3 \mathrm{p} / 4 \mathrm{~s} 3 \mathrm{p}$). In addition to self-consistent-field (SCF) wave furctions, full configuration interaction (CI) was carried out for the three valence electrons. For general geconetry (point group C_{5}) the CI included 5,175 configurations. For the diatomic nolecules Li_{2} and LiH, these methods yield dissociation energies within $5 \mathrm{kcal} / \mathrm{mole}$ of experiment, and accurate spectroscopic constants are also predicted. The minimam on the HLi_{2} CI potential surface occurs for an isosceles triangle structure with $\mathbf{r}(\mathrm{H}-\mathrm{Li})=$ 1.72 A and an LiHLi bond angle of 95°. This minimum lies $22.4 \mathrm{kcal} /$ mole below the separated products $\mathrm{LiH}+\mathrm{Li}$. The linear MiLi miniman is much shallower, lying only $4.2 \mathrm{kcal} /$ mole below the products. The mich simpler single configuration SCF calculations yield qualitatively similar results (see Figs. 1 and 2). Furthemore, these features of the surface are quite analogous to those predicted :or $\mathrm{F}+\mathrm{Li}_{2}$ by Pearson and coworkers. The angular dependence of the surface between the $C_{2 y}$ and $C_{\text {cir }}$ extremes is discussed. The "electron jump" from covalent ELi_{2} to ionic $\mathrm{H}^{2} \mathrm{Li}_{2}{ }^{+}$is seen to be much more gradual thar was the case for FLi_{2}. The electronic structure is described using a natural orbital analysis of the most important configurations in the :ave function.

Fig, 1. Contour map of one part [$\mathrm{r}(\mathrm{Li}-\mathrm{Li})$ fixed at 5.27 bohrs] of the SCF potential surface for $\mathrm{HL} \mathrm{i}_{2}$. Distances from the Li_{2} bond midpoint are given in bohrs. The contours are labeled in kcal/role relative to separated $\mathrm{H}+\mathrm{Li}_{2}$.
(XBL 7410-4436)

Fig. 2. Contour map for the part of HLi_{2} potential surface with r(LiH) held fixed at 3.04 bohrs. Distances relative to the midpoint of the Lill bond are given in bohrs. Contours are labeled in $\mathrm{kcal} /$ mole relative to separated I.iH + li. (XBL 7410-4437)

Footnotes and References

${ }^{*}$ Published in J. Chem. Phys. 62, 3488 (1975).

1. Y. T. Lee, R. J. Gordon, and D. R. Herschbach, J. Chem. Phys. 54, 2410 (1971).
2. R. K. Preston and J. C. Tully, J. Chem, Phys. 54, 4297 (1971); J. Chem. Phys. 55, 562 (1971).
3. C. W. Hauschlicher, S. V. O'Neil, R. K. Preston, H, F. Schaefer, and C. F. Bender, J. Chem. Phys. 59, 1286 (1973).
4. We take the dissociation energies $\mathrm{D}_{0}\left({ }^{7} \mathrm{Li}_{2}\right)=$ $25.8 \pm 0.7 \mathrm{kcal} / \mathrm{mole}$ and $\left.\mathrm{D}_{0}{ }^{7}{ }^{7} \mathrm{Li}^{1} \mathrm{H}\right]=56.0 \mathrm{kcal} / \mathrm{mole}$ from A. G. Gaydon, Dissociation Energies and Spectra of Diatomic Moleciles (Chapman \& Tall, London, 1968). The zero point energies of 0.5 $\mathrm{kcal} /$ mole (Li_{2}) and $2.0 \mathrm{kcal} / \mathrm{mole}$ (LiH) may be found in B. Rosen, Syectroscopic Data Relative to Diatomic Molecules (Perganc. Press; Oxfard, 1970). Thus the exothermicity based on $D_{0}{ }^{\prime} \mathrm{s}$ is 30.2 ± 0.7 kcal/mole, while the classical exotisermicity (obtained from the D_{e} values) is $31.7 \pm 0.7 \mathrm{kcal} /$ mole.
5. The ${ }^{2} \mathrm{~S}-{ }^{2} \mathrm{p}$ excitation energy for the Li atom is $42.6 \mathrm{kcal} / \mathrm{mole}$. See C. E. Moore, "Atomic Energy Levels", Nat. Bur. Std. (U.S.) Cir, No. 467 (1949).
6. R. D. Levine and R. B. Bernstein, Disc. Faraday Soc. 35 , 100 (1973).

SADDLE POINT GEOMETRY AND BARRIER HEIGHT FOR $H+\mathrm{F}_{\mathbf{2}} \rightarrow \mathrm{HF}+\mathrm{F}^{*}$

C. F. Bender,t C. W. Bauschlicher, Jr., and H. F. Schaafer III

This communication concludes a series of the retical papers ${ }^{1-4}$ concerning the potential surfaces for the laser-related family of reactions

$$
\begin{aligned}
& \mathrm{F}+\mathrm{H}_{2}+\mathrm{FH}+\mathrm{H} \\
& \mathrm{H}+\mathrm{F}_{2}+\mathrm{FF}+\mathrm{F} \\
& \mathrm{~F}+\boldsymbol{F} \rightarrow \mathrm{FH}+\mathrm{F}
\end{aligned}
$$

For each of these three reactions, $a b$ initio calculations have now been completed at four levels:
a) Single configuration self-consistent-field (SCF) ${ }^{5}$ employing a double zeta (DZ basis set. The basis set used is designated $6,7 \mathrm{~F}(9 \mathrm{~s} \mathrm{5p})$ / (4 s 2 p), $\mathrm{H}(4 \mathrm{~s} / 2 \mathrm{~s})$.
b) SCF enploying a double zeta plus polarization ($D Z+P$) basis set, Here a set of d functions on the F atons and a set of p functions on the H atoms are added.
c) First-order configuration interaction (CI) wave functions ${ }^{8}$ employing a DZ basis set.
d) First-order CI wave functions employing a $\mathrm{DZ}+\mathrm{P}$ basis set.
The purpose of this research has been twofold:

1) to ascertain features of the surfaces not obtainable from experiment (e.g., saddle point geometries ${ }^{1-4}$ and the barrier height ${ }^{4}$ for $\mathrm{F}+\mathrm{FF} \rightarrow$ $\mathrm{FH}+\mathrm{F}$ and, 2) to begin to gain an understanding of the effects of basis set and electron correlation in the theoretical description of reactive potential energy surfaces.

In a previous paper ${ }^{3}$ the results of methods a) and c) were reported for the $H+F_{2}$ reaction. Those calculations indicated that the minimum energy path occurs for a linear H-F-F arrangement. Here we present the results of methods b) and d) for the linear $H+F$ surface. Since the present calcula; tions, which employ the larter $D Z+P$ basis set, are completely analogous to those reported recently ${ }^{4}$ for $5+H F$, very little need be said about the methods used. Let it suffice to note that the orbitals of our 670 configuration first-order wave

TABLE 1. Conparison of theoretical methods for the $H+F_{2} \rightarrow \mathrm{~F}+\mathrm{F}$ reaction. Bond distances are given in A and energies in kcal/mole.

functions were optinized via the iterative natural orbital method. 9

Table 1 sumarizes the results for $\mathrm{H}+\mathrm{F}_{2}$ and compares them with the earlier work ${ }^{3}$ using a double zeta basis set. The most discouraging aspect of the calculations is the barrier height, $4.1 \mathrm{kcai/}$ mole, which differs by nearly $2 \mathrm{kcal} / \mathrm{mole}$ from the experimental activation energy. In fact, the $D Z$ CI caiculation yielded a barrier closer to experiment. Hence we must conclude tiat our result ${ }^{2}$ for $\mathrm{F}+\mathrm{H}_{2}$ [predicted barrier 1,60 kcal/mole; experimental activation energy $1.7 \mathrm{kcal} / \mathrm{mole}$) was somewhat fortuitous and that our most reliable method [nethod d) abovel yields barrier heights which are subject to errors as large as 2 kcal/mole. Note, however, that an error of this magnitude does not affect our conclusions for the F + FF system, 4 where the experimental situation is uncertain and an urcertainty of $6 \mathrm{kcal} / \mathrm{mole}$ would not affect the essential prediction.

The exothermicity obtained in our DZ + P CI calculation is in distinctly better agreement with experiment than the other calculations. In fact the value of 99.0 nearly falls in the experimental range $99.7-105.3 \mathrm{kcal} /$ mole.

Another significant inprovement over surface b) is in the predicted bond distances of F_{2} and IF.

Surface b), the ZZCI , predicted $\mathrm{r}(\mathrm{F}-\mathrm{F})=1.537 \AA$, $\mathrm{r}(\mathrm{H}-\mathrm{F})=0.947$, as opposed to experiment $r(F-F)=1.417 \AA_{i} r(H-F)=0.917 \AA$. Surface d) yields much more accurate bond distgnces, $r(F-F)=1.441 \AA, r(H-F)=0.925 \AA$. Hence we expect the saddile point geometry predicted by surface d) to be fairly reliable. Comparjson with the semiempirical LEPS surface of Wilkens ${ }^{10}$ shows the F-F saddle point separations to agree well. but ow HF separation is $0.43 \&$ shorter.

One of the most obvious features of Table 1 is the unrealistically lingh barrier predicted at the SCF level of theory. This same characteristic was observed $1-3$ to an even greater degree for $\mathrm{F}+\mathrm{H}_{2}$ and $\mathrm{F}+\mathrm{HF}$. We are led to the conciusion that explicit consideration of electron correlation is required for realistic barrier height predictions on repulsivell potential surfaces.

Finaliy, several points on the minimm energy path, in the vicinity of the saddle point, are shown in Table 2. Starting from the saddle point, the minimur energy path was found by following the gradient of the energy in the direction of most negative curvature. Fron Table 2 it is apparent that the saddle point occurs quite near the reactants, in keeping with Fkomond's postulate. 12

TABLE 2. A few points on the minimum energy path for $\mathrm{H}+\mathrm{F}_{2} \rightarrow \mathrm{HF}+\mathrm{F}$. Bond distances are given in bohrs and energies in kcal/mole relative to separated $\mathrm{H}+\mathrm{F}_{2}$.

R (HF)	R(FF)	Energy
100	2.724	0.00 Reactants
3.55	2.77	2.93)
3.45	2.78	3.30
3.35	2.79	3.67
3.175	2.842	4.11 Saddle
3.10	2.90	3.82 prit
3.00	2.96	2.19
2.90	2.97	0.01
2.75	3.00	-4.79
1.747	100	-99.04 Products

Footnotes and References

*Published in J. Chem. Phys, 60, 3707 (1974).
${ }^{\dagger}$ I_awrence Livermore Laboratery, University of California, Livernore, CA $\subseteq 4550$.

1. C. F. Bender, P. K. Pear.ion, S, Y. U'Neil, and H. F. Schaefer, J. Chem. Phy:. 56, 4626 (1972).
2. C. F. Bender, S. Y, O'Neil, P. K. Pearson, and H. F. Schaefer, Sience 176, 1412 (1972).
3. S. Y. 0^{1} Neil, P. K. Pearson, F. F. Schaefer, and C. F. Bender, J. Chem, Phys, 58, 1126 (1973).
4. S. Y. O'Neil, H. F. Schaefer, and C. F. Fender, Proc. Natl. Acad. Sci. (USA) 71, 000 (1974),
5. C. C. J. Roothaen, Rev. Mod. Phys. 32, 179 (1960).
6. S. Huzinaga, J, Chem, Phys. 43, 1293 (1965).
7. T. H. Dunning, J. Chem. Phys. S3, 2823 (1970).
8. H. F. Schaefer, The Elcetronic Structure of Atoms and Nolecules: A Survey of Rigorous Quantum Mechanical Resules (Addison-nesiey, Reading, Massachusetts, 1972).
9. C. F. Bender and E. R. Davidson, J. Phys. Chem. 70. 2675 (1966).
10. R, L. Wilkens, J. Chem. Phys. 58, 2326 (1973).
11. J. C. Polanyi, in Proceedings of the Conference on Potential Energy Surtaces in Chemistry, edited by W. A. Lester (IBN Research, San Jose, 197.1).
12. G. S. Fammond, J. Amer. Chem. Soc. 77, 334
(1955).

POTENTIAL ENERGY SURFACES AND METHYLENE REACTIONS*

> H. F. Schbefer III

One of the goals of modern chemistry is to understand, on the molecular level, how chemical reactions occur. One can tackle this problem at varions levels. For a complicated organic reaction we may be extremely successful if he are able to learn something about the reaction mechanism, i.e., obtain some information about an intermediate along the most favorable reaction pathmay. For the simplest reactions, e.g., $\mathrm{H}+\mathrm{H}_{2}$, we may be much more demanding and desire a quantitative knowledge of the importance of quantum mechanical tunneling.

From a theoretical viewpoint, our problem may be separated into two parts:
a) the potential energy surface of surfaces,
b) the molecular dynamics which occur given
the surface.
Although no sheoretical study will be complete without consideration of both areas, the two parts
take on different degrees of importance depending on the observer. The organic chemist in search of a mechanism probably wants to know only the gross features of the potential surface. On the other hand, the physical chemist interested in $\mathrm{H}+\mathrm{H}_{2}$ tunnelirg can use any of several available potential surfaces and is really only interested in the dynamics.

The thrust of the present review article is that potential energy surfaces may now be predicted $a b$ initio from quantum mechanical electronic structure calculations. The reactions of triplet and singlet methylene with molecular jydrogen provide particularly fascinating examples.

Footnate
*Published in Chemistry in Britain 11, 227 (1975).

A CRITICAL TEST OF SEMI-EMPIRICAL FH ${ }_{3}$ POTENTIAL ENERGY SURFACES: THE BARRIER HEIGHT FOR $\mathbf{H}+\mathrm{HF} \rightarrow \mathrm{HF}+\mathrm{H}^{*}$

C. F. Bender, ${ }^{\text {T B. J. Garrison and H. F. Schsefer III }}$

One of the fundamental goals of modern chemical physics is to determine the forces which govern atomic and molecular interactions. The most successful approach has traditionally been to work buck from experimental observations to the hypothesized potential energy surface. This approach is perhaps best epitonized by the recent work of Lee, Barker, and colleagues, 1 in which experimental differential cross sections, second virial coefficients, and diffusion coefficients have been used to deduce interatomic potentials for noble gas pairs.

For polyatomic systems the procedures for
deducing interaction potentials from experiment are at a much earlier stage of development. These procedures often rely heavily on data gleaned from infrared chemiluminescence, ${ }^{2}$ chemical laser, ${ }^{3}$ and crossed molecular beam ${ }^{4}$ experiments. The system which has been studied most thoroughly to date is the $\mathrm{F}+\mathrm{H}_{2}+\mathrm{FH}+\mathrm{H}$ reaction. At least eleven semienpirical potential energy surfaces have been proposed ${ }^{5-13}$ for FH_{2}. Several ${ }^{12,13}$ of these have been calibrated with experiment via an iterative method, which begins with an assumed potential surface. Using this surface the dynamics are treated using classical trajectories and comparison made with experiment. Then the surface is adjusted and the

TABLE 1. Barrier height and saddle point genmetry for $\mathrm{H}+\mathrm{FH}+\mathrm{HF}+\mathrm{H}$. The saddle point occurs for a linear symmeiric $\mathrm{H}-\mathrm{F}-\mathrm{H}$ geome ${ }^{+}$ry.

Type of potential energy surface	Authors	$\underset{A}{r(H)}$	$\begin{gathered} \text { Barrier } \\ \text { (kcal/mole) } \end{gathered}$
Bond-energy Bondorder (BEBO)	Johnston ${ }^{\text {a }}$	1.10	6.8
London-Eyring-Polanyi-Sato (LEPS)	Muckr:man ${ }^{5}$ I	1.04	1.0
LEPS	Jaffe and Anderson	1.05	3.1
LEPS	Muckerman ${ }^{7}$ II	1.04	1.0
	Muckentan III	1.05	1.7
	Muckerman IV	1.05	2.3
LEPS	Wilkins ${ }^{8}$	1.04	1.4
LEPS	Thompson ${ }^{9}$	1.12	28.6
Semi-empirical valence bond	Blais and Truhlar ${ }^{10}$	1.10	14.0
Diatomics-in. molecules	Tully ${ }^{11}$ I	1.05	14.4
	Tully II	1.09	13.1
LEPS	Muckeman ${ }^{12} \mathrm{~V}$	1.04	1.2
LEPS	Polanyi and Schreiber ${ }^{13}$	1.05	3.5
A Priori methods	This work		
Self-consistentfield		1.12	67.8
Configuration Interaction		1.14	49.0

[^4]process repeated until satisfactory agreenent with the experimental findings is achieved.

Although mast of the proposed FH_{2} surfaces appear to reproduce the qualitative features of the v ibrational energy distribution for $\mathrm{F}+\mathrm{H}_{2} \rightarrow \mathrm{FH}+\mathrm{H}$, additional tests of these surfaces are needed before one can assume that a fundamentally correct descrintion of the interaction betweer these three atamb. . s been obtained. Although all of the semiempirical surfaces yield essentially the correct barrier height (\sim n zivation ene: gy) for the $\mathrm{F}+\mathrm{H}_{2}$ reaction, there is a second barrier height which any FH_{2} potential should reproduce. This is the barrier for the exchange reaction $\mathrm{H}+\mathrm{FH} \rightarrow \mathrm{HF}+\mathrm{H}$. Furthernore, this barrier is of considerable inportance in its own right, due to its role in the vibrationai relaxation of HF by hydrogen atoms, a process which has already been the subject of two classical trajectory studies.9,14

The sane sort of intemal consistency test has already been completed for a related triatomic system, HF_{2}. There it has been found 'hat two LEPS surfaces specifical:.y tailored to descri’e $\mathrm{H}+\mathrm{F}_{2}+$ $H F+F$ also yield rrasonable values for the $F+H F$ exchange reaction barrier. $15-18$ The $F+H F$ barriers of the Thompson ${ }^{15}$ and Wilkens ${ }^{16}$ surfaces are 27.8 and $22.4, \mathrm{kcai} / \mathrm{mole}$, compared to theoretical results, ${ }^{17} 21.8$ and $23.9 \mathrm{kcal} / \mathrm{mole}$. Thus there is ample reason to believe that semi-empirical surfaces for $\mathrm{F}+\mathrm{H}_{2}$ might do an adequate job of describing $\mathrm{H}+\mathrm{FH}$.

In the present paper, we report the $H+F H$ barrier as obtained from a priori electronic structure theory. The theoretical method used was similar, but more exhaustive than that adopted in earlier studies $17,19,20$ of $\mathrm{F}+\mathrm{H}_{2}, \mathrm{H}+\mathrm{F}_{2}$ and $\mathrm{F}+\mathrm{HF}$. A contracted Gaussian basis set of size H(5s lp/ $3 \mathrm{~s} 1 \mathrm{p}), \mathrm{F}(9 \mathrm{~s} 5 \mathrm{p} 2 \mathrm{~d} / 5 \mathrm{~s} 3 \mathrm{p} 1 \mathrm{~d})$ was enployed. Thus we have added s and p functions on fluorine and an s iunction on hydrogen to the basis used in the stuc: ${ }^{\text {r }}$ of the other fluorine-hydrogen systems. Furthermore, a more complete configuration interaction (CI) was decided upon, including all interacting single and double excitations relative to the SCF or reterence configuration. A total of 1583 configurations were included in the CI calculations.

The barrier occurs for a linear symnetric H-F-H structure, and our results are compared with the various semi-enpirical surfaces in Table 1. Although the a priori barrier height is likely to be somewhat higher than the exact (mknown) barrier, this difference is mlikely to be more than $5 \mathrm{kcal} /$ mole. In any case we conclude that the true barrier height for $\mathrm{H}+\mathrm{FH}$ is no less than $40 \mathrm{kcal} / \mathrm{mole}$. As in previous studies of this type, we find electron correlation to be nuch more important (18.8 kcal / mole here) at the saddle point than for the reactants. The large barrier also rules out the possibility that \vec{F} atom exchange is a significant contributor to the vibrational relaxation of HF by H atoms.

Most important, however, is the fact that all available semi-empirical potential surfaces for FH_{2} fail to predict this large barrier for $\mathrm{H}+\mathrm{FH}$. Only Thompson's LEPS surface yields a qualitatively
reasonable value for the barrier. 21 This of course does not necessarily mean that these surfaces are inappropriate for the study of the $\mathrm{F}+\mathrm{H}_{2}$ dynamics, for which most of them were designed. It does, however, raise serious questions about the fundamental ability of these semi-enpirical forms to predict features of the true surface not known in advance.

Footnotes and References

${ }^{*}$ Published in J. Chem. Phys. 62, 1188 (1974).
${ }^{+}$Lawrence Livermore Laboratory, University of California, Livemore, CA 94550.

1. See, for example, C. Y. Ng, Y. T. Lee, and J. A. Barker, J. Chem. Phys. 61, 1996 (1974).
2. A. M. G. Ding, L. J. Kirsch, D. S. Yerry, J. C. Polanyi, and J. L. Schreiber, Fraraday Disc. Chem. Soc. S5, 252 (1973).
3. R. D. Coombe and G. C. Pimentel, J. Chem. Phys. 59, 1535 (1973).
4. T. P. Schaefer, P. E. Siska, J. M. Parson, F. P. Tully, Y. C. Wong, and Y. T. Lee, J. Chem. Phys. 53, 3755 (1970).
S. J. T. Muckeman, J. Chem. Phys. 54, 1155 (1971).
5. R. L. Jaffe and J. B. Anderson, J. Chem. Phys. 54, 2224 (1971).
6. J. T. Muckemman, J. Chem. Phys. 56, 2997 (1972).
7. R. L. Wilkins, J. Chem. Phys. 57, 912 (1972).
8. D. L. Thompson, J. Chem. Phys. 57, 4170 (1972).
9. N. C. Blais and D. G. Truhlar, J. Chem. Phys. 58, 1090 (1973).
10. J. C. Tully, J. Chem. Phys. 58, 1396 (1973).
11. J. T. Muckerman, unpublished "Surface V" for the FH_{2} system. Despite the fact that this surface has not been published, it has been used in a number of dymamical studies, e.g., G. C. Schatz, J. M. Bowman, and A. Kl *imann, J. Chem. Phys. 58, 4023 (1975).
12. J. C. Polanyi and J, L. Schreiber, Chen. Phys. Letters, to be published.
13. R. L. Wilkins, J. Chem. Phys. 58, 3038 (1973).
14. D. L. Thompson, J. Chem. Phys. 57, 4.164 (1972).
15. R. L. Wilkins, J. Chem. Phys. 59, 698 (1973).
16. S. V. O'Neil, H. F. Schaefer, and C. F. Bender, Proc. Nat. Acad. Sci. (USA) 71, 104 (1974).
17. R, L. Thommarson and G. C. Berend, Int. I. Chem. Kinet. 6, 597 (1974).
18. C. F. Bender, S. V. O'Neil, P. K. Pearson, and H. F. Schaefer, Science $17 \varepsilon, 1412$ (1972).
19. C. F. Be. ter, C. W. Bauschlicher, and H. F. Schaefer, J. Gien. Phys. 60, 3707 (1974).
20. Note, however, that Thompson's surface predicts a barrier of $10.9 \mathrm{kcal} /$ mole for $\mathrm{F}+\mathrm{H}_{2} \rightarrow \mathrm{FH}+\mathrm{H}$.

A PRIORI PREDICTION OF THE COHESIVE ENERGY OF ONE-DIMENSIONAL METALLIC HYDROGEN*

D. H. Liskow, J. M. McKelvey, C. F. Bender, and
H. F. Schaefer III

For more than forty years, the hydrogen molecule has served as a prototype for theoretical studies of the electronic structure of molecules. Since the work of James and Coolidge, who in essence solved the problem ab initio, most of the calculations zarried out on H_{2} have had as their purpose the testing of some particular method for the description of electronic structure. Unfortunately, there lias been no comparable prototype for studies of the electronic structure of solids. This problen is of course due to the fact that, prior to the very recent work of Harris and coworkers, 2,3 there has been no truly ab initio calculations carried out on solids. It has been suggested many times 4 that the most logical prototype for the electronic structure of solids would be a one-dimensional array of hydrogen atoms. It seems clear that accurate $a b$ initio calculations on one-dimensional hydrogen would fill the need for a benchmark, with which to compare approximate methods for the calculation of energy bands and other electronic properties of solids. In addition it should be pointed out that in recent years a significant amonnt of interest ${ }^{5-7}$ has developed in the properties of the thus-far hypothetical substance, metallic hydrogen.

In the present research we have attempted to treat one-dimensional hydrogen as a large molecule. It is clear that if one takes a finite chain of hydrogen atoms and increases n in H_{n}, the behavior of the system will ultimately approach that of onedimensional hydrogen to within any specified tolerance. However, the very important question of "at what point" does this large nolecule take on the properties of an infinite chain has never, to our knowledge, been investigated ab initio. In addition to compieting self-consistent-field (SCF) calculations on systems as large as H_{62}, we are able to report a detailed calculation taking account of electron correlation for H_{14}.

Our first step was to carry out SCF computations on successively larger rings of hydrogen atoms. The spacings between euch adjacent pair of atoms were constrained to be equal. A single is Slater function, $\left(\zeta^{3} / \pi\right)^{\frac{1}{2}}$ exp $(-\zeta r)$, where ζ is the orbital exponent or scale factor, centered on each H atom. Further, each Slater function was approxinated as a linear combination of four Gaussian functions. 8 For the hydrogen atom in its ground state, this approximation yields a total energy of -0.49928 hartrees, while the exact result in these units is $\mathbf{- 0 . 5}$ hartrees. In geroral one does not expect such a "minimum basis ser" to yield particularly reliable ai initio results. 9 forever, for H_{n} systems, such a basis yields surprisingly low
total energies, especially if the energy is minimized at each geonetry with respect to the orbital exponent 5 .

Table 1 sumarizes these initial calculations on the closed shell singlet (${ }^{1} \Sigma_{\mathrm{g}}^{+}$in the limit of linearity) systems $\mathrm{H}_{14}, \mathrm{H}_{2}$, H_{38}, H_{50}, and H_{62} 。 It should be emphasized that the orbital exponent ζ and the $\mathrm{H}-\mathrm{H}$ bond distance were simultaneously optimized to yield the lowest possible variational energy. In addition, Fig. 1 displays the orbital energies as a function of the number of atoms

Fig. 1. Ab initio orbital energies for rings of hydrogen atoms.
(XB1. 741-2173)
comprising the ring. Table 1 indicates that a decidedly finite ring of hydrogen atoms can effectively simulate one-dimensional metallic hydrogen.
"How many" atoms are required depends on the accuracy one demands for the predicted properties. Tlie two most important properties illustrated in Table 1 are the bond distance and the cohesive energy. If the accuracy demanded is 0.002 bohrs ($=0.001 \mathrm{f}$) in the bond distance and 0.07 eV in the cohesive energy, then H_{14} seems to be an adequate representation of $\mathrm{H}_{\infty}{ }^{*}$. The difference in bond distance between $\mathrm{H}_{25}{ }^{\text {ond }} \mathrm{H}_{6}$ is less than $0.0005 \AA$ and hence not observable by conventional experimental methods, even if our hypothetical metal could be made. The binding energy converges somewhet more slowly, with a ring of 38 atoms required to approach within $0.01 \mathrm{eV} / \mathrm{aton}$ of the result expected for H_{∞}.

TABLE 1. Sumbary of self-consistent-field calculations su rings of hydrogen atoms.

	Predicted bond distance (bohrs)	Optimized orbital exponent	Total energy (hartrees)	Binding energy per (H atom (eV)
H_{14}	1.888	1.129	-7.45248	0.879
H_{26}	1.886	1.130	-13.79617	0.833
H_{36}	1.886	1.130	-20.14432	0.819
H_{50}	1.886^{a}	1.130^{a}	-26.49482	0.813
H_{62}	1.886^{a}	1.130^{a}	-32.84656	0.810

${ }^{a}$ Bond distance and orbital exponents assumed, not optimized.

Our results should not be directly compared with those of Harris, Monkhorst, and Kumar, 2,3 since the latter computations are in three dimensions. However, such a comparison is illustrative since it may enhance our understanding of the differences between one- and three-dimensional systens. The most surprising result of the Harris calculations is the prediction that metallic hydro. gen is unbound in the SCF approximation by ~ 0.8 eV/atom with respect to separated hydrogen atoms. Even with our limited basis set, the present SCF calculations predict the one-dimensional structure to be bound by 0.81 eV per H atom. Harris's predicted bond distances for simple cubic, bcc, and fcc lattices are $2.83,2.85$, and 2.99 bohrs, all much larger than the 1.89 bohrs we predict for one-dimensional metallic hydrogen.

The goal of the present research was to make an a priori (i.e., without reference to experiment) prediction of the cohesive energy of one-dimensional metallic hydrogen. To do this we must evaluate a) the difference between the SCF energies shown in Table 1 and the true Hartree-Fock energies, and b) the importance of electron correlation in rings of hydrogen atons. We have carried out more extensive calculations on H_{14} to investigate both of these points.

First, a self-consistent-field calculation was carried out for H_{34} using a much larger basis set of three s (with optimized scale factor $5=$ 1.156) and one set (p_{x}, P_{y}, p_{z}) of $\dot{\hat{p}}$ functions on each atom. At a nearest neighbor separation of 1.888 bohrs (the optimum for H_{14} from the earlier calculatinns), the SCF energy obtained was -7.54085 hartrees. This extended basis SCF calculation suggests that we should add $0.17 \mathrm{eV} /$ atom to the SCF binding energies shown in Table 1. Comparison of H_{2} SCF results with this extended basis (-1.15262 hartrees) to the exact Hartree-Fock energy ${ }^{10}(-1,13364$ hartrees $)$ of H_{2} suggests that an additional $0.014 \mathrm{eV} /$ atom should be added if we are to estinate the true Hartree-Fock energy. Thus we arrive at a prediction of 1.00 eV for the Hartree-Fock cohesive energy of one-dimensionai metallic hydrogen.

As a first step in evaluating the correlation energy of H_{34}, we carried out 8-configuration SCF calcualtions using the method developed by Hunt, Dumning, and Goddard. 11 The orbitals resulting from these seven configuration calculations are automatically localized ${ }^{12}$ and are best discussed with reference to Fig. 1. There it is seen t'sat a localized description of the H_{14} Hartree-Fock wave function involves seven equivalent orbitals $1 \mathrm{~b}, 2 \mathrm{~b}$, $3 \mathrm{~b}, 4 \mathrm{~b}, 5 \mathrm{~b}, 6 \mathrm{~b}, 7 \mathrm{~b}$, where " b " signifies a bonding orbital with amplitude predominantly centered on a pair of adjacent hydrogen atoms. A minimum basis set also yields six equivalent antibonding orbitals 1a, 2a, 3a, 4a, 5a, 6a, ard 7a. The eight configurations included in the multiconfiguration (MC) SCF calculations are

$1 b^{2}$	$2 b^{2}$	$3 b^{2}$	$4 b^{2}$	$5 b^{2}$	$6 b^{2}$	$7 b^{2}$
$1 a^{2}$	$2 b^{2}$	$3 b^{2}$	$4 b^{2}$	$5 b^{2}$	$6 b^{2}$	$7 b^{2}$
$1 b^{2}$	$2 a^{2}$	$3 b^{2}$	$4 b^{2}$	$5 b^{2}$	$6 b^{2}$	$7 b^{2}$
$1 b^{2}$	$2 b^{2}$	$3 a^{2}$	$4 b^{2}$	$5 b^{2}$	$6 b^{2}$	$7 b^{2}$
$1 b^{2}$	$2 b^{2}$	$3 b^{2}$	$4 a^{2}$	$5 b^{2}$	$6 b^{2}$	$7 b^{2}$
$1 b^{2}$	$2 b^{2}$	$3 b^{2}$	$4 b^{2}$	$5 a^{2}$	$6 b^{2}$	$7 b^{2}$
$1 b^{2}$	$2 b^{2}$	$3 b^{2}$	$4 b^{2}$	$5 b^{2}$	$6 a^{2}$	$7 b^{2}$
$1 b^{2}$	$2 b^{2}$	$3 b^{2}$	$4 b^{2}$	$5 b^{2}$	$6 b^{2}$	$7 a^{2}$

That is, each localized pair of electrons in H_{12} is treated in a manner equivalent to using the $1 \sigma_{\mathrm{g}}^{2}$ and $1 \sigma_{\mathrm{u}}^{2}$ configurations to describe H_{2}.

Given the $1 \mathrm{~b}-7 \mathrm{~b}$ and $1 \mathrm{a}-7 \mathrm{a}$ orlitals from the MCSCF calculations, CI calculations were then carried out including all configurations differing by one or two orbitals (i,e., single and double excitations ${ }^{9}$) from the liartree-Fock configuration. At $R(H-H)=1.888$ bohrs, this 1275 configuration wave function yields a total energy of -7.61657 hartrees, inplying a correlation energy of 0.16409

Fig. 2. Graphical representation of the localized orbitals of H_{14}.
(XBL 741-2172)
hartrees or $0.32 \mathrm{eV} / \mathrm{atom}$. Comparison with ana.ogous calculations for H_{2} suggests the minimum basis set is deficient by $0.41 \mathrm{eV} / \mathrm{atom}$ of correlation energy. In this way we predict the correlation energy of one-dimensional metallic hydrogen to be $5.73 \mathrm{eV} / \mathrm{atom}$ and thus the cohesive energy to be $1.73 \mathrm{eV} /$ atom. For comparison the binding energy of the hydrogen molecule is 2.38 eV per H atom. Consideration of possible errors in the above extrapolation procedure leads to an estimate of 0.2 eV for the reliability of our prediction.

Footnote and References

${ }^{*}$ Published in Phys. Rev. Letters 32, 933 (1974).

1. H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933),
2. F, E. Harris and H. J. Nonkhorst, Phys. Rev. Letters 23, 1026 (1969).
3. F. E. Harris and H. J. Monkhorst, Solid State Conmun. 9, 1449 (1971); F. E. Harris, L. Kumar, and H. J. Monkhorst, Intern. J. Quantumi Chen. 55, 527 (1971); Phys. Rev. B 7. 2850 (1973).
4. See, for example, Chapter 26 of J. C. Siater, Quantun Theory of Matter (McGraw-Hill, New York, 1968).
5. N. W. Ashc: oft, Phys. Rev. Letters 21, 1748 (1968).
6. G. A. Neece, F. J. Rogers, and W. G. Hoover, J. Comput. Phys. 7, 621 (1971).
7. E. E. Salpeter, Phys. Rev. Letters 28, 560 (1972).
8. S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
9. H. F. Schacfer, The Electronic Stmeture of Atoms and Molecules: A Survey of Rigorous Quantwn Mechanical Results (Addison-Wesley, Reading, Massachusetts, 1972).
10. W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 (1960).
11. W. J. Hunt, T. H. manning, and T. A. Goddard, Chem. Phys. Letters 3, 606 (1969); 4, 231 (1969); 6, 147 (197C).
12. W. England, L, S. Salmon, anci K. Ruedenberg, Topics in Current Chemistry 23, 31 (1971).

THE WEAK ATTRAGTION BETWEEN WATER AND METHANE*

S. R. Ungemach and H. F. Schaefer 111

The present research concerns the simplest hydrophobic ${ }^{1}$ interaction, the interaction between a single water molecule and a single methane molecule. One's first inclination might be to assume that biological systems are so much more complex than the $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{4}$ model that such a nodel is not relevant to an widerstanding of the hydrophobic effect. However, in his review, Tanford ${ }^{1}$ concludes that the hydrocarbon tail ot an amphiphile should have thernodynamic properties similar to those of a hydrocarbon molecule in water solution. Since it is clear that the water-methane interaction potential plays a crucial role in detemining the latter themodynamic properties, the relation between the present study and the hydrophobic effect is indirectly escablished. For physical chemists, of course, the $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{4}$ interaction is of inherent interest, and would probably be estimated to be intemediate between a van der Waals attraction (e.g., Ne-Ne, $\sim 0.09 \mathrm{kcal} / \mathrm{mole}^{2}$) and a true hydrogen bond (e.g., $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$, $5 \mathrm{kcal} / \mathrm{mole}{ }^{3}$).

A series of ab initio self-consistent-field calculations have been performed to discem some features of the $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{4}$ potential energy surface. The equilibrium configuration corresponds to a
linear $0-\mathrm{H}-\mathrm{C}$ arrangement, with $\mathrm{r}(\mathrm{S}-\mathrm{O})=3.85 \mathrm{~A}$, and a binding energy of $0.5 \mathrm{kcai} / \mathrm{mole}$. Potential curves are presented for a number of other approaches. Using a double zeta basis set, several calculations were also carried out for $\mathrm{CH}_{4}-\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, lyith one water fixed at ite equilibrium separation with respect to methane, the approach of a second $\mathrm{H}_{2} \mathrm{O}$ in an analogous manner yields a repulsive interaction energy. This result is qualitatively explained by a pairwise additive model of the three nolecule potential surface. Finally, a qualitative discussion is given in tems of Mulliken atomic popuiations.

Footnote and References

*Published in J. Amer. Chen. Soc. 96, 7898 (1974).

1. C. Tanford, The Hydrophobic Effect (WileyInterscience, New York, 1973).
2. P. E. Siska, J. M, Parson, T. P. Schafer, and Y. T. Lee, J. Chem. Phys. 55, 5762 (1971).
3. H. Popkie, H. Kistemmacher, and E. Clementi, J. Chem. Phys. 59, 1325 (1973).

TRIPLET ELECTRONIC GFOUND STATE OF TRIMETHY!T JEGETHANE*

D. R. Yarkony and H. F. Schaefer III

A nonempirical quantum mechauical study of the electronic structure of $\mathrm{C}\left(\mathrm{CH}_{2}\right)$ has been carried out. A double 5 basis set of sontracted Gaussian functions was enployed, and self-consis-tent-field wave functions were obtained for the triplet ground state. The planar ($\mathrm{D}_{3 h}$) configura-
tion is predicted to 1 ie $17 \mathrm{kcal} / \mathrm{mole}$ below the orthogonal ($\mathrm{C}_{2 \mathrm{Z}}$) form. The electronic stricture is discussed in tems of Malliken populations (see Table 1) and orbital perspective plots. Sone prelininary results for the lowest singlet states are reported.

TABLE 1. Orbital energies and Mulliken populations for the triplet ground state of planar trimethylenemethane ${ }^{\text {a }}$

Ovbital	hartrees	Central C		Terminal C		Hydrogen s
		s	P	s	P	
$1 a_{1}{ }^{\prime}$	-11.2690	2.00	0.00	0.00	0.00	0.00
$1 e^{\prime}$	-11.2447	0.00	0.00	4.00	0.00	0.00
$2 a_{1}{ }^{\prime}$	-11.2446	0.00	0.00	2.00	0.00	0.00
$3{ }^{1}$	-1.0956	0.84	0.00	0.96	0.13	0.08
$2 \mathrm{e}^{\prime}$	-0.9082	0.00	0.09	3.00	0.09	0.72
4a,	-0.7189	0.29	0.00	0.35	0.71	0.55
$3{ }^{\prime}$	-0.6327	0.00	0.41	0.05	2.35	1. 19
$1 a_{2}{ }^{\prime}$	-0.5437	0.00	C. 00	0.00	1.03	0.97
$4 e^{\prime}$	-0.5236	0.00	0.77	-0.01	1.99	1.25
$1 a_{2}{ }^{\prime \prime}$	-0.4383	0.00	0.99	0.00	1.01	0.00
$1 e^{\prime \prime}$. 0.3211	0.00	0.00	0.00	2.00	0.00
Tota1s		3.12	2.26	3.45	3.13	0.81
Atom Totals		5.		6.		0.81

athe totals take into account the equivalence of the terminal carbon atoms and of the hydrogens.

Footnote
*Published in S. Amer. Chem. Soc. 96, 3754 (1974).

THREE ISOMERS OF THE NO: ION*

P. K. Pearson, \dagger H. F. Schmefer Mi, J. H. Richardson, \ddagger
L. M. Stephersons § and J. I. Braumans §

Charge transfer experiments ${ }^{1}$ have resulted in a value of $(2.38 \pm 0.06) \mathrm{eV}$ as the best estimate of the electron affinity of NO_{3}. Photodetachment experiments using conventional light sources determined a vertical detactment energy of $\leq 2.8 \mathrm{eV}, 2$ The large difference between the electron affinity and vertical do"achunent energy is readily explained by the significant gecnetry change and thence poor Franck-Condon factors between NO_{2} and NO_{2}. The
transition $\mathrm{NO}_{2}^{-}(0,0,0) * \mathrm{NO}_{2}(0,0,0)$ has a FranckCondon factor of $0.603,3$

Photodetachiwent experiments with both a conventional light source-ion cyclotron resomance apparatus and a tuable dye laser have detected an anomalous NO_{2}^{-}which photadetaches at energies below the electron affinity of $\mathrm{NO}_{2}, 2,3$ The apparent photcdetachment threshold for this umsuil
ion is $1,8 \mathrm{eV}$. It is undikely that this long wavelength photodetamment is the result of either 1) vibrationally excited $X^{1} \mathrm{~A}_{1} \mathrm{KO}_{2}$, or 2) an excited electronie state of NO_{2}^{*}; considerations of effective temperature, energy separation, method of fomation, and long trapping times in the ICP discomt possibilities 1) and 2).

A third and niore likely possibility would be an isomer of NO_{2}^{-}. This possibility is corsistent with an ancmalous NO_{2}^{-}, formed by the reaction of Mi with a cluster ion of $\mathrm{O}^{-}, \mathrm{CO}_{3}^{-}+\mathrm{NO}=\mathrm{NO}_{2}^{-}+\mathrm{CO}_{2}$, which has been reported ${ }^{4}$ and is expected to be several electron wolts less stable than the symetric, nomal NO_{2}^{-}. It is quite conceivable that the anomalous No could be a peroxy isomer. A peroxy fom of NO_{3}^{-}, fomed by a similar reaction of ND with a cluster ion of O_{2}^{-}, has also been suggested. 4 A peroxy form of NO_{2}^{2} would also be isoelectronic with the recently reported NOF. 5 It has been suggested ${ }^{3}$ that the anomalous NO_{2}^{-}is the result of a weak electrostatic interaction between NO and O^{-}; hence the close resemblance of the long wavelength photodetachnent cross section and threshold to that of $0^{-} .6$

There is at least one other plausible isomer of NO_{2}^{-}. He draw this conclusion from the simple observation that NO_{2}^{-}is isoelectronic with ozone, a molecule which has been the subject of several ab initio thenretical electronic stuucture studies. ${ }^{7} 10$ The work of Peyerimhoff and Buenker ${ }^{7}$ nas the first to suggest that the equilateral triangle form of O_{3} lies quite close energetically to the accipted gemetry, $12 \quad \theta=116.8^{\circ}, r(0-0)=1.278 \AA$. More recently, Hay, Dunning, and Coddard 11 have reported extensive configuration interaction calc.rlations which predict this "ring state" to lie 1.57 eV above the accepted ground state. We note that the ring state daes represent a well-defined minimum in the potential energy surface and is the lowest electronic state of ozone at $6=60^{\circ}$, $r(0-0)=1.45 \mathrm{~F}$.

He inave carried ont ab initio self-consistentfield calculations to investigate the relative energies of the various NO_{2}^{-}isomers Atom-opti- 2 At mized primitive Ganssian basis sets $\$ 3$ of size ($9 \mathrm{~s} \mathrm{5p}$) were centered on the N and 0 muclei. Altrough we 'ioully contract this size basis to ($45 \mathrm{2p}$), ir the present study a more flexible (5s 3p) contraction has chosen, 14 to allow for sone of the distortion interent in molecular negative ions. The alectron configuration for the expected (bond angic ? 116^{*} in malogy with ozone) ground state is ${ }^{3}$

$$
\begin{equation*}
1 a_{2}^{2} 1 b_{2}^{2} 2 \mathrm{a}_{1}^{2} 3 \mathrm{a}_{1}^{2} 2 \mathrm{~b}_{2}^{2} 4 \mathrm{a}_{1}^{2} 5 \mathrm{a}_{1}^{2} 3 \mathrm{~b}_{2}^{2} 1 \mathrm{~b}_{1}^{2} 4 \mathrm{~b}_{2}^{2} 6 \mathrm{a}_{1}^{2} 1 \mathrm{a}_{2}^{2} \tag{I}
\end{equation*}
$$

The pensxy forim of $\mathrm{ND}_{\mathrm{z}}^{-}$has only a plane of sjmmetry (point growe ϵ_{s}), kitfi resulting election configurotion
$1 a^{\prime 2} 2 a^{\prime 2} 3 a^{\prime 2} 4 a^{\prime \prime}{ }^{2} n^{\prime 2} 8 a^{\prime}=7 a^{\prime 2} 8 a^{\prime 2} 1 a^{\prime 2} 9 a^{\prime 2} 10 a^{\prime 2} 2 a^{\prime \prime 2}$
The ring state is again of $\mathrm{C}_{2 v}$ symmetry, with configuration

$$
\begin{equation*}
1 a_{1}^{2} 1 b_{2}^{2} 2 a_{1}^{2} 3 a_{1}^{2} 2 b_{2}^{2} 4 a_{1}^{2} 5 a_{1}^{2} 3 b_{2}^{2} 1 b_{1}^{2} 6 a_{1}^{2} 1 a_{2}^{2} 2 b_{1}^{2} \tag{3}
\end{equation*}
$$

The present study, then, centered about a series of nonempirical self-consistent-field conmutations, with electrci configurations (1), (2), and (3) representing the three expected isomers. A helpful qualitative discussion of the analogous states of ozone has been given by Goddard and co-workers. 15

One inmortant qualitative conclusion may be drawn prior to the calculations. This concerns the possible interconversion of the "normal" and peroxy forms of NO_{2}^{-}. The most likely pathway for this conversion would be (schematically)

If fact, such a path is highly improbaole, since the ring state has three occupied π (or $a^{\prime \prime}$) orbitals ($1 b_{2}, 2 b_{1}$, and $1 a_{2}$) while the nomal and peroxy forms have only two occupied π orbitals. Thus, ornital symmetry suggests that there should be a substaritial barrier preventing access to the ring state from either direction.

The structure of each isomer has been predicted by minimizing the total energy with respect to the various geometrical parameters. The results are sumarized in Table 1 . Note first that the expected ground state geometry is indeed remarkably close to that of ozone, the difference in bond angles being less than 1°. The difference in bond distances is less than $0.02 \AA$, another indication of the validity of isoelectronic arguments. ${ }^{16}$ Finally, this geonetry agrees quite nell with the experimental structure of the NO_{2}^{-}ion in crystalline sodium nitrite. 17 The peroxy form has $\&$ similar bond angle, 118° and No bond distance, 1.25 R. However, the $0-0$ bond distance is much longer than in ozone. In fact, the o-0 distance is sliphtly greater than in nydrogen peroxide, ${ }^{16}$ 1.475 A. Thus the labeling of this second isomer

TABLE 1. Geometries, energies, and Nulliken populations for thace isomers of NO_{2}^{-}. Bond distances are in $\AA . O_{1}$ is the central atom in the peroxy isomer.

Atomic
Popolations

N	6.85	7.21	7.24
C_{1}	8.58	8.22	8.38
O_{2}	8.58	8.57	8.38

7.21
7.24
C_{1}
8.57
8.38
as the peroxy form is quite apprepriate. The peroxy fonn lies 3.20 eV above the normal isomer. The ring isomer is indeed very nearly an equilateral triangle, the 0,10 bond angle being 58°. The NO bond distance is $1.50 \AA$, or $0.05 \AA$ longer than the predicted bond distance ${ }^{11}$ for the comparable isomer of 0 . However, the ring isomer is seen to lie much higher (4.4 eV) for the NO^{-}system than for $0(1.6 \mathrm{eV})$. Thus our isoelectronic analogy is not very accurate in this particular regard.

Since it has been suggested ${ }^{3}$ that the anonalous NO_{2}^{-}is the result of a weak electrostatic interaction between 10 and 0^{-}, we report in the Table Mulliken populations for the three isomers. There it is seen that the tenninal oxygen is indeed the most negatively "charged", in a simple picture. However, the other two atoms account for nearly half of the ion's -1 charge.

In conclusion, the peroxy form of 10_{2}° corresponds to a well-defined minimum in the potential energy surface. Consequently, its postulation by experimentalists is given substantive theoretical support. Abreover, the fact that the peroxy and normal forms of NO_{2}^{2} do not appear ${ }^{2-4}$ to interconvert can be understood in terms of the relatively high energy of the ring state, the superficially logical intemnediate for such an interconversion.

Footnotes and References

*Published in J. Aner. Chem. Soc. 96, 6778 (1974).
${ }^{\text {Tresent }}$ address: Centre Européen de Calcul Atomique et Moleculaire, Batiment 506, Faculté des Sciences, 91-Orsay, France.
${ }^{\dagger}$ Present address: Lawrence Livermore Laboratory, University of California, Livemore CA 94550.
${ }^{5}$ Department of Chemistry, Stanford Gniversity, Stanford, CA 94305.

1. D. B. Denkin, F. C. Fehsenfeld, and E. E. Ferguson, Chem. Phys. Letters 15, 257 (1972); sec alse B. M. liughes, C. Lifsfitz and T. 0. Tiernan, '. Chem. Phys. 59, 3162 (1975).
2. J. II. Richardson, L. M. Stephenson, and J. I. Bramman, Chem. Phys. Letters 3, 313 (1974).
3. E. Herbst, T. A. Patterson, and W. C. Lineberger, J. Chem. Phys. (August 1974).
4. a) N. G. Adams, D. K. Bohne, D. B. Dmkin, F. C. Fehsenfeld, and E. E. Ferguson, J. Chem. Phys. 52, 3133 (1970); b) E. E. Ferguson, D. B. Dunkin, and F. C. Fehsenfeld, J, Chem, Phys. 57, 1459 (1972); see aiso E. E. Ferguson, F. C. Fehsonfeld, and A. V. Phelps, J. Chem. Ptrys. 59, 1565 (1973).
5. R. R. Smardzewski and W. B. Fox, J. Amer. Chem. Soc. 96, 304 (1974).
6. L. M. Branscomb, D. S. Burch, S. J. Smith, and S. Geltman, Phys. Rev. 111, 504 (1958).
7. S. D. Peyerimhoff and R. J. Buenker, J. Chem. Phys. 47, 1953 (1967).
8. S. Rothenberg and H. F. Schaefer, Mol, Phys. 21, 317 (1971).
9. P. J. Hay and W. A. Goddard, Chem, Phys, lett. 14, 46 (1972).
10. J. S. Wright, Can. J. Chem. 51, 139 (1973).
11. P. J. Hay, T. H. Dumning, and K. A. Goddard, Chen. Phys. Lett. 23, 457 (1973).
12. R. H. Hughes, J. Chem. Phys. 24, 131 (1956).
13. S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
14. T. H. Dumning, J. Chem. Phys. 53, 282 (1970),
15. W. A. Goddard, T. H. Dumning, W. J. Hunt, and P. J. Hay, Accounts of Chemical Research 6, 368 (1973).
16. A. D. Malsh, J. Chem. Soc. D0, 2266 (1953).
17. In the solid state, the ion has the geonetry $r(N-O)=1.236 \AA, \theta=115.4^{\circ}$; see M. R. Truter, Acta. Cryst. 7, 73 (1954). The gas phase No radical has a rather different structure $r(N-0)=$ $1.157 X_{p} \theta=134.3^{\circ}$; sce G. R. Bird, J. Chem. Phys. 25, 1040 (1956).
18. R. H. Hunt, R, A. Leacock, C. W. Peters, and K. T. Hecht, J. Chem, Phys. 42, 1931 (1965).

ELECTFONIC STRUCTURE ON NITRENES: LIN, THE SIMPLEST IONIC SPECIES*

C. E. Dykstrs, P. K. Pastont, and H. F. Schmerer (II

From qualitative molecular orbital argunents, it is predicted that the ${ }^{3} \Sigma^{-}-{ }^{3} \Pi$ separation in the ionic LiN nolecule should be significantly less than the 3.69 eV found spectroscopically for the analogous covalent molecule NH. Tc test this prediction, an $a b$ initio theoretical study of the electronic structure of LiN has been carried out. A Slater basis fet was enployed, of size Li (4s 2p), N(4s 3p ld). Both self-consistent-field and configuration interaction (CI) methods were used. Fur both ${ }^{3} \Sigma^{-}$(335 configurations) and ${ }^{3} \Pi$ (546 configurations) seates, the CI included all interacting single and double excitations with respect to the two-configuration wave functions required to insure dissocintion to Hartree-Fock atomic wave functions. Consistent with the ionic model, the two states arc predicted to be very close in energy, the ${ }^{3} \Sigma^{-}$state being the lower by 0.34 eV . Potential energy curves are seen in Fig, 1. An inportant aspect of the study is the prediction of electronic transition probabilities. It is shown that the use of natural orbitals greatly facilitates the calculation of transition moments, and the "length" form is seen to be less sensitive to details of the correlated wave function than is the "velocity" form. The ${ }^{3} \Sigma^{*}-{ }^{3}$ II oscillator strength, consistent with the ionic model. incresises ropidly as a function of bond distance.

Fig. 1
(XBL 747-3751)
Footnotes
${ }^{*}$ Published in J. Amer. Chem, Soc. 97, 0000 (1975).
${ }^{\dagger}$ Present address: Centre Europeen de Calcul Atomique et Moleculaire, Batiment 506, Faculte des S-iences, 91-Orsay, France.

$X^{2} A_{1}, \otimes^{\prime} E_{\text {, }}$ AND $b^{2} A_{1}$ ELECTRONIC STATES OF METHYL NITRENE*

D. R. Yarkory, H. F. Scheofor IIt, and S. Rothemberg

An a priort theoretical study of the electronic structure of wethyl nitrene has been carried cut. Using a double zeta basis set, the geonetries of the lowest ${ }^{3} A_{2},{ }^{1} E_{1}$ and ${ }^{2} A_{3}$ states have been predicted at the self-consistent-field level of theory. The three states, all of which arise from the sane eleceron configuration $1 a_{1}^{2} 2 a_{1}^{2} 3 a_{1}^{2} 4 a_{1}^{2} 1 e_{1}^{6} a_{1}^{2}$ $2 \mathrm{e}^{\mathrm{j}}$, are predicted to have very similar geometries. For the ground ${ }^{3} \mathrm{~A}_{2}$ state, ke predict $\mathrm{r}(\mathrm{CH})=1.09 \mathrm{~A}_{\text {, }}$ $R(C N)=1,47 \AA, O(\mathrm{NCH})=110^{\circ}$. At the predicted ${ }^{1} A_{2}$
equilibriun geanetry, several molecular preperties were calculated using a larger basis set including d functions on C and N and p finctions on hydrogen. These results are sumarized in Table 1. The predicted dipole monents are substantial: 2.11 debye $\left({ }^{3} A_{2}\right), \quad 2.23$ debye ($\left.{ }^{1} E\right)$, and 2.36 debye $\left(i_{1}^{1}\right)$. The ${ }^{2} E$ and ${ }^{1} A_{1}$ states are predicted to 1 te 14,200 and $27,700 \mathrm{~cm}^{\frac{1}{2}}$ above the $\mathrm{S}_{\mathrm{A}_{2}}$ ground state. Conparisons are made with the properties of the sinplest nitrene, NH.

TABLE 1. Molecular properties of methyl nitrene, obtained with a double zeta plus polarization basis set. The z coordinate lies along the C_{3} axis of the molecule, and one of the H atoms has been placed at $y=0$. Atomic units are used throughout.

Moments (with respect to the center of mass) of the elestrenis. cherge distribution	${ }^{3} \mathrm{~A}_{3}$	$1 E$	${ }_{1} \mathrm{~A}_{1}$
(${ }^{\text {a }}$	2.13	2.08	2.03
$\left(x^{4}\right)=\left(y^{1}\right)$	-14.75	-14.82	-14.90
(i)	-48.18	-48.16	-48.13
$\left\{x^{2}\right\rangle=-\left\langle x y^{2}\right\rangle$	-4.47	-4.44	-4.41
$\left(E^{\prime}\right)$	11.21	10.86	10.50
$\left.\left.\left\langle x^{4}\right)^{\prime}\right\rangle=\left\langle\psi^{1}\right)^{\prime}\right\rangle$	11.79	11.53	11.27
Multipole momeats			
$\mu_{4}(+\mathrm{CN} \rightarrow$)	0.831	0.876	097
$\theta_{\text {st }}=g_{\text {III }}$	0.86	0.85	076
9	-171	-1.62	-151
$\mathrm{O}_{\text {rr, }}=-\mathbf{1}_{\text {rry }}$	232	2.38	2.46
$\mathbf{0}_{\text {m }}$	-2.23	-1.81	-1.37
	111	693	369
Potential at nucleus			
\$H)	-1095	-1.091	-1085
ΦC	-1470	-14.69	-14.409
(N)	-1836	-18 14	-18 32
Eleerrie field at mucleus			
$E_{\text {f }}(\mathrm{H})$	0.010	0.011	0.012
ESH)	-0.002	-0 002	-0.00.1
E(C)	-0.008	-0.007	-0.005
$E_{\lambda}(\mathbf{N})$	0.072	0.071	0.070
Diamagnetic suscepubitily tensor			
$K_{r r}^{4}=Y_{m}$	-62 92	-6t 98	
$x r^{*}$	- 295	-29.65	- 2980
$\hat{x} \times 1$	-5178	-51.87	-5106

TABLE 1. (Continued)

Moments (with sespect to the center of thass) of the electrunic ebarge distribution	${ }^{1} n_{3}$	$1 \mathrm{E}$	${ }^{\prime} A_{1}$
Diamagnetic shielding tensor			
0.4 (H)	-3.19	-319	- 1.19
$\sigma_{s p}{ }^{*}(\mathrm{H})$	-0.94	-093	-0) 93
$0_{n}(4 \mathrm{H}]$	-2 25	-2 24	-2 24
$\sigma_{3}{ }^{\prime \prime}(\mathrm{H})$	127	127	127
$\sigma^{2}(\mathrm{H})$	-212	-212	-212
$\sigma_{s, 4} 4(\mathrm{C})=\sigma_{s}{ }^{4}(\mathrm{Cl}$	-5.65	- 565	-5 65
$0_{* *}(\underline{C})$	-7 37	-7.37	-7 38,
0.4×1	-6.22	-6 12	-6 22
	-6.36	-6 35	-631
$0_{0}{ }^{4}(\mathrm{~N})$	-8.56	-8 56	-8 50
$a_{n+}(\mathbf{N})$	-7.09	-7 ${ }^{\text {ck }}$	-708
Electric tield gradient Ieasor			
4 r (H$)$	-6) 259	-11239	${ }^{\text {c }} 260$
9 m (H)	${ }^{0} 163$	${ }^{1} 16$	() 163
9.dH)	0095	(1)19\%	0096
$9 \mathrm{ra}(\mathrm{H})$	0149	0149	0150
44 t (C) $=4{ }_{485}(\mathrm{C})$	0 0) 186	0 cks	0061
4,(C)	-6) 172	-1) 179	-4 181
$4 \cdot \mathrm{r}(\mathrm{N})=4 . \mathrm{r}^{(21)}$	-01195	-6 272	-1) 310
$\boldsymbol{a}_{\boldsymbol{r}}(\mathrm{N})$	1389	1) 543	0681

Footnote

"Published in J. Aner. Chem. Soc. 96, 5974 (1974).

EXCITED ELECTRONIC STATE OF HNC, HYDROGEN ISOCYANIDE*

G. Ah. Schwenzer and H. F. Schsefer III

Walsh's rules suggest that the excited states of INWC should have bond angles similar to the analogous states of HCN. To test this hypothesis, $a b$ initrio calculations have been carried out and compared to earlier calculations on HCN. Our results are sumarized in Table 1 . The most surprising resilit is the prediction that several of
the excited electronic states of HNC lie below the corresponding states of HCN. Also unanticipated are the unusually long CN bond lengths found for several of the lower excited states of GNC. The excited singlet states have bond angles qualitatively similar, although sonewhat smaller, than those of HCN. For the triplet states, Waish's

TABLE 1. Surmary of theoretical predictions for the singlet states of HNC. Excitation energies and bond angles given in pargntheses are those predicted by analogous calculations on HCN. Bond distances are in A.

Symmetry	T_{e} (eV)	T_{e} (JNS)	$r_{e}(\mathrm{NC})$		(INSC)	Most ingportant configurations	Coefficients
$1{ }^{1} A^{\prime}\left(\Sigma^{\prime} \Sigma^{\prime}\right)$	0.00 (0.00)	0.987	1.204	180°	(180 ${ }^{\circ}$)	$5 a^{12} 6 a^{\prime 2} 1 a^{12}$	0.968
$1^{1} A^{\prime \prime}$	4.95 (6.48)	1.922	1.461	$112.8{ }^{\circ}\left(127.2^{\circ}\right)$		$5 a^{\prime 2} 9 a^{\prime 2} 1 a^{\prime \prime} 7 a^{\prime}$	0.939
$2^{1} A^{\prime}$	5.51 (6.78)	1.015	1.417	$119.7^{\circ}\left(124.9^{\circ}\right)$		$5 a^{\prime 2} 6 a^{\prime} 7 a^{1} 1 a^{\prime \prime 2}$	0.819
						$5 a^{\prime 2} 6 a^{12} 1 a^{\prime \prime} 2 a^{\prime \prime}$	0.444
$2{ }^{1} \mathrm{~A}^{\prime \prime \prime}$	6.22 (7.52)	0.996	1.418	156.8	${ }^{\circ}\left(164.4^{\circ}\right)$	$5 a^{\prime 2} 6 a^{\prime \prime} 1 a^{\prime \prime 2} 2 a^{\prime \prime}$	0.910
$3^{2} \mathrm{~A}^{\prime}$	7.34 (7.85)	1.021	1.260	142.0	$0^{\circ}\left(141.2^{\circ}\right)$	5a' $6 a^{\prime 2} 1 a^{\prime \prime 2} 7 a^{\prime}$	0.771
						$5 a^{\prime 2} 6 a^{\prime \prime} 7 a^{\prime} 13 a^{\prime \prime 2}$	0.365
						$5 a^{\prime 2} 6 a^{\prime 2} 1 a^{\prime \prime} 2 a^{\prime \prime}$	0.358
$3^{1} A^{\prime \prime}$	8.17 (8.97)	0.979	1.220	180°	(180 ${ }^{\circ}$)	$5 a^{\prime 2} 6 a^{\prime} 1 a^{\prime \prime 2} 2 a^{\prime \prime}$	0.944
$4{ }^{2} A^{\prime}$	8.50 (9.54)	1.150	1.198	180°	(180°)	$5 a^{\prime 2} 6 a^{\prime} 8 a^{\prime} 1 a^{162}$	0.813

concept appears less successful, primarily due to strong mixing between several different electronic configurations. Mulliken populations are ured in the discussion of these results.

Footnote
*Published in J. Chem. Phys, 63, 0000 (1975).

CORRELATION DIAGRAM FOR $\mathrm{He}+\mathrm{He}+\mathrm{Be}^{*}$

D. R. Yarkony and H. F. Schuefor II:

An electronic correlation diagram has been calculated a priori for the model system He + He + Be. The suitability of different types of basis sets and of the Hartree-Fock approximation is discussed. The relation of this diagran to experimental inner shell collision chenistry is discussed briefly. The figure shows the adiabatic total energies and orbital energies. Note especially the avoided crossing at $\mathrm{R}=0.56$ bohrs. This crossing corresponds, in a single configuration picture, to a jump from $1 \sigma_{g}^{2} 1 \sigma_{u}^{2}$ to $1 \sigma_{g}^{2} 2 \sigma_{g}^{2}$

> Footnote
*Published in J. Chem. Phys. 61, 4921 (1975).

Fig. 1.
(×RL 745-3037)

THE HYPERVALENT MOLECUL.ES SULFURANT (SH ${ }_{4}$)
AND PERSULFURANE $\left\{\mathrm{SH}_{6}\right\}^{*}$
G. M. Schwenzer and H. F. Schaefer III

The electronic structures of $\mathrm{SH}_{2}, \mathrm{SH}_{4}$, and SH_{6} have been investigated by $a b$ initio theoretical methods. The geonetry of each species has been predicted using self-consistent-field wave functions enploying a $\mathrm{S}(12 \mathrm{~s} 9 \mathrm{p} / 7 \mathrm{~s} 5 \mathrm{p})$, $\mathrm{H}(5 \mathrm{~s} / 3 \mathrm{~s})$ basis set of contracted Gaussian functions. These results are sumarized in Table 1. Using these geometries, the effects of hydrogen scale factor, d functions on sulfur, and p functions on hydrogen have been explored. It is concluded that SH_{4} Jivs energetically above $\mathrm{SH}_{2}+\mathrm{H}_{2}$, and that SII_{6} lies at least $36 \mathrm{kcal} / \mathrm{mole}$ above $\mathrm{SH}_{2}+2 \mathrm{H}_{2}$. Thus SH_{4} and SH_{6} at best represent local minima on their respective potential energy surfaces. The structure predicted for SH_{4} is quite reminiscent of the knowm geonetry of SF_{4} seen in Fig. 1. The bonding in these two model systems is discussed making ise of population analyses. A number of molecular properties are predicted.

Fig. 1.
(XBL 748-4143)

Table 1. Predicted geonetries of $\mathrm{SH}_{2}, \mathrm{SH}_{4}, \mathrm{SH}_{6}{ }^{3}$ The experimental $\mathrm{H}_{2} \mathrm{~S}$ geometryb is given in parentheses.

	$\mathbf{S H}_{3}$	SH4	SH.	SH.
r(S-H)	1.357 (1.328)	1,489	1.70	1.461
(5 - H^{\prime})		1.489	1.35	1.461
e(FiSH), deg	96.2 (92.2)	90	105.6	90
e(H'SH'), des		180	191.8	180
Hydrogen scale factor Energy, hatrees	$\begin{gathered} 1.19 \\ -398.6467 \end{gathered}$	$\begin{gathered} 1.19 \mathrm{c} \\ -399.5308 \end{gathered}$	$\begin{gathered} 1.00 \\ -399.5753 \end{gathered}$	$\begin{gathered} 1.02 \\ -400.5351 \end{gathered}$

a Bond ditunces (A) and bond angtes ate specined in a manner analogous to Fìpure 1 .
*Geometry recalculated ty L. E. Sutton and D. H. Whiffen. Chem. Sor. Spece. Publ., No. 18 (1965), using monents ot inertis Irom H. C Alken and E. K. Hyer, I. Chem. Phys, 25, 1132 (1956).
s Nat optimLed.

Footnote
*Published in J. Amer. Chem. Soc. 97, 1393 (1975).

MOLECULAR PROPERTIES OF EXGITED ELECTRONIC STATES:

THE $\tilde{a}^{3} A^{\prime \prime}$ AND $\widetilde{A}^{1} A^{\prime \prime}$ STATES OF FORMALDEHYDE*

B. J. Garrison, H. F. Schacfar III, and W. A. Lester ${ }^{\dagger}$

One of the most important recent trends in chemical physics has been the development of new experimental and theoretical methods for studying the excited electronic states of molecules. 1 Since excited state properties are often strikingly different from their ground state comiterparts, the results of experiments on excited states sometimes force us to reevaluate our thoughts conceming the nature of molecular structure and properties.

As one of the earliest studied examples, consider the lowest two excited states of fornaldehyde. For reference, we note the planar $\mathrm{C}_{2 \mathrm{v}}$ structure ${ }^{2}$ of the ground state,

with $r(C O)=1.208 \mathrm{~A}, \quad r(C H)=1.116 \AA, \quad \theta(H C H)=$ $116^{\circ} 31^{\prime}$. The electron configuration for the ' A_{1} ground state may be written ${ }^{3}$

$$
\begin{equation*}
1 a_{j}^{2} 2 a_{1}^{2} 3 a_{1}^{2} 4 a_{1}^{2} 1 b_{2}^{2} 5 a_{1}^{2} 1 b_{1}^{2} 2 b_{2}^{2} \tag{1}
\end{equation*}
$$

In both excited states, the geometries are quite different; ${ }^{3-5}$ in fisct both are nonplanar, with the methylene group tilted out of the plane seffined hy the ground state molecular structure. For the lowest triplet state, this out of plane angle is $\sim 34^{\circ}$, while it is $\sim 31^{\circ}$ for the first excited singlet state. 3 Although these two states would be labeled ${ }^{3} A_{2}$ and ${ }^{1} A_{2}$ if they retained the gromd state's $C_{2 v}$ equilibrium geonetry, these labels are not appropriate since only a plane of symuetry is required. Hence the states are properly designated $\bar{a}^{3} A^{\prime \prime}$ and $\tilde{A}^{1} A^{\prime \prime}$ and both arise from the electron configeration.

$$
\begin{equation*}
1 a^{\prime 2} 2 a^{\prime 2} 3 a^{\prime 2} 4 a^{\prime 2} l a^{1 ; 2} 5 a^{\prime 2} 6 a^{\prime 2} 2 a^{\prime \prime} 7 a^{\prime} \tag{2}
\end{equation*}
$$

Note that the half-filled $2 a^{\prime \prime}$ and $7 a^{\prime}$ orbitals correlate with the $C_{2 v}$ orbitals $2 t$ and $2 b_{1}$, the latter being unuccupied in the growsd state. Finally, it should be mentioned that the 0 distance in the two excited states is more thay $0.1 \AA$ longer than for the gromd state: a 1.312 A. A 1.323 A.

The apuve illustrates some of the interesting relationships that have been established between ground and excited state moleculav geonetries. For other properties, however, less is known about excited states. For example, there are only a small number of polyatomic nolecules for which
excited state elertic dipole monents have been mensured. Again, $\because 2$ of the systems for which experinents have been possible is the $A^{1} A^{\prime \prime}$ state of $\mathrm{H}_{2} \mathrm{CO}$. There Freeman and Klenperer ${ }^{\text {Ga }}$ have obtained $\mu_{z}=1.56 \pm 0.07$ debyes from the Stark effect of the near-ultraviolet absorption spectrum For comparison, the ${ }^{2} A_{2}$ ground state dipole mortent ${ }^{7}$ is 2.323 ± 0.015 debye, or 0.36 ± 0.09 debye larger than the excited state value. In addition Buckingham, Ransay, and Tyrrel1 ${ }^{66}$ have measured μ_{2} for the \tilde{a} state and obtajned 1.29 ± 0.03 debye.

The purpose of the present research was to report near Hartree-Fock values of several molecular properties of the \vec{a} and \hat{A} states of formaldehyde. In addition to the dipole noment, known experinentally for both states, we report a mmber of properties (e.g. molectular quadrupole moments and electric field gradients) which are of inter ast but very difficult to measure for excited electronic states. To evaluate the reliability of the predicted properties, che ground state $\mathrm{H}_{2} \mathrm{CO}$ properties have also been calculated using a variety of basis sets.

Footrotes and References

"Published in J. Chern. Phys. 61, 3039 (1974).
${ }^{\dagger}$ Present address: IBM Research Laboratory, Monterey and Cottle Roads, San Jose, CA Ýs193.

1. See, for example, Vol. 1, Excited States, edited by E. C. Lim (Academic Press, New York, 1974).
2. T. Oka, J. Phys. Soc. Japan 15, 2274 (1960); K. Tagaki and T. Oka, J. Phys. Soc. Japan 18, 1174 (1963).

3. G. Herzberg, Electronic Spectra of yatomic Molecules (Van Nostrand Reinhold, New Yox 1966).

4. J. C. D. Brand, J. Chem. Soc. (London) 858 (1956).
5. V. E. DiGiorgio and G. H. Robinson, J. Gem, Phys. 31, 1678 (1959).
6. a) D. E. Freeman and W. Kleperer, J. Chem. Phys. 45, 52 (1966) ; b) A. D. Buckingham, D. A. Ransay, and J. Tyrre11, Can. J. Phys. 48, 1242 (1970).
7. K. Mondo and T. Oka, J. Phys. Soc. (Japan) 15, 307 (1960).

SUPERTRANSFERAED HYPERFINE INTERACTION: PERTURBED ANGULAR CORRELATION OF $111 \mathrm{~m} C$ IN ANTIFERROMAGNETIC NiO, CoO, AND MnO

H. H. Rinneberg and D. A. Shirley

The time differential perturbed angular correlation (PAC) of 111 nCd substituted as a dilute impurity into antiferromagnetic $\mathrm{NiO}, \mathrm{CoO}$, and MnO has been observed. (Fig, 1). Above their Neel termperatures the divalent oxides NiO ($\mathrm{T}_{\mathrm{N}} \approx 520^{\circ} \mathrm{K}$), $000\left(\mathrm{~T}_{\mathrm{N}} \approx 293^{\circ} \mathrm{K}\right)$ and $\mathrm{MnO}\left(\mathrm{T}_{\mathrm{N}} \approx 118^{\circ} \mathrm{K}\right)$ have the rock salt structure. Cd^{2+} is assumed to enter substitutionally for a transition metal ion. It is surrounded by a regular octahedron of 0^{2} anions. Because of symetry, in the antiferromagnetic state the 12 nearest magnetic ions do not contribute to the observed isotropic supertransferred hyperfine interaction. This can be seen very easily by considering one of the 0^{2-} anions next to the dopant (Cd^{2+}). It is octahedrally surrounded by 6 cations, where transition metal ions on opposite corners, have antiparallel spins. Thus only the effect of the nagnetic ion which is linked to the Cd^{2+} by a $180^{\circ} \mathrm{Me}^{2+}-\mathrm{O}^{2-}-\mathrm{Cd}^{2+}$ bond does not vanish by symetry. Jıere are six such next-nearest magnetic ions--all belonging to the sane sublat-tice--which octaix irally surromd the dopant. Thus for the supertran ferred hyperfine interaction the divalent oxides $\mathrm{N}_{4} \mathrm{~J}_{3} \mathrm{C} 00$, NHO constitute the same local emviroment around the dopant (Cd^{2+}) as the perovskites $\mathrm{KNiF}_{3}, \mathrm{KCoF}_{3}$, and $\mathrm{RbH}_{2} \mathrm{KF}_{3}$, Whereas the 12 nearest cations do not contribute to the unpaired spin density in $\mathrm{Cd}^{2+} \mathrm{s}$-orbitals, they give rise to a dipolar field at the Cd nucleus. In Table 1 the experimental internal fields $H_{i n t}$ ($4.2^{\circ} \mathrm{K}$) and the hyperfine fields Hhf $\left(4.2^{\circ} \mathrm{K}\right)$ corrected for the dipolar contribution are given for the divalent oxides $\mathrm{NiO}, \mathrm{COO}$, and Mno. For comparison the perovskites $\mathrm{KNiF}_{3}, \mathrm{KCoF}_{3}$, and RbNHF_{3} are included. It is seen, that the hyperfine fields observed in the oxides are about twice as large as in the corresponding fluorides. Qualitatively, if we assume the transfer of spin density through the intervening anion to be the dominant mechanism, then from the larger unpaired spin density at the Cd impurity in the oxides we expect a larger unpaired spin density at the 02 - ion provided the transfer of spin density from the anion into the Cd s -shells is not too different for the $\mathrm{Cd}-0$ and Cd-F bonds. This is consistent with recent results obtained by Freund, who measured the 170 ENDOR in Ng $\left.{ }^{\prime} w_{1} 2^{+}\right)^{17}$. He obtained for the amount of unpaired spin density $f_{\sigma}(\mathrm{Ni}-0)=8.54$, whereas $\mathrm{f}_{\mathrm{r}}(\mathrm{Ni}-\mathrm{F})=3.9 \%$ is knom fron the ${ }^{1} \mathrm{~F} \mathrm{NHR}_{\mathrm{R}}$ in KNiF_{3}.

Fig, 1. Tine differential PAC spectra of ${ }^{111}{ }^{17} \mathrm{Cd}$ doped into antiferronagnetic $\mathrm{NiO}, \mathrm{MnO}$, and COO .
(XBL 742-2362)

Table 1. Experimental values for the internal fields H_{j} ((4 K) and hyperfine fields Hhf, corrected for a dipolar contribution, at dd in various antiferronametic fluoridesl and oxides.

	NiO	CoO	MrO	KNiF_{3}	KCoF_{3}	RbXVFF_{3}
$\mathrm{H}_{\text {int }}(100 \mathrm{e})$	191.1 ± 2.5	170,8土3.0	194.7 ± 2.5	105.7\#1.5	74.1 ± 1.5	113.8 ± 1.5
Hhe (koe)	196.0き3.5	176,9£4.0	202.4 ± 3.0	105.7*1.5	74.1 ± 1.5	113.8 ± 1.5

A closer analysis of the hyperfine fields has been performed following the configuration interaction calculation of Taylor ei al. 1 Because of uncertainties in the wavefunctions used to calculate overlap integrals and since the impurityligand distance is not known, these calculations
predict the observed fields with an uncertainty of better than a factor of two. From the ratio of the hyperfine fields $\mathrm{H}\left(\mathrm{Man}_{\mathrm{n}}\right) / \mathrm{H}(\mathrm{NiO})$ a new estimate for the spin density parameter $f_{\sigma}(\mathrm{Mn}-0)=8.1 \%$ has been obtained, which is considerably larger than the value inferred from neutron diffraction.

PERTURBED ANGULAR CORRELATION OF ${ }^{111}$ bd IN ANTIFERROMAGNETIC $\mathrm{MnF}_{2}, \mathrm{FeF}_{2}, \mathrm{CoF}_{2}$, AND NiF ${ }_{2}{ }^{\dagger}$

H. H. Rinnebarg and D. A. Shirley

The tine differential perturbed angular correlation (PAC) of 111 mCd doped into antiferromagnetic $\mathrm{MnF}_{2}, \mathrm{FeF}_{2}, \mathrm{CoF}_{2}$ and NiF_{2} has been observed. The perturbation is caused by a combined electric quadrupole and magnetic dipole uiteraction.

The divalent fluorides $\mathrm{MnF}_{2}\left(\mathrm{~T}_{\mathrm{N}}=67.4^{\circ} \mathrm{K}\right)$, $\mathrm{FeF}_{2}\left(\mathrm{~T}_{\mathrm{N}}=78.1^{\circ} \mathrm{K}\right), \mathrm{CoF}_{2}\left(\mathrm{~T}_{\mathrm{N}}=37.7 \mathrm{~K}\right)$ and NiP_{2} ($\mathrm{T}_{\mathrm{N}} \times 73.2 \mathrm{~K}$) have the rutile structure (D 44). Cd2 ${ }^{+}$enters substitutionally for a transit din 2 metal ion. Because of the point symmetry at the metal site ($\mathrm{D}_{2 h}$) the orientation of the field gradient tensor, produced by the crystalline surroundings at the cd nucleus, is fixed with the principal axes pointing along [110], [110], and [001]. In the antiferromagnetic state there are two interpenetrating sublattices. For $\mathrm{MnF}_{2}, \mathrm{FeF}_{2}$ and CoF_{2} the spins point along the c -axis. Hence the hyperfine field at the Cd nucleus is parallel to [001], that is, one of the axes of the field gradient tensor.

The spin structure of NiF_{2} is more complicated. The spins are perpendicular to the c-axis, with the spin axis along $\{100\}$ or $\{010\}$. The hyperfine field is therefore perpendicular to one of the field gradient axes. The time differential perturted angular correlation spectra of $\$ 11 \mathrm{Cd}$ doped into $\mathrm{MnF}_{2}, \mathrm{FeF}_{2}, \mathrm{CoF}_{2}$, and NiF_{2} are shown in Figs. 1 and 2 for temperatures below and above their Neel points. The spectrom obtained for MnF_{2} in the paranagnetic state ($70^{\circ} \mathrm{K}$) shows almost exactly the periodic variation expected for axially symetric quadrupole interaction. Therefore approximate values for vo and $\eta(\eta * 0)$ are easily obtained, which can be improved by a least-squares fit. For paramagnetic FeF_{2} ($\mathrm{T}=90 \mathrm{~K}, \mathrm{H}_{\mathrm{int}}-0$) the observed PAC spectran is no longer periodic. Since $y_{\text {g essentially detemines the time scale, }}$ the spectfic form of $\mathrm{G}_{22}(\mathrm{t})$ depends only on the asymetry paraneter $04 \frac{2}{n} \& 1$, which is easily found by trial and error. Howover in the antiferromagnetic state, where more parameters have to be detcrmined, this method beccmes increasingly difficult and tedious. Clearly, the Fourier coefficients $F(u)$ of the perturbation factor $G_{22}(t)$ are needed to estimate these parameters. Since we are only interested in frequencies, the power spectral density $P(u)=|F(w)|^{2}$ can be used instead.

In order to improve the signal/noise ratio, the power spectral density is calculated, after the experimental values of the perturbation factor have been weighed according to their statistical accuracy. Since the statistical error jncreases significantly for times $t \geqslant t_{\text {max }}$, for which the

Fig. 1. Tine differential PAC spectra of ${ }^{111}{ }^{1} \mathrm{Cd}$ doped into paramagetic and antiferromagnetic HeF_{2}; FeF_{2}, and Col_{2}.
(XBL 744-2785)

Fig. 2. Time differential PAC spectra of ${ }^{111 \mathrm{~m}} \mathrm{Cd}$ in paramagnetic and weakly ferromagnecic NiF_{2}.
(XBL 745-2998)
mumber of true coincidences is smaller or equal to the number of random events, the perturbation factor $\mathrm{G}_{2}(\mathrm{t})$ thus obtained is essentially zero for $t ?$ fax. Since the multiplication by a weighing factor corresponds to a convolution in the frequency domain using $\mathrm{G}_{2}(\mathrm{t})$ an averaged power spectral density $W(\omega)$ is obtained. The increase in signel/noise ratio corresponds to a decrease in frequency resolution. The power spectral density $W(\omega)$ can be obtained directly from the Fourier coefficients of $\mathrm{G}_{2}^{\prime \prime}(\mathrm{t})$. Equivalently it can be calculated as the fourier transform of the autocorrelation function $\mathrm{C}(\tau)$ of $\mathrm{G}_{2}^{\prime \prime}(\mathrm{t})$ if the maximm time lag $\tau_{\max }$ for which $C(t)$ is calculated is equal to the time interval, in which GL_{2} (t$)$ is essentially diffurent fron zero $\mathrm{I}_{\text {max }}=\mathrm{t}_{\text {max }}$).

In this way we obtain from the experinental time differential PAC spectra (Figs. 1 and 2) the experimental average power spectral density functions Wexp shown in Figs. 3 and 4 for MnF_{2}, FeF_{2}, CoF_{2}, and NiF_{2} (dotted lines). Since the natural line width associated with the $\gamma-\gamma$ cascade of $111 \mathrm{mcd}, \Delta v=\left(\pi \tau_{N}\right)^{-1}$, is about $2.5 \mathrm{Mz}_{\text {, the }}$ the dividual Fourier components overlap heavily. Assuming certain values for v_{0}, η_{0} and $H_{i n t}$, the perturbation factor $G_{21}(t)$ is calculated. Using these theoretical estentates instead of the measured values for Gip (t), a theoretical estimate of the average power spectral density wialc and wexpin the frequency or by a fit of Gealc and Gexp in the time donain. Good agreenent was obtafned between the results of a mininization in frequency space and tine space. The solid curves in Figs. 3,4 and 1,2 represent the calculated average power spectral density Wealc and perturbation factor cicalic respectively.

