EXACT PORN FOR SGATMERINS AMPLITUDE IN REGGE POLE THEORY*
A. L. Read,

Brookhavea National Laboratory, Upton, New York, J. Orear and H. A. Bethe, Cornell University, Ithaca, New York

Sumatra

The exact form for the contribution of a single Rage pole is given both for positive and negative angular momentum Without making the usual approximations. This exact form involves Legendre functions of the first and second kind with non-integral index and argument greater than one These functions were calculated using the TBA 7090 computer at 8 rookhaven and are plotted in this paper. A onempxametex fit is made to the high energy $p-p$ elastic scattering data which gives good agreement with experiment.

Introduction

According to the Regge pole theory elastic scattering at high energies is dominated by the highest angular momentum Regge pole which is called the vacuum pole or Pomeranchuk pole. In Eq. (6) we give an exact form for the contribution of a single pose without making the usual approximations. The Eoxm given in this paper is in tens of Legendre functions of noraintegral Index which we have calculated and which are plotted in Figures 1 to 4. These plots along with Eq, (6) make it a simple task to

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Photostat Price $\$$,
Microfilm Price $\$ \ldots$
Available from the
Office of Technical Services
Department of Commerce
Washington 25, D.C.

This paper was submitted for publication in the open literature at least 6 months prior to the issuance date of this Microcard. Since the U.S.A.E.C. has no evidence that it has been published, the paper is being distributed in Microcard form as a preprint.
determine the anguiar momentum values $u(t)$ from the experimental data.

If the usual approwdmations are made the form given fox the acatcering cross section in $\frac{d \sigma}{d t}=F(t)\left(3 / 2 x^{2}\right)^{2 a-2}$ where $F(t)$ Ls a comytecely arbiexary function. ${ }^{1}$ The question arises as to whether the theory can eay something about the form of $F(t)$. It we make the assumption ${ }^{2}$ that the residue $\beta(t)$ of the vacuum poie is conscaut along ite trajectory, then our Eq. (6) gives an explictit prediction for $F(t)$ which as we shall see in Figure 5 happens to flt the high energy PaP scattering data very well.

The Scattexing Amplitude

We wrike the scattering amplitude due to the vacum pole as

$$
\begin{equation*}
A^{+}(B ; t)=\beta(t) \alpha(2 i+1)\left(1+e^{-i R_{a i z}}\right) \frac{p(z)}{3\{n \pi(z} \tag{1}
\end{equation*}
$$

where the factor ($1+e^{-i \pi h}$) provides the even signature, she factor \& 1 to to ronove the "ghost" singularicy at a $=0,3$ and where ${ }^{4}$

$$
\begin{equation*}
z=\frac{28}{4 M^{2}-t}-1 \tag{a}
\end{equation*}
$$

Recently So riandelstam, by taking the contour in the angular monentum plane to large negative of racher than to am $-\frac{1}{2}$, has managed to elfmate the usual background integral and has extended the fomalism to values of a less chan - $\frac{1}{2}{ }^{5} \mathrm{Xn}$ his paper mandelstam
finds that $P_{a}(z)$ mast be replaced with

$$
M_{Q}(z)=\frac{\operatorname{tantr}}{\pi} O_{\infty}(z)
$$

where $Q_{\varrho}(z)$ is the Legendre function of the second kind of angular momentum l as defined on page 317 of Whittaker and Watson ${ }^{6}$ Except in the region near $\alpha=\frac{1}{2}, P_{\alpha}(z) \approx M_{\alpha}(z)$ for positive a. Howevex, for negative $\alpha \quad P_{\alpha}$ and M_{α} become quite different and it is clear that the Mandelstam form $M_{\alpha}(z)$ should then be used.

An apparent difficulty with the Mandelstam form $M_{\infty}(z)$ is that as approaches $\frac{1}{2}, M_{\alpha}(z)$ approaches infinity. However, if we consider the Regge poles for a non-relativistic Schroedinger equation with an ordinary pocential, it can be shown that when there is a pole at α w $\frac{1}{2}$, there must also be a conjugate Regge pole having angular momentum at $=-\frac{3}{2}{ }^{\circ} 5$ We find this pole con* tributes an amplitude A^{\prime} which when added to the amplitude
gives a total amplitude

$$
\begin{equation*}
A_{\text {total }}=\beta(t)_{\alpha x}(2 \alpha+1)\left(1+e^{-i \nabla \alpha} \frac{P^{\prime}(z)}{B 1 \text { nivi }}\right. \tag{4}
\end{equation*}
$$

Hence we recommend using Eq. (4) [which happens to be the same as A^{+}in Eq. (1)] when computing scattexing cross sections corresponding to posicive a, and using Eq. (3) when in the region of negative α. We note that at a where we recomend changing over from $P_{\alpha}(z)$ to $M_{\alpha}(z)$, both forms, Eqs. (3) and (4), axe exactly equal for all z.

