Numerical investigation of the pulsed NF3 + H2 chemical laser using a model which includes rotational relaxation and semi-classical laser equations

PDF Version Also Available for Download.

Description

Waveforms and population distributions have been calculated by a numerical model and compared with experiment for an electric-discharge-initiated, pulsed NF$sub 3$ + H$sub 2$ chemical laser. The model treats each vibrational- rotational state separately, allowing rotational relaxation between adjacent states as well as vibrational relaxation and lasing according to P-branch selection rules. Calculated waveforms agree with experiment and show several features not seen when rotational equilibrium is assumed: simultaneous lasing on many transitions, cascade behavior, spikes due to laser relaxation oscillations, non-Boltzmann rotational distributions, and ''hole burning'' in the population distributions. The calculations give insight into the physical phenomena governing ... continued below

Physical Description

Pages: 314

Creation Information

Creighton, J.R. September 1, 1975.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Waveforms and population distributions have been calculated by a numerical model and compared with experiment for an electric-discharge-initiated, pulsed NF$sub 3$ + H$sub 2$ chemical laser. The model treats each vibrational- rotational state separately, allowing rotational relaxation between adjacent states as well as vibrational relaxation and lasing according to P-branch selection rules. Calculated waveforms agree with experiment and show several features not seen when rotational equilibrium is assumed: simultaneous lasing on many transitions, cascade behavior, spikes due to laser relaxation oscillations, non-Boltzmann rotational distributions, and ''hole burning'' in the population distributions. The calculations give insight into the physical phenomena governing the shape and duration of the waveforms. The effect of varying certain parameters, relaxation rates, temperature, pressure, and diluents, is studied. Best fit to experimental waveforms is obtained when the rotational relaxation rate and collisional line broadening rate are approximately equal at about 10 times the hard sphere collision rate. The IXION computer code, developed for these calculations, is described in detail. In addition, an analytic model is presented which accounts for major features of the total (all transitions) output waveform of the laser assuming rotational equilibrium, a steady state laser model, and constant temperature. A second computer code, MINOTAR, was developed as a general purpose chemical kinetics code. It verifies the analytic model and extends the results to adiabatic reactions where the temperature varies, and can yield waveforms using the assumptions of rotational equilibrium and a steady state laser. The MINOTAR code, being general, can also be used for chemical kinetics problems such as air pollution and combustion. (auth)

Physical Description

Pages: 314

Notes

Dep. NTIS

Source

  • Other Information: Thesis. Orig. Receipt Date: 30-JUN-76

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: UCRL--51931
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/4116949 | External Link
  • Office of Scientific & Technical Information Report Number: 4116949
  • Archival Resource Key: ark:/67531/metadc864520

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • September 1, 1975

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Oct. 18, 2016, 1:54 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Creighton, J.R. Numerical investigation of the pulsed NF3 + H2 chemical laser using a model which includes rotational relaxation and semi-classical laser equations, thesis or dissertation, September 1, 1975; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc864520/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.