The internal fields (Table 1) found in $\mathrm{MnF}_{2} / \mathrm{Cd}, \mathrm{FeF}_{2} / \mathrm{Cd}, \mathrm{CoF}_{2} / \mathrm{Cd}$, and $\mathrm{NiF}_{2} / \mathrm{Cd}$ at $4^{\circ} \mathrm{K}$

Fig. 3. Average power spectral density of the time differential PAC spectra (dotted line) for $\mathrm{MnF}_{2} / \mathrm{Cd}, \mathrm{FeF}_{2} \mathrm{Cd}$, and $\mathrm{CoF}_{2} / \mathrm{Cd}$. The solid curves represent a least squares fit.
(XBL 744-2786)
are rather smilar. For comparison we include in Ta ${ }^{-1 \cdot}$ e 1 the hyperfine fields at the Cd nucleus doped into the antiferromagnetic perovskites $\mathrm{Rb}_{\mathrm{H}} \mathrm{nF}_{3}, \mathrm{KFeF}_{3}, \mathrm{KCoF}_{3}$, and KMiF_{3}. The hyperfine fields at the impurity are caused by unpaired spin densities transferred from the magnetic neighbors into the Cd s-shells. In the perovskites, e.g., KNiF_{3}, the six nearest magnetic neighbors belonging to the same sublattice contr:bute to the hyperfine field. For the difluorides, two nearest magnetic ions of one sublattice and eight next rearest magnetic neighbors belonging to the other sublattice have to be considered. Because of symmetry arguments, the influence of the latter is expected to be dominating. The smaller fields found in the difiusrides compared to the perovskites are due to the transfer of spin density along argular exchange paths $\mathrm{M}^{2+}-\mathrm{F}^{-}-\mathrm{Cd}^{2+}$, resulting in smaller overlaps of the orbitals involved.

Fig．4．Average power spectra density of the time differential PAC spectrum of $\mathrm{NiF}_{2} / \mathrm{Cd}$ at $4^{\mathrm{a}} \mathrm{K}$（dotted line）．The solid curve represents a least squares fit．
（XBL 745－2997）

Table 1．Quadrupole corpling paraneters and hyperfine fields in various antiferromagnetic fluorides at $4^{\circ} \mathrm{K}$ ．

	$\mathrm{v}_{0}(\mathrm{MHz})$	\dagger	$\mathrm{H}_{\text {int }}$（ KOE ）	
MnF_{2}	16.7 ± 0.2	0.05 ± 0.02	$34.4 \pm 0.8 \quad \vec{H}_{\text {int }} \\| \vec{y}_{F G}$	
FeF_{2}	21.6 ± 0.3	0.49 ± 0.02		
CoF_{2}	17．7 ± 0.3	0.0 ± 0.02	16．4 $\pm 0.8 \mathrm{H}_{\text {int }}{ }^{\perp} \vec{z}_{\mathrm{FG}} \quad \therefore$ ，	
NiF_{2}	16.5 ± 0.5	0.1 ± 0.08		
$\mathrm{RhMnf} \mathrm{F}_{3}$	－－	－＊	113.8 ± 1.5	
KFeF_{3}	－－	－－	~ 100	
KCoF_{3}	－－	－－	74．1さ1．5－－	
KNiF_{3}	＊－	－－	105．7土1．5－－	

A NLLCLEAR ORIENTATION MEASUREMENT OF PARITY ADMIXTURE IN THE 501.keV GAMMA TRANSITION IN ${ }^{180} \mathbf{H} \mathbf{H m}$

T. S. Chou, K. S. Krane, and D. A. Shirley

The current"current theory of weak interactions of Feymman and Gell-Mannl,2 suggests that the strangeness-conserving, nen-Ieptonic weak interaction will contribute to the intemucleon potential and will result in small parity impurities in nuclear states. The ratio F si the strength of the parity non-conserving force to that of the parityzonserving force was estimated by Blin-Stoyle ${ }^{\frac{5}{3}}$ to be of the order of 10^{-7}; thus these parity adnixtures are expected to be quite shall. However, in the event that nuclear observables resulting from the parity-conserving component are strongly hindered, effects of the parity impurity may compete more successfully. The case of 180ff provides a particularly striking example of this relative enhancement. We have undertaken a measurement of the asymmetry in the angular distribution of the $501-\mathrm{keV}$ ganmia ray following the decay of polarized $180 \mathrm{~m} \mid f$, Earlier measurements of parity nonconserving effects in this transition had been reported in three previous studies of the circular polarization of radiation from an upolarized sample, 4-6 as well as in one previous study of the angular distribution asymmetry from a polarized sample. 7 Nevertheless, we felt that the size of the effect in this transition and its significance for comparisons with theoretical calculations warranted an independent reneasurement under somewhat varied conditions.

The parity-nonconserving weak interaction introduces a small parity adnixture into the nuclear levels, such that the nuclear wave function may be written as

$$
\begin{equation*}
\psi=\psi^{(\pi)}+f_{\psi^{\left(\pi^{\prime}\right)}} \tag{1}
\end{equation*}
$$

where $\pi \neq \pi^{\prime}$. Parity mixing gives rise to irregu'ar electromagnetic transitions $\pi_{i} \rightarrow \pi f^{\prime}$ and $T_{i}^{\prime} \rightarrow \pi_{f}$, in addition to the regular transition $x_{i}-\pi f$. The interference term is proportional to the ratio of the amplitudes of the irregular and regular transitions
$\frac{\text { irregular }}{\text { regular }}=\frac{\left.{ }^{7}\left\langle\psi_{f}{ }^{\left(\pi_{f}\right)}\right| \mathrm{H}\left|\psi_{i}{ }^{\left(\pi_{i}^{\prime}\right)}\right\rangle+\left\langle\psi_{f}{ }^{\left(\pi_{f}^{\prime}\right)}\right||\mathrm{H}| \psi_{\mathbf{i}}{ }^{\left(\pi_{i}\right)}\right)}{\left\langle\psi_{f}{ }^{\left(\pi_{f}\right)}\right| \mathrm{H}\left|\psi_{i}{ }^{\left(\pi_{i}\right)}\right\rangle}$ $=3 \mathrm{R}$

The ${ }^{180}$ Hf level scheme is illustrated in Fig. 1. 8 The 8^{-}isomeric level is characterized as $K=8$. The $501-\mathrm{keV}$ transition to the 6^{+}level of the $\mathbf{K}=0$ ground-state rotational band is of mixed E3/M2 multipolarity, with (E3)/(M2 $)^{=+5.3 \pm 0.3 .7}$ The parity nonconserving interaction is expected to admix a small 8^{+}component into the 1.142 $\mathrm{MeV} \mathrm{A}^{-}$1eיel. The close spacing between the 8^{-}

Fig. 1. Decay scheme of ${ }^{180} \mathrm{Af}^{\mathrm{m}}$.
(XBL 741-2204)
level and the 8^{+}level at $1,084 \mathrm{MeV}$ tends to magnify the admixture; in addition, the regular (parity conserving) E3 and M2 components of the $501-\mathrm{keV}$ radiation field are strongly hindered, resulting in a relative enhancement of any possible irregular component.

The angular distribution of ganma radiation from an oriented nucleus is described by

$$
\begin{equation*}
W(\theta)=\sum_{k}{\Omega_{k}}_{k} B_{k} U_{k} A_{k} P_{k}(\cos \theta) \tag{3}
\end{equation*}
$$

For odd k,

$$
A_{k}=\frac{2 \varepsilon}{1+\delta^{2}}\left[F_{k}\left(L L I_{f} I_{i}\right)+\delta F_{k}\left(L L^{\prime} I_{f} I_{i}\right)\right]
$$

where the F_{k} are the F-coefficients. Here E is the ratio of the irregular to regular matrix elements, in this, case $\langle E 2$)/ (M 2\rangle, and δ is the (E3)/(M2)mixing ratio. The asymetry e is defined as

$$
\begin{align*}
\Psi & =2 \frac{W\left(180^{\circ}\right)-W\left(0^{\circ}\right)}{W(180)+W(0)} \\
& =-2 \frac{Q_{1} B_{1} A_{1}+Q_{3} B_{3} A_{3}}{1+Q_{2} B_{2} A_{2}+Q_{4} B_{4} A_{4}} . \tag{5}
\end{align*}
$$

In the present experiment the asymmetry \sim of the 501 keV gamma ray has been deternined and the ir-regular-to-regular mixing ratio ε has been deduced.

The low tenperatures necessary to polarize the nuclei were produced by the demagnetization of chropiun potassium sulfate (chrome alum) salt prepared in a glycerin slurry. Themal contact to the salt slurry was achieved by means of 16 sheets of 0.13 IIn (5 mil) copper foil. A schematic view of the apparatus is shown in Fig. 2. The sample temperature was monitored using a ${ }^{60} \mathrm{Co}(\mathrm{Fe})$ thennometer; the anisotropy of the angular distribution of the ganma rays following the 60 Co decay was used to deduce the temperature. The data were written onto magnetic tape in the form of 1024-channel gammaray spectra, Each spectrm corresponds to the results of counting with a single detector at a given position of the applied field for a period of approximately 10 minutes. Also written onto the magnetic tape were markers defining the positions of the $444-\mathrm{keV}$ and 501 keV peaks along with the positions of appropriate regions of background.

The results of this experiment represent data from 4 different samples, each of which was counted during two half-lives. Representative temperatures

Fig. 2. The 1Jw-temperature cryostat and dewar system.
(XBL 741-2063)
at which three of the four samples were man were $16 \mathrm{mK}, 17 \mathrm{mK}$, and 22 mK ; a fourth sample was observed at temperatures in the range 16-28 mk . The results are sumarized in Table 1 .

Sample Ng	Tamperature	Datector Na.	Scurce-to-Detector Diatanca(cm).	Detector Oriantation	Asymmetry ${ }^{\text {a }}$	$\|c\|^{2}$
1	16-28 mLS	A	22	$270{ }^{\circ}$		0.0464 (59)
		B	20	$0{ }^{\circ}$		0.0378 (68)
		C	10	$9{ }^{\circ}$		0.0464 (64)
		D	11	180*		0.0252 (63)
2	16 mk	A	30	180	0.0160 (40)	0.0293 (75)
		T	11	$270{ }^{\circ}$	0.0100 (28)	0.0184 (52)
		c	12	90	0.0138 (27)	0.0252 (50)
		\square	13	$0{ }^{\circ}$	0.0167 (44)	0.02\% \{81\}
3	22 mK	a	27	2704	$0.01: 1$ (30)	0.0244 (6.7)
		E	10	1800	0.0068 (25)	0.0151 (55)
		c	12	a*	0.0131 (231	0.0290 (52)
		D	43	$90 \cdot$	0.0 .11 (33)	0.0244 (73)
4	17 mk	A	17	270"	0.0127 (47)	0.0281 (89)
		E	4	90^{*}	0.0129 (49)	0.0283 (92)

${ }^{2}$ The statistical uncertainties of the last two digits are indicated in parenthesis.

The weighted average value of ε based on the data of Table 1 is $\epsilon=-0.029 \pm 0.002$. Computing the nomalized chi-squared vilue of the 14 individual measurements of E, we ohtain $\chi^{2}=2.3$. This value is somewhat large, and perthaps suggests a systematic source of error in the data. We allow for the possibility of some as yet unknown source of systenatic error by increasing the individual statistical uncertaintise by a factor of 1.5 The final result of the present experinent is compared with those of previous studies in Table 2. In doing the

Table 2. Comparison of results on parity nonconservation in the $501-\mathrm{keV}$ transition of 180 Hf .

Method ${ }^{\text {a }}$	$\varepsilon=\langle\mathrm{E} 2\rangle /\langle\mathrm{M} 2\rangle$	Reference
P_{γ}	-0.041 ± 0.007	Jenschke and Bock, ref. 4
$\mathrm{P}_{\boldsymbol{Y}}$	-0.033 0.009	Lipson, Vanderleeden, and Boehm, ref. 5
P_{γ}	-0.029 ± 0.006	Kuphal, ref. 6
$\gamma(\theta)$	-0.038 ± 0.004	Krane, O1sen, Sites, and Steyert, ref. 7
$y(\theta)$	-0.031 ± 0.003	Krane, O1sen, and Steyert, b
y (θ)	-0.029 ± 0.003	present work

$\mathrm{a}_{\mathrm{P}^{\prime}}=$ circular polarization of ganma radiation from a randomly source; $\gamma(\theta)=$ angular distribution asymmetry from a polarised source.
$\mathrm{b}_{\text {K. S. Krane, C. E. Olsen, }}$ and W. A. Steyert, Phys. Kev. C5, 1663 (1972).
comparison, all results have been evaluated using $\delta=+$ 5.3. The weighted average of the six results to date is $e=-0.032 \pm 0.002\left(x^{2}=1.0\right)$.

The case of ${ }^{180}$ Hf thus represents the only sucleus for which consistent evidence of parity nonconservation has been obtained from different methods and from independent investigations. Possible evidence has ieen found in other cases, but there is in general a lack of agreement among thr various results. The present results are entirely consistent with the other published results for 180 Hf and support the evidence for parity nonconserving effects in this nucleus.

Footnotes and References

1. R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
2. M. Ge11-Mann, Rev. Mod. Phys, 31, 834 (1959).
3. R. J. Blin-Stoyle, Phys, Rev, 118, 1605 (1960).
4. P. Jenschke and P. Bock, Phys, Letters 31B, 65 (1970).
5. E. D. Lipson, F. Boelm, and J. C. Vanderleeden, Phys. Letters 3:B, 307 (1971).
6. E. Kurphal, 2. Phys. 253, 314 (1972).
7. K. S. Krane, C. E. Olsen, J. R. Sites, and H. A. Stoyert, Phys, Rev. C4, 1906 (1971).
8. C. M. Lederer, J. M. Hollander, and I. Perlnan, Table of Isotgpes (New York, Wiley, 1967).

NUCLEAR ORIENTATION STLDIES OF $\mathbf{2 4 1}^{\mathbf{A m}}$ AND $\mathbf{2 5 5}_{\text {Fm }}$

A. J. Soinski and D. A. Siirley

Nuclear orientation results for ${ }^{253}$ Es substituted into a single crystal of neodymium ethy1sulfate (NES) were reported eerlier, 1 The expected similarity between the electronic ground states of the ataicgous lanthanide and aitinide trivalent ions, as exemplified by similar hyperfine interaction parameters, was confinmed for the pair Ho^{3+} - Es ${ }^{3+}$. Nuclei of trivalent Eu ions have also been aligned in NES by means of the electric hyperfine ineraction between the nuclear quadrupole moment and the elecric field gradient arising from both the ope. f -electron shell and the lattice charges. 3 Judd et al. ${ }^{2}$ proposed that distortion of the closed electronic shells by the lattice charges increased or antishielded the crystal field gradient at the rucleus. This umexpected result suggested that americium should also be studied.

Sternheimer ${ }^{3}$ and later Gupta and Sen ${ }^{4}$ predicted that the lattice antishielding factor, γ_{ω}, is larger for Am^{3+} than for Eu^{3+}; therefore appreciable alignment of Am ${ }^{3+}$ would be expected. In this paper we report nuclear orientation experiments on 241 Am . The data are interpreted in terms of both the crystal field parameters and the relative an. plitudes and phases of the alpha waves in the favored decay to ${ }^{237} \mathrm{~Np}$. As in ${ }^{253} \mathrm{Es}$, the relative $s-d$ phase in ${ }^{24} 1_{\text {An }}$ favored decay is positive. We also report resuilts for ${ }^{255} \mathrm{Fm}$ in NES. We find that the s and d waves are also in phase in this case. Because of the short half-1ife (20.1 h) and the limited mass available, the statistical accuracy was not high enough to permit the extraction of the sign of the relative s-g wave phase. The similar electronic ground state of the pair $\mathrm{Er}^{3+}-\mathrm{Fin}^{3+}$ confinned.

The experinental ${ }^{241}$ An alpha particle angular distribution measured at 0° and 90° with respect to the NES c-axis as a function of the inverse temperature is shown in Fig. 1. Details of the experimental technique have been given in Ref, 1. The linear temperature dependence of $W(\theta)$ at higher temperatures is characteristic of electric quadrupole alignnent. The angular distribution function has the form

$$
\begin{equation*}
W(\theta)=1+A_{2}\left[2 \ell \cdot I_{\mathbf{f}} I_{i}\right) Q_{2} B_{2}\left(I_{i}, T\right)\left(3 \cos ^{2} \theta-1\right] / 2 . \tag{1}
\end{equation*}
$$

and $B_{2}\left(\mathrm{I}_{i}, T\right) \propto 1 / T$ at high temperatures for quadrupole alignnent.

In order to determine accurately the value of the quadrupole coupling constant, P, it is necessary that the temperature be low enough such the $\mathrm{p} \approx \mathrm{KT}$, where k is Boltzmann's constant. Then curvature develops in the $W(\theta)$ vs. $1 / T$ curve. Since sufficiently low temperatures were not possible using NES as a host, our value for P of -0.0033 (6) on^{-1} ($\left.\mathrm{P} / \mathrm{k}=-0.0048(8) \mathrm{K}\right)$ lucks precision. The negative sign implies that the nuclear magretic substates $\mathrm{I}_{2}= \pm 5 / 2$ lie lowest in energy. Detailed analysis of this result indicates that $\gamma_{\infty} \approx-100$ and that the shielding constant $\sigma_{2}\left(A_{n}{ }^{3}+\right)^{+\infty}=0.7$, in agreement both with theoretical estimates and with the Eu^{3+} value of $0,72.5$

The a phase shifts are the sum of the intrinsic phases on the nuclear surface plus the phase shifts that occur umon transmission through the combined coulomb arid quadrupole barriers. The intrinsic phases are taken from the microscopic shell model theory; ${ }^{6}$ namely, the s, d, and g waves are all in phase but the i wave is out of phase. The

Fig. 1. ${ }^{241}{ }_{\text {An }}$ in neodymium ethylsulfate (NES) alpha particle angular distribution at 0° and 90° with respect to the crystalline c-axis as a function of the inverse temperature.
(XBL 745-3063)

Coulanb barrier phase shift difference for alpha decay is

$$
\sigma_{\ell+2}-\sigma_{\ell}=\tan ^{-1} \frac{n}{\ell+1}+\tan ^{-1} \frac{n}{\ell+2}
$$

where n is the argument of the Coulonb functions. For ${ }^{24} \mathrm{IAm}_{\mathrm{A}}$ the d wave lags the s wave by approximately 7° and the g wave lags the s wave by approxinately 23.5°. The quadrupole phase shifts for ${ }^{241}$ An would be additive to the Coulonb phase shifts except for the i wave.

In order to conpare theory with experiemt we write

$$
W(\theta) \operatorname{expt} .=1+R\left[Q_{2} A_{2} B_{2} P_{2}(\cos \theta)+Q_{4} A_{4} B_{4} P_{4}(\cos \theta)\right] .
$$

Higher-order Legendre polynomials are excluded for the decay of a spin $5 / 2$ state. The factor R is an anisotropy reduction factor accomiting for the fact that not all ${ }^{241}$ Am nuclei are at rare-earth sites in the RES lattice. The solid curve in Fig. 1 was obtained using $P=-0.0033 \mathrm{~cm}^{-1}, R A_{2}=0.54$ and $\mathrm{RA}_{4}=0.05$.

Three different estimates are available for the partial wave amplitudes. ${ }^{6-8}$ The rejulting A_{2} and A_{4} confficients are tabulated $\mathrm{i}_{\text {. . Table 1. The fact }}$ that $W(0)>1$ megns that the s and d waves are in phase for ${ }^{241}{ }^{\mathrm{Am}}$, in confirmation of the she 11 model calculations. Our experimental results do not

Table 1. Coefficients A_{2} and A_{4} for the ${ }^{241} A_{\text {Art }}$ in NES angular distribution function
$W(\theta)=1+\mathrm{R}^{W}\left[\mathrm{~A}_{2} \mathrm{Q}_{2} \mathrm{~B}_{2} \mathrm{P}_{2}(\cos \theta)+\mathrm{A}_{4} \mathrm{Q}_{4} \mathrm{~B}_{4} \mathrm{~F}_{4}(\cos \theta)\right]$.

BRM theory, ${ }^{\text {a }} \mathrm{s}$ and g waves in phase	0.7747	0.0756
BRM theory, 5 and g waves out of phase	0.7477	0.0483
BFN theory, Chasman and Rasmussen correction, s and g waves in phase	0.8668	0.1032
BFM theory, Chasman and Rasmussen correction, s and g waves out of phase	0.8390	0.0770
Mang theory. ${ }^{c} s$ and g waves predicted to be in phase	0.7838	0.0847
Mang theory but with s and g waves out of phase	0.7398	0.0397

[^5]establish the relative $\mathrm{s}-\mathrm{g}$ wave phase (predicted to be positive), primarily because of the weakness of the g wave. Therefore Table 1 includes the A2 and A_{4} values for both relative g wave phases.

We now briefly discuss the ${ }^{255_{\mathrm{Fm}}} \mathrm{NO}$ results. Paramagnetic resonance studies ${ }^{9}$ of $E r^{3+}$, the lanthanide analogue of Fm^{3+}, diluted in lanthanum ethylsulfate, yielded the hf interaction parameters $|\mathrm{A}|=0.0052(1) \mathrm{cm}^{-1},|\mathrm{~B}|=0.0314(1) \mathrm{cm}^{-1}$ and $|P|=0.0030(3) \mathrm{cm}^{-1}$. For $|B|>|A|$ the nuclear magnetic substates are adnixed except when $|\mathrm{k}|=\mathrm{I}+1 / 2$ where $\mathrm{k}=\mathrm{I}_{2}+\mathrm{S}_{2}$ where $\mathrm{S}_{2}= \pm 1 / 2$. The levels labeled by $+\mathrm{k}^{2}$ and -k are degenerate except when $k=0$. The ground state for a half integral nuclear spin is a singlet
$(|1 / 2,-1 / 2\rangle-1-1 / 2,1 / 2 \nu) / \sqrt{2}$, and a doublet lies closely above. The alignment may be regarded as being in a plane perpendicular to the crystalline c-axis, and the degree or atignment is relatively small.

The experimental α-particle angular distribution from 255_{Fm} nuclei aligned in NES is shown in Fig. 2. The statistical accuracy of the results is limited by the low degree of alignment, the mass of 255 Fm available (~ 200 disintegrations $/ \mathrm{m})$, and the short half-1ife. The shape of the anisotropy curve yields a value for $|\mathrm{B}|$ of 0.035 (7) cm^{-1} or $|\mathrm{B}| / \mathrm{k}=0.05(1) \mathrm{K}$. We could not determine the value of $|\mathrm{B}|,|\mathrm{A}|$, but as for Er^{3+}, the temperature dependence of $W(0)$ establishes that the magnitude of B is greater than that of either A or P.

For non-axial alignment the counting rate along the c-axis decreases for a positive s-d phase. From Fig. 2 it is seen that this is the

Fig. 2. ${ }^{255}$ Fin in NES alpha particle angular distribution at 0° with respect to the crystalline caxis as a function of the inverse temperature.
(XBL 745-3064)
case. The solid curve in Fig. 2 was obtained using our value for $|B|$ with $|A|$ in 0 and the relative amplitudes and phases given by Pogzenburg ${ }^{6}$ for the fayored decay to the $7 / 2+[613]$ rotational band in ${ }^{251}$ Cf. On the basis of NO experiments an ${ }^{253} \mathrm{Es}$, ${ }^{1}$ the negative relative phase should be correct.

In sumary, the orientation of trivalent actinide elements in the neodymium ethylsulfate lattice is straighforward. The four elements Am, Cf, Es and Fm have been oriented in this way. It is difficult, however, to study a-particle angular distributions with precision. The results reported here for ${ }^{241} \mathrm{Am}$ and 255 Fm are sufficiently quantitarive to establish that the s and d waves in the favored transitions are in phase, but they do not permit the determination of the relative s-g wave phase. The orientation data yielded definitive infomation about the electronic ground states of both Am^{3+} and Fm^{3+}. In $\mathrm{Am}^{3+}\left(5 f^{6}\right)$ as in $\mathrm{Eu}{ }^{3+}\left(4 \mathrm{f}^{6}\right)$, quadrupole coupling dominated the nuclear orientation, and the antishielded crystal field term AQ was the main contributor to the electric field ${ }^{2}$ gradient. The data strongly support a large negative Sternheimer antishielding factor, $\gamma_{\infty} \approx-10^{2}$, and they also indicate a shielding constant $\sigma_{2} \approx 0.7$, in good agfeement with an carlier value for Eu^{3+}. In $\mathrm{Fm}^{3+}\left(5 f^{\prime} \mathrm{I}\right)$, as in $\mathrm{Er}^{3+}\left(4 \mathrm{f}^{11}\right)$, the electronic ground-state in the ethylsulfate lattice has $|B|>|A|$.

References

1. A. J. Soinski, R. B. Franke1, W. O. Navarro and D. A. Shirley, Phys. Rev. C2, 2379 (1970).
2. B. R. Judd, C. A. Lovejoy and D. A. Shirley, Phys. Rev. 128, 1733 (1962).
3. R. M. Sternheimer, Phys. Rev. 159, 266 (1967).
4. R. P. Gupta and S. K. Sen, Phys. Rev, AT 850 (1973) and S. K, Sen, private communici $\overline{j n}, 1973$.
5. J. Blok and D. A. Shirley, Phys. Rev. 143, 278 (1966).
6. J. K. Poggenburg, H. J. Mang and J. O. Rasmussen, Phys. Rev. 181, 1697 (1969) and J. K. Poggenburs, Jr., Lawrence Radiation Laboratory Report UCRL-16187 (1965) (mpublished).
7. A. Bohr, P. O. Frönan and B. R. Motteisom, Dan. Mat. Fys. Medd. 29 no. 10 (1955).
8. R. R. Chasman and J. O. Rasmussen, Phys. Rev. 115, 1257 (1959).
9. G. S. Bogle, H. F. Dufus and H. E. D. Srovill, Proc. Phys. Soc. (London) A 65, 760 (1952).

PARAMAGNETIC SHIFTS AND SPIN.FLOP IN SUPERTRANSFERRED HYPERFINE STRUCTURE OF 111 mCd IN RbMnF ${ }_{3}^{7}$

H. H. Rinnabarg, G. P. Schwartz, and D. A. Shirley

We have measured the time differential PAC of $111 \pi \mathrm{Cd}$ doped into paramagnetic, polycrystalline $\mathrm{RbMnF}_{3}, \mathrm{KFeF}_{3}, \mathrm{KCoF}_{3}$, and NNiF_{3} in order to obtain the sign of the supertransferred hyperfine field at the Cd nucleus. Shown in Fig, 1 are the spectra for $\mathrm{RbMnF} \mathrm{F}_{3}$ that were observed at 300 K and 87 K (close to the Neel point $\mathrm{T}_{\mathrm{N}}=83 \mathrm{~K}$), with an external field $H_{\text {ext }}=31.3 \mathrm{koe}$ applied perpendicular to the detector axis. In Fig, 1 the perturbation factor [1],$A_{22} \mathrm{G}_{22}(\mathrm{t})=\mathrm{A}_{27}\left(0.25+0.75 \cos \left(4 \pi \mathrm{~L}_{\mathrm{L}} \mathrm{t}\right)\right.$ is shown for 11 Incd in Rofinf3 and for a diamagnetic standard ($\mathrm{CdCl} 1_{2}$ solution) in the same external field. The higher frequency of $111 \mathrm{n}_{\mathrm{Cd}}$ in RbNos_{3} corresponds to a higher effective field
$H_{e f f}=\mathrm{H}_{\mathrm{ext}}+\mathrm{H}_{\mathrm{ex}}+\Delta \mathrm{H}_{\text {. }}$ This paramagnetic shift arises frot a supertransferred contact field at the Cd nucleus created by polarization of the Mn^{2+} electron spin $S=5 / 2$. Since the electronic spin fluctuations are fast conpared to the characteristic time of the PAC experiment, only the effect of the time average $\left(S_{z}\right\rangle$ is seen. Therefore, $\Delta H=H_{h f}\left(4^{\circ} \mathrm{K}\right)\left\langle S_{z}\right)^{2} / \mathrm{S}$, where $H_{h f}\left(4^{\circ} \mathrm{k}\right)=116$ $k 0 \mathrm{e}$ is taken as the low-temperature linit of the hyperfine field at the Cd nucleus in the antiferromagnetic state and $\left\langle S_{Z}\right\rangle=2.5$ has been used as the local value of $\left\langle S_{2}\right\rangle$ for $T=4^{\circ} \mathrm{K}$. The spin expectation value $\left(S_{2}\right)=\left(-x_{m} H_{e x t}\right) /\left(g \beta N_{1}\right)$ in the paramagnetic state can be estimated using the molar

Fig. 1. PAC of ${ }^{117 \mathrm{~m}} \mathrm{Cd}$ in paranagnetic $\mathrm{RbM} \mathrm{F}_{3}$; compared to a diamagnetic standard (CdCl_{2} soliucion) in the same external field lext $=31.3 \mathrm{kOe}$.
(XBL 748-3990)
susceptibility $x_{n}=C /(T+\theta)$. In this way we estimate for ${ }^{111 m \mathrm{Cd}}$ in RbMnF_{3}, at $87^{\circ} \mathrm{K}, \Delta H_{\text {est }}=+2.0$ kOe canpared to $\Delta \mathrm{H}_{\mathrm{obs}}=+3.0 \pm 0.5 \mathrm{kOe}$. The 1 ower susceptibility at room temperature corresponds to a smaller paranaynetic shift (Fig. 1). The following relative shifts $\Delta H / H_{\text {ext }}$ were observed; RhNnF3: $+9.6 \pm 1.68\left(87^{\circ} \mathrm{K}\right),+5.1 \pm 1.6 \%\left(300^{\circ} \mathrm{K}\right)$; $\mathrm{KFeF}_{3}:+5.4 \pm 2.2 \%\left(120^{\circ} \mathrm{K}\right) ; \mathrm{KCOF}_{3}:+4.5 \pm 1.6 \%$ $\left(120^{\circ} \mathrm{K}\right)$ and $\mathrm{NiF}_{3}:+1.3 \pm 1.6 \%^{2}\left(265^{\circ} \mathrm{K}\right)$. Because of lower susceptibilities, smaller paramagnetic shifts were observed in $\mathrm{KFeF}_{3}, \mathrm{KCoF}_{3}$ and KNiF_{3} compared to $\mathrm{RbMHF}_{3} / \mathrm{Cd}$. For KriF_{3} the large values of 6 and T_{N} led to a paramagnetic shift that lay within our experimental error. The experiments reported here are analogous to paramagnetic shift measurements that have been made on F nuclei in these lattices using MR.
RbMnF_{3} has an exceptionally low critical field $\mathrm{H}_{\mathrm{C}}=2.45 \mathrm{k0e}$ for the spin-flop transition, Above this value the spin axis lies perpendicular to the external field. In polycrystalline $\mathrm{RbMnF} / \mathrm{Cd}\left(4^{\circ} \mathrm{K}\right)$

Fig. 2. Spin-flop transition in RbMFF_{3} detected by PAC of $111 \pi \mathrm{Cd}$.
(XBL 748-3991)
the hyperfine fields at the Cd are randanly oriented for Hext $=0$, whereas they are coufined in a plane perpendicular to the external field for Hext $>\mathrm{H}_{\mathrm{C}}$. Since PAC is sersitive to the orientation of che hyperfine fields relative to the detector axis, this method lends itself to the observation of the spin-flop transition, as shown (Fig. 2). The time spectra were taken with the detectors at 180° parallel to Hext. In this case the perturbation factor can be written as $\mathrm{A}_{22} \mathrm{G}_{22}(\mathrm{t})=\mathrm{A}_{22}(1-$ $\left.b_{1}-b_{2}+b_{1} \cos \left(2 \pi v_{L} t\right)+b_{2} \cos \left(4 \pi v_{L} t\right)\right)$. The Fourier coefficients $\mathrm{b}_{1}, \mathrm{~b}_{2}$ are equal for the randon distribution $b_{1}=b_{2}=0,4$ ($\mathrm{H}_{\text {ext }}=0$) and $b_{1}=0$, $\mathrm{b}_{2}=0.75$ if the hyperfine flelds are in a plane perpendicular to $H_{\text {ext }}$. The spin-flop transition was
observed as a change in the ratio $\mathrm{b}_{1} / \mathrm{b}_{2}$ of the Fourier coefficients (Fig. 2). Since a polycrystalline sample was used, the transition is fairly smeared out; for a precise detemination of H_{c} a single crystal should be used.

Footnotes and References

Condensed version of a paper submitted to Joumnal of Physics Letters A.

1. H. Frauenfelder and R. M. Steffen, In Alpha-, Beta-, and Garma-Ray Spectroscopy, ed. by K, Siegbahn (North-Holland, 1965), Vol. 2.

PERTUREER ANGULAR CORRELATION OF 111 mCd IN antiferromagnetic Mns under exterival pressure*

H. H. Rinneberg, G. P. Schwartz, and D. A. Shirley

We have recently extended our program of PAC studies in insulating antiferramagnets by building a clamping type pressure cell with partially scooped out windows for easy gamma-ray exit. The spin density transferred by covalency and overlap effects from the metal ions into the cadmium impurity is sensitive to the bond distance and hence to the external pressure. One can qualitatively estimate the fracional shift in the observed h)perfine field using $\Delta H / H 4.2^{\circ} \mathrm{K}=k_{2} \gamma_{\mathrm{m}} \Delta \mathrm{p} \mathrm{K}_{\mathrm{T}}=4.2$, where γ_{m} is the magnetic Grumeisen parameter, p the pressure, and K_{T} the isothermal compressibility. Because the isothermal compressibility at $4.2^{\circ} \mathrm{K}$ is not available for NaS, our estimate for the relative field enhancement using the room temperature value will represent an upper limit. At a pressure of 20 kbar this estimate gives an 8% effect, while the measured shift shown in Fig. 1 at $4.2^{\circ} \mathrm{K}$ is 3.84. The spectrm for polycrystaline Mns at zero pressure and $4.2^{\circ} \mathrm{K}$ is shown for comparison, and the shift to a higher trequency is readily apparent.

We would like to thank Duane Newhart for va'1.1able assistance in both the design and construction of the pressure cell. We would also like to acknowledge Drs. S. D. Bader, G. KaindI, and R. Scheck for many helpful discussions concerning pressure effects.

Fig. 1.
(XBL 751-2078)

[^6]
perturbed angular correlation of 111 mcd in

 ANTIFERROMAGNETIC INSULATORS＊H．H．Rinneberg，G．P．Schwartz，and D．A．Shirley

The time differential perturbed angular cor－ relation of 111 mcd doped into various antiferro－ magnetic insulators has been observed．From the experimentally determined perturbation factors the internal magnetic fields and electric field gradi－ ents at the cadmium nucleus are deduced（Table 1）． Most of the observed magutiic fields，ranging from approximately zero KOe in KCuF_{3} to 245 kOe in Mas can be understood at least qualitatively．A low field is to be expected for KCuF_{3} because of the spin structure and the ground state wavefinc－ tion of Cu^{2+} in this lattice．The effective local environment of the cadmiun impurity is the same for $\mathrm{RbMnF3}_{3}, \mathrm{MnO}$ ，and PnS ．From a comparison of the de－ duced hyperfine fields $114 \mathrm{kOe}\left(\mathrm{RbMnF}_{3}\right), 202 \mathrm{kOe}$ $(\mathrm{N} \pi 0)$ ，and $250 \mathrm{kOE}(\mathrm{MLS})$ ，the covalency of the in－ tervening anion is seen to affect the transfer of unpaired spin density from the magnetic ions into the s shells of the cadnium inpurity．Similarly in the isomorphic compounds $\mathrm{Rb}_{2} \mathrm{NnF}_{4}\left(\mathrm{H}_{\text {int }}=69.6 \mathrm{kole}\right.$ ） and $\mathrm{Fb}_{2} \mathrm{NiCl}_{4}\left(\mathrm{H}_{4}=98.4 \mathrm{kOe}\right.$ ）the more covalent chloride shows the larger field．Contrary to

Table 1．Hyperfine fields and quadrupole interact－ tions of 111 mcd in varinus antiferromagnets．

	$\begin{array}{r} T_{n} \\ { }^{0}{ }_{K} \\ \hline \end{array}$	$\begin{aligned} & H_{\text {exp }} \\ & \text { KOe } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\mathrm{Hff}} \\ & \mathrm{kOe} \\ & \hline \end{aligned}$	$\begin{array}{r} v_{Q} \\ \mathrm{mHz}_{2} \\ \hline \end{array}$	η
KCuF_{3}	20，38	4		19.0	0.72
NNiF_{3}	253	104.8 ± 1.5	104.8	0	0
KCOF_{3}	114	74.1 ± 1.5	74.1	0	0
RbCoF_{3}	~ 101	67.8 ± 1.5	67.8	0	0
TlCoF_{3}	94	67.9 ± 1.5	67.9	0	0
$\mathrm{KF}_{\mathrm{e}} \mathrm{F}_{3}$	112.5	100．1＊1．5		0	0
$\mathrm{K}_{\mathrm{H}-\mathrm{F}_{3}}$	~ 95	102.6 ± 1.5		0	0
RbMnF_{3}	83	113.8 ± 1.5	113.8	0	0
TM Mr_{3}	76	118.7 ± 1.5	218.7	0	0
$\mathrm{K}_{2} \mathrm{NiF}_{4}$	97	54.9 ± 1.5	55.8	3.7	0
$\mathrm{Rb}_{2} \mathrm{NiF}_{4}$	~ 95	51.3 ± 2.5	52.1	7.4	0
$\mathrm{K}_{2} \mathrm{COF}_{4}$	107	51．5さ2．5	52.7	5.5	0
$\mathrm{Rb}_{2} \mathrm{CoF}_{4}$	101	48．9さ2．5	50.0	8.2	0
$\mathrm{K}_{2} \mathrm{MrF}_{4}$	~ 45	71.6 ± 2.5	73.3	3.4	0
$\mathrm{Rb}_{2} \mathrm{MnF}_{4}$	38.5	67.9 ± 2.5	69.6	4.7	0
FeCl_{2}	23.5	4.8 ± 2.0			
CoCl_{2}	25	$\sim 0 \pm 2.0$			
$\mathrm{Pb}_{2} \mathrm{MnCl}_{4}$	57	97.4 ± 2.5	98.4	8.1	0
NiO	~ 520	191 ± 2.5	196	0	0
COO	~ 293	171 ± 2.5	177	0	0
MnO	~ 118	195さ2．5	202	0	0
K－NnS	156	245.2 ± 1.5	250	0	0

$\mathrm{Rb}_{2} \mathrm{MnCl}_{4}$ ，where the spin density is transferred along lanear $\mathrm{Ni}^{2+}-\mathrm{Cl}^{-}-\mathrm{Cd}^{2+}$ exchange paths，in FeCl_{2} and COCl_{2} the inpurity is connected to the nearest magnetic neighburs by argular $\mathrm{Mn} 2^{2+}-\mathrm{Cl}^{-}-\mathrm{Cd}^{2+}$ bonds with a bond angle close to 90° ．Because of the reduced overlaps of the orbitals involved in the spin transfer，internal fields close to zero are observed in FeCl_{2} and CoCl_{2} ．

It is interesting to compare the hyperfine fields in the perovskites and the corresponding quadratic layered fluorides，especiaiiy iNiF_{3} and $\mathrm{K}_{2} \mathrm{NiF}_{4}$ or RbNOF_{3} and $\mathrm{Rb}_{2} \mathrm{MnF}_{4}$ ．In KNiF_{3} and RblNa F_{3} the inpurity is octahedrally surrounded by six nearest magnetic neighhors belonging to the same magnetic sublattice in the antiferromagnetic state．In the layered fluorides $\mathrm{K}_{2} \mathrm{NiF}_{4}$ and $\mathrm{Rb}_{2} / \mathrm{hr}_{4} \mathrm{~F}_{4}$ however，only the four nearest magnetic neighbors in the（001）plane contribute to the hy－ perfine field．Therefore，without taking the zero point spin deviations of the two and three di－ mensional antiferramagnets into account，the hyper－ fine field in $\mathrm{K}_{2} \mathrm{NiF}_{4}$ should be approximately $2 / 3$ of the value found in KNiF_{3} ，yielding 75.8 kDe compared to the experimental value of 55.8 koe．The theoretical value for the zero point spin deviation in a pure three dinensional antiferromagnet is $\left\langle S_{z}\right\rangle=S-\Delta_{0}$ where $\Delta_{0}=0.0788$ ．A larger deviation is expected in two dimensional antiferromagnets， where a value of $\Delta 0=0.20 \pm 0.03$ has been ob－ served for $\mathrm{K}_{2} \mathrm{NiF}_{4}$ ．Since the hyperfine field at the cadrium infurity is proportional to $\langle S\rangle / S$ ，the larger spin deviation for the layered fluoride $\mathrm{K}_{2} \mathrm{NiF}_{4}$ compared to the perovskite KNiF_{3} will re－ sult in a lower hyperfine field for $\mathrm{K}_{2} \mathrm{NiF}_{4}$ con－ pared to the value of 75.8 koe which considers the number of nearest magnetic neighbors only，As－ suming for the magnetic ions next to the impurity the spin reductions known for the pure antiferro－ magnets，a field of 60.6 kO e is expected in $\mathrm{K}_{2} \mathrm{NiF}_{4}$ ．In this way most of the experimentally ob－ served reduction（ $75.8-55.8=20 \mathrm{kDe}$ ）can be ex－ plained．Sinilar effects were found for RbMnF 3 grid $\mathrm{Rb}_{2} \mathrm{MnF}_{4}$ ．However，because of the larger spin $S=5 / 2$ of manganese；the reductions are consider－ ably smaller．

The temperature dependence of the hyperfine field in Finhr_{3} and the internal field in NnF_{2} is shown in Fis．1，For comparison we include the NFA Brillouin function for $S=5 / 2$ and the tenpera－ ture dependence of the sublattice magnetization for NmF_{2} ．In MmF_{2} the intemal field at the impurity has to be cofrected for a dipolar contribution to obtain the supertransferred hyperfine field．The unpaired spin density in Cd s shells is caused by two nearest magnetic neighbors of one sublattice and eight next nearest magnetic neighbors belonging to the other sublattice，with the latter most likely dominating．Although the relative sign of the dipolar and hyperfine fields is not known，the dipolar field is at most a 20% correction and is expected to have the same temperature dependence as the hyperfine field．Therciore the ratio

Fig. 1.
(XBL 751-2075)
$H_{i n t}(T) / H_{i n t}(0)$ reflects to a good approximation the temperature dependence of the supertransferred hyperfine field. Since for $\mathrm{NnF}_{2}\left|\mathrm{~J}_{n \mathrm{n}}\right| \gg\left|\mathrm{J}_{\mathrm{n}}\right|$, the replacement of a Nm ion by the diamagnetic impurity demagnetizes the second nearest neighbors and the intemal field is expected to decrease faster with increasing temperature than the host magnetization. Although the error of the experimentally determined internal field is rather large due to the presente of a combined ineraction, the ratio Hint $(T) / H_{i n t}(0)$ is seen to lic systematically below the corresponding ratio for the host magnetization.

Footnote

* Condensed version of a paper submitted to Journal of Chemical Physics

InITIAL-STATE CONFIGURATION-INTERACTION SATELLITES

 IN THE PHOTOEMISSION SPECTRUM OF CdS. Süzer and D. A. Shirley

The photoenission spectrm of atonic cadmium ($4 d^{10} 5^{2}$; 1 S) should show three peaks below 20 eV , at binding energies ${ }^{1}$ of $8.99,17.58$, and 18.28 eV , arising repsectively fron transitions to the ($\mathrm{d}^{10} 0_{s} ; \mathrm{S}^{2}$), ($\mathrm{d}^{9} \mathrm{~s}^{2} ;{ }^{2} \mathrm{D}_{5 / 2}$) and ($\mathrm{d}^{9} \mathrm{~s}^{2} ;{ }^{2} \mathrm{D}_{3 / 2}$) final states in Cd^{+}. In addition to these three lines, we have also observed two weaker peaks at 14.44 (3) and $\mathbf{1 4 . 7 9}$ (3) eV in high-temperature ultraviolet photomission studies on atomic Cd. These latter peaks are assigned to the $\left(\mathrm{d}^{10} \mathrm{p} ;{ }^{2 p_{1 / 2}}\right)$ and ($\mathrm{d} 10_{\mathrm{p}} ;{ }^{2} \mathrm{P}_{3 / 2}$) states, respectively. Their presence in the spectrum is attributed to photoemission of an $n p\left(n \geqslant 5\right.$) electron from ($\mathrm{d}^{10} 5 \mathrm{pnp} ;^{1} \mathrm{~S}$), components that are mixed into the nominal ($d^{10_{s}}{ }^{2} ;{ }^{1} \mathrm{~S}$) ground state by configuration interaction, forming the eigenstate

$$
\Psi\left({ }^{1} S\right)=a\left|d^{10} S^{2} ;{ }^{1} S\right\rangle+\sum_{n \geqslant 5}^{\sum}\left|d^{10} 5 p n p ;{ }^{1} S\right\rangle+\cdots .
$$

The experiments were carried out with 21.2 eV HeI radiation at $663^{\circ} \mathrm{K}$, using the high-temperature probe in a Perkin-Elner P.S. 18 Ultraviolet Photoelectron Spectrometer. A typical spectrum is shown in Fig. 1. Derived parameters, based on average values from three separate runs, are given in Table 1.

Configuration-interaction satellite lines in photoemission spectra have been observed as "shakeup" peaks in gases ${ }^{2}$ and solids ${ }^{3}$ and as satellites in muitiplet spectra. 4 Such satellites are usually ir:terpreted as arising from final-state configuracion interaction. They therefore have the same

Fig. 1. Photoemission spectrum of Cd vapor at $633^{\circ} \mathrm{K}$ using 21.2 eV HeI radiation. The whole spectrm took 2.5 h to scan. Lines marked " s " arise from the HeI 23.08 eV radiation (i.e., $1 \mathrm{~s} 3 \mathrm{p}(1 \mathrm{p}) \rightarrow 1 \mathrm{~s}^{2}$).
(XBL 742-2470)

Table 1. States of Cd^{+}observed in photoemission from Cd vapor.

Final stato	Appercnt relative intonsity"	Binding energy, eV ${ }^{t}$	Enorgy from optical data"
$4 d^{10} 5 s^{2} S$	(1)	8.96 (2)	0.991
$4 d^{10} 5 p^{2} P_{1 / 2}$	$0.03(1)$	14.44(3)	14.463
$4 d^{10} 5^{2}{ }^{2} P_{3 / 2}$	0.06(1)	14.79(3)	14.771
$44^{4} 55^{2}{ }^{2} D_{5 / 2}$	$2.512)$	17.57(2)	17.578
${ }^{2} D_{1 / 2}$	1.312]	18.2812)	18.276

This work. Values given are averages of three runs. Errors In latiplace are given poranthetically. Tho Xo ines at 12.130 and $13,436 \mathrm{eV}$ and the argon lines at 15.759 and $15,937 \mathrm{aV}$ were used for callbratom.
Fel. 1.

Symmetry as the main final-state peak (this result is also discussed as an "E0" selection rule for shake-up "transitions"). The Cd^{+}satellites are strictly forbidden by tis selection rule. ${ }^{5}$ They arise instead from instial-stiste configuration interaction.

Footnotes and References

*Condensed from L.BL.-Publication J. Chem. Phys. 61, 2481 (1974).

1. C. E. Moore, Natl. Bur. Std. (U.S.) Circ. 467, Vol. 3 (1962).
2. M. O. Krause, T. A. Carlson, and R. D. Dismukes, Phys. Rev. 170, 37 (1968).
3. T. Novakov, Phys. Rev. B3, 2693 (1971); A. Rosencwaig, G. K. Wertheim, and H. J. Guggenheim, Phys. Rev. Lett. 27, 479 (1971).
4. C. S. Fadley, D. A. Shirley, A. J. Freeman, P. S. Bagus, and J. R. Haliow, Phys. Rev, Letters 23, 1397 (1969); S. P. Kowalczyk, L. Ley, R. A. Pollak, F. R. McFeely, and D. A. Shirley, Phys. Rev. B7, 4009 (1973).
5. This statement is rigorously true only if the "final state" is that of the Cd^{+}ion alone. If the systen (icn plus outgoing electron) is considered, the $\mathrm{Cd}^{+}{ }^{2} \mathrm{P}_{1 / 2}$ and $\mathrm{PP}_{3 / 2}$ states are accessible if the fhotoelectron leaves in a continuun s state ("conjugate skae-up"). Earlier work indicated that the cross section for this process would be very small in He (R. L. Brown, Phys. Rev. A3, 341 (1970) ani Ne IF. Wuillenmier and M. 0. Krause, In "Electron Spectroscopy" edited by D. A. Shirley (North-Holland, 1972), p. 259]. Recentiy, however, J. Berkowitz et al. (private commaication) have found that this process is more inportant in Hg. If its inportance in Cd is intermediate, conjugate shake-up would account for several percent of the intensity of the $\mathrm{IP}_{1 / 2}$ and $2 p_{3 / 2}$ lines.

X-RAY PHOTOEMISSION MOLECULAR ORBITALS OF HYCROGEN FLUORIDE AND THE FLUORINATED METHANES*

M. S. Banna, B. E. Aills, D. W. Davis, and D. A. Shirley

The development of molecular photoelectron spectroscopy ${ }^{1,2}$ has made it possible to establish the binding energies of individual molecular orbitals (MD's). Detailed analyses of specira can yield further information concerming the electronic structure of the mo'ecule. For exargle, Gelius ${ }^{3}$ has proposed that x-ray photeemission (XPS) cross sections of ND's should be given approximately by a sum of atomic orbital (AO) cross sections, weighted according to the electronic contribution of each AO to the ND in question. This is reasonable since, for x-ray energies, the major contribution to the cross-section cones from electrons in the region near the nuclei where there is substantial overlap between the photoelectron and orbital wave functions. The work reported below was undertaken to acquire some insight into the usefulness of the Gelius model. The fluorinated methanes werc chosen as the model syscom because they have already been studied by UPS and are large vnough to be challenging but small enough to be tractable, both spectroscopically and theoretically.

Sarples were obtained from Matheson Gas Co. and studied in the gas phase with the Berkeley Iron-Free Spectraneter. 4 They were irradiated with $\mathrm{Mg} \mathrm{Ka}, 2$ (1.2536 keV) or $\mathrm{Al} \mathrm{Ka} \mathrm{Ka}_{2} 2$ (1.4866 keV) x-rays' using somple pressures of 50 to 100 microns. The binding energies were referenced by bleeding in neon simultaneously with the gas under study.

Orbital Binding Energies

The XPS molecular orbital spectra of HF and the five gases $C H_{4-n} F_{n}(0<n<4)$ are shown in

Fig. 1. The measured binding energies, $E_{B}(M)$ are given in Table 1 and conpared to the vertical binding energies measured by UPS.5,6 The agreenent between the two sets of values is generally excellent, in most cases within 0.1 or 0.2 eV .

Comparison of experimental $\mathrm{E}_{\mathrm{B}}(\mathrm{MO})$ values with theory is less straightforward, because self-consistent field calculations of the molecular ground states yield only the orbital energies, $\in(M D)$, rather than actual binding energies, $E_{B}(M D)$, of the molecular orbitals. Table 1 lists the results of ab initio calculations by Snyder and Basch, 7 as well as orbital energies obtained from our CNDO/2 progran. For each MO, couparison of the figures in Table 1 establishes the order

$$
\mathrm{E}_{\mathrm{B}}(\mathrm{MO})<-\varepsilon(\mathrm{MD})_{a b \text { initio }}<-\varepsilon(\mathrm{MD})_{\mathrm{CNDO} / 2} .
$$

The CNDO/2 approach is known to give unreliable energics, and little firther discussion seems war* ranted here. However, in comparing En(M) and $-\varepsilon(N D)$ ob initio the accuracy of the latter is higla enough $\mathrm{ch}_{\mathrm{h}} \mathrm{in}^{2} \mathrm{~m}_{5} 8 t$ of the difference can 1 "ralistic ally be att. ibuted to physical effects. The binding energy and orbital energy are related by

$$
\begin{align*}
E_{B}(M D) & =-\varepsilon(N D)-E_{R}(N D) \\
& +\Delta E(M D)_{C O I T}+A E(M D)_{r e l} \tag{1}
\end{align*}
$$

Here $E_{p}(M D)$ is the relaxation energy of the final state ith a hole in the molecular orbital under study, and $\Delta E(M O)_{\text {corr }}$ and $\Delta E(M D)_{\text {rel }}$, which may

Fig．1．X－ray photoelection spectra of HF and the fluoromethane series
$\mathrm{CH}_{4-\mathrm{n}} \mathrm{F}_{\mathrm{n}}(0<\mathrm{n}<4)$ taken at increments of -0.33 eV ．Vertical bars correspond to intensity ratios conputed using POLYATON net populations．${ }^{7}$ They are not corrected for the considerable variation in line width．In same cases，noted in Table 1，separations from UPS and／or intensity ratios from $\mathrm{CNDO} / 2$ were used．For $\mathrm{CH}_{2} \mathrm{~F}_{2}$ two groups of levels were fit as thu peaks．
（XBL 746－5464）
have either sign，are the excess correlation and relativistic energies in the final state over those in the initial state．We shall neglect these last two terms for lack of a good approximate method of dealing with them，noting that they are usually relatively small（i．e．， 1 eV or less）in the cases studied here．

The E_{R} term is often larger and always posi－ tive．It arises because the wavefuctions of the passive electrons relax during plotoenission from an N －electron systen，lowering the energy of the hole state．This phenomenon is usually discussed in connection with Koopmans＇Theorem， 8 which states the approximate equality $\mathrm{E}_{\mathrm{B}}(\mathrm{NO}) \cong-\varepsilon(N D)$ ．Since E_{R} rends to increase with E_{B} ，it has become cus－ tomary to correct for E_{R} empirically by reducing $-\varepsilon$ by some fixed percentage．Thus，Brandle et al．${ }^{7}$ found that the approximate relation E_{B}（theo）$\geqslant 0.92$ （ $-\varepsilon$ ）gave a rather good estimate of binding en－ ergies in the flunti lated methanas．

With the increased understanding of atonic and extra－atomic relaxation energies accorpanying photomission that has merged recently，it ap－ pears possible to improve our estimates of $E_{B}(\mathbb{N O})$ from $E(N D)$ ．Relaxation energies can bo somewhat arbitrarily separated into atonic and extra－atomic contributions，

$$
\begin{equation*}
E_{R}=E_{R}^{a}+E_{R}^{e s} \tag{2}
\end{equation*}
$$

We propose a threc－parameter model for estimating the relaxation energies of all the MD＇s of the fluorinated methanes．He assume，for simplicity， that all＂F $2 \mathrm{~s}-1 \mathrm{ike}$＂orbitals have one mean value of E_{R} ，that all other orbitals have another，and that E_{R}^{e} is the same for all orbitals within a given molecule，but that it rises linearly with the number of fluorines（this crudly expresses the molecular size dependence）．Afier the $\Delta \varepsilon_{a j}=-t_{\text {ab }}$ initio $-E_{B}$（XPS）values have been used to adjust Par解化他s，the expressions for E_{R} are

Table 1. Molecular Orbital Binding isnitites in Fluarinated Nethanes (in eV).

Molecule	Orbital	$E_{B}(\mathrm{XPS})^{\text {a }}$	$\mathrm{E}_{\mathrm{B}}(\text { UPS })^{\text {b }}$	${ }^{-\varepsilon_{a b}}$ initio	${ }^{-6}$ CNDDO/2	E_{B} (theo)
CH_{4}	$1 t_{2}$	14.2(2) ${ }^{\text {c }}$	14.0	14.74	22.79	13.74
	$2 a_{1}$	23.05 (4)	23.0	25.68	34.54	24.68
$\mathrm{CH}_{3} \mathrm{~F}$	2 e	13.31(4)	13.05	14.43	17.57	12.93
	1 e	16.85(7)	~ 17.0	18.00	21.28	16.50
	Sa_{1}	17.56(9) \}		18.89	24.12	17.39
	$4 \mathrm{a}_{1}$	23.48 (3)	23.4	26.13	32.06	24.63
	30_{1}	33.41 (3)	-	43.17	47.10	38.17
$\mathrm{CH}_{2} \mathrm{~F}_{2}$	$2 b_{2}$	$13.17^{\text {d, }}{ }^{\text {e }}$	13.27	14.89	17.11	12.89
	Ga_{1}	$14.91{ }^{\text {e }}$ (${ }^{\text {d }}$ (2)		16.94	18.88	14.94
	$4 b_{1}$	$\left.15.20^{\text {d,e }}\right\}^{(2)}$	15.3	17.23	19.82	15.23
	$1 a_{2}$	$15.61{ }^{\text {d,e }}$	15.71	18.22	21.38	16.22
	$3 \mathrm{~b}_{1}$	18.51(4) ${ }^{\text {e }}$		20.38	23.96	18.38
	$5 \mathrm{n}_{1}$	$19.07(3)^{\text {e }}$	18.9	21.13	25.23	19.13
	$1 b_{2}$	19.76(7)		21.54	26.97	19.54
	$4 a_{1}$	23.86(3)	23.9	26.77	31.15	24.77
	$2 \mathrm{~b}_{1}$	$38.20(7)$	"	43.79	45.82	38.29
	$3{ }_{1}$	40.13(7)	-	45.63	50.15	40.13
CFF_{3}	$6 \mathrm{Ca}_{1}$	$14.67{ }^{\text {d, }}$,	14.80	16.53	17.77	14.03
	$1 a_{2}$	$15.29^{\text {d, }}$ e ${ }^{\text {d }}$	15.5	18.33	21.52	15.83
	$5{ }^{2}$	15,99 d, e ${ }^{(4)}$	16.2	18.54	19.94	16.04
	4 e	17.03 ${ }^{\text {d, }}$ (17.24	19.71	22.24	17.21
	3e	20.25(3)	$20.6{ }^{\text {f }}$	22.87	26.35	20.37
	ja_{1}	20.89(3) \}		23.78	27.86	21.28
	$4 a_{1}$	$24.38(3)$	24,44	27.49	30.88	24.99
	2 e	39.15 (4)	-	45.34	47.20	39.34
	$3 a_{1}$	42.03 (9)	-	48.22	52.78	42.22
CFF_{4}	$1 t_{1}$	16.23(3)	16.20	19.40	22.24	16.40
	$4 t_{2}$	17.41(4)	17.40	19.65	20.20	16.65
	1 e	18.43(4)	18.50	21.34	23.30	18.34
	$3 \mathrm{t}_{2}$	22.14(2)	22,12	24.89	28.18	21.89
	${ }^{4} 1$	25.11(2)	25.12	28.15	29.48	25.15
	$2 t_{2}$	40.30(4)	-	46.65	48.22	40.15
	$3{ }_{1}$	43.81 (10)	${ }^{-}$	50.50	54.63	44.00
HF	1π	16.12(4)	16.04	17.50	21.28	
	30	19.89(7)	19.90	20.50	23.14	
	2σ	39.65(2)	-	43.61	45.55	

${ }^{3}$ Binding energies using Mg Ka x-rays except with CH_{1} where Al Ka x -rass were used.
Vertical binding energies from Refs. 5 and 6.
Civeignted average of Jahn-Teller levels
$\mathrm{d}_{\text {Separations }}$ from UPS used.
${ }^{\text {Area }}$ ratios from CNDO/2 used.
 ertical IP and 20.6 eV for the adie')atic IP.

$$
\begin{equation*}
\mathrm{E}_{\mathrm{R}}=(4.5+0.5 \mathrm{n}) \mathrm{eV} \tag{3}
\end{equation*}
$$

for F 2 s-like orbitals, and

$$
\begin{equation*}
E_{R}=(1.0+0.5 \mathrm{n}) \mathrm{eV} \tag{4}
\end{equation*}
$$

for all other orbitals, where n is the number of fluorines. With this approach we have astimated the "theoretical" values E_{B} (theo) $\equiv-\varepsilon-\mathrm{ER}_{\mathrm{R}}$ given in Table 1. The agreement between E_{g} (theo) estimated this way and E_{B} (expt) is on the whole excellent, as Fig. 2 shows. For the 33 orbitals studied the standard and mean deviations between F_{B} (cheo) and $E_{B}(\operatorname{expt})$ are 0.48 eV and 0.27 eV , respectively. This figure also shows the marked separation

Fig. 2. Plot of binding energies calculated from a three-parameter model vorsus experimental values.
(XBL 745-3290)
between FB values of the F $2 s-1 i k e$ orbitais and those of the other molecular orbitals in these molecules. We conclude that relaxation corrections for the type described here are both conceptually and praguitically superior to simply reducing the orbital energies by a constant factor.

Intensities and Spectroscopic Assigments
In order to apply the intensity model outlined above, is knowledge of the relative atomic cross section is needed. Thus, to interpret the fluoromethare data the ratios
$\sigma(\mathrm{C} 2 \mathrm{~s}) / \sigma(\mathrm{C} 2 \mathrm{p}), \sigma(\mathrm{F} 2 \mathrm{~s}) / \sigma(\mathrm{F} 2 \mathrm{p})$
and

$$
\sigma(\mathrm{F} 2 \mathrm{~s}) / \sigma(\mathrm{C} 2 \mathrm{~s})
$$

are required. Gelius obtained the first of these three quantities from the experimental XPS area ratios of methane ($2 a_{1}$ and $1 t_{2}$) and an ab initio calculatiot. Similarly, the last ratio was obtained from the dal and $3 \mathrm{t}_{2}$ levels of CF_{4}. The σ (F2s)/o(F2p) ratio was interpolated due to the unavailability of a spectrum of either HF or F_{2}. in our case, the $\sigma(C 2 s) / \sigma(C 2 p)$ was similarly calculated from the za_{1} and $1 \mathrm{t}_{2}$ of methane. However, we chose instead to use the $3 a_{1}$ and $4 a_{1}$ levels of $\mathrm{CH}_{3} \mathrm{~F}$ for the $\sigma(\mathrm{F} 2 \mathrm{~s}) / \sigma(\mathrm{C} 2 \mathrm{~s})$. The $\sigma(\mathrm{F} 2 \mathrm{~s}) / \sigma(\mathrm{F} 2 \mathrm{p})$ ratio was obtained from 2σ and $1 \pi_{x}$, $1 \pi_{y}$ orbitais of GF (Fig. 1). Gelius used gross fopulations in calculating his ratios. Since his mode! neglects the contributions to the cross section from electrons far from the nuclei, it seem; more appropriate to employ net populations instead. We have computed ratios using both types of populations. The results are shown ir Table 2.

The relative molecular orbital int ansities calculated from POLYATOM and CNDO/2 populations (using the cross section ratios from Table 2) are compared with experinent in Table 3 and are shown as vertical bars (using POLYATOM net populations) in Fig. 1. Their positions have been adjusted co match those of the experimental peaks. Sone fitting

Table 2.Calculated Relative Atomic Photoelectric Cross Sections.

Ratio	CNDO POLYATG $(\text { Net })^{b}$	POLYATCM (Gross) $)^{b}$	Gelius $^{\mathrm{a}}$	
$\sigma(\mathrm{C} 2 \mathrm{~s}) / \sigma(\mathrm{C} 2 \mathrm{p})$	23.3^{c}	19.9	19.2^{c}	13
$\sigma(\mathrm{~F} 2 \mathrm{~s}) / \sigma(\mathrm{F} 2 \mathrm{p})$	9.5^{d}	10.3^{d}	9.7^{d}	10
$\sigma(\mathrm{~F} 2 \mathrm{~s}) / \sigma(\mathrm{C} 2 \mathrm{~s})$	8.0^{e}	5.8^{e}	4.1^{e}	2

$\mathrm{a}_{\text {Ref. } 3 .}$
$b_{\text {Wavefunctions and overlaps obtained from Ref. } 7 .}$
C_{1} sing relative areas of $2 a_{1}$ and $1 t_{2}$ orbitals of inethane.
${ }^{d}$ Using relative areas of 2σ and $H T$ orbitals of hydrogen fluoride.
Using relative areas of $3 a_{1}$ and $4 a_{1}$ orbitals of methyl
fluoride.

Table 3. Computed Nolecular Orbital Intensity Fatios from CNDO and POLYATOH Calculations.

Nolecule	Ne'ecular Orbital	$\mathrm{I}_{\text {CNOO }}^{\text {a }}$	$\mathrm{I}^{\mathrm{b}} \mathrm{NP}$	$I_{\text {exp }}$
HF	110	0.24	0.24	0.24 (2)
	30	0.14	0.20	0.19(3)
	20	1.00	1.00	$1.0082)$
Cl_{4}	$1 \mathrm{t}_{2}$	0.12	0.12	$0.12^{\text {c }}$ (2)
	$2 a_{1}$	1.00	1.00	2.00(3)
$\mathrm{Ci}_{3} \mathrm{~F}$	2 e	0.14	0.12	$0.13(2)$
	le	0.14	0.14	0.11 (2)
	$5 a_{1}$	0.12	0.11	0.08(2)
	$4 a_{1}$	0.24	0.23	$0.23(1)$
	$3 a_{1}$	1.00	1.00	$1.100(3)$
$\mathrm{Ci}_{2} \mathrm{~F}_{2}$	$2 \mathrm{~b}_{2}$	0.058	0.064	$\left.0.05^{\mathrm{d}, \mathrm{e}}\right)$
	$6_{3}{ }_{1}$	0.089	0.10	$0.07{ }^{\text {d }}$ d, ${ }^{\text {c }}$ (1)
	$4 \mathrm{~b}_{1}$	0.11	0..-	$0.09{ }^{\text {d,e }}$
	$1 a_{2}$	0.12	0.12	$\left.0.09^{\mathrm{d}, \mathrm{e}}\right)$
	$3 \mathrm{~b}_{1}$	0.14	0.16	0.08^{d}
	$5_{3}{ }_{1}$	0.14	0.10	$0.108^{\text {d }}$ (1)
	15_{2}	0.062	9.055	$1.04^{\text {d }}$ j
	$4 \mathrm{a}_{1}$	0.24	0.32	0.28(1)
	$2 b_{1}$	1.00	1.00	1.00(6)
	$3{ }^{1}$	- 0.84	0.8	0.89 (5)
OFF_{3}	63_{1}	0.038	0.049	$0.03^{\mathrm{d}, \mathrm{c}}$
	$1 a_{2}$	0.062	0.064	$\left.0.05^{d, e}\right\}(1)$
	$5 e$	6.12	0.12	$0.09{ }^{\mathrm{d}_{\mathrm{r}} e^{(1)}}$
	4 e	0.12	0.12	$0.09{ }^{\text {d,e }}$
	3 c	0.18	0.19	$0.09(1)$
	Sa_{1}	0.12	0.048	0.06 (1)
	${ }_{4}{ }_{1}$	0.10	0.20	0.18 (1)
	2 e	1.00	1.00	1.00(3)
	33_{1}	0.45	0.40	0.42(2)
CF_{4}	$1 \mathrm{t}_{1}$	0.13	0.14	0.12(1)
	${ }^{4} r_{2}$	0.12	0.13	0.11 (1)
	1e	0.083	0.080	0.08(1)
	$3 \mathrm{t}_{2}$	0.25	0.23	$0.17(1)$
	${ }_{4}{ }_{1}$	0.11	0.16	0.16 (1)
	$2 t_{2}$	1.00	1.00	1.00 (3)
	$3 a_{1}$	0.28	0.26	0.29(2)

[^7]of the spectra is shown in Fig. 1. Expanded Spectra of the 10W binding-energy regions of the fluorinated methanes are shown in Fig. 3 (with relative intensity calculated using $\mathrm{CNO} / 2$ populations). Individual spectroscopic assigments are discussed below.

CH_{4}

It is unfortunate that the K_{3} and K_{4} satellites of the exciting Mg radiation obscare the $1 t_{2}$ peak in methane. The situation is not quite so bad

Fig. 3. X-ray photoelection spectra of the fluoromethanes in the region up to approximately 30 eV binding energy taken at increments of $\sim 0.16 \mathrm{eV}$. Vertical bars correspond to computed intensity ratios using CNDO/2 populations. In some cases separations and intrelsity ratios were used as explained for Fig. 1.
(XBL 746-3465)
with Al x-rays because the satellites are farther fron the $\mathrm{Ka}_{1}, 2$ line. Nonetheless, this has resulted in a large umcertainty in the $2 a_{1} / 1 t_{2}$ area ratio. In Fig, 1 the $1 t_{2}$ region of the $\overline{A l} K{ }^{2} 1,2$ XPS spectram is reproduced using a Jalm-Teller ${ }^{2}$ splitting of 0.8 eV and a 2 to 1 intensity ratio of the Jahn-Teller components. ${ }^{9}$ These are the values seen in UPS studies, ${ }^{6}$

$\xrightarrow{\mathrm{CH}_{3} \mathrm{~F}}$

The ordering of $5 a_{1}$ and $1 e$ has been uncertain. Both ONDO and POLEATOM yield a lower binding energy for $5 a_{1}$. The calculated intensities all agree that le is somewhat more intense. The experimental peak is asymmetric on the high binding energy side, indicating the location of the snaller peak. This is seen most clearly in Fig. 3. Thus, the Gelius model seems to favor placing le at a lower binding energy than Sa_{1}.
$\xrightarrow{\mathrm{H}_{2} \mathrm{~F}_{2}}$
The $2 \mathrm{~b}_{1}$ and $3 \mathrm{a}_{1}$ orbitals are reported here for the first time. The level ordering indicated by orbital energies is supported by the inteasity ratios. The remaining peaks are shom in more detail in Fig. 3. In the case of the two lowest binding energy groups of peaks, our analysis of the peaks in Fig. 3 is based on the calculated CNDO intensities which give a good overall fit of the expirimental data. The experimental ratio of the $1 \mathrm{a}_{2}, 4 \mathrm{~b}_{1}$, $6 \mathrm{a}_{1}$ peak area to that of the $2 \mathrm{~b}_{2}$ peak is approximately $5: 1$. This is to be compared to a ratio of $3: 1$ in the He II spectrum. ${ }^{6}$ The increase in the relative intensities over the statistical value can be understood in tems of our model as follows: the orbitals 1 a 2 and $4 \mathrm{~b}_{1}$ donot have any hydrogen character by symmetry. The $6 a_{1}$ bas less contribution from hydrogen than does 2 b 2 . Thus, in all four orbitals most of the electron density is on the fluorines, mainly in the $2 p$ levels; and the ($1 a_{2}+4 b_{1}+6 a_{1}$) peak has a larger percentage of electrons on the fluorines than does $2 b_{2}$.

In the next peak, at $\sim 19 \mathrm{eV}$, there are three orbitals. The ordering of $3 b_{1}$ and $5 a_{1}$ may be reversed without disagreeing with our spectrm. However, it seems quite likely that Ib_{2} has a higher binding energy than both of them, as shown, because its low intensity is consistent with the asymmetry of this peek on the high-energy side.

CHF_{3}

The $a b$ initio and CNDO calculations, together with the Gelius nodel place $3 a_{1}$ unambiguously as the most tightly bound MO . The model also seems to indicate that 3 e is less tightly bound than Sa_{1} (Fig. 3). This is in agreement with Brundle et al. 6 who relied on the Koopmans' theorem energies. We also propose in Fig. 3 an ordering for the four outer orbitals which is predicted by POLYATOM. 7 This fit was obtained using the reported UPS vertical ionization potentials and the area ratios calculated from CNDO. The ordering of $5 e_{1}$ and $1 a_{2}$ is reversed by CNDO . On the basis of intensity ratios our spectra establish the ordering of these four levels as shown in Fig. 3.

CF_{4}

Siegbahn ${ }^{10}$ has studied the CF_{4} spectrum with monochronatized x-rays. His results as well as ours show that the least-bound orbital is more intense than the next one. According to the crosssection ratios obtained from both POLYATUM and CNDO/2 populations $1 t_{1}$ should be the least-bourd orbital (see Table 3) as predicted by ab initio calculations. Thus comparison with our experimental intens ties very slightly favors $1 t_{1}$ as the most weakly bound orbital.

Footnotes and References

* Condensed from LBL-2930.

1. D. W. Turner, C. Baker, A.D.Baker and C. R. Brundle, Molecular Photoelectron Spectroscopy (Wiley-Interscience, London, 1970).

2, K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne and Y. Baer, ESCA Applied to Free Molecules (North Holland, Amsterdam, 1969).
3. U. Gelius in Electron Spectroscory, D. A. Suifley, ed. (North Holland, Ansferdan, 1972).
4. D. W. Davis, D. A. Shirley, and T. D. Thomas, J. Amer. Chem. Soc. 94, 6565 (1972).
5. C. R. Brundle, Chem. Phys. Letters 7, 317 (1970).
6. C. R. Brundle, M. B. Robin and H. Basch, I. Chem. Phys. 53, 2196 (1970).
7. J.. C. Snyder and H. Basch, Molecular Wave Functions and Properties (John Wiley and Sons, New York, 1972).
8. T. Koopmans, Physica 1, 104 (1933).
9. See for example C. A. Coulson and H. L. Strauss, Proc. Roy. Soc. (London) A 269, 443 (1962), and ref. 6.
10. K. Siegbahn, in Atomic Physics 3, Proceedings of the Third International Conference on Atomic Physics, Boulder, Colorado, 1972, edited by S.J. Smith and G. K. Walters, p. 493. Also K. Siegbahn, University of Upsala, Report No. UUIP-793.

THE RELATION OF CORE•LEVEL BINDING ENERGY SHIFTS TO PROTON AFFINITY AND LEWIS BASICITY*

R. L. Martin and D. A. Shirley

The relationship between molecular structure and reactivity is one of the central problems of chenistry. It may be divided into two parts. Quatitative questions about reactivity tend to focus on whether a reaction path exists that can take reactant R to product P. Principies such as orbital smmietryl can be appiied to answer these quesrions. If a path exists for a given type of reaction, we may then be interestel in its quantitative aspects, e.g., the extent to which the reaction proceeds. An important component of this second part is the relationship between the structures of the reactant and the product and the equilibrium constant for the rapid reversible reaction

$$
\begin{equation*}
R \not r P \tag{1}
\end{equation*}
$$

In this paper we shall investigate the way in which a relatively new experimental paraneter, the shift in core-level binding energy, can be related to certain reactions of the above type, particularly those involving the gain of a hydrogen ion. In making the analogy between the core-level ionization reaction

$$
\begin{equation*}
A \rightarrow A^{+}\left(\text {core-level hole }+e^{-}\right) \tag{2}
\end{equation*}
$$

and the ionization process

$$
\mathrm{A}+\mathrm{H}^{+} \geqslant \mathrm{AH}^{+}
$$

we shall find it useful to generalize further the

Lewis concept ${ }^{2}$ of an acid as an electron acceptor and a base as an electron donor to include core orbitals. By applying principles that have emerged from the theory of core-level shifts, we shall attempt to show how insight car be gained into the relative importance for acid-base reactions of inductive (initial-state) effects and polarization (final-state) effects.

Relative core-level binding energies of the oxygen is orbital were measured for isoprupy1 and tert-butyl alcohols in the gas phase, using the Berkeley iron-free spectrometer. These were combined with previously reported values for methanol ${ }^{3 \mathrm{a}}$ and ethanol. 36 The experimentai techniques have been described earlier, 4 This series was chosen to detenaine the effect on the $O(1 s)$ binding energy of successive metiyl substitution on the adjoining carbon. An internal scandard of water was used to enhance the accuracy of the measured shifts. The alcohol $O(1 s)$ shifts are given in Table i.

In photoenission from the oxygen is orbital of an alcohol

$$
\begin{gather*}
\left(R R^{\prime} R^{\prime}\right)\left(C O H:+\left(R R^{\prime} R^{\prime \prime}\right) C 0^{*} H\right]^{+}+\mathrm{e}^{-} \tag{4}\\
\Delta H=E_{B}(1 \mathrm{~s})
\end{gather*}
$$

the $O(1 s)$ binding energy $E_{B}(0$ 1s) is given by the difference between initial- and final-state energies

$$
\begin{equation*}
E_{B}(01 s)=E_{f}\left(R 0^{\star} H\right)-E_{i}(R O H) \tag{5}
\end{equation*}
$$

Table 1. O (1s) Binding Energy Shifts (ev)

Alcohol	Erpt1.Shift
$\mathrm{H}_{2} \mathrm{O}$	(0.0)
$\mathrm{CH}_{3} \mathrm{OH}$	-0.8^{a}
$\mathrm{OH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$-1.16(6)^{\mathrm{b}}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HOH}$	$-1.24(1)^{\mathrm{c}}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{OH}$	$-1.62(1)^{\mathrm{C}}$
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$-0.04(4)^{\mathrm{b}}$
$\mathrm{a}_{\text {Reference }}$	

An approxialate value of $\mathrm{E}_{\mathrm{B}}(\mathrm{Ol} 1 \mathrm{~s})$ is given by (minus) the 0 (1s) orbital energy, - $\varepsilon(01 s)$, which may be obtained directly from a Hartree-Fock calculation oil the ground state of ROH. In approximate discussions of core-ievel binding-energy shifts, it is conmon to approximate E_{B} by $-\Delta \varepsilon .{ }^{5}$ Now ε and E_{B} are related by

$$
\begin{align*}
& E_{B}^{i}=-\varepsilon^{i}-E_{R}^{i} \tag{6a}\\
& E_{B}^{i}=-\Delta \varepsilon^{i}-\Delta E_{R}^{i} \tag{6b}
\end{align*}
$$

where E_{R}^{i} is the "relazation energy" accompanying loss of ${ }^{R}$ an electron from core level i and Δ in $^{-}$ plies the corrparison of a given core level (suchas $O(1 \mathrm{~s})$) between two molecules. The use of $\Delta \varepsilon$ for ΔE_{B} is equivalent to considering only the differences between ground-state properties, i.e., inductive effects. This approach is quite useful when inductive effects are dominant. Thus the higher carbon is binding energy in CF_{4} than in CH_{4} is quite properly attributed to the widthdrawal of electronic charge from carbon by the four fluorines, leaving a more positive enviroment at the carbon atom.

In considering only ground-state, or inductive, effects above we have neglected a crucial parameter of great chemical importance, the internal polarizability of the molecule. As an electron is removed from the $O(1 s)$ orbital in ar alcohol, other electrons in the molecule are polarized toward the resultant positive hole. Since this polarization occurs adiabatically as part of the photoemission process, it is manifest as a reduction of the binding energy by an amount E_{R}, the "relaxation" energy. Thus $\Delta \mathrm{E} \mathrm{E}$ in Eq. 6 b will follow $\Delta \varepsilon^{i}$ only to the extent that $\Delta E_{\mathrm{R}}^{1}$ can be neglected. Now it happens that E_{R} has a tendency to increase with molecular size. This can perhaps be best understood if the molecule in its final state is regarded as the neutral molecule plus an electron hole of charge $+e .{ }^{6}$ The electronic charge distribucion of the molecule will relax to "screen"
the hole charge. In effect the hole charge is alnost totally screened locally by polarization of charge \sim-e to the oxygen atom. The nolecule's excess positive charge thus moves to the outside of the molecule to minimize the Coulombic repulsion. larger molecules can therefore minimize this repulsion most effectively.

To express the above in chemical terms, the O(1s) photoenission process in Eq. 4 can be split into two hypothetical reactions. In the first an o(1s) electron is removed bu the orbitals is not relax and the alcohol goes to an imaginary unrelaxed intermediate state in which the oxygen atom has an additional charge of +1 .

$$
\begin{gather*}
\left(R^{\prime} R^{\prime \prime}\right) C O H \rightarrow\left(R R^{\prime} R^{\prime \prime}\right) C^{\star+}+H^{-}+\mathrm{c}^{-} \tag{7}\\
\Delta H=-\mathrm{E}\left(\mathrm{O}^{\prime} \mathrm{ls}\right) .
\end{gather*}
$$

Shifts in the energy of this "reaction" are determined by differences in the electron density about the oxygen in the ground state of the alcohol and are inductive shifts. In the second step the remaining electronic charge distribution relaxes to screen the positive hole, carrying the molecule into its actual final state.

$$
\begin{align*}
& \left(R R^{\prime} R^{\prime \prime}\right) C^{\alpha_{+}} H^{+}\left[\left(R R^{\prime} R^{\prime}\right) C D^{*} H\right]^{+} \tag{B}\\
& \left.\Delta H=-E_{R}(r) \text { is }\right) \text {. }
\end{align*}
$$

Shifts in the energy of this "reaction" are polariantion shifts. The two types of shifts are not separatily observable because the unrelaxed intermediate state does not really exist. The "reactions" in Eqs. 7 and 8 sum to the real process, in Eq. 4, for which the energy change $E_{B}=-\varepsilon-E_{R}$ is observed.

Turning now to the relative basicities of these alcohols, we will argue that the effects which are important in determing the gas-phase proton affinity (PA) of an alcohol are analogous to those which determine the oxygen core-level binding energy. Thus the reaction

$$
\begin{gather*}
\left.\left(\mathrm{RR}^{\prime} \mathrm{R}^{\prime}\right) \mathrm{COH}+\mathrm{H}^{+} \rightarrow \mathrm{I}_{\mathrm{PA}}\left(\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime}\right) \mathrm{COH}_{2}\right]^{+} \tag{9}
\end{gather*}
$$

is very similar to Eq. 4. In both cases the alcolnol must accomodate to the appearance of a highly localized positive charge on or near the oxygen: an electron hole in the is orbital in Eq. 4 or a proton in Eq. 9. The proton attachment reactions can also be broken up into two hypothetical steps. In the first, the analog of Eq. 7, the proton would attach to the oxygen without flow of charge in the molecular framework.

$$
\begin{align*}
&\left(R^{\prime} R^{\prime}\right) \mathrm{COH}+\mathrm{H}^{+} \tag{10}\\
& \mathrm{H}=\left(\mathrm{R} R^{\prime} \mathrm{R}^{\prime \prime}\right) \mathrm{COH}_{2}^{+}\left(\mathrm{H}^{+}\right) .
\end{align*}
$$

Here the product is written to indicate that the excess positive charge is localized on the proton, and $\mathrm{E}\left(\mathrm{H}^{+}\right)$would be a "rigid-molecule" proton dissociation energy. In the second hypothetical step the electronic charge in the alcohol relaxes to shield the added positive charge, and the excess charge is effectively distributed over the whole malecule. This step, the analog of Eq. B, can be written

$$
\begin{align*}
\left(\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime}\right) \mathrm{COH}_{2}^{+} & \left.+I\left(\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime}\right) \mathrm{COH}_{2}\right)^{+} \tag{11}\\
\Delta H^{2}= & -\mathrm{E}_{\mathrm{R}}(\mathrm{PA})
\end{align*}
$$

where E_{R} (PA) is a relaxation energy analogous to $E_{R}(015)$ for the photoenission process. For a series of simple alcohols in which the charge on oxygen stays essentially constant from one member of the series to the next, the inductive term, $E\left(\mathrm{H}^{+}\right)$in Eq. 10, should remain essentially constant. Differences in the inductive effect throughout the series would be expressed as a variation in the $0-H$ bond strength; As Bramman and Blair have pointed out, however, 7,8 the $0-H$ bond strength is essentially constant at $104 \mathrm{kcal} / \mathrm{mol}$ for all the simple alcohols; thus variations in the proton affinity arise mainly from variations in the "relaxation" tem. We then have

$$
\begin{equation*}
\Delta(P A) \equiv \Delta E_{R}(P A) \tag{12}
\end{equation*}
$$

For these same alcohols the variations in the $O(1 s)$ orbital energy should be small, for the same reasons. Thus from Eq. 6b

$$
\begin{equation*}
E_{B}(01 s) \cong-\Delta E_{R}(01 s) \tag{13}
\end{equation*}
$$

Now Eqs. 8 and 11 are very similar to one artother in their overall effect, namely, the relaxation of electronic charge to shield an excess positive charge on or near the axygen. The increnental relaxation energi'ss ΔE_{R} should therefore be nearly the same, and from Eqs. 12 and 13 one would expect

$$
\begin{equation*}
\Delta(F \dot{x}) \ddot{\underline{x}}-\Delta E_{B}(01 s) \tag{14}
\end{equation*}
$$

That is, the variation in proton affinity of an alcohol should be nearly equal to the variation in the $O(1$ o) binding energy. The negative sign in Eq. 14 is a consequence of the sign conventions for binding energy and proton affinity.