Using the relations $\frac{d \sigma}{d \omega}=\frac{|A|^{2}}{8}$ and $\frac{d \sigma}{d t}=\frac{\pi}{p^{2}} \frac{d \sigma}{d w}$, we have

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{4 \pi|A|^{2}}{\theta\left(8-42 t^{2}\right)} \tag{5}
\end{equation*}
$$

At $t=0$ the vacuum pole has angular momentum $a=1$ and then

$$
\frac{d \sigma}{d t}=36 \pi s^{2}(0) \frac{P_{1}^{2}(2)}{8\left(8-4 M^{2}\right)} \quad \text { for } t=0 .
$$

If we divide Eq. (5) by this, we obtain the quantity X which is defined as the ratio of $\frac{d \sigma}{d t}$ to its value at the same energy, but at D^{0} or $E=0$. Usiang $P_{1}(z)=z$, we obtain the result

$$
\begin{align*}
& x^{4}=\frac{\beta^{2}(\theta)}{\beta^{2}(0)} \frac{\alpha^{2}(2 \alpha+1)^{2}}{9 \ln ^{2} \pi \frac{Q^{2}}{2}} \frac{P_{\alpha x}^{2}(z)}{\left(\frac{8}{2 x^{2}}-1\right)^{2}} \\
& X^{\alpha}=\frac{\dot{B}^{2}(t)}{j^{2}(0)} \frac{4 \alpha^{2}(2 \alpha+1)^{2} \cos ^{2} \pi^{2} \frac{2}{2} Q^{2} \alpha^{2}(2)}{\left(\frac{8}{2 x^{2}}-1\right)^{2}} \quad \text { for } \alpha \text { \& } 0 \tag{6}
\end{align*}
$$

$$
\text { where } z=\left(\frac{28}{4 m^{2}-t} \propto 1\right)
$$

Using the IBM 7090 at Brookhaven National Laboratory we have calculated the P and Q funcetons needed for use in Eq. (6) ${ }^{7}$ The P functions for the region $0 \frac{1}{2}<\alpha<1$ are plotted in Figures 1 and 2. Ocher P functions may be easily obtained from Figures 1 and 2 using the recursion selations

$$
\begin{aligned}
P_{q \alpha-1} & =R_{\alpha} \\
(2,+1) P_{c i} & =(\alpha+1) P_{L+1}+\alpha P_{i \alpha-1}
\end{aligned}
$$

The Q functions $Q_{(r-1}(2)$ for the region $02<a<0$ are plotted in Figures 3 and 4. Ocher Q fumctions may be obtained by using
the recursion relation

$$
\begin{equation*}
P_{a}=\frac{1}{\pi} \tan \alpha\left(C_{\alpha}-Q_{o \alpha-1}\right) \tag{7}
\end{equation*}
$$

For $z>5$, Figures 3 and 4 agree within if with the asymptotic form

$$
u_{-\alpha=1}(z)=\sqrt{\pi} \frac{\Gamma(\rho g)}{\Gamma\left(-\alpha+\frac{1}{2}\right)}(2 z)^{\alpha}
$$

The asyaptotic form $\mathbb{E O T} \mathcal{P}_{a}(z)$ so obtained By substituting the above inco Eq. (7).

Comparison Jith Expeximent

We Rave tried fitcing all the existing pop scattering data above $10 \operatorname{cev}^{8}$ with Eq。(6) by setting $\frac{f(t)}{\rho(0)}=1$. This gives us an exact form for $\mathcal{P}(t)$ and permite an accurse determination of a for each individual value of $\mathrm{K}^{2}{ }^{2}$ Incividual solutions for人 80 obteined from 1.6 diffexent experimental cross sections axe plocted in Figure 5. It is encouraging to see shat in the several cases where two differant polnes have about the mane value of t_{9} the same valse of a is cbrained cuen though the beam energied may be a factor ewo apazt. The usual mathod of calculating a by comparing two different csoss sections at the same t_{g} but different s_{0} therefore givea solutions for a about the same as ours, but with considexably less accuracy. A mooth carve 18 dxawn through our 15 values of α ins Egure 5 and it is seen that Eq. (6) gives a good oneoparametex fit to all the kigh energy Pol scatcering daca.
l. Frautschis Gellomann, and Zachariayeng phys. Rev. L26, eroh (1962)
2. Hadjioanou: Philifps and Raxite in Phys. Revo Letters 2; 183 (1962) algo as83me if(t) 19 constant in order to get a form for $p(t)$ in the region of the diffraction peak $\left(-t<1.0(\operatorname{Gev} f c)^{2}\right)$ uging a pole fit to the data. They do mot extend thent formalinam to the region of negative α.
3. M. Gell Mann Froceadkags of the 1962 Intezmational Conferemce on High Energiy Phyedca at CERR.
4. In our calculations we save maed 2 as given by. Eq. (2). In the previous reierence it fors sugegred thas to showld be onitted from the dencminatox fin oxder to give the correct threshoid dependence in the chammel. We have not dome so; this makes very ilttie difference in the quantitative results.
5. S. Randelstam, Anmo Yhye 19,254 (1962).
6. E, To Whittaker and C. N. Natson, Modern Analysis (Cambridge University Press, 1927)。
T. Detalled tables of theae degendre functions are available as a Brookhaven National Laboratory report BNL-0000.
8. Baker, Jenkins, Read, Cocconi, Coccond, and Orear, Phys. Rev. Letters 2, 221 (1962); Diddens, Lillethun, Manning, Taylor: Walker, and Wetherel1, Phys. Rev. Lecters 2; 111 (1962).

Elgure Captions

Figure 1. The Legendre function $P_{u}(z)$ vs. z for values of a from 0.1 to 1.0 .

Figure 2. The Legendre function $P_{i d}(z)$ vs. z for values of a from -0.5 to 0 .

Figure 3. The Legendre function of the second kind $Q_{\alpha-1}(z)$ v8. z for values of α from -0.1 to -1.5.

Figure 4. The Legendre function of the second kind $Q_{a-1}(z)$ vs. \& for values of a from -1,3 to -2.0.

Pigure 5. The angular momentum a of the vacuum erajectory ve. E, the 4 -momentum transfer squared. The experimental points are solutions of Eq. (6) (assuming $\frac{\beta(c)}{\beta(O)}=1$) corresponding to the protonproton scattering cross sections given in Refarence 8.

-

[^0]: "Research supported in part by the U.S. Atomic Energy Commission and the National Science Foundation.