That Eq. 14 is rather accurately obered by the simple alcohols is illustrated in Fig. 1, in which

Relative proton affinity (aV)
Fig. 1. Oxygen 1 s binding energies vs. proton affinities for simple alcohols (open circles) and $\mathrm{CF}_{3} \mathrm{Cl}_{2} \mathrm{OH}$ (filled circle), all in the gas phase. Relative E_{B} (1s) and $P A$ values are referred to $\mathrm{H}_{2} 0$. The values and references are given in Tables 1 and 2. Compoumds in order are: $\mathrm{H}_{2} \mathrm{O}, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}_{3}$ methanol, ethanol, isopropyl alcohol, and tertbutyl alcohol (for which two valu:"s of PA are plotted). The straight line has unit slope and goes through the $\mathrm{H}_{2} \mathrm{O}$ point.
(XBL 7312-7033)
the binding energy shifts for the siuple alcohols from Table 1 are plotted against the proton affinities of these alcohols, $\mathbf{9 - 1 1}$ listed in Table 2.

Table 2. Proton Affinities in Simple Alcohols(kcal)

Compound	PA	Compound	PA
$\mathrm{H}_{2} \mathrm{O}$	165 (2) ${ }^{\text {a }}$	Ethanol	$186(2)^{\text {a }}$
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$168(3)$	Isopropyl alcohol	193 (3) ${ }^{\text {a }}$
Methanol	$181(2)^{a}$	tert-Butyl alcohol	198,206 ${ }^{\text {a }}$

${ }^{\text {a }}$ These proton affinities are adopted values, from Refs. 9-11, with the estimated error in the 1ast digit given parenthetically. Two values have been given for tert-buty1 aleohol; both are lirted. ${ }^{\mathrm{b}}$ J. L. Beauchanp, private conmmication,

Also plotted is the $\mathrm{CF}_{3}-\mathrm{CH}_{2} \mathrm{OH}$ point, to be disoussed below. The good agreement between these two quantities provides a striking illustration of the close connection between core-level binding-energy shifts and chemical properites. We note that this is not just an empirical correlation of unknown origin but a straightforward consequence of a molealle's electronic charge distribution relaxing to shield an excess positive charge in two similar processes.

Before seeking to generalize the above results we must issue a caveat. The confirmation of Eq. 14 in Fig. 1 does not guarantee that the above argment is completely correct. In particular it does not imply that the quantities plotted are almost entirely variations in relaxation energies, as Eqs. 12 and 13 would imply. For this comqarison of $\Delta(P A)$ with $\Delta \mathrm{E}_{\mathrm{B}}(0 \mathrm{ls})$, inductive (initia1state) effects would also make these two parameters tend to vary together. This is readily illustrated by rewriting Eq. 6b for this case and its proton-affinnty analog derived from Eq. 9 and 19.

$$
\begin{align*}
\Delta E_{\mathrm{B}}(01 \mathrm{~s}) & =-\Delta \mathrm{E}(01 \mathrm{~s})-\Delta \mathrm{E}_{\mathrm{R}}(015) \\
-\Delta(\mathrm{PA}) & =-\Delta \mathrm{E}\left(\mathrm{H}^{+}\right)-\Delta \mathrm{E}_{\mathrm{R}}(\mathrm{PA}) \tag{15}
\end{align*}
$$

If, in going from one alcohol to another, the oxygen becomes more negative, for example, then ε (1s), which is always negative for bound states, will increase, thereby decreasing Eg(0 1s). The "rigid molecule" (inductive) contribution to the proton affinity, $\mathrm{E}\left(\mathrm{H}^{+}\right)$, will of course increase, as will PA, and $-\Delta(\mathrm{PA})$ will also be negative. Thus inductive effects as well as relaxation effects would shift - $\Delta(P A)$ and ΔE_{B} similarly, and Eq. 14 would still tend to hold.

From the above reasoning we can make, as a first step toward generalizing, the rather tentative suggestion that proton affinities and corelevel binding-energy shifts may be comparable anong a wider range of compounds than just the
essentially nonpolar simple alcohols, The comparison can be extended in two steps. Firsi, a wider variety of functional groups could be considered. Thus methoxy, phenyl, or CF_{3} groups could be attached to the a carbon, for example, and the resulting $O(1$ s) binding-energy shifts could be compared with known proton affinities, to test the prediction that $\left.\Delta E_{B} i 01 s\right)=-\Delta(\mathrm{PA})$. Data or only one compound proton affinity and $\mathrm{O}(1 \mathrm{~s})$ binding-energy shift in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$. When plotted on Fig. 1, the $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ point ${ }^{3}$ shows excellent agreement with the trend for the simple aliphatic alcohols.

A second, larger extension would include other oxygen-containing functional groups in the comparison. Thus the proton affinities and $O(1 s)$ bindingenergy shifts in alcohols and acids could be compared, for example, to test the predicted $\Delta \mathrm{E}_{\mathrm{B}}(01 \mathrm{~s})=-\Delta(\mathrm{PA})$ relation. Unfortmately, there are not enough O (1s) binding energies and proton affinities available for the same molecules to test the validity of either of these extensions. It seens probable that the first prediction should hold, but the second is less likely to, because molecular geometries of different functional groups can change on proton attachment, while there is no geometry change on X -ray photoenission.

A somewhat different case is readily tested.

 This is the relation between the nitrogen 1 s binding energy shifts, $\Delta \mathrm{E}_{\mathrm{B}}(\mathrm{N} 1 \mathrm{~s}), 12$ and the variation in proton affinities 9,14 of the series NH_{3}, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$, and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$. Very good agreement between these two quantities is found, as indicated in Fig. 2. This agreement is particularly impressive because in this case methy 1 groups are directly substituted for hydrogens on the photoemitting nitrogen atom.

Fig. 2. Nitorgen 1s binding energies vs. proton affinities for (from left) NH_{3}, methylamine, dimethylamine, and trimethylanine. The PA values plotted are average of those given in Refs, 13 and 14. The error on the NH_{3} point is absolute, while the others are relative. The straight, line through the NH_{3} point has unit slope.
(XBL 7312-7032)

In the original work, the analysis developed above was used co formulate an explanation of the change in the first ionization potential within these series of alcohols and anines. It was argued that relaxation effecis dominate the observed variations. In addition, the Lewis definition of basicity was extended to include the core orbitals and several examples of the connection between corelevel binding energy shifts and the Lewis basicity were given. Finally, the inverted acidity order of the aliphatic alcohols in solution (relative to the gas phase) was rationalized in terms of an extramolecular relaxation; a polarization of the solvent that is active in ionization processes in solution. More detailed discussions can be found in the full report of this work.*

Footnotes and References

*Condensed from LBL-234_ ; published in J. Am. Chem. Soc., 96, 5299 (1974).

1. R. B. Woodward and R. Hoffmann, "The Conservation of Orbital Symnetry," Academic P.eess, New York, N. Y., 1970.
2. G. N. Lewis, 'Va1ence," Dover Publications, New York, N. Y., 1966, 142.
3. (a) K. Siegbahn, et al., "ESCA Applied to Fre: Molecules," North-Holland Publishing Co., Anciterdam, 1969; (b) D. W. Davis, M. S. Banna, and D. A. Shirley, J. Chem. Phys., 60, 237 (1974).
4. D. W. Davis, D. A. Shirley, and T. D. Thomas, J. Amer. Chem. Soc., 94, 6565 (1972).
5. See, for example, D. A. Shirley, Advan. Chen. Phys., 23, 85 (1973).
6. D. A. Shirley, Chem. Phys. Lett., 16, 220 (1972).
7. J. I. Brauman and L. K. Balir, J. Amer. Chem. Soc., 90,6561 (1968).
8. J. I. Braw. nn and L. K. Balir, J. Aner. Chem, Soc., 92, 5986 (1970).
9. J. L. Beauchamp and M. .. Caserio, J. Amer. Chem. Soc., 94, 2638 (1972).
10. J. Long and B. Manson, J. Aner. Chem. Soc., 95, 2427 (1973).
11. D. H. Aue. University of California at Santa Barbara, private cormunication.
12. P. Finn, R. K. Pearson, J. M. Hollander, and W. L. Jolly, Inorg. Chen., 10, 378 (1971).
13. D. H. Aue, H. M. Webb, and M. T. Bowers, J. Amer. Chem. Soc., 94, 4726 (1972).
14. W. G. Henderson, M. Taagepera, D. Holtz, R. T. Melver, Jr., J. L. Beauchamp, and R. W. Taft, J. Amer. Cheri. Soc., 94, 4728 (1972).

THEORY OF SATELLITE STRUCTURE IN PHOTOEMISSION

R. L. Mertin and D. A. Shirloy

The growing application of ESCA spectroscopy, in which atomic core levels are photo-ionized with monochromatic X rays and the orbital binding energies measured through spectrometric analysis of the photoelectrons' kinetic energies, has led to renewed interest is calculations of photoemission spectra for atomic and molecular core levels. Most calculations have focused on the lowest-bindingenergy peak observed in the characteristic spectrum from each core level; i.e., the adiabatic or fully-relaxed (FR) peak. The relaxation energy,

$$
\begin{equation*}
E_{R}^{i}=-\varepsilon_{i}-E_{B}^{i}, \tag{1}
\end{equation*}
$$

has received considerable attention recently; enough indeed to exaggerate the significance of the FR peak at the expense of the rest of the characteristic spectrum. Here ε_{i} is the ith orbital energy and E_{B}^{1} the binding energy of a given orbital i.

In this report we capsulize the results of work describing a full theory of photoenission. Emphasis is placed on core-level photoionization and the many-body aspects of the process.

In photoemission an N-electron system in an initial state $\Psi_{i}(1,2, \ldots N)$ interacts with the radiation field. A photon is absorbed, taking the systen to to a final state $\Psi_{f}(1,2, \ldots, N)$, in which at least one electron has been ejected into a continums state. We shall restrict the discussion below to those events in which only one electron is ejected.

Kinetic-energy analysis of the plotoelectron spectum reveals peaks at energies

$$
\begin{equation*}
K_{j}=h \nu+E_{i}(N)-E_{f}^{j}(N-1) \tag{2}
\end{equation*}
$$

where $E_{1}(N)$ is the initial-state energy and $\mathrm{E}_{\mathrm{f}}(\mathrm{N}, 1)$ is the total energy of the remmant $\mathrm{N}-1$ efectron system. The spectrun is usually dominated by states at the "one-electron binding energies",

$$
\begin{equation*}
E_{B}^{\mathbf{j}}=E_{\mathbf{f}}^{j}(N-1)-E_{i}(N) \tag{3}
\end{equation*}
$$

each of which corresponds approximately to the orbital energy E_{j} of a one-electron atomic or molecular orbital - the simplest one-determinant description of the initial state [Eq. (2)]. Closer inspection of the spectrim reveals a, set of satellice states, at higher energies \{E' $(\mathrm{N}-1)$ \}. associated with each main peak. In the literature on the subject these satellites have been variously temed "shake-u"", "monopole-excitation", and "correlation" states. Unfortunately they have also been treated as if they were qualitatively different from, or were reached in a different way than, the main N-I electron state. The apparent differences are in fact artificial, the consequence of using certain basis sets to describe the initial and final systems, together with singledeteminant wave functions, bihile the heuristic
descriptions have a certain pedagogic value, they must not be taken literally. The satellites do not arise through a two-step process, and they do not correspond to one electron being ejected as a photoelectron and a second electron being excited to a higher bound state. Such descriptions are intuitively ampealing but fundanentally incorrect. They confuse the eigenstates of the ($\mathrm{N}-1$)-electron Hamiltonian with a particular set of one-electron orbitals.

A photoemission experiment is just a special case of optical absorption in which the N electron system absorbs a photon of energy hv and is raised from its initial state to a final state with one unbound electron. The act of observing the kinetic energy of the photoelectron (the Nth electron), in anticipation of using Eq. (2) to study the N-1 electron system, should also focus our attention on the fact that the final state is really that of an N-electron systen. If dipole selection rules are operative, which is ofter the case, they apply to the total N electron system. This means, for example, that a $1 S \rightarrow 1 p$ transition is allowed for the total system; any combination of $\mathrm{N}-1$ electron final state plus photo electron final state symetries that couple to l_{p} (e.g., $1_{S}+p, 1_{P}+s_{1}$ etc.) would satisfy this criterion. Anong the 1_{S} final states of the $\mathrm{N}-1$ electron systam none has preference. The main lines and the satellites are qualitati ely exactly equivalent. Each is reached directly via a onestep, "one-electron" dipole transition. ${ }^{1}$ The intensity difierences arise, as shown bejow, because of quantitative differences in cross-sections.

The above general comnents are made without reference to basis sets, configuration interaction, or even electron correlation. We emphasize their basis-set independence. While one-electron molecular orbitals provide a convenient basis set, which we shall use below, they are in no way necessary.

N -Electron Sudden Approximation

The first application of the sudden arporoximation to hole-state excitation was made by Bloch. 2 Many authors have contributed to the literature on this subject. Aberg has given a recent comparative discussion of the sudden approximation in connection with x-ray satellite spectra. 3-4 Aberg's work is now the standard reference in the field of inner-shell ionization phenomena, especially in connection with x-ray spectra. For general use in photoelectron spectroscopy it is not directly applicable, however, because in inner shell ionization, per se, attention is focused on the ionic $N-1$ electron system. The photoelectron is disposed of quickly in these discussions by taking the high-energy limit $k+\infty$, He are interested primarily in the behavior of the (N electron plus photon) system under the constraint of constant total energy; i.e., the photoelectron has a finite energy detemined by Eq. (2). Even if the sudden approximation is used a new derivation is required.

It is outlined beiuw.
Let us assume that the initial state can be described by a single-determinantal wave function

$$
\begin{equation*}
\psi_{i}(N)=(N!)^{-1}\left|\phi_{1}(1) \phi_{2}(2) \cdots \phi_{N}(N)\right| \tag{4}
\end{equation*}
$$

where $\left(\phi_{j}\right)$ is some appropriate basis set of molecular orbitals. The final state is described sinilarly, but a continum function X_{f} replaces ϕ_{1}, the orbital from which the photoelectron is ejected. Thus

$$
\begin{equation*}
\Psi_{f}(N)=(N!)^{-\frac{1}{2}}\left|X_{f}(1) \phi_{2}^{\prime}(2) \phi_{3}^{\prime}(3) \cdots \phi_{N}^{\prime}(N)\right| . \tag{5}
\end{equation*}
$$

The orbitals $\left\{\phi_{i}{ }^{\dagger}\right\}$ are primed to note that they are similar, but not idential, to the initialstate basis functions.

With the wavefurctions so defined, one finds that the cruss sect ion for a transition from state Ψ_{i} to Ψ_{f} is given by
$\left.\sigma_{S A}=\frac{1}{\sqrt{4}} \quad \rho\left(E_{f}\right) \right\rvert\,\left\langle x_{f} \mid \phi_{1}\right\rangle S_{11}+\sum_{j=2}^{N}(-1)^{1+j}\left(x_{f}\left|\phi_{j}\right\rangle S_{1 j}{ }^{2}\right.$.

Here $\rho\left(E_{f}\right)$ is the density of final states and $\mathrm{S}_{1 \mathrm{j}}$ is an ($\mathrm{N}-1$) electron overlap integral defined by ${ }^{1} \mathrm{Eq} .7$

$$
\begin{equation*}
S_{1 j}=\left\langle\prod_{k=2}^{N} \phi_{K}^{\prime}(K) \mid \Psi_{i}\left(N-1, \phi_{j}, 1\right)\right\rangle, \tag{7}
\end{equation*}
$$

where $\Psi_{i}\left(N-1, \phi_{j}, 1\right)$ is the minor of $\phi_{j}(1)$ in
$\Psi_{i}(N)$.
Many electron effects are apparent even in the crixde level of theory employed thus far: the transition matrix element is not separable into an "active" times a "passive" electron part. Expansion of the overlap integral in Eq. (7) yields for the transition moment

Here the abbreviated notation $\langle 2 \cdot \mid 2\rangle=\left\langle\phi_{2}^{\prime} \mid \phi_{2}\right\rangle$ has been used in the determinants. If unrefaxed orbitals were used to describe the passive electrons in the final state, we would have〈i' $|j\rangle=\delta_{j i j}$, and Expression (8) would reduce to ($X_{f} \mid \phi_{1}$ \}. Using real (relaxed) orbitals, the first tem will usually be altered somewhat. The diagonal elements $\left\langle j^{\prime} \mid j\right\rangle$ are typically of the or'ier of a few percent less than unity, while the off-diagonal elements are very small. Thus the first term might typically have a valize of $-(0.8-0.9)$ $\left\langle x_{f} \mid \phi_{1}\right\rangle$, only $10-208$ different from the frozen orbital approximation.

The second term in (B) is more problematical. Each of the deteminants in the sum can be rearranged so that all but one of the diagonal elements are nearly unity. The remaining diagonal element will have the fora ($j \mid 1$), where the orbital ϕ_{j}^{\prime} is the final state function which most closely resenbles ϕ_{1}^{\prime}. If we retain only the diagonal product (which yields the largest term by far in each deteminant), and divide the sum in (B) by the first term, we find

$$
\text { Ratio }=\sum_{j=2}^{N}(-1)^{1+j} \frac{\left\langle j^{\prime} \mid 1\right\rangle\left\langle x_{f} \mid j\right\rangle}{\left\langle j^{\prime} \mid j\right\rangle\left\langle x_{f} \mid 1\right\rangle} .
$$

It is safe to assume that the ratio $\left\langle j^{\prime} \mid 1\right\rangle /\left\langle j^{\prime} \mid j\right\rangle \ll 1$ for all j, but the ratio $\left\langle\chi_{f} \mid j\right\rangle /\left\langle\chi_{f} \mid 1\right\rangle$ may be significantly larger than unfty, thereby necessitating the retention of the sum in Eq. 6. This sum can be regarded as arising from an "internal shakeup" mechanisn: in fact it is rather similar in structure to "conjugate shakeup". An electron appears to be ejected from the $j^{\text {th }}$ orbital and replaced by an electron from orbital ϕ_{1}. In fact this mechanism requires both exchange in the initial state (to make the product $\left\langle j^{\prime} \mid 1\right\rangle\left\langle\chi_{f} \mid j\right\rangle$) and relaxation (to make $\left\langle j^{\prime} \mid 1\right\rangle \neq 0$). Further discussion of this interesting term lies outside the scope of this paper, but we note that it was not apparent in Aberg's treatment because the photoelectron was not explicitly included in the final state.

An important advantage of the present N -electron formulation of the SA is that the factor $\left\langle X_{f} \mid \phi_{1}\right\rangle$ contains an explicit dependence of the
photoemission cross-section on the orbital symmetry of x_{1} and the photon energy. By using even such approkimate wave functions as plane waves (of the T ght wavelength) for X_{f} and Slater orbitals for ϕ_{y}, most of the crudest ${ }^{f^{\text {physical }} \text { features of }}$ photocnission cross-section ratios could be derived using this approach. Thus, for example, we can easily deduce the well known result that $0(2 \mathrm{~s}) / \sigma(2 \mathrm{p})$ for second-row elements is small for very soft ($\sim 100 \mathrm{eV}$) photons but larger for harder (-1000 eV) photors, which is readily understandable in tems of the deBroglie wavelengths in the final state γ_{f}.

The above discussion has shom that the $S A$ can give qualitatively reasonable results for photoemission cross-sections when applied properly. We do not, of course, advocate using the SA when other methods are available, as described below.

The N -Electron Dipole Approximation

The dipole approximation is derived by taking account of the photon field explicitly by adding a tem

$$
p_{i}+\vec{p}_{i}-\frac{e}{c} A
$$

to the momentum operator of each electron. Here \mathbb{A} is the vector potential of the photon field. After making the dipole approximation and carrying out several standard manipulations, it can be shom that the introduction of H_{ϕ} inserts an operator $\sum_{k=1}^{N} \stackrel{p}{p}_{k}$ into the transition matrix element and adds a mulliplicative factor of $(\mathrm{h} \omega)^{-1}$. The cross-section thus becomes ${ }^{5}$
$\sigma_{D A}=\left.\left[h(\omega)^{-1}\left|\left\langle\Psi_{f}(N)\right| \sum_{k=1}^{N} \vec{p}_{k}\right| \Psi_{i}(N)\right\rangle\right|^{2} \rho\left(E_{f}\right)$
Expansion of the matrix element yields terms that differ from those in the sudden approximation only in including a matrix element of the momentum operator P1. There are also additional terms arising from the rest of the monenta, $\sum_{k=2}^{N} P_{k}$. This result
can be arranged in the fortu
$\left\langle\psi_{f}(N)\right| \sum_{k=1}^{N} \rho_{k}\left|\Psi_{i}(N)\right\rangle=\left\langle\chi_{f}\right| \rho\left|\phi_{j}\right\rangle S_{11}$

$$
\begin{align*}
& +\sum_{j=2}^{N}(-1)^{1+j}\left\langle\psi_{f}\right| p\left|\phi_{j}\right\rangle s_{1 j} \\
& +\sum_{j=1}^{N}(-1)^{1+j}\left\langle\Psi_{f} \mid \phi_{j}\right\rangle P_{1 j} \tag{10}
\end{align*}
$$

Here P_{1} denotes an (N - 1) electron transition matrix Similar to S_{l},

$$
\begin{equation*}
P_{f j}=\left\langle\prod_{\ell=2}^{N} \phi_{\ell}^{\prime}(l)\right| \sum_{k=2}^{N} P_{k}\left|\Psi_{i}\left(N-1, \phi_{j}, l\right)\right\rangle . \tag{11}
\end{equation*}
$$

The first two terms in Eq. (10) arise from the p_{1} operator and the rest from the $\sum_{\ell=2}^{N} p_{\chi}$ sum. Thus Eq. (10) approaches the argument of the RHS of Eq. (6) if only the first two terus are retained and p is replaced by unity. Another comparison with the SA is obtained by approximating χ_{f} with a plane wave. In this case we may replace

$$
h \omega=E_{B}+h^{2} k_{f}^{2} / 2 m .
$$

After some rearranging of Eq. (9), it follows that

$$
\begin{align*}
& \left.o_{D A} \propto\left\{\frac{k_{f}^{2}}{k_{f}^{2}+\frac{3 n I_{B}}{h^{2}}}\right\} \right\rvert\,\left\langle x_{f} \mid \phi_{1}\right\rangle S_{11} \\
& +\underset{j=2}{N}(-1)^{1 \cdots j}\left(x_{f} \mid \phi_{j}\right) S_{1 j}+\left.\left(h \mathrm{k}_{\mathrm{f}}\right)^{1} \Sigma[p]\right|^{2} \tag{12}
\end{align*}
$$

k becones large the coefficient tern in Eq. (12) approaches units, the last term goes to zero, and Eq. (12) approaches Eq. (6); i.e., the dipole approximation result approaches the SA result. Again, however, the form given here contains an explicit expression for the monentum matrix elements of the active electrons.

The results given in Eqs. (6), (10), and (12) are straightforward, but to our knowledge they have not been given explicitly before, and most molecular core-level photoemission spectra are interpreted using even more approximate expressions. The deficiencies of the $S A$, the DA, and the plane-wave (or OPW) approximations are too well knom to require discussion. Nevertheless, for the purposes at hand -- the calculation of core-level correlation-peak intensities -- any of these approaches is usually adeauate provided that electron correlation is treated properly. In numerical work on $H F$ to be discussed in the following report, we found that the first term in Eq. (10) dominated all others at photon energies well above threshold (hv $\cong 1500 \mathrm{eV}$). It was also found that for the purposes of computing relative correlation peak intensities the slowly varying energy dependent factors ciucel ind a comparisen of the overlap integrals (S_{11}) is all that is necessary. The wavefunctions used to compute this overlap integral, however, must be much more sophisticated than the single-determinantal functions we have used so far. For this reason we have extended the fomalism outlined above to include configuration interaction. Both initial and final state configuration mixing were foind to be very important in the $\mathrm{F}(15)$ "shake-up" spectrum of HF .

Foornotes and Heferences

1. Semantic confusion is possible here. By a oneelectron transition we mean a trunsition caused by a one-electron operator or a lipear combination of one-electron operators. Thus $\Sigma \mathrm{ppi}_{i}$ bould cause a one-electron transition, but not $\stackrel{s}{s}_{i} \cdot \stackrel{\rightharpoonup}{s}_{j}$,
2. F. Bloch, Phys. Rev., 48, 187 (1935).
3. T. Aberg, Phys. Rev. 156, 35 (1967).
4. T. Aberg, Ann. Acad. Sci. Fenn. A VI, 308 (1969).
5. There is, of course, a dependence of the cross section on the photon polarization properties. For the purnoses of this report we assume that all angular dependence, etc., has been averaged away.

FLUORINE 1s CORFIEL ATION STATES IN THE PHOTO-IONIZATION OF HYDROGEN FLUORIDE: EXPERIARENT AND THEORY

R. L. Martin, B. E. Mills, and D. A. Shirky

Introduction

Photoenission spectra of atomic core levels in atoms and molecules yield for each core level j a main peak at an electron kinetic energy

$$
\begin{equation*}
K_{j}=h w-E_{B}^{(v)} \tag{1}
\end{equation*}
$$

where $h v$ is the photon energy and $E_{R}^{(0)}$ is the binding energy of the prinary peak. This corresponds to an atomic or molecular ion that is de* scribed cheoretically to first approximation by renoving an electron from orbital j and allowing the passive electrons to relax adiabatically (i.e., without changing their quantum numbers). If hw is substantially larger than $E(0)$, additional satellite peaks may also be obServed at higher binding energies $\left.E_{B} n^{9}\right\}$. Qualitatively, one . ually describes these states as arising from at least a two electron excitation from the ground state (ionization accompanied by "shakeup"). A quantitative theoretical treatment of the transition cross section to such states, however, shows that one electron descriptions may be misleading. The cross section for such a transition owes much of its strength to manybody effects. In partioular, configuration interaction (CI) in both the initial and final state is required; hence the latter are more accurately described as "correlation states", and the satellite peaks as "correlation peaks".

The theoretical formalisn for calculating correlation state spectra was described in the preceding paper ${ }^{1}$ (hereifter called I). We report in the present paper a complete z^{*} udy of the Fluorine is corrclation-state spectra i- gaseous lif. To our inowledge this is the first in wish several of the theoretical mances developed in I have been applied. It is also the first case showing quanticative agreament between experiment and theory.

The gaserus sample was obtained by evaporation of 99.94 + pure liquid H5, obtained from Ahathessn Gas Produces, Inc. The photoelectron spectra werc obtained usifig Ai kid, 2 x-rays (1486.6 eV) on the 50 cm radius Betkeley ironiree magnetic spectrometer. Spectral data noints were calken at pr.ssurcs of - 50 and - 350 microns (Fig. 1). The analyzer chrmber was maintained at a pressure of approximately $10-5$ Torr. The high pressure spectrua was used to determine which of the satellite peaks of the $F(15)$ main line were caused by inclastic collisions of the elecerons pass ing through the sample after photocinission. The intensities of these peaks should increase

Fig. 2. The high (a) and low pressure (b) photoelectron spectran of gaseous HF, The binding energy is measured relative to the main peak, the F (15) hole state.
(XBL 7411-8298)
with pressure. If the low joitessure spectrum (Fig. 1b) is sublracted from the high pressure spectrua (Fig. 1a) with appropriate weighting to equalize the main $F(1 s)$ peaks, the result is an inelastic electron loss spectrim.

The low pressure spectran was fitted (Fig. 2) using a non-linear least squares program which automatically took into account tho (Weak) Al K_{2} and K_{a} ppeaks as well as the slight change of the the energy window caused by the fact that the magnetic spectromoter produces spectra linear in momentun. The minin peak, corresponding to the F(ls) hole state, was fitted hest by a sum of three Lorentzian peals and these were used as the fundanental form for the "carrelation" peaks.

Fig. 2. Expanded spectrum of $H F$ at low pressure and experimental fit; numbered statcs correspond to those in Table 1. The circles represent data corrected for pressure dependent peaks.
(XBL 7412-8360)

The results in Table 1 indicate the theoretical intensities of the peaks are in excellent agreenent with experment. Theoretical energies, relative to the main line, are 2.1 to 3.5 eV higher than experiment. Note that the width of the peaks increases with greater separation from the main peak, or alternatively, the width increases as you approach the double ionization ("shake-sff') limit.

The correlation-peak spectrum was calculated using the theoretical fomalism described in I. Two major levels of sophistication were used for the wavefunctions necessary in this work. First. configuration interaction among the ionic finat. states was considered, with the ground state represented by a singie slater deteminant. In the next step, CI in the ground state was also included. For each of these cases, the relative intensities of the correlation peaks were computed in the overlap approximation. It was shown in I that except for tems winch are snall for corelevel satellites, 2 the dipole and the N-electron sudden approximations give identical resuits in the overlap approximation. These are displayed in Table I for final state CI (Metholl A) and for initial state CI (Method B).

A complete description of the means used to obtain the wavefunctions reassary in this study is presented in the full accoumt of this work. Here we simply note that the wavefunctions for the correlation states were obtained as the eigenvectors of a configuration expansion based on one-

Table 1. Correlation peak intensities in the overlap approxination

State ${ }^{\text {(a) }}$	$\begin{aligned} & \left(S_{n}^{11}\right)^{2} \\ & \text { Nethod A } \end{aligned}$	$\left(\mathrm{S}_{\mathrm{n}}^{11}\right)^{2(b)}$ Method B	$I(\operatorname{expt})^{(c)}$	$\begin{aligned} & \text { FWHA } \\ & (\mathrm{eV}) \end{aligned}$	$\underset{(\mathrm{eV})}{\mathrm{E}_{\text {(theor }}}{ }^{(\mathrm{d})}$	$\frac{\mathrm{E}(\mathrm{expt})}{(\mathrm{d} \mathrm{eV})}$
0	(1.000)	(1.900)	(1.000)	1.4	(693.5)	
1	0.000	0.020	-	-	23.89	
2	0.012	0.020	0.019 (3)	2.1(3)	25.90	22.4(2)
3	0.015	0.030	0.030 (4)	2.3(3)	29.57	26.50(5)
4	0.000	0.000	-	-	30.89	-
5	0.036	0.062	0.057 (5)	3.7(3)	32.35	29.90(7)
6	0.000	0.001	-	-	32.72	-
7	0.007	0.012	0.010	4.7(3)	33.51	30.87
8	0.000	0.000	-	-	33.74	-
9	0.028	0.041	0.038(5)	7.1(9)	34.84	32.7 (3)
10	0.005	0.007	0.007	7.9(9)	35.43	33.3
11	0.000	0.000	-	-	35.72	-

a) In order of increasing energy "Reference state" is numbered 0 , as in Fig. 1 and toxt.
${ }^{\text {b) }}$ Al intensities normalized to peak 0 . Absolute values of S^{11} are 0.78115 (Method A), 0.71970 (Method B). c) Error in last pace given parenthetically,
${ }^{\text {d) }}$ First entry is the absolute binding energy of the reference state; che others are increnental energies relative to this.
electron molecular orbitals. These orbitals were optimized for the $F(15)$ hole state and were thenselves ?.inear combinations of atomic orbitals. The basis set of atomic orbitals is thus a very important parameter in the calculation, Not all of the excited states that can be calculated for a given basis set will have physical significance. our final choice gave stable energies and transition monents with respect to addition of further orbitals and slight modifications of the exponents of existing orbitals for those excited states which we felt were physically reasonable.

An indication of the completeness of the basis set for at least two of the states of in-
terest here is afforded by comparison with previous work. We found an SCF energy of -100.0553 a.u. for the $1_{\Sigma^{+}}$ground state of HF. The near Hartree-Fock result of Cade and HuO is -100.0703 a.u. The same basis yields an energy of -74.5670 a.u. for the $F(1 s)$ hole state, to be compared with Schwartz's result of $-74.5365 \mathrm{a} . \mathrm{u}$. The calculated F (1s) binding energy is 693.5 eV , which is slightly higher than the value of 693.3 eV reported by Schwartz. our ${ }^{3}$ II shakeoff limit falls at -73.2872 a, u. or 34.8 eV above the primary hold state. The compositions of the molecular orbitals which are most important for describing shakeup phenomena in HF are given for the groum state and the ionic states in table $2 a$ and Table $2 b$ respectively.

Table 2. Basis set of Slater functions and selected one electron orbitals used in the CI wavefunctions.

Slater Function ${ }^{\text {a }}$		Molecular Orbitals							1π	2π	3π	4π
Type	5	10	${ }^{2 \sigma}$	30		50	${ }_{6}$	70				
d. HF Ground State:												
1. F(1s)	7.716	-0.6768	0.2873	0.0665	-0.0729	0.1185	0.0143	-0.0384				
2. $F\left(1 s^{\prime}\right)$	10.514	-0.3315	-0.0154	-0.0031	-0.0054	-0.0250	0.0038	0.0039				
3. F(2s)	1.953	-0.0034	-0.4249	-0.1301	0.4412	0.1233	-0.2966	0.1057				
4. F(2s')	3.120	0.0021	-0.6228	-0.1699	0.2847	-0.2811	-0.1380	0.1436				
5. F(2p)	1.847	0.0005	-0.0885	0.6050	0.4963	0.2025	-0.0010	0.0957	-0.7149	-0.2956	-0.0323	0.1401
6. $\mathrm{F}(2 \mathrm{p})$)	1.175	-0.0012	-0.0266	0.2352	0.3050	0.1527	0.0056	0.0509	-0.3386	-0.2534	-0.0143	0.0958
7. F(3d)	2.500	0.0001	-0.0216	0.0453	-0.0232	-0.0300	0.0878	0.0201	-0.0263	0.0116	-0.0552	-0.0003
8. F(3s)	1.000	-0.0001	-0.0417	-0.0024	0.2878	1.1467	-0.6601	-0.0954				
9. $\mathrm{F}(\mathrm{jp})$	1.000	-0.0009	-0.0193	0.0238	0.0163	-0.2236	-1.1454	-0.0880	-0.0500	1.0978	0.1275	-0.7086
10.F(3d')	0.800	-0.0002	-0.0080	0.0034	0.0244	-0.1275	0.1289	0.6961	-0.0157	0.1735	-0.9574	0.1114
11.F(4s)	0.600	-0.0001	0.0051	0.0036	-0.0292	-0.0576	-0.1121	0.7936				
12.F(4p)	0.690	0.0002	-0.0016	0.0015	0.0245	0.0023	-0.2400	0.3504	0.0089	-6.0814	0.1208	1.2224
13.H(1s)	1.000	0.0028	0.1841	-0.0297	-1.7194	-0.5649	1.5561	-0.7593				
14.H(1s ${ }^{\text {' }}$)	1.500	-0.0018	-0.2311	0.3042	0.3169	0.0954	-0.3849	0.3402				

B. $H_{F}{ }^{*}, E(1 s)$ Hole State:

1.f(1s)	7.716	-0.5492	0.3055	0.0909	-0.0403	0.0588	-0.0087	0.0258				
2.F(1s')	10.514	-0.4178	0.0035	-0.0038	-0.0125	-0.0177	-0.0119	-0.0024				
3. F(2s)	1.933	-0.0305	-0.2378	-0.0022	0.5674	0.1979	0.3954	-0.0922				
4.F(2s ${ }^{\prime}$)	3.120	4.0071	-0.8100	-0.2620	0.1700	-0.0562	0.1087	-0.0539				
5. F(2p)	1.847	-0.0005	-0.1273	0.5742	0.4799	0.2672	0.0312	-0.0984	0.6168	0.2489	0.0288	0.2153
6. $F\left({ }_{2} \mathrm{~F}^{\prime}\right)$	4.175	0.0005	-0.07:4	0.4383	0.1111	0.0615	-0.0147	0.4970	0.4970	0.0596	0.0046	0.06638
7. $\because(5 d)$	2.500	-0.0008	-0.0252	0.0474	0.0057	-0.0168	-0.0349	-0.0062	0.0282	-0.0067	0.0159	-0.0035
8. F(3s)	1.000	-0.0023	-0.0435	0.06 .35	0.0661	1.3143	0.4695	0.4624				
9.F(3p)	1.000	-0.0065	-0.0111	-0.0084	0.0563	0.1808	1.07044	0.3736	-0.0571	-0.9613	-0.1002	-0.9615
10.F(3d')	0.800	-0.0022	-0.0073	0.0192	-0.0409	-0.1653	0.1510	-0.5887	0,0051	-0.2936	0.928 ?	0.2020
11. $\mathrm{F}(4 \mathrm{~s})$	0.600	-0.0007	0.0062	-0.0079	-0.0189	0.0819	0.1583	-0.9247				
12. $\mathrm{F}(4 \mathrm{p})$	0.600	0.0011	-0.0046	0.0145	-0.0146	-0.0501	0.4501	-0.1900	0.0201	-0.1271	-0. 2970	1.1986
13. $\mathrm{H}(15)$	1.000	0.0238	0.1929	-0.2628	-1.7866	-1.3668	-1.3129	0.1798				
14.11(1s)	1.500	-0.0134	-0.2196	0.3289	0.3656	0.3365	0.4841	-0.1434				

$a_{r}: r^{n \cdot 1} l_{c} \xi_{r}$, where n is the principal quantun number.
'The intensity of dach final-state peak relative to that of the main peak was first calculated in the overlap approximatioin. If only final-state CI was considered (Method A), the relation

$$
\begin{equation*}
\frac{I\left(n^{\prime}\right)}{I(0)}=\frac{\left|\sum_{n} c_{n^{\prime} n} s_{n}^{11}\right|^{2}}{\left|\sum_{n}^{E} c_{n n} s_{n}^{11}\right|^{2}} \tag{2}
\end{equation*}
$$

is appropiate. The extension of the theory to include configuration interaction in the initialstate (Method B) leads to

$$
\begin{equation*}
\frac{I\left(n^{\prime}\right)}{I(o)}=\frac{\left|\sum_{n, m} C_{n^{\prime} n}^{*} D_{o m} S_{n m}^{i 1}\right|}{\left|\sum_{n, m} C_{o n}^{*} \quad U_{o n} S_{n m}^{11}\right|^{2}} \tag{3}
\end{equation*}
$$

Here C_{n} and $D_{\text {a }}$ are the coefficients of the confighthtions (m^{m} and m) in the eigenvectors of the final and initial states, respectively. For HF these would have the form

$$
\begin{aligned}
& \left|I_{f}{ }^{\left(n^{\prime}\right)}\right\rangle=C_{n^{\prime} 0} \left\lvert\, \begin{array}{llllll}
& 3 \sigma & 2 \sigma^{2} & 3 \pi^{4} & \left.\left(\Sigma^{+} \Sigma^{+}\right)\right\rangle
\end{array}\right. \\
& +C_{n^{\prime} 1}\left|1 \sigma 2 \sigma \quad 3 \sigma \quad 4 \sigma \quad 1 \pi^{4}\left(A^{2} \Sigma^{+}\right)\right\rangle \\
& +C_{n^{\prime}, 2}\left|10 \quad 2 \sigma^{2} \quad 3 \sigma \quad 4 \sigma \quad 1 \pi^{4}\left(B^{2} \Sigma^{+}\right)\right\rangle \\
& +\cdots \cdot \\
& \left|I_{i}^{(0)}\right\rangle=D_{00}\left|\begin{array}{lllll}
1 \sigma^{2} & 2 \sigma^{2} & 2 \sigma^{2} & 1 \pi^{4} & \left(\Sigma^{1} \Sigma^{+}\right)
\end{array}\right\rangle \\
& \left.+D_{01} \backslash 1 \sigma^{2} \quad 2 \sigma^{2} \quad 3 \sigma \quad 4 \sigma \quad 1 \pi^{4}\left(\Sigma^{1} \Sigma^{+}\right)\right\rangle
\end{aligned}
$$

 linearly independent doublet spin functions which can be constructed from the orbital occupancy are denoted by A and B.

The overlap functicns $S_{n 0}^{11}$ were discussed in 1. Here they actually refer 吹 a sum of leteminantal overlap integrals, the nature of the sum being determined by the expansion coefficients of the slater determinants in the configuration. For HF the superscripts "11" refer to the deletion of the colunn containing electron 1 and the row containing the basis function lob from the gromd state deteminart(s).

The conclusions stawn below refer specifically to the F(1s) correlation-state peaks in the highenergy XPS spectram of HF, We believe that most of them are more generally true for comparable spectra, but the exact extent to which they apply can be ascertained becter following theoretical analysis of additional cases.

First and perhaps of most importance, the exce.? lent agrecment between experiment and Method B (Table 1) provides strong cevidence that the overlap approxipantion embodied in Eq. (3) is adequate to describe such a high-energy cors-level corre-lation-state spectrim. Since Eq. (3) could be derived from Ep. I (10) without reference to the
dipole r,perator itsel: ${ }^{\text {en }}$, this implies that even the suditen approximation (SA) would give an adequate r-presentation of the relative intensities in the experimental spectrum.

The corollary conclusion is that initialstate CI must be included, since Method A ('table 1) gives poor intensity predictions. This is entirely expected in view of the discussion in I, but it has been recognized in previous work on core level satellite spectra.

Firally, it is of interest to interpret the correlation peak intensities in terms of "shakeup" excitations into virtual orbitals. An examination of the eigemvectors shows that the first two correlation states ($1 \& 2$) can be described fairly well as arising from the $3 \sigma+4 \sigma$ transition. These two final states are describable as molecular valence states, the zemainder of the spectrum co:Tesponding primarily to Rydberg-like states. Only state 2 of this pair is predicted to have an observable intensity, and it is the first peak observed in the experimental spectrum. It seems reasonable to assert that the relatively low intensity of this transition is attributable to the charge transfer nature of the excitation. The 30 orbital is the bonding combination of che $\mathrm{F}(2 \mathrm{p})$ and $\mathrm{H}(1 \mathrm{~s})$ orbitals and is largely localized on the fluorine atom, while the 40 is the antibonding conbination and is primarily hydrogen like. Since the orbitals have their large components in different regions of space, you would expect a small overlap. This interpretation seens plausible, but one should realize that there are wuch more subtle effects which contribute substantially to the cross section. These are the small admixture of the $1 \pi \rightarrow 2 \pi$ excitation into state 2 , the even smaller admixture of the reference state, and the effect of configuration interaction in the initial state. This last effect is very important and can be seen quite clearly in Table 1. The inclusion of initial state CI (MethodB) nearly doubles the predicted intensity of state 2 relative to the primary lole state.

The most intense peak in the spectirm, state 5 , corresponds to the $1 \pi \rightarrow 2 \pi$ or $F(2 p \pi)+F(3 p \pi)$ excitation. Its comenterpart, state 3 , is also relatively intense. The next most intense peak in the spectrm is state 9, the $F(2 p \pi) \rightarrow F(4 p \pi)$ excitation. These results, of course, would be expected on the basis of a simple one electron overlap model.

The states with maller intensities are less predictable. State 7 is primarily attributable to the $\mathrm{Jog}_{\mathrm{o}} \rightarrow \mathrm{F}_{\mathrm{o}}$ excitation. It would be tempting to say that since the 50 orbital is F(3s) like, there should be very little overlap with the 30 orbital in the groumd state (which is mainly $\mathrm{F}\left(2 \mathrm{p}_{q}\right)$ like), and this causess the srall intensity of state 7. These arguments, however, are probably oversimplified simce there is a fairly large anount of the $3 \sigma \rightarrow 6 \sigma\left(F 2 p_{\sigma} \rightarrow F 3 p\right.$) excitation in the wavefunction, Configuration mixing in these states makes it nea:lv impossible to make rough a prioni estimates of $1 \mathrm{i}+\mathrm{mosities} .\mathrm{For} \mathrm{example}$, the $30 \rightarrow 60$, or $\mathrm{F}(2 \mathrm{Fv}) \rightarrow \mathrm{F}\left(3 \mathrm{p}_{0}\right)$ excitation is in: portant in state 8 , and you might therefore expec: It to be rather intense. It is not. The
$F\left(2 p_{g}\right) \rightarrow F(4 s)$ excitation, state 10 , on the other hand, has a much larger intensity. The reasons for these differences in overlap are complex and tied into the specific nature ef configuration mixing in these excited states. Since the configuratio. ; enter into the wavefunction with a phase, they can either add intersity to the predominant configuration, or cancel what intensity the dominant cor:figuration might supply.

These configuration mixing problems are expected to be more severe in molecules than in atoms since you generally have a much denser excited state manifold in the molecular species.

In sumary, the correlation peak spectrm of MF can be calculated quite satisfactorily in the overlap approximation. The intensities of the correlation peaks are very dependent upon the effects of configuration interaction in boul the initial
and final states. At the present time, quantitative predictions of such spectra based on simple one-electron models seern doomed to failure. Even qualitative estimates and assigments are very difficult considering the importance of configuration interaction in the final state. The effect of CI in the initial state is to increase the intensities of the shakeup states at the expense of the primary hold state. For HF, the shakeup states are all roughly twice as intense once initial state Cl is included.

Foatnotes and References

1. R. L. Martin and D.A. Shirley, preceding report.
2. These corrections were computed and discussed in the full report of this work to be published in
J. Chem. Phys.

MULTIPLET SPLITTING OF THE MANGANESE $2 p$ AND $3 p$ LEVELS IN MnF. SINGLE CRYSTALS*

S. P. Kawalczyk, L. Ley, ${ }^{\dagger}$ F. R. McFeely, and D. A. Shirley

Multiplet splitting of core-level peaks in x-ray photomission (XPS) spectra is of interest both as a probe of the interactions between electrons in atoms, molecuiles, and solids, and as a diagnostic tooi for acquiring information about unpaired spin in chemical systens. Multiplet splitting is expect:od to be observed in an XPS spectrum if the specimen possesses upaired electrons in its outer valerce shells. The splitting arises when upon ejection of a core electron, the resulting partially filled core shell can couple with the open valence shell to form several multiplets of different energy. 1 The simplest spectrum is expected for a core s level. This should result in two peaks with an energy separation given by Van Vleck's theorem ${ }^{2}$ and the relative iniensities expected from this simple picture are given by the multiplicity ratio $(\hat{3}+1) / \mathrm{S}$. This level of interpretation neglects electron correlation and is only approximately correct. Only recently have the 2 p levels in transition metal compounds been given a comprehensive theoretical treatment. 3 The few reports of experimental evidence for splittings in these levels have been largely indirect. 5 The XPS spectra of 3p levels of the transition metal compounds exhibit very complex spectra for which the Hartree-Fock one-electron model gives a poor description. 4,6,7 As a step toward understanding the multiplet structure in XPS spectra of non-s levels, we have studied the multiplet splitting of the Mn 2 p and 3 p levels obtained in high resolution XPS measurements of MnF_{2} single crystals.

To facilitace analysis of multiplet structure, we have subtracted the inelastic background and characteristic energy loss structure by means of a suitable response function. ${ }^{8}$ The resulting corrected spectrum for the Mn 2p level in MnF_{2} is
shown in Fig. 1. The most striking feature of Fig. 1 is that the Mn 2p3/2 peak is asymetric toward higher binding energy and the 场2p1/2 peak is asymmetric to lower binding energy. This agrees qualitatively with early x-ray emission data on the 3d metals and their compounds, in which the $K \alpha_{1}$ (2P3/2-1s) emission line has an asymmetry index α of greater than 1.0 and the K_{2} ($2 \mathrm{p}_{1} / 2$ - 1s) emission line has a close to but less than 1.0.9-11 Here a is defined as the ratio of the

1. Corrected Mn 2p spectrim (points) and spectrum calculated by GS (bars) for MnF_{2}. The energy scale of the calculated spectrum has been reduced by a factor of 0.96 .
(XBL 748-4056)
half-wisth at half-maximum on the high bindingenergy side, Wh, to the half-width at half-maximum on the low binding energy side, W_{1}. The spectrum of Fig, 1 yieids $\alpha(2 p 1 / 2)=0.6$ and $a\left(2 p_{3 / 2}\right)=1.6$ in good agreemens, with the x-ruy emission work. It was proposed by the x-ray workers that the asymnetry of the Ka lines arose from multiplet splitting; In the first XPS work on MnF_{2}, Fadley and Shirley ${ }^{4}$ postutated the existence of multiplet effects in their Mn 2 p spectra from indirect argments basad on line widths. later, Frost et al. 5 studied the $2 p$ levels of cobalt ion complexes. These workers observed that the separation of the peak maxima between the Co $2 \mathrm{pl}_{1} / 2$ and Co $2 \mathrm{p} 3 / 2$ levels was systematically larger by 1 eV in the high spin ($S=3 / 2$) complexes than in the low spin ($S=0$) complexes. This was interpreted as indiner: evidence of multiplet splitting, in which the digeneracy of J is broken by the exchange interaction with the states of higher J shifting to lower binding energy for the $2 p_{3} / 2$ and to higher binding energy for the $2 p_{1} / 2$, thus yielding an apparent increase in the spin-orbit splitting. For Nnf_{2}, we found the splitting of the $2 \mathrm{p}_{3} / 2-2 \mathrm{p}_{1 / 2}$ peak maxima to be $1: 0$ (1) eV and the mean peak separation to be 12.1 (1) eV , versus 11.18 (25) for both in Mn metal. 12 It has already been shown that there is less uncompensated spin in the metal than in $\mathrm{MnF}_{2} 13$ so the interpretation of increased splitting being due to multiplet effects is in the same direction as in Co. Similar results have been obtained for the oxides of Ni and Co in comparison to the metals; however, diamagnetic ZrF_{2} has the same splitting (within experimental error) as 2 n metal. These data, provide further support for the multiplet interpretation.

Besides the asvmetry of the peaks and the enhanced $2 \mathrm{p} 1 / 2-2 \mathrm{p} 3 / 2$ splitting, two other features of Fig. 1 should be noted. First, a rather substantial area remajns between the two main peaks after background correction. If our correction procedure is right, this area must represent structure. A sinilar correction procedure for ZnF_{2} gave no intensity in this region, reinforcing the interpretation that the additional intensity in the MnF_{2} spectrum is intrinsic. Secondly, the tops of the 2p 1/2 and 2p 3/2 peaks show signs of possible structure.

Recently Gupta and Sen ${ }^{3}$ (GS) have calculated the expected 2 p XPS spectrum for Mn F_{2} by working out the levels of the $\mathrm{p}^{5} 5$ system, employing Hartree-Fock results on the in^{+2} grownd states. The solid bars in Fig. 1 show the positions and intensities of the twelve eigenstates found by GS. Their energy scale was reduced by 48 to match the experimental spectum. Adjustments of this magnitude are not surprising, because GS did not do a relaxed hole'state calculation. Figure 1 shows the GS calculation to be compatible with our XPS spectrum in considerable detail. The two peaks are asymmetric in direction that agree with the GS results. In fact, when the latter were broadened with Lorentzian functions of appropriate intensities the resulting simulated spectrinai showed asymmetries of $\alpha(3 / 2) \sim 1.7$ and $\alpha(1 / 2) \sim 0.5$ in fair agreement with the experimental values of 1.6 and 0.8 , respectively, mentioned above. On the hasis of the comparison shown in Fig. 1, we conclude that the GS calculation explains the essential features of
the $2 p_{1 / 2}-2 p_{3 / 2}$ XPS spectrum of HFF_{2}.
nigure 2 shows the $K_{\alpha_{1}}$ x-ray emission spectrun of NiF_{2}, after Nefedov. 10 This spectrm is to be compared to the $2 \mathrm{p} 3 / 2$ part of Fig. 1 . The spectre are qualitatively very similar with the x-ray spectrum appearing to show nore resolved structure. Both spectra have a FWHM of 3.7 eV. The components in Nefedow's spectrun are about 1.0 eV apart. A least-squares fic of our XPS 2p3/2 spectrm with four Gaussian functions restrajned to have the iof ative intensities given by the GS results are separated by a similar amount

Figure 3 shows the high resoiution XPS spectrum of the Mn 3 p region of $\mathrm{Mr} \mathrm{F}_{2}$. The features of this spectrum are swimarized in Table 1. Fadley et a1.4 demonstrated the inadequat v of the Koopnan's theorem approach in explaw ing the 3p multiplet structure. Multiplet-hole theory 0ifi) gave some improvement but the agreement was still somewhat less than satisfactory. It was suggested by Fadley et al. 4 that part of the discrepancy between the experimental results and theory might be due to spin-orbit and crystal-field effects. These two eftects were studied by GS and found to have a negligible effect.

The next step would appear to be the inclission of electron-correlation effects. Correlation should be more important for the $3 p-j$ ind interaction than for the $2 \mathrm{p}-3 \mathrm{~d}$ interaction anslogous to "he situation that obtains in the 3 s and $2 \mathrm{~s} 1 \mathrm{e} \quad 14$ Electron correlation effects are crucial an wderstanding the Mn 3 s spectran in $\mathrm{MnF}_{2} .14$ Inclusion

Fig. 2. The Kal x-ray profile of Mn in MnF_{2}, after Nefedor (Ref. 10). Bars indicate states calculated by Gupta and Sen. Each division on the abscissa is 1 eV .
(XBL 748-4058)

Fig. 3. Mn 3p XPS spectrum in MnF, together with fitted peaks. The very broad peaks probably represent several states.
(XBL 748-4054)
of correlation effects leads to more 3 s peaks than the Hartree-Fock one-electron model and affects the distribution of intensity among the peaks. These predictions have been confinmed by experiments. 14 Intra-shell correlations are thus usually important in XPS multiplet spectra, while inter-shell correlations are not. Thus correlation must be considered in the Mn 3p spectrum even though the 2 p spectrum could be explained without taking correlation into account.

Correlation can be introduced into a HartreeFock multiplet-hole calculation by including configuration interaction. 15 This approach, which worked very well in explaining the anomalies in the ifn 3s spectrum, does not appear to work for 3p spectra, ${ }^{7}$ Bagus and Wahlgren ${ }^{7}$ have performed a
lartree-Fock calculation with configuration interaction to predict the Ni 3 p spectrus in a $\mathrm{NiO} 5^{10}$ molecular cluster. This calculation gave satsifactory agreement with XPS results. The new peaks in the cluster calculation were attributed to the symmetry of the cluster being lower than in the free ion, enabling the nickel d electrons to re-arrange thenselves in more ways than possible in the free ion. These results suggest that perhaps the XPS results of MnF_{2} can be explained in similar temp.

While a detaiied comparison with theory is not yet possible, the good resolution in the 3 p spectram in Fig. 3 allows to jerform a sum-rule test that has not been feasible before. The weighted average of the energy of the satellites, $\mathrm{E}(5 \mathrm{P})$ can be used to define an average $5 \mathrm{p}, 7 \mathrm{P}$ energy separation $\Delta \mathrm{E}$, given by

$$
\Delta \bar{E}=\bar{E}\left({ }^{5} P\right)-E\left({ }^{7} P\right)
$$

From the data in Fig. 3, we obtained $\Delta E=14.5 \mathrm{eV}$ in MnF_{2}. This should be comparable to Koopman's theorem results which predict only two 3p peaks. Values of 13.5 and 13.7 eV have been obtained with the Koopnan's theorem description. 4 Also the intensity ratio of the area of the 7 p peak to the sum of the areas of 5 peaks was 1.1 or fairly close to the multiplicity ratio of 1.4. This good agreement provides further support to the multi-plet-hole theory of the 3 p spectrom even though we do not as yet have a theory that can predict the positions, or even the number, of final-state ${ }^{5} \mathrm{P}$ peaks.

Besides attempting to understand these spectra as a problem in atomic physics, we can try to use these spectra as a probe of unpaired spin density in transition metal compounds. While the presently available XPS resolution does not yet allow the intense $2 p$ lines in transition metals to be used as a definitive spin "fingerprint," these lines can still be used to probe spin density in two ways. The asynmetry of the $2 \mathrm{pl} / 2$ asd $2 \mathrm{p} 3 / 2$ line should scale with spin, as should the separation of the $2 \mathrm{p} 1 / 2$ and $2 \mathrm{p} 3 / 2$ maxima. The 3 p spectra were also shown to have possible diagnostic value by converting the "CI spectrun" into a "Koopman's theorem spectrum." It would be very valuable if this approach could be systematically applied to a series of transition metal salts, because the separation of the high-and low-spin

Table 1. Summary of the observed splitting and relative intensities of the Hn 3 p levels in MnF_{2}

Mu3p final state ${ }^{7} \mathrm{P}$		${ }^{5} \mathrm{P}(1)$	${ }^{5} \mathrm{P}(2)$	$5_{P(3)}$	${ }^{5} \mathrm{P}(4)$	${ }^{5} \mathrm{P}(5)$
Energy (eV) ${ }^{\text {a }}$	0.0	2.75(5)	7.6 (5)	12.75(30)	17.5(2)	$21.8(1)$
Rciative Intensity ${ }^{\text {b }}$	1.0	0.19		$\sim 0.28^{\text {c }}$	~ 0.21	~ 0.26

${ }^{a}$ The energies are given relative to the ${ }^{7} P$ state.
$\mathrm{b}_{\text {The intensities are relative to }}{ }^{7} \mathrm{P}$ level.
$\mathrm{C}_{\text {This }}$ is the sum of the ${ }^{5} \mathrm{P}(2)$ and ${ }^{5} \mathrm{P}(3)$ intensities.
centroids in the Kogpman's theorem spectruen should be a good measure of the total 3 d spin.

Fontnotes and References

*Condensed from LBL-2976; published in Phys. Rev. B 11, 1721 (1975).
${ }^{\dagger}$ IBM Fellow.

1. For a review of multiplet splitting in XPS see: C. S. Fadley in Electron Spectroscopy, ed. D. A. Shirley, (North-Ho1land Ansterdam, 1972) p. 781; and D. A. Shirley, Advances in Chemical Phys. 23, 85 (1972).
2. J. H. Var Vleck, Phys. Rev. 45, 405 (1934).
3. R. P. Gupta and S. K. Sen, Phys. Rev. B10, 71 (1974).
4. C. S. Fadley, D. A. Shirley, A. J. Freeman, P. S. Bagus, and J. V. Mallow, Phys. Rev. Lett. 23, 1397 (1969); C. S. Fadley and D. A. Shirley, Phys. Rev. A2, 1109 (1970).
5. D. C. Frost, C. A. McDowell, and I. S. Woolsey, Chem. Phys. Lett. 17, 320 (1972).
6. A. J. Freenan, P. S. Bagus, and J. V. Mallow, Internat. J. Magnetism, 4, 35 (1973).
7. P. S. Ray's and U. I. Wahlgren, privite communication.

8, C. S, Fwiley, Ph.D. Disseriation, University of California (Lawrence Radiation Laboratory, Report UCRL-19535 (1970) umpublished, Appendix A.
9. L. K. Irraileva, Akad. Nauk, (Phys. Ser.) 25, 965 (1961).
10.V. I. Nefedov, Akad. Nauk. (Phys. Ser.) 28, 724 (1964).
11. J. Finster, G. Leonhart, and A. Meisel, Jour. de Phys. 32, C4-218 (1971).
12. The Mn metal results are from the unqublished data of the authors.
13. F. R. McFeely, S. P. Kowalczyk, L. Ley, and D. A. Shirley, Sol. St. Comm, 15, 1051 (1974).
14. S. P. Kowalczyk, L. Ley, R. A. Pollak, F. R. McFeely, and D. A. Shirley, Phys. Rev. B7, 4009 (1973).
15. P. S. Bagus, A. J. Freeman, and F. Sasaki, Phys. Rev. Lett. 30, 850 (1973).

EVIDENCE FOR A LOCALIZED MAGNETIC MOMENT IN PARAMAGNETIC $\alpha \cdot M n$ FROM MULTIPLET SPLITTING

F. R, McFeely, S. P. Kowalczyk, L. Loy, ${ }^{\dagger}$ and D. A. Shirley

Alpha manganese is unusual among metals of the 3d transition series. It has a complex bcc lattice with 29 atons per umit cell. Its magnetic structure is also unusual. Shu11 and Wilkinson found $\frac{1}{1}$ that $\alpha-M n$ is antiferronagnetic below -100 K , and they reported an average magnetic monent of $0.5 \mu_{\mathrm{B}}$ in the parnagnetic phase up to 500 K , using neutron diffraction. Recent $M R^{2}$ and neutron diffraction ${ }^{3}$ studies have indicated at least four different magnetic monents below T_{N} with a weighted average of $0.63 \mu \mathrm{~B}$, but dc susceptibility measurements ${ }^{4}$ on the parmagnetic phase have been analyzed to yield an average moment of 2.37(7) $\mu_{B} /$ atom, in contrast to the neutron diffraction value. To elucidate the nature and magnitude of the atomic monent in the panmagnetic phase we have carried out x-ray photoemission experiments. Mu1tiplet splitting of the 3 s and 2 s lines reveal the presence, on the $10^{-15} \mathrm{sec}$ time scale, of a $10-$ calized 31 spin , corresponding to a localized magnetic moment of $\sim 2.5 \mu_{B}$.

The spectra reported below were obtained in a Hewlett-Packard 5950A electron spectrometer using monochromatized AlKo radiation (1486.6 eV). The instrument was modified for ultrahigh vacum operation and operated with a pressure of 6×10^{-11} Tort in the analyzer chanber.

Spectra of the valence bands, the $3 s$ region and the 2s region are shown in Fig. 1.

The 3 s and 2 s spectra both show doublet structures due to multiplet coupling of the final $3 s$ (2s) hole state with the incomplete valence shell of Mn. The 3s peaks were fitted to Lorentzian lineshapes by a non-1inear least squares procedure. The analysis of spectra obtained from two different samples yielded values of 4.12 (10) eV and 4.05 (10) eV for the separation of the two peaks. The intensity ratio of the peaks was approximately 1.3 in each case. Due to the high degree of inelastic scattering associated with the 2s photomission lines, we were not able to fit these spectral features to analytic peak shapes; however, the two components of this feature appear to be separated by $\sim 3.5 \mathrm{eV}$.

Since the discovery of antiferromagnetism in $a-$ Min by Shull and Wilkinson, the exact nature of the magnetic moments, both in the ordered and paramagnetic states, has been a subject of considerable controversy. The problem is complicated by the fact that the α-縕 structure has four crysta1lographically inequivalent sites, with $1,4,12$ and 12 atoms respectively. These sites may of course carry different monents. On the basis of neutron

Fig. 1. Uncorrected photoemission spectra of Mn $3 s$ (top), $2 s$ (middle), and valence bands (bottom).
(XB1, 741-251)
diffraction data, several models for their magnitude in the antiferronagnetic state have been proposed. ${ }^{5}$ However, the KMR work of Yanagata and Asayama ${ }^{2}$ indicates that atoms even on crystallographically equivalent sites way carry different moments. This resuit, along with the suggestion by Sato and Arrot ${ }^{6}$ that the wavevector characterizing the magnetic ordering might deviate from [1,0,0], would necessitate a spin-density wave treatment of the antiferromagnetic state. However, the single-crystal neutron diffraction work of Yanada ${ }^{3}$ et al. revealed no such deviation, and these workers suggests. a localized-monent model, with a weighted average moment of $0.63 \mu_{\mathrm{B}}$.

In the paranagnetic state, the first determination of the average moment was made by Shull and Wiikinson on the basis of the paramagnetic
diffuse neutron scattering intensity. They deduced an average moment of $\sim 0.5 \mu_{B}$ and suggested that this was due to a mixture of atons with moments 0 and $1 \mu \mathrm{H}$. Recently, however Nagasawa and Uchinami ${ }^{4}$ measured the magnecic susceptibility of $\alpha-\mathrm{Nm}$ in the parmagnetic state below 300 K and determined a value of 2.37 (7) μ_{B} for the average magnetic mument. These two observations are not necessarily contradictory. Neutron scattering would detect moments with correlation times of $\sim 10^{-12} \mathrm{sec}$ or longer. The de susceptibility--a macroscopic quantity-is independent of correlation time.

Multiplet splitting in the core-1evel spectra of manganese salts is well known. ${ }^{7-12}$ The simplest interpretation of the 3 s multiplet splitting ΔE would neglect electron correlation and employ van vleck's theoren, 13 which has the form

$$
\begin{equation*}
L E(3 s)=(2 S+1) \frac{\mathrm{G}^{2}(3 \mathrm{~s} 3 \mathrm{~d})}{5}, \tag{1}
\end{equation*}
$$

for exchange splitting of a $3 s^{I} 3 \mathrm{~d}^{\text {n }}$ final state in which the d electrons couple to spin S. Given the essential constancy of the exchange integral G^{2} (3s 3d)--an atomic parameter--Eq. (1) can be used to deduce S from $\triangle E(3 s)$, if G^{2} is known. In fact the situation is substantially complicated by electron correlation, 12,14 and the relation

$$
\begin{equation*}
\Delta \mathrm{E}(3 \mathrm{~s}) \cong \text { (const.) }(2 S+1), \tag{2}
\end{equation*}
$$

is expected to be only approximately correct even in salts. In a metal such as Mn, further complications ere introduced by the partially itinerant nature of the 3 d electrons and by the presence of the $s-p$ conduction bands. Flectrons in these bands can screen the 3 s - 3d and 3d - 3d interactions, reducing both the correlation effects responsible for additional satellite peaks ${ }^{14}$ and thus the intensity ratio of the two observed peaks in Nm relative to $\mathrm{Nta}^{2+}, 12$ as observed.

It is difficult to assess the importance of these complications. We note that the $35-4 \mathrm{~s}$ exchange integral G^{0} (3 s 4 s) is small relative to G^{2} (3 s 3 s). Also, the sp band is probably itinerant and largely umpolarized. Thus we shall neglect the effect of $S p$ bands on $\triangle E(3 s)$. Since the $3 s$ orbital lies well within the atom (as evidenced by the value of $\langle r\rangle 3 \mathrm{~s}=0.465$ A15). The dominant contributions to the exchange integrals should come from within the atomic core and thus be relatively insensitive to changes in bonding. To the extent that this is true, $\triangle E(3 s)$ should be proportional to $(2 S+1)$. On this basis we have plotted $\Delta \mathrm{E}(3 \mathrm{~s})$ of $\mathrm{MnF}_{2}, \mathrm{MnF}_{3}$, and $\mathrm{MnO} \mathrm{O}_{2}$ against the nominal value of ($2 S+1$) in Fig. 2, and plotted a line through these three points, obtaining $\Delta E(3 s)=1.9$ $(2 S+1)+0.6$. The non-zero intercept necessitated by this fit must be regarded as an enpirical parameter, and reflects the insufficiency of the Van Vleck's Theorem treatment. From this equation the $\Delta \mathrm{E}(3 \mathrm{~s})=4.08$ of $\alpha-\mathrm{Mn}$ corresponds to a $2 \mathrm{~S}+1$ value of 3.50 , hence to a "spin only" magnetic moment of $\sim 2.5 \mu_{B}$. This is in excellent agreement with the susceptibility value of 2.37 uB. The multiplet splitting spectrum prcvides a spectroscopic measurement of this localized monent, albeit with low resolution: we can infer from the

Fig. 2. $E(3 s)$ plotted against $2 S_{i}+1$, where S_{i} is the initial-state spin for MnF_{2} (ReF, 12), MnF_{3} (Ref. 10), and MnO_{2} (Ref. 8).
(XBL 743-2707)
spectrum that most or all of the sites in $\alpha-10 n$ have a moment near the nominal value of $2.5 \mu_{B}$ -

Both the excellent agrement of this derived moment with the susceptibiljty data and the agreement between $\mathrm{AE}(2 \mathrm{~s}) / \mathrm{E}(3 \mathrm{~s}$) in Mn and MnF 2 (~ 0.9 in each case) support our interpretation. We be lieve, however, that this agreement may be in part fortuitous, and we do not wish to emphasize its quantitative aspects. These observations appear to establish the following attributes of paramagnetic $\alpha-\mathrm{Nn}$: (1) localized spins exist on the Non atoms on the time scale of $10^{-15} \mathrm{sec}$, (2) they have an average spin $S \sim 1.25$, and presimably a moment $\mu \sim 2.5$ 3, and (3) most or all of the Mn sites have values of S not too far from this average value. Any viable theoretical model for $\alpha-\mathrm{Mn}^{2}$ should be consistent with these three features.

Footnotes and References

*ind Fellow.

1. C. G. Shwil and M. K. Wilkinson, Rev. Mod. Phys. 23, 100 (1953).
2. H. Yamagata and K. Asayama, J. Phys. Soc. (J.pan) 33, 400 (1972).
3. T. Yamada, N. Kouitomi, Y. Nakai, D. E. Cox, and G. Shirane, J. Phys. Soc. (Jaran) 28, 615 (1970).
4. H. Nagasawa and M. Uchinami, Phys. Letters 42A, 463 (1973).
5. J. S. Kasper and B. W. Roberts, Phys. Rev. 101, 537 (1956).
6. H. Sata and A. Arrot, Proc. Intern. Conf. Magnetism and Crystallogzaphy, Kyoto, 1961, J. Phys. Soc. (Japan) 17 (1962), Suppl. B-I, p. 147.
7. C. S. Fadley, D. A. Shirley, A. J. Freeman, P. S. Bagus, and V. J. Mallow, Phys. Rev, Letters 23, 1397 (1969).
8. C. S. Fadley and D. A. Shirley, Phys. Rev, A2, 1109 (1970).
9. T. S. Fadley, in Electron Spectroscopy, ed. by D. A. Shirley (North-Holland, 1972); p. 781.
10. J. C. Carver, G. K. Schweitzer, and T. A. Carlson, J. Chen. Phys. 57, 973 (1972).
11. G. K. Werthein, S. Hiffner, and H. J. Guggenheim, Phys. Rev. B 7, 556 (1973); S. Hüffner and G. K. Wertheim, Phys. Rev. B 7, 2333 (1973).
12. S. P, Kowalczyk, L. Ley, R. A. Pollak, F. R. McFeely, and D. A. Shirley, Phys. Rev. B 7, 4009 (1973).
13. J. H. Van Vleck, Phys. Rev. 45, 405 (1934).
14. P. S. Bagus, A. J. Freemar, and F. Sasaki, Phys. Rev. Letters 30, 850 (1973).
15. P. S. Bagus, A. J. Freeman, and F. Sasaki, Phys. Rev. Letters 30, 850 (1973).
16. C. C. Lu, T. A. Carlson, F. B. Malik, T. C. Tucker, and C. W. Nestor, Jr., Atomic Data 3, 1 (1971).

MULTIPLET SPLITTING OF X-RAY PHOTOEMISSION SPECTRA CORE LEVELS IN MAGNETIC METALS*

S. P. Kowalczyk, F R. Mif Feely, L. Ley, ${ }^{\dagger}$ and D. A. Shirley

Measurements of core-level iinding energies and valence band density-of-states by x-ray photoemission spectroscopy (XES), has proved very valuable to the understanding of the electronic structure of solids. For systems with unpaired spin, information abrect the initial state spin S can in principle be obtained by correlation with the measured splitting of a core level caused by the phenomenon of multiplet splitting. ${ }^{1}$ The basis of obtaining S is the use of Van Vleck's Theorem, ${ }^{2}$

$$
\begin{equation*}
\Delta E_{n l}=\frac{2 S+1}{2 \ell+1} G^{n \ell}\left(n l, n^{\prime} \ell^{\prime}\right) \tag{1}
\end{equation*}
$$

where $\Delta \mathrm{E}_{\mathrm{H} \mathrm{\&}}$ is the splitting of the $n \ell$ level, Gne is the appropriate atomic exchange integral, and n and n ' are the principle quantum numbers of the level measured and the level with the umpaired spin respectively. Unfortunately the situation is not so straightforward. Using (1) overestimates $\Delta E_{\text {me }}$ by a factor of 2 when $n=n$ '. It is now understood that this discrepancy is due to intrashell electron correlations. 3,4 It will be shown that by using systems where the correlation effects are nearly the same, measured $\Delta E_{n s}$ can still be used to obtain S.

The 3 d metals can be divided into 3 classes according to their magnetic properties: paramagnetic (Sc, Ti,V), antiferromagnetic (Cr, M) , and ferromagnetic $\left(\mathrm{Fe}, \mathrm{CO}_{2} \mathrm{Ni}\right)$. Figure 1 shows a typical Is spectrum of a metal from each of these classes. The Sc spectrum shows a single peak as expected

Fig. 1. XPS 3 s spectra of Sc, Mn, and Fe .
(XBL 7410-4348)

Erom a hand theory explanation of Pouli paramagnetism. Paramgnetic Ti and Y exhibit 3 s spectra similar tw Sc. Antiferromgnetic Cr and a-ith shom sizeable 35 splictings (2.8 and 4.1 cV , respectively). Likewise ferromagnet ic Je, Co and NI show maltiplot structure.

Figure 2 demonstrace- how S can be obtained from measured $0 E_{n s}$ despite large correlation effects. The integril in (1) should be dominated by the atcmic core region and oe reistively insenitive to bonding effects outside the atomic core. Thus for an atom in various ewironents, $\mathrm{AE}_{n s}$ should still be proportional. to $2 \mathrm{~S}+1$. By plotting measured $\Delta E_{\text {ns }}$ vs $2 S+1$ of ionic systems, where S is well defined, one obtains in effect a "calibration curve" on which one can place an observed $\Delta E_{n s}$ of a metal or an atom in an alloy or a conpotid and get a value for $25+1$ or the localized moment. Using this callibration procecture for Fe with an observed $\Delta \mathrm{E}_{5}=4.3 \mathrm{cV}$ yields a magnet kc moment $u=2.2 \mu \mathrm{~B}$ which agrees quite well with the

Fig. 2. Calibration curves for Fe and Mn. Fe, a-Hin FeF_{2} and Hrr_{2} from data of the atuthors. FeF3 and $\mathrm{X}_{2} \mathrm{~F}_{3}$ are taken from J. C. Carver, G. K. Schweitzerp and T. A. Carlson, J. Chem. Ihys. 57, 973-982 (1972).
(XBL. 7410-4429)

Fig. 3. Observed $4 s$ (0) and $5 s\left({ }^{(1)}\right.$) multiplet splitting in the rare earth metals. The solid curves are estimates based on Eq. 1. The 4s estimates have been reduced by a factor 0.55.
(XBL 7410-4347)
genotally accepted value of 2.22 uf. 5 Thiss igfoeuent sudgests the oorrelition fictor is rouphly constint for fe atoms in different surronendings. Our asth medsurcents were ubtained at Toom temperiture iuld frow tixe above procedure implicd it

Fig. 4. Lid and Ce $4 d$ spectra.
(NBL 7 $710-4355$
locallised moment with an average valuc of . $2.5 \mu \mathrm{~B}$. This is at odis with neutron diffrection messureactits above $100^{\circ} \mathrm{k}$. This is tue to the fact that the Xhs time seale ($10^{-i} \mathrm{~s}_{\mathrm{sec}}$) is several orvors of magnitude frator than neticron diffraction. The NJS observation of two well defined peoks indicates that all tive An atows hate a moment close to the average value.

Hixure 3 sumarisos the resuits for the as and Ss mearumed splittings for the rare carth metals. the solid Ilifes are Van Veek's theoran estiantes for che empals in tiveir trikalent state. The estigatev for atias have beon scald by 0.55 to account for correliations. The observed talues follow the thesretical carvet quite woll which supporis tho ldea of the mear constancy of correla:Ion, Only Eu and to signifieantly deviate and this is due to their divalent character. This suggests the ofns monsurefents could be applided to the problos of
 carth compounds. Levels with iopianishint orbitai andular momentua of ten possess very compzi icated miltipict stnetares. 0,0 this stincture can be Hesful as a walency fingerprint. The ad specera of La(A[O) and Y-Ce(A[1) metals are displayed in Fin, f. One could for instance determine if Ce was cetranaient ($4 \mathrm{P}^{\circ}$) or trivalent (AT1) in a partion: lar cospound or alloy. A trivalent Ce id specticen konld restmble that of r-te, while teitatalent t.e would exhibit a de spectran sinilar to lat petal Which just shews spin-ortit spliteing.

footnotes ind Referonces

*Condensid from libl-3.jo; pulalishod in the "Irocetdiexs of the 30 th sumund conference on shatnetisn and "antret ic Matcrials".
tity Pollow.
 109-1120 (1970).
3. J. II. Van Ileck, 仿ys. Rev. 45, 409.419 (1934).
3. P. S. Bagus, A. J. Frceman, and F. Sascai, Phys. Rev. lett 50, 850-855 (1973).
4. a) S. P. fiomalczik, L. Ley, R. A. Polluk, F. R. sidicely, and D. A. Shirley, Bhys. Rev. B 7, 4009-10!1 (1975).
b) S. P. Kownlc:yk, L. Ley, F. R. PicFecly, and D. A. Shirlcy, Bhys. Rev. B, 11, 1721 '1975).
5. C. Kitel, Introduction to Solid State Physics, 5rd Edicion (Jown wiley \& Sons, Inc., New York, 1968)p. 461.
6. S. P. Kowalczyk, N. Delstein, F. R. Meliecly, L. Ley, aud D. A. Shitley, Ghem. Phys. Lict. 29. 491 (1974).

M-RAY PHOTOERISSION STUDY OF THE ELECTRONIC STRUCTURE OF THE 3d TRANSITION METALS Se TO $\mathbf{Z n}^{\dagger}$

L. Ley.* F. R. MicFenty, S. P. Kowalcryk, and D. A. Shirtay

The 3 d transition elements comprise an interesting group of metals, exhibiting a wide variety of structural, electronic, asd magnetic propersies. Since many theories of the magnetic properties of the transition metals take d-bandwidth, totnl bandwidth, and density of states at the Fermi level as essential ine-electron properties "esponsible for the magnetic behavior, clearly derailed, quancitative information over the entire occupied range of the density-of-states $N(E)$ is essential. It is just such information which is supplied by x-ray photoemission spectroscopy.

All spectra reported here were taken with a thewlett-Packard 5950A electron spectraneter modified to operate at a base pressure of 2×10^{-10} Torr. The use of a high energy photon source, monochronatized at k_{a} radiation of 1486.6 eV , insures a featureless density of final stares in the photoeatission process. The samples here thin films prepared in situ by standard methods.

The valence band spectra of the non-magnetic metals Sc and Ti are rather free-electron-like in appearance, having less pronoumced structure than other members of the series. The valence bands also exhibited the strongest plasmon energy loss structure, which is indicative of a free-electron-like metal. ${ }^{1}$

Vanadium and chromium, with 5 and 6 valence electrons, respectively, both crystallize in the body centered cubic structure. Chromium at room temperature is an antiferromagnet with a spindensit) wave periodicity slightly less than twice that of the lattice, For compatational simplicity, Asano and Yanashita ${ }^{2}$ treated antiferronagnetic chromium with a magnetic superlattice with exactly twice the ordinary lattice constant. The antiferromagnetic splittings were found to be of the order of 0.4 eV . Since they varied for different bands over the entire range of $\mathrm{N}(\mathrm{E})$, however, their effect on NiE) should be small. This is denonstrated by the calculations of Connolly. ${ }^{3}$ We therefore in Fig. 1 compare the spectrrm with $N(E)$ for paramagnetic Cr. ${ }^{4}$ Note especinlly the plateau of low density of states near EF indicated by the spectrum. This important feature was not observable by ultraviolet photoenission ${ }^{5}$ or soft x-ray emission ${ }^{6}$ techniques. The therrrtical $N(E)$ shown for vanadium is that of $\mathrm{Cr}^{\text {, with }} \mathrm{E}_{\mathrm{F}}$ shifted to account for the change in number of valence electrons. As can be scen, the agreenent between this rigid-band approach and experiment is quite remarkable.

The success of this rigid band approach indicates that the theoretical $\mathrm{N}(\mathrm{E})$ for Cr , with E_{F} shifted to accoumir for the addition of 2 electrons would be a good moslel for Fe . This is shown in Fig. 2 (a). Figure ; (b) shows the same $N(E)$ adjusted for spin polarization by allowing for the appropriate magnetif moment in the ferronagnetic state and assuming a $\stackrel{a}{k}$-independent exchange splitting $\Delta \mathrm{E}$.

Fig. 1. XPS spectra of V and $C r$ compared with the theoretical $N(E)$ for paramagnetic $C r$.
(XBL 747-3647)

Fig. 2. $N(E)$ for Fe generated from (N(E) for Cr by assuming rigid bands, (a) without spin polarization (b) with spin polarization.
(XBL 747-3644)

Instead of a peak in $N(E)$ at E_{F}, this procedure predicts a low value of $N(E)$ at E_{F} with a peak at $1,8 \mathrm{eV}$ below E_{F}. This prediction is fulfilled by the photoemissinn spectrun shown in Fig. 3 along with the spin-polasized $N(E)$ carve of Connolly. ${ }^{3}$ The heavier members of this series yield photoemission spectra generally in good agreenent with existing calculations.

Briefly, we can make the following general points based on our spectra. 1) The d-bands are seen to :volve systematically across the series

Fig. 3. XPS ε_{i}. unl of Fe compared to the $N(E)$ curve of Conme..is.
(XBL 747-3643)
from bands reflecting a high dagree u_{i}^{n} free-elec-tron-like behavior in Sc to bona fide core ievels in 2 n .2) A rigid-band-model extrapolation of
the theoretical densities of states between 1 sostructural nearest neighbors in the series works very well. 3) The spectrm of iron-can be explained by shifting theoretical nomagnetic N(E) plots to align the chenjical potentials of the spinup and spin-down sub-bands. This is strong support for the validity of the spin-polarized band model.

Footnotes and References

${ }^{\dagger}$ Condensed from "Proneedings of the 20th Annual Conference on Magnetism and Magnetic Materials."
${ }^{*}$ Ing Fellow.

1. R. A. Pollak, L. Ley, F. R. Mcteely, S. P. Kowalczyk and D. A. Shirley, J. Electr. Spectros. 3, 381-398 (1974).
2. S. Asano and J. Yarashita, J. Phys. Soc, (Japan) 23. 714-736 (1967).
3. J. W. D. Connolly, Electronic Density of States, Nat. Bur. Std. Special Publication 323, 27-32 (1971).
4. R. P. Gupta and S. K. Sinha, Phys. Rev. B3, 2401-2411 (19?1).
5. D. E. Eastman, J. Appl. Phys. 40, 1387-1394 (1969).
6. D. W. Fischer, Phys. Rev. B4, 1778-1786 (1971).

CRYSTAL-FIELD EFFECTS ON THE APPARENT SPIN-ORBIT SPLITTING OF CORE AND VALENCE LEVELS OBSERVED BY X-RAY PHOTOEMISSION

L. Ley, S. P. Kowaiczyk, F. R. Mcfealy, and D. A. Shirley

A feature readily observed in x-ray photoelectron spectroscopy (XPS) of heavier alements is a splitting of core levels, commonly referred to as spin-orbit (s-o) splitting. This splitting reflects the two possible couplings of the core hole spin \mathbf{s} with its angular momentum foming total angular monentum eigenstates differing in energy by the difference in the expectation value $\langle\bar{\ell} \cdot \vec{S}\rangle$ multiplied by a factor ξ, the coupling strength. Improvement in the resolution obtained in XPS and the availability of IN sources in an energy range that gave access to the least-bound core levels improved the accuracy with which these splittings could be measured to an extent that made it possible to measure snall deviations of the spin-orbit splitting in solids from those measured in the gas phase. Furthemore even changes in the splitting of the outermost d-levels in zn and Cd have been observed in going from the metal to binary compounds containing one of these elements. 1,2

It is convenient to compare the splittings observed in solids to those for the free ions as a secure starting point for the discussion of various
solid-state effects. To do this, we have compared the free-ion spin-orbit splitting from the observed term values of the configuration $\left(d^{9}\right)^{2} D$ in the optical spectra of the ions. ${ }^{3}$ While rendering the determination of the spin-orbit splitting straightforward and reliable, this method has the disadvantage that we have to deal in some cases with very highly ionized atums. Results for the spinorbit splitting given sin Dunn's compilation ${ }^{4}$ makes two points clear; 1) for a given d-shell configuration the spin-orbit spl.itting increases with increasing ionic charge by not more than 2% per unit charge; 2) a change in the d-configuration ($\mathrm{d}^{9}+\mathrm{d}^{8}$) affects the spin-orbit splitting considerably more than the corresponding increase in ionic charge. These two points are consequences of the approximate form of the spin-orbit Hamiltonianoperator:

$$
H_{s, 0 .}=\frac{\alpha^{2}}{2}\left(\frac{1}{I} \frac{\partial v}{\partial r}\right) \text { 茫 }
$$

neglecting exchange effects and the muthal spinorbit and spin-spin interaction of electrons in unfilled shells. 5 lere a is the fipe-structure constint and V is the shicldad melear potential. The deperulemee of the expectation value $\left\langle\mathrm{H}_{5} \mathrm{o}\right.$) mainly on the inner part of the electronte wilvefunction \& has been pointed oup fir many iluthors. The variation in the operator $\frac{-3}{2 r}$ upon clarge trimsfer in duter shells is wert gatil in this region.

Data obtained from solids are given in Tables 1 and 2 and cin be surmarized ins follows:

1) Core-like d-levels of elements in tetrahelral surroundings show no, or only a very smatl ($>1^{8}$), increase in the apparent $A E_{s, o}$ compared to free-atom values. The only exceptions are the te corghounds with an average increase of - 2.8..
2) In, Te, Cd and zn metals have an apparent $\Delta E_{5.0}$. in the outernost d-levels which exceed the free atom values by $4.7,7,45,59 \%$ respectively.
3) Pb and Sb show no such increase.
4) Valence d-bands in As and Au are split by anounts far exceeding the frec-aton alis.o. value, in contrast to the valence p-bands (Bi, pib) which are split by energies close to $\Delta \mathrm{E}_{\mathrm{s}} . \mathrm{o}$. for the free atoms.

We will now discuss the influences on the apparent spin-orbit splitting of "core-like" dlevels of an atom surrounded by other atoms in a solid. We note at the nutset that we are dealing with final-state structure following photoemission from a closed shell. This is manifestly a one - electron (hole) problem. The appropriate d hole state Hamiltonian in the one-electron approximation has the form

$$
\begin{equation*}
H=h_{0}+h_{\text {cryst }}+h_{\text {s.o. }} . \tag{.}
\end{equation*}
$$

Here h_{0} contains the kinetic enery, operator and the spherical Coulomh potential of the nuclear charge Z screened by the inner electrons forming closed shells. The heryst term sumarizes the potentials due to the neighboring atomic cores and the valence electrons including the valence electrons of the atom under consideration, and $h_{S} . o$. is the one-electron spin-orbit haniltonian.

We wish to show that the differences in the value for the d-level splittings, $\Delta \mathrm{E}_{\mathrm{s}, \mathrm{o}}$. observed in different solid enviromments is a result of the influence or heryst rather than of a modification in hs.o.. The 5 pin-orbit interaction is a first order effect in the expansion of the relativistic energy expression for a spinning electron in an electric field U. 6 The non-relativistic form generalized to a many electron system can be written as?

$$
h_{\text {s.o. }}=\frac{a^{2}}{2}\left\langle\frac{1}{r} \frac{\partial U_{\text {eff }}}{\partial r}\right\rangle_{i} \ell_{i} \cdot s_{i}
$$

+ termis which include mutual spin-orbit interactions and spin-spin interactions in the unfilled shell.

So far we hate deat with the effects of charge tratsier in the talence shell of the central atom on (his,o.) . We menst also consider direct clanges in the wateruktion of the delectrons itself upon enterime a sulid or tolectule. These changes cun be considered in tho parts:

1) Hemormalizatioa of wdec to the neces. sulv orthogonalization of with respect to kiverfuntions on nelghtoring ators. th the simplest case of grthogonalization to one other orbital, this leads in a renormalization-factor of $\left(1-5^{2}\right)^{-1}$, where S is the overtap integral betheen the two orbitals. This ieada to in increase in the coeflicient of tod and therefore in the lande factor f_{d} The components thlded to the havefunction upan orthogonalization mike onty ymislaing contributions for saill r, the region ithich detemikes Ed.
2) A mixims of the d-electrons with electrons of different symietry locited at the same atom. This mixing is'alnay's possible throughout the Brillouin zone but at $k=0$ it is possible only for certain symuetry components of the potential. This effect leads to a decrease in the spin-orbit spliteing, because the orbital that will mix most strongly to the nd wavefunction is ($n+1$)p, with a Lande factor smaller than that of the d orbital. We can therefore dispense with the second effect in explaining increases in the apparent $\mathrm{AE}_{\mathrm{s} .0 .}$.

Since direct changes in the expectation valua of $h_{\text {s.o. can }}$ not be responsible for the observed increases in the apparent ΔE_{s}.o. over their freeatom values. The explanatics must therefore be sought in the heryst tem if we are to explain the enhancement within the framehork of the Hamiltonian in $E q$. (1).

The macrix element of heryst can be expanded into a series of spherical hamonics Yis (θ, x). The angular momentum $\frac{1}{2}$ of the state under consideration limits this expansion to a sum over even orders in L. For d electrons the last nonvanishing term has $L_{\text {max }}=4$, while for p-electrons $1_{\text {max }}=2$. The matrix element $\left\langle h_{c r / s t}\right\rangle$ if has the symanetry of the point group of the lintice and is in general given by

$$
\begin{equation*}
\left\langle h_{\text {cryst }}\right\rangle_{i}=\sum_{L=0,2,4,} A_{L} T_{L}(i) \tag{3}
\end{equation*}
$$

where T_{i} (i) is the 1 inear combination of spherical hamonics of crder L that transforms as the symmetrical irreducible representation of the point group of the lattice at the center of the Brillouir zone. A_{L} is the expansion coefficient, which contains the radial integral of the Coulomb and exchange interaction of the electrun i with the valence electrons and the surrounding ion cores. We shall ignore the term with $\mathrm{L}=0$ which corresponds to a generalized Madelung energy and cannot contribute to a splitting in the atomic levels. In solids which crystallize in lattices of cubic symmetry the $A_{2} T_{2}$ term in expression (3) vanishes. This applies to the face centered cubic (f.c.c.) lattices of Ag, Au and Pb and to the tetrahedrally coordinated binary compourds. All other symmetries encountered in this investigation requir? the retention of the $L=2$ term.

Table 1. Spin-orbit splittings in the free atoms and solids. Errors are given parenthetically. The Roman mmerals indicate the ionization state of the atoms ($\mathrm{Inll}=\mathrm{zn}^{+}$).

tilcment	Shell	Lattice	Splitting (cll)	Reference
In 11	2n3d	Free ion	0.337	3
Zn metal	Znid	hex	0.59 (2)	4
CdII	Coldd	hex	0.669	3
Cal Metal	cadd	hex	0.95(3)	a
Cd Metal	cadd	hex	0.99 (5)	1
calte	Cidul	2.18	0.70 (5)	b
cate	codd	2.0.	0.83 (20)	c
CdS	Cll4d	z.b.	$0.76112)$	c
Cass	cadd	z.b.	0.87 (16)	c
AgCd alloy	Cd4d	cubic	0.70 (8)	this nerik
InIII	In4d	free ion	0.899	5
In metal	Indd	tetragonal	0.90 (1)	1
In metal	Incs	tetragonal	0.88(15)	b
In metal	1 n 4 d	tetragonal	0.86 (3)	a
InSb	Indd	2.6.	0.83 (3)	d
InSb	In4d	2.b.	0.85(5)	b
InSb	2n4d	a.b.	0.84 (8)	2
InP	In4d	2.b.	$0.84(8)$	2
Sb V	Sb4d	free ion	1.239	3
Sb metal	Sb4d	rhombohedral	1.25 (4)	1
CaSb	Sb4d	2,b.	1.21(4)	2
InSb	Sb4d	z.b.	1.22 (4)	2
InSb	Sb4d	2.b.	1.15(10)	d
lnSb	Sb4d	z.b.	1.25(5)	b
Te VII	Te4d	free ion	1.409	3
Te metal	Te4d	hex	1.51(1)	1
ZnTe	Teld	2.b.	1.47(2)	2
CdTe	Te4d	z,b.	1.4:(2)	2
HgTe	Te4d	z,b.	1.44(2)	2
PbTe	Te4d	NaCl	1.46 (2)	2
PbTe	Te4d	NaCl	1.35 (10)	d
Hg I	Hg $5 d$	free atom	1.800	3
Liquid Hg	Hg5d	-	1.83(9)	2
HgTe	HgSd	z.b.	1.77(2)	2
HgTe	Hg5d	z.b.	1.91 (10)	c
HgSe	HgSd	2.b.	1.81 (10)	c
HgS	Hg 5 d	z.b.	$1.79(10)$	c
Pb IV	Pb4d	free ion	2.643	3
Pb metal	Pb4d	f.c.c.	2.62(2)	f
Pb metal	Pb4d	f.c.c.	2.66 (9)	a
PbS	Pb4d	NaCl	2.58(2)	e
PbSe	Pb4d	NaCl	2.61 (2)	e
Pbile	Pb4d	NaCl	2.62(2)	e
			(continued)	

Table 1. (continued)

Table 2. Free aton spin-orb; splitting and the apparent splitting of valence-bund peaks in Ag, Aut, ib and Bi.

Element	Shell	Lattice	Splitting (cV)	Keference
Ag I	41	free aton	0.555	3
Ag metal	4 d	E.c.c.	1.6(1)	1
Au 1	5 d	free atom	1.522	3
All metal	$5 d$	E.c.e.	$3.8(2)$	a
Pb I	6 p	free atorn	1.746	3
Pb aretal	$6 p$	f.c.e.	$1.80(5)$	c
Bi I	$6 p$	free atom	2.163	b
Bi metal	6 p	rhombohedral	2.16 (8)	c

${ }^{\text {a }}$ D. A. Shirley, Phys. Rev. B5, 4709 (1972).
${ }^{\text {b C. C. Lu, T. A. Carlson, F. B, Malik, T. C. Tucker and }}$ C. W. Nestor Jr., Atomic Data 3, Nr. 1 (1971). ${ }^{\text {C L. Ley, R. Pollak, S. P. Kowalczyk, and D. A. Shirley, }}$ Phys. Lett. 41A, 429 (1972).

It is evident from the data in Table 1 that all cases which exhibit an increase in $\Delta E_{s . o}$. For the core d-levels fall into this latter group wath the possible exception of the tellurium salts. The nonvanishing $\mathrm{A}_{2} \mathrm{~T}_{2}$ term in expansion (3) seems therefore a necessary condition for an increase in $\Delta E_{\text {s.o. }}$.

Let us explore this possibility in more detail using Zn and Cd as examples. Zn and Cd erystallize in a hexagonal lattice. In this cass it is convenient to divide the $L=2$ term into thre factors:

$$
\begin{equation*}
\left\langle h_{\text {cryst }}\right\rangle_{i}=f\left(\frac{c}{a}\right) \cdot A_{2}^{h e x} \cdot T_{2}^{h e x}+A_{4}^{h e x} T_{4}^{\text {hex }} \tag{4}
\end{equation*}
$$

The geonetrical factor $f\left(\frac{C}{6}\right)$ depends on the ratio of the crystalline axes c and a. For $c / a=1.63$, the ideal hexagonal lattice, $f\left(\frac{C}{2}\right)$ is zero and the $A_{2} T_{2}$ vanishes for geometrical reăsons. In zn and Cd however, c/a is equal to 1.86 and the $L=2$ term enters with a considerable geanetrical advantage ($f(f)>1$ in the point-ion model). He have diagonalized the two operators $h_{S, 0}+h_{\text {cryst }}$ in the sub-space of the d-electrons. The methided mployed for this calculation uses standard angular nomentum algebra as outlined in Edronds. 8 Figure 1 (a) shows the level scheme for a d^{9} configuration in the ideal hexagonal field ($f(\underset{\sim}{c})=0$) as a function of A4. All degeneracies are ilfted, yet the increase in the apparent spin-orbit splitting is negligible for values of A_{4} which preserve the observed pattern of two d-peaks, that is for
$\left|A_{4}\right| \leqslant 0.4|\xi|$. Lifting the restriction of $c / a=1.63$ introduces the $\mathrm{A}_{2} \mathrm{~T}_{2}$ term, which changes the level pattern appesclobiy (Fig. 1 (b)). As mentioned ibova, A_{2} is expected to be greater than Af and we have therefore plotted the level scheme under the assumption that $A_{4}=0$. For positive values of A_{2} the spin-orbit split doublets evolve; into a pattorn of two nondegenerate doublets and a single level, which would result in a three peak spectrum with relative intensities $1: 2: 2$. For $A_{2}<0$ a drastic incrense in apparent $\Delta E_{S .0}$ is possible without destroying the general appearance of a spin-orbit split d-doublet with the cosrect intensity ratio of $2: 3$. The value of A_{2} which gives the observed spin-orbit splitting in $2 n$ and Cd is about $1.4|5 / 25|$. A spectrm generated from the level scherme as this point does indeed rescmble the observed ca spectram closely.

This direct evidence that the increase in appareni $\Delta \mathrm{E}_{\mathrm{S}} \mathrm{o}$, in Cd ind Zn is symmetry-induced is supported by' three pieces of additional experimental data.

Fig. 1. Energies of a d^{9} configuration ass a function of the generalized crystal field ,arameter A_{2}. (a) ideal hexagoinal field: $c / a=1.63$, $A_{2}=0$; (b) general hexagonal field; A_{4} is assumed to be zero. The insert shows a spectrum for $A_{2}=1.4|5 / 2 \quad \xi|$. The line width of each component is equal to ξ.
(XBL 746-3462)

1) Figure 2 shoms the cd 4 d double ${ }^{\dagger}$ and for ©d metal and a AyCd alloy ($10 \% \mathrm{~cd}$). The substitutional introluction of the cd atom into the cubic surrounding of the Ag lattice reduces $\Delta E_{\text {s.o. to }}$ the free atom value.
2) The photoenission spectrum of $\mathcal{C}_{\text {. }}$ deposited in subnonolayer ooverage onto a Au single crystal shows no increase in spin-orbit splitting of the $4 d$ level (compare Fig. 2). We interpret that as

Fig. 2. The cd 4 d spectrum of (a) id metal, (b) a AgCd alloy ($10 \% \mathrm{Cd}$), and (c) surface isolated Cd atoms.
(XBL 744-2979)
the observation of single cd atoms which are subjected to no crystal field. When the Cd coverage is increased to the extent, that the formation of Cd clusters becones possible, the d-1evel splitting increases to the value in Cd metal.
3) Another physical property that is known to be proportional to the $\mathrm{L}=2$ term in an expansion similar to that of expression (3) is the electric field gradient at the nucleus. This field gradient can be measured by observing the interaction of the nuclear quadrupole monent Q with the field gradient q. Values of the coupling constant $\mathrm{eqQ} / \mathrm{h}$ for ${ }^{111 \mathrm{Cd}}$ in host lattices of $\mathrm{Pb}, \mathrm{In}, \mathrm{Zn}$ and Cd^{9} are plotted against the increase in apparent $\Delta \mathrm{E}_{\mathrm{s}, \mathrm{o}}$. for these metals in Fig. 3. The plot shows a quite convincing correlation between the excess splitting and the quadrupole interaction of the few points arailable.

Let us turn now to the splittings observed in the valence d shells of Ag and An and the p shells in Pb and Bi . These cases cannot be treated rigorously without taking the band character of these states into account. That is, level ordering at $\vec{k}=0$ is not necessarily representative of the appearance of the density of states $\rho(E)$ as observed in an XPS-spectrun. The elenents Ag, Au, Pb, and approxinately also Bi crystallize in the fcc structure; that is, the symmetries throughout the Brillouin zone are the same ror all four elements. Nevertheless, the observed differences in the apparent $\Delta E_{s . o}$. between d bands (increase) and p bands (no increase) is striking they can be understood in terms of the symmetry induced splittings at representative points of the Brillouin zone. The d-electrons of Ag and Au are already split into two groups of bands, Γ_{12} and $\Gamma^{\prime} 15$ ' at Γ the center of the BZ which has the full octahedral

Fig. 3. The excess in apparent spin-orbit splitting $\Delta E_{S, o}$ versus the electrical quadrupole interaction strength eq $/ \pi$ of 111 Cd for a number of metals.
(XBL 744-2975)
symmetry. Teidrds the outer parts of the BZ, these bands split further accompanied by a rearrmbement of levels according to the various irreducible representations at sumetry points of lower than cubic symmetry. The maxin:m splitting occurs at X the center of the square face of the $B Z$. The pattern set by Γ and X can be regarded as representative for the two peaked structure in the density of states of Ag and Au . The spin-orbit interaction enhances this splitting further without being the dominant factor, however. The lower angular symmetry of the p-valence electrons in Pb and Bi preserves their orbital degeneracy at Γ. Along the symetry directions on the surface of the $B Z$ this degeneracy is partially lifted forming a single and a doublet level at each symnetry point except K.

The energy dispersion of these bands along the surface of the $B Z$ is in general smaller than their splitting, giving rise to a two peaked density of states. In Pb and Bi , with 2 and 3 p-electrons respectively, only the bands in the lower peak of $\rho(E)$ are occupied, so that we would observe a single peak in the XPS-spectrum in the absence of spin-orbit interaction. In the presence of spin-orbit interaction however the two fold degenerate level at W splits and an inspection of the relativistic band structure of Pb by Loucks 10 reveals, that this splitting is preserved over much of the surface of the $B Z$ giving rise to the obsorved doublet in the occupied part of $p(E)$. In the tight binding approximation, and in the absence of s-p hybridization the splitting at W equals the atomic splitting, a result that is in good agreement with experjment.

FOOTNOTES AND REFERENCES

${ }^{*}$ Condensed version of LBL-2901 and Phys. Rev. B10, 4881 (1974).
${ }^{\dagger}$ IBM Fellow, present address: Max Planck Institut für F stkörperfonschung, Stuttgart.

1. R. A. Pollak, S. P. Kowalczyk, L. Ley, and D. A. Shirley, Phys. Rev. Letters 29, 274 (1972).
2. L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk and D. A. Shirley, Phys. Rev. B9, 600 (1974).
3. C. E. Moore, Atomic Energy Levels (U. S. Department of Corme"ce, NBS Circular No. 467 (1958).
4. T. M. Dunn, Trans. Faraday Soc. 17, 1441 (1961).
5. M. Blume and R. E. Watson, Proc. Roy. Soc. A270, 127 (1962).
6. P. A. M. Dirac, The Principles of Quantum Mechanics, (Ciford University Press, New York, 1947).
7. L. I. Shiff, Quantum Mechanics McGraw Hill, New York, 1955).
8. A. R. Edmonds, Angular Momertum in Quantum Mechanics, (Princeton Iniversity Press, Princeton, N.J. (1057).
9. H. Haas and D. A. Shirley, J. Chem. Phys. 58, 3339 (1973).
10. T. L. Loucks, Phys. Rev. Letters 14, 1072 (1965).

the structural nature of amorphous se and to**

M. Schlüter, J. D. Joannopouios, M. L. Cohen
L. Ley, S. P. Kowaiczyk, R. A. Poltak, and D. A. Shirlay

Rerent X-ray (XPS) and ultraviolet (UPS) photomission measurenents on $S e^{1}$ and the new experinents presented here on Te show some renarkable differconces between their trigonal and amorphous phases. One of these differences corresponds to a seemingly sharper structure in the s-like states of the amorphous phase of Se which is very unusual for an amorphous spectrum. Other important differences appear as interchanging strengths in the two peaks of the p-like bending states. To explain these differences in terms of the possible structural nature of the amorphous phase we must first udderstand the origins of the structure in the crystalline spectrum.

Electronic charge distributions obtained from pseudopotential calculations on $S e$ and Te^{2} indicate that (1) the splitting of the two peaks in the p Inke bonding states is related to the amount of mixing and hybridization of px , $\mathrm{py}_{\mathrm{y}} \mathrm{s}$ and d states and (2) the relative strengths of these two peaks is related to the relative amount of intrachain and inter chain bonding. The s-like region of the density of states is of considerable importance since these states are very sensitive to topology. The structure in the s-like region of the density of states of trigonai Se is very similar to that of a one-dimensiomal chain and thus reflects the definite chain-like nature of this phase. In trigonal Te, however, the structure in the s-like region is more similar to the superposition of a one-dimensional chain density of states and a three dimensional simple cubic density of states.

Let us examine the changes occurring in the amorphous phase. Figure I (top) shows the photoemission results of Shevchik et a1.1 for trigonal and amorphous Se . In the "lone-pair" region (between -2 eV and 0 eV), the amorphous spectrum has lost same fine structure and is shifted slightly to higher energies. However in the bonding p-like regich (between -6 eV and -2 eV) rather interesting changes have oscurred. The lower energy peak has become weaker whereas the higher energy peak has becone stronger in the anorphous phase. This reversal corresponds to a decrease of the number of pure intra-chain bonling states. There are now more electrons occupying states localized outside the chains. The splitting of these peaks is very sensitive 0 the bond angle and hence to the hybridizativn. In the morphous phase this splitting remains essentially unchanged, suggesting that bond angle vari: tions are relatively small.

In the s-like region between -18 eV and -7 eV) for Se there is a very unusual effect. The dip seems to be bigger in the anorphous phase than

Fig. 1. X-ray and ultraviolet photomission results (top) on trigonal (solid line) and amorphous (dashed line) Se as obtained from ref. 1. The amorphous sample was prepared by d.c. supttering at room temperatire. X-ray photoenission results (bottom) on trigonal (solid line) and morplous (dashed line) Te as obtained in this work. Here the anorphous Te sample was obiained by Argon bombardnent. The "lone-pair" states lie between -2 eV and 0 eV . The bonding p-1ike states lie between -6 eV and -2 eV and the s-1ike states are below -8 eV .
(XBL 756-1566)
in the trigonal phase. This suggests some interes*ing structural properties. The change could not be caused by breaking of the infinite chains, which would only tend to fill up the dip. A reasonable alternative is the fommation of rings. In particular the dip woild increase if the rings were of order three, five, six or seven. Rings of order four, eight, or five and seven together, would certainly tend to fill up the dip. 3 Furthermore, since the bond angles in the trigonal phase are around 104°, the most likely $+\cdot \mathrm{ing}$ structures
are five-fold and six-fold, or six-fold and sevenfold. To demonstrate the effect or the existence of rings on the density of states we have carried out two model calculations on Se containing only sixfold and only eight-fold rings respectively. On the basis of these results we propose that the anorphous Se samples contain a substantial number of atons in ring-like configurations of order six. This suggestion seems to be consistent with Rechtin's and Averbach' s^{4} interpretation of their radial distribution function data.

The photocmssion results for amorphous and triconal Tz obtained by Shevchik et al. 5 using the :nme sputtering terchnique as in the Se case give similar results. However these results differ from our photomission data on anorphous and trigonal To. Our experimental procedure wias as follows. The x-ray photoemission spectra of Te were measured with a Hewlett-Packard ESCA-spectrometer 5950A utilizing monochromatized Al K_{a} x-rays (1486.6 eV) with a resoltuion of 0.6 eV (Fint). A single crystal of Te was cleaved just prior to insertion into the spectroncter in an atmosphere of dry nitrogen. The anorphous sample was obtained after 2 hours of Ar^{+}-ion bonbardment. The results are shown in lig. 1 (bottom). In the bonding p-like region (-2 eV to -6 eV) we now find. in contrast to Se , a shift of strength to lower energies in the
anorphous case. This suggests an increase in the number of the pure intra-chain banding electrons, which would be consistent "ith an increase in the covalency of Te in the amorphous phase.

Footnotes and References

*Supported in part by the National Science Foundation, Grant ©H 35688.
${ }^{+}$Short version of a letter published in Solid State Comunications 15, 1007 (1974).

1. N. J. Shevchik, J. Tejeda, M. Cardona and D.W. Langer Solid State Conm. 12, 1785 (1973).
2. M. Schlüter, J. D. Joarnopoulos and M. L. Cohen, Phys. Rev. Letters 33, 89 (1974).
3. J. D. Joannopoulos, F. Yndurain, L. Falicov and M. L. Cohen, IBM International Torical Conference on Tetrahedrally Bonded Anorphous Semiconductors (to be published).
4. M. D. Rechtin and B. L. Averbach, Solid State Conm. 13, 491 (1973).
5. N. J. Shevchik, M. Cardona and J. Tejeda, Phys. Rev. BB, 2833 (1973).

an ionicity scale based on X-hay photoemission valence-band SPECTRA OF $A^{N} B^{s}-N$ AND ANB ${ }^{10-N}$ TYPE CRYSTALS*

S. P. Kowalcryk, L. Ley. ${ }^{\dagger}$ F. R. MaFedy, and D. A. Shirky

In general the spectian of the valence band region of $A^{N} D_{D}-N$ and $A_{B} 10-N$ crystals show a three-perk structure, occasionally with a sharp core d pieak intruding. Figure 1 shows the raw XPS-VBDOS spectra of some typical Group IV and Group V elements, and III-V, II-VI, IA-VII, and IV-VI compounds. Walter and Cohen 1 calculated et, , tronic charge densities for several diamond zincblende semiconductors from pseudopotential band-structure wavefumctions. These charge densities give the distribution of the valence electrons in each band in real space: they can be related to yeaks in our spectra. Peak I (PI) consists of electrons "ucuered around the anion atomic site; i.c., an " $s-1 ; 5$ " distribution. Peak II (PII) consists of ele itrons basically centered around the cation, and located in the bonding region. Peak III (PIII) results from electrons concentrated between the atomic sites in the bonding region, i.e., a " like" distribution. Witia this in mind, and realizing that the valence-band peaks cannot be truly described with such a simple atomic picture, we shall refer to PI and PII as "s-like" bands and PIII as "p-like". Fuller discussions of the atomic derivation of the valence-band peaks are available in Refs. 2 and 3.

It was noted previously in an XPS study of the VBDOS of the iscelectronic series Ge, gaAs, and $2 \mathrm{nSe}^{4}$ that the PI - PII splitting, $\Delta E X_{S}$, increased with increasing ionicity. This increasing splitting was attributed mainly to an increasing localization of electrons around the stronger anion potential. However, to devise a quantitative scale of ionicity a covalent fiducial point is necessary. The need to treat ienic and rsvalent contributions on an equal footing has been cogently put forth in several articles by Phillips and Van Vechten. 5-8 Ley et al. 9 in an XPS-VBDOS study of groups IV and V covalent elemental crystals observed a rather simple relationship between the covalent splitting of PI and PII, $\triangle E$ S , and the nearest-neighbor distance, d. The observed relation is

$$
\begin{equation*}
\Delta E_{S}^{C}=8.0 \cdot 2.2 \mathrm{~d}, \tag{1}
\end{equation*}
$$

with $\triangle E E$ in eV and d in A. The measured $\triangle E E$ and d for these crystals are listed in Table 1.

Fig. 1. (a) X-ray photoemission valence band spectra of several typical $A^{N}{ }^{8} 8-N$ type grystals, $\mathrm{Ge}, \mathrm{GaAs}, \mathrm{ZnSe}$, and KBr ; and (b) $\mathrm{A}^{\mathrm{N}} \mathrm{B}^{10}-\mathrm{N}_{\text {type }}$ crystals, Sb and PbS.
(a) XBL 745-3033)
(b) XPL 745-3035)

Table 1. Nearest-neighbor distance and $\triangle E \mathcal{S}$ splitting for group IV and group V elemental crystals.

Crystal	Structure	$d(\AA)^{3}$	$\Delta \mathrm{S}^{\mathrm{C}}$ (eV)	Ref.
C	diamond	1.54	4.7	10
si	diamond	2.34	2.6	8
Ge	diamond	2.44	3.1	8
$\alpha-5 n$	diamond	2.80	$1.8{ }^{\text {b }}$	-
As	A7	2.50	2.6	11
Sb	A7	2.86	1.7	11
Bi	A7	3.10	1.2	11
${ }^{a_{\text {R.h.G. Wyckoff, Crystal Structures }} \text { Wiley, }}$ Interscience, Ner York, 1963). $b_{\text {Predicted }}$ value from Eq. (I).				

The fact that ΔE_{S}^{C} depends on d in such a simile way for the homopolar crystals suggests that it is a strong function of overlap and could serve as a covalent fiducial point. The fact that the group V semimetals fall on the "universal curve" of Ref, 9 suggests that the ionicity of the $A^{N_{B}} 10-N$ as well as the $A^{N_{B}} 8-N$ crystals might well be included in an XPS-derived scale of ionicity.

We are now in a position to decomposs our measured splitting of the "s-bands", $\Delta E X P$ into an ionic and a covalent concribution, $\triangle E \mathcal{S}$ is arrived at by simply inserting $d(A)$ of the crystal under analysis into Eq . (1). To obtain the ionic contributiun, ΔE_{S}, we suggest that the relationship

$$
\begin{equation*}
\Delta E_{S}^{i}=\Delta E_{S}^{X P S}-\Delta E_{S}^{C} \tag{2}
\end{equation*}
$$

be enmloyed. Now an ionicity number can be simply defined as

$$
\begin{equation*}
\mathcal{F}_{i}^{\mathrm{XPS}}(\mathrm{AB})=\frac{\Delta \mathrm{E}_{\mathrm{S}}^{\mathrm{i}}}{\Delta \mathrm{E}_{\mathrm{S}}^{\mathrm{XPS}}} \tag{3}
\end{equation*}
$$

For example let us consider the isoelectronic series Ge, Gais, and ZnSe , the members of which have nearly constant d. Germanium with $d=$ 2.44 A , is of course purely covalent and $\mathcal{F}_{i}^{X P S}{ }_{(G e)}=0.0$. GaAs also has $d=2.44 \mathrm{~A}$ and Eq. (1) yields $\Delta E_{S}^{C}=2.6 \mathrm{eV}, \Delta \mathrm{S}_{\mathrm{S}}^{\mathrm{XPS}}$ was measured to be 4.8 eV , which yielis $\Delta \mathrm{E}_{\mathrm{S}}^{\mathrm{i}}=2.2$ and $\mathcal{F}_{\mathrm{i}}^{\mathrm{XPS}}($ GaAs $)=0.46$. In a similar manner for $2 \mathrm{iSe}(\mathrm{d}=2.45 \mathrm{~A}), \Delta \mathrm{F}_{\mathrm{S}}^{\mathrm{C}}=2.6 \mathrm{eV}, \Delta \mathrm{E}_{\mathrm{S}}^{\mathrm{XPS}}=7.8$, $\Delta E_{S}^{i}=5.2$ and $\mathcal{F}_{i}=0.67$.

Table 2 sumnarizes the scructures, the
 for the crystals used in this study. Before discussing the results in detail, let us compare this entirical ionicity scale with the dielectricbased scale of Phillips. our $\Delta E_{S}^{i}, \Delta E_{S}^{C}$, and $\Delta E_{S}^{X P S}$ are analogous to the C, E_{p} and E_{g}, respectively, of Phillips. His E_{g} is the gap between bonding and antibonding states. Here E_{h} is the homopolar energy and is equal to Eg_{g} for honopolar crystals and determined by the empirical relationship

$$
E_{h} \times d^{-2.5}
$$

for heterpolar $A^{N_{B}}{ }^{8}-\mathrm{N}$ erystals. C is the ionic contribution to E_{g}.

Phillips has discussed in detail the correspondence between ionicity and coordination for

Table 2. Nearest-neighbor distances, energy of XPS splitting of lowest two valence bands $\triangle E_{S} \mathrm{~S}_{\mathrm{i}} \mathrm{S}$, the covalent splittitgs $\triangle E C$, ionic splitting SEj and ionicity number $\mathcal{F} \times \mathrm{PS}(A B)$. These parameters are explained in the text. Atl energies are given in eV.

Crratal	dth ${ }^{2}$	Atructur ${ }^{\text {b }}$	$A_{8}^{\text {IPs }}$	$\Delta E_{B}^{C^{c}}$	ΔE_{s}^{d}	$\chi_{1}^{\text {YPS }}$ \{n⿻) $\left.\right\|^{\text {d }}$	mat.
Gake	2.44	2	4.8	3.6	2.2	0.46	13
zinse	2,45	2	7.0	3.6	5.2	0.07	13
5n50	2.61	2	4.2	1.8	2.3	D. 56	3
Dra	2,88	E	65.7	1.1	23.4	2 0.65	13
cush	2.65	I	3.6	2.2	1.4	0.39	13
Enre	7.64	2	6.5	2.2	4.3	0.65	13
WI	3.53	k	8.3	0.2	0.1	0.97	25
tran	2.61	z	4.7	3.1	3.4	0.51	13
eats.	3.63	*	$* 5.7$	2.2	23.5	0.61	13
EnP	7.54	*	4.3	3.4	1.0	0.44	23
CdS	2.5]	*	45.5	2.4	43.1	20.58	13
mbl	3.29	m	10.7	0.7	10.0	0.94	n
Htb	2.45	8	4.3	2.2	2.1	0.49	จ
45	3.20	\%	-1. 1	0.9	7.2	0.09	45
Hatr	7.99	n	9.9	1.4	4.5	0.88	25
GrP	2.36	8	3.a	2.8	2.0	0.25	13)
Ins	2.10	2	5.5	3.6	4.6	0.61	13
[0]1	3.15	,	12.4	1.1	10.7	0.91	15
2no	2.95	-	9.1	1.7	5.1	0.59	11
19	2.67	n	20.9	2.1	18.7	0.90	15
140	2.10	R	1.3.5	3.4	10.1	0.75	4
Mar	2.32	k	71.1	2.9	20.3	0.64	15
Hes	2.97	-	4.4	2.5	2.9	0.67	12
Wele	3,08	*	4.3	1.3	1.0	0.70	12
\%re	3.23	8	3.3	05	2.6	0.74	12
Ente	3.14	m	4.4	1.1	3.3	4.75	g
${ }^{\mathrm{Pa}} 0 . \mathrm{g}^{5 \mathrm{n}_{0.2}} \mathrm{Tm}$	3.23	k	3.1	0.9	2.2	0.70	\%
$\mathrm{Fb}_{0.4} \mathrm{Sn}_{0.6} \mathrm{~T}^{\text {TV }}$	3,18	k	3.5	1.0	2.5	0.71	9
$\mathrm{P}_{0} \mathrm{O} .2^{5 \mathrm{n}} 0.8^{\text {T0 }}$	3.26	-	4.3	1.1	3.2	0.74	7
LIP	2.01	\square	19.7	3.6	16.1	0.02	15
mir	3.30	.	15.0	0.7	14.3	0.95	15
Hact	2,02	n	10.0	1.8	0.2	0.82	15
callnel	2.64 ${ }^{\text {a }}$	${ }^{2}$	25	2.2	92.8	20.36	14
[0Cors	2.37^{78}	${ }^{4}$	4.5	7.0	2.0	0.42	14
0.61	3.51	cact	10.6	0.1	20.3	0.97	42
er	3.00	2	20.9	1.4	19.5	0.93	42
capr	3,72	Cacl	9.6	-0.2	9.8	1.00	42
Hert	2.76	\mathbf{z}	23.5	1.3	1.6	20.46	13
0	2.53	R	613	2.4	10.6	$* 0.82$	\%

$b_{t}=$ sinc-biende, $\mathbf{x}=$ rochalt, M - wurtite, Cuct - cmalut chloxide.
Cfroment (41).
arroe eq. (1).

1 그,, (:3世7).
 eite being pocupled alternately oy proup II wad proup EY cation.
Epapinifithed vork of thil labogatocy.

the $A^{N_{B} 8-N}$ crystals. 5,7 In his study of seventy ANB8-N crystals Philiips found a critical ionisity F_{i} such that for $\mathcal{F}_{i}<F_{i}$ the crystals are fourfold coordinated and for $\mathcal{F}_{i}>\mathrm{Fi}_{\mathrm{i}}$ the crystals are six-fold coordinated. With $\mathrm{F}_{\mathrm{i}}=0.785$, Phillips' scale had 100% accuracy in predicting crystal structure, far superior to any other then available quantitative scale of ionicity. In

Fig, 2, we have plotted the ionicities of several $A^{N B} \mathrm{~B}-\mathrm{N}$ crystals common to studies for each scale, with the structure noted by symbols. We have added to both scales several $\mathrm{ANB}^{\mathrm{N}} 10-\mathrm{N}$ crystals, the lead salts and SnTe, which have the rocksalt structure. We have also added to our scale several $\mathrm{Pb}_{x} \mathrm{Sn}_{1}-x^{\mathrm{Te}}$ alloys and two ternary semiconductors. If for the dielectric scale we keep $F_{i}=0.785$, the $\mathcal{G}_{1}^{0 T}(A B)$ scale will make four wrong predictions with the inclusion of the $A^{N} B^{10-N}$ crystals. If we lowered F_{i} to 0.71 , $\mathscr{G}_{1}^{\mathrm{PT}}(\mathrm{AB})$ would make two errors but would no longer have

Fig. 2. Comparison of the XPS-derived scale of ionicity, ${ }^{\prime} \frac{8}{2} \mathrm{PS}_{\text {(AB) }}$ from Table 2 and the PhillipsVan Vechten ionicity, \mathcal{F}^{1} (AB) (Ref. 5) illustrating the ability to predict structural phase transformation. FDT (AB) for crystalline materials of average V valence was obtained from P. J. Stiles, Solid State Commm. 11, ivu3 (1972). Vertical line indicates critical ionicity, F_{i}. Dashed vertical line for $\mathcal{F}^{\mathrm{DT}}(\mathrm{AB})$ is the F_{i} derived in Ref. 5. Crystals with dianond, zinc-blende or chalcopyrite structure are indicated by • wurtzite structure by 4 and rocksalt structure by 0 . (XBL 745-3032)
a perfect score for the $70 \mathrm{~A}^{\mathrm{NB}} \mathrm{B}-\mathrm{N}$ crystals of
 able to predict 1008 of the structures correctly. However, within the accuracy of the data $\overbrace{i}^{\mathrm{XPS}}{ }_{(\mathrm{ZnSe})}$ and $\mathrm{F}_{i}^{\mathrm{XPS}}(\mathrm{PbS})$ should be considered equal; thus $G_{i}^{X X S}(A B)$ makes one error. Thus $\mathcal{F}_{i} \mathrm{XPS}_{(A B)}$ appears to be superior to of ${ }_{i}^{D T}(A B)$ when IV-VI crystals and ternary alloys are included. The lead salts present an interesting case because they can indicate whether the Offl $_{i}{ }_{(A B S}$ scale can be generalized beyond $A^{N_{B}}{ }^{8-N}$ crystals and because both ionic and invalent bonding have been proposed for them. 10 $\mathcal{F}_{i}{ }^{\mathrm{XPS}}$ (AB) predicts the lead salts to have the ionic rocksalt structure, which is correct. Recent charge density calculations on PbTe strongly support an ionic interpretation. 11

The cesium halides have the eight-fold coordinated CsCl structure. Citrin and Thonas have reported XPS data for several of these compounds. 12 If we apply our treatnent to these data we obtain: $\left.\mathcal{F}_{\mathrm{i}}^{\mathrm{XPS}}{ }_{(\mathrm{CsF})}=0.93, \mathcal{F}_{\mathrm{i}}^{\mathrm{XPS}}{ }_{(\mathrm{CsCl}}\right)=0.97$, and $\underset{i}{f \times P S}(\mathrm{CsBr})=1,00$. All these values are in the upper range of the alkali halide data. In Fig. 2 we have also plotted data from two $A^{I I_{B}} \mathrm{IV}_{C_{2}^{V}}$ (chal-copyrite-tppe) crystals. These are ternary analogs of the binary $\mathrm{A}^{\mathrm{II}}{ }^{\mathrm{B}}$ crystals, i.e., ZnGeP_{2} is the analog of GaP, and CdSnAs 2 of InAs.

We shall not discuss the other scales of ionicity in detail since this has already been done by Phillips. 5 The major problems with the other scales, notably Coulson's molecular orbital approach, ${ }^{13}{ }_{-5}^{7}{ }^{\mathrm{CRS}}(\mathrm{AB})$, and Pauling's thermochenically based scale, ${ }^{14} \mathcal{F}_{i}^{P}(A B)$, derive from the lask of symmetrical treatment of ionic and covalent contributions. Both Pauling's and Coulson's scales tend to bunch groups of crystals with respect to ΔZ; i.e., III- V crystals are clustered at one value and II-VI at another. Phillips stated that his dispersion theory does not work too well for crystals such as alkali halides with $\mathcal{F}_{i} \gtrsim 0.9$, which is where Pauling's scale is best because the covalent contribution is very small. The Phillips-Van Vechten theory uses optical and dielectric data. Optical data are not always straightforward to interpret and this approach includes some appıximations. GXPS (AB) appears to have wider applin cability than the other scales. It appears that $\mathcal{F}_{1}^{\mathrm{XPS}}(\mathrm{AB})$ needs a correction factor for the anion size in the case of the alkali halides. There is need for further work especially in the expansion of classes of crystals studied. This study shows promise in the application of XPS to stucty of the problen of the nature of the chemical bond in solids.

Footnotes and References

*Condensed from LBL-2902; published in J. Chem. Phys. 61, 2850 (1974).
${ }^{\dagger}$ I.B.M. Fellow.

1. J.P. Walter and M.L. Cohen, Phys. Rev. B 4, 1877 (1971).
2. S.P. Kowalczyk, F.R. McFeely, L. Ley, R.A. Pollak, and D.A, Shirley, Phys. Rey. B 9, 3573 (1974).
3. R.G. Cavell, S.P. Kowalczyk, L. Ley, R.A. Pollak, B. Mills, D.A. Shirley, and W. Perry, Phys. Rev, B ?, 5313 (1973).
4. R.A. Pollak, L. Ley, S.P. Kowalczyk, D.A. Shirley, J.D. Joannopoulos, D.J. Chadi, and M.L. Cohen, Phys. Rev, Lett. 29, 1103 (1972).
5. J.C. Phillips, Rev. Mod. Phys. 42, 317 (1972).
6. J.C. Phillips and J.A. Van Vechten, Phys, Rev. B 2, 2147 (1970).
7. J.C. Phillips, Bonds and Honds in Scmiconductors (Acadenic Press, New York, 1973).
8. J.C. Phillips and J.A. Van Vechten, Phys. Rev. Lett. 22, 705 (1969).
9. L. Ley, R.A. Pollak, S.P. Kownlczyk, F.R. MkFeely, and D.A. Shirley, Pilys. Rev. B B , 641 (1973).
10. R. Dalvin, Solid State Fhysics, 28, 179 (1973).
11. N.L. Cohen, International Corference on Narrow Gap Semiconductors, Nice, France (1973), wipublished.
12. P.H. Citrin and D.T. Thomas, J. Chen. Phys. 57, 4446 (1972).
13. C.A. Coulson, L.B. Redei, and D. Stocker, Proc. Roy. Soc. (London) 270, 352 (1962),
14. L. Pauling, The Nature of the Chanical Bond (Comell University Press, Ithaca, New York, 1960).

X-RAY PHOTOEMISSION SPECTRA OF THE \&d LEVELS IN RARE EARTH METALS*

S, P. Kowalczyk, N. Edelstein, F. R. McFeely, L. Ler, ${ }^{\text {i }}$ and D. A. Shirley

The photoemission spectra o: core levels in materials possessing unpaired electrons often exhibit satellite structure. This phenomenon, which is usually attributed to multiplet splitting, was first observed in x-ray photoenission spectra (XPS) of solids by Fadley et al. 1,2 It is interpreted as arising from the multiplicity of final states formed by the coupling of an open core shell wit ${ }^{2}$ partially filled outer shells. Rareearth metals and rare earth compounds, with their large number of unpaired $4 f$ electrons, should present particularly interesting cases for study of nultiplet structure.

Figure 1 shows the ad spectra of La and Lu , which have a completely empty and a completely filled $4 f$ shell, respectively. These spectra exhibit only well-defined spin-orbit split doublets with separations of 2.85(10) and $10.0(2) \mathrm{eV}$, respectively, in reasonable agreement with theoretical values of 3.2 and 10.2 eV .3 Also shown is the 4 d spectrum of Yb , which is a divalent netal with a $4 f 14$ ion-core configuration. Here again the 4 d spectrum consists simply of a $4 d_{5 / 2}-4 d_{7 / 2}$ spin-orbit doublet split by $8.90(15)$ eV. The simple spin-orbit doublet character of the 4d doublet in Yb is interpreted as further confinmation of the 4 f 14 configuration in this inetal.

Figure 2 shows the XPS spectra in the $4 d$ region of Ce, Sm, and Eu. These spectra are typical of the rest of the rare-earth series in exhibiting conplex structure due to the $4 d 94 \mathrm{fn}^{n}$ interaction. We shall discuss only the $4 d^{94 f}{ }^{7}$ cases, Eu and Gd, as only these have as yet been analyzed in detail. The discussion below applies particularly to Eu. The Gd spectrm has not been as well resolved as yet. For these two metals the initial open-sheli configuration and level is $4 \mathrm{f}^{7}$; 8S. Thus emission of an nl electron can lead only to the two terms $n \ell^{4 \ell+1} 4 f^{7} ;{ }^{9}$ and $\pi Q^{4 l+1} 4 f^{7} ;{ }^{7} L$, where $|L|=|i|$. For the $\ell=2$ case of interest here, each temn \mathfrak{r} nsists of five levels with J ranging from $\left|S^{-}\right|$to $|S+2|$. The configuration $f^{7}\left({ }^{8} S\right) d^{1}$ was t reated by Judd. 4 By reversing the sign of the d-shell spin-orbit coupling constant ζ, we can use his discussion essentially verbatin for $f^{7}\left({ }^{8} S\right) d^{9}$, noting that the d-f exchange tems require no modification because the $4 f$ shell is exactly half full. Figure 3 is a plot of the level ordering within the ${ }^{9}$ D and 7^{D} multiplets using the reduced variables η and ξ defined by Judd 4 (cf his rig. 5) The parameter n scales as energy for any particular value of 5 , which is, itself, an index of the degree of $\mathbf{j}-\mathbf{j}$ coupling in the 4 f shell:

Fig. 1. XPS spectra of the 4 d levels of La, Yb, id Lu metals, showing only spin-orbit doublets.
(XBL-746-3513)

Fig. 2. XPS spectra of the 4 d regions of Ce , Sm , and Eu metals exhibiting structure due to final-state coupling. The Eu spectrum has been analyzed as discussed in text.
(XBL-746-3514)

Fig, 3. Levels of the configuration $f^{7} d^{9}$ that derive from the core level ${ }^{8} S_{7 / 2}$. The axes are labeled as follows: $\eta=\left(E(J)-\frac{35}{80} G\right)\left[G^{2}+\right.$ $\left(\frac{5}{2} \rho\right)^{2} j^{-1 / 2} ; \quad 5=\frac{X}{1+X \mid}$, where $x=\frac{5}{2} 5 / G$. The matrix elements were calculated for the $f^{7} d$ configuration so, for our case, $5<0, G>0$, and therefore $-1<\xi<0$. The LS extreme is given for $\xi_{5}=0$ on the left, and the Jj extreme is given for $\xi=-1.0$ on the right. (XBL-746-3551)
$\xi=0$ for pure L-S and -1 for $j-j$ coupling. The five-peak fine structure on our 9 D peak in the Eu spectrum (Fig. 2) shows excellent agreement with this interpretation, while the ${ }^{7} \mathrm{D}$ fine structure is unresolved. Judd attributed a similar effect in the GdI spectrum to a contraction of the 7_{D} multiplet through interaction with an excited term ${ }^{7}$ D of $\Sigma^{7} \mathrm{~d}$, derived from the level ${ }^{6} \mathrm{p}$ of the core.

We can qualitative?v explain the difference in appearance and structure of the 7 D and 9 D terms but cannot accuunt quantitatively for the contraction of the 7 D term on the basis of our simple model. However we can set a lower limit on ξ of $-0.1,7$ (Fig. 3). The main uncertainty is in the value of G for which we can set a
lower limit $\mathrm{C}>4.4 \mathrm{eV}$. Energies calculated on Judd's model are compare d with experinental values in Table 1. The desived value of the effective $4 d$ spin-orbit coupling constant within the 9 D manifold is $5 \mathrm{~d}=1.4(2) \mathrm{eV}$. This is somewhat smaller than estimates based on theory ($5 \mathrm{~d}=2.2 \mathrm{eV}$) or obtained by interpolation using the La, Yb, and Lu experimental values ($\mathrm{c}_{\mathrm{d}}=$ $1.8(3) \mathrm{eV})$. Again this contraction within the ${ }^{9} \mathrm{D}$ manifold is probably attributable to interaction with excited states.

Table 1. The $4 d^{9} 4 f^{7} ;{ }^{9}$ multiplet energies in Eu metal (in eV).

Level	$E(\operatorname{expt})$	$E($ fitted) a
${ }_{9} D_{6}^{b}$	0	0.1
${ }^{9} \mathrm{D}_{5}$	$0.78(04)$	0.8
${ }^{9} \mathrm{D}_{4}$	$1.52(0+4)$	1.4
${ }^{9} \mathrm{D}_{3}$	$2.22(04)$	2.2
${ }^{9} \mathrm{D}_{2}$	$2.85(08)$	2.9
${ }^{7}{ }^{c}{ }^{c}$	$6.33(10)$	6.3

$a_{\text {After Ref. }} 4$.
${ }^{b}$ The binding energy of ${ }^{9} D_{6}$ relative to the Fermi energy is $127.70(15) \mathrm{eV}$. ${ }^{c}$ Mean energy only.

A noteworthy feature of the Eu spectrum is the apparent reduction in multiplet separation between the 7 n and 9_{D} tems. According to simple theory, 4 this separation would be given by

$$
\begin{aligned}
G= & \frac{24}{35} G^{1}(4 d, 4 f)+\frac{32}{105} G^{3}(4 d, 4 f) \\
& +\frac{528}{1524.6} G^{5}(4 d, 4 f)
\end{aligned}
$$

or 18.91 eV , using Mann's ${ }^{5}$ exchange integrals. The lower limit we give for G is 4.4 eV , corresponding to a reduction factor of 0.23 . A large reduction factor is expected for multiplet splitting cases involving two subshells with the same principal quantum number, because of the large intrashell correlation energy. A factor of 0.6 has previously been observed for $454 f 7$ multiplets in rare-earth salts ${ }^{5}$ and metals.? Closure of the multiplet energy gap arises primarily through configuration interaction of the 10w-spin term (7 D in this case) with excited states of the same symnetry. This should lead -o two other observable spectral features: the

7D/9D intensity ratio should be less than the multiplet value of $7 / 9$, and "correlation peaks" should be present at higher binding energies, as observed ${ }^{8}$ in Mn^{2+}. Large background intensities in our spectra, arising from elastic scattering, preclude a reaily quantitative interpretation, but both of the above features appear to be present.

Footnotes and References

*Condensed from LiBL-2937; published in Chemical Physics Letters 29, 491 (1974).
${ }^{\dagger}$ I.D.M. Fellow.

1. C.S. Fadley, D.A. Shirley, A.J. Freeman, P.S. Bagus, and J.V. Mallow, Phys. Rev. Lett. 23, 1397 (1969).
2. C.S. Fadley and D.A. Shirley, Phys. Rev. A2, 1109 (1970).
3. T.A. Carlson, C.C.C. Lu, T.C. Tucker, C.W. Nestor, and F.B. Malik, Oak Ridge National Laboratory Reprint No. ORNL-4614, 1970 (unpublished).
4. B.R. Judd, Phys. Rev. 125, 613 (1962).
5. J.B. Mann, Atonic Structure Calculations I. Hartree-Fock Energy Results for the Elements Hydrogen to Lawrencium, Los Alamos Scientific Laboratory Report LASL-3090 (1967).
6. R.L. Cohen, G.K. Wertheim, A. Rosencwaig, and H.J. Guggenhoim, Phys. Rev. B5, 1037 (1972).
7. F.R. McFeely, S.I'. Kowalczyk, L. Ley, and D.A. Shirley, Phys. Jett. 49A, 301 (1974).
8. S.P. Kowalczyk, L. Ley, R.A. Pollak, F.R. McFeely, and D.A. Shirley, Phys. Rev. B7, 4009 (1973).

multiplet splitting of the as And 5s CORE LEVELS IN THE RARE EARTH METALS

F. R. McFeely, S. P. Kowalczyk, L. Lev," and D. A. Shirley

Since the first observation of multiplet splitting of core levels in x-ray photoenission spectra (XPS) of solids by Fadley et $a 1_{1} 1,2$ many interesting applications have been made ${ }^{3-7}$ and a deeper understanding of this phenomenon has developed. ${ }^{8-11}$ In this letter, we report the observation of multiplet splitting of the $4 s$ and $5 s$ core levels in the rare earth metal series La through Lu.

Our measured $4 s$ and $5 s$ splitting of the metals are given in Table 1 and compared with earlier work on several trifluorides. 5 The values for the splittings were obtained by least-squares fitting of Lorenztian or Gaussian functions to the spectra. The good agreement of the metal results with those of the trivalent ions is not surprising, since it has been shown earlier that the XPS spectra of the $4 f$ region of the metals compare well with optical data of the trivalent ions and with XPS results on the trifluorides. 12

The simplest estimate of the splitting $\Delta \mathrm{E}(\mathrm{ns})$ is obtained by invoking Van Vleck's theorem ${ }^{13}$ which yields

$$
\begin{equation*}
\Delta E_{\mathrm{w}}(\mathrm{~ns})=\frac{(2 \mathrm{~S}+1)}{7} G^{3}(\mathrm{~ns}, 4 \mathrm{f}) \tag{1}
\end{equation*}
$$

where S is the initial-state spin. These results are given in Table 1 and plotted in Fig. 1 along with the experimental results. The use of Mann's14 atonic Slater integrals, G^{3}, is justified because the $4 f$ states are essentially corelike. Equation (1) reproduces $\mathrm{AE}(5 \mathrm{~s})$ quite well;

Fig. 1. Comparison of the experimental values of the 4 s and 5 s multiplet splitting with the Van Vheck theorem valuss (Eq. (1)). Filled circles are for the metals (this work), while open circles are trifluoride values (Ref, 5).
(XBL 746-3504)

Table 1. Experimental and calculated $4 s$ and $5 s$ splitcings (eV) of the rare earth metals and trifluorides.

	2S+1	$\Delta E(4 s)^{*}$	AE (4s	b $\quad \Delta E_{v v}(4 s)^{c}$		$\Delta \mathrm{E}(5 \pi)^{\text {a }}$	$\Delta E(50)^{b}$	$\Delta E_{v v}\left(5_{s}\right)^{c}$
				Full	80.55			
La	--	0.0(2)	--	0.00	0.00	0.0(2)	--	0.00
Co	2	1.4(3)	--	2.85	1.56	1.0(3)	0.0	0.93
Pr	3	2.0 (3)	--	4.14	2.26	1.4(2)	1.2	1.46
Nd	4	2.7(3)	--	5,78	3.16	1.6(2)	1.7	1.92
$\mathrm{Pm}_{\text {m }}$	5	-	--	7.52	4.11	=-	--	2.38
Sm	6	5.413)	--	9.35	5.10	2.9(2)	2.8	2.83
Eu	8.7	7.493)	--	12.88,11.27	7 7.03.6.15	3.8 (3)	-	3.76.3.29
Gd	8	7.8(2)	8.2	13.91	7.59	$3.6(2)$	3.7	3.62
Tb	7	d	7.5	12.17	6.64	$3.2(3)$	3.4	3.16
Dy	6	d	6.4	10.51	5.74	$2.8(2)$	2.7	2.78
Ho	5	d	5.6	8.98	4.90	2.4(2)	--	2.32
Er	4	d	4.3	7.35	4.01	d	--	1.85
7\%	3	d	3.4	5.51	3.01	d	--	1.39
rb	1.2	$0.0(3)$	-	0.0,3,44	0.0,2.10	0.0(1)	--	0.0,0.93
Lu	\cdots	$0.0(2)$	--	0.00	0.00	0.0(1)	0.00	0.00
beference 5.								
${ }^{\text {c equarion } 1 .}$								
${ }^{\text {d }}$ These values could not be obtained due to intense Auger transistions in the energy region of in								

however, it systematically predicts a value that is 80% too high for $\Delta E(4 s)$. This result is aralogous to that in the 3d metal ion series, where it has been theoretically shown 10 and experimentally verified ${ }^{8}$ that intra-shell correlations are extremely important, while inter-shell correlations are much smaller because elections in different principal shells are already spatially correlated. The reason for the overestimate of ΔE ($4 s$) by Van Vleck's theorem is quite simple. In the high-spin final state, the $4 s$ and. $4 f$ elections are spatially separated by the antisymmetry requirements of the Pauli Principle. Thus inclusion of correlation will lower the energy of the low-spin final state more than of the high-spin final state, reducing the splitting, To obtain an accurate theoretical value for $\Delta E(4 s)$, it would be necessary to do a configuration interaction calculation on the final state as was done for the transition metal ions. 10

Figure 1 confimis the divalent character of metallic Eu and Yb cores, and demonstrates that at room temperature $C e$ is trivalent rather than tetravalent.

Footnote and References

*I.B.M. Fellow

1. C.S. Fadley, D.A. Shirley, A.J. Freeman, P.S. Bagus and J.V. Mallow, Phys. Rev. Lett. 23, 1397 (1968).
2. C.S. Fadley and D.A. Shirley, Phys. Rev. A 2, 1109 (1970).
3. D.T. Clark and D.B. Adams, Chem. Phys. Lett. 10, 131 (1971).
4. J.C. Carver, G.K. Schweitzer and T.A. Carlson, J. Chem, Phys. 57, 973 (1972).
5. R.L. Cohen, G. K. Wertheim, A. Rosencwaig and H.J. Guggenheim, Phys. Rev. B5, 1037 (1972).
6. S. Hüfner and G.K. Wertheim, Phys. Lett. 44A, 113 (1973).
7. F.R. MoFeely, S.P. Kowalczyk, L. Ley and
D.A. Shirley, Solid State Comn., to be published.
8. S.P. Kowalczyk, L. Ley, R.A. Pollak, F.R. McFeely, and D.A. Shirley, Phys. Rev. B7, 4009 (1973).
9. A.J. Freeman, P.S. Bagus and J. V. Mallow, International J. Magnetism 4, 35 (1973).
10. P.S. Bagus, A.J. Freeman and F. Sasaki, Phys. Ref. Lett. 30, 850 (1973).
11. P.S. Bagus, M. Schrenk, D.W. Davis and D.A. Shirley, Phys. Rev. A9, 1090 (197.4).
12. F.R. McFeely, S.P. Kowalczyk, L. Ley, and D.A. Shirley, Phys. Lett. 45A, 227 (1973).
13. J.H. Van Vleck, Phys. Rev. 45, 405 (1934).
14. J.B. Mann, los Alamos Report No. LA- 3690 (19ヶ7), unpublished.

X -Ray Crystallography
 Physical and Inorganic Chemistry
 Geochemistry

0

CRYSTAL AND MOLECULAR STRUCTURES OF THORIULS AND URANIUM TETRAKIS (HEXAFLUOROACETONYLPYRAZOLIDE) COMPLEXES

K. Volz, A. Zalkin, and D. H. Templaton

Polymeric pyrazolide compounds of the type $\mathrm{M}(\mathrm{Pz})_{\mathrm{n}}$ can be formed in the reaction of pyrazole (P 2) with ions of transition metals, lanthanides, and actinides. In 1966, Mahler ${ }^{1}$ discovered that hexafluoroacetone (hfa) can react with the pyra*zolide compounds in a $i: 1$ ratio to yield metal ion pyrazolide-hexafluoroacetone complexes [$\mathrm{M}(\mathrm{hfaPz})_{n}$]. Severa! actinide tetrakis (hfaPz) componds were synthesized by Andruchow and Karraker. ${ }^{2}$ We have studied two of these with x-ray diffraction methods to verify their composition and to establish their molecular structure, which can be represented:

Crystalline samples of $T h\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ON}_{2} \mathrm{~F}_{6}\right)_{4}$ and $\mathrm{U}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ON}_{2} \mathrm{~F}_{6}\right)_{4}$ were kindi, provided by D . G . Karraker. The thorium crystals were well-formed colorless prisms. The dajk violet uranium crystals after recrystallization from toluene were fragile hexagonal plates. X -ray diffraction experiments with MoKa radiation showed that both are triciinic, space group $\mathrm{P} \overline{1}$, with the following lattice dimensiors:

$$
\begin{aligned}
& T h\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ON}_{2} \mathrm{~F}_{6}\right)_{4}, \\
\mathrm{a}= & 11.282(5), \quad \mathrm{b}=16.245(7), \quad \mathrm{c}=10.836(5) \AA, \\
\alpha= & 90.14(5), \quad \mathrm{B}=108.75(5), \quad \gamma=107.07(5)^{\circ} . \\
& \left.\mathrm{U}\left(\mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{N}_{2} \mathrm{~F}_{6}\right)_{4}, \\
\mathrm{a}= & 11.302(5), \quad \mathrm{b}=16.377(8), \quad \mathrm{c}=11.000(5) \&, \\
\alpha= & 87.85(5), \quad \mathrm{B}=111.02(5), \quad \gamma=109.95(5)^{\circ} .
\end{aligned}
$$

X-ray diffraction data for buth crystals were measured with a scintillation counter and an automatic diffractometer. Absorption corrections were made using the analytical fommas with crystal dimensions which were calibrated by cor jarisons of the same reflection measured for various values of the azimuthal angle. The structures were solved by Fourier and least-squares methods and were refined to $R=0.026$ for 2,966 unique reflections for the thorium compound and $R=0.027$ for 4,125 unique reflections for the uranium compound. Coordinates of all the atoms including in each case the twelve hydrogen atoms were found by these calculations.

The molecular etructure of the thorium compound is shown ir. !ig. 1. The thoriun and uranium compourds have essentially the same structure except for an average difference of $0.06 \AA$ in the
actinide-ligand bond lengths because of the actinide contraction. The compounds crystallize as discrete molecular complexes which are sufficiently volatile to be sublined at $140^{\circ} \mathrm{C}$ under vacuna. ${ }^{2}$ The stracture of one of the Jigand groups is shown in mure detail in Fig. 2. Each metal atom has four oxygen neighbors and four nitrogen neighbors at average distances $\mathrm{Th}-\mathrm{O}=2.291(4], \mathrm{Th}-\mathrm{N}=2.637[5)$, $\mathrm{U}-\mathrm{O}=2.237(3), \mathrm{U}-\mathrm{N}=2.574(5)$ A. In each case the eight neighbors are at the corners of an irregular dodecahedron.

Footnotes and References

1. N. Mahler, U.S.Patent 3,265,705 (August 9, 1965), assigned to E. I. duPont de Nemours and Co., Inc.
2. W. Andruchow and D. G. Karraker, Inorg. Chem. 12, 2194 (1973).

Fig. 1. Stereoscopic view of the molectular structure of the thorium complex. The hydrogen atoms have been omitted for clarity.
(XBL 738-1019)

Fig. 2. Stereoscopic view of one of the ligands. (XBL 738-1016)

THE CRYSTAL STRUCTURE AND ABSOLUTE CONFIGURATION OF A BROMOHEXAACETYL DERIVATIVE OF VITEXIN*

F. A. Jurnak and D. H. Templeton

Although the C-glycosyl flavone compounds occur widely in nature and were isolated as early as 1851, the elvidation of the chemical structure was hampered by the nature of the C-glycosylic side chain. The resistance of the $C-C$ bond to acid hydrolysis prevented the identification of the sugar moiety. In 1964, Horowitz and Gentilil first overcame these obstacles when they deduced the basic structure of vitexin from chemical and NMR data. Jater Eade, Hillis, Horm, and Simes ${ }^{2}$ inferred the existence of two rotational isomers of acetylated vitexin from temperature-dependent NMR studies. We undertook a study of a bromohexaacetylated derivative of vitexin to test these predictions and to investigate some new procedures for solving a difficult crystallographic problem which had been studied without success in another laboratory. Our study confirmed the chemical structure of vitexin but showed that our crystals were a mixture of two chemical derivatives containing respectively one and two bromine atoms. We also showed that an acetyl group of the original heptaacetate was lost somewhere in the recrystallizations.

The derivative, of material isolater from the wood of vitex Zucers, was made available by R. Horowitz of the Fruit and Vegetable Chemistry Laboratory, Pasadena, California. Pale yellow crystals, obtained from methanol-acetone solution, were given us by K . Palmer of the Western Regional Agricultural Laboratory, Albany, California. We obtained diffraction data with MoKa radiation for 3,512 reflections of which 2,669 were significantly above background. The latter included 1,104 Friedel pairs which permitted unambiguous determination of the absolute configuration of the structure.

It had been expected to exploit the anomalous dispersion effects to determine the structure, but this became unecessary when more conventional Fourier and least-squares methods yielded the solution. The disorder conceming the bromine atons, and large thermal motion of some of the side chains, caused the refinement to be laborious. The final result reduced R to 0.099 , a value close to the estimated accuracy of the data.

The molecular formula is shown in Fig. 1. The bromine atom indicated as $\operatorname{Br}(2)$ is estinated to be present in 30% of the molecules. Figure 2 shows a stereoscupic view of the molecular structure. Figure 3 shows how these molecules are packed into the unit cell, in space group PG_{5}, with dimensions $a=21.602(7)$ and $c=13.869(7) R^{3}$. It is confirmed that the sugar ring is a $\beta-D-g l u c o s y l$ moiety, attached through $C-C$ bonds to the eight position of the flavone nucleus, and is approximately perpendicular to the flavone plane.

Footnotes and References

* Condensed from LBL-2335.

1. R. M. Horowitz and B. Gentili, Chem. Ind. (London), (1964) 498.
2. R. A. Eade, W. E. Hillis, D. H. S. Horn, and J. J. H. Simes, Aust. J. Chem. 18, 715 (1965].

Fig. 1. Molecul: $:$ formula of the vitexin derivative.
(XBL 735-664)

Fig. 2. Stereoscopic view of the molecular structure.
(XBL 735-665)

Fig. 3. Crystal structure of the vitexin derivative.
(XBL 7311-1409)

CRYSTAL STRUGTURE AND CONFORMATION OF A MULTI-SULFUR HETEROCYCLE

H. Rubeti, D. H. Tempieton, and A. Zalkin

On the basis of nuclear magnetic spectroscopy it is known that some substituted tetrathianes exist in solution as equilibrium mixtures of chair and twist conformations, with slow tates of interconversion. ${ }^{1}$ To complement this work we determined the crystal stracture of $3,3: 6,6$-bis (penta-methylere)-s-tetrathiane to jeam its structure and corformation in the solid state. Because of the high quality of the crystals, an exceptionally accurcte result was obtained.

The crystals are triclinic, space group Pi , with cell dimensions $a=6.632(6), b=8.462(6)$, $c=6.446(6) A, a=93.92(6), B=103.23(6)$, and $\gamma=96.90(6)^{\circ}$. The structure was solved by statistical phasing of the strongest reflections from a data set including 2,715 independent observed reflections. After least-squares refinement, R was reduced to 0.025. The model that was used in the calculations nakes an allowance for polarization of the bonded hydrogen atoms, so that the hydrogen coordinates represent the actual position of the proton rather than the center of the electron density. the molectiar structure, shown in Fig. 1, is centric with all three rings in chair conformations. Average bond distances are $\mathrm{S}-\mathrm{S}=$ $2.035(2), \mathrm{C}-5=1.842(2), \mathrm{C}-\mathrm{C}=1.525(1)$, and $\mathrm{C}-\mathrm{H}=$ 1.05(1) A. The bond angles at C(1) deviate from regular tetrahedral in such a way that the molecule is more extended and the cyc1ohexane rings are
farther from the center than if these angles were tetrahedral. This bending of the molecule brings $C(6)$ closer' to sulfur than is $C(2)$, and it is noteworthy that the C(1)-C(6] distance [1.537(2) \AA] is longer than the other C-C bond lengths.

Reference

1. C.H. Bushweller, G. Bhat, L.J. Letendre, J.A. Brunelle, h.S. Bilofsky, H. Fuben, D.H. Templeton, and A. Zalkin, J. Amer. Chem. Suc., 97, 65 (1975).

Fig. 1. Molecular structure of $3,3: 6,6$-bis (penta-methylene)-s-tetrathiarie.
(XBL 717-1196)

CRYSTAL STRUCTURE OF AMMONIUM HYDROGEN MALONATE

G. Chapuis, A. Zalkin, and D. H. Templeton

Recent developm, ts in ${ }^{13} \mathrm{C}$ nur iear magnetic rusonance spectroscopy make is possible to find the chenical shielding tensors of crystalline substances and to correlate the orientations of these tensors with respect to the molecular structure determined by x-ray diffraction. The results may give better understanding of the relation between electronic structure and magnetic shielding. If consistent results are found for the same groups in various crystals, then the NMR technique may be used with confidence as a probe of orientation in ether phases.

We studied the crystal structure of anmonium hydrogen malonate by x-ray diffraction to comple ment an NMR study by Chang, Griffin, and Pines. ${ }^{1}$ The combined study yields orientations for the tensors for carbon in the methylene group and in two independent carboxyl groups, and shows that the latter orientations are significantly affected by the non-equivalence of the oxygen, one of which is involved in strong hydrogen bonding.

The diffraction data, recorded with a scintillation counter and MoKa radiation, showed the crystals to be monoclinic, space group C2/c, with cell dimensions at $22^{\circ}: a=11.214$ (3), $b=8.647(3)$, $c=11.507(4) \AA, \beta=107.29(2)^{\circ}$. The structure was
so1ved by statistical phasing. It was refined by least-squares to $\mathrm{R}=0.042$ for 794 independent observed reflections.

The configuration of the melonate, Fig. 1, is similar to that found in malonic acid with the two carboxyl groups nearly perpendicular to each other. In contrast, these groups are nearly coplanar in the potassium acid salt. In both the ammonium and potassium salts, the ions are connected by strong symmetrical hydrogen bonds into infinite chains. The result is that the two crystallographically independent carboxy1 groups in our crystal are chemically equivalent, and each can be regarded as half ionized. The bond distances cleanly differentiate the carbonyl oxygen atoms ($\mathrm{C}-0=1.232$ or

Fig. 1. Structure of the malonate ion in ammonirm hydrogen malonate.
(XBL 741-240)
$1.223 \AA$) from those bonded to hydrogen ($\mathrm{C}-0=$ 1.284 or $1.288 \AA$). In the hydrogen bords the 0.0 distances are 2.487 and $2.476 \AA$. Other average bond distanges are $\mathrm{C}-\mathrm{C}=1.51, \mathrm{C}-\mathrm{H}=1.05$, and $\mathrm{N}-\mathrm{H}=1.00$ A. The ammonium ion is hydrogen bonded to four neighboring oxygen atoms with $\mathrm{N}-0$ distances ranging from 2.80 to $2.99 \AA$.

The relation of the shielding tensors to the geometry of the molecule is described by Chang, Griffin, and Pines, 1

Reference

1. J. J. Chang, R. G. Griffin, and A. Pines, J. Chen. Phys., in press (1975).

BACKBENDING AND OTHER DEVIATIONS FROM IDEALITY IN EXTRACTION SYSTEMS*

J. J. Bucher and R. M. Diamond

Slope analysis is an often-used method for interpreting and analyzing data from extraction equilibria in order to obtain information on the rature of the extracting species. Central to the application of this method is the assumption that any deviation frim the law of mass action is due to the formation of a new chemical species. But as has been pointed out, 1,2 it is urreasonable to ignore all nonspecific non-idealities of the extracted species and blame :11 deviations on new chemical species.

The extraction of a strong acid, $\mathrm{H}^{+} \mathrm{X}^{-}$, by a solution of trilaurylanine (TLA) in a low dielectricconstant nedium that induces association of the resulting salt to an ion pair or higher aggregate can be written

$$
\begin{align*}
\log \left[(T L A \cdot H X)_{n}\right]_{0} & =\log K+n \log [T L A]_{0}\left(H^{+} X^{-}\right) \\
& \left.+\log y_{T L A}^{n} / y_{(T L A \cdot H X}\right)_{n} \tag{1}
\end{align*}
$$

Thus, a $\log -\log$ plot of the stoichiometric concentration of the organic-phase amine-salt vs the product [TLA] $\left(\mathrm{H}^{+} \mathrm{X}^{-}\right)$should yield a curve whose tangent is the value of n at that point, if the activitycoefficient ratio is a constant.

The results of the present study of the TLA extraction of HClO_{4} into 1 -bromooctane and into CCl_{4} and of HClO_{4} and HI into cyclohexane are shom in Fig. 1. When determined at low anine-salt concentrations the log-log plots are straight lines with unit slope, indicating predoninantiy ion pairs and

Fig. '1. Total anmonium salt concentration [TLA-HX] $]_{0}$ vs ($\mathrm{TLA}_{0}\left(\mathrm{H}^{+} \mathrm{X}^{-}\right)$for various diluents. Curve 1 is the $\mathrm{TLA}-\mathrm{HClO}_{4}, 1$-bromooctane system; curve 2 is the $\mathrm{TLA} \cdot \mathrm{HClO}_{4}, \mathrm{CCl}_{4}$ system; curve 3 is the TLA $\cdot \mathrm{HCLO}_{4}$, cyclohexane system; and curve 4 is the TLA $\cdot \mathrm{HI}$, cyclohexane system.
(XBL 751-2017)
the validity of the assumption that the organicphase activity-coefficient ratic is constant. But at higher concentrations, the curves deviate upward from the line of unit slope. This is the region that has been of most interest in the 1iterature, 3 and this behavior has almost always been ascribed to a further association of the ion pairs. The average value of this aggregation, n, at any point, can be determined by the tangent of the curve, or the whole curve can be fitted to a small number of oligoners, if the activity-coefficient ratio of the various oligomers are still assumed constant. But as can be seen in Fig. 1, with "poor" diluents the curves for these TLA salts actually "backbend" for concentrations above 0.1 N , yielding negative values for the slope. This behavior is completely unexplainable in the context of an aggregation madel with ideal activity coefficients for the salt associations. The simplest, and we believe the correct, explanation is that at these large concentrations of amine salt we are dealing with a new diluent, consisting of amine salt and solvent. This new more polar phase has properties more favorable for the extraction of the salt. The value of the organic-phase activity $\left.\mathrm{Y}_{(\mathrm{TLA}} \cdot \mathrm{HX}\right]_{\mathrm{n}}$ decreases with the increase in anine-salt concentration. However, no amount of tinkering with the amine-salt coefficient alone can yield the results of Fig. 1. One must take into account another comporient too. And we think it is the amine coefficient that is important. The activity coefficient of TLA should increase with increasing salt concentration in the mixed diluent, and both activity cuefficient changes should cause a very marked lowering in the ratio $y_{(T 1 A}$.HX) / /YTha. Even though the molar concentration of amine in the organic-phase is small ($10^{-2}-10^{-3}$), so that one might think its activity coefficient would not vary much, the change in the nature of the diluent can cause large changes.

Are there other types of extraction systems that do not allow for simple slope analysis, and if so treated, lead to wrong conclusions? The answer appears to be yes. Consider the extraction of HReO_{4} by trioctylphosphine oxide (TOFO) solutions in isooctane. The equilibrium constant for extraction as an ion pair can be expressed

$$
\mathrm{K}_{\mathrm{n}}^{\mathrm{a}}=\frac{\left\{\mathrm{H}^{+} \cdot \mathrm{nTOPO}^{+} \cdot \mathrm{ReO}_{4}^{-}\right]_{0} \mathrm{y}_{\mathrm{nTOPO}} \cdot \mathrm{HReO}_{4}}{\left(\mathrm{H}^{+} \mathrm{ReO}_{4}^{-}\right)[\mathrm{TOPO}]_{\text {TOPO }}^{n}}
$$

To determine the value of r , the number of 'IOPO molecules coordinated to the extracted acid, one can study the dependence of the extracted acid on the TOPO concentration. To exclude the possibility of
aggregation beyond the ion pair, tracer concentrations of $\mathrm{HRe} \mathrm{O}_{4}$ can be used. Figure 2 shows the dis. tribution of $1 \times 10^{-6} \mathrm{MHReO}_{4}$ in 1 . OM HC1 with TOPO in isooctane. The initial slope drawn is two ($n=2$), but the raw data show deviations from this line even at TOPD concentrations as 10 w as $2-3 \times 10^{-3} \mathrm{M}$. The or-gavic-phase HReO_{4} concentration at these TOPO concentrations is $10^{-8} \mathrm{M}$, so no aggregation beyond the ion pair is expected. Extension of the line of slope two is shown by a dashed line, and the subtraction of this line from the raw data is indicated by the dashed line connecting the filled triangles. This resultant line has a slope of three. By all the normal rules of slope analysis this indicates that at the initial low TOPO concentrations there are two TOPO molecules coordinated per extracted acid, but that over most of the TOPO concentration range studied the slope of three indicates a three-to-one complex.

Yet infrared spectroscopic results ${ }^{4}$ over the Whole TOPO range studied indicate that the species is a $2 \mathrm{TOPO} \cdot \mathrm{HR}_{\mathrm{R}} \mathrm{O}_{4}$ complex like the one known in other

Fig. 2. Variation of distribution ratio, D, with TOPO in iscoctane for $1 \times 10^{-6} \mathrm{M} \mathrm{HReO}_{4}$ in $1.0 \mathrm{M} \mathrm{HCl}^{\prime}$. The dashed 1ines are drawn with either slope two or three (A).
(XBL 751-2016)
diluents. 5 In this case, dependence on simple slope analysis leads to the wrong result (al though there are warning inconsistencies). What can be the cause of this error in the simple mass-law analysis? We believe it is due to the presence of the polar TOPO molecules when dissolved in very inert ("poor") diluents. That is, the addition of the polar TOPO molecules makes the inert diluent isooctane into a new and more polar solvent. It is sumprising, however, at least to us, what a small amount of Topo is necessary to cause deviations from the line of slope two. Figure 2 shows significantly enhanced extractionat as low as $2-3 \times 10^{-3} \mathrm{M}$ TOPO. At such a concentration there is only one TOPO for approxinately 4000 iscoctane molecules; to have any marked effect the TOPO must selectively solvate (be in the vicinity) of the even rarer H^{+}(TOPO) $2^{\mathrm{Re}} \mathrm{O}_{4}^{-}$species. This process leads to a lowering of the extracted acid activity coefficient, but without the formation of a higher TOPO complex or aggregation of the $\mathrm{H}^{+}(\text {TOPO })_{2}$ ReO_{4}^{-}species.

In this paper we have described several examples of systems that do not follow the behavior expected for extraction models based on the simple application of mass action to step-wise equilibria. Types of studies included are the formation of higher complexes with the extractant molecule, as the extractant concentration is increased, and stepwise aggregation of the extracted amine sait, as the salt concentration is increased. In the former case,neglect of possible organic-phase activity coefficient variations leads to the suggestion of higher complexes thar actually exist. In the latter case, ignoring possible activity coefficient variations suggests a greater degree of ion aggregation and higher types of ion aggregates than really exist, especially with "poor" solvents. We believe that the origin of the difficulties experienced in applying simple masslaw slope analysis to these systems comes from not giving consideration to the change in the properties of the diluent as it goes from the initially pure solvent to a mixture of extractant and/or extractant complex and solvent.

Footnotes and References

*Condensed version of LBL-3453.

1. Y. Marcus, J. Phys. Chem. 77, 516 (1973); Y. Marcus, Pure Appl. Chem., 2085 (1969).
2. W. Muller and R. M. Diamond, J. Phys. Chem. 70, 3469 (1966).
3. See for example: Y. Marcus and A. S. Kertes, "Ion Exchange and Solvent Extraction of Metal Complexes ${ }^{\text {" }}$ (wiley-Interscience, N.Y., 1969) pp. 737815.
4. J. J. Bucher and R. M. Diamond, J. Inorg. Nuc1. Chem.. 34, 3531 (1972).
5. J. J. Bucher, M. Zirin, R. C. Laugen and R. M. Diamond, J. Inorg. Nucl. Chem. 33, 3869 (1971).

LUMINESCENCE FROM THE PEPTIDE GROUP*

M. Danielst and M. E. Jeyko

Previous work in the excited states of proteins has concentrated exclusively on absorption and emission by the "aronatic" group, phenylalanine, tyrosine, and tryptaphane, and the properties of the peptide group have been studies in absorption only. he report now the detection of emission characteristic of the peptide group using apparatus constructed specifically for this purpose. The excitation source was a 1 kw hydrogen discharge (Hinterceger type), dispersed by a McPherson Model 2351 meter scanning vacuan UW monochromator. The exciting bean was monitored by a sodiwn salicylate screen and an RCA 6199-Keithley 417 picoammeter-Speedomax recorder combination. Excitation wavelengths between 1900 A and 2400 \& were used at a bandwidth of 3.3 nm . The enitited radiation was collected by a 50 mm Spectrosil lens system and analyzed by a Jarrel-Ash 0.25 meter scanning monochromator equipped with a grating blazed at 3000 A , also at a bandwidth of 3.3 rmm . The dispersed radiation was detected by an EMI 6250 photomultiplier, cooled with liquid nitrogen and operated in the photon counting mode. Signal comes were then transferred to a 400 channel analyzer (RDDL 32-1213) operated in the multiscaling mode. At 1750 A a dark count rate of 12 counts/sec was observed. Enission spectra have routinely been measured from 200 nm to 612 nm and excitation spectra from 200 nm to 280 nm .

Very similar spectra have been observed for N-acetylglycine, N-acetylalanine, acetamide, and N -methylacetanide. Apart from obvious scatter peaks, the spectra are complex. Most prominent is an emission obtained on exciting at 240 nm and hence is tentatively assigned to an $n \pi^{k}$ state. At lower energies a broad shoulder is observed from 325 nm$380 \mathrm{~nm}(3.8 \mathrm{eV}-3.2 \mathrm{eV}$) and a clear but weak peak at $48 \mathrm{~nm}(2.6 \mathrm{eV})$. On exciting at higher energies (i950 A) a stronger, narrower peak is observed at 240 nm . Present data do not allow us to determine the head of this emission which indeed may be structured but its position and intensity is consisteni with it originating from a $\pi^{2 \pi}$ state.

No emission has been observed from N -diethylacetamide.

Footnotes and References

*Abstract of invited paper presented at the International Conference on Excited States of Biological Molecules, Lisbon, Portugal, 18 April 1974 (see LBI.2383).
${ }^{+}$Chemistry Department and Radiation Center, Oregon State University, Corvallis, Oregon.

RADIOPOLAROGRAPHIC STUDIES OF Cf, Es, AND Fm
\downharpoonleft

F. David* and K. Samhoun ${ }^{\dagger}$

The radiopolarography proposed by Love it 1958^{1} is a developed technique using radioactive isntopes. In this technique the diffusion current i measured in the classical polarography is replaced by the radioactivity reaching the dropping mercury cathode after the electroactive ions have been reduceu to the metallic state. The variation of this radioactivity with the negative potential inposed during a given time constitutes the radiopolarogram.

Since the diffusion current is not measured in this method the reduction of hydrogen ions, if it interferes with the studied reduction, has no effect on the measurement of the radioactivity of the amalgam. It follows from this that potentials of halfwave more negative than-1.6 V/Sce could be measured for elements in very 10 w concentration even at tracer scale. It is clear therefore that radiopolarography is a convenient method for studying redox properties of 5 f elements.

Principles

Since the number N of reduced ions to the mexallic state during a time θ is a related with the mean diffusing current i by $N=i / n F \times \theta \times N$ (\mathcal{N} is the Avogadro's number) the fundamental equation of Ilkovic giving the limiting diffusion current is easily transformed as follows:

$$
A_{d}=0.627 \times \mathrm{m}^{2 / 3} \times t^{1 / 6} \times D^{1 / 2} \times A_{s} \times \theta=K A_{s} \theta
$$

where A_{d} is the radioactivity of the mercury collected during θ seconds. It is found by measuring the height of plateau of the radiopolarogram $A=f(E)$. A_{5} is the volume radionctivity of the solution, and D and t have the same significance as in classical polarography.

In addition to this, the linear dependence of the mean diffusing current on the square-root of the height of the mercury head, $\mathrm{A}_{\mathrm{d}}=\mathrm{K}^{\prime} \times \mathrm{x}, \mathrm{h}$, is still the principle criterion to verify the Ilkovic equation. On the other hand the number n of electrons exchanged in the electrode process disappears in the modified Ilkovic equation. However, this could be detennined from the polarographic wave equation, which is:

$$
E=E_{a}^{o}+\frac{R T}{n F} \operatorname{Ln} \frac{A_{d}-A}{A}
$$

for a reversible electrode process, and
$E=E_{\alpha}^{0}+\frac{R T}{d N F} L \Omega \cdot 886 K_{e}^{0}\left(\frac{t}{D}\right)^{1 / 2}+\frac{R T}{d N F} \operatorname{Ln} \frac{A_{d}-A_{\text {irrev }}}{A_{\text {irrev }}} \quad$ for an
irreversible electrode process. E_{a}^{O} is the standard potential including the energy of amalganation, K_{e} denotes the heterogeneous rate constant of the electrode process at the standard potential E^{0}, expressed in $\mathrm{cm} \mathrm{sec}-{ }^{-1}$ and a is the transfer coefficient. In order to compare the measured value A_{d}^{*} and the calculated one for A_{d}, R is defined as follows:

$$
R=\frac{\left.A_{d}^{*} \text { (measured }\right)}{A_{d}[\text { calculate }]}=\frac{A_{d}^{*}}{K_{A_{s}}{ }^{\theta}} .
$$

Experinental Procedure

An automatic apparatus of radiopolarograp y has been built in the Institut de Physique Nucleaire in Orsiy. ${ }^{2}$ The same apparatus slightly modified has been set up at LBL (Fig, 1).

Three ml of radioactive solution are introduced in the sinall cell (A) where the reference electrode compartment and the platinum anode are literaliy -nn nected. The aqueous solution remains on carbon tetrachloride occupying the canalizations of Section
(B). The drops of mercury flow through the radioactive solution and are stored in the inert medium of CCl_{4}. No effect of CCl_{4} on the stored analgan was noticed. The drops of mercury already polarized are mostly surrounded with a thin film of aqueous solution. In order to eliminate this parasite radioactivity, the drops are shaken when flowing through column (D) by two rotating magnets. In addition, a pump ''? ensured a permanent circuit of CCl_{4} through Section (B) in the direction shown in

-ig. 1.
(XBL 751-2035)

Fig. 1. The mercury is stored at an electromagnetic gate (V) during a time θ. Through this time the operating apparatus (E) orders similtaneously the opening of (V) and the change of potential, so that the mercury collected at a fixed potential is taken down in a test tube and its radioactivity A is measured. The apparatus was tested with a solution of 54 Mm and Licl 0.1 M at pH 2.85 and $\mathrm{t}=25^{\circ} \mathrm{C}$. The potential of half-wave was $-1.47 \mathrm{~V} / \mathrm{SCE}$, which is ${ }^{\text {in }}$ agreement with the known standard potential of $\mathrm{Mn}_{\mathrm{n}}{ }^{+} / \mathrm{M}^{+}$(3). The Ilkovic equation was verified and $\mathrm{R}=\mathrm{Ad}_{\mathrm{d}} / \mathrm{A}_{\mathrm{d}}=100 \%$ with a value of $\mathrm{D}_{\mathrm{s}}{ }^{2}+\mathrm{cm}^{2} \mathrm{~s}^{-1} 3$ The standard deviation of the experimental points at the plateau is 2%. The backgromd of the radiopolarogram is 3% of the height of plateau.

Experiments on Cf , Es, and Pm
$3.4 \times 10^{5} \alpha / \pi i n / 2 \pi$ of ${ }^{254-255} \mathrm{ES}, 9.4 \times 10^{4} \alpha / \mathrm{min} / 2 \pi$ of ${ }^{249-250-252}$ Cf and $3.4 \times 10^{2} \alpha / \mathrm{mn} / 2 \pi$ of ${ }^{255}{ }_{\mathrm{Fm}}$ are nixed in 3 ml of He1 $4 \times 10^{-3} \mathrm{M}$ and 1 iel 0.10 M .
54 min was added to this mixture, so that its radiopolarogram is used to standardize those of Es and Cf and to check the nommal fumetioning of the apparatus. The radiopolarograms jbtained at $25^{\circ} \mathrm{C}$ are presented in Fig. 2. The potentials of half-wave are measured and standardized using -1.470 V as E° of $\mathrm{Mn}^{2}+/ \mathrm{MO}(\mathrm{Hg})$. It follows from this that E $1 / 2$ (Cf) is -1.770 V/CE which is in agreement with previous preliminary results. ${ }^{4} \mathrm{E} 1 / 2$ (Es) $=-1.713 \mathrm{~V}$ and $E 1 / 2(\mathrm{Fm})=-1.70 \mathrm{v}$. The potentials of Cf and Es are measured with $\pm 1 \mathrm{mV}$. E $1 / 2$ for Fm was less precise. It is due to the fact that the ratio Fm/Es by activity was only $1 / 1000$ in the mixture and its measurements was disturbed by the decay of ${ }^{255}$ Es. A precise yglue for Fm requires a preliminary separation ${ }^{255} \mathrm{Fm} / \mathrm{Es}$. The Ilkovic equation was verified so that $A_{d}=f(\sqrt{ } h)$ is a linear functions (Fig. 3). The ratic $R=\hat{A}_{d}^{*} / A_{d}$ for ${ }^{5{ }^{4} \mathrm{~N}} \mathrm{M}$ was 100%.

Since $R=100 \%$ for M in the mixture of Cf and E_{S} and the standard deviation at the plateau is less than 28 the determimation of the diffusion coefficient D seems to be possible by fitting the measured height of the plateau A_{d} in the Inkovic equation. The diffusion coefficient for cf is $(6.26 \pm .4) \times 10^{-6}$ $\mathrm{cm}^{2} \mathrm{~s}^{-1}$ and for Es ($6,5 \pm .4$) $\times 10^{-6} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. These values are practically so close to those measurged or calculated for trivalent ions of lanthanides ${ }^{5}$ that Es^{3+} and Cf^{3+} are assumed to be diffusing at the dropping mercury cathode.

Fig. 2.
(XBL 751-2034)

Fig. 3 ,
(XBL 751-2033)

The mechanism of the electraie process and its reversibility require more experiuients, which are in progress.

Footnotes and References

* On leave from Institut de Physique Nucleaire, Jrsay, France.
${ }^{\dagger}$ On leave from CNRS (Lebanon) and Institut de Physique Nucleaire, Orsay, France.

1. D. Love, Aral. Chem. Acta 18, 72 (1958).
2. P. Rogelet, F. David, Radio Chem, Aral. Lett. 18, 6, 387 (1974).
3. J. N. Gaur, N. K. Goswami, Electrochin. Acta 12, 1483 (1967).
4. F. David, Radiochem. Radioanal. Lett. 5, 279 (1970).
5. E. H. Spedding, P. E. Porter, J. M. Weight, J. Am. Chem. Soc. 74, 2055 (1952).

STUDY OF SOME THERMODYNAMIC PROPERTIES OF $5 f$ ELEMENTS

F, David, ${ }^{*}$ K. Samhoun, ${ }^{\dagger}$ R. Guillaumont, \ddagger and L. J. Nugent \S

Nugent, Bumet, and Morss recently published ${ }^{1}$ the values of the sublimation enthalpies $\Delta H^{\circ} s$ and the values of the formation enthalpies $\Delta H^{\circ}{ }_{f}$ for the aquo ions M^{3+} for each member of the $4 f$ and $5 f$ series. The data were obtained through theoretical considerations and by correlation of $\mathrm{P}(\mathrm{N})$ and $\Delta \mathrm{S}_{\mathrm{S}}{ }^{*}$ functions.
$P(M)$ is defined by $P(M)=\Delta H_{s}^{0}-\Delta H_{f}^{0}$ if $\Delta E(M)<0$ and $P(M)=\Delta H_{s}^{O}-\Delta H_{f}^{O}+\Delta E(M)$ if $\Delta E(M)>0$.
$\Delta H_{S}^{O_{*}}$ is defined by $\Delta H_{S}^{O_{N}}=\Delta H_{S}^{O}$ if $\Delta E(M)$ $<0 \cdot \Delta H_{s}^{O_{n}}=\Delta H_{s}^{O}+\Delta E(M)$ if $\Delta E(M)>0$.
$\Delta E(M)$ is the difference between the lowest electronic energy level of the $f^{n} s^{2} d^{1}$ configuration and the lowest energy level of the $f^{n+1} s^{2}$ configuration in the neutral gaseous atom.

We have examined these functions for the $5 f$ series using new experimental data and estimating
ΔH^{0} for fermium, mendelevium and nobelium from amalganation data, 2-4 Although $P(M)=f(Z)$ varies linearly and parallel for the first seven terms of the $4 f$ and $5 f$ series it looks different for the last terms (Fig. 1).

For lanthanides $P(M)=f(Z)$ is represented by a ' V " curve with a minimm at gadolinium while $P(M)$ seems to decrease linearly with 2 throughout the $5 f$ series. In both cases however $P(M)$ is a slow-varying function of z as expected. 1

By taking into account this observation, new values of ΔH_{S}^{O} and ΔH° are estimated for each element of the $5 f$ series (Table 1). On the other hand the estimation of the entropy of formation ΔS_{f}^{9} of $\mathrm{Maq}_{\mathrm{aq}}^{3+}$ ions (Table 1) allowed the detemination of the free energv change anc the redox potential E^{0} corresponding to the couple $\mathrm{Map}^{3+} \mathrm{M}$ (Table 1). With this basic result $E^{0}(M(X) / M)$ for all known X redox state are derived. The comparison of redox stabilities from Fig, 2 predicts the relative stability of $\mathrm{Pa}(\mathrm{III})$ $\left(\mathrm{E}^{\mathrm{C}}[\mathrm{Pa}(\mathrm{IV}) / \mathrm{Pa}(\mathrm{III})] \bumpeq-1.9 \mathrm{~V}\right), \mathrm{Cm}(\mathrm{V})\left(\mathrm{E}^{\circ}[\mathrm{Cm}(\mathrm{V}) / \mathrm{CM}(\mathrm{IV})\right.$ $\simeq+1,3 V)$ and $C f(V)\left(E^{\circ}[C f(V) / C f(I V)] \approx+0.8 V\right)$.
reasonable delay range following the muon stopping stgnal, but the data are insufficient to permit calculation of a meaningful, precise lifetime value. It is also unfortunate that the observed energy $n f 2614 \mathrm{keV}$ is within experimental precision ($\pm 2 \mathrm{keV}$) equal to that of the well-known first excited state of ${ }^{208} \mathrm{~Pb}$ (2614.5 keV). It is possible that time-correlated, inelastic excitation of this level in the ever-present lead shielding could occur to the extent observed, and cannot yet be excluded. (A priori, of course, the possibility of an accidental energy overlap is on the order of 1%.)

Although single gamma-ray intensities are not sufficient to permit lifetime measurements, they can be made for ranges of gamm:-ray pulses in the Ge(Li) detector. The ouly presently reportable values were made in several short runs using 128 time channels. An example of such a time spectrum is shown in fig. 5. The periodic, beam-associated background is evident both in the prompt and the delayed times. After subtraction of the periodic background measured at negative times, the delayed counts can be fitted (with excellent x^{2}) to a single exponential as shown in fig. 6. A single-run example of the experimental ifetimes measured in this manner is shown in Table 2. The increase in the lifetime at the higher energy ranges is attributed to an increased relative background from electron bremsstrahlung; however, at the present time, we have not yet tried to rit these data to other than a single exponential.

In conclusion, our lifetime measurements are in excellent agreement with the electron measurement of Hashimoto et al.[2] and several standard errors larger than the results from fission measurements[3], thereby adding some weight to Bloom's hypothesis, despite our inability to obtain definitive lifetime measurements on individual gamma rays.

GRE MAGNETIC SUSCEPTIBILITY OF ${ }^{\mathbf{2 4} 9} \mathbf{C f}$ METAL

D. K. Fujita, T. C. Parsons, J, R. Peterson,*

M. Noe, ${ }^{*}$ and N. Edelstein

Magnetic measurements of the transplutonium metals are of great importance because it is in this region of the actinide series that the metals exhibit the localized magnetic behavior characteristic ot the lanthanide metals. It should than be possible to correlate the chemical valences of the traisplutonium elements with their structural properties as detemined by crystallographic studies. Such correlations have been proposed by Zachariasen ${ }^{1}$ and modified by Cunningham and Wallman ${ }^{2}$ for the first half of the actinide series. The basic assumption inherent in this model is that the f electrons in these metais are non-bonding and do not contribute to the formation of chemical bonds between metal atoms. This assumption as applied to the early actinide metals has been questioned. 3,4. However the model may be applicable to the transplutonium metals.

Very few magnetic measurements have been reported for the transplutonium metals because of the major experimental difficulties encountered in obtaining pure, well-characterized samples and the small anounts of materials available. In this paper we report the first magnetic susceptibijity misasurements on two different preparations of ${ }^{249}$ Cf metal.

The two ${ }^{249}$ Cf metal samples were synthetized and characterized iy x-ray powder diffraction techniques at ORNL. Joth samples were the expanded fcc phase. The mass of the first sample LI-48-A was $8.85 \pm 0.15 \mu \mathrm{~g}$. This mass was determined after the magnetic measurements by dissolution of the sample and a subsequent alpha assay. This number agreed with an earlier determination of the mass obtained Ly a gammia ray assay. The mass of the second sample Li-54 was $6.12 \pm 0.14 \mu \mathrm{~g}$ obtained only by a gamma ray assay.

The apparatus used for the magnetic measurements was a Faraday balance of the type first suggcated by Cunningham, ${ }^{5}$ which has been described previously. 6 The temperature was varied by flowing cold N_{2} or He gas around the sample chamber, which was filled with the He exchange gas. The temperature was monitored by a calíbrated GaAs diode installed in the sample chamber less than 1 an below the sample. The apparatus was calibrated with $\mathrm{HgCo}_{\mathrm{NCS}}^{4} 4$ used as a standard.

The reciprocal deflections of the two samples as a function of temperature at various magnetic fields are shown in Figs. 1 and 2. From this data the :agnetic susceptibility of the samples at each temperature may be obtained. The data showed no magnetic field dependence over the entire temperature range measured. Plots of the reciprocal gram susceptibility vs temperature for the two samples are shown in Figs. 3 and 4. As can be seen from these plots the data for both samples follow the Curie-Weiss law

$$
X_{M}=\frac{C}{T+\Delta}
$$

Fig. 1. Reciprocal deflection vs temperature of ${ }^{249}$ Cf metal (sample LI-48A). (XBL 751-2003)

Fig. 2. Reciprocal deflection vs temperature of ${ }^{249}$ Cf metal (sample LI-54), (XBL 751-2004)

Fig. 3. Reciprocal gram susceptibility vs temperature of ${ }^{249}$ Cf metal (sample LI-48A).
(XBL 751-2005)
Since Δ is small we may calculate the effective magnetic moments for these samples by ${ }^{7}$

$$
\mu_{\mathrm{eff}}=2.828(\mathrm{C})^{1 / 2} \mathrm{BM}
$$

These results are shown in Table 1.
The two likely valance states for Cf metal are $5 f^{i 0}, \mathrm{Cf}^{2+}$, or $5 f^{9}, \mathrm{Cf}^{3+}$. We may estimate the free ion Lande g values for the ground term and then calculate the effective, free ion magnetic monents for $\mathrm{Cf}^{2+} \mathrm{J}=8$ and $\mathrm{Cf}^{3+} \mathrm{J}=15 / 2$. The results are also shown in Table 1.

Table 1. ${ }^{249} \mathrm{Cf}$ metal.

| Sample | Phase | Mass $(\mu \mathrm{g})$ | $\mu_{\mathrm{eff}}(\mathrm{PM})$ | $\left.\Delta 0^{\circ} \mathrm{K}\right)$ | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LI-48 | fcc | 8.85 | 9.84 | -3.24 | $28^{\circ} \mathrm{K}-298^{\circ} \mathrm{K}$ |
| LI-54 | fcc | 6.12^{*} | 9.32 | 3.00 | $22^{\circ} \mathrm{K}-298^{\circ} \mathrm{K}$ |

Fig. 4. Reciprocal gram susceptibility vs temperature of ${ }^{249} \mathrm{Cf}$ metal (sample LI-54).
(XBI. 751-2006)
ence could be due to different impurities in the samples. Wie estimate the reliability of each measurement to be about 2%. The samples were of identical phases as determined by x-ray crystallography but the diffraction pattern could not be obtained from part of the sample while another part could be anorphous. The measured effective moments are lower than calculated for which we have no explanation. It is unfortuate that for this particular case the magnetic susceptibility measurements do not differentiate between the dipositive and tripositive ion due to their effective moments being accidentally the same. Therefore we cal reach no conclusion from these measurements about the correlation of the structure (ionic radius) with valence state.

Calculation: $\quad \mu_{\mathrm{eff}}\left(\mathrm{Cf}^{3+}\right)=10.22 \mathrm{BM}$

$$
\mu_{\mathrm{eff}}\left(\mathrm{Cf}^{2+}\right)=10.18 \mathrm{BM}
$$

Footnotes and References

* Oak Ridge Naitiona1 Laboratory

The experimental values for the two samples differ by approximately. 5\%. These samples were from different preparations so it is possible this differ-

1. W. H. Zachariasen, J. Inorg. Nuc1. Chem. 35, 3487 (1973).
2. B. B. Comnigham and J. C. Wallman, J. Inorg, Nuc1. Chem. 26, 271 (1964).
3. H. H. Hill in 'Flutonium 1970 and Other Actinides," edited by W. N. Miner, The Metallurgical Society, New York, 1970, p.2.
4. A. J. Freenan and D. D. Koelling in 'The Actinides: Electronic Structure and Related Properties,

Volume I," edited by A. J. Freeman and J. B. Darby, Jr., Academic Press, New York, 1974, p. 51.
5. B. B. Cunningham, J. Chesin. Educ. 36, 31 (1959).

ن. D. K. Fujita, UCRL-19507, 1969.
7. See for example B. N. Figgis, "Introduction to Ligand Fields," John Wiley and Sons, Inc., New York, 1966, for the details of chis equation.

THE EPR OF Cf ${ }^{3+}$ IN OCTAHEDRAL SYMMETRY AND THE NUCLEAR DIPOLE MOMENT OF ${ }^{249}$ Cf

N. Edelstein and D. G. Karraker*

3 The diamagnetic compounds $\mathrm{Cs}_{2} \mathrm{NaMCl}_{6} \quad\left(\mathrm{M}=\mathrm{Y}^{3+}\right.$ or Lu^{3+}) provide an excellent lattice for magnetic and optical investigations of the trivalent $4 f^{n}$ and $5 f^{n}$ ions. 1,2 The octahedral coordination about the F^{n} ion $\left(\mathrm{MCI}_{6}\right)^{3-}$ particularly ${ }_{3}$ simplifies the analysis of the experimental results. ${ }^{3}$. We report in this paper the electron paramagnetic resonance (epr) spectrm of ${ }^{249} \mathrm{Cf}^{3+}$ diluted in $\mathrm{Cs}_{2}{ }^{\text {NaLuCl }} 6$. The spin Hamiltonian parameters of $\mathrm{Yb}^{3}{ }^{7}$ present in our sample as an additional impurity are also given, From an analysis of the spin Hamiltonian parameters of Cf^{3+} the value of the nuclear magnetic dipole moment of ${ }^{54}$ Cf is determined. This work is the first report of the magnetic properties of $C f^{3+}$ in a well defined symmetry site.
$\mathrm{Cs}_{2} \mathrm{NaLuCl}_{6}$, doped with ${ }^{249} \mathrm{C}$, was prepared by adding stoichionetric amounts of $\mathrm{CsCl}, \mathrm{NaCl}$, and $\mathrm{LuC1}_{6}{ }^{-} \mathrm{XH}_{2} \mathrm{O}$ to $\mathrm{K} \mathrm{HC1}$, adding a $\mathrm{MHC1}$ solution of $249^{\circ} \mathrm{Cf}$, evaporating to a solid, drying this material in quartz to $400^{\circ} \mathrm{C}$, and then fusing by lowering in a sealed quartz tube at $2 \mathrm{~mm} / \mathrm{hr}$ through a $950^{\circ} \mathrm{C}$ vertical furnace. The product was a polycrystalline material; the sample used for 2 gigr measurements contained approximately $0,5 \mathrm{wt}{ }^{2}{ }^{249} \mathrm{Cf}$. The epr spectra were measured at $4.2^{\circ} \mathrm{K}$ and at a frequency of approxinately 35 GHz with the equipment previously described.

The epr spectrum of the polfcrystalline Cf^{3+} in $\mathrm{Cs}_{2} \mathrm{NaLuCl}_{6}$ sample is shown in Fig. 1. The 4 ten hyperfine lines confirm the nuclear spin I of ${ }^{249} \mathrm{Cf}$ as. 9/2. The measured parameters of the applicable spin Hamil tonian

$$
\begin{equation*}
H=g \mu_{B} \vec{H}^{\prime} \cdot \mathbf{S}^{\prime}+A \text { 立• } \mathbf{S}^{\prime} \tag{1}
\end{equation*}
$$

where the effective spin $S^{\prime}=1 / 2$ and $I=9 / 2$, are given in Table 1. The only other strong lines in

Fig. 1. EPR spectrun of Cf^{3+} in $\mathrm{Cs}_{2} \mathrm{NaLuCl}_{1}$ $\mathrm{T}=4.2^{a} \mathrm{~K}_{2}$ the frequency is approximately 35 GHz .

Table 1. Spin Hamiltonian parameters of ${ }^{249} \mathrm{Cf}^{3+}$ and various Yb^{3+} isotcpes diluted in $\mathrm{C}_{2} \mathrm{NaluCl}_{6}$.

| Ion | I | \|g| | $\begin{aligned} & \left\|\frac{A}{g H_{B}}\right\| \\ & \text { (gauss) } \end{aligned}$ | $\begin{gathered} \|\mathrm{A}\| \\ \left(\mathrm{cm}^{-1} \times 10^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{249} \mathrm{Cf}^{3+}$ | 9/2 | 6.273 ± 0.010 | 25.7 ± 0.7 | 7.52 ± 0.2 |
| Yb^{3+} | 0 | 2.586 ± 0.004 | | |
| $\mathrm{Yb}^{3+} \mathrm{a}$ | 0 | 2.584 ± 0.002 | | |
| ${ }^{173} \mathrm{Yb}^{3+}{ }^{\text {a }}$ | 5/2 | 2.584\$0.002 | 157.4 ± 0.5 | 18.99 $\pm .06$ |
| $171 \mathrm{Yb}^{3+}{ }^{\text {a }}$ | 1/2 | 2.584 ± 0.002 | 577.4 ± 1 | $69.66 \pm .12$ |
| $a_{\text {From }}$ unpub1ished measurements at $4.2^{\circ} \mathrm{K}$ at a frequency of $\sim 9.2 \mathrm{GHz}$. | | | | |

the sample appeared at high magnetic fields and were assigned to Yb^{3+} from the measured g value (Table 1) and the characteristic hyperfine patterns. For the Yb^{3+} ion the effective spin is $\mathrm{S}^{\prime}=1 / 2$ and $\mathrm{I}=0$ for the even-even isotopes which are 69.56 \% abundant, $I=1 / 2$ for 171 Yb (14.31% abumdant), $I=$ $5 / 2$ for 173 yb (16.31% abundant).

Let us consider an isolated J level for an f transition ion in O_{h} symmetry. The energy levels and eigenvecto- 3 then depend only on the ratio and sign of the sixth order crystal field term, to the fourth order tern. 3 Lea, Leask, and Wolf ${ }^{3}$ have tabulated these eigenvalues and eigenvectors for all J manifolds of the f^{7} series ($n=1-13$) and predicted the crystal field ground states for the rare earth ions in cubic and octahedral symnetry. We may use this formalation of the problem for actinide ions; however we have to calculate the effects of intermediate coupling on the fourth and sixth order operator equivalent factors, β and γ, and on the free ion Lande g value, gJ. These parameters are shown in Table 2. We have used the electrostatic and spin orbit parameter values obtained by Carnall et ${ }^{51}{ }^{5}$ to calculate these numbers. We did not use their configuration interaction parameters which will not greatly affect the ground state wave function. As can be sees from Table 2 the signs of the operator equivalent factors are not changed by the inclusion of intermediate coupling effects. Therefore the crystal field state should be either a Γ_{6} or Γ_{7} doublet which will give an isotropic epr spectrun.

The calculated g valye for the Γ_{6} state, $-5 g_{j}$, - is equal to $-6,395$ for Cf^{3+}. The calculated g value for the Γ_{7} state is 5.667 gJ . Therefore we assign the epr spectrum to the Γ_{6} state which allows us to set a limit on the ratio of the sixth to the fourth order crystal field parameter $\mathrm{B}_{6}^{6 / \mathrm{B}}<1<1.32 .6,7,8$ This ratio is consistent with the limits found by Hendricks et al. ${ }^{1}$

1f we use the relationship

$$
\frac{A}{g}=\frac{a}{g_{J}}
$$

we find the free ion hyperfine coupling constant

$$
\mathrm{i} \mid=1.50 \pm .04 \mathrm{MHz} .
$$

Table 2. Operator equivalent factors and free ion g values for the gromd state of the f^{9} ions.

Ion	8×10^{6}	$\gamma \times 10^{6}$	g
$44^{9} \mathrm{Dr}{ }^{3+}{ }^{\text {a }}$	-. 5920	1.0350	1.333
$5 f^{9} \mathrm{Cf}^{3+}$	-. 5602	0.4494	1.279

The nuclear dipole moment is related to the free ion hyperfine coupling constant by ${ }^{9}$

$$
a=\frac{2 \mu_{B^{\mu} N^{\mu}}^{I}}{I}\left\langle\frac{1}{r^{3}}\right\rangle\left\langle L S J \| N_{i}\right||L S I\rangle,
$$

where μ_{B} and μ are the Bohr and nuclear magneton respectively, u is the nuclear lipole moment, and ($1 / r^{3}$) the expectation value of the radial wave function.

We have assumed the corre polarization tem is negligible. The operator \tilde{N}_{i} is defined. ${ }^{8,9}$

$$
{\stackrel{\rightharpoonup}{N_{i}}}_{i}=\tilde{L}_{i}\left[\tilde{I}_{i}-10^{1 / 2}\left(\vec{s} C^{2}\right)_{i}^{(1)}\right]
$$

where \dot{I}_{i} and \vec{s}_{i} are the spin and orbital angular momentum vectors and $C^{(2)}$ is a second rank tensor. We calculate

$$
|\mu|\left({ }^{249} \mathrm{Cf}\right)=.28 \pm .06 \mu_{\mathrm{N}}
$$

where we have corrected the I_{i} part of the tabulated N matrix element for the effeçts of intermediate coupling. Ths value of $\left\langle 1 / r^{3}\right.$, was obtained from Lewis et al. ${ }^{10}$ The error is estinated from uncertainties in the parameters used.

The ${ }^{249}$ Cf nuclear ground state has been assigred to $9 / 2-[734]$ Nilsson level. 11 The formalism for calculating nuclear dipole monents for single neutron states from Nilsson wave functions is well knofy. 12 If we use for effective g values ${ }^{13}$ g_{s} efin $=-2.4, \mathrm{~g}_{\mathrm{e}} \mathrm{eff}=-0.03, \mathrm{~g}_{\mathrm{R}}=3.5$, and a deformation parameter $\eta=4$ we find

$$
\mu\left(^{249} \mathrm{Cf}\right)=-0.49 \mu_{\mathrm{N}} .
$$

The absolute value calculated for nuclear moment depends to some degree on the deformation parameter chosen. The agreenent between the experinental and the theoretical result is fair.

Footnote and References

*Savannah River Laboratory, E.I. duPont de Nemours
and Company, Aiken, South Carolina 29801 .

1. M. E. Hendricks, E. R. Jones, J. A. Stone, and D. G. Karraker, J. Chem. Phys. 60, 2095 (1974).
2. R. W. Sctwartz and P. N. Schatz, Phys, Rev. B 8, 3229 (1973).
3. K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Culen. Solids 23, 1381 (1962).
4. W. Kolbe, N. Edelstein, C. B. Finch, and M. M. Abraham, J, Chem. Phys. S6, 5432 (1972).
5. W. T. Camall, S. Fried, and F. Wagner, Jr, , J. Chem. Phys. 58, 1938 (1973).
6. In the notation of Lea Leask, and Wolf $\times<-.45$.
7. We are using the tensor operator notation given by Wyboume (Ref. 9). The crystal field potential for O_{h} symuetry is

$$
\begin{aligned}
V_{C}= & B_{a}^{4}\left[C_{0}^{(4)}+(5 / 14)^{1 / 2}\left(C_{-4}^{(4)}+C_{4}^{(4)}\right)\right]+B_{0}^{6} \\
& {\left[C_{0}^{(6)}-(7 / 1)^{1 / 2}\left(C_{-4}^{(6)}+C_{4}^{(6)}\right)\right] } \\
& C_{Q}^{(k)}=\left[\frac{4 \pi}{(2 k+1)^{(k)}}\right]^{1 / 2} Y_{q}^{(k)}
\end{aligned}
$$

the $Y_{q}(\mathrm{k})$ and normalized spherical harmonics.
8. B. G. Wybourne, "Spectroscopic Properties Rare

Earths," (Interscience, New York, 1965).
9. A. Abragam and B. Bleaney, 'Electron Paramagnetic Resonance of Transition Ions," Claredon Press, Oxford, 1970.
10. N. B. Lewis, J. B. Mann, D. A. Libernan, and D. 1'. Cromer, J. Chem. Phys. 53, 809 (1970).
11. F. K. Hyde, I. Perlman, and G. T. Seaborg, 'The Nuclear Properties of the Heavy Elements," Vol. I, Prentice Hall, Inc., New Jersey, 1964.
12. M. A. Preston, "Physics of the Nucleus," Addison-Hesley Publishing Co., Inc., Pa1c Alto, 1962.
13. S. Nagamiya and T. Yamazaki, Phys. Rev. C4, 1961 (1971).

REACTIONS OF DITHIOLATE LIGANDS WITH URANIUM (IV) HALIDES

Introduction

R. Gradl and N. Edelstein

During the past decade there has been considerable interest in d transition metal -1, 2- dithiolene complexes, particularly because of their application to analytical, industrial, and bio-organic problems. ${ }^{1}$ The unusual chemical properties of the dithiolene chelates have been thoroughly studied both theoretically and experimentally by several groups and the results have been sumarized by MeCleverty ${ }^{2}$ and Huyer and Dietzsch. ${ }^{3}$

In contrast to the d transition series, very 1ittle is known about actinide 1 , 2- dithiolene complexes. The anionic uranyl (VI) chelates, ($\left.\mathrm{R}_{4} \mathrm{~N}\right)_{2}$ $\mathrm{UC}_{2}(\mathrm{mnt})_{2}$, where R is $\mathrm{C}_{2} \mathrm{H}_{5}$ or n-propyl, mnt $=$ maleonitriledithiolate dianon, have been prepared. 4 Contradictory results existed about a U(IV) dithiolene complex until Dietzsch and Hoyer 5 synthesized $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) 4\right]\left[\mathrm{U}(\mathrm{mmt})_{4}\right]$ from the reaction of UCl_{4} with Nazmit. They also found that neither the reaction of ${ }^{2} \mathrm{UCl}_{4}$ in methanol with the disodium salt of $1,2-$ dimercaptoethylene or with 4,5-dimercapto-o-xylene led to stable compounds. Very recently the symthesis of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) 2^{\mathrm{U}}(\mathrm{tdt})$, tdt $=$ tcluenedithiol dianon, has been isolated from the reaction of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{U}$ (Net $)_{2}$ and H_{2} tdt, 6 The proton NRR data indicate a monomer dimer equilibrium below room temperature.

We present here the details of the reactions between UCl_{4} and UI_{4} and the ligands 3,4 -dithiotoluene (H_{2} tdt) and bis-trifluoromethyl 1,2 dithietene ${ }^{\left(S_{2} \mathrm{C}_{4} \mathrm{~F}_{6}\right) \text {. } \text {. } \text {. } \text {. }}$

Results and Discussion

Reactions with 3,4 - toluenedithiol
U14. Uranium tetraiodide reacts with 3,4-toluenedithiol in refluxing hexane to give a red-brown compound which is insoluble in methylene chloride, benzene, or toluene. It is very soluble in THF or Lkf giving a yellowish-red solution, but it cannot be recovered from these solvents. The compound im-
mediately decomposes in air and dissolves completely in water giving a green solution. Total elemental analysis of the compound shows its composition to be $\mathrm{U}_{2} \mathrm{I}_{4}(\mathrm{tdt})_{2}\left(\mathrm{H}_{2} \mathrm{tdt}\right)$. In agreement with this formulation the infra red spectrum shows a u_{S} absorption at $2425 \mathrm{~cm}^{-1}$ which, when compared with the frec li-
 weaker $5-\mathrm{H}$ bond. Sublimation at $160^{\circ} \mathrm{C}$ and 10^{-5} torr gives a yellow-brown product which does not show any IR absorption bands characteristic of the $\mathrm{H}_{2} \mathrm{tdt} \mathbf{l i}$ gand.

The proton nur spectrum exhibits two different bands corresponding to two sets of ligands, as shown in Table 1. The upfield resonances contain the $\mathrm{H}\left(\mathrm{CH}_{3}\right)$ and $\mathrm{H}\left(\mathrm{CH}_{7} \mathrm{ing}^{\prime}\right)$ bands of two tdt ligands. This large upfield shife relative to TMS shows these protons are strongly affected by the paramagnetic U(IV) ions which have the $5 \mathrm{~F}^{2}$ open shell configuration. The low field group (2.3 to 7.33 ppm downfield from TMS) exhibits two $\mathrm{H}(\mathrm{S}-\mathrm{H})$ peaks in addition to the $\mathrm{H}\left(\mathrm{CH}_{3}\right)$ and $\mathrm{H}\left(\mathrm{CH}_{\text {ring }}\right)$ peaks. These resonances are at the same frequeficies as in the spectron of the free ligand. We suggest the $\mathrm{U}_{2} \mathrm{I}_{4}(\mathrm{tdt})_{2}\left(\mathrm{H}_{2} \mathrm{tdt}\right)$ complex partially dissociates upon dissolving in THF due to a replacement of the H_{2} tdit ligand by two THF molecules. Note that in Table 1 the $\mathrm{H}(\mathrm{S}-\mathrm{H})$ resonances of the free ligand in d_{8}-THF and CDCl_{3} are different while the $\mathrm{H}\left(\mathrm{CH}_{3}\right)$ and $\mathrm{H}\left(\mathrm{CH}_{\text {ring }}\right)$ resonances ar . very similar. This fact may be due to hydrogen bonding of the protons in the $\mathrm{S}-\mathrm{H}$ group by THF.

A possible structure for $\mathrm{U}_{2} \mathrm{I}_{4}(\mathrm{tdt})_{2}\left(\mathrm{H}_{2} \mathrm{td} \mathrm{t}\right)$ is given in Fig. 1. In this structure each uranium ion is surrounded by four sulfurs and two iodines in a distorted octahedral configuration.

An appropriate reaction mechanisn can be postulated which would lead to this structure. One molecule of H_{2} tdt reacts with UI_{4} to give an intermediate UI_{2} tdt by replacenent of two iodide ions as 2HI. The insufficient coordination about the U(IV)

Tahle 1. $\mathrm{H}-\mathrm{N} R \mathrm{R}$ frequencies of 3,4-tolueneditiol and $\mathrm{U}_{2} \mathrm{I}_{4}(\mathrm{td} t)_{2}\left(\mathrm{H}_{2} t d t\right)$.

Assiguments	3,4-toluenedithiol		$\mathrm{I}_{4}(\mathrm{tdt})_{2}\left(\mathrm{H}_{2} \mathrm{tdt}\right)$
	In $\mathrm{d}_{8}-\mathrm{THF}^{\text {a }}$	In $\mathrm{CDCl}_{3}{ }^{\text {a }}$	In $\mathrm{d}_{8}-\mathrm{THF}^{\text {a }}$
CH_{3}	-2.16	-2.30	-2.30
$\mathrm{S}_{1} \mathrm{H}$	-4.00	-3.50	-4.10
$\mathrm{S}_{2} \mathrm{H}$	-4.40	-3.66	-4.20
ring H_{1}	-6.60	-6.66	-6.76
	-6.73	-6.80	-6.83
ring H_{2}	-7.06	-7.03	-7.13
	-7.16	-7.18	-7.33
ring H_{3}	-7.03	-7.06	-7.10
CH_{3}			9.35
ring H_{1}			11.64
			11.72
ring H_{2}			56.69
			56.85
ring H_{3}			50.45

${ }^{3}$ Units are ppon referenced to TMS.

Fig. 1. Proposed structure for $\mathrm{H}_{2} \mathrm{I}_{4}\left(\mathrm{~S}_{2} \mathrm{C}_{7} \mathrm{H}_{6}\right)_{2}$ $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{C}_{7} \mathrm{H}_{6}\right)$. The curved line represents the $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$ backbone of the 3,4-toluenedithiol ligand.
(XBL 7411-8303)
causes a dimerization with another molecule of ${ }^{\prime \prime} I_{2}$ tdt, with one sulfur of each 1igand bridging between the two U ions. However, a third ligand is needed to give each uraniun ion the favored six fold coordination, but this ligand cannot be reduced to a dianion without giving the uranium ions a formal oxidation state $(+V)$. Therefore the third ligand is easily replaced. The lability of the neutral H_{2} tdt ligand is the main cause of the themal instability, the reactivity towards air, and the reation the compown cannot be recrystallized from THF or IMIF due to its reactions with these solvents.

The proposed structure is supported by ${ }^{\text {th}}$.e report of a monomer-diner equilibrium for $\mathrm{Cp}_{2} \mathrm{U}(\mathrm{tdt})$. ${ }^{6}$

The π-bonded cyclopentadienyl ion is a much better coordinating ligand than I^{-}so at room temperature the complex is mononeric. At lower temperatures the dimer becomes stabilized. By contrast, the iudo complex even at room temperature coordinates a neutral ligand in order to become coordinatively saturated.
UCl_{4} : Uraniun tetrachloride reacts with H_{2} tdt in refluxing CCl_{4} or ethylcyclohexane to give a brown conpound. Total elemental analysis showed the main part was unreacted UCl_{4} and decomposition products of the ligand. Part of the material dissolves in THF to give a green solution leaving a brown residue. A red complex is precipitated from the green solution after several days at $-10^{\circ} \mathrm{C}$ but in insufficient quantity for characterization.

Reactions with bis (trifluoromethy1 -1,2 dithietene)
UCl_{4}. Uranium tetrachloride was treated with bis(triflworomethy1) -1,1-dithietene in boiling ethylcyclohexane for several days to give a dark brown material of the enpirical formula $\mathrm{U}_{2} \mathrm{C1}_{4} \mathrm{~S}_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$ as determined by total elemental analysis The mass spectron only exhibited bands with very low intensity in the range between 840 and 860 mass units (molecular weight of $\mathrm{H}_{2} \mathrm{C1}_{4} \mathrm{~S}_{2} \mathrm{C}_{4} \mathrm{~F}_{6}=844$). The stretching frequency of the $\mathrm{C}=\mathrm{C}$ bond ($1607 \mathrm{~cm}^{-1}$) showed shift is similar to that found in various dinuclear species containing a bridging dithiolene ligand, $\mathrm{M}-\mathrm{L}-\mathrm{M}, \mathrm{M}=\mathrm{Fe},{ }^{7} \mathrm{M}=\mathrm{V}, \mathrm{Cr}, \mathrm{Mo}^{8}$ and suggests the dithiolene ligand in this U complex may also be bridging. The material $\mathrm{U}_{2} \mathrm{Cl}_{4} \mathrm{~S}_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$ is very slightly soluble in THF and DMF but slowly deconposes in showed only a small shilt of $-14 \mathrm{~cm}^{-1}$ from the free ligand. This small shift is similar to that found in various dinuclear species containing a bridging dithiolene ligand, $\mathrm{M}-\mathrm{L}-\mathrm{M}, \mathrm{M}=\mathrm{Fe},{ }^{7} \mathrm{M}=\mathrm{V}, \mathrm{Cr}, \mathrm{Mo}{ }^{8}$ and suggests the dithiolene ligand in this U complex $\therefore-$, also be bridging. The material $\mathrm{U}_{2} \mathrm{Cl}_{4} \mathrm{~S}_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$ is very slightly soluble in THF and DMF but slowly decomposes in these solvents. Sublimation of this material yielded onty UCl_{4}. We are presently unable to suggest a plausible structure for this material but it is posisibly polymeric.
UI_{4}, jranium tetraiodide was treated with $\mathrm{S}_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$ in ethy cyc clohexane at 130° for several days to give a brown material which was insoluble in common solvents. Total elemental analysis showed this material had an empirical formula $\mathrm{U}_{3} \mathrm{~F}_{3} \mathrm{I}\left(\mathrm{S}_{2} \mathrm{C}_{4} \mathrm{~F}_{6}\right) 2$. 1::e excess of fluorine in this material indicates some of the ligand decomposed. The stretching frequency of the $\mathrm{C}=\mathrm{C}$ bond ($1618 \mathrm{~cm}^{-1}$) is similar to that found for $\mathrm{U}_{2} \mathrm{Cl}_{4} \mathrm{~S}_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$. This material appears polyneric and no rensonable structure can be suggested for it.

Conclusion

Uranium tearachloride and uranium tetriaiodide react with the ligards bis (trifluorometive.), $-1,2$ iithetene and 3,4 toluenedithiol in a very specific fashion which is dependent on the particular halide and ligand used. In the reactions studied no anionic species were found and no general formula can be gi, in for the different reaction products. The only common feature of the reactions is that dinulear or polynuclear species were formed.

References and Footnotes

1. For a discussion and references to these applications, see Refs. 2 and 3.
2. J. A. McCleverty, Prog. Inorg. Chem. 10, 49 (1968).
3. E. Hoyer and W. Dietzsch, Z. Chem. 11, 41, (1971).
4. L. Zinmer and K. H. Lieser, Inorg. Nuc1. Chem.

Letters 5, 635 (1971).
5. W. Dietzsch and E. Hoyer, Inorg. Nucl. Chern. Letters 5, 635 (1969).
6. J. D. Jamerson and J. Takats, J. Organometal. Chem. 78, C23 (1974).
7. R. B. King, J. Aner. Chem. Soc. 85, 1584 (1963).
8. R. B. King, J. Amer. Chem. Soc. 85, 1587 (1963).

SOME REACTIONS OF NEPTUNIUM HEXAFLUORIDE AND THE SYNTHESIS OF NMOF ${ }_{4}$

R. D. Peacack* and N. Edelstein

The discovery of Np (VII) in complex oxides and similar compounds ${ }^{1,2}$ has led to renewed interest in the possibility that other Np (VII) compounds, formally analogous to well known Re (VII) and Te(VII) entities, might be synthesized. The most likely route to such compounds, lies in the oxidation of Np oxides, fluorides or oxide fluorides under lrastic conditions. In the present work the oxida ion of a neptunium oxide fluoride by krypton difluoride was attenpted, and the opportunity was taken to study the stability of other high-vaIent neptunium compounds. The progranme was divided into sections as follows: 1) the attempted synthesis of CsNpF_{7} (with a view to ultimate oxidation to CsNpF_{8}), 2) the exchange reaction NpF_{6} with BCl_{3} (with a view to isolating a chloride of Np higher than the known NpCl_{4}), 3) the partial hydrolysis of NpF_{6} and the attempted oxidation of the hydrolysis product.

Discussion

Although uranium salts of the types $\mathrm{Na}_{3} \mathrm{UFg}_{\frac{1}{5}}$ $\mathrm{K}_{2} \mathrm{UF}_{8}$ and CsUF7 have been known for some time, $9,4,5$ the corresponding Np salts have not been isolated, and it appears that the reaction of NpF_{6} with 2 lkali metal fluorides generally leads to Np(V) salts. 6 However, strong colorations have been observed on previous occasions luring the reaction between NpF_{6} and $\mathrm{NaF}_{3}{ }^{7}$ and the reaction between NpF_{6} and NOF at $-80^{\circ},^{8}$ which may be ascribed to the fomation of N (VI) salts. From the present work it is evident that although the dry reaction between NpF_{6} and CsF leads to CsNpF_{6}, the reaction in ClF_{3} is more complicated and the initial product is probably an $\mathrm{Np}(V I)$ complex fluoride. Comparison with the U(VI) system suggests that the material initially formed is CsNpF_{7}, which then reacts with SiF_{4} inpurity in the system:

$$
2 \operatorname{CsNpF} 7+\mathrm{SiF}_{4}-\mathrm{Cs}_{2} \mathrm{SiF}_{6}+2 \mathrm{NpF}_{6}
$$

Unfortunately the presence of the adventitious SiF_{4} means that the solution experiments do not give precise information about the stability of the initial Np (VI) compound. Nevertheless, it is clear that CsNPF_{7} is not stable at 25°, and it must also be concluded that any Np(VII) complex fluoro-anion will also prove to be very unstable indeed.

The highest certain chloride of neptunium is NPCl_{4}, though there is some slight evidence for
NpCl_{5} in the vapor state. Exchange reactions have proved successful in preparing tungsten and uraniwn hexachlorides from the corresponding fluorides and boron trichloride, 9,10 while the action of boron trichloride on rhenium hexafluoride certainly gives the pentachloride and just possibly a hexachloride as wel1.11,12 The present work indicates that a coinpeting reaction to give the tetrafluoride, which is also shown to some extent by uranium hexafluoride, 10 becomes exclusive with neptunium hexafluoride, even in the presence of chlorine and chlorine trifluoride.

$$
3 \mathrm{NpF}_{6}+2 \mathrm{BCl}_{3}+3 \mathrm{NPF}_{4}+3 \mathrm{Cl}_{2}+2 \mathrm{BF}_{3}
$$

The reaction of the NpF_{4} with excess of BCl_{3} leads to a change of phase, and it is likely that Np (IV) chloride fiuorides, analogous to the known uranium compounds, ${ }^{13}$ are formed. It is interesting that NpF_{5}, which has been finly characterized by x-ray photography, 14,15 is not isolated at any stage in this exchange reaction.

The hydrolysis of UF_{6} has only recently been re-examined after early reports had suggested that UF6 did not react with water in the vapor phase to give the oxide tetrafluoride. 16 However, two sets of workers have now independently shown that in anhydrous hydrogen fluoride solution the carefully controlled hydrolysis of UF_{6} does give UOF_{4}, formally analogous to the well-kıown oxide tetrafluorides of Mo and N . Unlike $\mathrm{UO}_{2} \mathrm{~F}_{2}$, this is an extremely reactive material; the structure is quite different from the 6 -coordinated MOOF_{4} and WOF 4 , and in fact two different phases are known, one of which is isostructural with $\beta-\mathrm{UF}_{5}$ and both of which contain uranium in ligh co-ordination.

In the present work it has been shown that a reactive material almost insoluble in anhydrous hydrogen fluoride is the first product of the hydroly sis of NpF_{E}. This reactive material bas been identified by x-ray diffraction as parameters the trigonal form of Npof 4 . A least squares fitting ${ }^{17}$ of the trigonal unit cell parameters to the observed data gives the lattice constants shown in Table 1. The nore compressed unit cell for NpOF_{4} is compared to UOF_{4} follows the expected trend due to the decreased ionic radius of the higher Z element. When the NpOF_{4} was allowed to stand in capillaries in incompletely dry conditions, it led to decolorization

Table 1. Lattice constants for WFF_{4} and NpOF_{4}.

Lattice Parameters	$\mathrm{VOF}_{4}{ }^{\text {a }}$	$\mathrm{NpOF}_{4}{ }^{\text {b }}$
a $\left.{ }^{(}\right)$	13.22	13.17 ± 0.02
$c^{(A)}$	5.72	5.70 ± 0.02
${ }^{\text {Theng }}$ Trigonal space group R 3 (hexagonal setting), Ref. 4. $\mathrm{b}_{\text {Absorption corrections were made by the Nelson and }}$ Riley extrapolation procedure.		

and the appearance of a further unidentified crystalline phase. The attempted oxidation of NPOF_{4} with krypton difluoride did not lead to the hoped for Noply (which one might expect to be volatile), but only to the partial re-formation of NpF_{6}, perhaps according to the equation

$$
\mathrm{NpOF}_{4}+\mathrm{KrF}_{2}+\mathrm{NpF}_{6}+\mathrm{Kr}+\frac{1}{2} \mathrm{O}_{2}
$$

The residue was almost unchanged starting material.
It is now eviden: that a Np(VII) fluoriae or oxide fluorid? will not be easily prepared. To isolate NpF_{7}, or NpO_{5} will require stronger oxidizing conditions than those used, and it is difficult to see how these can be accomplished with materials presently to hand. $\mathrm{NpO}_{2} \mathrm{~F} 3$ could have resulted from the direct fluorination of NpO_{2} (cf $\mathrm{ReO}_{2} \mathrm{~F}_{3}$), and the only remaining change here would be to attempt the oxidation of the rather unreactive $\mathrm{NpO}_{2} \mathrm{~F}_{2}$. There appears on the surface to be a marginally better change of getting $\mathrm{NpO}_{3} \mathrm{~F}$, since, with manganese and technftive, coumpounds of similar stoichiometry may be isolated without great difficulty. 16,17 Unlike $\mathrm{MnO}_{3} \mathrm{~F}$ and TCO3F, however, it is not likely that an $\mathrm{NpO}_{3} \mathrm{~F}$ would prove to be volatile, so that the reaction conditions which might result in its isolation would need careful selection. It seems likely indeed that further progress in this field will have to await the isolation of complex oxides of Np (VII) more tractable than the presently known compounds towards fluorination.

Footnotes and References

* On leave from the Chemistry Department, The University, Leicester, England, January-June 1974.

1. (a) V. I. Spitsym, A. D. GeIman, N. N. Krot,
M. P. Mefodiyeva, F. A. Zakharova, Yu. A. Komkov, V. P. Shilov, and I. V. Smirnova, J. Inorg. Nuclear Chem., 312733 (1969). (b) C. Keller and HI. Seiffert, Inorg. Nuclear Chem, Lett., $\underline{5} 51$ (1969).
(c) S. K. Awastin, L, Martinot, J. Fuger and G. Dhychaerts, Inorg. Nuclear Chem. Letters, 7145 (1971). (d) M. Pages, T. Nectoux, and W. Freudlich, Radiochem. Radioa:...1. Lett., 7155 (1971).
2. J. H. Burns, W. A. Baldwin, and J. R. Stokely, Inorg, Chem., 12466 (1975).
3. J. G. Malm, H. Selig, and S. Siegel, Inorg. Chem., S, 130 (1966).
4. N. S. Nikolaev and V. F. Sukoverkhov, Dokl. Akad, Nauk. SSSR. 136621 (1961).
5. S. Katz, Inorg. Crem., 3 1598 (1954).
6. L, E. Trevorrow, T. J. Gerding, and M, J. Steindler, Inorg. Chem., 72226 (1968).
7. S. Katz and G. I. Cathers, Nuclear Appl., 5 206 (1968).
B. N. Bartlett and B. Zenva, unpublished observation, 1973.
8. T. \therefore O'Donnell and D. F. Stewart, Inorg. Chem., 5 1434 (1966).
9. T. A. O'Donnsil, D. F. Stewart, and P. Wilson, Inorg. Cher, , 51438 (1966),
10. J. H. Canterford, T. A. OיDonnel1, and A. B. Waugh, Austral. J. Chem., 24243 (1971).
11. J. Burgess, C. J. W. Fraser, I. Haigh, and R. D. Peacock, J. Chem. Soc., (Dalton Trans.), 501 (1973).
12. See D. Brown, Ha1ides of the Lanthanides and Actinides (Wiley Interscience, London, 1968) p. 254.
13. S. Fr ied and J. H. Holloway, private conmmication quoted by R. P. Penneman, R. R. Ryan, and A. Rosenzweig, Structure and Bonding, 131 (1975).
14. J. H. Holloway, personal commication, 1974.
15. (a) L. H. Brooks, E, V. Garner, and E. Whitehead, "Chemical and X-Ray Crystallography Studies on Uranyl Fluoride," IGR-TN/CA 277 (1956). (b) M. G. Otey and R. A. le Doux, J. Inorg. Nuclear Chem., 29, 2249 (1967).
16. D. E. Willians, Anes Laboratory Report IS-1052, (1964).

RECOIL TRITIUM REACTIONS WITH METHYLCYCLOHEXENE. A TEST OF THE ASSUMPTION OF ENERGY RANDOMIZATION PRIOR TO UNIMOLECULAR DECOMPOSITION*

D. C. Feot and S. S. Markowitz

The reactions of recoil tritim atoms with the three methylcyclohexene isomers have been studied in the gas phase at 135°. T was produced by $3^{3} \mathrm{He}(\mathrm{n}, \mathrm{p}) \mathrm{T}$. Recoil tritium atom abstraction, addition, or T -for-H substitution reactions accormted for 90% of the gas-phase products. Following activation by T-for-H substitution, the unimolecular deconposition of 4 -methylcyclohexene-t (to give propylene-t or butadiene-i) and the unimolecular decomposition of 3 -methylcyclohexene- t (to give ethylene-t or 1,3-pentadiene-t) was established from the pressure dependence of the product yield in the $300-1200-T o c r$ pressure range. The apparent rate constants for these unimolecular deconposition processes was determined as 1×10^{7} and $3 \times 10^{6} \mathrm{sec}^{-1}$, respectively. The rate constants for the unimolecular decomposition of cyclohexene-$1-t$ and cyclohexene-s-t (fomed by T-for-methyl substitution on 1 -methylcyclohexene and 3 -methyl-
cyclohexene, respectively) were nearly equivalent.
In addition, the average energy of excitation following T-for-methy1 substitution is the same in cyclohexene-1-t and cyclohexene-3-t, namely, 6.0 to 6.5 eV . It was concluded that the RRKM (Rice, Ramsperger, Kassel, and Marcus) assumption of energy randomization prior to unimolecular decomposition is valud for che recoil tritiun initiated unimolecular decomposition of cyclohexene.

Footnotes

*Condensed from Journal of Physical Chemistry, 78, 4 (1974).
${ }^{\dagger}$ Present address: Argonne National Laboratory, Argonne, Illinois.

RECOIL TRITIUM REACTIONS WITH CYCLOHEXENE AND ALKENES. DETERMINATION OF RATE PARAMETERS*

D. C. Feet and Samued S. Markowitz

Kinetic rate paraneters can be determined from recoil tritium reaction studies although the energy distribution of the reacting tritium atoms is not knom, T is produced by 3 He $(n, p) T$, Recoil T-for-h substitution on cyclohexene gives excited cyclols 'ene- t molecules. The dependence of product yield on pressure (in the 300 - 1500 Torr pressure range) showed that the excited cyclohexene-t molecules dec mposed unimolecularly to give ethyl-ene- t and butadiene-t with an apparent rate constant (at 135°) of $5-10^{6} \mathrm{sec}-1$. The a parameter in the RRK (Rice, Ramiperger, and Kassel) treatment of the minolecuiar deconposition of cyclohexene was detormined as $s=24$. Similarly, the pressure dependence of product yield showed that cyclohexy 1-t radicals which are formed by
recoil T atom addition to cyclohexene deconposed unimolecularly to give n-hexene- t, l-butene- t, and nethane- t with rate constant $8 \times 10^{3}, 3 \times 10^{4}$, and $5 \times 10^{2} \sec ^{-1}$, respectively. The relative rate of abstraction ve. addition of radicals in alkenes was detemined from the scavenger dependence of the yields of products with a radical precursor.

Footnotes

*Condensed from Journal of Physical Chemistry, 78, 347 (1974).
${ }^{\dagger}$ Present address: Argonne National Laboratory, Argonne, lllinois.

ION-MOLECULE REAGTIONS IN RECOIL TRITIUM CHEMISTRY*

D. C. Feet and S. S. Markowitz

The possibility of ion-molecule processes in recoil tritiu'n reactions has been dismissed, 2 through application of the adiabatic principle. 3 However, the energy defect was incorrectly evaluated from the unperturbed energy levels of the isolated particles.4-6 Experimentally, Rowland and coworkers have established an upper limit of 10 g for the contribution of excited electronic states in T-for-H substitution. ${ }^{7}$ Experimentally, the yield of HT is higher in the presence of helium (versus other noble gases). To explain this, Seewald and Wolfgang' proposed that 6% of the total tritiun reacted as unneutralized T^{+}because of the high ionization potential of helium while Urch and Malcoire-Lawes ${ }^{9}-10$ proposed greater stabilization of highly excited HI by helium.

Unexplained by Urch and Malcolme-Lawes is the higher yield of "polymer- t ": accompanying the higher HT yield in helium (versus xenon) moderated $T+$ cyclohexene reactions. 11 "Polymer-t" is barkflushed from the chromatographic columis and washed from the walls of the sample capsule in which the recoil tritium reaction took place. 12,13 Recently, "polymer-t" has been characterized by Filatov and co-workers using thin layer chromatography, 14 Table i shows some "polymer-t" data. Irradiations and sample anazysis are discussed elsewhere. 15,16 The key feature of Table 1 is that the "polymer-t" yield is non-zero with $\mathrm{H}_{2} \mathrm{~S}$ scavenging. The "polymer-t" yield was zero in an irradiated blank containing 3 He and scavenger but no hydrocarbon. The 35 S activity (due to

Table 1, $T+$ alkene reaction data at $25^{\circ} \mathrm{C}$,

Parent	Scavenger	Yields		
		"Polymer-t"	Alkane-t	Gas Phase-t ${ }^{\text {b }}$
Cyclohexene ${ }^{\text {c }}$	$\mathrm{H}_{2} \mathrm{~S}$	37	109	200
(Alkane-t = cyclohexane-t)	none	75	32	96
	SO_{2}	174	1	44
1-Butene ${ }^{\text {d }}$	$\mathrm{H}_{2} \mathrm{~S}$	22	135	304
(Alkane-t = butane-t)	поле	61	21	195
	SO_{2}	139	4	150

$a_{\text {Tritiated product yields relative to yield of tritiated parent compound as } 100 .}$ Results of two samples that agreed to within 10%.
${ }^{b}$ Sum of all tritiated products monitored by radio-gas-chromatography except HT and the tritiated parent compound. For material balance of profucts with a radical intermediate, the decrease in gas phase product yields between $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} scavenger should be accompanied by an identical increase in the "polymer-t" yield. The smaller change in the "polymer-t" yield indicates that "polymer-t" recovery is $[(174-37) /(200-44)] \times 100_{0}^{2}=88 \%$ complete for $\mathrm{T}+$ cyclohexene reactions (77\% for $T+1$-butene).
${ }^{\circ}$ Sarple composition (cang Hg): ${ }^{3} \mathrm{He} 1.6$, cyclohexane 5.6 (6 mole 8 scavenger).

${ }^{34} \mathrm{~S}(\mathrm{n}, \mathrm{Y}){ }^{35} \mathrm{~S}$ from $\left.\mathrm{H}_{2} \mathrm{~S}\right)$ is less than 58 of the "polymer-t" yield with $\mathrm{H}_{2} \mathrm{~S}$ scavenging. Filatov et a1. showed that 'polymer- t " in unscavenged $T+$ cyclohexene reactions was formed by chain addition initiated by cyclohexyl-t radicals. However, calculations show that radical-molecule (and radical-radical) routes to 'polymer-t" fonnation are eliminated by $\mathrm{H}_{2} \mathrm{~S}$, which donates a hydrogen atom to the radical. Rate constants used (units of $\mathrm{cm}^{3} \mathrm{~mole}^{-1} \mathrm{sec}^{-1}$) were for methyl radicals reacting with $\mathrm{H}_{2} \mathrm{~S} 17\left(3.0 \times 10^{9}\right)$, with trans-2butene18 (for cyclohexene, 2.6×105), and with methy 1 radicals 19 (2.4×1012). In the $\mathrm{H}_{2} \mathrm{~S}$ scavenged $\mathrm{T}+$ cyclohexene system, the estinated steady state concentration of: (1) tritium labeled radicals (chiefly cyclohexyl-t radicals, see Table 1) is 7×10^{-19} moles cm^{-3}; (2) unlabeled radicals (formed at one ion pair per 30 eV energy deposited by the 3 fe (n, p) T reaction) is 6×10^{-14} moles cmi^{-3}. The rate of reaction of tritiated radicals with $\mathrm{H}_{2} \mathrm{~S}$ is estimated to be three orders of magnitude larger than the rate of reaction of tritiated radicals with either 1) cyclohexene or 2) unlabeled radicais. Experimentally, the scavenger plateau of the cyclohexane- t yield 15 shows that cyclohexyl-t radicals react solely with $\mathrm{H}_{2} \mathrm{~S}$ rather than cyclohexene or unlweled radicals in competition with $\mathrm{H}_{2} \mathrm{~S}$.

The "polymer-t" yield not scavengearle by $\mathrm{H}_{2} \mathrm{~S}$ is 68 of the total yield of tritiated products (HT + parent-t + other tritiated gas phase products + "polyner-t") in T + cyclohexene reactions (48 in $T+i$-butene reactions). He propose that the "polymer-t" yield that is unscavengeable by $\mathrm{H}_{2} \mathrm{~S}$ results from ion-molecule processes. Typical
ion-molecule reaction rate constants 20 are 1014 to $1015 \mathrm{~cm}^{3} \mathrm{~mole}^{-1} \mathrm{sec}^{-1}$; which is larger by two orders of magritude than radical-radical rate constants. In addition, tritiated ion chains, unlike tritiated radical chains, are not terninated by reaction with $\mathrm{H}_{2} \mathrm{~S} .20$

Footnotes and References

*Accepted by Radiochimica Acta.
${ }^{\dagger}$ Present address: Argonne National Laboratory, Argonne, Illinois 60439.

1. R. Wolfgang, Progress in Reaction Kinetics 3. 97 (1965).
2. D.S. Urch, MTP Int. Rev. Sci., Inorg. Chen. Ser. 8, 149 (1972).
3. H.S.W. Massey and E.H.S. Burhop, Electronic and Ionic Inpact Phenomena, Clarendon Press, (xford, 1952, PP. 513-4.
4. S. Dworetsky, R. Novick, W.W. Smith and N. Tolk, Phys. Pev. Lett. 18, 939 (1967).
5. H. Rosenthal and H.M. Foley, Phys. Rev. Lett. 23, 1480 (1969).
6. S.H. Dworetsky and R. Novick, Phys. Rev. Lett. 23,1484 (1969).
7. G. Izawa, E.K.C. Lee, and F.S. Rowland, J. Phys. Chem. 77, 1210 (1973).
8. D. Seewald and R. Wolfgang, J. Chem. Phys. 47, 143 (1967).
9. D.J. valcolme-Lawes and D.S. Urch, J. Chem. Soc. , Chem. Comm. 18, 107 (1973).
10. D.J. Malcolme-Lawes, J, Chen. Soc., Chem. Conva. 18, 225 (1973).
11. R.iH. Heeks and J.K. Garland, J. Phys. Chem. 73, 2508 (1969).
12. J.K. Garland, Anal. Lett. 1, 273 (1968),
13. D.C. Fee, University of California, Lawrence Berkeley Laboratory Report LBL-1687, Ph.D. Thesis, Jure, 1973.
14. E.S. Filatov, P.P. Kukin, and Yu. A. Ivanov,

Radiochem. Radioana1. Lett. 15, 157 (1973).
15. D.C. Fee and S.S. Markowitz, J. Inorg. Nucl. Chem. 35, 2153 (1973) .
16. D.C. Fee and S.S. Markowitz, Anal. Chem, 41, 1827 (1973).
17. N. Imai and O. Toyama, Bull. Chem. Soc. Japan 33, 652 (1960).
18. R.J. Cvetanovic and R.S. Irwin, J. Chem, Phys. 46, 1694 (1967).
19. P. Gray, A. A. Herod, and A. Jones, Chem. Rev. 71, 247 (1971).
-u. Fundanental Processes in Radiation Chemistry,
P. Ausloos, Ed., Interscience, New York (1968), p. 171.

DETERMINATION OF LEAD IN ATMOSPHERIC AIR AND IN ALUMINUM BY HELJUM-3-JNDUCED MUCLEAR REACTIONS*

B. Parsa ${ }^{\dagger}$ and S. S. Markowitz

Helium-z activation analysis has been applied to develop a very sensitive means of trace lead analysis. The procedure involves the bonbardment of samples with 3 He particles to induce a $\mathrm{Pb}+$ $3 \mathrm{He}+207 \mathrm{Po}$ reaction on lead isotopes. The 992-keV γ-ray of $5.84-\mathrm{hr}$ 207po is used as the "signal" for lead determination. Only milligram amounts of sanule are required. The excitation function for the production of 207 Po from the reaction of 3 He with lead of natural isotopic composition is presented. If necessary, destructive analysis may be carried out, and a radiochemical separation procedure to plate polonium onto a silver foil is discussed. The accuracy of the measurement is about 3 to 5% for comparative analyses. For
absolute deteminations, the error is estimated to be 9-12\%. Under reasonable irradiation and counting conditions, the detection limit is approximately $50 \mathrm{pg} / \mathrm{cm}^{2}$, corresponding to 0.5 ppb in a matrix $100 \mathrm{mg} / \mathrm{cm}^{2}$ thick.

Footnotes

*Condensed from Analytical Chenistry 46, 186 (1974).
${ }^{\dagger}$ Visiting Fulbright-Hayes Grantee. Pemment address: Tehran University Nuclear Center, Tehran, Iran.

HEAVY ION IRRADIATION OF SOLID GLYCINE

T. L. Tenng, H. A. Sokal, W. Bennett-Cornies,

 G. P. Welch, and W. M. GarrisonTo date, most of our detailed knowledgc of the chemical actions of ionizing radiations has been derived from studies involving fast electrons produced either directly by an accelerator or secondarily through absorption of x - or γ-radiation. Recent interest in the possible biological and medical applications of heavy-ion beams has emphasized the need for more information on the effects of linear energy transfer (LET) in radiation chemistry. Relatively little systematic work has been done in this area of research -- particularly with reference to biochemical conpounds in aqueous solution and in the solid state. He have initiated such a program at LBL using the 88 -inch cyclotron as the radiation source. It is anticipated that this work will provide basic information that can also be applied in later studies using high-energy heav-ion beans from the Bevalac. He report here preliminary findings of the effects of LET in the radiolysis of solid glycine. This is a well defined biochemical system and one that has been studied extensively with γ-rays. 1

In the γ-radiolysis of solid glycine the over-all radiation induced step may be represented in the tems

$$
\begin{equation*}
\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-} \leadsto\left(\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)^{+}+e^{-} \tag{1}
\end{equation*}
$$

followed by the proton stripping reaction

$$
\begin{equation*}
\left(\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)^{+} \rightarrow \mathrm{NH}_{3}^{+} \mathrm{C} \mathrm{HOO}^{-}+\mathrm{H}^{+} \tag{2}
\end{equation*}
$$

With γ-rays [i.e., at low LET] the electron escapes the parent ion and subsequently is removed via

$$
\begin{equation*}
\mathrm{e}^{-}+\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-} \longrightarrow \mathrm{NH}_{3}+\mathrm{CH}_{2} \mathrm{COO}^{-} \tag{3}
\end{equation*}
$$

The radicals $\mathrm{NH}_{3}^{+} \mathrm{CHCOC}$ - and $\mathrm{CH}_{2} \mathrm{COO}^{-}$interact on dissolution of the solid in de-aerated water

to give the imino acetic acid derivative and acetic acid. The imino acid then hydrolyzes spontaneously to give aulditional ammonia ,nd glyoxylic acid

$$
\begin{equation*}
\mathrm{NH}_{2}^{+}=\mathrm{CHOO}^{-}+\mathrm{H}_{2} \mathrm{O}-\mathrm{NH}_{3}+\mathrm{CHOCOOH} \tag{5}
\end{equation*}
$$

Under γ-rays, charge recombinstion, i.e., the reverse of reaction (1)

$$
\begin{equation*}
\mathrm{e}^{-}+\left(\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)^{+} \longrightarrow\left(\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)^{\ddagger} \tag{6}
\end{equation*}
$$

appears to be of relatively minor importance. The stoichiometry of reactions (1) - (5) gives $\mathrm{G}\left(\mathrm{NH}_{3}\right) \simeq \mathrm{G}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)+\mathrm{G}(\mathrm{CHOCOOH}) \simeq 5$ and $G\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\mathrm{G}(\mathrm{CHOCOOH}) \approx 2.5$ where G represents the number of product molecules fomed per 100 eV absorbed energy. Column 1 of Table 1 sumarizes the experimentally observed product yields obtained in the γ-radiolysis of solid glycine.

Table 1. Product yields (G) in the radiolysis of solid glycine with light and heavy particles.a

$\begin{aligned} & \text { Radiation } \\ & {\text { LET }(\mathrm{e} / / \mathrm{A})^{b}}^{\text {ad }} \end{aligned}$	$\begin{gathered} \left.\gamma_{\left({ }^{60} \mathrm{Co}\right.}\right) \\ 0.1 \end{gathered}$			c+6 30
Radicals ${ }^{\text {c }}$	5.2	4.7	3.2	1.7
Anmuria	5.0	4.4	3.8	3.7
Acetic Acid	2.3	2.3	2.1	1.3
Glyoxylic Acid	2.0	1.9	1.2	1.0
Methyl Anine	<0.2	-	0.4	0.6
Formaldehyde	<0.1	-	0.17	0.4
Formic Acid	<0.1	-	0.2	0.4
${ }^{\text {a }}$ Heavy particles at $\sim 9 \mathrm{MeV}$ per nucleon. $b_{\text {Average overall value as given by energy }}$ range. $c_{\text {Nomalized to give } G=5.2 \text { for the yield }}$ of long-lived free radicals in glycine under γ-rays as reported in Ref. 4.				

We have now measured the contribution of reactions (i) - (5) in solid glycine under heavyion irradiation at energies corresponding to ~ 9 MeV per nucleon. The teams were wholly absorbed in the glycine which was irradiated in a circular Lucite cell having a diameter of $\sim 6 \mathrm{~cm}$. The glycine powder (10 g) was hydraulically compressed into the cell under an inert gas atmosphere. The cell was covered with a 1 mil Mylar film and sealed
before removal from the inert atnosphere.
The heavy-ion beam es it exited the cyclotron vacum was focused to a dianeter of -1 cm and then passed through an electromagnetic "beamsweeper" so that the entire circular target area ($\sim 6 \mathrm{cn}$ dianeter) was unifomly irradiated. Dose was monitored with a seconary emission monitor located within the beam vacurni: line. Calibration of the secondary emission nonitor was by Faraday cup and electroneter. The beam current was approximately 10 nano anps to give an absorbed does of $1.55 \times 10^{20} \mathrm{eV} / \mathrm{gm}$ in each case.

With the proton beam, as shown in Table 1, the yields of major products, including the longlived radicals, are essentially the same as those obtained with γ-rays. However, as the LET of the particle increases above $\sim 1 \mathrm{eV} / \mathrm{A}$ there begins a steady decrease in the yields of free radicals and of glyoxylic and acetic acids, which products are derived from the charge separation reaction sequence given Eqs. (1) - (5). At the same time, however, the ammia yield does not decrease to the same extent. We are examining the possibility that radical dimerization, e.g.,

becones important at high LET.
Formic acid, formaldehyde, and methyl amine appear as the major products of new reaction modes which set in at high LET. It is of significance that these compounds are also formed as the major characteristic products of the photochenical decomposition of the simpler anino acids such as glycine and alanine and their peptide derivatives. 2,3 In radiolysis, the yield of excited molecular states formed via the charge-recombination step (6) would be expected to increase with increasing IET since the ion-pairs of reaction (1) would be produced closer and closer together. Although the above qualitative explanation for the observed effects of LET in the radiolysis of solid glycine appears to be self-consistent, it is clear that much more information both direct and indirect must be obtained before the role of excited-molecule reactions in the heavy-ion radiolysis of glycine is fimly established.

References

1. W.M. Garrison, Radiation Res. Rev. 3, 305 (1972).
2. M.E. Jayko, H.A. Sokol and W.M. Garrison, Lawrence Berkeley Laboratory Report LBL-1666 (1972).
3. K. Pfordte and K. Pohle, Stralentherapie 113, 140 (1960).
4. K.G. Zinmer and A. Miller, Current Topics in Radiation Research 1, 1 (1965).

Tctal sulfur contents of a series of toxic protein samples were determined with a recently descrited nan-dispersive vacuum soft x-ray fluorescence spectrometer. 1 The spectrometor features six anodes which provide characteristic x-rays for sample excitation and deteminations of the elements from oxygen to iron. The present experiments were primarily ained at a sulfur determination and only a cursory examination was made to determine the presence of $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}, \mathrm{P}, \mathrm{Cl}, \mathrm{K}$, and Ca at the parts per million levels in several samples of protein.

An inportant consideration in performing vacum soft x-ray analyses is the amount of incident radiation that may be converted to heat in the sample. This is especially true of biological samples that may contain easily decomposed or volatile components. The present spectrometer operates at anode power levels of 2 watts or less and the anount of exciting radiation reaching the sample after filtration is estimated to be less than 1 milliwatt per cm2.

Repeated analyses with several of the present protein sarple disks over periods of hours, and then again after several weeks, revealed no observable sample deterioration or decline in sulfur conteht.

Sample and Calibration Stancard Preparation

Sample preparation requires 50 ut of aqueous solution or honogeneous suspension containing roughly 1 mg of sample per $\mathrm{ml}_{1} \mathrm{H}_{2} \mathrm{O}$. The present graw of unknoms were prepared with from 14 to $53 \mu \mathrm{~g}$ protein per sample.

A 50 ul portion of umknom solution or calibration standard (58.3 ug sulfur/ml) was pipetted onto the center of a 0.02 cm thick Lexan disk. (Lexan is an aromatic polycarbonate plastic.) The disks were made from sheet stock with a 2.54 cm dianeter punch. Each has a 9 mm diameter circular scratch handscribed on center. When a disk was placed on a leveled hot plate surface at $60^{\circ} \mathrm{C}$ (circular scratch down), it took the shape of a very slightly dished flat-bottom saucer. A pipette rinse and sample fixing solutio: (1.20 g spectroscopic grade LiBO_{2} plus 1.00 g acetic acid per liter) was then taken up and added to the sample droplet. The sample fixing solution also contains two drops (approximately 80 mg) of water soluble glue, 2 added to a 50 mu portion of the solution just prior to use.

The resulting dry-sample spots on the Lexan disks have an area of $0.7 \mathrm{~cm}^{2}$ and a thickness of 2 to $5 \mu \mathrm{~m}$. Several prepared samples and some blank disks are shown in Fig, 1. Each sample disk was placed in the spectroneter with an additional disk of Lexan as backing along with a disk of 0.5 mm pure alunimun and one of 0.2 mm copper also added as backing to provide a iow noise background spectrum.

Fig. 1. Prepared samples and blank disks.
(XBB 745-3564)
Results
Examples of some typical observed spectra using the silver anode ($\mathrm{L} x$-rays) for excitation are shown in Fig. 2. The silican neak (Si) was

Fig. 2. Some typical four-minute spectra for (a) $1 \mathrm{i} \mathrm{SO}_{4}$ standard solution (58.3γ sulfur $/ \mathrm{ml}$), (b) Protein fraction $10-3$, (c) $\mathrm{H}_{2} \mathrm{O}$ rinse solution. The largest peak is due to scattered exciting radiation at $E=3 \mathrm{keV}$ from silver $\mathrm{L}-X$ rays. The vertical scale corresponds to $10^{4} \mathrm{x}$-ray pulses per channel at full scale. (XBB 757-4737)
caused by the Lexan. The observed sensitivity for sulfur was of the order to 50 ng in a typical four-minute run. Each sample was fluoresced for a total of 12 minutes or more.

Absorption corrections were applied to the observed sulfur intensities to correct for differences between the standard $\mathrm{Li}_{2} \mathrm{SO}_{4}$ solution and the various estimated sample weights and compositions. A variation in weight of protein in the sample of a factor of 3 ($15 \mu \mathrm{~g}$ to $50 \mu \mathrm{~g}$) resulted in a correction of about 3%, which in most cases is less than the estimated uncertainty in the analyses. The corrections were estimated using the coefficients tabulated by McMaster et al. 3^{3}

Footnote and References

*Condensed from a manuscript in preparation and a paper entitled Chemical Structure of Buggatotoxins by V.A. Eterovic, L.E. Vickery, A.J, Hebert and
E.L. Bennett presented at the X Remion Nationale De La Sociedad Argentina De Investigacion Bioquimica, Nov. 1974, Buenos Aires.

1. A.J. Hedert and Kenneth Street, Jr., A Nondispersive Soft X-Ray Fluorescence Spectrometer for Quantitative Analysis of the Major Elenents in Rocks and Minerals, Anal. Chem, 46, 203 (1974).
2. Borden Inc., A Polyvinyl Acetate and Water Glue with the Residue Formula Closely Approximated by $\left(\mathrm{C}_{4} \mathrm{O}_{2} \mathrm{H}_{6}\right)_{\mathrm{n}}$. The glue is commonly referred to as "Elmer's Glue All". We are indebted to Mr. Flick of the Peabody, Mass. Office and Mr. Ziemann of the Bainbridge, NY office for the general formula. The glue dries to a residue with roughly $1 / 3$ of its origunal weight.
3. W.H. McMaster, et al., UCRL-50174 (May, 196r'), distributed by the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22151.

aLAšiva of the amarna letters

M. Artzy, F. Asaro and I. Periman ${ }^{\text {a }}$

The exact geographical location of the ancient kingdom or city-state of Alasiya is unknown but it is in the deneral area of the eastern Mediterranean. There is considerable controversy about this location, with one thesis arguing that it was on Cyprus 1 (or Cypres itself), and the other that Alasiya was located on or near the north Syrian coast. ${ }^{2}$

The king of Alasiya wrote a number of letters on clay tablets, including some to the Egyptian Pharoah which were found at the ancient site of Tell el-Armarna in Egypt. The purpose of the present work was to determine if the chemical composition of the clay of these "letters" might be homogeneous enough to identify the source of the clay, and hence the location of Alasíya.

The procedure for attempting to establish the provenience of clay products by means of neutron activation analysis has been described elsewhere ${ }^{3}$ and will be reviewed here only in a cursory way. The analysis provides quantitative values for the abundances of many chenical elements, most of which may be classed as trace elements because of their very low concentrations. If one analyzes a considerable number of pottery pieces from a particular site, and finds the: they are closely similar in composition, one may take as a working hypothesis that these cane from local clays. The data are grouped element by element, and this results in a chemical profile or "fingerprint" for local ceramics. Finally, any other piece of clay product may be compared with this reference group to see whether or not the "fingerprints" fit each other. A discussion of complications and uncertainties which sonetimes arise in the assignment of provenience is best left to the body of the report where the data on this particular problem are presented.

This report is concerned with two of the Anama letters numbered 29788 and 29789 from the British Museum, which we sampled with the kind permission of Dr. Richard Bamett, the Keeper of the Asiatic Department.

The two tablets have chemical composition pattems which are very similar, and the agreement between them is as good, or even better than is usually found among a collection of sherds from one place (see Table 1). This indicates that the parts of the clay source from which these tablets were made were rather honogeneous, and other ceranics made from the same clay in the same way should have about the same composition.

Chenical abundance profiles for clays from a number of areas in Cyprus were available from pottery investigations. Sone of these reference groups from ancient Enkomi in eastern Cyprus are shown in Table 1 along with the two Anama letters. From Fig. I, which shows some of the data as bar graphs, it can be seen that the two Amarna sherds are very much alike and different from the Enkomi material. Figure 2 shows the same type of information for three other sites on Cyprus and Fig. 3 shows comparisons with Egyptian reference groups. Thus none of our existing chemical profiles from Cyprus, or a meager sanpling from Syria (not shown), or EgPt match that. of the Amama tablets.

The excellent agreenent in chemical conposition patterns of the two Anarna letters, however, indicates that further work developing additional clemical profiles of clay artifacts (or soils) in the eastern Mediterranean may be very fruitful.

Footnotes and Referen:es
*Now at the Institute of Archaeology, The Hebrew

Table 1. Chemical composition pattems of tablets and sherds. a The numbers for the respective elements are grow mean values (M) and the standard deviations ($\pm \sigma$). All are in units of parts-per-million unless designated $\%$.

	ELAM 13	ELAM 14	$\begin{gathered} \text { ENK } a \\ (30 \text { pcs. } \\ M \pm \sigma \end{gathered}$	ENK B (18 pcs.) $M \pm 0$	$\begin{gathered} \text { ENK Y } \\ (14 \mathrm{pcs} .) \\ \mathrm{M} \pm \mathrm{o} \end{gathered}$
A17	5.18	5.20	6.40 ± 0.50^{b}	6.58 ± 0.38^{c}	6.43 ± 0.48
Ca\%	12.3	10.4	9.1 ± 1.5	8.6 ± 1.6	11.3 ± 1.3
Mn	559	592	1065 ± 85	1067 ± 124	1034 ± 103
Na 8	0.507	0.586	1.40 ± 0.19	1.20 ± 0.14	1.12 ± 0.29
U	1.66	1.74	d	d	$2.07 \pm 0.2^{\prime}$
La	27.0	27.5	16.7 ± 1.3	20.5 ± 1.5	20.1 ± 1.5
Ti\%	0.328	0.346	0.441 ± 0.043	0.465 ± 0.030	0.441 ± 0.025
Lu	0.278	0.292	0.313 ± 0.021	0.321 ± 0.016	0.310 ± 0.026
Co	14.16	16.03	29.50 ± 2.70	31.50 ± 2.60	30.10 ± 2.60
Sc	11.45	11.76	24.20 ± 1.30	23.13 ± 1.53	22.73 ± 2.33
Fef	3.01	3.21	5.67 ± 0.35	5.69 ± 0.27	5.40 ± 0.45
Cs	4.52	4.37	3.72 ± 0.36	4.64 ± 0.60	4.07 ± 0.66
Cr	93	100	301 ± 50	334 ± 42	398 ± 64
Th	7.36	7.73	5.50 ± 0.37	6.76 ± 0.25	6.63 ± 0.49
Hf	2.91	3.25	2.73 ± 0.20	3.18 ± 0.22	3.12 ± 0.23
Ta	0.790	0.830	0.548 ± 0.043	0.677 ± 0.036	0.558 ± 0.079
Ni	73	11.6	201 ± 27	261 ± 41	208 ± 21
Rb	90	83	62 ± 16	76 ± 14	67 ± 24

$a_{\text {ELAN }} 13$ is E1-Amarna tablet $\$ 29789$.
ELAM 14 is E1-Amarna tablet \#29788.
ENK α is a group of mixed local $L B$ sherds from Enkomi.
ENK B is a group of mixed local IB sherds from Enkoni.
ENK γ is a group of Proto white Painted sherds from Enkomi.
$b_{0 f}$ the 30 pieces, aluminum was measured in only 7 samples.
cof the 18 pieces, aluminum was measured in only 4 samples.
${ }^{\text {These sherds had been contaninated with silver, gold, and uraniun. }}$

University, Jerusalam.

1. F. Schachermeyr, Zum ä1testen Namen von Kyprus, Klio 17, 230 (1920); C.F.A. Schaeffer, EnkomiAlasia: Nouvelles missions en Chypre 1946-1950 (Paris: Librairie C. Klincksieck, 1952); H.G. Gótterboci, The Hittite Conquest of Cyprus Reconsidered, J. Near Eastern Studies 26, 73 (1967); Y.L. Holmes, The Location of Alasiya, J. Ane. Oriental Soc. 91 (3), 426 (1971).
2. G.A. Wainwright, "Alashia-Alusa and Asy," Klio 14, 6 (1914-1915); H.W. Catling, Cyprus in the \bar{N} Nolithic and Bronze Age Periods, Cambridge Ancient History, 43 (Cambridge: Cambridge University Press, 1966), p. 61; G. Bass, Cape Gelidonya: A Bronze Age Shipwreck (Philadelphia: The American Philosophical Society, 1967), p. 78; R.S. Merrillees, Alasia, Proc, First Int. Congress on Cypriote Studies, Nicosia (1972), p. 111.
3. I. Perlman and F. Asaro, Pottery Analysis by Neutron Activation, Archaeometry 11, 21 (1969).

Fig. I. Chemical abundance patterns of Amama tablets and Enkomi pottery. The bars represent elemental aburdance values for the individual Amarna sherds or mean values for pottery groups. The hatched zones reflect for eacin clement the standard deviation in the abundances, for all of the sherds in that group.
Elam, 13: Tell el-Amama tablet \#29789.
Elam. 14: Tell el-Amarna tablet \#2§788.
Enk: α : A group of 30 pieces of White Painted Ware, Plain White Ware, Mrcenaean Ware excavated at Enkomi.
Enk. B: A group of 18 pieces of White Painted, Plain White Wares excavated at Enkomi.
Enk. Y: . A group of 14 pieces of Proto White Ware excavated at Enkoni.
(XB1, 742-2423)

Fig. 2. Chemical abundance patterns of Elam. 13 and Cypriot pottery groups from Palaepaphos, Kalopsidha, and Kition. The bars and hatched zones have the same meaning as in Fig. 1.
Elam, 13:
Ppap Byc. IIIC1:
See Fig. 1.
Kal.: group of 19 pieces of Mycenaean IIICl excavated at Kotklia.
A group of 20 pieces of P1ain Ware excavated at Kalopsidha.
Kit.:
A group of 15 pieces of Plain Ware excavated at Kition.
(XBL 742-2424)

Fig. 3. Chemical abundance patterns of Elam. 13 and Egyptian pottery groups. The bars and hatched zones have the same meaning as in Fig. 1 ,
Elam. 13: See Fig, 1.
Nile Mud: A group of 32 pieces of Egyptian
Nares excavated in Upper Egypt.
(E1 Ahaiwah, Nag-ed-Deir, Ballas).
Demd. local: A group of 3 pieces excavated at
Deir el-Medineh.
$\frac{\text { Elam. 2: }}{\text { ASut. 1,2,3: }}$
A faience mold from Tell el-Amarna.
Asut. 1,2,3: 3 pieces of Egyptian Wares excavated
at Assuit.
(XBL 742-2422)

CHRONOLOGY OF THE O. B. JÁMES PLUTON

R. Drake,* H. R. Bowman, and A. J. Hebert

Odette B. James concluded that the ultra${ }^{-3}$ fic rock suite in the Emigrant Gap area of H. .thern California was the result of fractional crystallization of a single magma. This complex may represent a classic example of a differentiation sequence of rock types lesulting from fractional crystallization.

In the present work, the ages since the last melting of four fractions in the suite were determined by potassium-argon dating. The ages since the last differentiation had been measured by D. Noble ${ }^{1}$ previously for three samples, using isotopic dating. The three whole-rock $\mathrm{Rb} / \mathrm{Sr}$ analyses of the OBJ pluton ag. closely with a 290 -millicn year isochron and have an $87 \mathrm{Sr} / 86 \mathrm{Sr}$ initial ratio of 0.7044 . This ag is nearly 100 million years older than the oldesi recognized plutons in the Sierra and for this reason K-Ar age determinations were made on minerals separated fron these whole-rock specimens. The results of the first four analyses are listed in Table 1.

Although these dates vary by almost 30 million years, the ages are compatible with the general regional chronology. Other minerals from each of the whole-rock samples are being run to detemine whether argon has been lost or inherited and to explain the different $\mathrm{K}-\mathrm{Ar}$ ages.

He believe the whole-rock $\mathrm{Rb} / \mathrm{Sr}$ isochron represents the age of differentiation and initial crystallization of the body, while the K-Ar ages

Table 1. K-Ar age determinations.

Sample	Mineral	Age $\times 10^{6}$ years
OBJ-21	plag.	179.2 ± 1
OBJ-22	plag.	152.1 ± 2.8
OBJ-23	biatite	152.5 ± 6.3
OBJ-24	biotite	160.7 ± 0.4

represent the renobilization and recrystallizat on of minerals during final enplacement 152-180 million years ago. Thus we would predict that mineral groups from any single whole-rock sample would yield $\mathrm{Rb} / \mathrm{Sr}$ isochrors of $150-180$ million years. This interpretation inplies that the $\mathrm{Rb} / \mathrm{Sr}$ distribution in the body as a whole remained fixed after differentiation and layering, while during emplacenent the mineral phases were re-equilibrated with respect to their immedrate whole-rock environment. To achieve this, the body must have remained essentially solid and reaci' ' metamorphic equilibriwn during emplacement.

Footnote and Reference

*Department of Geology, U.C., Berkeley.

1. D. Noble, private commmication.

TNENTY-FOUR MAJOR ELEMENT XFF ANALYSES OF LATE CENOZOIC VOLCANIC ROCKS FROM THE CHILEAN ANDES, $35 \cdot 36^{\circ}$ S LATITUDE

R. Drake* and A. J. Hebert

Twenty-four major element analyses of late Cenozoic volcanic rocks from the Chilean Andes at 35 to 36° S latitude are reported here. Analyses were made using x-ray fluorescence techniques. ${ }^{1}$ Results of the analyses are shown in Table 1.

A plot of wt\% $\mathrm{K}_{2} \mathrm{O}$ vs wtt SiO_{2} (Fig. 1) shows a narrow range of $\mathrm{K}_{2} \mathrm{O}$ values for given SiO_{2} content, which might be expected of samples representing a small volcanic province and time interval. The basic end-members of this suite are characteristically basaltic-andesites with about 55% SiO_{2} and $1.58 \mathrm{~K}_{2} \mathrm{O}$. Few rocks from this region have less than $52 \% \mathrm{SiO}_{2}$ and all have greater than $1 \% \mathrm{~K} 2 \mathrm{O}$. This volcanic suite is significantly higher in $\mathrm{K}_{2} \mathrm{O}$ than corresponding island arc

Fig. 1. Plot of $w t \mathrm{~K}_{3} \mathrm{~K}_{2} 0$ vs $\mathrm{S}_{1} u_{2}$ of samples of late Cenozoic volcanics from the Chilean Andes between 35 and $36^{\circ} \mathrm{S}$ latitude. Dots are for 24 XRF analyses. Squares are for chemical analyses from same region by other workers. (XBL 757-3546)

ChRONOLOGY OF THE O. B. JÂMES PLUTON

R. Drake, ${ }^{*}$ H. R. Bowman, and A. J. Hebert

Odette B. James concluded that the ultra-- ?fic rock suite in the Emigrant Gap area of H. .thern California was the result of fractional crystallization of a single magma. This complex may represent a classic exarmple of a differentiation sequence of rock types lesulting from fractional crystaliization.

In the present work, the ages since the last melting of four fractions in the suite were determined by potassium-argon dating. The ages since the last differentiation had been measured by D. Noble ${ }^{1}$ previously for three samples, using isotopic dating. The three whole-rock $\mathrm{Rb} / \mathrm{Sr}$ analyses of the OBJ pluton ay- closely with a 290 -million year isochron and have an $87 \mathrm{Sr} / 86 \mathrm{Sr}$ initial ratio of 0.7044 . This agr is nearly 100 million years older than the oldesi recognized plutons in the Sierra and for this reason K-Ar age deteminations were made on minerals separated fion these whole-rock specimens. The results of the first four analyses are listed in Table 1.

Although these dates vary by almost $30 \mathrm{mil}-$ lion years, the ages are compatible with the general regional chronology. Other minerals from each of the whole-rock samples are being run to detemine whether argon has been lost or inherited and to explain the different K-Ar ages.

We believe the whole-rock $\mathrm{Rb} / \mathrm{Sr}$ isochron represents the age of differentiation and initial crystallization of the body, while the K-Ar ages

Table 1. K-Ar age determinations.

Sample	Mineral	Age $\times 10^{6}$ years
OBJ-21	plag.	179.2 ± 1
OBJ-22	plag.	152.1 ± 2.8
OBJ-23	biotite	152.5 ± 6.3
OBJ-24	biotite	160.7 ± 0.4

represent the remobilization and recrystallizat in of minerals during final emplarement 152-180 million years ago. Thus we would predict that mineral groups from any single whole-rock sample would yield $\mathrm{Rb} / \mathrm{Sr}$ isochrors of $150-180 \mathrm{million}$ years. This interpretation implies that the $\mathrm{Rb} / \mathrm{Sr}$ distribution in the body as a whole remained fixed after differentiation and layering, while during emplacenent the mineral phases were re-equilibrated with respect to their immedrate whole-rock environment. To achieve this, the body must have remained essentially solid and reac: 'metamorphic equilibriwn during emplacement.

Footnote and Reference
 *Department of Geology, U.C., Berkeley.

1. D. Noble, private conmmication.

TWENTY-FOUR MAJOR ELEMENT XFF ANALYSES OF LATE

 CENOZOIC VOLCANIC ROCKS FROM THE CHILEAN ANDES, $35 \cdot 36^{\circ}$ S LATITUDER. Drake" and A. J. Hebert

Twenty-four major element analyses of late Cenozoic volcanic rocks from the Chillean Andes at 35 to $36^{\circ} \mathrm{S}$ latitude are reported here. Analyses were made using x-ray fluorescence techniques. 1 Results of the analyses are shown in Table 1.

A plot of wt\% $\mathrm{K}_{2} \mathrm{O}$ vs wt\% SiO_{2} (Fig. 1) shows a narrow range of $\mathrm{K}_{2} \mathrm{O}$ values for given SiO_{2} content, which might be expected of samples representing a small volcanic province and time interval. The basic end-menbers of this suite are characteristically basaltic-andesites with about 55% SiO_{2} and $1.5 \% \mathrm{~K}_{2} \mathrm{O}$. Few rocks from this region have less than $52 \% \mathrm{SiO}_{2}$ and all have greater than 1\% K20. This volcanic suite is significantly higher in K 20 than corresponding island arc

Fig. 1. Plot of $w t^{t} K_{2} 0$ vs $S_{\nu_{2}}$ of samples of late Cenozoic volcanics from the Chilean Andes between. 35 and $36^{\circ} \mathrm{S}$ latitude. Dots are for 24 XRF analyses. Squares are for chenical analyses from same region by other workers.

SOFT X-RAY ANALYSIS OF THE GRiZZLY PEAK VOLCANICS, BERKELEY HILLS, CALIFORNIA

R. N. Lanbe," D. G. Kosco,* A. J. Hebert, and G. H. Curtis*

Major oxide analyses of twelve flows of the firizzly Peak Volcanics were made by nondispersive, soft x-ray, fluorescence analysis. Sanples of approximately one-kilogram weight were ground to a particle size of less than 0.1 mm . The sample powder was mixed with spectroscopic grade LiBO2, in a $1: 10$ ratio, fused, cast into a metal ringed pill, and annealed at $250^{\circ} \mathrm{C}$ for several minutes. Analyses were carried out on a nondispersive soft x-ray spectrometer. 1 The results are presented in Table 1, arranged in a tentative rhronologic sequence of eruption, and represent the first modern analyses of the Grizzly Peak Volcanics. Previous analyses were made by C. Paluche (1896), using wet chemical techniques.

Samples GPV-1 through GPV-7 were collected from fresh exposures along Califomia Route 24 , and represent the complete sequence of andesicic flows in the Grizzly Peak Fomation. GPV-11 represents a rhyolite averaging 20 feet in thickness, which separates the lower and upper units of the Grizzly Peak Fomation. In almost all locations the rhyolite is pervasively altered to chlorite and clay mineraIs. GPV-11 was detemined to be the least altered of all the rhyolite samples inspected. GPV-8 was sampled from a volcanic body in the Siesta Valley souti of Route 24. The body measured approxinately 305 by 390 meters and seems to cut the local structure suggesting that it may be some type of volcanic vent. GPV-9 was sampled from the Bald Peak Formation off Grizzly Peak Boulevard, a complex of flows younger than the Grizzly Peak Volcanics. GPV-10 was sampled from the uppermosit flow in the Grizzly Peak volcanics off Grizzly Peak Boulevard and should be stratigraphically correlative to GPV-7. Sample GHC-374 represents one of the basaltic components of the Round Top Complex, for which there is good evidence indicating it is one of the volcanic vents supplying the Grizzly Peak Volcanics.

Plotting of the analyses on (Fe) $+\mathrm{Fe}_{2} \mathrm{O}_{3}$) -$\mathrm{MgO}-\left(\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}\right)$ and $\mathrm{K}_{2} \mathrm{O}-\mathrm{CaO}-\mathrm{Na}_{2} \mathrm{O}$ triangular diagrams suggests that the flows of the Griz2ly Peak Volcanics form two genetic groups. The lower flows ($\mathrm{GPV}-1,3,4$) demonstrate a progressive enrichment in Cal and MgO with decreasing age, reflecting the progressive accumulation of calciummagnesian pyroxenes with depth in the magma chamber, and a calciun enrichment in the plagioclase reflecting the compositional change from An30-50 to An50-70. The 10 west flow, GPV-1, has been dated at 9.93 M.Y. and the fourth flow, GPV-4, at $8.85 \mathrm{M} . \mathrm{Y}$. The chemical variation and geochronology seem to strongly suggest that the lower flows are genetically related.

The flows of the upper Grizzly Peak Volcanics along California Route 24 have been dated between 9.65 million years to 8.35 million years (M.Y.). The chemical variation seems to be oscillatory but reflects a general trend of enrichment in CaD , MgO and ($\mathrm{Fe} 0+\mathrm{Fe}_{2} \mathrm{O}_{3}$). The general trend toward enrichment in $\left(\mathrm{FeO}+\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ is most obvious. GVV-9, sampled from the Bajd Peak Flow ($7.7 \mathrm{M.Y)}$.
seens to fall on this trend. GPV-10 which should be stratigraphically correlative to GPV-7 appears to be chemically uncelated. Most noticeable are significant increases in $\mathrm{K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$, and decreases in MgO and CaO . It is seen in Figs. 1 and 2, that CPV-10 does not appear to be chemically compatible with the general trend displayed by the upper flows. The preliminary evidence suggests that the upper flows possess a more complex history than the lower flows.

The rhyulite, GPV-11, would plot off the differentiation trends of the lower and upper flows and does not appear to be petrologically or chemically related to the andesitic flows. It. appears from mapping the rhyolite in the field that its source is to the west of the Grizzly Peak fault and presently several miles to the north of nourd

Fig. 1. Chemical variation in the Grizzly Peak Volcanic Series.
(XBL 757-3544)

Fig. 2. Chenical variation in the Grizzly Peak Volcanic Series.
(XBL 757-3548)

Table 1.

Oxides	Saxiple Number										
	CPV-1	GPV-3	GPV-4	crv-11	CPV-5	GIFV-6	GPV-7	GPV-10	CJV- 3	CPV-9	THC-374
SiO_{2}	50.509	50.974	48.278	69.063	S7.420	57.770	50.717	58.259	51.999	50.281	60.376
TiO_{2}	1.130	1.339	1.116	0.414	0.856	0.820	1.126	D. 890	0.813	1.004	0.686
$\mathrm{Al}_{2} \mathrm{O}_{3}$	15.229	17.810	18.264	13.126	17.060	17.004	17.914	15.155	18. 303	16. 106	15.456
FeO	7.659	7.820	6.862	2.017	5.794	5.742	7.024	7.456	6.863	7.607	5.026
Mno	0.139	0.142	0.129	0.042	0.124	0.136	0.151	0.130	0.136	0.155	0.096
H 8 O	6.243	7.366	6.742	1.459	5.251	4.584	6.325	1.475	8.280	11.497	4.834
CaO	0.462	19.172	11.089	3.142	7.237	7.850	11:498	3.723	10.668	8.736	5.224
$\mathrm{Na}_{2} \mathrm{O}$	$\begin{gathered} (3.1799) \\ 2.963 \end{gathered}$	2.522	1.444	5.109	3.196	5.485	1.798	(5.1807)	3.560	$\begin{gathered} (4.3850) \\ 1.243 \end{gathered}$	3.052
$\mathrm{K}_{2} \mathrm{O}$	$\begin{aligned} & (.6435) \\ & 0.856 \end{aligned}$	0.528	0.427	1.542	1.464	1.457	0.602	$\begin{gathered} (2.0713) \\ 1.874 \end{gathered}$	0.510	$\begin{gathered} (0,6372) \\ 0.448 \end{gathered}$	1.421
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.050	\bigcirc	0.038	0.004	0.046	0.031	0.060	0.019	0.043	0.111	0.037
TOTAL	95.25	98.73	94.78	95.92	98.46	100.92	97.22	93.64	101.18	97.19	96.21

Values in parentheses are values determined by G.H. Curtis for K-Ar geochronology.

Top, the suggested source of the lower Grizzly Peak Volcanics.

The conclusions presented here are based on preliminary results and are subject to refinement. Further chemical analyses will be made in an attempt to obtain a better definition of the genetic relationships of the upper flows and to deternine more accurately the differentiation trends presented here.

Footnote and References

*Department of Geology, University of California, Berkeley, CA.

1. A.J. Hebert and K. Street, Jr., A Nondispersive Soft X-Ray Fluorescence Spectrometer for Quantitative Analyses of the Major Elements in Rocks and Minerals, Anal. Chem. 46, 203 (1974).

EVIDENCE IN SUPPORT OF SIMILAR SOURCE MATERIAL IN THE GENESIS OF ALKALIC BASALTS

H. R. Bowminn, F. Acsro, I. S. E. Cesmichaol,*

R. K. Mark, \uparrow and H.-U. Schmincke \ddagger

Basalts exhibit a wide range of conyosition, from those that are tholeditic (alkali poor) to those that have substantial amounts of alkali elements (called alkalic basalts). Precise abundance measurements for a large numher of trace, minor, and major elements have been made on basalts from different geological environments: Quaternary basalts from behind the active Aleutian volcanic are (Nunivak \& Pribilof Islands, Alaska); Recent basalts from northem Baja Califormia (erupted through continential crust, but also associated with subduction); and in contrast, the basalts of ${ }^{2 h}$ - zores, east of the spreading midAtlantic riage.

Earlier work by others had indicated a rough coherence in the Nunivak Island rocks between the overall alkali content and Rb , Ba, and Sr . In the present work with neutron activation analysis, the trace-element abundances were found to have a remarkable coherence when measured at high precision.

Fig. 1. The abumdances of $\mathrm{Ce}, \mathrm{U}, \mathrm{La}, \mathrm{Th}, \mathrm{Hf}$, and Rif plotted against Ta in basalts from Numivak Island in the Bering Sea. The lowest ta abundances on the first five graphs are for a megacryst from one of the other lavas. The Rb abundances are by R. Mar... ${ }^{3}$
(XBL 753-2469)

In the most rigorous of the coherences of the trace-elesent abundances, two elements, U and Ta (Fig. 1), were nearly proportional to each other in the less alkalic Numivak basalts, with some deviation in the more alkalic menbers. The general coherence between abundonces extended over many of the trace elements for all the samples examined. The Rb abumdances in Figs. 1 and 2 are from previous measurements by other workers and are plotted ogainst neutron activation analysis Ta values.

Three of the four different locations studied in this work are widely separated. The traceelement abudance pattems, particularly when related to the tantalum abundance, are similar and agree much better with each other than with any tholeiitic-type basalts from the continents and island ares that we have stucied.

This study reinforces the concept that alkalic basalts from various geological enviroments exhibiting a range of chemical conpositions all

Fig. 2. The abundances of $\mathrm{Ce}, \mathrm{U}, \mathrm{La}, \mathrm{Th}$, Hf , and Rb plotted against Ta in basalts from San Quintin, Baja Califomia. The lowest Ta point on the first five graphs is for a megacryst from one of the lavas. The Rb abundances were neasured by Bacon and Carmichael. 2
(XBL 753-2494)
behave in a predictable and systematic way as regards their minor and trace elements. This suggests that in the eegions in which these lavas were generated, they were formed by fusion of similar mantle material at similar pressures and temperatures.

The Nunivak lavas were erupted over a 6million year period, and there is a high degree of correlation between tantalum and the ages of these lavas.

In Fig. 2 the Baja California trace-element results are plotted using the same elements as Fig. 1. Similar plots have been made in Fig. 3 for historic Azorean lavas 1 from five islands just east of the mid-Atlantic ridge. The Azorean each case the vertical and horizontal scales are the same 50 that absolute abundances can be compared.

Many alkalic basalts contain isolated crystals, or assenblages of crystals, that have grown during the ascent of the lava to the surface. Often these are large, and are called megacrysts. In addition, the lava may have incorporated foreign rock (often mantle) fragnents plucked from the wall of its conduit, and these may have become disaggregated, to form xenocrysts, as they react with the hot lava. In Figs, 1 and 2 the rocks with the yery low ta abundances are prroxene megacrysts. No megacrysts have been annlyzed from the Azojes.

Fig. 3. The abundances of $\mathrm{Ce}, \mathrm{U}, \mathrm{La}, \mathrm{Th}$, and Hf plotted against Ta in basalts from 5 Azorean Islands just east of the mid Atlantic ridge. No megacrysts have been malyzed from this area.
(XBL (XEL 757-3543)

Comparison of the trace-elements congosition of the megacrysts and the related lavas leads to the partition coefficients for each of these elements, under the conditions of fommation of the crystals at high temperature and pressure. Using experimental data on the temperature dependence of the partition coefficients, we can obtain the pressure dependence of the partition coefficients if the pressure-termerature conditions of the precipitation of the megacrysts is known. Eistinates of these can be calculated from themodyunic arguments using the major element composition of the megacrysts. 2

Figure 4 shows the partitioning coefficients (megacryst abumdances/lava abundances) for 23 elements of Baja califomia plotted against selected ionic radii. This curve is essentially a compatibiisity curve where ions the size of Mn^{2+} are accepted readily into the pyroxene lattice sites, and the smaller and larger ions are less compatible and tend to collect in the residual magnas. Ta, La, U , and Ce are quite incompatible (Fig. 4) in this sense, and the near proportionality of their abundances when plotted vs. each other is consistent with the crystalization process or subsequent partial meiting. The coherence between trace elements and major elements found in lavas

Fig. 4. The partitioning coefficients (elemental abundances in the aegacryst \div those of the associated lava) for a Baja Califomia 16:\% plotted against selected ionic radii.
(XBL (XBL 757-3545)
places major constraints on the composition of the source material, for the stability of various minerals at depth is fundamentally controlled by the concentration of the major elements. By identifying coherences such as K, Th, Ta, etc., it is plausible to suggest that whatever mineral at depths held X (e.g., phlogopitel) also contained the coherent trace metals. Only in this way can the chemical composition of the mantle, on a fine scale, be obtained.

Footnotes and References

*University of California, Berkeley, Department of Geology and Geophysics.
${ }^{\dagger}$ U.C.L.A. , Department of Planetary ε Space Sciences.
${ }^{*}$ Ruhr-Universität, Institut für Mineralogie.

1. M.F.J. Flowers, H...U. Schminke and H.R. Bomman, Rare Earth and Trace Elements in Historic Azorean Lavas, submittid to Earth Planet. Sci. Lett. (1975).
2. C.R. Bicon and I.S.E. Camichael, Stages in the P-T Path of Ascending Basalt Magma: An Example from San Quintin, Baja California, Contrib. Mineral.
Petrology (Balin) 41, 1 (1973).
3. R. Nark, private commonication (1974).
4. J.M. Hoare, W.H. Condon, A. Cox, and G.B. Dal rymple, Geology, Paleonagretism and PotassiumArgon Ages of Basalts from Nunivak Island, Alaska, Geol. Suc. An. Mem. 116, 377 (1968).

OCEAN RIDGE-LIKE THOLEITTES IN THE NORTHERN GREAT

 BASIN OF NEVADAH. R. Bowmma, F. Assro, R. K. Hark,* C. Lea Hu,*

E. H. McKou, ${ }^{\text {t }}$ and R. R. Conts ${ }^{\text {t }}$

The trace element abundances of five rocks from the northem Great Basin of Nevada were measured by neutron activation analysis. The rocks were dated by the $\mathrm{Rb}-\mathrm{Sr}$ and $\mathrm{K}-\mathrm{Ar}$ methods.

These rocks were selected because previous petrographic studies and major element analyses had indicated they were rather primitive material (Olivine-tholeiites) and similar to basalts from the Snake River Plain in Idaho. In addition, they were all much younger ($-8-10$ million years old) than the usual Basin and Range formation in Nevada (- 30 million years old). In the present work the quantitative abundance measurements on trace elements were made at LBL in Berkeley, RbSr isotopic dates were determined at U.C.L.A. in wos Angeles, and the K-Ar dates were deteamined at the Isotope Geology Laboratory of the U.S. Geological Survey in Henio Park, CA.

Neutron activation analyses were perfomed on samples made fron 100 mg of powdered rock mixed with 50 mg of cellulose pressed into pellets. The sanples were irradiated along with a composite standard in the Berkeley Triga Reactor olse for ten minutes and later for eight hours. A detailed description of the method along with a description of the standard material has been given by Perlman and Asaro. 1 In this procedure 50 elements are searched for and 40 are usually found in rocks. The abundances of about 30 of these are measured with good precision. Tlie abundances of the trace elements that we measured are shown in Table 1. Major element abundances (not shown) agreed woll with previous work.

Samples were spiked with ${ }^{845 r}$, 87 Rb , and 41 K for isotopic dilution measurements of concentration. The isotopic analyses were perfurned at UCLA on a single-filiment, $9-i n ., 60^{\circ}$ mass spectrometer with a digital data acquisition system.

The rocks were dated by the K-Ar method (Menio Park) by standard procedures. 2

On the basis of rare earth element (REE) contents the basalt samples fall into two groups (Fig. 1). In one group (samples labeled E-15, $6238-2 \mathrm{~J}, 54 \mathrm{NC} 93$ are referred to as "low REF"), the chondrite nomalized REE pattem shows only minor light REE enrichnent and about ten times chondritic concentrations. Such a pattem overlaps those reported for ccean ridge basalts, 3 (ORB) although lacking the commonly occurring ilight REE depletion. The pattern is almost identical to those reported for isiand are tholeiites. 4 The other group ($61 \mathrm{NCl} 18,62 \mathrm{NC} 133$; referred to as "high REE') show a marked light REE enrichment typical of continental plateau tho Ieiites (e.g., Schilling3). The other LIL elements generally correlate with the REE, but Ba is an exception. Bariua concentrations are variable, with no correlation to other LIL elenents. The Ba concentrations are much greater than those commonly reported for 0R8 and some are even high for island arc tholeiites (e.g., Jakes and Gill,4 and Philpotts et al.5).

The ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ range for the Nevada tholeiites in this work is almost identical to the range reported by Leman and Manton6 for the tholeiites from the adjacent Snake River Plain to the north.

The samples in the present work are chemically distinct from (i.e., less alkalic) but Sr -isotopically similar to olivine tholeiites from the

Fig. 1 Chondrite nomalized rare earth element patterns plotted against atonic number.
(XBL 756-1582)

Table 1. Concentrations of Ba, REE, and other trace elements by instrunental neutron activation analysis. Standard Rock ($B C R-1$) is included for conparison.

	E15	6238-2J	54NC93	61 NCl 18	62NC133	$\begin{gathered} \text { Typical } \\ 0 \\ \hline \end{gathered}$	BCR-1
Ba	781.0	152.0	105.0	427.0	373.0	14.0	690 ± 33
La	6.4	6.6	5.2	13.5	16.4	0.4	25.2 ± 0.5
Ce	12.8	14.8	12.2	30.1	33.9	0.7	55.5 ± 1.6
Nd	10.1	8.2	10.3	20.2	19.8	1.5	30.5 ± 2.2
5 m	2.43	2.72	2.37	4. 50	4.61	0.02	6.37 ± 0.13
Ev	1.06	1.12	0.98	1.61	1.64	0.02	2.00 ± 0.05
Tb	0.48	0.52	0.50	0.91	0.73	0.03	0.99 ± 0.13
Dy	3.82	4.27	4.09	5.86	5.14	0.20	6.33 ± 0.33
Yb	2.36	2.81	2.77	3.15	2.68	0.05	3.64 ± 0.08
Lv	0.358	0.424	0.368	0.481	0.364	0.017	0.538 ± 0.026
Hf	1.64	1.83	1.90	3.32	2.77	0.11	5.19 ± 0.38
Cr	342.0	306.0	427.0	369.0	539.0	8.0	15 ± 5
Mr	1350.0	1370.0	1420.0	1480.0	1435.0	30.0	1399 ± 35
Co	50.0	44.4	53.2	50.0	48.4	0.7	38.02 ± 0.16
Ni	150.0	120.0	200.5	105.0	120.0	25.0	15 ± 10
Sc	40.5	45.2	47.2	39.4	38.5	0.2	34.53 ± 0.58
U	0.152	0.302	0.122	0.330	0.384	0.023	$1.65 \div 0.06$
7h	0.47	0.56	0.51	1.06	1,08	0.13	6.07 ± 0.20
V	320.0	340.0	365.0	350.0	320.0	50.0	480 ± 60
Ta	0.257	0.284	0.204	0.585	0.508	0.004	$0.717=0.020$
2n	100.0	95.0	95.0	135.0	130.0	9.0	150 ± 21

The typical o involves only the precision of tize measurements. The errors on the BCR-1 Standard Rock include the calibration errors introduced by our standard as well ${ }^{25}$ the statistical error introduced by coming radioactivities. All elements were calibrated against the same elements in Standard Pottery, except 2 n which was calibrated against a sc flux monitor.
adjacent Snake River Plain, and contain distinctly more-radiogenic Sr than the basalts from the adjacent Great Basin. The mean measured $\mathrm{Rb} / \mathrm{Sr}$ ($-(, 02$) of these smples would require about 10 billion years in a closed system to generate the radiogenic Sr they contain. The geocheaistry of these basalts mokes crustal contamination seem unlikely. If the magma is uncontaninated, the time-averaged $\mathrm{Rb} / \mathrm{Sr}$ of the source material mest have been $\geqslant 0.04$. Thus, a significant decrease in B / Sr of the source material ($\leqslant \mathrm{a}$ factor of 2) most probably occurred in the relatively recent ($\leqslant 109 y$) past. Such a decrease of $\mathrm{Rb} / \mathrm{Sr}$ in the entle could accompany LIL element depletion produced by an episode of partial melting and magra
extraction. By contrast, the source material of the ocean ridge basalts appears to have been depleted early in the earth's history.

Footnotes and References

"Department of Planetary and Space Science, UCLA, Los Angeles, CA.
${ }^{\dagger}$ U.S. Geological Surver, Menlo Park, CA.

1. I. 'Periman and F. Asaro, Pottery analysis by neutron activation, Archaeometry 11, 21 (1969).
2. G.B. Dalrumple and M.A. Lanphere, PotassiumArgon Dating: Principles, Techniques, and Applications to Ceochronology (i.H. Freeman and Co., San Francísco, 1969).
3. J,G. Schilling, Sea-floor evolution: Rareearth evidence, Phil. Trans. Roy. Soc. London, A, 265, 663 (1971).
4. P. Jakes and J. Gill, Rare earth elements and
the island arc tholeiitic series, Earth Planet. Sci. Lett. 9, 17 (1970).
5. J.A. Philpotts, M. Martin and C.C. Schnetzler, Geochemical aspects of some Japanese lavas, Earth Planet. Sci. Lett. 12, 89 (1971).
6. W.P. Leeman and W.I. Manton, Strontium isotopic composition of basaltic lavas from the Snake River Plain, southern Idaho, Earth Planet. Sci. Lett. 11, 420 (1971).

RARE EARTH AND TRAGE ELEMENT PATTERNS IN HISTORIC AZOREAN LAVAS

H. R. Bowman, M. F. J. Flowers,* and H.-U. Schmincke*

Analysis of rare earth element (REE) concentrations in volcanic rocks has become an inportant means of defining chemical differences that are produced by differentiation processes other than crystal fractionation at shallow depths. Within the north Atlantic region, as in other ocean basins, notable chemical differences exist between abyssal or cean floor choleiites. In a recently published petrogenetic model, Schillingl, using REE concentrations, has further distinguished socalled 'primary mantle' plume material as a source for oceanic island magmas, and a low velocity layer deleted in large cations as a source for abyssal tholeiitic magmas. He has postulated that magnas of intermediate composition form by mixing, either of the magmas themselves or of the solid differentiated upper mantle fractions.

The Azores platform is one of the largest single topographic features of the Atlantic Ocean floor and is currently receiving considerable attention from geophysicists and geochemists. Within this region, the American, Eurasian and African plates come together at the Azores triple junction, formed by the intersection of the Azores-Gibraltar fracture zone (locally known as the East Azores fracture zone or EAFZ), and the mid-Atlantic rift (MLR). The Azores archipelago lies just to the north of the EAFZ, straddling the NAR from WNW $\left(31^{\circ} \mathrm{W}, 40^{\circ} \mathrm{N}\right)$ to ESE $\left(25^{\circ} \mathrm{W}, 37^{\circ} \mathrm{N}\right)$, with the islands Flores and Corvo to the west and Fayal, Säo Jorge, Pico, Graciosa, Terceira, Sao Miguel and Santa Maria to the east. Of the latter group, Graciosa, Terceira and the western part of Sao Atiguel are believed to be associated with a WNW-ESE-trending trench krown as the Terceira Pift. ${ }^{2}$ The subparallel location of Fayal, Pico and Säo Jorge, and the strong evidence of tensional faulting, on Fayal and São Jorge especially, further supizest that the Terceira Rift is part of a larger zone of dilation which includes ail of the central and eastern Azores.

In view of the interest in this region as A possible surface manifestation of a thermal plume in the upper mantle ${ }^{3}$ we have initiated a geochemical study of the historic ernptions in the Azores archipelago. This is part of a larger study of historic lavas from islands in the eastern central Atlantic. Historic volcanism is particularly amenable to the detailed investigation of the geochenistry of low and intermediate pressure differentiation processes, which are often overprinted on more deep-seated processes taking place in the upper mantle. A study of historic
eruptions from several volcanoes is also useful in making distinctions between chenical differences resulting from the sampling of a single time horizon in volcanoes at different stages of evolution (i.e., of different initial age), and those due to the regional heterogeneity of the mantle.

Rare earth and other trace element data have been obtained for 16 lava specimens of which 14 are historic and 2 are prehistoric eruptions from the islands of Pico, Sio Joige, Terceira, Fayal, and São Miguel. The system of analysis used neutron activation analysis and has been described in Refs. 4 and 5. In brief, gram amounts of each rock were ground by hand into a powder. Ore hundred mg aliquots of these powders were mixed with cellulose, pressed into pills and irradiated along with calibrated conposite standards in the Berkelcy triga-type reactor.

This method is capable of qualitatively analysing for in excess of 50 elements in a sample. In rock samples, more than two dozen elements can be detemined with precision of less than 55 and a number of these are detemined to better than 18.

All analyzed samples are characterized by highly fractionated, light REF-enriched pattems (Fig. 1), in strong contrast to the light KEEdepleted basalts that characterize mid-ocean ridges. $6-9$

Model calculations by Varne and Grahan 10 and Gast ${ }^{9}$ indicate that liguids with such contrasting rare earth patterns as these are unlikely to have been produced by different degrees of partial molting of a single peridolitic source material. There is, therefore, scrong evidence for chenical fractionation of the upper mantle in the vicinity of the rid-Atlantic ridge.

In Fig. 2 the La, U, Th ant Hf are plotted against the Ta concentrations for the 15 different volcanic eruptions. The lines drawn thru the lower abudances demonstrate the average elemental-ratios of these samples. A simple model which involves the addition or subtraction of crystals, devoid in these elements, to a common source material can be used to explain these coherences. These elenents are in general referred to as incompatible slnce they are not readily accef ed into many crystal sites. 11 This rejection or acceptas: e is based on the ionic radii and is the general cause of the different rare-earth
pattems shown in Fig. 1. The average $U / T a$ and Th/Ta ratios of Fig. 2 are within 3% of those ratios measured at Nunivack in the Bering Sea, where a similar coherence is observed.

Footnote and References

*Institut für Mineralogie, Ruhr-Universität, D-463 Bochum, Germany.

1. J.G. Schilling, Iceland mantel plume existence, and influence along the Reykjanes Ridge: geochemical evidence, Nature (1973).
2. F. Machado', Subnarine pits of the Azores plateau, Bull. Volcanol. 21, 109 (1959).
3. W.J. Norgan, Convection plumes in the lower mantle, Nature 230, 42 (1971).
4. H.R. Bowmin, F. Asaro, 1. Perlman, on the uniformity of composition in obsidians and evidence for magnatic mixing, J. Geol. 81,312 (1973).

Fig. 1. Rare earth patterns (rock/chondrites) for historic and two prehistoric alkalic lavas from the Azores plotted against ionic radii.
(XBL 756-1583)

Fig. 2. The elemental abundances of $\mathrm{La}, \mathrm{Hf}, \mathrm{U}$ and Th plotted against Ta for basalt lavas from the island of Pico (solid circlés), São Jorge (open squares), Terceira (open circles), Fayal (solid squares) and Sao Misuel (triangles) in the Azores.
(xBL 757-3547)
5. 1. Perlman, f. Asaro, Pottury analysis by neutron activation, Archaeometry, 11, 21 (1969).
6. J.G. Schilling, Sea-floor evolution; rareearth evidence, Phil. Trans. Roy. Soc. Lond. A, 269, 663 (1971).
7. J.A. Philpotts, C.C. Schnetz1er, S.R. Hart, Subnarine basalts: some $\mathrm{K}, \mathrm{Rb}, 5 \mathrm{~S}$, Ba, rare-earth, $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} data bearing on their alteration, modification by plagioclase, and possible source materials, Earth and Planet. Sci. Lett. I. 293 (1969).
8. A.L. Graham and G.D. Nicholls, Mass spectrographic determinations of lanthanide element contents in basalts, Geochim. Cosmochi. Acta 33, 555 (1969); D.H. Green and A.E. Ringhood, The genesis of basaltic magnas, Contrib. Nineral. Petrol. 15, 103 (1967).
9. P.W. Gast, Trace elenent fractionation and the origin of tholeiitic and alkaline magna types, Geochim. Cosnochim. Acta 32, 1057 (1968).
10. R.I. Vame and A.l. Grahan, Rare earth abundances in hombicnde and clinopyroxene of the homblende lherzolite xenolity. Implications for upper mantle fractionation processes, Earth Planet. Sci. Lett. 13, 11 (1971)
11. A.E. Ringwood, Constitution of the Mantle, 3, Geochim. Cosmochim. Acta 15, 195-212 (1958).

E. 2. Kelly

The SuperiIILAC was operated at 15 shifts per week Jamuary through July, at 21 per week in August, and because of budget restriction at only 18 per week for the balance of the calendar year. The distribution of time is shown in Table 1 .

There were three scheduled shutdowns for a total of ten weeks: April 27 -May 13 to install additional magnets in the experimental area and make higi voltage tests on the 2.5 MN injector, fone 23 - July 22 to install pulsed magnets in five drift tubes and other magnet changes in preparation for time-share operation, and December 5 January 6 for major work on the line-item-funded SupertILLC modifications, magnet changes in the experimental area, and installation of shielding.

The first quarter was largely devoted to ${ }^{6} \mathrm{Kr}$ (791 hours) and an ca-target current of 0.1 par.icle μA average was obtained. An ia on-target beam of 2.1 particle $\mu \mathrm{A}$ average was also achieved.

In thes second quarter there were only 190 hours of ${ }^{\mathrm{C}} \mathrm{Kr}$ due to troubles with the 2.5 NN injector. However, ${ }_{132}$ Xe wrs obtained for the first time and used for 50 hours; intensities of $5 \times 10^{8} \mathrm{pps}$ at the target were reached. The intensities of ${ }^{20} O$ were increased to 3.6 particle $\mu \mathrm{A}$ on target.

At the end of July the first Bevalac beam was obtained using ${ }^{12} \mathrm{C}^{+5}$ at 8.5 MeV per rucleon supplied by the SuperHILAC with an intensity of 29 uA (poak) at the start of the transfer line. Bevalac Ne beans were obtained in August and the first weel of october saw completion of the first successful ${ }^{4}$ Ar Bevalac oun with 1.5 $\mu \Lambda$ (peak) Ar^{+19} at the entrance to the transfer line. During the third and fourth quarters 173 hours of $\mathrm{C}, 368$ hours of Ne, and 61 hours of Ar were supplied to the Bevaiac.

Because of the failure o. numerous scheduled runs with the 2.5 NN injector it was decided in September to take this injector off line. A Group was formed to evaluate and make reconmendations on the performance of the injector. December 24 was
set as completion date for these studies. During this period many things were done. The accelerating tube was removed for cleaning and repair, and the electrode geometry was modified. IN tests were carried out while the accelerating tube was removed: operation for $1 \frac{1}{2}$ hours at 2.7 Mr with infrequent sparking was demonstrated after modifying the rectifier structure which also greatly reduced diode board failures; several failure mechanisms of the 100 kdi 2 oscillator coils were identified showing the way to inproved coil design. Weaknesses still remain in the ion source telemetry system and power supplies.

Asthorization to begin the line item modifications was received November 20, 1974 and work started immediately. However, FY-75 funding was only 850 KS , instead of the 1400 KS expected, requiring delay in many items ineluding the foilding addition, so tha* completion is not schr,duled until FY-77.

A SuperHILAC Program Advisory Committee wis established and held its first meeting on November 25, 1974.

TABLE 1. Operating time distribution for SuperHILAC, 1974.

Total research tine	(4014 hours)		62%
setup		114	
Tuneup		118	
Target time		40\%	
Machine studies	(260 hours)		48
Total mainienance	(2198 hours?		34
Scheduled maintenance		194	
Unscheduled maintenance		158	
Total operation :ime	(6472 hours)		1007

88-INCH CYCLOTRON OPERATION, DEVELOPMENT AND STUDIES

J. Bowen, D. J. Clark, P. E. Frazier, D. L. Hendrie, W. R. Holley, and D. Morris

During 1974 the cyclotron was scheduled for 20 eight-hour shifts per week for experiments in nuclear chemistry and physics, isotope production, and beam development. The time distribution is shown in Table 1. The particle distribution history is shown in Fig. 1. Table 2 shows most of the iors run and their energies, through December 1974; New beams in 1974 include $\mathrm{C}^{4+},{ }^{18} \mathrm{~g}^{4+}$, F^{4+}, $\mathrm{Ne}^{\mathrm{s+}}$, and S^{7+}.

Trim coil solutions are calculated now for each new ion or energy rum on the cycletron, to give more reliable set-up parameters than existing approxinate solutions.

TARLE 1. 88-Inch Cy lotron operation time distribution, 1974.

Tune-up		68
Bean optics		5\%
Experiments		57\%
Beam development		98
Operating time	(6383 hours)	778
Planned traintenance		17%
Unplanned maintenance		6%
Total maintenance	(1889 hours)	231
Total work time	(8272 hours)	1009

The heavy ion source clange time has beun reduced significantly by preparing and checking out a source and shaft while an alternate one is running. A facility has been constructed for separating ${ }^{18} 0$ from $\mathrm{H}_{2}{ }^{19} \mathrm{O}$ by electrolysis, and loading it into battles.

A cryogenic vacuan pumping system was installed in the cyclotron acceleration chamber. The system consists of a panel of helium gas at $20^{\circ} \mathrm{K}$, with liquid nitrogen shielding. A refrigerator supplies the cool helium. First tests with beam gave a factor of at least 5 increase in intensity for sulfur beams, and 2-3 increase for oxygen beams.

A new design of inn source for heavy ions was built and prepared for testing. Its larger clearances should prevent some failures due to shorting. Its smalle: bore size will provide a more reliable source for preduction of very high charge states. The small bore is presently being provided by tantalum insert sleeves which melt and cause maintenance problems.

The high power arc pulser was tested and proved to meet its design specifications for 10 A average current and pulsed current of 20-30 A peak for pulsed operation. Inprovements were made in the regulator of the old filanent source. The rf crowbar recycle system was redesigned. Design work was done on replacement of the rf modulator by a new tube to save power. Design and construction work was done on a multiplexer system for autrmatic
$\mathbf{8 8}$-inch cyclotron particle distribution history

Fig. 1. 88-Inch Cyclorran particle distribution history.

TABLE 2. 88-Inch cyclotron beams, to December 1974

Ion	$\begin{gathered} \text { Energy }^{a} \\ (\mathrm{MeV})^{\prime} \end{gathered}$	$\begin{gathered} \text { External } \\ \text { beanb } \end{gathered}$
p	10-5S	100-20 $\mu \mathrm{A}$
p (pol.)	13-52,55	. $15 \mu \mathrm{~A}$
d	3.5-65	100-20 $\mu \mathrm{A}$
d(pol.)	15-20,6:	$.15 \mu \mathrm{~A}$
${ }^{3} \mathrm{He}$	25-140	100-10 $\quad \mathrm{A}$
${ }^{4} \mathrm{He}$	3-130	100-10 $\mu \mathrm{A}$
${ }^{6} \mathrm{Li}^{2+}$	60-80,93	$5 \mu \mathrm{~A}$
${ }^{7} \mathrm{Li}^{2+}$	30-80	$5 \mu \mathrm{~A}$
${ }^{9} \mathrm{Be}^{3+}$	110-120,140	$1 \mu \mathrm{~A}$
${ }^{11} \mathrm{~B}^{3+}$	40-115	$5 \mu \mathrm{~A}$
${ }^{12} \mathrm{C}^{3+}$	50-105	$5 \mu \mathrm{~A}$
${ }^{12} \mathrm{C}^{4+}$	90-187	5 山A
${ }^{14} \mathrm{~N}^{2+}$	34-40	2 mi
${ }^{14} \mathrm{~N}^{3+}$	50-90	$10 \mu \mathrm{~A}$
$1{ }^{4} \mathrm{~N}^{4+}$	60-160	5 1iA
${ }^{14} \mathrm{~N}^{5+}$	250	$1 \mu \mathrm{~A}$
${ }^{24} \mathrm{~N}^{5+}$	360	$10^{3} \mathrm{sec}$
${ }^{1} \mathrm{CO}^{3+}$	50-78	$5 \mu \mathrm{~A}$
${ }^{16} 0^{4+}$	80-140	$20 \mu \mathrm{~A}$
${ }^{16} 0^{5+}$	214-218	$2 \mu \mathrm{~A}$
${ }^{18} \mathrm{O}^{4+}$	99,124	$2 \mu A$
${ }^{13} \mathrm{~F}^{4+}$	99,118	. $3 \mu \mathrm{~A}$
${ }^{20} \mathrm{Ne}^{4+}$	50-108, 112	$2 \mu \mathrm{~A}$
${ }^{20} \mathrm{Ne}^{5+}$	130-150,175	$1 \mu \mathrm{~A}$
${ }^{20} \mathrm{Ne}^{6+}$	170-252	$.5 \mu \mathrm{~A}$
${ }^{32} \mathrm{~S}^{6+}$	120-150,158	$1 \mu \mathrm{~A}$
${ }^{32} \mathrm{~S}^{7+}$	163-206,214	$.2 \mu A$
${ }^{40} A^{3+}$	130-165,171	$.5 \mu A$
${ }^{60} \mathrm{~A}^{\text {at }}$	170-214,224	$.2 \mu \mathrm{~A}$
${ }^{36} \mathrm{Fe}^{10+}$	180-220,250	$1 / \mathrm{sec}$
${ }^{84} \mathrm{Kr}^{12+}$	207,240	$1 / \mathrm{sec}$

a Energies nm. Naximam possible shown after comma, if higher. First hamonic over $6 \mathrm{~N} \mathrm{~N} / \mathrm{/} / \mathrm{A}$. Third harmunic available down to about $1 \mathrm{NeV} / \mathrm{A}$.
 external.
${ }^{c}$ Filament source. Other beams used PIG source.
readout of cyclotron operating parameters. Modifications in the cyclotron control desk were started to provide additional digital readout of parameters. New oscillators were built for one of the polarized source rf transition sections.

Some bean development time was devoted to testing computer trim coil solutions and quick energy changes. Phase histories were measured on several third harmonic beans, and good agreement was obtained with conquter predictions. Molecular ions such as D_{3}^{+}, $\mathrm{D}_{2} \mathrm{H}^{+}$, and HeH^{+}were used to simulate heavy ions of the same charge/mass ratio, to give high intensity and long source life for the measurements. This information is being used to calculate a systen of comprehensive solutions which will be adequate to rm any requested particle and energy. For small energy changes, it was found that trim coil 17 should be varied; rather than the main coil.

Studies were also done on improving beam reproducibility of external beam, both directly out of the cyclotion and through an analyzing magnet. Several parameters were found to be unreproducible due to backlash or calibration changes, and introvenents were made or planned on these itens. A neutron monitor was very useful to distinguish weil centered heavy ion beans from spurious beam.

ION SOURCE DEVELOPMENT*

S. Chintalpudi, D J. Clark, C. Ellsworth, B. Gavin, P. Gough, H. Grunder, W. R. Halley, J. R. Meriwather, and F. Selph

The continued improvement of heavy ion sources is of particular importance at Lawrence Berkeley La-oratory, as at present four heary ion injectors are used in LBL accelerator operations. Two of these serve the SupetHILAC ${ }^{1}$ (a heavy ion Alvarez linac), another serves the Bevatron injector (a 20 MeV Alvarez linac operating in the $2 \beta \lambda$ mode , the fourth is used at the 88 -Inch Cyclotron. All of these injectors use PIG sources at present, with modifications in each case to suit the special requirements of the accelerator. At the SuperHILAC the reed is for large duty factor ($15-50 \%$), long lifetime sources; The present source supplies $3.0 \mu \mathrm{~A}$, ave age of Kr^{6+} at 2.68 duty factor, measured afecr acceleration to 9.5 MeV . At the $2 \beta \lambda$ Bevatron injector requirements are for very high charge state of the lighter ions (up to neon), with low duty factor operation. At present $1 \mu \mathrm{~A}$, peak of Ne^{5+} is achieved at 2.4 MeV . At the 88 Inch Cyclotron interest centers on usable beams of the highest possible charge state, because particle energy in the extracted beam varies as the square of the charge state. Currently $0.2 \mu \mathrm{~A}$, average of $214 \mathrm{MEV} \mathrm{Ar}^{\mathrm{EP}}$ is available.

The SuperHilac

The SuperHilAC will accept beans of $113 \mathrm{KeV} /$ nucleon from either of two injectors. One is a pressurized high voltage generator designed to accelerate ions to $2.5 \mathrm{NN}^{2}$ of mass $\mathrm{A} \geqq 40$, while the other is a conventional 750 KV CockcroftWalton supply used for accelerating the lighter mass ions ($\mathrm{A} \leqq 40$). While Kr^{4+} (at 2.4 MM and $\mathrm{Xe}^{6^{+}}$(at 2.5 MV) satisfy the 1 inac acceptance requirements, the high voltage limitation of the injector necessitates higher charge states for the time being.

Bcth injectors use Penning type reflex discharges. Since emphasis lies with heavy ion production, and in as much as the low voltage, low mass injection system delivers adequate intensity beans (i.e., 0^{3+}, Table 1), ion source inprovement work is directed tow trds the 2.5 NN source. A test facility has been built to study source performance in an environnent closely approximating that in the 2.5 N source, and some results have been reported elsewhere. ${ }^{3}$

Recent emittance measurements made at the exit of the $2.5-M N$ injector, using ${ }^{44} \mathrm{Kr}^{6+}$ ions at $113 \mathrm{KeV} / \mathrm{A}$, showed the areas to be $5,4 \mathrm{mem}-\mathrm{mrad}$ and 7.0 ncm-mrad in the horizontal and vertical planes respectively.

Titanium cathodes are used in cold mode operation and allow for extended source lifetimes, typically, for krypton at 181 duty factor, about 27 nours. Plans are being made to accelerate ${ }^{46} \mathrm{Ca}$ using a sputtering electxode erriched with this metal. As this metal is extremely rare, it must be recovered by chemical reduction of the ion source. A 908 recovery efficiency is anticipated.

TABLE 1. Ion sources at Berkeley. ${ }^{\text {a }}$

Ion Species	$\begin{aligned} & 2.5-\mathrm{MN} \\ & \text { injector } \end{aligned}$ $\text { (} \mu \mathrm{A})$	$\begin{gathered} 750-\mathrm{KV} \\ \text { injector } \\ (\mu A) \end{gathered}$	SuperHILAC exit (nA)	$\underset{(\mathrm{nA})}{\text { Target }}$
${ }^{19} 0^{3+} / 2+$		800	30,000	25,000
${ }^{40} \mathrm{Ar}^{6+/ 19+}$		6.5	1,500	200
${ }^{49} \mathrm{Ti}^{\text {7+/13+ }}$		6	90	5
${ }^{40} \mathrm{Ar}^{3+/ 23+}$	50		3,200	600
${ }^{84} \mathrm{Kr}^{6+/ 21+}$	12		1,900	500
${ }^{86} \mathrm{Kr}^{6+/ 21+}$ (natural gas)	0.9		40	5
${ }^{132} \times \mathrm{xe}^{9+/ 29+}$	2.3		52	2.5
${ }^{40} \mathrm{Ca}^{3+/}$	21			
${ }^{48} \mathrm{Ti}^{3+/}$	25		projected valutes based on test stand performance	
${ }^{93} \mathrm{Nb}^{5+/}$	23 (hot mode)			
${ }^{197} \mathrm{Au}^{20+/}$	$0.3(\mathrm{ho}$	mode)		

${ }^{\text {Average current }}$ values are given.

In an effort to simplify isotope separation and improve the beam intensity of xenon, the SuperHILAC 2.5 MN source is using enriched xenon gas stored in small volume at low pressure. Two solenoids are pulsed open in unison for 20 msec , at rates of $1 / \mathrm{sec}$ to $1 / \mathrm{min}$. The minute gas bursts are subsequently smoothed out by passing through a suitable length of porous metal rod. This gas source is in addition to and in parallel with a high pressure, high volume commercial proportional gas control device.

SuperHILAC performance data is show in Table 1. The projected intensities of a few metallic ions are also included. Titanium, vanadium, and iron have also been accelerated from the 750 KV injector from cathode sputtering. Their intensities are expected to be increased about 505 upon installation of pulsed extractor power supply.

The 88-Inch Cyclotron

The LBL 88 -inch Cyclotron is a variable energy, multiparticle, sector-focused cyclotron that accelerates protons to energies up to 60 MeV , and heavior ions to $140 \mathrm{q}^{2} / \mathrm{A} \mathrm{MeV}$. It has an external polarized ion source for beans of polarized protons and deuterons which uses a quadrupole transport line to bring the ions down the pole axis of the cyclotron for injection. Heavy ion beans are $n=$ using a PIG source at the conter of the cyclotron ("internal source"). 4

Early in the year the test facility on the vault roof was used to test a PIG source with a filament under the lower cathode, to supply heating independent of the arc. With the standard internal PIG source with self-heated cathodes, tue are needs at least a kilowatt to sustain itself, and source lifetimes are typically 4-6 hours. Using the filament the power can be reduced, and lifetimes as long as 40 hours for sources rmning with 500 watts arc power and N_{2} gas and greater than 100 hours for 100 watt arcs and H_{2} gas were determined. For beams which do not need high power levels to produce adequate intensity, use of a filamentheated cathode should substantially increase source lifetime and reliability. Installation in the cyclotron of a PIG source with a filament-heated cathode is planned.

Late in the summer, the heavy ion source test magnet and associated equipment was moved to the basement wiare a new facility for development of heavy ion sources was successfully put into operation. The test facility includes a magnet for PIG source operation and beam analysis, a Faraday cup and scanning wires for beam enittance measurements. The test facility can be used for testing regular internal PIG sources from the cyclotron and also for testing modifications and new developments in ion sources. A high power pulsed arc supply has been designed and built. The power supply has been used extensively in the test facility, and is being phased intc operation on the cyclotron. The power supply can deliver a maximan of 30 kW average power and 10 A average current (40 A peak). It produces square wave current pulses with lengths as short as $10 \mu \mathrm{sec}$ and with a duty factor variable frum 0 to 100% (full DC operation).

Tests with the new arc supply show substantial increases in average intensities of high charge state beams from a PIG source under high power pulsed operation. Inprovements by up to a factor of 10 in intensity of ${ }^{14} N^{5+}$ ions were obtained with a wide bore anode. The production of ${ }^{40} A^{7+}$ and ${ }^{40} \mathrm{~A}^{\mathrm{B}+}$ has also been studied using the prilsed arc supply and the test facility and beam intensity improvements by factors of 2-3 obtained.

Installation was completed and testing began of a "Mirror PIG" heavy ion source. The standard PIG source in use hare and at manv cher laboratories has a uniform magnetic fieıd. A mirror field shape, stronger at the ends than in the middle, is widely used in controlled thermonuclear fusion studies to reflect ions from the ends and provide longer confinement time. Increased confinement time is exactly what is needed to produce higher charge state heavy ions. In the
present study here, the field at the cathodes can be increased to about twice the field at the center of the arc, where the ions are extracted. The additional field is produced by pole face windings in the test magnet. The field without the mirror coils being energized drops about 40% from the center of the arc to the cathodes, and thus is an "anti-mirror" field. This would be expected to be a pror situation for confinement.

First measurements agree with the prediction that the high charge states increase as the fiald goes from anti-mirror to uniform to mirror. Higher charge states show a greater increase in beam intensity than lower charge states. An intensity Increase by more than a factor of 4 was obtained for ${ }^{40} A^{7+}$. An interesting observation was that the gas flow could be reduced continuously to lower values as the mirror field increased. This indicates longer confinement time of the ions, as predicted. Tests are contimuing with the 1ong range goal in mind of incorporating the mirror field geometry into an external ion source for the cyclotron. In addition, the results obtained here can be used for sources at other heavy ion accelerators.

Some inprovements were made on the polarized ion source at the 88 -Inch Cyclotron. An unbaffled oil pomp was tried on the first stage, in parallel with the blower pump. This greatly increased the puping speed, permitting higher gas flow and giving more beam intensity. Contamination of the purp oil due to atomic hydrogen reaction was observed after a few hours. A cold cap would greatly reduce the oil problem, and another type of punp with a sight gauge and fill line would be more suitable.

Footnotes and References

*Condensed from LBL-3024.

1. Since August 1974, the SuperHIlAC has been used occasionally as an injector to the Bevatron (as part of the Bevalac Project).
2. D. A. Spence, et al., "A 3-M Injector for the SuperHilAC", 1971 Particle Accel. Conf., (also UCRL-20452),
3. B. Gavin, "Performance Characteristics of ...", Second Int. Conf. Ion Sources, Vienna, 1972 (also LBL-1219).
4. D. J. Clark, et al., "Cyclotrons - 1972", A.I.P. Conf. Proc. 9, 265 (1972), (al so LBL-644).

A DIGITAL THERMOELECTRIC BEAM POWER METER

J. M. Nitschke

Introduction

The instrument to be described allows the measurement of the power generated in a target by a particle beam. This measurement can be performed over a wide power range, with great precision and linearity. For a given energy E (in MeV) and a measured power P (in watts) the number of particles per second (PPS) inpinging on the target is given by the simple relationship

$$
\text { PPS }=6.24 \times \frac{\mathrm{P}}{\mathrm{E}} \times 10^{12}
$$

The number of particles per second is one of the most important parameters of any accelerator.

A prototype of this instrment has been built and tested at the Heavy Ion Linear Accelerator (Superfillac).

The Principle of Operation

The principle of operation can best be understood by referring to Fig. 1. The particle bean strikes a suitable target and generates heat. The heat is pumped away on the back side of the target by a Peltier-module. (A Peltier module is a semiconductor device that can act as a refrigerator or heat pump depending on the sirection of the current that is flowing through it.) The hot side of the Peltier module is attached to a cooling block which

Fig. 1. Block diagran of digital beam-power meter. (XBL 757-3448)
in turn is water-cooled. The target and the cooling block each contain a thermistor. These thermistors are electrically connected to a bridge circuit and a differential amplifier.

When both thermistors are at the same temperature the output of the bridge and the amplifier is zere. This is the case in the absence of any beam when the whole assembly assumes the same temperature.

Even small amounts of beam will increase the temperature of the target (in particular since the unit is operated in vacuum, unbalance the thermistor bridge and produce an output voltage at the amplifier. This voltage is converted into a frequency and triggers a constant current pul.se generator which is connected to the Peltier modu:e. The module consequently cools the target until the thermistor in the target reaches the same temperature as the reference thermistor in the cooling block.

The fact that the power to the Peltier module is supplied in short pulses instead of DC is of no corsequence for its performance since it has a very long themal time constant. It leads, howe:er, to a linear relationship between the frequency of the applied pulses and the cooling power generated since every pulse corresponds to a certain amount of energy (in watt-seconds or calories for example) and the pulse rate therefore corresponds to a certain amcunt of power (in watts or calories per second). 1 In the prototype instrument 1 kHz is equivalent to 1 watt of bearn power. The beam power can therefore be read directly on a frequency meter.

Calibration

Since the instmment is linear over a wide range, a two point calibration is sufficient. The zero point is adjusted with the beam turned off. or the digital beam power meter pulled out of the beam path. The second calibration point is obtained by a precise amount of heat generated by four resistors imbeuded in the target. The thus simulated bearn power can be calculated from a current and voltage measurement with a digital voltmeter.

Footnote

1. A direct DC -feedbuck without conversion into a frequency would result in a highly nonlinear instrment.

EXTRACTION OF ${ }^{20} \mathrm{Na}^{+}$IONS FROM A He JET ION SOURCE

R. A. Gough, D. Littiajohn, D. J, Vieira and
J. Cerny

This report describes a crucial 'xperiment in our development of the RAMA facility far on-line mass analysis of short-lived [z 50 msec] radioactivity at the 88 -Inch Cyclotron. An overall description of the scope of this project can be found in ref. 1.

In this experiment, the ${ }^{24} \mathrm{Mg}\left(\mathrm{p}, \mathrm{an}^{2}\right)$ reaction was utilized to produce ${ }^{2}{ }^{0} \mathrm{Na}$, a β^{+}-delayed α emitter with a half-life n 450 msec . A $40-\mathrm{MeV}$ proton bean from the cyclotron was focused onto an $800-\mu \mathrm{g} / \mathrm{cm}^{2}$ natural Mg foil located in a He jet target chamber charged with 1.5 atm of commercial grade He. The He was not deliberately seeded with impurities; however, no special care was taken to purge the gas system of contaminants prior to the rum. Activity recoiling from the target was swept with a He flow rate of $15-20$ Torr- ℓ / sec into a 1 mm inside dianeter stainless steel capillary tube, 5.8 m long. The capillary terminated in a yacumm chamber maintained at ≈ 50 microns by a high capacity Roots blower/mechanical pump conbination. A 1 mm dianeter skimmer was located 5 mm downstream from the capillary which allowed 70-80\% of the ${ }^{20} \mathrm{Na}$ activity to pass through it while deflecting most of the He carrier gas into the Rcots blower to be pumped away.

Previous measurements ${ }^{1}$ had indicated that n 70% of the transmitted ${ }^{20} \mathrm{Na}$ activity was contained in a 2° opening cone. The He jet ion source, 1 modeled after the early Sidenius hollow cathode type, 2 was positioned so the filament (cathode) subtended a 2° cone from the end of the canillary. A thorough optimization of ion source operating parameters was not completed during this experiment. Throughout most of the rum, however, the ion source conditions were: bias voltage $V=10.5$ kV ; arc voltage $=240 \mathrm{~V}$; arc current $=1.5 \mathrm{~A}$; filament voltage $=10 \mathrm{~V}$; and filament current $=20$ A. The arc was supported by an auxiliary source of He gas whose flow was 20.1 Torr $-\ell / \mathrm{sec}$. The bean was extracted by a grounded paller electrode positioned $\approx 1.5 \mathrm{~mm}$ from the exit hole of the ion source. Successful runs were made using exit hole diemeters of both 1.0 nm and 1.5 nen.

An Einzel lens was used to focus the extracted beam into a Wien filter (crossed electric and magnetic fields) designed to provide a crude separation of the extracted beam components (e.g., He^{+}, $\mathrm{Ta}^{+},{ }^{2}{ }^{0} \mathrm{Na}^{+}$). This filter had been calibrated prior to the run by feeding various gases (A) into the ion source arc and tuning the electric field (I) of the device for each gas at constant magnetic field (B) so the ion A^{+}passed through undeflected. The beam currents were monitored downstream by an on-axis, electron-suppressed Faraday cup. It is readily shown that, for ions Jif mass A and charge q to pass undeflected, the electric field must be given by

$$
E=B \sqrt{2 q V} \times A^{-\frac{1 / g}{5}}
$$

Figure 1 shows the 1 inear relation observed between E and $A^{-1 / 2}$ for several measured ions,

Fig. 1. Calibration of Wien filter at constant magnetic fie1d. (XBL 757-3443)

During the ${ }^{20} \mathrm{Na}$ experiment, the wien filter was tuned to direct the activity $\left({ }^{20} \mathrm{Na}^{+}\right)$off-axis onto 0.63 micron Ni foil behind which was a wellshielded fully-depleted phosphorus-dilfused detector. This counter/collector foil assembly was positioned at a distance from the extraction axis equal to ~ 3 standard deviations of a Gaussian fit to a previously measured ${ }^{20} \mathrm{Ne}^{+}$beam profile. About two counts per minute in the 2.15 MeV a group were observed resulting in the spectrum shown in Fig. 2. When the ion source filarient was turned off (thereby extinguishing the arc) zero counts were observed in two $10-\mathrm{min}$ counting intervals. The counting rate retumed to normal when the ion source was turned on again.

Fig. 2. Alpha-spectrm of ${ }^{20} \mathrm{Na}$ extracted as 10.5 $\mathrm{keV}{ }^{2}{ }^{\circ} \mathrm{Na}^{1+}$ ions and deflected to an off-axis detector. (XBL 757-3445)

Prior to turning on the ion source, but without intermuting the operation of the He jet, another detector/collector foil assembly was positioned to intercept the activity coming out of the skimmer. By comparing the yield before and after the ion source, the ifficiency of the ion source was estimated to be $\sim 0.1 \%$.

Present efforts are directed towar. 1 improving the on-line efficiency of both the He jet and the ion source. The installation of a magnetic analyzer is expected to be completed in 1975 with which
on-1ine mass separation will become possible.

References

1. Nuclear Chemistiy Division Annual Report for 1973, LBL-2366, p. 443.
2. G. Sidenius, First Intemationai Conference
on Ion Sources, Saclay, France (1969), p. 401.

A CLUSTER BREEDER FOR He JET EXPERIMENTS

R. A. Gough, D. Littlejohn, L. Ho, D. Sherman,
T. Raunemaa, D. Moltz, and J. Cerny

Until fairly recently, the importance of inpurities in the He gas used for He jet transport systers has not been fully appreciated. In the last few ${ }^{2}$ years, hohever, many laboratnries have reported ${ }^{3}$ various additives that improve (in some cases dramatically) the efficiency of the He jet method for rapidly transporting radioactive atoms.

The probable explanation for these successes is the creation of 1 ?rge ($10^{3}-10^{8}$ amr) $)^{1}$ molecular clusters that $7 r e$ formed when certain substances are subjected to ionizing radiation. This occurs, for example, when a charged-particle acceterator beam passes through the target chamber of a He jet experinent if the He has been seeded with an appropriate additive. Radioactive atoms recoiling from the targit appear to attach themselves to these clusters.

If the He is then entrained in laminar flow along a suitable length of capillaty tube, the interactions of the He atoms with the clusters will serve to concentrate tle heavy clusters in the center of the flow stream ${ }^{4}$ (reducing radioactive losses to the capillary walls). These interactions will further serve to accelerate the clusters until the axial velvcity distributions of the c?usters and He atoms becrme comparable. The clusters then possess consider able energy and mortentur.

When the transported material reaches the end of the capillary tube an expansion occurs into vacuum. The angl. of the expansion cone is very small ($\left.22^{\circ}\right)^{5}$ jur sufficiently massive clusters but ma; be very large ($n 30^{\circ}$) for the lighter He atoms. Thus, the nozzle-skinmer technique ${ }^{4}$ can be
used to effect a very efficient separation of the He gas from the radioactivity.

Of particular interest to our He jet program were two reports 6,7 which demonstrated the use of ultraviolet radiation (UV) as a means of cluster formation for off-1ine He-jet studies using both a ${ }^{252}$ Cf fission source and a ${ }^{228}$ Th a source. The $W V$ can be generated by a carbon arc discharge or by a mercury vapor fluorescent lamp.

We have constructed a "cluster breeder" similar to the apparatus used in ref. 7 for testing purposes in our laboratory; it is shown schematically in Fig. 1, It has been used with a ${ }^{225} \mathrm{Ra}-{ }^{225}{ }^{\mathrm{Ac}} \alpha$ source (surveyed at 4×10^{5} dpm) to collect samples of ${ }^{222} \mathrm{Fr}\left(\mathrm{E}_{\mathrm{q}}=6.34\right.$ and 6.12 MeV ; $\left.t_{l_{2}}=4.8 \mathrm{~min}\right),{ }^{217} \mathrm{At}\left(E_{\alpha}=7.07 \mathrm{MeV} ; t_{L_{2}}=32 \mathrm{msec}\right)$ and ${ }^{233} \mathrm{Po}$ ($E_{\alpha}=8.38 \mathrm{MeV} ; t_{2}=4.2 \mu \mathrm{sec}$) on an aluminum collectror foil. The foil was transferred to a counting chamber to measure the a particle yield. In one such test using CCl , as additive and a mercury vapor UV lanp to breed the clusters, the a-particle spectrwn shown in Fig. 2 resulted from a $15-\mathrm{min}$ collection, $2-\mathrm{min}$ delay, $10-\mathrm{min}$ counting sequence. Data from subsequent counting periods on this sample revealed that the ${ }^{221} \mathrm{Fr}$ and ${ }^{217}$ At decayed with a half-life ~ 4.8 min while the ${ }^{213}$ Po group exhibited the half-1ife of its precursor ${ }^{2{ }^{31}} \mathrm{Bi}$ ($\sim 47 \mathrm{~min}$). Zero counts were observed if either the UV lamp was turned off or if the apparatus was purged of CCl_{4}. With similar ongoing studies we hope to improve our understanding of the mechanisms necessary for efficient transfer of radioactivity as well as for efficient skimming. These studies will include the use of other additives and the transport of other activities.

Fig. 1. A schematic diagram of the cluster breeder. (XBL 7412-8444)

Fig. 2. Alpha-particle spectruan of activity transferred from a ${ }^{255} \mathrm{Ra}+{ }^{225} \mathrm{Ac}$ source by a He jet using the cluster breeder. (XBL 757-3441)

References

1. H. Jungclas, R. D. Nacfarlane and Y. Fares, Phys. Rev, letters 27, 556 (1971).
2. J. Äysto, P. Pumalainen and K. Valli, Nucl. Instr. \& Meth. 115, 65 (1974).
3. K, L. Kosanke, W. C. Mcharris and R. A. Warmer, Nuxl. Instr. E Meth. 115, 151 (1974).
4. J. B. Arderson, R. P. Andres, and J. B. Fenn, Advan. Chem. Phys. 10, 275 (1966).
5. Nuclear Chemistry Division Annual Report for 1973, LBL-2366, p. 443.
6. K. Wien. Y. Fares, and R. D. Macfarlane, Nucl. Instr. \& Meth. 103, 181 (1972).
7. H. G. Wilhelm, H. Jungelas, H. Vollnik, D. F. Snider, R. Brandt, and K. H. Lust, ikacl. Instr. \& Meth. 115, 419 (1973).

A MODIFIED * Be IDENTIFIER

G. J. Wozniak, N. A. Jelley,* and J. Cerny

For several years we have been developing a general-purpose cosinter telescope technique 1 for studying transfer reactions which produce ${ }^{8} \mathrm{Be}$ nuclei $\left(t_{1_{2}} \sim 10^{-16} \mathrm{sec}\right)$ as exit particles. Since initial investigation of the (α, , Be) reaction at a bombarding energ. of $\approx 65 \mathrm{MeV}$ was hindered by 1ow yields (do/dת < $50 ~ \mu b / s r$) and a large $a-\alpha$ chance background, a "modified" ${ }^{\text {g }} \mathrm{Be}$ identifier has been developed's to improve the sigmal to noise ratio.

Figure: is a schematic of the modified identifier, illustrating its basic components; a divided collimator, twin transmission detectors ($\Delta \mathrm{E}$) and a position-sensitive stopping detector (E). The two a-particles from 'Be decay are detected in subnanosecond coincidence in the ΔE detectors and, in addition, a comparison of their relative energy losses is made. The ${ }^{a} \mathrm{E}$ e is further identified by performing particle identification with the summed AE detector signals and the E signal. Finally the PSD is used to determine the direction of the ${ }^{\theta}$ Be muclei. A large solid angle is subtended to obtain a high probability of detecting the two breakup a-particles, while the erergy resolution is improved by kinenatically correcting the ${ }^{8} \mathrm{Be}$ energy by its direction.

When ${ }^{9} \mathrm{Be}$ decays, the two breakup a-particles have similar energies $\left(\left|E_{1}-E_{2}\right| /\left(E_{1}+E_{2}\right) \approx 10 \ddagger\right\}$ and thus similar flight times and differentiql energy losses ($\mathrm{dE} / \mathrm{dx}$). The maximum difference in the flight times of the two a-particles from a $35-\mathrm{HeV}$ हhe is approximately 0.5 nanoseconds over a 12 cm flight path. Thus a ${ }^{\theta}$ Be event can be characterized by a $\triangle T O F \leqslant \Delta t_{\text {max }}= \pm 0.5$ nanoseconds. Similarly the energy loss of α_{1} in ΔE_{L} is approximately equal to that of α_{2} in ΔE_{R} (see Fig. 1). By calculating the ratio $R=\Delta E_{L} /\left(\Delta E_{L}+\Delta E_{R}\right)$, 昰 ${ }^{2}$

Fig.
ident
trans!
*ic diagram of the modified ${ }^{8} \mathrm{Be}$ g the divided collimator, twin ectors and PSD. (XBL 745-3062)
events can also be characterized by a ratio signal of 12 .

Figure 2 presents a $\Delta T O F$ spectrum [$\Delta \mathrm{E}_{\mathrm{L}}$ (start) - ΔE_{R} (stop)] of events originating from the same bean burst. The symmetric double peak is due to ${ }^{8}$ Be events. Background counts are caused by fragmentation reactions and random chance coincident events associated with the high counting rate of 25 kHz in each of the ΔE detectors (intra-beanburst rate 500 kHz). The full width at the base of the $\Delta \mathrm{TOF}$ peak ($\sim 1 \mathrm{~ns}$) reflects the minimum energy ($\sim 30 \mathrm{MeV}$) ${ }^{6} \mathrm{Be}$ event that could be detected, and the central dip is the effect of collination on the breakup a-particle velocity distribution. If the identifier had 100% detection efficiency and perfect time resolution, then the $\triangle T O F$ peak would be rectangular with a width of $2 \Delta t_{\text {max }}$. This is most closely realized for ${ }^{\circ} \mathrm{Be}$ nuclei emitted toward the center of the identifier. However, for those emitted off center, the first part of the breakup cone that is lost through collimation is the edge. Therefore, most of the ${ }^{8} \mathrm{Be}$ events emitted into the acceptance solid angle, that are not detected, correspond to the breakup α-particles having approximately equal velocities, and therefore equal times-of-flight, hence the central dip in the $\triangle T O F$ specerm,

In the spectrum show in Fig. 2, only events depositing more than 10 NeV in the E detector, and satisfying a $\Delta \mathrm{E}_{\mathrm{L}}-\Delta \mathrm{E}_{\mathrm{R}}$ inter-beam-burst coincidence ($2 \tau=50 \mathrm{~ns}$) and $\triangle \mathbb{E}$ energy SCA's (set to eliminate $2=1$ and 3 particles), were recorded.

Fig. 2. A $\triangle T 0 F$ spectram, ΔE_{f} (start) $-\Delta E_{R}$ (stop), of events originating from tie same beam burst. The ratio of the total background to ${ }^{6} \mathrm{Be}$ events decreases from 120% to 1% as various SCA requirements are introduced. (XBL 742-2318)

The total number of intra-beam-burst background counts, expressed as a percentage of the nomber of ${ }^{8}$ Be events, is 120% for the above conditions (see (a) in Fig. 2). As further SCA requirements are made: (b), (c), (d), and (e), the background decreases considerably with only a 25% loss in the number of ${ }^{8} \mathrm{Re}$ events which is alnost entirely due to the setting of a restricted X gate. The lowest background is achieved when the position signal is restricted to fall within the ${ }^{8} \mathrm{Be}$ acceptance angle (X SCA); the PI falls in the calculated region for ${ }^{\text {B }}$ Be events (PI SCA); the ratio is close to one-half (R SCA); and the $\triangle T O F$ signal corresponds to a time difference $\leqslant \Delta t_{\max }$ (\triangle TOF $S C A$). All these conditions are character istic of ${ }^{8} \mathrm{Be}$ events. With these requirements the total background in a ${ }^{8}$ Be energy spectrum is 1% of the number of ${ }^{8} \mathrm{Be}$ events, at a counting rate of 25 kHz in each $\Delta \mathrm{E}$ detector.

Fig. 3a) Calculated \triangle TOF spectra, ΔE_{L} (start) ΔE_{R} (stop), showing the effect of the divided col1 inator's shape on the relative velocity distribution. b) A ratio spectrun, $\Delta E_{\mathrm{I}} /\left(\Delta \mathrm{E}_{\mathrm{l}}+\Delta \mathrm{E}_{\mathrm{R}}\right)$:
c) Measured $\triangle T O F$ spectra routed by the ratio gates shown in part b).
(XBL 742-2379)

A ratio spectrum is given in Fig. 3b. The double peaking in this spectram corresponds to that seen in the $\triangle T O F$ spectrm shown in Fig. 2. If the lower velocity alpha from a ${ }^{8}$ Be event traverses $\Delta \mathrm{E}_{\mathrm{L}}$ and the higher velocity one traverses $\Delta \mathrm{E}_{\mathrm{R}}$, this corresponds to a negative time difference in the $\triangle T O F$ spectrum. It also corresponds to a higher ΔE_{L} energy loss ($\mathrm{dE} / \mathrm{dx} \propto \mathrm{E}^{-1}$), and therefore a ratio greater than one-half. This equivalence is dentonstrated in Fig. 3c(ii).

In Fig. 3c(i) a $\triangle T O F$ spectruin routed by the wider R SCA, is shown. The shape of this peak is closely predicted as can be seen from the calculated peak shapes for 45 and $65 \mathrm{MeV}{ }^{8} \mathrm{Be}$ events given in part (a). These $\triangle T O F$ spectra were calculated with the program EFFICR. (The asymmetry in the experimentally observed \triangle TOF peak of Fig. $3 c$ (i) is due to a slight asymmetry in the position gates).

To reduce the effect of kinematic broadening on the ${ }^{6} \mathrm{Be}$ energy resolution, three narrow position gates (X_{L}, X_{C}, X_{R}) were set. Each was equivalent to 0.4° and the sumbed gate (1.2 ${ }^{\circ}$) had a detection efficiency (ε) of $20-36 \%$ for $35-70 \mathrm{MeV}$ ${ }^{8}$ Be events. In addition, a thin target $\left(100 \mu \mathrm{~g} \wedge \mathrm{~m}^{2}\right)$ was used and rotated to reduce the combined efftet of the differential energy loss in the target and the beam spot size.

A ${ }^{9}$ Be energy spectrm accumulated in two hours from the ${ }^{11} \mathrm{~B}(\alpha$, , Be$)$ Li reaction at $\theta_{1 a b}=2 n^{\circ}$ and $\mathrm{E}_{\alpha}=72.5 \mathrm{MeV}$ is shom in Fig. 4. This spectrum was obtained by suming the kinematically corrected energy spectra corresponding to the three position gates. Over 25 MeV of excitation in ${ }^{7} \mathrm{Li}$ is observed, and strong transitions to the ground and second excited states are seen as well as transitions to the $7.47 \mathrm{MeV} ; 5 / 2^{-}$and the $0.48 \mathrm{MeV} ; 1 / 2^{-}$states ${ }^{3}$ (the latter only partially resolved). The $5 / 2^{-}$and $1 / 2^{-}$states are expected to be less strongly excited on the basis of calculated a-structure factors. 4 The absolute cross section to the ground state is $18 \mu \mathrm{~b} / \mathrm{sr}$ at this energy and angle. The observed energy resolution is 400 keV and the counting rate in each ΔE detector was 25 kHz . At this counting rate the deadtime (observed with a pulser-triggered by a monitor counter) was 35%.

Fig. 4. $A^{8} \mathrm{Be}$ spectrum from the ${ }^{11} \mathrm{~B}\left(\alpha^{\theta}{ }^{\theta} \mathrm{Be}\right){ }^{7} \mathrm{Li}$ reaction taken with the modified identifier. The locations of possible trancitions to all states below 11 MeV are indicated. 4
(XBL 742-2411)

Using the modified identifier, data cculd be collected at twice the rate and with a lower background level than was possible with the simple identifier. The average background level above the inpurity peak in Fig. 4 corresponds to an absolute differential cross section limit of ~ 0.1 $\mu \mathrm{b} / \mathrm{sr} \mathrm{c} . \mathrm{m}$. Lower cross section limits could be achieved if necessary by reducing the counting rate. There is no background from ${ }^{9} \mathrm{Be}^{*}(2.9 \mathrm{MeV})$, when using a modified identifier, because its large breakup Q-value coupled with the restriction on the separacion angle of the two a-particles imposed by the divided collimator causes a_{1} and a_{2} to have sufficiently different energies that the $\triangle T O F$ SCA and R SCA requirements eliminate ${ }^{\text {E }}$ Be* events from the energy spectra.

The above counter telescope technique was developed for the spectroscopic study of low yield reactions producing ${ }^{\text {日 }} \mathrm{Be}$ nuclei in the presence of a high chance $\alpha-\alpha$ background. This technique
should greatly sinplify the study of single and multi-particle transfer reactions involving ${ }^{8} \mathrm{Be}$, such as ($\left.{ }^{9} \mathrm{Be},{ }^{8} \mathrm{Be}\right),\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{Be}\right)$, and ($\left.{ }^{1{ }^{1}}{ }^{8},{ }^{8} \mathrm{Be}\right)$.

Footnote and References

*Present address: Nuclear Scructure Laboratory, Oxford, England.

1. G. J. Womiak, H. L. Harney, K. H. Wilcox, and J. Cerny, Phys. Rev. Letters 28, 1278 (1972); G. J. Wozniak, N. A. Jelley, and J. Cerny, Phys. Rev. Letters 31, 607 (1973).
2. G. J. Wozniak, N. A. Jelley, and J. Cerny, Nucl. Instr. \& Neth. 120,29 (1974).
3. F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A227, 1 (1974).
4. D. Kurath, Phys. Rev. C 7, 1390 (1973).

PERFORIAANCE OF A SILICON PROTON POL ARIMETER BETWEEN 19 AND 32 Mov*

J. Birchall, ${ }^{\dagger}$ H. E. Conzett, W. Dahme, \ddagger J. Arvieux, ${ }^{\top}$

F. N. Red, R. Roy, ind R. M. Latimer

In the past few years interest has grown in the measurement of the so-called triple-scattering pirameters. 1 These experiments require the scattering of a polar:ized bean from a target and the measurement of the polarization of the outgoing beam. The polarization is detemined by scattering the beam from a suitable polarization analyzer and by conparison of the scattering yields at equal angles to the left and the right from the analyzer. Two muclear scatterings are therefore involved, the first at the primary target and the second at the polarization analyzer. Count rates are generally low and increases in scattering efficiency have usually been made at the expense of energy resolution.

Recent prggress in calculations for the threenucleon system ${ }^{2}$ and the relatively good agrement of the results of these calrulations with measured cross-sections and avalyzing powers ${ }^{3}$ have spurred interest in experiments of the above type, which probe further our understanding of few nucleon sys เems. It is expected that precise determination \therefore polarization transfer ${ }^{4}$ and depolarization parameters for nucleon-deuteron elastic scattering will provide a sensitive test of the nucleon-nucleon interactions used in the calculations.

In the field of proton-nucleus elastic scattering it has been pointed out that detailed information on the nucleon-nucleus spin-spin interaction can be expected from the stury of angular distributions of the depolarization paraneter D. ${ }^{5}$ In such experiments good energy resolution is required to separate elastically scattered protons from scattering from low lying states of the target nucleus.

A polarimeter has been designed for experiments of the above types, and for other experiments where a zow yield of protons is expectec. The polarimeter combines high scattering efficioncy with good energy resolution.

As itlustrated in Fig. 1, it comprises a polarization analyzer, labeled 'analyzer detector' and three silicon semiconductor detectors labeled 'left', 'right' and 'zero-degree': The analyzer material is silicon in the form of a $\mathrm{Si}(\mathrm{Li})$ semiconductor transmission detector of 1-2 ma depletion depth. The zero-degree detector is centered on the polarimeter axis, while the left and right side detectors are positioned at $\pm 27^{\circ}$ to the axis, and each subtends a solid angle of 12 msr at the analyzer. The side detectors, F_{L} and E_{R}, are operated together with the analyzer detector ΔE as two $E-\Delta E$ counter telescopes sharing the same ΔE detector. The sumed pulse $E+\Delta E$ represents

Fig. 1. Schematic diagram of the polarimeter, C_{A}, C_{L}, C_{R}, C_{0} are collimators.
(XBL 733-2368A)
the total energy of the particle incident on the analyzer detector. The polarimeter therefore has the advantage of good energy resolution even when the analyzer is made thick and the side detector solid angles are made large in order to increase count rate. Typically, energy resolutions of the order of 100 keV FHM at 20 MeV are obtainable when the polarimeter is operated at analyzer comt rates below about $5 \times 10^{4} \mathrm{sec}^{-1}$.

A typical energy spectrum is show in Fig. 2 for ${ }^{9} \mathrm{Be}(\vec{p}, \overrightarrow{\mathrm{p}})$ at $\mathrm{E}_{\mathrm{p}}=25.3 \mathrm{MeV}$ and $\theta_{\mathrm{LAB}}=45^{\circ}$. It was obtained with $\mathrm{P}_{\mathrm{a}} 1$ mom thick analyzer detector counting at $\sim 10^{5}$ colnts per second. The elastic peak at channel 320 corresponds to a proton energy of 22.6 MeV . The peak at channel 285 is due to the 2.43 NeV state of ${ }^{9} \mathrm{Be}$, while the small peak near channel 29.5 is from elastic scattering from ${ }^{9} \mathrm{Be}$ followed by scattering from the 1.78 NeV level of ${ }^{28} 5 i$ of the analyzer detector. The crosssection for the 1.78 MeV state is approximately 4% of the elastic cross-section at 27° at this energy, but becomes comparable with the elastic cross-section at backward angles.

The poiarimeter was designed with reference to recently published data on ${ }^{2 \theta} \mathrm{Si}(\overrightarrow{\mathrm{p}}, \mathrm{p})$ from 17 to 29 MeV .6 Figure 3 shows a contour plot, derived from these data, of $\mathrm{Ao}^{\frac{1}{2}}$ where A is the proton ${ }^{2}{ }^{2}$ Si analyzing power and O is the differential elastic cross-section. The peak in this figure of merit, centered at $E_{\mathrm{P}}=23 \mathrm{MeV}$ and a scattering anp.e of 30°, is quite flat and reaches $5.4(\mathrm{mb} / \mathrm{sr})^{2}$. The figure of merit of the present polarimeter could he increased by 5-10a of its present value by using a mean scattering angle of 30° instead of 27°. For the present arrangement, with an analyzer detector 2 ma thick and side detectors subtending

Fig. 2. Spectrum of ${ }^{9} \mathrm{Be}(\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{p}})$ at $\mathrm{E}_{\mathrm{p}}=25.3 \mathrm{MeV}$, $\theta_{\text {LAB }}=45^{\circ}$ with a $53.4 \mathrm{mg} / \mathrm{cm}^{2}$ target.
(XBL 746-3549)

Fig. 3. Contour plot of the $\overrightarrow{\mathrm{p}}^{-{ }^{2}}$ Si figure of merit $A_{0} \frac{{ }^{\frac{1}{2}}}{}$ versus laboratory scattering anyle and proton energy. The units of $\mathrm{Ac}^{\frac{1}{2}}$ are ($\left.\mathrm{mb} / \mathrm{si}\right)^{\frac{1}{2}}$, with A measured as a fraction of 1.0 .
(XBL 747-3632)
an angle of $\pm 3.5^{\circ}$ at the analyzer, the left-plusright scattering efficiency Y is $\sim 0.8 \times 10^{-4}$ per proton incident on the analyzer at 26 MeV . The integrated figure of merit $4 Y^{\frac{1}{2}}$ is $\approx 2.2 \times 10^{-3}$, with A measured as a fraction of 1 .

The effective analyzing power of the polarimeter is determined in a calibration procedure which measures the asymmetry ε in tne polarimeter produced by scattering a beam of polarization p_{0} from a target. ε is given by:

$$
E=P_{1} A_{2}=A_{2}\left(D_{0}+A_{1}\right] /\left(1+P_{0} A_{1}\right)
$$

where P_{1} is the polarization of the beam after scattering from the target, A_{2} is the silicon polarimeter effective analyzing power and A_{1} and Dare, respectively, the anailyzing power and depolarization parameter of the target. For direct siastic scattering the D-parameter is a measure of the spin-spin interaction occurring between the scattered proton and the target nucleus. D then takes on its maximm possible value of 1.0 for elastic scattering from a spin zero nucleus, such as ${ }^{4} \mathrm{He}$ or ${ }^{12} \mathrm{C}$. A_{1} is determined from the spin upspin donn asymnetry in the zero-degree detector, or from the combined asymmetries in two zero degree detectors when two polarimeters are in use, one at either side of the beam. Since ε, A_{1} and P_{0} are measured and D is known for ${ }^{4} \mathrm{He}$ or ${ }^{1}{ }^{2}$, A_{2} can be detemined. Results of such measurements are shown in Fig. 4.

The polarimeter has proven to be particularly useful in low yield experinents, such as in the determination of polarization transfer and depolarization parameters. The high efficiency coupled with inherently good energy resolution make it conpetitive with other polarimeters for proton
energies between 17 and $\sim 40 \mathrm{NeV}$. For experiments witere energy resolution is important, involving the measurement of the polarization of protons scattered from complex nuclei with closely spaced levels or the measurement of polarization in breakup reactions, the present type of polarimeter is superior to others known to the authors.

Fig. 4. Measured values of the polarimeter effective aralyzing power versus proton energy for $\theta=$ 27°. A 1 mm analyzer detector was used, except for the points above 24 MeV where the analyzer was 2 nen thick. The dashed line is to guide the eye.
(XBL 748-3845)

Footnotes and References

*Condensed from publication in Nucl. Instr. and Nethods 123, 105 (1975).
${ }^{\dagger}$ Present address: Physics Department, University of Basel, Switzerland.
$\dagger_{\text {Present }}$ address: Whysics Department, University of Nknich, West Germany.
${ }^{5}$ Present address: I.S.N., University of Grenoble, France.

1. L. Wol fenstein, Ann. Rev. Nev-1. Sci. 6, 43 (1956).
2. J. C. Aarons, I. H. Sloan, Nucl. Phys, Al82, 369 (1972), A198, 321 (1972); P. Doleschall, Phys. Lett. 40B, 443 (1972), Nucl. Phys. 1220,491 (1974); S. Pieper, Sucl. Phys. A193, 519 (1972), A193, 529, (1972), Phys. tev. C8, 1702 (1973).
3. F. N. Rad, J. Birchall, H. E. Conzett, S. Chintalapudi, R. Roy, Phys. Rev. Letters 33, 1227 (1974), and references therein.
4. F. N. Rad, J. Birchall, H. E. Conzett, R. Roy, Phys. Rev. Letters 33, 1579 (1974).
5. A. Hussein, H. S. Sherif, Phys. Rev. C8, 518 (1973).
6. C. R. Lamontagne, B. Frois, R, J. Slobodrian,
H. E. Conzett, Ch. Lecmann, R. JeSwiniarski, Pl.vs. Lett. 45B, 455 (1973).

A VIEW OF THE PRESENT STATUS AND FUTURE PROSPECTS OF HIGH PURITY JERMANUUN*

W. L. Hansen and E. E. Haller

The present state of our knowledge of the properties of high purity germanium is reviewed. The role of excess vacancies, oxygen and high dislocation density in producing trapping in detectors is discussed. By the application of Fourier Transform Spectroscopy, the major impurities have been identified and altminum has been found to be dominant in most crystals. Analysis has shown that the principal source of aluninum is the polycrystalline starting material. The material problems related to detector fabrication are surveyed and a spectrum taken with a $43 \mathrm{~cm}^{3}$ coaxial detector is presented. It is concluded that the important problems of material development are well delincated but that their solutions will require intensified effort.

The development of high purity germanium as a detector material has now progressed enough so that some general statements can be made about our present understanding, and the areas where further research is needed can be rather sharply defined. The recent application of Fourier Transform IR Spectroscopy has led to the identification of all the important impurities. Several hudred detec-
tors of all sizes have been made, and in ine process, crystal properties important to device performance have been illuminated. The cvolution of our present understanding can be divided roughly into three areas; 11 the role of excess vacancies, 2) impurities and impurity distributions, and 3) the concern for dislocations and structural defects.

The Role of Excess Vacancies

An important acceptor level in high purity germanium can be produced by an excess of vacancies over the ambient temperature equilibrium vnlue. Crystals grown from a melt incorporate a concentration of vacancies equivalent to their solubility at the melting temperature. As the crystal cools it becomes strongly super-saturated miess some low energy condensation nuclei are present. In gemaniun the vacancy solubility at the melting point is $>10^{15} / \mathrm{cm}^{3}$ and at room temperature is insignificant.

If no condensation naclei are present, (e.g.,
disiocations), the strong super-saturation of vacancies cause their precipitation as vacancy clusters or voids. These vacancy clusters, which can be revealed by chemical etching (Fig. 1] ace always accompanied by aczeptor centers with an activation energy of about $80 \mu \mathrm{\mu V}$ and a conceritration of 2 to $4 \times 10^{11} / \mathrm{cm}^{1}$ (Fig. 2). Centers with this activation energy are efficient traps at ${77^{\circ}}^{\circ} \mathrm{K}$ and as a resul c , detectors containing vacancy clusters give completely wacceptable performance.

Impurities and Inpurity Distributions

Mbst on sur crystals have a background donor inpurity which segregates toward the tail end so that this end is usually n-type. Many crystals exhibit a uniform net acceptor concentration along most of the length with the tail becoming n-type. Analysis of these crystals by Fourier Transform Spectroscopy (FIS) has shown that the n-type inpurity is phosphorus and the p-type is aluninum.

A high concentration is sometimes found at the head ends of crystals. FTS shows that this is Jue to borc: which always segregates to this end. Furthermore, these crystals have all been grown from the head ends of zone refined bars.

Occasionally crystals are found where the acceptor concentration increases from the head to the tail. FTS shows that this impurity is galliam or, in a few cases, indium.

On the basis of the distribution of the four impurities, wo con explain all of our resistivity profiles. Inceed from an examination of the type of profiles, we can usually infer the nature of the impuri*ies in a given crystal.

Fig. 1. Photograph of etch pits at the boundary of a dislocated and undislocated region of a crystal slice. In the upper portion are large pits due to dislocations and the lower, small pits due to vacancy clusters. The boundary region is free of pits.
(XBB 7510-6167)

Fig. 2. Acceptor concentration vs tenperature for a dislocation free crystal. The energy level at 79 MeV is associated with vacancy clusters and the level at 10.5 Nev has been determined by FTS as being due to aluminum.
(XBL 751!-1380)

The Role of Aluminum

Once having taken into account the effects of excess vacancies, the mest connon type of impurity distribution that needs explaining is shown by the examples in Fig. 3. As can be seen in this figure, the conductivity of the crystals appears to be dominated by an acceptor with a segregation coefficient very close to 1.0 . Low temperature measurements give an activation energy near 10 HeV for this acceptor. All of the group III and V impurities have activation energies near 10 MeV but have segregation cefficients far from 1.0 under our crystal growing conditions. The segregation coefficients of oiher common elements are known in gernanium, and ail are very far from 1.

Application of FTS to crystals exhibiting the non-segregating impurity proved that this impurity has always aluminum - even in the purest crystals. Since low temperature conductivity measurements indicated that the total inpulity comentration was dxe to levels near $10 \mathrm{Ni} \mathrm{l}=$, and FIS showed only the single dominant spectruan of aluminum, virtually all the electrical activity is accounted for without the need to invoke other sources such as vacancies, dislocations, strain, etc.

It is concluded then, that with the exception of aluminum, all the inpurities are presently at a low enough concentration for any normal detector application. Now that we have an analytical technique in Fourier Transform Spectroscopy, we can hope that this impurity, too, will soon be controlled. he find, though, that even when the inpurity concentration is suffjciently low, trapping effects are sometimes seen in detectors which can be attributed to structural imperfections. A

Fig. 3. A selection of crystal profiles which show the common constant impurity concentrations which have been shown by FTS as due to aluminuen. The n type portions are not shown. The lower dashed profile is of an n-type crystal which apparently contains little aluminum.
(XBL 7310-1341)
more detailed report discussing the relation of dislocations and charge collection in detectors is in preparation.

Crystal Perfection and Growing Conditions

A strong correlation has been observed betwoen poor charge collection in detectors and dislocation density. When the crystal contains $10^{4} / \mathrm{cn}^{2}$ dislocations, detectable trapping appears which increases with dislocation density. The limits on dislocation densii, for erystals to make high quality detectors appear to be about 500 to $5000 /$ cm^{2} and these must be reasonably unifomly distributed.

The high or meven distribution of dislocat ions is due to poor thermal conditions in the crysial grower. Enough is known historically about how to grow high-quality germanium crystase except for the fact that we are constrained to grow in hydrogen gas as the only ambient initich will probuce crystals free of trapping. Hydrogen has a very high thermal conductivity and a low viscosity so it is a source of strong thermal convection and surface cooling of the growing crystal.

Detectors

The process of making detectors from high purity germanium is remarkably free of art and cospl ications when coapared with making lithium drift devices. Stated simply, good germanium makes good detectors - any fussing with the fabrication is usually an attempt to compensate for some defect in the cry'stal.

If a crystal has sufficient purity to be depleted at a reasonable voltage, we fird the device performance to be quite indifferent to typeness or even of mixed typeness (c.g., an ntype core in a p-type crystal). Sirce the field at the metal surface-barrier is lower with p-type crystals these often make devices capable of sustaining higher reverse bias than n-type. This may allow using poorer quality p-type than n-type srystals, but good quality cristals do not require high voltage. On the other hand, effectively thinner entry windows in x-rey detectors result from using n-type material.

As larger detectors are made, the crystal quality requirements becone more stringent. Since spectral line widths are much more sensitive to differential than absolute charge collection efficiency, the inclusion of regions having a greater range of efficiencies in large devices mikes their performance much poorer than small devices mude from the sare materlal.

In addition to the problem of material selection, coaxial detector fabrication presents more problems than do planar detectors due to the geonetry of the surface barrier. Despite this, our group has made large coaxial detectors. Figune 4 shaws a full energy spectrum of ${ }^{\circ \circ} \mathrm{Co}$ made with a $43 \mathrm{~cm}^{3}$ coax detector with an extemal surface barrier and a lithium-diffused core.

Fig. 4. Portion of a ${ }^{60} \mathrm{Co}$ spectron taken with a $43 \mathrm{~cm}^{3}$ coaxial high-purity gernanium detector. Resolution and peak-zo-Compton ratio were determined from expanded plots of this spectrm.
(BL 7310-1372)

Conclusions

The principal source of contsmination in much of our high-purity gemaniun has been shom to be aluminum in the starting material. Fourier I'ransform Spectroscopy permits analysis of polycrystalline germanium for very low concentrations of p-type impurities, so we are confident that the aluminum imurity can be controlled in the future.

Dislocation densities greater than about $10{ }^{4} /$ cm^{2} result in detectors with noticable trapping; conserquently coistals used to make high quality detectors should have a dislocation density of 500 to $5000 / \mathrm{cm}^{2}$ with reasomably uniform distribution.

As to detectors, the fabrication process presents no fundamentil problers and the particular methods used are not by any means as critical as the choice of material. Excellent small
detectors can be made from most high-purity germanium but routine production of large detectors such as coaxial units of $>50 \mathrm{cc}$ volume awaits sufficient supply of crystals with good structural perfection over large volumes.

While this paper attempts to delineate the main probiems in producing high-purity germanium for high quality detectors, we do not wish to inply that the solution of the remaining problems will be easy. In fact, wn anticipate that considerable work will be needed to develop processes capable of producing substantial quantities of large diameter material suitable for large (50 cm^{3}) detectors.

Footnote

* Condensed from IEEE Trans, Nuc1. Sci. 21, 251 (1974).

INPURITIES IN HIGH•PURITY GERMANIUM AS DETERNINED BY FOURIER TRANSFORH SPECTROSCOPY*

E. E. Haller and W. L. Henam

During the last few years a great deal of work has accumalated toward characterizing highpurity gemmium in respect to detector fabrication. finy techniques were adapted and modified to complete this rather difficult task. Hall effect, conductivity measurenents, and metal-point probing on bulk material as well as capacityvoltage dependences and alpha-particle probing of detectors and detector arrays helped to find the axial and radial distribution of donors and acceptors. 1,2 However, very little work was done on analysis to identify the impurities. The main reason was the lack of a nethod useful at net concentrations below $10^{30} / \mathrm{cm}^{3}$. Since the remaining impurities are usually accidentel (i.e. not added intentionally) it is of crucial interest to find their nature and hence, perhaps, their source. ${ }^{3}$

Photothemal ionization of neutral acceptors/
donors as discovered by Russian scientists, 4-6 combined with Infrared Fourier Transform Spectroscopy (FIS) takes, in a mique why, advantage of the properties of high-purity germaniupp. This was shown by S. D. Seccombe and D. N. Korn with ntype material produced by R. N. Hall at Coneral Electric Research Center, Schenectady, New York. We have now applied the same method to p-type miterial down to net-acceptor concentrations below $10^{9} / \mathrm{cm}^{3}$.

It was shown theoretically and experimentally that impurities in semiconduetors have more than one bound state for their holes/electrons and produce "hydrogen" like excitation spectra. Figure 1 presents the experimentally detemined leyel schemes for neutral acceptors in germanium. 8 Similar sets of excited states are produced by group V inpurities in n-type germanitum as well as
in any other tectrically active centers.
Use of an interferoneter instead of a spactrograph makes possible measurements of the required sensitivity in a short time. Interferograms are converted into frequency spectra by Fourier Trans formation.

Fig. 1. The bound states of the group III inpurities in gemaniun. Ene:gies of the states and the labeling of the transitions are the same as in Ref. 10.
(XBL 7310-1399)

The signal processing and data handling systems are shown schenatically in Fig. 2b. Chopped infrared radiation enters the gemmanium sample causing photothermal excitation which changes the free carrier concentration. The change in voltage across the symmetrically biased sample is amplified with high common-mode rejection and fed into a conventional piase-10ck amplifier (PAR model $\mathrm{H}-8$). This unit rilters, amplifies and synchronously rectifies the signal, It also controls the chomper motor. A voltage wo frequency converter produces a frequency proportional to the signal.

The lower half of Fig. 2a shows a typical interferogran produced by a cube-shaped ($0.57 \mathrm{~cm}^{3}$) sample $\# 313-0.2$. The net acceptor concentration was about $10^{10} / \mathrm{cm}^{3}$. Pecause he do not tuderstand details of the sigual format ion process in the detector we cun only state sorie experimental observations. In general the sipnal rises with increasing bias across the sample. We attribute this to miltiple refilling and excitation of the acceptor states during the time light enters the sample. However, at a certain bias, breakdown occurs and the signal becomes very noisy. The critical value of the bias depends in the netcarrier concentration, sample surface preparation and on the temperature; a fow hundred millivolts is a typical value for 8 mm thick samples. The signal anplitude does not depend on ciopping frequency from a few cycles per second up to 20 H Hz , the limit for the chopper motor. This means that carrier relaxation times in the sumple are shorter chan ~ 1 ms ($\omega \mathrm{T} \leqslant 1$).

Fig. 2a) Interferogram obtained from sample "313-.2. Sarmle volıme $=$ $.57 \mathrm{~cm}^{3} ; \mathrm{N}_{\mathrm{A}}-\mathrm{N} \mathrm{N}^{2} 10^{10} / \mathrm{cm}^{3} ; \mathrm{T}=8.0^{\circ} \mathrm{K} ; 10,1 \mathrm{t}$ sampling points were recorded in Approximately 30 minutes. The "beat" character of the interferogram is produced by the strong A1(C) and Al(D) 1ines. b) Signal processivg and data handling system used in connection with the interferometrr. The genmanium sample simultaneously acts as absorber and detector of IR-radiation.
(XBL 7311-1401)

Aluminum plays the most important role as an impurity in our high-purity germanium. ${ }^{3}$ It was fousd to be the only inportant impurity in many crystals with net-acceptor concentrations ranging from $>10^{12} / \mathrm{cm}^{3}$ down to a few times $10^{9} / \mathrm{cm}^{3}$, A spectrum of the sample is $313-0.2$ conta' ${ }^{\text {a }}$ ing mostly aluminen is displayed in Fig. 3. The lines of A : $(A-C O, B(A-G)$, and $G(A-G)$ correspend to thuse publ ished by \mathbf{R}, L. Jones and P. Fisher ${ }^{8}$ within their experimental errors (~ 0.28). The continum of A1 starting at about 10.8 Me !/ is produced by holes which are excited directly from the ground state inte the valence band.

The line-widths are iimited by the instmment since the total mirror-advance is 2 cm . As can be seen in Fig. 2, the anplitude of the interierogram for this same sarmple does not decay to zero even at $x=2 \mathrm{~cm}$. This means that the matural linewidth of some lines is smaller than $0.25 / \mathrm{cm}$. The ratio of corresponding lines of different iprpurities approxinately represents the ratio of their concentrations although a correction must be applied because of the variation of intersity of the exciting light with the wave number. This deperatence is weak in the spectra region of the strong D and C lines.

Using this simple fact tognther with halleffect measurements of the samples he can observe the segregation of all inpurities separately along the length of the erystal. The segregation coefficients for boron and gallium are very reasonable for the par'icular crystal growing paraneters. The anomalous behavior of aluminu once again is evident.

The quality of spectra obtained with the full
resolving fower of the instrument is illustrated in Fig. 4 where four inpurities are present (sample $291-14.0)$. The $\mathrm{Al}(\mathrm{C}), \ln (\mathrm{D})$, and the $\mathrm{Ga}(\mathrm{C})$ lines are clearly separated. Meir relative spacings are below 0.1 keV . In addition to the inpurities A1, In and Ca, a new unknown shallow acceptor X appears. The reiative spacing: between the (i), (C) and (B) lines of X are in agreenent with the other shallow acceptor lines. Ne detemined the gromd state energy $\mathrm{E}_{\mathrm{E}} . \mathrm{s}$ as 0.18 NeV above the ground state of boron; i.e., $(10.47+9.18) \mathrm{BeV}$. From measurements of several samples along crystal 291 we conclude that the segregation coefficient of X is somewnat smaller than thit of Galliun and lies prohably around 0.05. An n-type core makes a mure precise estimate based on this particular crystal impossible.

The spectrum of an n-type sample 296.25.. is shown in Fig. 5. InGa contacts rubbed onto opposite surfaces of the polish-etclied cubic sample were used. All the lines can he explained on the basis of phosphorous as an impurity. ${ }^{9}$ Noise in the spectrom is due to current injection noise. $A_{\text {iowst no improvenent in current injection result. }}$ ed from using lightly lithium-doped contacts, but this introbiced the Li-lines. Only in Hoboken LMC material which was n-type aid we find 1 ines corresponding to antimony and to lithiur. without erposing the material to any heat treatment.

We were pleasantly surprised to discover that the method horks also for polycrystalline material. Line spitting is observed in some samples, most probabiy due to stress, but it is not severe enough to make the analysirs of the impurisies questionable.

Eneney
Fig. 3. Spectrum of sanple \#313-. 2. The labeling of the lines is the same as in Ref. 10. Sample volume $=.57 \mathrm{~cm}^{3} ; \mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{g}}=10^{10} / \mathrm{cm}^{3} ; \quad \mathrm{T}=$ $8.0^{\circ} \mathrm{K}$; 1000 samol ip oincs were recorded in approximately 30 minutes. A region below the $\left.A_{+}, U\right]$ line is magnified by a factor of four with the baseiine shifted. The aluminum concentration exceeds all other impurities (B,Ga) by a factor of more than 20. The explanation for the lines L_{1} through L_{5} is given in the text.
(XBL 7310-1392)

Fig. 4. Spectrum of sample \#291-14.0. Sanple volume $=.47 \mathrm{~cm}^{3} ; \mathrm{NA}-\mathrm{N}_{\mathrm{D}}=10^{11} / \mathrm{cm}^{3} ; \mathrm{T}=8.0^{\circ} \mathrm{K}$; 1024 sampling points ware recorded in 30 minutes. Four impurities are present: X (unknown), A1, Ga, and In . The resolution allows the separation of the $\mathrm{Ga}(\mathrm{C})$ and $\operatorname{In}(\mathrm{D}) 1$ ines.
(XBL 7310-1396)

Fig. 5. Spectrum of the n-type sample 296-15.0. Sanmle volume $=.42 \mathrm{~cm}^{3} ; \mathrm{ND}^{-} \mathrm{N}_{\mathrm{A}}=6 \times 10^{13} / \mathrm{cm}^{3}$; $\mathrm{T}=6.5^{\circ} \mathrm{K} ; 700$ sampling points were recorded in approximately 30 minutes. Phosphorous is the only detectable donor impurity in our n-type material.
(XBL 7310-1395)

In order to test the method foi "deep" acceptors we measured the photothermal response of high-purity, dislucation free gemmanium up to a wave number of $500 / \mathrm{cm}^{1}(=61.8 \mathrm{NeV})$. This is the upper liait for the instrment available $\ddagger 8$ us. We were able to detect neutral berylliumi 18 in dislocation-free material.

Conclusions

We have shown experimentally that the combination of Fourier I ansform Spectroscopy (FTS) together :ith photothermal ionization of neutral impurities makes possible the analysis of acceptors and donors in high-purity germanium down to net-concentrations of $\approx 10 \% / \mathrm{cm}^{3}$ with a signal to noise ratio >100. With the instrment available to us we did not reach a resolution comparable to the natural line-width of shallow acceptors. We believe, however, that a better resolution will not improve the analytical power of the method. Together with the Hall-effect, which is the best tool for the measurement of the net-concentrations, the segregation of each impurity separately along the axis of a crystal can be deternined. That the method works especially well for shallow acceptors and donors is partially due to the fact that both the curtent through the sample and the temperatures involved are 10 w . The only deep acceptor detected was neutral beryllitu ($E_{\mathrm{g}}^{\mathrm{s}} \mathrm{s}=24.3 \mathrm{MeV}$). Whether the method will be applicable to deeper levels remains an unanswered quastion until instrments with a higher maximum wave number ${ }_{\text {max }}$ are used.

From measurements of over 50 samples we found that aluminum is the main impurity in p-type material. The presence of boron at the seed-end of some crystals can be predicted from the shape of the concentration profile obtained from conductivity measurements.

With the increase of the sample volume we would be able to analyze any impurities producing shallow levels down to the $10^{7} / \mathrm{cm}^{3}$ range.

Footnotes and References

*Condensed from IEEE Trans. Nucl. Sci. 21, 279 (1974).

1. R. N. Hal1, R. D. Baertsch, T. J. Soltys, and L. J. Petrucco, 'High-Purity Germanium for Gamma Detectors', General Electric Co. Annual Reports, Nushers 1 through 5.
2. E. E. Haller, W. L. Hansen, and F. S. Go:lding, IEEE Trans. Nucl. Sci. 20, No. 1, 481 (1973).
3. W. L. Hansen and E. E. Haller, IEFE Trans. Nucl. Sic. 21, No. $1\left(19^{\prime}, 4\right)$ to be published.
4. T. M. Lifschitz and F. Ya.Nad', Sov. Phys. Doklady 10, No. 6, 532 (19<5).
S. V. I. Sidorov and T. M. Lifshitz, Sov. Phys. Solid State B, No. 8, 2000 (1967).
5. St. M. Kogan and Sedunov, Sov. Phys. Solid State 8, No. 8, 1898 (1967).
6. S. I. Seccombe and D. M. Korn, Solio State Comm. 11, 1539 (1972).
7. R. L, Jones and P. J. Fisher, Phys. Enem. Solids 25, 1125 (1965).
8. J. H. Reuszer and P. J. Fisher, Phys. Rev. Al35, 1125 (1964).
9. H. Shenker, E. M. Swiggard and W. J. Moore, Trans. Metal, Soc. of AIME 239, 347 (1967).

HIGH RESOLUTION FOUAIER TRANSFOAM SPECTROSCOPY OF SHALLOW ACCEPTORS IN ULTRA-PURE GERMANIUM*

E. E. Haller and W. L. Hansen

The combination of photothermal ionization and far infrared Fourier Transform Spectroscopy circumyents the low sensitivity and resolution of transmission experiments using grating spectroneters. This was shown recently for shallow donors in ultra-pure germanism, 1 The stiong dependence of the themal ionization of a bound carrier from an excited state into the valence band on energy and temperature makes it possible to study selectively different regions of the excitation spectrum.

We report hare the following new results:
a) the highest resolution spectra for the group III acceptors in ultra-pure germanium,
b) the separation of a number of excited states near the valence band,
c) the absence of the transition $(8+0) \rightarrow$ $(8+1)$ leading to the earlier reported E line,
d) the discovery of two unkromm shallow
acceptors producing quasi-hydrogenic spectra like the group III acceptors,
e) the modulation of the free carrier mobility by optical and accoustical phonons excited by infrared radiation.

Experimental data were obtained from more than 50 high-purity germanium samples ranging in volume from 0.1 to $0.6 \mathrm{~cm}^{3}$ and with net-acceptor concentrations between 10^{9} and $10^{12} \mathrm{~cm}^{3}$. These samples originated from 15 different crystals grown by the Czochralski method if our laboratorv. Optical excitation of the neutra? acceptors was done with a far infrared Michelson Interferometer. Using chopped excitation radiation, the bound cariers were raised to their various higher-lying states and thence therually excited to the contimuum. A PDP-11 computer performed all necessary storage and computations for Fourier transforms.

A new set of lines (impurity X) lying between
those of B and Al were found in samples from crystal 291 (Fig. 1). None of the unknown lines correspond to those already measured. The possibility that the observed acceptor X is created by a crystallographic defect is small since no correlation between the intensity of the most dominant defects (dislocations) and the line intensities could be found. It appears that the impurity X has a chemical character and segregates during crystal growth towards the tail and. Hall effect and IR-measurements of many samples taken from different sections along the crystal yield a segregation coefficient $k_{X} \approx 0.05 \pm 0.02$.

A second unknown shallow acceptor (impurity Y) was first ubserved in a polycrystalline sample from a very high-purity zone refined germoniun bar and later in two crystals pulled from quantz, and in one crystal grown from a carbon crucible. In the latter crystal the impurity Y was present at a rather high concentration of $\approx 10^{10} \mathrm{~cm}^{-3}$. From Hall effect and IR-measurements we found the segregation coefficient of Y to be $k y=0.9 \pm 0$.1. This means that Y is nearly non-segregating in contrast to the dominant impurity aluminum, which segregates nomally in crystals grown from carbon ciucibles. This behavior could be explained by an inpurity which diffuses out of the carbon crucible into the Ge-melt and quickly reaches its rather Iow maximum solubility.

By going to higher wavenmbers ($500 \mathrm{~cm}^{-1}$) and temperatures ($17^{\circ} \mathrm{K}$) many broad structures appeared in the spectra (Fig. 2). Comparison with optical and accoustical phonon modes ${ }^{2}$ suggest.s that these

Fig. 2. Spectra of sample \#289-16.0 at $T=14^{\circ} \mathrm{K}$ and $17^{\circ} \mathrm{K}$ Sample volume $\mathrm{V}^{\circ}=0.22 \mathrm{~cm}^{3} ; \mathrm{NA}_{\mathrm{A}}-\mathrm{N}_{\mathrm{D}}=$ $1.7,10^{31} / \mathrm{cm}^{3}$. Phonon muias excited by broad band IR-radiation change the tree carrier molility and produce a number of broad features.
(XBL 7511-1431A)

Fig; 1. Spectrum of sample \#291-14.0. Sanple volume V=0.47 $\mathrm{cm}^{3} ; \mathrm{N}_{\mathrm{A}}-\mathrm{N}_{\mathrm{D}}=$ $10^{11} / \mathrm{cm}^{3} ; T=8.0^{\circ} \mathrm{K}$; 1024 sampling points were recorded in 30 minutes. Fou: impurities are present: X (unknown), $A 1, G a$ and In. The resolution allows the separation of the $\mathrm{Ga}(\mathrm{C})$ and $\operatorname{In}(\mathrm{D})$ lines. (XBL 7310-1396)
structures are created by interactions between phonons and free carriers. In this case the electrical signal is not produced by changes in the free carrier concentration, but rather by the modulation of the mobility of the free carriers. That the mobility modulation depends on long-range lattice order (crystal perfection) is shown by the fact that we could not observe these modes in dislocation free material (high-vacancy and vacancyagglomerate concentration).

Footnotes and References

*Condensed from solid State Conn. 15, 687 (1974).

1. S. D. Seccombe and D. M. Kom, Solid State Conm. 11, 1539 (1972).
2. S. J. Fray, F. A. Johnson, J. E. Quarrington and N. Williams, Proc. Mhys. Soc. 85, 153 (1965).

A GAS IONIZATION COUNTER FOR PARTICLE !DENTIFICATION*

R. C. Jared, M. M. Fowler and S. G. Thompson

The advent of high energy heavy-ion accelerators has brought on a rapidly developing need for techniques to identify the products resulting from heavy-ion interactions. Many of the previously used particle identification methods have been reviewed by Goulding and Harvey. 1 One of these methods is the $\Delta E-E$ particle telescope. In an effort to extend the useful range of the $\Delta \mathrm{E}-\mathrm{E}$ System be have designed and built a gas ionization ΔE couni:er which allows determination of the atomic number of reaction products in the range $2<\mathrm{Z} \leqslant 40$.

The gas ionization counter is shown in Fig. 1, Ions, shown by a dotted line, pass throuph the window and traverse the gas losing energy, and are finally stopped in a gold surface barrier detector. The clectrons formed along the path drift up through the grid (dashed 1 ines) and are collected by the place shown at the top of the figure.

A magnetic yoke of mild steel is mounted around the entrance window of the counter. The yoke is fitted with a samarium-cobalt permanent magnet ($1 \times 1 \times 0.25$ inches) that supplies a magnetic field (1000 gauss) to remove any extemal electrons that could otherwise enter the counter. The entrance window forms the interface between the gas in the counter and the vacuun outside the counter. The window is made of VYNS ${ }^{2}(40 \pm 20$ $\mu \mathrm{gm} / \mathrm{cm}^{2}$) and is attached to the inner end of an Allen head capscrew. The fabrication and thickness measurement of the windows is described in LBL-3435 (see footnote *).

Fig. 1. A cross-sectional view of the gas ionization telescope.
(XBL 7411-4588)

The gas in the comter must be maintained at constant density to ensure that the energy deposited by a given ion in the gas will remain constant. Regulation of the density is accomplished by a Cartesian manostat ${ }^{3}$ as shown in Fig. 2. The Cartesian manostat and counter are kept in close proxinity to minimize any temperature differential between them. Counting gas supplied from a tank at high pressure flows through a variable leak valve, then through the counter and to the Cartesian manostat that controls the density, and finally to a mecharical vacum pump. An oil manometer is used to monitor the pressure.

Fig. 2. Diagram of gas supply and regulation system.
(XBL 7411-4594)

The time necessary to collect the electrons on the plate is detemined by the drift velocity of the electrons in the gas. This drift velocity of electrons ic a tunction of the field and the gas pressure in the counter. While the electrons are drif:ing to the plate they diffuse towards the walls of the counter. The average distance that elericrons will diffuse while drifting a distance L in a iniform electric field x is given by: ${ }^{4}$

$$
\bar{x}=\sqrt{\frac{4(0.0235)}{\pi}} \sqrt{\frac{\operatorname{Ln}}{x}}
$$

Where η is the ratio of the energy of agitation of the free electrons to that of the gas rolecules. Unforturately the value of n must be measured experimentally, and the value has not been found in the literature for the $\mathrm{Ar}-\mathrm{CH}_{4}$ counting gas mixture used. The value of n for pure argon is reported ${ }^{5}$ to be 4250 for $\mathrm{X} / \mathrm{p}=1.0 \mathrm{~V} \cdot \mathrm{~cm}^{-1}$ Torr $^{-1}$ while the value of η for pure methane is given as 8.6.6 It seems likely that the value of r_{i} for the gus Ar$10 \% \mathrm{CH}_{4}$ mixture used is between the values for the pure gases. Using the values of n for the pure gases as limits, the average lateral diffusion in uniform electric field typical of normal operating conditions ($30 \mathrm{v}-\mathrm{cm}$) is between 0.70 cm and 0.13 cm . This potential problem of electrons being lost in the walls of the counter was minimized by the focusing action of the electric field. Figure 3 is a plot of equipotential electrostatic lines in the center region of the counter. The parameters leading to the fields in Fig. 3 are typical operating cenditions (grid at 100 v and plate at 350 V.

The end zones on the front and back of the count ': create potential areas where the counter could 1 wil to collect all the electrons that are generated in the gas by the passage of an ion through the counter. These effects have been investigated with alpha particles. The possibility of end zones was investigated by placing a 241 Anl source in the front of the counter. The energy loss in the ionization counter and the surface barrier detector as a function of pressure was

Fig. 3. Equipotential lines in the center section of the counter for typical plate and grid voltages. (XBL 7411-4592)
measured. From these measurements the dead layers were not experimentally observable and it is felt that they are less than 18 of the total path length in the gas. In addition, an alpha source moumted in the center of the chamber gave $26.1 \pm 1 \mathrm{eV}$ per ion electron pair, which is in good agreement with other measurements. 7

The results of a third approach in which a ${ }^{252}$ Cf alpha source was mounted in the front of the counter are shown in Fig. 4. This figure shows the width of the pulse height distribution in the surface barrier comter and in the gas coumter as a function of the energy loss in the gas counter. The electronic noise of the two syster. has been subtracted before plotting the data. ill - figure shows that the width of the energy spectrwis in the gas counter is (within experimental errors) exactly that which is expected from straggling in the gas as is determined from that observed in the energy detector.

Six of the counters have been built at Berkeley and are being used in experiments. The performance of the six counters was foumd to be very unifom. Figure 5 is a map of entrgy deposited in the gas counter versus the energy observed at the surface barrier detector.

The gas ionization telescope has demonstrated ability to accurately measure the magnitude of energy losses using alpha particles. It has also been shown to be useful for experimental identification of reaction products by our group in the region $(6<\mathrm{Z}<30)$. Recent results using pure CH_{4} as a counting gas have given better Z resolution than obtained within argon-methane mixtures.

The counter may also be useful in detemining the atomic numbers of even heavier ions such as that of fission fragnents. It now appears to be a very good replacement for thin silicon detectors in most applications. The ultimate value of these proposed applications will be revealed only after more investigation into the use of gas ionization counters as delta energy detectors.

Fig. 4. Energy resolution of the gas detector and solid state detector as a function of the energy deposited in the gas detector. (XBL 7411-4590)
${ }^{43.45} \mathrm{Cu}+28 \mathrm{BmeV}{ }_{2,3 \mathrm{Ar}}^{4} \mathrm{Ar}$ 30° angle
\qquad
14
16
18
19
20
21
22
; 23
Scele

$30 \quad$ ……...- 120 -

Fig. 5. Map of energy deposited in the gas counter versus that observed at the energy detector.
(XBL 7411-8233)

1. F. S. Goulding and B. G. Harvey, LBL-2952
(1974), submitted to Annual Review of Nuclear Science.
2. This material is a polyvinylchloride-acetate copolymer (85% chloride, 15% acetate), supplied by Union Carbide, Bakelite Division.
3. Model No. 8 Cartesian Manostat supplied by the Manostat Corporation, 20 North Moore St., New York, New York.
4. W. N. English and G. C. Hanna, Am. J. Phys. 31, 768 (1953).
5. R. W. Warren and J. H. Parker, Jr., Phys. Rev. 128, No. 6, 2661 (1962).
6. L. W. Cochran and D. W. Forrester, Phys. Rev. 126, No. 5, 1785 (1962).
7. W. P. Jesse, Phys. Rev. 174, No. 1, 173 (1968).

> Footnotes and References
> *Ondensed from LBL-3435; published in Nucl. Instr. cheth. 124, 341 (1975).

COMPUTER AIDED ANALYSIS OF GAMMA-RAY SPECTRA

M. M. Fowler, D. Lee, R. J. Otto and J. Binder

The heavy-ion irradiations carried out in the adiochemical study of mass yields and the search for possible superheavy elements discussed elsewhere ${ }^{\text {l }}$ in this report result in a large anount of ganme-ray spectral data to be sorted and correlated. A computer aided analysis scheme for this data has been described, ${ }^{2}$ and it is the purpose of this report to indicate modifications and improvements of thit procedure which have been made.

The general scheme of the data analysis is shown in the flow diagran in Fig. 1 . As was pteviously reported, the conpiter code, ABSI, is used to determine gamen-ray peak positions and net peak arens from experimental gamernay spectra
measured with Ge(Li] spectrometers. Independently deterained energy calibrations and absolute detection efficiencies are then used to calculate energies and disintegration rates associated with each peak. In prior analyses the output from the AES1 code consisted of punched cards. These cards were hand sorted and used as input to the code TAUI wich is used to determine the time and energy correlation of the gama-ray peaks from spectran to spectrun. An estimate is also made of the halflife associated with each peak and whether the decay is complex or simple.

Wie have modified and combined the AES1 and TANI codes so that the sorting is done suring

Fig. 1. Flow diagram for the analysis of gamaray spectra.
execution, thereby eliminating the need for punched cards. Furthemore, the code has been rearganized so that it can now be executed in the CJC-7600 computer rather than in the slower 6000 series machine. These changes result in a saving of \sim 508 in execution cost and reduce the job tumaround time.

While these modifications are helpful from a data handling and cost viewpoint, perraps the more significant improvements have been made in TAU2 code. This program is used to interpret the resules from the AESI-TAU1 codo. The CDC vista system is used to allow interactive analysis during the assigmuent of known nuclides to the various geana-ray peaks. We have replaced the previously compiled table of ganam-ray emitting isotopes with the table of radioactive-decay gama-rays compiled by W. W. Bownan and K. W. Maciurdo. 3 At the sane time, the gama-rsy dats were reformatted so as to reduce the necessary conputer meftory requirements resulting in a code requiring 40 less menory. Another improvement to the TANI code has been the introduction of weighting factors in the leastsquare fitting of the gaman-ray decay data. Previously all data points were weighted with the same absolute standard deviation, resulting in abnommily heavy weighting of points with high count rates. We have adopted a procedure of weighting all points with a constant fractional standard deviation (108 currently) as this more accurately describes the experimental data. The resulting decay curves show that this approach yiclds curves which more closely fit the experimental data, especially in cases where two coaponents are present with one being much less intense than the other.

Past experience has shown the use of the light pen to be rather unreliable in some instances, possibly due to programming technique. In any case, we have transferred some of the light pen functions to the vista keyboard and have found this to be quite helpful.

The output of the TAU2 code remains as before. However, the final sorting and garma-ray-isotcupe assignment is now checked by referring to the decay curves from TAU2 which are on microfiche and by corroboration with other gamma-rays from the same nuclide.

The set of programs has been extensively used during the past year for the analysis and interpretation of data obtained from heavy-ion bonbardments. Experience in the use of the analysis method has shown that even with conditions which are not optimum for energy resolution (1.0 keV/ channel, 2.6 keV FWHM the halt-life analysis has proven to be a powerful methen for resolving components which are not well resolved in energy. The correlation of results from several gamma-rays associated with a single nuclide have been quite good even for weak transitions. These correlations give rise to confidence in yields which must be calculated from a single observed transition. Identification of reaction product ruclides and calculation of their corresponding formation cross sections have been made for products obtained by irradiation of uranium, bismuth, gold and silver targets with ${ }^{12} \mathrm{C}$ and ${ }^{48} \mathrm{Ar}$ using the SuperHIIAC and Bevalac facilities at Berkeley.

We are in a contiming pracess of evolving the program set and in the future we plan to make improvenents including the following: provision for online sorting of the isotope list so that only those elements of interest will be displayed to the vista operator. Effort will be made to itprove the operacion of the light pen so that ultimately all operations could be done from the pen. Statistical weighting factors for the leastsquares fitting of the decay curves in TAU2 wi?l be derived from the AES1-TAUl code raking the estimated uncertainties of the initial disintegration rates more meaningful. More input routines will be added to allow analysis of data from a larger variety of multichannel analyzers as they become available.

References

1. R. J. Otto, M. N. Fowler, D. Lee, I. Binder and G. T. Seaborg, "Radiochemical Mass Yield Distribution Studies in the Reaction of ${ }^{49} \mathrm{Ar}$ with ${ }^{29} \mathrm{U}$ and ${ }^{209} \mathrm{Bi}$ and $25.2 \mathrm{GeV}{ }^{12} \mathrm{C}$ with ${ }^{23}{ }^{30} \mathrm{v}$!, Section I of this Report.
2. I. Binder, M. DeCasa, J, V. Kratz, J. 0. Liljenzin and A. E. Norris, LBL-2366 (May 1974).
3. W. W. Bowiman and K. W. MacMurdo, Atomic and Nuclear Data Tables 13: 89-292 (1974).

A SYNTAX ANALYZER fOR COMPLEX TECHNICAL TEXT

G. M. Litton, C. M. Lederer, and L. S. Verdes

General Description

A generalized syntax analysis system has been developed to check complex tabular data (entered via the IRATE input-editing keyboard system ${ }^{1}$) for the seventh edition of the Table of Isotopes. The system permits syntax definitions to be written in a language that is readily understood by scmeone familiar with the data to be analyzed; these definitions may be easily altered or extended with a minimm of reprograming. The system consists of a syntax generator, encompassing a "meta-language compiler that checks the definition of a syntax and translates it into a table of instructions for checking the data, and a syntax analyzer encompassing a "parser", that applies these instructions to checking and, where desired, to reformatting of the data.

Figure 1 shows the structure and operation of the system. The syntax analyzer consists of subprograms appended to an existing data-processing program, whereas the symtax generator is a separate, complete program.

It has heen part of the general philosophy underlying computerization of the Table of Isotopes ${ }^{2}$ to use the computer to check the data, as well as to perform such standard operations as storage, sorting, and printout. Although it is not possible for the conputer to know a priom of what the input data should consist (if it were, the "data" could be computed rather than entered), any data must nevertheless be comprised of a set of symbols or characters, crdered ac...ding to sone specified set of rules (syntax). To illusstrate this point, sone examples of syntaxes

data checking a processing program

Fig. 1. Schematic illustration of the syntax analy;is system. Syntax definitions, entered on the iRATE keyboard, are converted by the syntax generator to instructions for checking data, which nay be stored for later use. Data, entered on the same keyboand (at another time), is processed by a data processing program, which may call the symtax analyzer to check whether a given segment of the data conforms to a specified syntax. The parser, the heart of the syntax analyzer, commnicates with tho rest of the program only via pointers (addresses of specified characters of data); It calls subsidiary functions to examine the actual data. Polish (translated data) is generated by the parser and subsidiary functions in a simblar manner.
(XBL 757-3450)
applicable to different types of data are illustrated in Table 1.

TABLE 1. Exarmples of syntaxes for several different types of data. (Syntaxes are described in English, not in the syntax language used by the syntax generator progran.)

Type of Data

Defining Syntax

an integer	Either [a] an optional minus sign, followed by a non-zero digit, followed by a string of 0 to ∞ digits; or [b] the digit 0 .
an element symbol	Any of the list of items H , He , Li, Be, ... Ha.
an isotope symbol	A superscript integer (mass number), followed by an optional (a) superscript morm-subinteger ($1 \leqslant$ integer \$4) or [b] superscript g, folloned by an element symbol. (The 2 -value corresponding to the elenent must be \leqslant the mass number,
English text	Kords from an English dictionary, spaces, and punctuation marks, combined according to the rules of English grammar.

an elament
an isotope symbol

English rext
Words from an English dictionary, combined according to the rules of English grammar.

Definition of a Syntax

We fave developed a syntax language that is broad enough to represent all possible syntaxes of interest for the present application. Many aspects of this languge are not essential to the operation of the syntax analysis system, and could readily be modifical for some other application. The outline below describes the syntax language, beginning with its smallest components:

1. Representation. Syntax definitions, like the data to be analyzed, consists of characters or symbols typed on the IRATE: keyhoard, and represonted in the computer by a 12-bit number or byte.
2. Data elements. The syntax langlage references dita elements in or of three different classes:
a) hiterals: fixed characters or groups of characters. For eximplo, " $\times 10$ " in a nimber in scientific notation (5.5×10^{-1}). In the syntax languape, most characters are automatically assumed to reprosent literals. Exceptions are characters fonted in italics or boldface funless, enclosed in the literal operators ('... 11 , and a few spmbols reserved for syntactical operators.
b) Listable clements: elcwents that may be any ficc, on a specifical list. Examples aye a digit ($0,1,2, \ldots 9$), an clement symbol (11, $11 \mathrm{c}, \mathrm{l}, 1, \ldots \mathrm{Ia}$), or a journal abbreviation (Nuel. Phys., Phys, Rev..). In the syntax lanquage, an entire list is referencal by an arbitran nace in italics (digit, aterenf, scusmaz, etc.).
c) Functions: classes of variable data elements too large to be conveniently listed. For example, an integer or an isotope symbol (e.g., ${ }^{17 \theta_{m}} \mathrm{Hf}$). In the syntax language, a function is referenced by an arbitrary name in boldface characters, Such a function reference requires that a corresponding function subprogram ("checking function") of that name be added to the data processing program.
Most functions could alternatively be defined in terms of syntax statements enploying only listable elements and literals (e.g., the definitions of an integer and an isotope in Tabie 1). However, the analysis of simple or conmonly-used data elements as functions is often more convenient and efficient.
3. Syntactical operators. These are a small set of superscript sjintols listed in Fig. 2. They specify various ways in which the above types of data elements or syntax rules (see below) may be combined.
4. Syntaxes. A syntax is defined ty one or more syntak rules, or scatenents, of the form:
rulename $=$ (comhination of data elements, symtac-
tical operators, other "rulenames")

Superscriat	Interpratetion	Somple expreceion	Valict dota
nymel			
-	or	${ }^{1}$	-
			b
1...1	eptional	stor	else
			*
(m)	carenthesas	${ }^{\prime} a^{+}{ }^{\text {b }}$ le	4 c
			-
		* ${ }^{\prime \prime}$	4
			M
$x_{5}, n a^{-2}$	repent n_{3} to n_{2}		5
	timin		$2{ }^{2}$
			370
- -	Heneme	"rues"	
\cdots	Hfers	'itase	Nate

Fig. 2. Syntacticn 1 operators. Additional operators (not illustrated) may be used to specify the generation of Polish (translated data) lased on the data to be analyzed.

Each label enclosed in the rule operators "..." on the right-hand side of such a statement refers to another statenent, which must be included as part of the same syntax. Definition of the syntax begins with the master rule "rule $=\ldots \ldots$.". For example:

```
rule = ...... "alpha" ...... "beta" .....
alpha = ...... "test2" ...... "beta" ......
beta = ......
test2 = ......
```

:

With this type of structure it is possible to define a very complex syntax, containing many branches or options, with a relatively simple set of statements.

Application of the Syntax Analysis System
Syntaxes and lists referenced by them are entered on the IRATE keyboard, in the language described above. Each complete syntax is entered as a separate "syntax" section labeled by the name of the syotax; each list is entered in a labeled "list" section. Figure 3 shows an example - the syntax "thalf", applicable to half-1ife data, and the list "umits" referenced by that syntax.

NunEa lnalf	NamE-units
TYPLe sphtax	TYPE=hat
ruba = 'formi"'form2'tiorm'	γ
formi - quomer uritic comment	*
	n
	m
form4 a mumber wita	*
	ms
	H8
	ns
	\because
	14
	${ }^{18}$

Fig. 3. Example of a short syntiux definition "thalf", applicable to half-1ife data. Three "functions", denoted by boldface labels, reference subroutines that check for specific data forms:

$$
\begin{aligned}
& \text { gmumber - a "gencralized number", which may } \\
& \text { have a preceding syrmol (e.g., }{ }^{3}, 6 \text {, } \\
& \text {) , an uncertainty, and an exponent. }
\end{aligned}
$$

The lists unita, referenced in the syntax definition, is shown in the right-hand portion of the figuro.

The syntax generator then checks each of the syntaxes and lists for proper structure and completeness, and generates corresponding instructions for checking data. Whenever a given segment of data is to be checked to see if it corresponds to a particular syntax, the syntax analyzer, a group of subprograms added to the data processing program, is called. The symtax analyzer examines the data segment and returns a value that indicates whether or not the data conforms to the specified syncax. The operation of the preprocessor and syntax analyzer are shown in Fig. 1 in somewhat more detail than is provided by the above description.

If desired, the syntax anaiyzer may also out put a "translated" version of the data segment ("Polish"). For example, words could be capitalized, symbols or abbreviations replaced by equivalent forms, etc.: "Co." can be replaced by "Conpany", " $\mathrm{L}_{1} / \mathrm{L}_{2} / \mathrm{M}+\mathrm{N}^{\prime \prime}$ by " $\mathrm{L}_{\mathrm{II}} / \mathrm{L}_{\mathrm{III}} / \mathrm{M}+\mathrm{N} \ldots$..." $" 10^{3} \mathrm{e}_{\mathrm{K}} / \gamma=15.7 \pm 1.3$ " by "e $\mathrm{e}_{\mathrm{K}} / \gamma 0.0157 \mathrm{3} 3^{\prime \prime}$ " Instructions for the generation of "Polish" may be contained within a list (as substitutions for given items on the list), in the checking functions, or within the syntax statements (by use of special instructions not described here).

The data processing program may call the syntax analyzer to check any part of the data. Use of the syntax analyzer anes not preclude additional checking or manipulation of the data by other parts of the program. The syntax analyzer does not alter the data that it checks. (The "Polish", or translated data that it may generate is returned to a location specified by the data processing program.)

Other Applications

The syntax analysis system described here has potential for a broad range of applications. In fact, the initial design was intended as a generator of conputer compilers, rather than a data analyzer. In this design the syntax generator, consisting of the meta-language combiler only, checks the definition of the compiler language; the syntax tables that it generates and the syntax analyzer (parser) together comprise the new compiler; the "input data" to be analyzed is the progran to be compiled; and the translated version of this data (Polish) is a set of machine-1anguage instructions ("object code")].

Nany other applications suggest thenselves. One of the most interesting is a greatly simplified method for machine translation of languages, in which the syntax definitions encompass grammar rules, and the lists contain the dictionary.

References

1. E. Romascan, W. Greiman, C. M. Lederer, and A. Allen, 1BL-2366, p. 453 (1974).
2. C. M. Lederer, J. M. follander, and L. P. Neissner, UCRL-18S30 (1968),

3. Thesis Abstracts

PARITY NON-CONSERVING NUCLEAR FORCE

T. S. Chau

(LBL-2904)

The effect of parity non-conserving nuclear force is studied in a deformed nucleus, ${ }^{180} \mathrm{~m}_{\mathrm{Hf}}$. The big nuclear strucrure factor of the 501 keV gamma transition in the decay of ${ }^{180} \mathrm{~m}_{\mathrm{Hf}}$ enables one to observe a big asymmetry of $\mathbf{1 . 5 \%}$ ar an average temperature of $\mathbf{2 0} \mathbf{m K}$. The nuclear structure factor can arise by various mechanisms. For example, small energy spacing of the nuclear levels with opposite parity will cause a large mixing between them and/or the parity-allowed transition (in this case, M2) has an anomalously small matrix element while the parity-forbidden transition (E2) is not hindered. The low temperature necessary for producing polarized nuclei is achieved by adiabatic demagnetization of a chromium potassium sulfate-glycerin slurry which provides about $10 \mathrm{mK}^{\text {a }}$ heat sink. The ${ }^{180 \mathrm{~m}_{\text {Hf }}}$ nucleus is polarized by a magnetic inceraction of its dipole with the hyperfine ficid it sees in a cerbic ferromagnetic compound, $\mathbf{Z r F e}_{\mathbf{2}}$, at low temperature.

The asymmetry is defined as the intensity ratio of the intensity difference in 180° and σ° with respect to its nuclear polarization direction to its average value:

$$
z=2 \cdot \frac{W(180)-W(0)}{W(180)+W(0)}=2 \cdot \frac{G_{1} B_{1} A_{1}+G_{3} B_{3} A_{3}}{1+G_{2} B_{2} A_{2}+G_{4} B_{4} A_{4}}
$$

where G_{k} are determined from knowing the sourcedetector geometry; B_{k} are evaluated from the anisortopy of the 444 keV gamma transition in ${ }^{180} \mathrm{~m}_{\mathrm{Hf}}: A_{k}$ are known from the transitions and the nuclear states invelved; A_{2} and A_{4} are independent of parity mixing and their values can be obtained from an angular correlation experiment: A_{1} and A_{3} are proportional to the parity mixing ratio. So by measuring the ssymmetry of the 501 keV gamma transition, one can evaluate the parity mixing ratio. Taking the slow warm-up of the sample into wccount. we derive the parity mixing ratio as $\mathbf{0 . 0 2 9 0 (1 9) .}$

THE USE OF THERAIALLY SENSITIVE ION-EXCHANGE RESINS OR ELECTRICALIY SENSITIVE LIQUID CRYSTALS AS ADSORBENTS

Jame; A. Latty
(LBE-2913)

In Part I of this dissertation the desalting of aqueous solutions has been described as experimentally accomplished by thermally cycling a fixed bed ef woak-acid and weak-base ionexchange resins. A rate control model has been proposed whish accounts for the observed properties of the mixed resin $5 y$ stem. Using this model, several processes have been proposed and evaluated for crentual application to large sale brackich water desalting.

Part It of this work on cyclic sorption contains a description of the experimentaliy observed sorption properties of randomly oriented, nematic liquid erystal mesophases when subjected to a 3000 gauss magnetic field or a 1000 to 7800 volt per centimeter, D.C. electric field. These experimental observations are cvaluated in light of published data for similar systems.

ATOMIC ELECTRONS SHAKE-OFF
 ACCOMPANYING ALPHA DECAY

' (eir Shimshon Rupaport

(LBL-29;8)

The a spectra associated with K-shell electron shake-off in ${ }^{210}$ Po and ${ }^{238}$ Pu decay have been determined by K x-ray - a coincidence measurements. Although the shapes of the spectra generally agrec with theoretical expectarions, some discrepancies are observed. From similar measurements the a spectra associated with L and M - shell electrons shakeoff in ${ }^{210}{ }_{\text {Po }}$ were determined. The abundances per a particle of the cotal K, L and M electron shake-off effects were determined in these measurements and found to be $\mathbf{P}_{K}=(1.65 \pm 0.16) \times 10^{-6}, P_{L}=\{7.23 \pm 0.65) \times 10^{-4}$ and $P_{M}=(1.84 \pm 0.37) \times 10^{-2}$ for ${ }^{210}{ }^{1} \mathrm{Po}$ and $\mathrm{P}_{\mathrm{K}}=(0.75 \pm 0.09) \times 10^{-6}$ for ${ }^{238} \mathrm{Pu}$. Also, the abundances per a particle of the L subshell electron shake-off effect were found to be $\mathrm{P}_{\mathrm{L}_{1}}=(5.11 \pm 0.40) \times 10^{-4}$, $\mathbf{P}_{\mathrm{i}_{2}}=(0.62 \pm 0.06) \times 10^{-4}$ and $\mathrm{P}_{\mathrm{L}_{3}}=(1.50 \pm 0.19) \times 10^{-4}$. Oniy limits on the ionizations probabilities of M subshells could be determined. These limits were: $\mathbf{P}_{\mathrm{M}_{2}}=7-23 \%, \mathrm{P}_{\mathrm{M}_{4}}<24 \%, \mathrm{P}_{\mathrm{M}_{5}}<17 \%$ and $\mathrm{P}_{\mathrm{M}_{1}}+\mathrm{P}_{\mathrm{M}_{5}}>47 \%$ of the total. These results are also compared with theoretical predictions. Further experimental and theoretical studies are suggested.

ELECTRONIC STRUCTURE QUANTUM MECHANICS APPLIED TO SOME SMALL POLYATOMIC MOLECULES

Dean Hemingway Liskuw

(LBL-2980)

Quantum mechanics is used to compute ab-initio wavefunctions for several molecular systems in order to derive theoretical estimates for their structure and chemical behavior. The structure of the HO_{2} radical is investigated with SCF and Cl wavetenctions and is predicted so have a 106.8° bond angle. The bending potential energy for C_{3}, a species in carbon vapor, is investigated with SCF and Cl wavefunctions and the results support the unusually low bending vibrational frequency previously determined experimentally. An SCF wavefunction is used to determize features of the $\mathrm{ClH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$ isomerization potential energy surfacc. And lastly, teatures of the $\mathrm{C}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{CH}^{+}+\mathrm{H}$ reaction potential energy surfaces are determined with CI wavefunctions.

$a \therefore$ RANSFER STUDIES VIA THE $\left(a, 8_{\text {Be }}\right)$ REACTION AT HIGH ENERGIES

Gordon John Wozniak

(LBL-2999)

The ($a,{ }^{8} \mathrm{Be}$) reaction was investigated on ${ }^{16} \mathrm{O},{ }^{15} \mathrm{~N},{ }^{14} \mathrm{~N},{ }^{12} \mathrm{C},{ }^{11} \mathrm{~B}$, and ${ }^{10} \mathrm{~B}$ targets at bombarding energies between 63.2 and 72.5 MeV with a ${ }^{8} \mathrm{Be}$ identificr of high detection efficiency. Differential eross seetions were measured from $0_{\text {c.m. }}=20^{\circ} \cdot \mathbf{7 0}$ for solid targets and over a more restricted range for the nitrogen gas targets. An excitation function of the ${ }^{12} \mathrm{C}\left(\mathrm{n},{ }^{8} \mathrm{Be}\right){ }^{8} \mathrm{Be}$ reaction at five bombarding energies between 63.2 and 67.3 MeV was obtained which conelusively demonstrated the direct nature of the (a. ${ }^{8}$ Be) reaction at high bombarding energies. This reaction was found to proceed predominantly via a direct a-cluster pickup mechanism and to strongly populate only levels consistent with this mechanism. The angular distributions on spin 0 targets exhibited a strong dependenet on the value(s) of L, the angular momentum transfer. Experimental distributions for $L=0$ and $L=2$
transfers were both oscillatory, but with the latter showing a much larger strength at back angles. The distributions for transitions where more than une L-transfer was allowed were approximately constant in magntiude with little structure.

A plane wave diffraction modei was used to analyze the cross section data. This model which included finite-range and recoil effects - jequately reproduced the $L=0$ and $L=2$ data from spin 0 targets. Hewever, it failed to describe the shape of the angular Sistributions for transitions involvi.e more than one L-transfer. The neglect of distortion in these calculations was investigated and
 which are in qualitative agrement with those of Kurath.

Study of partial wave branching in the
 alpha decay of ${ }^{241}{ }^{\text {Am, }}{ }^{253}{ }^{\text {Es AND }}{ }^{255} \mathrm{Fm}$

Arthur James Soinski

(LBL-341t)

Nuctei of ${ }^{241}$ Am, ${ }^{253}$ Es and ${ }^{255}{ }^{5}$ m were oriented in single crystals of neodymium ethylsulfate at temperatures down to 11 mK . Oricntation was detected by alpha particle angular distributions. The temperature dependences of these distributions are consistent with the lowest electronic states of these three actinide ions in the ethylsulfate lattice being similar to those of the corresponding lanthanide inns. Thus magnetic and axial orientation was observed in $E 5^{3+}\left(5 f^{10}\right)$, as in $\mathrm{Ho}^{3+}\left({ }_{4} \mathrm{f}^{10}\right)$. Quadrupole orientation was observed in $\mathrm{Am}^{3+}\left(5 f^{6}\right)$, as in $\mathrm{Eu}^{3+}\left(4 f^{6}\right)$. In $\mathrm{Fm}^{3+}\left(5 f^{11}\right)$ the orientation was magnetic and equatorial. ws would be expected from the hyperfine interaction in $\mathrm{Er}^{3+}\left(4 \mathrm{f}^{11}\right)$. The hyperfinc interaction constants were determined. For ${ }^{253}{ }^{2}$ Es we report $|A|=0.26(3) \mathrm{cm}^{-1}$, for ${ }^{241} \mathrm{Am}, \mathrm{P}=-0.0033(6) \mathrm{cm}^{-1}$, and for ${ }^{255} \mathrm{Fm},|\mathrm{B}|=0.035(7) \mathrm{cm}^{-1}$. The ${ }^{253}$ Es nuclear magnetic dipole moment was determined to be $|\mu|=2.7(13) \mu \mathrm{N}$. The Am^{3+} data are consistent with an anti-shielding constunt $\quad \approx-10^{2}$, in good agreement with theory, and a shielding factor $\mathrm{o}_{2}=0.7$, similar to the value for $\mathrm{Eu}{ }^{3+}$. The nuclear results show that the s and d waves are in phase for the favored a decay branch in all three cases. The relative phase of the g wave was found to be negative for the ${ }^{253}$ Es decio. Numerical inegration of the coupled second-order differential equations describing th. favored a decays of ${ }^{253}$ Es and ${ }^{25}{ }^{5}$ Fm yielded partial wave amplitudes and phases. The results are compared with borh intensity and angular distribution data. The measurement of the angular distribution of spontaneous fission fragments from aligned nuclei of ${ }^{253}{ }^{2} \mathrm{Es}^{254}{ }^{25} \mathrm{Es}_{5}$ and ${ }^{257}$ Fm arc deccribed in a separate appendix. The ${ }^{\mathbf{2 5 7}}$ Fm results are consistent with a K quantum number at the outer turning point of either $9 / 2$ or $7 / 2$.

enzymatic utilization of waste cellulosics

Gautam Mitra and C. R. Wilke

(LBL-2334)

On the land area of the earth about 1.5×10^{10} tons of carbon are fixed every year by photosynthesis out of which about half appears in the farm of cellulose. Hydrolysis of one pound of cellulose theoretically yieids 1.11 lb . glucose which is equivalent to 0.56 lb . of ethyl alcohol. 1_{n} the North American continent large amounts of cellulosic wastes are available for economic processing $(1,2,3)$ with their energy equivalence almost equal to a fifth of curtent U.S. gasoline consumption (4).
in recent years cellulose degradation through enaymatic means has been investigated by various workers ($5,6,7$), the hydrolysis products being a mixture of simple reducing sugars. These investiagtions, however, have mostly been confined to the realm of basic research. This study presents , :perimental results on different asp \cdot; of the integrated process culminating in an coonomic process designed for manufacturing reducing sugar solution by enzymatic hydrolysis of waste cellulosic material.

The cellulose molecule is a high molecular weight polymer it $\mathfrak{p} 1,4$ linked D-glucose residues. The chemical structure is represented as shown in Fig. 1.

Fig. 1.
(XBL 756-1597)

Degree of polymerization varies widely depending upon its origin. For chemical pulp and filter paper the degree of polymer ation generally varies between 500 and 1000 whereas in wood celiblase it is about $8000-10,000$. During enzymatic hydrolysis by ceilulase enzyme $\beta-1,4$ glucasyl bonds are split to produce reducing sugars according to

$$
\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{x}+\mathrm{xH}_{2} \mathrm{O}+\mathrm{XC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

The term "cellulase" is used to designate a complex system of enzymes (molecular weight range $12,000-68,000$) showing various rypes of activities with respect to different kinds of substrates. The mechanism of degradation of crystalline cellulose by enzymatic means has been the object of intense study for the last 25 years. The most accepted postulate in this area has been the 2 -step $C_{1} C_{x}$ theory proposed by Recse et al., (8). According to this theory the C_{1} component of the enzyme first disintegrates the cellulose chain priot wirs solubilization. The subsequent hydrolytic action at the $\beta-1,4$ linked glucosyl bonds of the solubilized chair is attribured to she C_{x} component of the enzyme. Certain micro-organisms grow only on soluble cellulose, such as carboxymethyl cellulose, and synthesize only C_{X} components, whereas other micıoorganisms are capable of growing on highly ordered forms of cellulose and produce hoth \mathbf{C}_{1} and $\mathbf{C}_{\boldsymbol{x}}$. The fungus, Trichoderma viride was selected for the present study because of its high \mathbf{C}_{1} productivity during grow h on insoluble cellulose $\left(5,7\right.$) along with an adequate production of $\mathbf{C}_{\boldsymbol{X}}$.

Cellubase activities are measured by interacting a given sabstrate with the enzyme and measuring the amount of reducing sugar produced in a given time. The cests are as follows:
C. Cotton: $_{1}$ This test measures C_{1} activity; 50 mg of adsorbent cotton is added to 1 ml appropriately diluted enzyme and 1 ml of 0.05 M sodium citrate buffer at pH 4.8 . Reaction is carried out at $50^{\circ} \mathrm{C}$ for 24 hours and amount of reducing sugar produced measured by dinitrosalicylic acid rest.
Filter Paper Activity: This test measures combined $C_{1} C_{x}$ activity. Fifty mg ($1 \times 6 \mathrm{~cm}$) of Whatman filter paper no. 1 is added to a mixture of 1 ml of appropriately diluted enzyme and 1 ml of 0.05 M sodium citrate buffer at pH 4.8 . Reaction is carried our ar $50^{\circ} \mathrm{C}$ for 1 itour and reducing sugar concentration determined by dinitrosalicylic acid cest.
 Powder Co.) in 0.05 M sodium citrate butfer (pH 4.8) 0.5 ml of appropriately diluted enzyme is added and reaction carried out at $50^{\circ} \mathrm{C}$ for $1 / 2$ hour followed by reducing sugar detcrmination by dinitrosalicylic acid test.

Trichoderma viride. a highly pioductive murant developed at the U.S. Army Laboratory at Natick, Massachusetrs, was grown in a fermentation system (Figure 7) tor the producrion of cellulase. Enzyme characteristics were examined in a stirred ultrafiltration cell and gel filtration column. Strong synergistic action among various fractions of C_{x} above and below molecular weight of 30,000 was noticed. C_{i}.. itivity was strongly dependent upon simultancous presence of C_{x} activity in the enzyme solution. A low cost growth medium was developed (Figure 18). For the growth of the fungus, substituting chemical grade analyzical reagents with commercial fertilizers. Specific oxygen demand for fungal growth on soluble sugars was determined to be $1.04 \frac{\text { millimoles oxygen }}{\text { gm. dry weigft } x h}$. Single stage C.S.T.R. runs (Figure 21) with 1% soluble sugar yielded a maximum cell productivity of 0.92 $\frac{\text { mat. dry weight }}{\text { milx hr }}$ a dilution rate of $0.21 \mathrm{hr}^{-1}$. The corresponding maximum specific growth rate from unsteady state observations
(Figure 20) was found to be $0.294 \mathbf{~ h r}^{-1}$. Two states C.S.T.R. runs were conducted with cell growth on glucose in the first stage and enzyme induction by cellulose addition in the second stage. From the results shown in Figure 24 the enzyme productivity fur this mode of operation was determined to be $27.3 \times 10^{-3} \frac{\text { Filter paper activity for }}{m l x \text { hr }} \mathbf{1 \%}$ dnxtrose as growth medium and 1% pure cellulose as indurer.

Hydrolysis of -200 mesh ball milled newsprint at $50^{\circ} \mathrm{C}$ and 4.80 pH with enzyme of 2.70 F.P. activity resulted in 82% conversion of cellulose in 40 hours. Adsorption characteristics of the enzyme on the fully ground solids and on the spent solids following hydrolysis were experimentally measured (Figure 31 , Figure 32) at $50^{\circ} \mathrm{C}$. Based on the experimental data a process for manufacturing reducing sugar solutions from waste paper was formulated.

Economic analysis was carried out for this process with a waste cellulosic feed of 833 tons/day (dry basis). Excluding the cost of the waste cellulosics the net manufacturing cost for reducing sugars was estimated ar $1 \mathrm{~d} / \mathrm{lb}$ with a total plant investment of \$10,134, 000.
6. 1974 Publications

ADOLPHE, A., (see Savigny, N., LBL-1656)
ALONSO, J.. (see Tamura, T., LBL-1689)
ALONSO, C. T
The Dynamics of Viscous Nuclear Drops
LBL-2993. August 1974
(Presented in part at the International Coiloquium on Drops and Bubbles, Paszdena, California, August 28-30, 1974)

AlONSC. C. T., (see Ghiorso, A., 1.BL-2998)
ALONSO, J. R., (see Ghiorso, A., LBL-2998)
ARTZY, M., Asaro, F. and Perlman I.
The origin of the "Palestinian" bichrome ware
LBL-1286, October 1972
J. Am. Oriental Soc. 93.4, 446 (1973)

ARTZY, M., Asaro, F., and Pcrlman, I.
Alasiya of the Amarna Letters
LBL-2375. June 1974
J. of Near Eastern Studies

ARTZY, M., Asaro, F., and Perlman, I.
Consideration of the Tel Nagila Bichrome Ware Krater as a Cypriote Product
LBL-2914, May 1974
J. Israel Exploration

ARVIEUX, J., Birchall, J., Conzett, H. E., Dahme, W., Haeberli, W., and Larimer, R. M.
Is the ${ }^{12} \mathbf{C}\left(\mathbb{Z}, \mathrm{~d}_{\mathrm{o}}\right)$ Reaction a Good Polarization Standard? LBL-2353. January 1974
Nucl. Instr. Mcthods 116, 605 (1974)
ARVIEUX. J.. (sec Birchall, J., LBL-2967)
AR VIEUX, J., (see Birchah. 1, LBL-3425)
ASARO, F., (sec Artey. M., LBL-1286)
ASARO, F., (see Artzy, M., LBL-2375)
ASARO, F., (sec Michel. H. V., LBL-2387)
ASARO, F., (sec Artzy, M., LBL-2914)
ASARO, F., (see Rapaport, M. S., LBL-2962)
ASARO, F., (see Bowmen. H., LBL-2966)
ASARO, F., (see Mark, R. K., LBL-3449)
ASCUITTO, R :., (see Glendenning, N. K., LBL-1647)
ATCHER, R. W., (sce Huizenga, J. R., LBL-2314)
ATCHER, R. W., (sce Huizenga, J. R.، LBL-23 16)
BABINET, R., (scc Nifenccker, H., LBL-1950)

BABINET, R. P., (see Morerto, L. G., LBL-2332)
BABINET, R. P., (see Thompson, S. G., LBL-2940)
BABINET, R. P., (see Moretto, L. G., LBL-3444)
BACHER, A. D., (see Macdonald, J. A., LBL-2317)
BACHER, A. D., (see de Swiniarski, R., LAL-2322)
BACON, F., (sec Kaindl, G., LBL-1960)
BAN:iva, M. S., (see Davis, D. W., LBL-1909)
BANNA, M. S., Mills, B. E., Davis, D. W., and Shirley, D. A.
X-Ray Photoemission Molecular Orbitals of Hydrogen
Fluorite and the Fluorinated Methanes.
LBL-2930, June 1974
J. Chem. Phys. 61, 4780 (1974)

BARTUNIK, H. D. and Kaind, G.
Mössbauer Isomer Shifts in Chemical Systems of Gold
LBL-3438. September 1974
(To be published as a Chapter in book entitled, "Mössbauer Isomer Shifts," G. K. Shenoy and F. E. Wagner, eds., Norch-Holland Publishing Company)

BASKIN, C. P., Bender, C. F., Bauschlicher, C. W. Jr., and Schaefer, H. F. III
Reaction Pathways for the Triplet Methylene Abstraction $\mathrm{CH}_{2}\left({ }^{3} \mathrm{~B}_{1}\right)+\mathrm{H}_{2} \cdot \mathrm{CH}_{3}+\mathrm{H}$
LBL-2324, November 1973
J. Am. Chem. Sac, 96, 2709 (1974)

PASKIN, C. P., (see Yarkony, D. R., LBL-1969)
BASKIN, C. P., (sec Schwenzer, G. M., LBL-1983)
BATES. H. (see Ruben, H., LBL-2358)
BAUSCHLICHER, C. W., Jr., (see Bender, C. F., LBL-2344)
BAUSCHLICHER, C. W., Jr., (see Baskin, C. P., LBL-2324)
BECCHETTI, F, D., Kovar, D. G., Harvey, B. G., Hendric, D. L.
Homeyer, H., Mahoney. J., von Oerzen, W, and Glendenning N. K.

Two-Proton-Transfer Reactions ${ }^{208} \mathrm{~Pb}\left({ }^{12} \mathrm{C},{ }^{10} \mathrm{Be}\right){ }^{210} \mathrm{Po}$ and ${ }^{208} \mathrm{~Pb}\left({ }^{16} 0,{ }^{14} \mathrm{C}\right)^{210} \mathrm{Po}$
LBL-1972, August 1973
Rhys. Rev. C 9,1543 (1974)
BECCHETTI, B. G., Harvey, D., Kovar, J., Mahoncy, J., and Zisman, M. S.
$\left({ }^{16} \mathrm{O},{ }^{15} \mathrm{~N}\right)$ and $\left({ }^{12} \mathrm{C},{ }^{11} \mathrm{~B}\right)$ Reaccions on ${ }^{5}{ }^{\circ} \mathrm{Fc}$ and ${ }^{62} \mathrm{Ni}$ at $E\left({ }^{16} 0\right)=104 \mathrm{MeV}$ and $E\left({ }^{12} \mathrm{C}\right)=78 \mathrm{MeV}$.
LBL-2957, June 1974
Phys. Rev. 10, 1846 (1974)
BECCHETTI, F. D., (see DeVries, R. M., LBL-2363)
bldKAMI, A. N., (sce Huizenga, J. R., LBL-2314)

BEHKAMI, A. N.. (see Huizenga, J. R., L.BL-2316)
BENDER, C. F., Bauschlicher, C. W. Jr., and Schaefer. H. F. 111 , SaddlePoint Geometry and Barrier Height for $H+F_{2} \rightarrow H F+F$
LBL-23+4, February 1974
J. Chem. Phys. 60, 3707 (1974)

BENDER, C. F., (sec Yarkony, D. R., LBL-1969)
BENDER, C F., (see Schwenzer, G. M., LBL-1983)
BENDER, C. F., (see 1.iskow, D. H., LBL-2302)
BENDER, C. F., (see Baskin, C. P., LBL-2324)
BENDER, C. F.. (see Schwenzer, Grerchen, A. LBL-2985)
BENDER, C. F., (sec Liskow; D. H., LBL-2372)
BENDER, C. F., Gartison, B. J., and Schacfer, H. F.. Ill
A Critical Test of Semi-Empincal FH2 Potential Energy Surfaces: The Barricr Height for $\mathrm{H}+\mathrm{FH} \rightarrow \mathrm{HF}+\mathrm{H}$
L.BL-3432. Nowember 1974
J. of Chem. Phys. 62. (1975)
-(Publication change: Charles F. Bender. Bablara J. Garrison and Henry F. Schaefer III)

BENSON, D. Jr., (see Procte!, D., LBL-2349)
BENSON. D.. Jr.. (see Tjdm, P. O.. LBL-2379)
BERNTHAL F. M., (see Massminn, H., LBL-1693)
BERTSCHAT, H.. (sew Ward, D., LBL-34*6)
BIRCHALL. J., (see Arvieux. J.. LBL-2353)
BIRCHALL. J., (see Rad, F. N.. LBL-2939)
BIRCHALL. J., (see Rad. F. N.. LBL-2959)

BIRCHALL, J., Conzett, H. E., Dahme, W., Arvicux, J.,
Rad, F. N., Roy, R., and Larimer, R. M.
Performance of a Silicon Proton Polarimeter Between 19 and 32 McV
L.BL-2967, Juty 1974

Journal Nuclear Instrumenes and Methods 123. 105 (1975)
BIRCHALL. J., (sce Rad. F. N., L.BL.341's,
BIRCHALL. J., Conzett, I. E., Arvicux, J., Dahme, W., and Larimer, R. M.
Depolarization and the Spin-Spin Interaction in p. ${ }^{9}$ Be Elastic Scattering
LBL-3425, October 1974
Phys. Lects. 53B. 165 (1974)

BLAISE, J. (sec Conway. J. LBL-3401)
BOSE, S., Krumlinde, J., and Marshalek, E. R.
Test of Cranking Plus RPA on an Exactly Soluble Backbending Model
LBL-2963. July 1974
Phys. Letters

BCWMLAN, H., Hebert, A., Wollenberg, H., and Asoro, \boldsymbol{E}^{2}. A Detailed Chemicsi and Radiomeuric Study of Geuthermal Waters and Associated Rock Formations, with Enxironmental Implications
L.BL-2966. July 1974
(Presented at the Second Internaional Conference un Nuclear Methods in Enviranmental Hescareh. University of Missouri. Columbia n' issouri. July 29.31. 1974)

BOWMLAN, H. R., (ser Natk, R \therefore., LBL. 3+49)
bowman. J. D.. Poskanker, A. M.. Morteling. R. E., and Butker, G. W.
Detection of Neutron-Exas ss Isotoper of Low-Z Eltanents Produced in Iligh-Eneryy Nuckar Keartions
LBL-1967. September 1973
Phys. Rev. C 9. 836 (1974)
BOWMAN, J. D., (sce Zebelman, A. M., t.BI.3427)
BRETT. H. C. (sec Iluizengs. J. R., LBL.-2316)
BROWN, D., (sec Edelstein. N., L81.2348)
BROWN. N. E., (see Giauque. R. D. LBL-1697)
BUCIIER, J., Diamond, R. at., and Chu. B.
Anion exchange resin selectivity as a function of resin composition, revisited
LBL-611. November 1972
J. Inorg. Nutl. Chem. 36. 675(1974)

BUCLIER, J. J., Zueht, R., and Diamond R. M.
Anion and Dilucnt Stabilization of Tributyl Phosphate and Tris-Ethylhexyl Phophate Complexes in the Extraction of $\mathrm{HA} u \mathrm{Cl}_{4}, \mathrm{HRCO}_{4}$, ill, and IIBr
LBL-2342, Becember 1973
J. Inorg. Nucl. Chem., 37, 211 (1975)

BUCHER. J. J.. Conosthioli. T. J. Iteld, E. R.. Labinger, J. A. Sudbury., B. A., and Diamond. K. M.
Extraction of HReO_{4}. HNO_{3}. HBr and $\mathrm{HCl}_{\text {In }}$ Triocrylphosphine Oxide in Nitrolennene and in 1,2 -Dichioroethane, and Hydration of the Anions
LBL-2351, February 197t
J. Inorg. Nucl. Chem. 37. 221 (1975)

BUTLER, G. W.. (sce Bowman, J. D., LBL-1967)
BUTI.ER, P. A., (sec Ward, D., LBL-3446)
CAVELL. R. G., (sce Mcticely, I. R., I.BL-1989)
CAVELI., R.G.
Core Photoclectron Spectroscopy of Some Acetylenic Molecules
LBL-2941, March 1974
J. Electron Spectroseopy and Related Phenomena

CERNY, J.
Exotic Heactions in the Light Elements
LBL-2938, June 1974
Presented at the Internation: I Conference on Reactions between Complex Nuslei. Nashville, Tennessee. June 10-14. 1974

CFHN Y. J. Isce Macdunald. J. A., I.BI-23:7)
CKHNV.) (scr Jclloy. N. A. I.RI.2319)

 Nabomey. J. Strut, D. K. and Wcimermiker, H. B.

t.ht-29R4. Atwuy 1984

Plyv. Kco. © 10, 2654 (9974)
 Wishigh, C: J.
 Stites
1.11. 140%. Sçuembey $19 \overline{4}$

Parity Nonctumeting Nurtest torce
1.81. $\mathbf{2 9 4 4}$. Muth $19 \% 4$

1.Rt.-1मoH, scpumiker 1974

Plys. Ktr C:

 for Arwhdic Stripping Analysis
f.ni.2JOB (Kev.). Scpremict 1974

Andjtical Chem. 47, 270 (1975)
Ci.EM, K. G., and Siciamanna, A. F.
-Styene Impreprated, Calalt-60 Itradiated. Ciraphite Eilectave for Anolic Sitripping Analysis)

(COIPN. M. I... (sce Varea de Noarct, C.. 1.H1.233i)
COHOMIBNI. P. (scr Ward. D.. L.B1.34*6)

CONZETT. II. F.. (sce 1.amuntagnc. (t. H., 1.BL-1941)
CON/ETTI, II. E.. (sec Arvirux. J. LBL-2353)

CONZETI.II. E.
Polarication-Analyzing Power Theortm for (p, n) Transitions Between Acmbers of as tsospin Multipict
1.B1.-2371. F'cbruary 1974

Thes. tatters 51t. 445 (1974)

conctite hi f.., (ser tirchall. J. Let. 2967)
coscetrint i:

LBL.2905. Ategus 1974
ifterated at the Intetnation Confere uecen fiex Mody Problems in Nuckar and Furtike Physics. Quebec. Canada
Atrinm 32.31. 1974)

CoNzeTT, tI. F... (wer Rad. F. N., L.ot.-3:18)

CONHAY. J. C.., Ktaise. J. and Vergin. J.
The infornd Sperirum of Curium +4
t. 1 I. J401. September 1974

Spactu Chimica Acts. 8

DAitME: W.. (sec . layer. B., L.B1-2340)

Dallive. W.. (sec Wirchall. I., 1.日L.3425)
DAVENPOMT. I. F. and King, C. J.
The Onsel of Naxural Comection fram Time Dependent Profiks:
1.8'-1994, Octolser 1973
fint. J. Ilest Mlass. Transier 17, 69 (1974)
DANIELS. M.. and Jayko, M. E.
Lumincsence from the Pentide Group
E.ft.-2583. March 1974

Fresened at the Interiational Conferenee or the Excited Stares of Biological Alolecules, Liston, Portugal. April 18. 1974

DAVIS. D. W.. Banns. M. S. and Shirlcy, D. A.
Core-level Binding Eneryy Shilts in Small Molccules
L.BL-I909. July 1973
J. Chem. Phys. 60,237 (1974)

DAVIS, D. W., and Shirtcy, D. A.
The Oredicion of Core-kvel Bindingenergy \$hifts from CNDO molecular orbitals
LBI.-1970, August 1973
J. Electr. Spectrose. 1 137(1974)

DAVIS, D. W., (see Banna, M. S., LRL-2930)
DAVIS. S. P., (see Van Deurzen, C. H. H., LBL-1986)
de boer, J., (see Tjom, P. O., LBL-293I)
de SWINIARSKI, R., Conzett, H. E., Lamontapne, C. R., Frais, B., and Slobodrian, K. J.
Exsitation of the Ground-State Rotational Band in $\mathbf{2 8}_{\mathbf{S i}}$ by Inclastic Scattering of $\mathbf{2 5 . 2 5}$ MeV Polarized Protons LBE-1620, February 1973
Cin. J. Phys. SI. 1293 (1973)
de SWINIARSKI, K., (sec Lamontagne, C. R.. LBL-1941)
DIAMIOND. R. M.
E2 Static Moments and E2. E+ Trimsixion Moments by Coulamb Excitasion
I.BL-1225. August 1972

International Confercnce on Nuclear Moments and Nuclear Structutc, Osaki, Japan, Scpt. 48, 1972
J. Phys. Soc. Japan 34. 1 18 (1973)

DIAMOND, R. M., (see Proctel. D. LEL-1939)
MAAMOND. K. M. (ser Meyer ter Vchn, J., LBL-2394)
DIAMOND. R. M1. (see Gizon. J.. L8L-1948)
DIAMOND. K. M. (sce Bucher. J. LBL-631)
ma.MONI ©. M., (sce Newton. J. O., LEL. 2333)
DIANON.. R. M.. (see Bucher. J. J. LBL-2342)
DIAMOND. R. M. (see Proetel. D.. LEL-2349)
DIAMOND. R. M. (see Bucher. J. J., LBL-2351)
DHAMOND. R. M., (sec Tjpm, P.O., LBL-2379)
DIA:HOND. R. M. (see Proctel. D.. LBL-2380)
DIASOND. R. M. (scr Nakii. K., LBL-2389)
DIAMOND. R. A1., (see Tjom, P. O., LBL-2931)
DIAMOND, K. M., (see Wurd. D., LBL-3446)
DVKSTRA, C. E., Pearson, P. K. and Sthaefer, H. F., III Elecrronic Structure of Nitrenes: LiN, The Simplest Jonic Species
LBL-2983. Augist 1974
J. Am. Chem. Son

EDELSTEIN. N., Brown. D.. and Whittaker, B.
Covatency Effects on the Ligand Field Splittings of Octahedral Sf^{1} Compounds
L.BL-23+8. August 1973

Inorg Civen 13. 563 (1974)
EDELSTEIN, N. = ad Karraker, D. G.
The EPR of ($\left\{^{3+}\right.$ in Octahedral Symmetry and the Nuclear Dipole Mas ient of ${ }^{249} \mathrm{Cf}$
1.BL.2949. July 25, 1974
(] of Chem Phys. 62, 938 (1975)

EDELSTEIN, N. (sec Sarks, D. F., LBL-3422)
EDELSTEIN, N., (see Kowalczyk, S. P., LBL-2937)
EleclSTEIN, N., (see Gradl, R., LBL-3404)
ESKOLA, K., (see Eskola, P., LBL-2315)
FALTENS, M. O., (see Ruben, H., LBL-2369)
FEE, D. C.. and Markowizz S. S.
Recoil Tritium Reactions with Methylcyclohexene. A Test of the Assumption of Energy Randomization Prior to Unimolecular Decomposition
LBL-1910, June 1973
J. Phys. Chem. 78, 354 (1974)

FOWLER, M. M.., (see Thompson, S. G., LBL-294i:
FOWLER, M. M., and Jared, R. G.
A Gas Ionization Counter for Par:icle Identification LBL-3435, October 1974
Nucl. Instr. Merhads
FRAZIER, P. E.. (see Flood. W. S., LBL-1294)
FREIESLEBEN, H., (see Huizenga, J. R., LBL-2316)
FRIERALAN, J. D.. (see Michael, H. V., LBL-2387)
FROIS, B., (see de Swiniarski, R., LBL-1620)
FROIS, B., (see Lamontagne, C. R., LBL-1941)
GALIN. J., (see Aloretto, L. G., LBL-3444)
GALIN, M. M., (see Thompson, S. G., LBL-2940)
GARRETT. R. B., (sce Giauque, R. D., LBL-295t)
GARRISON, B. J., Schaerer, H. F. III, and Lester, W. A., Jr.
Molecular Propertirs of Excited Electronic States: The
a $\mathbf{3}_{\mathbf{A}}$ " and ${ }^{\text {A }} \mathbf{1}_{\mathbf{A}}$ " States of Formaldehyde
LBL-2911, July 1974
J. Chem. Phys. 61, 3039 (1974)

GARRISON, B. J., (see Bender, C. F., LBL-3432)
GATTI, R. C., (sec Moretto, L. G., LBL-1966)
GATTI, R. C., (see Thompson, S. G., LBL-2940)
GHIORSO, A., (ser Eskola, P., LBL-2315)
GHIORSO, A., Hulet, E. K., Nitschke, J. M., Alonso, J. R., Lougheed, R. W., Alonso. C. T. Nurmia, M., and Seaborg, G. T.
Elament 106
L.BL-2998 September 1974

Phys. Rev. Le:its., 33, 1490 (1974)
GIAUQUE, R. D., Goda, L. Y., and Brown, N. E.
Characterization of Aerosols in California by X-Ray-Induced X-Ray Fluorescence Analysis
LBL-1697, July 1973
Envir. Sci. Tech. 8, 436 (1974)

GIAUQUE, R. D. Goda, L. Y., and Garrett, R. B.
X-ray-Induced X-Ray Fluroescence Analysis of Suspended Air Particulate Msarter.
LBL-2951, July 1974
NFP 35 of yet.
GIZON. A., (see Gizon, J., LBL-1948)
GIZON, A , (see Proetel, D., LBL-2349)
GIZON, J., Gizon, A., Maier, M. R., Diamond, R. M., and
Stephens. F. S.
Deformed States of Neutron-Deficient Cerium and Neodymium nuclei
LBL-1948, July 1973
Nucl. Phys. A222, 557 (1974)
GIZON, J.. (sce Proetel, D.. LBL-2349)
GLENDENNING, N. K., and Nagarajan, M. A.
Ekact Treatment of the DWBA by Analytic Means for Particle Transfer Between Heavy Ions
LBL-2378. Alarch 1974
Nucl. Phys., A236 (1974)
GLENDENNING, N. K.
Classical and Quantum Mechanical Descriptions of Heavy-lon Interactions
LBL-2905, Junc 1974
Invited paper for the International Conference on Reactions Between Cemplex Nuclei, Nashvilie, Tennesser: June 10-14. 1974

GLENDENNING, N. K., (see Becchetti, F. D., LBL-1972)
GODA. L Y., (see Giauque, R. D., LBL-1697)
GODA, L. Y. (see Gisuque, R. D., LBL-2951)
GOUGH, R. A., (se : Sextro, R. G., LBL-1955)
GOULD, H., Marrus, R., and Mohr, P. J.
Radiative Decay of the $2^{3} S_{1}$ and $2^{3} \mathrm{P}_{2}$ States of telium-Like Vanadium $(Z=23)$ and $\operatorname{lron}(Z=26)$
L.BL-2906, June 21, 1974

Phys, Rev. Letts. 33, 676 (1974)
GOULDING, F. S., and Harvey, B. G.
Identification of Nuclear Particles
LBL-2952. February 1974
Ann. Rev, of Nucl. Sci.
GRADL, R., and Edelstein, N.
Reactions of Dithiolare Ligands with Uranium (IV) Halides
LBL-3404, September 1974
J. of Organometalic Chem.

GRÄF, H.
Parabolic Cylinder Functions $\mathrm{W}(\mathrm{a}>, \pm \mathrm{X})$: Expansions for All Arguments
LBL-2969, August 1974
Mathematics of Computation
GRANT, R. W., (sce Varea de Alvarez, C., LBL-2330)
HADEISHI, T., (see Yellin, J., LBL-1602)

HAEBERLI, W., (see Arvieux, J., LBL-23S3)
HALBACH, K.
A Magnetic Field Clamp with Beneficial Saturation Effecy LBL-237G, February 1974
Nucl. Instr. Methods 119, 327 (1974)

HALBACH, K.
Rapid Measurement of the Effective Field Boundary of Homogencous Field Magnets
LBL-2388, March 1974
Nucl. Instr. Methods 119, 329 (1974)
HARDY, J. C., (see Macdonald, J. A., L.EL-2317)
HARNEY. H. L., (see Macdonald. J. A., LBL-2317)
HARVEY, R. G., (see Becchetti, F. D., LBL-1972)
HARVEY, B. G., (see DeVries, R. M., LBL-2363)
HaRVEY, B. G., (see Homeyer, H., LBL-2377)
HARVEY. B. G. (see Goulding.B. G., LBL-2952)
HARVEY, B. G., (see Recchetci, F. D., LBL-2957)
HARVEY, B. G., (see Scott, D. A., LBL-2996)
HAUSTEIN, P. E , (see Massmann, H., LEL-1693)
HEBERT. A., (see Bowman, H., LBL-2966)
HELD, E. R., (see Bucher, J. J., LBL-2351)
HENDRIE, D. L., (see Becchetci, F. D., LBI.-1972)
HENDRIE, D. L., (see deSwiniarski, R., LBL-2322)
HENDRIE, D. L., (sce Yagi, K., LBL-2982)
HENDRIE, D. L.. (see Cerny, J., LBL-2984)
HENDRIE, D. L., (sce Scott, D. A., LBL-2996)
HEUNEMANN, D., (see Moretto, L. G., LBL-1966)
HILF, E. R., (see Küpper, W. A., LEL-642)
HOLLANDER, J. M., (see Jardine, L. J., LBL-245)
HOLLANDER, J. M., (see Lederer, C. M., LBL-1261)
HOLLANDER, J. M., (see Lederer, C. M. LBL-1262)
HOMEYER, H.. (see Beccherti, F. D., LBL-1972)
HOMEYER, H., (see DeVries, R. M., LBL-2363)
HOMEYER, H., Mahoney. J.. and Harvey, B. G.
Improvements to Resistive-Wire Focal Plane Detector
LBL-2377, February 1974
Nucl. Instr. Mechods (Letter to editor) 118, 311-312 (1974)
HU. C. L. (see Mark, R. K., LBL-3449)

HULET.E. K.. (ser fihiorso, A. 1.UL-3993)
tiUNT, W. P.. (sec Yationy, D. R., L.BI.6世1)
HUNTER. J. B.. (ser Thumpen. S. C.. 1.B1-2940)

J. ACOB. N. P., Jr. and Markowita, S. S.

Excitat..n Functions for the ${ }^{\# 8}$ Ti(p. $\left.2 p\right)^{+7}$ ise and ${ }^{7+G e(p .2 p)}$ ${ }^{73} \mathrm{Ga}$ Rections Above 0.3 Giv
LEL.-23BL. March 1974
Phys. Kow. C
JACOB, N. P. Jr., and Markc. ©iz. S. S.
Cross Sections Abote 0.3 GeV for $(\mathrm{p} . \mathbf{2 p}$) Reactions of +H t i and ${ }^{7+6 i c}$
LBL-2381 (Rev.i. July 1974
Phys. Rev. C 11, 5+1 (1975)
JAIN. St. (sce Rad. F. N.. I.BL-2935)
JARDINE. L. J. and l.edercr. C. M.
Relatioc Efficiency Calibration of a Si(Li) Electron Spactromcter
L.3L-208. February 1974

Nucl. Instr. Methods 120. 515 (1974)

JARDINE, L. J, Prussin. S. G., and Hollander. J. M.
Decay of ${ }^{209}$ ar To Levels in ${ }^{209}$ Po
LBL-245, April 197+
Sucl Phys. A233. 25 (1974)
JaRDINE, L. j., and Shihab-Eldin. A.
Alpha Decay of 21 it to Levels in 206Bi
LBL-29+3. October 1974
Nucl. Phys. A
JARDINE. L. J.. (see Shihab-Eldin. LBL-3409)
JARDINE, L. J.
The Decays of ${ }^{211} \mathrm{Ac}$. ${ }^{211} \mathrm{Po}$ and ${ }^{207} \mathrm{Bi}$
LBL-34+8, January 1975
Phys. Rev.C. 11. 1385 (1975)
JARED, R. G. (see Conway, J. LBL-3+35)
JARED. R.C. (see Moretto. L. G., LBL. 1966)
JARED. R. C.. (sec Thompson. y G., LBL-2940)
JaYko. M. E.. (see Daniels, M.. LBL-2383)
JELLEY, N. A., Wilerx, K. M., Weisenmiller R. B., Woaniak, G. J.. and Cerny. J;
Ma ses for ${ }^{4}{ }^{\text {Ar and the New }}$ lsotopes ${ }^{+5} \mathrm{Ar}$ and ${ }^{46} \mathrm{Ar}$
LBL-2329. Detember 1973
Phys. Rev. C 9, 2067 (1974)
JELLEY, N. A. (sec Wozniak, G. J.. LBL-2374)
JELLEY, N. A., (see Cerny. J., LBL-2984)
JELIEY. N. A. (see Cerny. J., LBL-3407)

Predictions wi she Mrera oi Very Neuston-Excess l.ight Nuslai
1.81.3+it. Nowemiker 197t

Phys. Ker:

 t.BL.3+37. Szeptember 1974

 Holland Pulfishity Compani-)

KIENLE. P., (sct Pructel. D., 1.Bi-1939)

KLEbFR, M., and Nagarajan, M. A. Charge Transfor in Iligh-Energy Collisions LBL.9273, August 197+
J. Phys.

KLEINHEINZ. P., (see Stephers. F. S.. B.Bl.-1911)
KORTELING, R. C., (sse Bowman. J. D.. I.BL-1967,
KOVAR. D. G., (see Betcheti, Fi. D., LBI.1972)
KOVAR, D. G., (sce DeVries, R. M. I.nL.2363)
KOVAR. D. (see Becchetti, F. D., LBI-2957)
KOVAR, D. G. (sec Mayer, H., LBL-2340)
KOWALCZYK, S. P., (sec Ley, L., LBL-2323)
KOWALCZYK, S. P., (see Atcfocly, F. R., L.BL-2350 Rev.)
KOWAICZYK, S. P., (see Ley, L., LBL-2901)
KC, WALCZYK, S. P., (see McFecly, F. R., Lb1.2953;
KOWALCZYK. S. P., (sce Ley. L.. LBL-1688)
KOWALCZYK, S. P., Ley, L., Mcfecly, F. R., Pollak, R. A., and Shiricy, D. A.
Relative Effect of Extra-Atomic Relaxation on Auger and Binding-Energy Shifts in Transition Metals and Salts LBL-1916, June 1973
Phys. Rev. II 9. 381 (1974)
KOWALCZYK, S. P., MeFcely, F. R. Ley, L.. Pollak, R. A., and Shirlcy, D. A.
X-Ray Photormission Studies of th. Alkali Halides LBL-1945. November 1973
Phys. Rev. B 9 3573(1974)

KOWALCZYK, S. P.. *-ד Pollak. K. A., I.BI-1971)
KOWALCZYK. S. P.. (sec Mcfedy. F. K.. L.BL-1989)
K(OWAICCYK. S. P., (mer Lcy. L... 1.ELL-2323)
KOWAl.C/YK, S. P.. (see Varce de Alwarez, C. E.BL-2330)
KOWAICZYK. S. P.. (sec Mcicely. F. R., LBL-2350)
KUHALCAYK, S. P., Ley. I., McFecly, F. K., and Shizley, D. A. An lonicity Scale Elased on X-Kay Photoemission Vatence Hand Spectra of ANHBN and ANN1ON Type Crystals 1.Et.-2902, May 1974
J. Chem. Phys. 61, 2850 (1974)

KOWALCZYK. S. P., (sere Ley. L., LBL.2929)
KOWAICZYK, S. P., Edelstcin. N., McFicely, F. R., L.cy, L. and Shirley, D. A.
X•Kıy Photocmission Spectra of the 4 d Lacls in Rure Earth Aletals
1.ti.2937. Junc 1974

Chem. Phys. Letters 39, 491 (1974)
KOWALCZYK. S. P., AtrFecly, F. R., Ley, L.., and Shirley, D. A.
Multiphet Splitring of X-Ray Photocmission Spectra Core Levels in Magneric Aletals
LBL-3430, December 1974
(To be published in the Proceedings of the 2 inh Annual Conference on Magnetism and Magnetic Materials. S. F. California, December 3-6. 1974)

KRANE, K. S., Olsen. C. E., and Steyert, W. A.
Nuclear Orientation Study of the Decay of ${ }^{177}$ Lu ${ }^{m}$
LPL-2354. January 1974
Phys. Rev. C 10, 825 (1974)
KRANE, K. S.
E2/M1 Multipole Mixing Ratios of Gamma Transitions in Even-Even Spherical Nuclei
L.BL-2367, February 1974

Phys. Rev. C 10, 1193 (1974)
KRANE, K. S., and Steyere, w, A.
Nonalignment of the Magnetic Ityperfine Field of tr in Fe
LEL-2337, December 1933
Phys. Rev. C 9, 2063 (1974)
KRANE, K. S., (see, Chou, T. S., LBL-3408)
KRATZ, J. V., Liljenzin, J. O., and Seaborg, G. T.
A Chemical Group Separation Procedure for Superheavy Elements and Varicus Other Reaction Products from Heavy-Ion Bombarded Uranium Targers
LBL-2944, June 1974
Inorg. Nucl. Chem. Letters 10, 951 (1974)
KRATZ, J. V., Nortis, A. E., and Scaborg, G. T.
Mass Yield Distributions in the Reaction of ${ }^{84} \mathrm{Kr}$ lons wich ${ }^{2}{ }^{3} 8_{U}$
L.BL-2947, June 1974

Phys. Rev. Letters 33, 502 (1974)
KRAUS, L. (sec Yagi, K., LBL-2982)

KRAUS, L., (see Scotr, D. A., LBL-2996)
KRUMLENDE. J. (see Bure, S., LBL-2963)
KUPPER, W. A.. Wegmann, G., and Hilf, E, R. Thermostatic Properties of Nuclear Master LBL.642. February 1974 Nucl. Eives.

IABINGER, J. A., (see Bucher, J. J., L.8L-2351)
LAMONTAGNE, C. R.. (see de Swiniarki. R., LEL-1620)
Ladiontagne. C. R., Frois, B., Slobodrian, R. J..
Conzett, H. E., Leemann, Ch. and de Swiniarski, R.
The Scattering of Polarized Protons from Si in the Giant Resonance Region of ${ }^{29} \mathrm{P}$
L8L-1941, Junc 1973
Phys. Letiers 45 B 465 (1973)
LAKIMER, R. M., (see Arvisux, J.. LBL-2353)
LARIMER, R. M., (see Mayer, E.. LBL-2340)
LARIMER, R. M.. (sec Birchall. J.. LBL-2967)
LARIMER. R. M., (see Birchall, J., LBL-3425)
LATTY.J. A. (Ph.D. Thesis)
The Use of Thermally Sensitive Ion-Exchange Resins or Electrically Sensitive Liquid Crystals as Adsorbents LBL-2913, February 1974

LEDERER, C. M., (see Jardine, L. J., LBL-208)
LEDERER. C. M. (sce Shirlcy. V. S., LBL-3450)
LEEMANN, Ch.. (see Lamoritagne, C. R.. LBL-1941)
LEEMANN, Ch., (see Mayer, B., LBL-2340)
LEIGH, J. R., (see Proctel, D., LBL-1939)
LEY, L., Kowalczyk, S. P., McFeeley, F. R., and Shirley, D. A.
Crysral-Field Effects on the Apparent Spin-Orbit Splitting of Core and Valence Levels Observed by X-Ray Photoemission
LBL-290:. April 1974
Phys. Rev. B 10. 4881 (1974)
I EY, L., Pollak, R. A., McFeely, F. R., Kowalczyk, S. P., and Shirley, D. A.
toral Valence-band Densities of States of III-V and II-VI Compounds from XPS
LUL-1NS், May 1973
Phys. Rev. B9, 600 (1974)
LEY, L., (see Kowalczyk, S. P., LBL-1916)
LEY, L., (see Kowalczyk, S. P., LBL-1945)
LEY. L.. (sce Pollak, R. A., LBL-1971)
LEY, L., (see McFeely, F. R., LBL-1989)
L.EY, L., (sec McFelly, F. R., LBL-2350 Rev)

LEY, L., McFecly. F. R., Kowalczyk, S. P., and Shirley, D. A. Many-Rody Effects in X-Ray Photocmission from Magnesium LBL-2323. Nowember 1973
Phys. Hev. LS 11. 600 (1975)

LEY. I... (sec Vares de Abarcz, C. LBL.-2330)
LEY. L... (sec AcFecly. F. R.. LBL.-3350)
LEY. I.. AtcFecly, F. R. Kowalezyk. S. P.. Jenkin. J. G., and Shirley, \mathbf{D} A.
Many-Rady Effects in X-Hay Photormission Fitom Magnesium LEL. 23:J. May 1974
Phys. RLv. B
LEY. L.. (sec Kovalizyt. S. P. LBL-2902)
L.EY. L.. Aouzltzyk, McFely, F. R., and Shirley, D. A.

X-Ray Photocmissia n Study of the Electronic Structure of the 3 d Transition Metals St to Zn
L81.2919, Alay 1974
Phys. Rex. B
L.EY, L.. (sec Liowr'czyk. S. P., LBL-2937)

LEY. I. (see MtFicely. F. K.. LBL.2953)
LEY, I... (see Nawalcayk, S. P., L.B1.3430)
LIIJENZIN, J. O., (sec Kratz. J. V., L.BL-2944)
L.IPES. K. si.. (sec Wing. W. L.. LBL. 1988)

LISKOW, D. H., MeKelvey, J. M., Bender, C. F.. and
Schacier, H. F. III
A Priori Prediction of the Cohesive Energy of One-Dimensional Metallic Hydrogen
LBL-2372. February 1974
Phys. Hev. Letters 32, 933-936, 1974)
LISKOW, D. H. Bender, C. I'., and Schaefer, II F. III
Potential Energy Surfices Related to the Ion-Molecule Reaction $\mathrm{C}^{+}+\mathrm{H}_{2}$
L.BL.2302, Oatober 1973
J. Chem. Phys. 6L 2507 (1974)
I.ISKOW, D. H. (Ph.D. Thesis)

Electronic Structure Quantum Mechanics Applied to Some Small Polyatomic Molccules
LBL-2980, August 1974
1.IU. K-L., (sec DeVries, R. M., L.EL-2363)

LOUCHEED. K. W. (sec Ghiorso. A., LBL-2998)
LOW, K. S. (see Yagi, K., l.BL-2982)

MCFEEL.Y, F. R., Kowalczyk, S. P., Ley, L., and Shirlcy. D. A.
Evidence for a Localized Magnetic Moment in Parjmagnetic a-Mn From Multiplet Splitting
L. H1. 2350 Rev.. January 1974

Phys. Rev. Letters

MCPEELY, F, R., Kowlacalk, S. P., l.ey, I.., and Shirley, (), A Multiplet Spliting of the ts and 5 store Levels in the Rate Earth Metals
LBL-2953. June 1974
Phys. fetters 49A. 301 (19; 6)

MCFEEL.Y, F. R., (sec Kowalcayk, S. P., 1.Bi.-1916)
MKPEELY. F. R..(sec Ley. L.. 1.BI.-2323)
AK.FEEL.Y, F. R., (sece Ley, I.., L.BL-2901)
AKCEEL.Y. F. R., (sec Nowalczow, S. P., 1.B1.1945)
ACPEEI.Y, F. R., (sec Pollak, N. A., LBt.-9:971)
MCFEFI.Y. F, R., Kawalcerk, S. P., I.ry, I. , Cavell, R. G., Pollak, R. A., Shirley, is. A.
X-Ray Photuemission Studics aj Dianund, Gipaphite, ard Glassy Carbon Valente fands
L.6L-1989, seprember (97)

Phys. Rcr. 日9, 526 (1974)
MCIFEELY, F. R., (sec ley. L., L.B1.2323)

MCFEEL.Y, F. R., Kowalczyk, S P., 1ey, l., and Shirley, ID. A.
Evidence for a Lucalized Magnetic Moment in Parimagnetic a-:inn From Multiplet Splitting
L. H . 2350. January 1974

Phys. Kex. Letters 15, 1051 (1974)
MCFEELY.F. K.. (sec Kowalezyk. S. P., 1.BL-2902)
ACPEELY.S. P., (see Ley, L.. L.bl.-2929)
AKCFEEL.Y. F. R.. (sec Kuwalczyk, S. P., LBL.-2937)
MCFEES.Y, F. R., (sec Kowalcayk, S. P., 1.[BL-3430)
MCKEE, E. H.. (sec Mark, K. K., LBL-3449)
MCKELVEY. J. M., (sec liskow, J. H., L.IIL-2372)
MA, C. W., and Kasmussen, J. O.
Exponentisl Dependence of the Nuclear Moment of Inertia on Pairing Correlation and the Pairing Stretch Model for Nuclear Rotation
LBL.1677, April 1973
Phys. Rev. CD. 1083 (1974)
MA, C. W., and Tsang, C. F.
A Microscopic Study of the Variable-Moment-of-Inertia Model for Rare Earth Nuclei
L.BL-2347. July 1974

Phys. Rev.
MA, C. W., and Tsang, C. F.
A. Nicroscopic Study of the Variabte-Afoment-of-Inertia Morel for Rare Earth Nuclei
L.BL-2347 (Rev.), July 1974

Phys. Rev. 11, 213 (1975)

Harler, A. D. and Platiner. Ci. \&
Analyzing Powers for Two-Nualcon Transter Reactions in the Ip-Shell
I.BL-2317. Octuther 1973

Plys. Hex. C9, 1694 (1974)

MAGCUHRF, C. F., Isec Cerny. J., 1.BI.2984)

MAIONEY. I, (see liecthcti, F. D., LBI.-1972)
sidIIOSEY J. (ser Homeyer. H. I.B1.2377)

MLIIONFY.; . (ste Yagi. K.. IBAL-2982)
MAHONFY. J.. (sec C.crny. J.. 1.h1.-298t)
MABONEY. J . (sec Scott, 1). A. LBL-2996)

MMAFK, M K , (sec Proctel, D) . I.BL-2349)
M, MER. A. R. (se Tjom. P. O. LHI. 2379)
MANG: II J. (see Hing. P., LBL-296B)

MARK, R. K. IIu, C. I., Hewman, FI. R.. Asaru. F..
Mikee, E H., and Coates, R. R.
 0.706) Mantle, Soure of Ocean Ridge-Like Tholeite, Northern Great Basin
1.ht. $34+9$. Navember 1974

Gicochimide et Cosmochimica Acta

MARKOWITC. S. S.. (sec Parsi. B., LBL-1901)
A1ARKOWtTZ, S. S., (see Parsa, B., L.BL-1902)

MARKOWITZ, S. S., (see l'ce, D. C., LBL-1910)
MARKOWJTZ, S. S. (sec Fec. D. C.., LBL-1949)

MARKOWITZ, S. S., (see Jacob, N. P.. Jr., LBL-2381)
MARKOWTIZ, s, S. (sec jacob, N, P., Jr., LBL-2381 (Rev.))

MARBUS, K., (rec Gould, H., L.BL.-2906)
MARSHALEK, E. R. (sec Bose, S., LBL-2963)

BiARTIN, R. L., and Shirley, D. A.
The Relation of Core-Level Binding Energy Shifts to Proton Affinity and Lewis Basicity
LBL-2341, Decemter 1973
J. Anr. Chem. Snc. 96. 5299 (1974)

MASSMANN, H.. Rammusen, J. O., Ward, T. E., Haustein, P. E., and Rernthal, F. M.
Conjiguration Mixing of Two-Quasiparticle States in Even-
Even Deformed Nuclei
L.B1.-1693, Junc 1973

Phys. Rev. C9. 6(1974)
MASSAMNN, H., and Kasmussen, J. O.
Uniform Semidassical Orbital Calculations of Heavy ton Coulomb Excitation
1.BI. 3440 , November 8, 1974

Nud. Phys. is
MayER, B., Conzert, H. E., Dahme, W., Kovar, D. G., Larimer,
ir. M., Leemann, C.
j -Dependence of the Vector Analyzing Power for ($\mathrm{d} .{ }^{2} \mathrm{He}$) and (d,t) Reactions
LBL-2340, December 1973
Phys. Rev. Letters. 32, 1452 (1974)
„EYERHOF.W. E., (sec Tjom, P. O., LBL-:'931)
MEYz. R ter VEHN, J., Grephens, F. S., and Diamond, R. M.
Evidence for Asymmetric Shapes From Higls-Spin Odd-A Spectra
LBL-2394, March 1974
Phys. Rev. Letcers 32, 1383 (1974)
MEYER ter VEHN, J.
Rotational Band-Structures in Transitional Udd-A Nuclej LBL-3416, September 19, 1974
Phys. Rev, Letts.
MICHEL, H. V., Frierman, J. D. and Asaro, F.
Chemical Composition Patterns of Ceramic Wares From Fustāt Egypt
LBL-2387, March 1974
Arcinacometry
MICHEL, M. C., (see Yellin, J., LBL-1602)
MILLS, B. E., (.ee Banna. M. S., LBL-2930)
MITRA, G., and wilke, C. R.
Enzymatic Utilization of Wastes Cellulosic
LBL-2334, January 1974
Ph.D. Thesis
MiltrA, G., and wilke, C. R.
Continuous Cellulase Production
L.BL-2365, February 1974

Biotech, \& Bioeng.
MOHR, P., (see Gould, H., LfiL-2906)
MORETTO. L. G. and Kararia, S. K.
Superfluid Properties of Exeited Nuclei Arising From a δ-Force Residual Interaction
LBL-1942, September 1973
Lettere al Nuovo Cimento 9, 190 (1974)
MORETTO, L. G.
Influence of Pairing and of the Spin Projection Distribution on the "Classical" 1sothermal Rotations of a Nucleus LBL-2321, January 1974
Nucl. Phys. A226, 9 (1974)

MORETTO, L. G., and Babinet, R. P.
Large Superfluidity Enhancement in the Penetration of a Fission Barrier
LBL-2332, January 1974
Phys. Letters 49B, 147 (1974)
MORETTO, L. G.
Statistical Propertics of a Paired Nucleus With Fixed Quasiparticle Number
LBL-2368, March 1974
Phy's. Letters 51B, 35 (1974)
MORETTO, L. G., Babinet, R. P., Galin, J., and Thompson, S. G
Experimental Evidence of a Diffusion Process Associated with the Mass Asymmetry Degree of Freedom in Heavy Ion Reactions
LBL-3444. November 1974
Phys. Letters B
MORETTO, L. G., (see Thompson, S, G., LBL-2940)
MORETTO, L. G.
Thermodynamical Properties of a Paied Nucleus with a Fixed Number of Quasi-Particles
LBL-2994. September 1974
Nucl. Phys. A
MORETTO, L. G., Heunemann. D., Jarcd, R. C., Gatti, R. C., and Thompson, S. G.
Study of a Fission-Like Environment in Reactions With Very Heavy lons
LBL-1966. July 1973
Third Symposium on the Physics and Chemistry of Fission, Rochester, New York, August 13-17, 1973)
Physics \& Chem. of Fission, Vol II, 351 , (1973)
MYERS W. D., and Swiatecki, W. J.
The Nuclear Droplet Model for Arbitrary Slapes
LBL-1957, July 1973
Annals of Phys. 84, 186 (1974)
MYERS, W, D.
Macroscopic Aspects of Heavy-Ion Reactions
LBL-2945 Junc 1974
\Invired talk presented ar the International Conference on Reactions Between Complex Nuclei, Nashville, Tennessce, June 1974)

NAGARAJAN, M. A.
Heavy Ion Induced Transfer Reactions Leading To Weakly Bound Final States
LBL-2918, May, 1974
Phys. Letters 52B, 395 (1974)
NAGARAJAN, M. A., (see Glendenning, N. K., LBL-2378)
NAGARAJAN, M. A., and Wang, W. L.
Pion-Nucleus Charge Exchange Reactions in the IsobarDoorway Model
LDL-2934. June 1974
Phys. Rev. C10, 2125 (1974)
NAGP.RAJAN, M. A., and :Vang, W. L.
Coupled-Channel Pion-Nucleus Charge Exchange Reactions LBL-2958, June 1974
Phys. Rev, C

NAGARAJAN, M. A., (see Kleber, M., LBL-2973)
NAGARAJAN, M. A. and Wang, W. L. A Separable Expansion for the Nuclear Form Factors LBL-2986. August 1974
Phys. Rev. Clic. 2206 (1974)
NAKAI, K., Proetel, D., Diamond, R. M., and Stephens, F. S.
Lifetimes and g-Factors in Decoupled Bands
LBL-2389, March 1974
Phys. Rev. Letters 32, 1380 (1974)
NAKAMURA, M., and Shalimoff, G. v.
Four Function Calculator Used to Automatically Compute Wavelength
LBL-2331 Rev., March 1974
Applied Spectroscopy (as a Note), 28, 581 (1974)
NARDI, E., (see Kataria, S. K., LBL-1905)
NAUMANN, R. A., (see Krien, K., LBL-1652)
NEWTON, J. O., Stephens, F. S., and Diamond, R. M.
Rotational Bands in the Light Odd-Mass Thallium Nuclei LBL-2333, January 1974
Nucl. Phys.
NIFENECKER, H. ;see Jared, R. C., LBL-1963)
NIFENECKER, H., Signarbieus, C., Babinet, R., and Poitou, J. Neutron and Garnma Emission in Fission LBL-1950, July 1973
Thitd Symposium on the Physics and Chemistry of Fission, Rochester, New York, August 13-17, 1973) "Physics and Chemistry of Fission, $1973^{\prime \prime}$ Vol. II, 117 (1973)

NITSCHKE, J. M., (see Ghiorso, A., LBL-2998)
NIX, J. R., (see Krippe, H, J., LBL-1920)
NORRIS, A. E., (see Kratz, J. V., LBL-2947)
NURMIA, M., (see Eskola, P., LBL-2315)
NURMIA, M., (see Ghiorso, A., LBL-2998)
OLOVSSON, I., (see Ruben, H., LBL-1931)
OLSEN,C. E., (sce Kratic, K. S., LBL-2354)
O'NEIL, S. V., (see Yarkony, D. R., LBL-1969)
O'NEIL, S. .., (\sec Schwenzer, M., LBL-1983)
OVAIS, M., (see Scott, A., LBL-672)
PARSA, B., and Markowitz, S. S.
Deternsination of Lead in Atmospheric Air and in Aluminum by Helium-3-Induced Nuclear Reactions
LBL-1901, June 1973
Anal. Chem. 46, 186 (1974)
PARSA, B., and Markowtiz, S. S.
The Half-Life and the a-Decay Branching Ratio of ${ }^{207} \mathrm{P}_{0}$
L.BL-1902, June 1973
J. Inarg. Nuel. Chem. 36, 1429 (1974)

PARSONS, 'T. C., (ste Starks, D. F., LBL-3422)
PEARSON, P. K. (sce Dykstra, C. E., LBL-2983)
PEARSON, P. K., Schacfer, H. F., Jll, and Wahlgren, U. Potential Encrgy Surface for the Model Unimolecular Reaction HNC \rightarrow HCN
LBL-3402, Septeinber 1974
J. of Chem. Phys., 62, 350 (1975)

PERLMAN, 1., (ste Artzy, M., LBL-1286)
PERLMAN, I., (see Arczy, M., LBL-2375)
PERLMAN, I., (see Artzy, M., L8L-2914)
PERLMAN, I., (see Rapaport, M. S., LBL.2962)
PE'IKOVICH, F., (see Scott, A., LBL-672)
PLATYNEK, G. R., (sec Macdonaid, J. A., LBL-2317)
POITOU, J., (sec Nifinecker, H., L.BL-1950)
POLLAK, R. A., (see Ley, L., LBL-1688)
POLLAK, R. A., (see Kowalczy, S. P., LELL-1916)
POLLAK, R. A., (sec Kowalczyk, S. P., LEL-19+5)
POLLAK, R. A. Ley, L., McFeely, F. R., Kowalczyk, S. P., and Shiricy, D. A.
Characteristic Energy Loss Structure of Solids From X-Ray Photoemission Spectra
LBL-1971, Septeriber 1973
J. Electr. Spectrose. 3. 381 (1974)

POLLAK, R, A.. (see McFecly, F. R., LBI.-1989)
POSKANZER, A. M., (see Bowman, J. D.. LBL-1967)
POSKANZER, A. M., (see Zebelman, A. A1., LBL-3427)
PROETEL, D., Diamond, R. M., Kiente, P, Leigh, J. R., Maier, K. H., and Stepturns, F. S.

Evidence for Strongly Deformed Shapes in ${ }^{186} \mathrm{Hg}$ LBL-1939. Junc 1973
Phys. Rev. Letters 31, 896(1974)
PROETEL, D., Diamond, R. M., and Stephens. F. S. High-Spin Excitation Modes in Even Hg Nuclei LBL-2380, March 1974
Nucl. Phys. A231, 301 (1974)
PROETEL, D., Benson, D.. Jr., Gizon, A., Gizon, J.. Maier, M. R., Diamond, R. M., and Stephens, F. S.
Decoupled Bands in Odd-Mlass Mercury Isotopes
I.BL-2349. January 1974

Nucl. Phys. A226, 237 (1974)
PROETEL, D., (see , vakii, K., L8L-2389)
PRUSSIN, S. G., (sce Jardine, i.. J., LBL-245)

QUARLES, W. G., Templeton, D. H., snd Zalkin, A. The Crystal and Molecular Structure of Melatonin LBL-1933, June 1973
Acta Cryst. B30, 99 (1974)
QUarles, W. G., Templeton, D. M., and Zalkin, A. The Crystal and Molecular Str- ture of 5-Methoxytryptamine LBL-1934, June 1973
Acta Cryst. B30, 95 (1974)
R.1D: F. N., Saylor, D. P., and Jain, M.

Final State Interaction in Thue Nucleon System
LBL-2935, July 24, 1974
(To be presented at the International Conference on Few Body Problems in Nuclear and Particle Physics, University of Laval, Quebec, Canada, August 27-3 1, 1974)

RAD, F. N., Birchall, J., Conzett, H. E., Chintalapt Ji, S., and Roy, R.
The Vector Analyzing Power in d-p Scattering at 45.4 MeV and The Nucleon Necleon Interaction
LBL-2959, July 1974
Phys. Rev. Letters 33, 1227 (1974)
RAD, F. N., Birchall, J., Conzert, H. E., and Roy, R.
Polarization Transfer in Proton-Deuteron Elastic Scattering LBL-2939, June 1974
(To be presented at the International Conference on Few Body Problems in Nuclear and Particle Physics, Quebec, Canada, August 27-31, 1954)

RAD, F. N., (see Birchall, J., LBL-2967)
RAD, F. N., Birchall, J., Conzett, H. E. and Roy, R.
Vector-to-Vector Pelarization Transfer in Deuteron-Proton Elastic Scattering
LBL-3418, September 1974
Phys. Rev. Letts., 33, 1579 (1974)
RANDRUP, J.
Spontaneous-Fission Inertial-Mass Functions in the Actinide Region
LBL-2385, February 1974
Phys. Rev. C
RANDRUP, J.
The Nuclear Seyler-Blanchard Model in the Hartree Approximation
LBL-3413. September 1974
Nucl. Phys. A.
RAPAPORT, M. S., Asaro, \ddagger., and Perlman, I.
K-Shell Electron Shake-Off Accompanying Alpha Decay LBL-2962, July 1974
Phys. Rev. C
RAPAPORT, M. S., (Ph.D. Thesis)
Atomic Electrons Shake-Off Accompanying Alpha Decay LBL-2978, September 1974

RASMUSSEN, J. O., (sec Krien, K., LBL-1652)
RASAIUSSEN, J. O., (sec Ma, C. W., LBL-1677)
RASMUSSEN, J. O., (see Tamura, T., LBL-1689)

RASMUSSEN, J. O., (see Massmann, H., LBL-1693)
RASMUSSEN. j. O., (see Shihab-Eldin, LBL-3409)
RASMUSSEN, J. O., (see Massmann, H., LBL-3440)
RAY, S.. Zalkin, A., and Templeton, D. H.
Crystal Structures of the Fluosilicate Hexahydrates of Cobalt. Nickel, and Zinc
LRL-1932, June 1973
Acta Cryst. B29. 2741 (1973)

RAY. S., Zalkin, A., and Templeton, D. H.
Cy'stal Stucture of Copper Fluosilicate Hexahydrate
LBL-1935. Junc 1973
Acta Cryst. B29, 2748 (1973)

RESNIINI, F. G , (see deSwiniarski, R., LBL-2322)
REZANKA, I.. (ste Tamura, T., LBL-1689)
RINNEBERG, H. H. and Shirley, D. A.
Perturbed Angular Corselation of ${ }^{111} \mathrm{Cu}^{\mathrm{mm}}$ in Antiterromagnetic MinF_{2}. $\mathrm{FeF} 2, \mathrm{CoF}_{2}$ and NiF_{2}
LBL-2398. April 1974
Phys. Rc: Bil, 248 (1975)
REZZANKA. l. (sce Krien, K., LBL-1652)

RING. P., and Ming, H. J.
Attenuation of the Coriolis Interaction Within the Cranking Mtodel
LisL-2968. July 1974
Phys. Rev. Letters 33, 1174 (1974)

KiNNEBERG, H. H., and Shirley, i. A.
Supertransferred Hyperfine Interaction: Perturbed Angular Correlation of $11 / \mathrm{m} \mathrm{Cd}$ in Antiferromagnetic $\mathrm{NiO}, \mathrm{CoO}$, and Mno
1.131.-290. April 1974

Physical Revicw B
RINNEBFRG, H. H.. Schwartz, (;. P., and Shirley, D. A.
Puramagnexic Shifts and Spin-Flop in Supertransferred ${ }^{1}$ itperfine Structure of 111 mCd in $\mathrm{RbMnF}{ }_{3}$
L.BL-2979. August 1974

Phys. l.ctes. 50A, 69 (1974)

ROBINSON, C. W. and Wilke, C. R.
Simultaneous Measurement of Interfacial Area and Mass 'Transier Cocficients for a Well-Mixed Gas Dispersion in Aqucous Electrolvic St •ons
I.BL-2399. March 1974
A. I. Ch. E. J. 20, 285 (1974)

ROV. R.. isec R.ad. I: N., L.BL-2939)
ROY. K.. (sse Rad. F. V.. LBL-2959)
Hor, R., (sec Birchall, J., L.BL.2967)
ROY, R., (sce Rad, I. N., L.BI.-3418)

RUBIN, H., Olovsson, l., Zalkin, A., and Templeton, D. H. Sodium Chromate Tetrahydrate
LDL-1931, June 1973
Acta Cryst. B29, 2963 (1973)
RUBEN, H., Zalkin, A., and Templeton, D. H.
$\mathrm{N}, \mathrm{N}^{\dagger}$-Bis-(2,2,6,6-Tetramethylpiperidy 1-4)-Succinic Acid Diumide Dihydrate
LBL-1936, June 1973
Acra Cryst. B30, 334 (1974)

RUBEN, H., Bates, H., Zalkin, A., and Tenipleton, D. H.
2. 4. 4-Triphenyl-1,2-Diazetidine-3-One-1-Carboxylic Acid, Ethyl Ester
LBL-2358, January 1974
Acta Cryst. B30, 1631 (1974)
RUBEN, H., Zalkin, A., Faltens, M. O., and Templeton, D. H.
Crystal Structure of Sodium Gold (I) Thiosulphate Dihydraze, $\mathrm{Na}{ }_{3} \mathrm{Au}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
LBL-2369, February 1974
Inorg. Chem. 13, 1836 (1974)
SALOMON, D., (see Kaindl, G., LBL-3427)

SAVIGNY, N., Adolphe, C., Zalkin, A., and Templeton, D. F. Structure of NdSBr and Isotypical Rare Earth Sulfobromides LBL-1656
Acta Crystallographica B29, Part 7, 1532-1535 (July 1973) no reptints availaile

SAYLOR, D. P., (see Rad, F. N., LEL-2935)
SCHAEFER Iti, H. F., (see Yarkony, D. R., LBL-681)
SCHAEFER, III, H. F., (see Yarhony, D. R., LBL-1969)
SCHAPFER, IH1, H. F., (see Schwenzer, G. M., LBL-1983)
SCHAEFER, III, H. F., (see Liskow, D. H., LBL-2302)
SCHAEFER, III, H, F., (see Baskin. C. P., LdL-2324)
SCHAEFER, III.H. F., (see Bender, C. F., LBL-2344)
SCHAEFER, III, H. F., (see Yarkony, D. R., LBL-2345)
SCHAEFER, III, H. F., (see Liskow. D. H., LBL-2372)
SCHAEFE: I, III, II. F., (see Yarkony, D. R.. LBL-2919)
SCHAEFER, III, H. F.. (sse Garrison, B. A., LBL-2911)
SCHAEFER, III, H. F., (see Ungemach, S. R. LBL-2948)
SCHAEFER, III, H. R., (see Dykstra, C. E., LBL-2983)
SCHAEFER, III, H. F., (see Schwenzer, G. M., LBL-2985)

SCHAEFER, III, H. F., (see Pearson, P. K., LBL-3402)
SCHAEFER, III, H. F., (sec Sirgbahn, Per, LBL-3403)
SCHAEFER, III, H. F., (see Schwenzer, G. M., LBL-3421)

SCHAEFER, III, H. F., (see Bender, C. F., LEL-3432)
SCHWARTZ, G. P., (see Rinneberg, H. H., LBL-2979)
SCHWENZER, G. M, O'Neil, S. V., Schaefer, III, H. F., Baskin, C. P., Bender, C. F.

Gcometries of the Excited Electronic States of HCN
LBL-1983. September 1973
J. Chem. Phys. 60, 2787 (1974)

SCHWENZER, G. M., Schaefer, III, H. F., and Bender, C. F. Excited Electronic States of HNC, Hydrogen lsocyanide LBL-2985, August 1974
J. of Chem. Phys.

SCHWENZER, G. M., and Schaefer, II, H. F.,
The Hypervalent Molecules Sulfurane (SH_{4}) and Persulfurane $\left(\mathrm{SH}_{6}\right)$
LBL-3421, October 1974
J. of the Am. Chem. Soc., 97, 1393 (1975)

SCIAMANNA, A. F., (see Clem, R. G., LBL-2308)
SCIAMANNA, A. F., (see Clem, R. C., LBL-2308 (Rev.))
SCOTT, A., Owais, M., and Petrovich, F.
Core Polarization in Inelastic Proton Seattering from ${ }^{209} \mathrm{Bi}$ at 61 MeV
LBL-672, September 1972
Nucl. Phys. A226, 109 (1974)

SCOTT, D. K.

Multinucleon Transfer Reactions
LBL-1991, August 1973
(Presented at the International Conference on Nuclear Physics, Munich, Germany, August 27- September 1, 1973)

SCOTT, D. K., (see Yagi, K., LBL-2982)
SCOTT, D. K., (sec Cerny, J., LBL-2984)
SCOTT, D. K.
The Analysis of High Energy Heaty-Ion Transfer Reactions LBL-3434, November 1974
(Presented at Symposium on Classical and Quantum Mechanical Aspects of Heavy Ion Collisions. Heidelberg, Germany, October 2-4 (1974)

SCOTT, D. K., Harvey, B. G., Hendric, D. L., Kraus, L., Maguire, C. F., Mahoncy, J., Terrien, Y., and Yagi, K. Spectroscopy of Exotic Nuclei Using Heavy-Ion Transfer Reactions
LBL-2996, September 1974
Phys. Rev. Letts. 33, 1343 (1974)

SEABORG, G. T.
Status Report on the Transuranium Elements
LBL-2325, September 1973
Pure and Appl. Chem. Vol. 6, 1 (1974)
SEABORG, G. T., (see Kratr, J. V., LBL-2944)
SEABORG, G. T., (see Kracz, J. V.. LBL-2947)
SEABORG, G. T. (see Ghiorso, A., LBL-2998)

SELPH, F. B., and Spence, D. A.
Computer Utilization for Design and Operation of the SuperHILAC
LBL-3431, October 1974
(Presented at the CUBE Symposium, Lawrence Livermore
Laboratory, Livermore, California, October 23-25, 1974)

SEXTRO, R. G., Gough, R. A., and Cerny, J.
High-Resolution Measurements of Reta-Delayed Protons from ${ }^{37} \mathrm{Ca}$ and ${ }^{41} \mathrm{Ti}$
LBL-1955, April 1974
Nucl. Phys. A234, 130 (1974)
SEXTRO, R. G., (see Zebelman, A. M., LBL-3427)
SHAKIN, C. M., (sec Wang, W. L., LBL-1995)
SHALIMOFF, G. V., (see Nakamura, M., LBL-2331 Rev.)

SHELINE, R. K., (see Stephens, F. S., LBL-1911)
SHiHAB-ELDIN, A., (see Jardine, L. J., LBL-2943)

SHIHAB-ELDIN, A. A., Jardine, L. J.. and Rasmussen, J. O. Extension of Relative Alpha Decay Rate Theory to Spherical Odd-Odd Nuclei (${ }^{210}$ At) LBL-3409, September 1974
Nucl. Phys. A

SHIRLEY, D. A., (see Ley, L.. LBL-1688)
SHIRLEY, D. A., (ce Davis, D. W., LBL-1909)
SHIRLEY, D. A., (sce Kowalczyk, S. P., LBL-1916)

SHIRLEY, D. A., (sce Ley, L., L.BL-2323)
SHIRLEY, D. A., (see McFeely, F. R., LBL-2350 Rev.)

SHIRLEY, D. A., (see Kowalczyk, S. P., LBL-1945)
SHIRLEY, D. A., (see Davis, D. W., LBL-1970)

SHIRLEY, D. A., (sec Pollak, R. A., LBL-1971)
SHIRLEY, D. A., (scc McFeely, F. R., LBL-1989)

SHIRLEY, D. A., (sce Rinneberg, H. H., LBL-2398)
SHIRLEY, D. A.
Theory of Auçur-Satellite Energy Shifts
LEL-1993, October 1973
(Phys, Rev. A 9, 1549 (1974)
SHIRLEY, D. A.. (see Ley, L., LBL-2323)
SHIRLEY, D. A., (sec Varea de Alvarez, C., LBL-2330)

SHIRLEY, D. A., (see Martin, R. L., LBL-2341)
SHIRLEY, D. A., (sce McFecly, F. R., I.HL-2350)

SHIRLEY, D. A.
ESCA. Results Versus other Physical and Chemical Data LBL-2397, February 19:4
(Presented at the International Conference on Electron Spectroscopy, Namur. Belgium, April 16 -19, 1974)
J. Etectr. Spectrose. S. 135 (1974)

SHIRLEY, D. A., (see Suzer, Sefik, LBL-2 384)
SHIRLEY, D. A., (see Rinneberg, H. H., LbL-2900)
SHIRLEY, D. A. (see Ley, L., LBL-2901)
SHIRLEY, D. A. (sec Kowalczyk, S. P., LBL-2902)
SHIRLEY, D. A., (see Soinski, A. J., LBL-2917)
SHIRLEY, D. A., (sce I.ey, L., LBL-2929)
SHIRLEY, D. A.. (see Banm, M. S., LBL-2930)
SHIRLEY, D. A.
Hyperfine Interactions and ESCA Data
LBL-2936, Junc 1974
(Presented at the International Confertence on Hyperfine Interactions Studied in Nuclear Reactions and Decay, Uppsala. Sweden. June 10-14. 1974: also submitted to Physica Scripta)

Shirley, D. A., (sec Kowalczyk, S. P., LBL-2937)
SHIRLEY. D. A.. (see McFecly. F. R., L8L-2953)
SHIRLEY. D. A.
A Summary of the International Conference on Hyperfine Interactions Studied by Nuclear Reactions and Decay
LBL-2960. July 1974
(Presented at International Conferenee on Hyperfine Interactions Studied in Nuclear Reactions and Decay. Uppsala. Sweden, Junc : ©́l4. 1974)

SHIRLEY. D. A., (see Rinneberg. II. H., LBL-2979)
SHIRLEY, D. A.
X-Kay Photocmission and Surface Structure
LBL-3400. August 1974
(To be presented at the 21 st Annual National Mecting of the American Vacuum Suciery. Anaheim, California. October 8-11, 1974)
J. Vac. Sci. Technol., 12. 280(1975)

SHILRIEY. D. A.. (sec. Chou, T. S., L.BL.3408)
SHIRIEEY.D.A.
X-Ray Photocmission (ESCA) from Molecules and Solids L.81.-3410, Scptember 1974

Proc. Of the Royal Australian Chem. Inst.
SHIRI.EY. D. A.. (see Kowaleqyk. S. P., I.BI. 3430)
stifitiey, V, S., and Lederer, C. As.
Table of Nuclear Moments
L.BL-3450, December 1974
(Proceedings of the International Conference on Hlyperfine Interactions Studied in Nuclear Reactions and Deeay. Uppsala, Sweden, June 10-14. 1974)

SIEGBAHN, P., and Schaefer, H. F., lll
Porential Energy Surfaces for $\mathrm{H}+\mathrm{Li}_{2} \rightarrow \mathrm{LiH}+\mathrm{Li}$ Ground State Surface from Large Scale Configuration Interacuon LBL-3403, October 1974
J. of Chem. Phys,

SIGNARBIEUX, C., (see Nifenceker, H., LBL-1950)
SIMON, R. S., (see Stephens, F. S., LBL-1911)
SLOBODRLAN, R. J.. (see de Swiniarski, R., LBL-1620)
SLOBODRIAN, R. J.. (see Lamontagne, C. R., LBL-1941)
SOINSKI. A. J., (set Kaindle, G., LEL-1960)
SOINSKI, A. J., and Shirlcy, D. A.
Nuclear Orientation Studies of ${ }^{241}$ Am and ${ }^{255}{ }^{\text {Fm }}$
LBL-2917, June 1974
Phys. Rev. C10. 1488 (1974)
SOINSKI, A. J., (Ph.D. Thesis)
Study of Partial Wave Branching in the Alpha Deciay ${ }^{241}$ Am, ${ }^{253} \mathrm{Es}$, and ${ }^{255} \mathrm{Fm}$
LBL-3411. September 1974

SPENCE. D. A.

Drift Tube Alignment and Beam Emittance Codes in use at the Superhilac
LB:-3417. Octoler 1974
(Presented at the CUBE Symposium, Lawrence Livermore Laboratory, Livermore, California, October 23-25, 1974

SPENCE, D. A., (see Selph, F. B., LBL-3+31)
STAHEL. D. P.. (sec Jelley, N. A., LBL-3+1+)
STARKS, D. 1:, Parsons, T. C., Streitwicser, A., Jr., and Edelstein, N.
BIS(π-cyclooctatctracne) Protactinium
L.BL. 3422

Inorg. Chem. 13. 1307 (1974)
SFEPIIENS, F. S., Klcinheinz., P., Sheline, R. K., and Simon. R.S.

Backbending and Rotation Nlignment
L.BL-1911, November 1973

Nuel. Phys. A222, 235-251 (1974)

STPPIIENS, I.S.
Rotation-Nligned Coupling Scheme
LBL-1968. July 1973
To le presented at the International Conference on Nuciear Physics, Munich, Germany, August 27.September 1. 1973

STEPHENS, F. S., (sce Mcyer ter Vehn, J., L.BL.-2394)
Stepliens, F. S., (sec Proctel, D., LBL-1939)
STEPRIENS, F. S., (ste Gizon, J., Lill-1948)
STEPHENS, F. S.. (see Newton, J. U., LBL-2333)
STEPHENS, FF, S., (see Proetel, D., LBL-2349)

STEPHENS, F.S.
Coriolis Effects and Rotation Alignment in Nuck:
LBL-2352, January 1974
Rev. Mod. Phys.
STEPHENS, F. S., (see Tjom, P. O., LBL-2379)
STEPHENS, F. S., (see Proctel, D, LBL-2380)
STEPHENS, F. S., (see Nakai, K., LBL-2389)
STEPHENS, F. S., (see Tjom, P. O., L3L-2931)
STEPHENS, F. S., (see Ward, D., LBL-3446)
Steyert, w. A., (see Krane, K. S., LBL-2337)
STEYERT, W. A., (see Krane, K. S., LBL-2354)
STREITWIESER, Jr., A. (see Starks, D. F., LBL-3422)
SUDBURY, E. A., (see Bucher, J. J., LBL-2351)
SUZER, S., and Shirley, D. A.
Initial-State Configuration-Interaction Satellites in the Photoemission Spectrum of Cd
LBL-2384, February 21, 1974
J. Chem. Phys.(Pote to Editor) 61, 2481 (1974)

SVENTEK, J. S., (see Huizenga, J. R., LBL-2314)
SVENTEK, J. S., (see Huizenga, J. R., LBL-2316)
SWIATECKI, W. J. (see Myers, W. D., LBL-1957)
SWIATECKI, W. J., (see Bowman, J. D., LBL-2908)
TAMURA, R., and Rezanka, I., Iwata, S., Rasmussen, J. O., and Alonso, J.
Levels in ${ }^{165} \mathrm{Tm}$ excired by decay of $10 \mathrm{Min}{ }^{165} \mathrm{Yb}$ and by the ${ }^{158} \mathrm{Gd}\left({ }^{\left.11_{\mathrm{B}}, 4 \mathrm{n} \gamma\right)}\right.$ Reactions
LBL-1689, May 1973
Phys. Rev. C8, 2425 (1973)

TAMURA, R., (see Yagi, K., LBL-2982)
TEMPLETON, D. H., (see Savigny, N., LBL-1656)
TEMPLETON, D. H., (see Ruben, H., LBL-1931)
TEMPLETON, D. H., (sce Ray, S., LBL-1932)
TEMPLETON, D. H.، (see Quarles, W. G., LBL-1933)
TEMPLETON, D. H., (sce Quarles, W. G., LBL-1934)
TEMPLETON, D. H., (see Ray, S., LBL-1935)
TEMPLETON, D. H., (sce Ruben, H., LBL-1936)
TEMPLETON, D. H., (see Ruben, H., LBL-2358)
TEMPLETON, D. H., (sce Ruben, H., LBL-2369)
TERRIEN, Y., (see Yagi, K., LBL.-2982)

TERRIEN, Y., (see Scott, D. A., LBL-2996)
THOMPSON, S. G., (see Kataria, S. K., LBL-1905)
THOMPSON, S. G., (see Jared, R. C., LBL-1963)
THOMPSON, S. G., (see Moretto, L. G., LBL-1966)
THOMPSCN, S. G., (see Moretto, L. G., LBL-3444)
THOMPSON, S. G., Moretio, L. G., Jared, R. C., Babinet, R. P., Galin, J., Fowler, M. M., Gatti, R. C., and Hunter, J. B. Macroscopic Aspects of Heavy Ion Reactions LBL-2940, June, 1974
(Presented at the Nobel Symposium on Superheavy
Elements, Ronncby Brunn, Sweden. June 11-15)
TJOM, P. O., Maier, M. R., Benson, D.JJ., Stephens, F. S., Diamond, R. M.
Higt-Spin States in 191,193,195Au
LBL-2379, March 1974
Nucl. Piyys. A231. 397 (1974)
TJOM, P. O., Stephens, F. S., Diamond, R. M., de Bocr, J., and Meyerhof, W. E.
Angular-Momentum Effects on Continuum Gamma Rays Following Heavy-Ion Reactions
LBL-2931, May, 1974
Phys. Rev. Letters 33, 593 (1974)
TSANG, C. F.
Superheavy Element
LBL-2339, Septemder 1974
The Physiss Teacher, 13, 279 (1975)
TSANG, C. F (see Ma, Chin W., LBL-2347)
TSANG, C. F., (see Ma, Chin W., LBL-2347 (Rev.))
TSANG, C. F., (see Bowman, J. D. LBL-2908)
TSANG, C. F.
Nuclear Collisions with Friction
LBL-2928, May 1974

TSANG, C. F.
Similarities and Differences berween Volume-Charge (Nuclear) and Drops and Charged Conducting (Rain) Drops
LBL-2970, August 1974
(To be presented at the International Colloquium on Drops and Bubbles at Pasadena, Califomia, August 28-30, 1974)

UCHIYAMA, F., (sce Wang, W. L., LBL-2313)
UNGEMACH, S. R., and Schaefer, III, H. F. Model Studies of the Hydrophobiv Interaction: Watermethane LBL-2948, July 1974 (J. Amer. Chem. Sac. 96, 7898 \{1974)

UDAGAWA, R. (sec Yagi, K.. LBL-2982)
VAN DEURZEN, C. H. H., and Conway, J. G.
Excitation of Spectra of Multiply Ionized Atoms by Capacitor Discharges
LBL-1975, August 1973
Applied Spectroscopy, 283 (1974)

VAN DEURZEN, C. H. H., Conway. J. G., and Davis, S. P.
Spectrum and Energy: Levels of Quadruple-lonized Vanadiuma (V v)
LBL-1986, September 1973
J. OpI. Soc. Am. 64, 498 (1974)

VAREA de AlVarez. C.. Cohen, M. L.. Ley. L... Kowalceyk.
S. P., McFeely, F. R., Shirley, D. A., and Grant, R. W.

Electronic Density of States and Bonding in ChalcopyriteType Semiconductors
L.BL-2330, November 1973

Phys. Rev. B10. 596 (1974)
VERGES. J. . (see Conway. J.. L.BL•3401)
VIOLA. V. E.. Jr.. (see Zebelman, A. M., LBL-3+27)
von OERTZEN. W.
Some New Developments in Direct Reactions Induced by Heawy lons
L.BL-1678. April 1973

Presented at the Minerva Symposium on Physics in Rehowoth, Israel. 2-4 April 1973
von OERTZEN, W., (sec Brcchetti, F. D., LBL-1972)
von OERTZEN, W., (sce DeVries, R. M., LBL-2363)
Wahl.GREN, U., (sec Pearson, P. K., LBL-34U2)
WANG, W. L., and Lipes, R. G.
Heavy-Ion Elastic Scattering at High Energies
LBL-19b 3 . August 1973
Phys. Rer. C9, 814 (1974)
WANG, W. L.. and Shakin, C. M
Angular Distribution and Polarization of ${ }^{160(y, n)}{ }^{150}$
L.BL-1955. October 1973

Phys. Rea. C9. 2144. 1974.
WANG, W. L. and Uchiyama, F.
Differential $\mathbf{L}_{1} \rightarrow \mathrm{~K}_{\mathrm{S}}$ Regeneration Cross Section in Coherse:
Production Model and Optical Model
E.BL-2313. October 1973

Nucl. Phys. 873 23.39(1974)
WANG, W. L.
A Comme t on the Giant Dipole Resonance of 160
L.BL.2356. January 1974

Chinese J. Phys.
WANG, W. L.
Factorization in Relativistic Heayy-Ion Scattering
L.BL-2359. April 1974

Phys. Letters 52R, 143(1974)
WANG, W. L., (sec Nagarajan, M. A., LBL-2934)
WANG, W. L.. (sec Nagarajan, M. A.. LBL-295B)
WANG, W. L... (see Nagarajan, M. A.. L.B1.2986)
WARD, D., Bertsehat. H., Butler, P. A., Colombani, P.,
Diamond, R. M1, and Stephens, F. S.
High-Spin States in $127.129_{1, i}$; A Test of Backitending in the Even Ba and Ce Nuclei
LBL-34+6, Deccmber 1974
rinc Rev. B

WARD. T. E., (sce Massmum, H., L131.-1693)
WEGAANN, G., (sce Kupper. W. A. LBL-642)
WEISENMIILLER. R. B., (sec: Jelley, N, A.. LBI.-2329)
WEISENAIILLER, R. B., (sed Cerny, J., L.BL-2984)
WEISENAILLLER, R, B., (sce Cerny, J.. L.BL-3407)
'. HITTAKER, B., (sec Edelstcin, N., LBL-23+8)
WIDEMANX, F., Picon, M. Asaro. F., Michel. H. V., and Periman. 1.
A Lyons Brancin of the Pottery-Making Firm of Atcius of Arczzo
LBL-1964, November 1973
Archacometry, 17, 45 (1975)
WILCO: , K. H., (see Jelley. N. A., L.BL-2329)
wheox, K. H., (see Jelley, N. A., L.BL-3414)
WILCOX. K. H., (see Cerny. J., LIBL-3407)
WILKE. C. R.. (sec Mitra. G., LBL-2334)
WILKE, C. R., (se Mitra, G., LBL-2365)
WILKE, C. R., (sec Robinson, C. W., LB1-2399)
willidias, L. A., (sec Garrison, B. A., LBL-2911)
WOLLENBERG, H., (sce Howman, H., L.BL-2966)
WORTMANN, G., (see Kaindl, G., L.BL-3437)
woznIAK, G. J., (see Jelley, N. A., LBL-2329)

WOZNIAK, G. J.. Jelley, N. A.. and Cerny, J.
$\wedge^{8} \mathrm{Be}$ Identifier and its Application to the ($a,{ }^{8}$ De) Resction
L.BL-2374. Alarch 1974

Nucl. Instr. Methods 120 (1974) 29
WOZNIAK. G. J.. (Ph.I). Thesis)
a-Transfer Studics via the ($a,{ }^{8}$ Be) Reaction at High Energies I.BL-2999. August 1974

WOZNIAK, G. J.. (see Cerny, J., L.BL.3407)
YAGI, K., (see Scott, D. A., L.BL-2996)
YAGI, K., Hendric, D, L., Kraus, L., Maguire, C. F., M ,woney, J.,
Scott, D. K., Terrien, Y., Udagawa, T., Low, K. S., and
Tamura, T.
One- and Multi-Step Processes in the ${ }^{1+4} \mathrm{Nd}\left({ }^{12} \mathrm{C},{ }^{14} \mathrm{C}\right)$ Reactions
LBL-2982, December 1974
Phys. Rev. Letts.
YARKONY, D. R., Flunt, W. P.. Schaefer, III. H. J.
Relation between electronic structure and the chemiluminescence Arising from Collisions between Alkaline Earth Atoms and Halogen Molecules
I.BL.-6BI, Juп 1972

Mol. Phys. 26, 941 (1973)

Yarkony, D. R., O'Neil, S. V., Schaefer, HI, H. F., Baskin. C. P., and Bender, C. F.

Inseraction Potential Between Two Rigid HF Molecules LBL-1969, August 1973
J. Chem. Phys. $\mathbf{6 0}$, 855 (1974)

YARKONY, D. R., and Schaefer, III, H. F. Triplet Electronic Ground State of Trimethylenemethane LBL-2345. January 1974
J. Am. Chem. Soc. 96. 3754 (1974)

YARKONY, D. R., and Schaefer, III. H. F.
Correlation Diagram for $\mathrm{He}+\mathrm{He}-\mathrm{Be}$ LBL-2919, June 1974
J. Chem. Phys. 61, 4921 (1974)

ZALKIN, A., (see Savigny, N., LBL-1656)
ZALKIN, A., (see Ruben, H., LBL-1931)
ZALKIN, A., (sec Ray, S.. LBL-1932)

ZALKIN. A.. (see Quarles, W. G., LBL-1933)
ZALKIN, A., (see Quarles, W. G., LBL-1934)
ZALKIN, A. (see Ray, S., LBL-1935)
ZALKIN, A., (see Ruben. H., LEL-1936)
ZALKIN, A., (see Ruben, H., LBL.2358)
ZALKIN, A., (see Ruben, H., LBL-2369)
ZEBELMAN, A. M., Poskanzer, A. M., Bowman, J. D., Sextro, R. G., akd Viola, V. E., Jr.
Fragments from Uranium Irradiated by $2.1 \mathrm{GeV} /$ Nucleon Deuterons and Alpha Particles
LBL-3427, October 1974
Phys. Rev. C
2ISMAN, M. S., (see (Beccherti, F. D., LBL-2957)
ZUEHL, R.. (see Bucher, J. J., LBL-2342)

7. Author Index

AUTHOR INDEX

ALONSO, C. T. 47, 50, 157
AlONSO, J. R. 47, 50
ANHOLT, R. 235, 237, 240, 243, 245
ARTZY, M. 353
ARVIELX, J. 65; 382
ASARO, F. 5, 7, 358, 362, 364
ASHERY, D. 84; 89
BABINET, R. P. 101, 103, 104, 106, 108, 111, 113, 175

BAIGRU, H. 245
BANNA, M. S. 285
BECCHETTI, F. D. 67
BENREIT-CORNIEA, H. 350
BENSON, JR. , D. 22, 26
BINDER, I. 41, 44, 395
BIRCHALL, J. 5, 57, 59, 65, 382
BLOCKI, J. P. 166
BOND, P. D. 235
BOHEN, J. 372
BOMWN, H. R. 15, 358, 362, 364, 356
BCMMAN, J. D. 117
BROHN, E. 3
BUCHER, J. J. 334
EUTLER, G. W. 116
CARMICHAEL, I. S. E. 362
CHRNY, J. $\begin{array}{r}81,83,84,86,87,89,92,93,96, ~ \\ 377,378,30\end{array}$
CHAPUIS, G. 333
CHASE, JR., L. F. 235, 237
CH1KTALAPIDI, S. 55,374
OHOU, T. S. 276, 403
OHU, S. Y. 202
OITRCH, D. A. 250
CIARK, D. J. 372, 374

CLARK, R. G. 115
COATS, R. R. 364
COWWAY, J. G. 251
CONZETT, H. E. 55, 57, 59, 60, 64, 65, 382
CUE, N. 245
CIRTIS, G. H. 360
DALNE, K. 65, 382
DAIRIKI, J. M. 3
DALAFI, H. R. 210
DANIELS, M. 336
DAVID, F. 336, 338
DAVIS, D. W. 285
DAVIS, S. P. 252
de BOER, J. 32, 185
det MATEOSIAN, E. 18
DIAMEND, R. M. $22,24,26,28,32,34,334$
DOEBLER, R. E. 3
DRAKE, R. 358
EGGERS, R. C. 97
EPPLEY, R. E. 15
EMELSTEIN, N. 322, 340, 342, 344, 346
ELLSHORTH, C. 374
FEE, D. C. 348
FLIESSBACH, T. 214
FLONERS, M. F. J. 366
PONLER, M. M. 41, 42, 44, 104, 106, 393, 395
FRAENKEL, 2. 108, 111
FRANZ, H. 35
FRAZIER, P. E. 372
FIJITA, D. K. 340
GALIN, J. 103, 104, 106, 111
GARRI5ON, B. J. 271
GARRISON, W. H. 350

GAITI, R. C. 106, 113, 114
GAVIN, B. 374
GIIORSO, A. 47, 50
GIZON, A. 26
GIZON, J. 26
GLEMDENNING, N. K. 73, 74, 133, 135, 137, 140, 142 COII, G. W. 84

GOLGH, R. A. 96, 374, 377, 378
COULD, H. 246
GRADL, R. 344
GRÄF, H. 223, 225
GRUNDER, H. 374
GIILLAMONT, R. 338
HALLER, E. E. 384, 387, 391
HANSEN, W. L. - 387, 391
HARVEY, B. G. 6i, 70, 73, 74, 79
FEENDRIE, D. L. $67,70,71,73,74,76,77,79$, 81, 372

HERBERT, A. J. 352, 358, 360
HERPRANN, G. 35
HO, L. 378
HOLLEY, W. R. 372, 374
HOMEYER, H. 67, 73
ERULET: E. K. 50
HNNTER, J. 103, 104, 111
IWATA, S. 16
JACOB, JR., N. P. 120, 124
JANNEE, U. - \quad, 73, 74, 76, 77
JAIN, M, 63
JARDINE, L. J. 3, 10, 13, 217
JARED, R. C. 103, 104, 106, 108, 111, 113, 393
JAYKO, M. E. 336
JELEEY, N. A. 83, 86, 87, 89, 92, 93, 380
JOINS, 0. 227, 229
JURNAK, F. A. 332
KARRAKER, D. G. 342

KAWAKAMI, H. 100
KELLY, E. L. 371
KING, W. H. 252
KIEBER, M. 150
KLEINHEINZ, P. 29
KOIKE, M. 100
KOLBE, W, 250
KOMRA, K. 100
KOSCD, D. G. 360
KOVER, D. G. 67
KONALCZYK, $\underset{318, ~ P . ~}{322,} 302,305,307,310,311,317$.
KRANE, K. S. 276
KRATZ, J.-V. 35, 39
KRATZ, K. -L. 35
KRAUS, L. 71, 74, 76, 77, 79
LADENBAUER-BELL.IS, I. M. 17, 18
LAMBE, R. N. 360
LARSON, S. E. 171
LATIMER, R. M. 65, 382
LATTY, J. A. 403
LAZARIS, S. M. 235, 237, 245
LEDERER, C. M. 3, 397
LEE, D. 41, 44, 395
LEE HD, C. 364
LEON, E. 3
LESTER, W, A. 271
LEY, L. 302, 305, 307, 310, 311, 317, 318, 322, 325
LISKON, D. H. 404
LITTIE, H. A. 235, 237, 245
LITTLEJONN, D. 377, 378
LITJCN, G. M. 397
LOUGHEED, R. W. 50
LOW, K. S. $\quad 71$
MASURE, C. F. $70,71,73,74,76,77,79,81$
MHHONEY, J. 67, 70, 71, 73, 74, 76, 77, 79, 81

MAIER, M. H. 22, 26
NANG, H. J. 204, 208, 210
MARK, R. K. 362, 364
DARKOWITZ, S. S. $15,120,123,124,348,350$
MARRUS, R. 246
MARSHALEK, E. R. 202
MARTIN, R. L. 291, 295, 298
MASSMANN, H. 185, 187
MCFEELY, F. R. 302, 305, 307, 310, 311, 318, 322, 325

NCKEE, E. H. 364
MERIWETHER, J. R. 374
MEYER, H. G. 115
MEYERHOF, W, E. $32,235,237$
MEYER-TER-VEIN, 3. 34, 190, 192, 195, 197
MIGIEL, M. C. 250
MILLS, B. E. 285, 298
MITRA, G. 405
MOHR, P. J. 246
MOLLER, F. 171
MOLTZ, D. 378
MORETTO, L. G. 101, 103, $104,106,108,111,113$, $114,175,176,179,184$

MOULTON, J. 101, 103, 113
MTPFFY, D. L. 123
MDRRIS, D. 372
MIERS, W. D. 127,129
NAGARAJAN, M. A. $133,143,145,148,150$
NAKAI, K. 28
NARD, E. 184
NATOWITZ, J. B. 116
NEERHAM, R. 16
NITSCHKE, J. M. 47, 50, 376
NOE, M. 340
NORRIS, A. E. 39
NUGENT, L. J. 338

MW, F. M. 35
NURALA, M. J. $47,50,53$
OTPO, R. J. $41,42,44,395$
PARSA, B. 15, 350
PARSONS, T. C. 340
PEACOCK, R. D. 346
PEARSON, P. K. 254
PERIMAN, I. 5, 7, 353
PERRY, D. G. 116
PETERSON, J. R. 340
PLASIL, F. 116
POLLAK, R. A. 317
POSKANZER, A. M. 116, 117, 119
PROETEL, D. 24, 26, 28
PRUSSIN, S. G. 35
RAD, F. 太. $55,57,59,63,382$
RAICH, D. G. 15
RANDRIP: J. 154; 163, 171
R:PAPORT, M. S. 7, 404
RASMISSEN, J. $0.15,16,17,18,97,100,187$, $202,217,243,245$

RALNEMAA, T. 42, 378
REEVES, H. 229
REISEERG, L. P. 116
REZANKA, I. 15, 17
RIBEE, W. S. 97
RING, P. 202, 204, 208, 210
RINGEBERG, H. H. 272, 273, 281, 282, 283
RINEEPERG, N. 3
ROIIIENBERG, S. 267
ROX, R. 55, 57, 59, 382
RUBEN, H. 333
RUJDOLF, W. 35
RUSSO, P. 108
SAKAI, M. 100

SAMOUN, K. 336, 338
SAYLOR, D. P. 63
SAYLOR, T. K. 235, 237, 245
SCHAEFER, III, H. F. 254, 255, 256, 258, 259, 261, 263, $264,267,268,269,270,271$
SGNINCKE, H.-U. 362, 366
SGAITT, 凡. P. 103, 111, 114
SCOARTZ, G. P. 281, 282, 283
SCHMENZER, G. M. 268, 270
SCOTT, D. K. $70,71,73,74,76,77,79,81$
SEABORG, G. T. 39, 42, 44, 50
SELPH, F. 374
SEXTRO, R. C. 115, 117, 119
SHLIMDFF, G. V. 252
SHELINE, R. K. 29
SHEPARN, D. 378
SHIHAB-ELDIN, A. A. 3, 10, 13, 35, 217
SHIRLEY, D. A. 272, 273, 276, 278, 281, 282, 283, 284, 285, 291, 295, 298, 202, 305, 307, 310, 312, 317, 318, 322, 325

SIMCN, R. S. 29
SOBICZENSKI, A. 171
SOKSKI, A. J. 278, 405
SOKOL, H. A. 350
STATEL, D. P. 93
STEPHENS, F. S. $22,24,26,28,29,32,34,213$
SLJZER, S. 284
SVESIER, J. J. 175, 176
TAMRA, T. 16, 71
TEPLETON, D. H. 331, 332, 333
TERREEN, Y. 71, 74, 76, 77, 79
THOMSON, S. C. 101, 103, 104, 104, 106, 108, 111, $114,184,393$

TJW, P. O. 22, 32
TRIPLETT, B. B. 235, 237
TSASG, C. F. 132, 160, 163
TUGGLE, D. 5
TUKASIAK, A. 171

TLNG, T. 1. 350
UDACANA, T. 71
VARDAS, L. S. 397
VIEIRA, D. J. 96, 377
VIOLA, JR., V. E. 115, 117
VOLZ, K. 351
YON CERTZEN, K. 67
WANG, W. L. $143,145,148,149$
WEISEMILLER, R. B. $81,83,89,92$
WELCH, G. P. 350
WILCOX, K. H. $83,89,92,93$
WILKE, C. R. 405
WILLIAMS, K. 42, 50
WIMTRER, Aa. 185
WOZNLAK, G. J. $83,84,86,87,89,380,404$

YAGI, K. 70, 71, 74, 76, 77, 79
YARKON, D. R. 267, 269
YOSHIKAMA, N. 100
ZALKIN, A. 331, 333
ZEBELMAN, A. M. 115, 117, 119
ZISHAN, M. S. 84

[^0]: ${ }^{a}$ The value for the osciilator parameter v used in the calculation of $T(E 2)$ was 0.1659 . Other parameters are discussed in the text.
 b Transition was not observed.

[^1]: ${ }^{{ }^{\text {Assuming }}} \mathbf{E 2}$ and M2 multipolarities for the 234 and 665.1 keV transitions, respectively.
 $\mathrm{b}_{\text {Adopted value. }}$

[^2]: Defined in Ref. 3; SMAG is the $L=0$ transfer magnitude and DMAG is the $L=2$ transfer magnitude.
 ${ }^{\text {b }}$. Ajzenberg-Selove, Nucl. Phys. A152, 1 (1970).
 $\mathrm{c}_{\theta_{1 a b}}=11.7^{\circ}$.
 ${ }^{\mathrm{d}}$ Integrated from 13 to 65° (Ref, 8)
 ${ }^{\mathrm{e}} \mathrm{F}$. Ajzenberg-Selove and T. Lauritsen, Nuc1. Phys. A227, 1 (1974).
 $f_{\theta_{1 a b}}=9.7^{\circ}$.
 ${ }^{\mathrm{g}}$ Integrated from 15 to 50° (tabulated in S. Kahana and D. Kurath, Phys. Rev. C3, 543 (1971) (based on Ref.11).
 $h_{1_{1 a b}}=15.0^{\circ}$.
 $i_{\text {Assignment suggested in Ref. }} 12$.
 j_{5}. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A114, 1 (1968).
 $k_{\theta_{1 a b}}=9.7^{\circ}$.

[^3]: ${ }^{\text {a }}$ Based solely on the 90° differential cross sections.
 $b_{\text {Based solely on the ratios of peak areas in the }}$ 90° particle spectra.

[^4]: ${ }^{\mathrm{a}} \mathrm{H}$. S. Johnston, Gas Phase Reaction Rate Theory (Ronald Press, New York, 1966).

[^5]: ${ }^{\text {Ref. }} 7$.
 $\mathrm{b}_{\text {Ref. }}$.
 $c_{\text {Ref. }} 6$.

[^6]: Footnote
 *Condensed version of a paper submitted to Physics Letters A.

[^7]: ${ }^{\text {a Relative intensity using CNOO popuiations. }}$
 $b_{\text {Re1ative as }}$ " :ntensity using POLYATOM net population calculated from $1 .+3$.
 ${ }^{\text {c Assuming one level, not Jabs-Teller split. }}$
 ${ }^{\mathrm{d}}$ Area ratios taken from CNDO.
 ${ }^{\text {e }}$ Separations taken from UPS.

