FY14 Q1 Progress Report for SECA Core Technology Program

One of 120 reports in the series: Fiscal Year 2014 available on this site.

PDF Version Also Available for Download.

Description

This quarterly progress report was prepared under field work proposal (FWP) 40552 and covers technical work performed during the period October 1 through December 31, 2013 (FY14 1st quarter). The report highlights and documents technical progress and milestone status in tasks related to advanced cell and stack component materials development and computational design and simulation. Technical highlights related to cell and stack materials development and characterization include: • Surface modified, Ce-modified MC spinel-coated AISI 441 exhibited improved spallation resistance (compared to coated mill reference 441) after 30,000 hours of oxidation at 800ºC in air. Similar beneficial results from surface modification ... continued below

Physical Description

PDFN

Creation Information

Stevenson, Jeffry W. & Koeppel, Brian J. January 31, 2014.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Titles

  • Main Title: FY14 Q1 Progress Report for SECA Core Technology Program
  • Series Title: Fiscal Year 2014

Description

This quarterly progress report was prepared under field work proposal (FWP) 40552 and covers technical work performed during the period October 1 through December 31, 2013 (FY14 1st quarter). The report highlights and documents technical progress and milestone status in tasks related to advanced cell and stack component materials development and computational design and simulation. Technical highlights related to cell and stack materials development and characterization include: • Surface modified, Ce-modified MC spinel-coated AISI 441 exhibited improved spallation resistance (compared to coated mill reference 441) after 30,000 hours of oxidation at 800ºC in air. Similar beneficial results from surface modification were observed after 26,000 hours of oxidation at 850ºC. • MnCo spinel coatings prepared from metallic powder precursors exhibited low area-specific resistance after 12,000 hours of testing at 800°C. • Long-term validation tests (6,000 hours of operation followed by 10 deep thermal cycles) of surface-blasted, spinel-coated AISI 441 interconnects were completed using PNNL’s SECA CTP stack test fixture. Results of post-test results will be reported in the next quarterly progress report. • Long-term evaluation of compliant glass seals (SCN-1 glass with YSZ fibers) was in progress using PNNL’s SECA CTP stack test fixture. • Baseline testing of LSCF-based cells from Fuel Cell Materials was performed in PNNL’s SECA CTP stack test fixture. Overall performance was similar to that previously obtained with similar cells from H.C. Starck. • A study on pore coarsening of compliant glass seals with and without inert fillers (ZrO2 short fibers or ZrO2 crushed hollow balls) has reached 2,000 hours of testing; results to date indicate that the addition of the fillers was partially effective in hindering the pore coalescence process. • Cell tests attempting to correlate effects of fuel water content on anode performance with previously observed changes in Ni/YSZ anode microstructure were initiated. Technical highlights in the computational modeling area include: • A method to interface the 3D SOFC-MP modeling tool with commercial FEA codes ABAQUS and ANSYS was developed to facilitate model construction and output of the predicted temperature field for structural stress analyses of stacks. • The error estimation and verification tools of the reduced order modeling (ROM) framework was improved to facilitate error handling for a large number of cases and perform user-specified test cases for error analysis of the generated ROM. • Mechanical behavior and damage characteristics of the compliant glass seal was investigated for a large planar cell design under different realistic electrochemical operating conditions (as predicted using SOFC-MP 3D) and thermal cycling events. • The methodology for lifetime prediction of the interconnect was improved to include the mechanical influence of the spinel protection coating on the prediction of critical scale thickness. 3 • Experimental characterization of the crack healing rate was performed for compliant glass SCN-1 with various amounts of fiber reinforcement. This information is needed for modeling evaluations of compliant seal healing during stack operations.

Physical Description

PDFN

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNNL-23152
  • Grant Number: AC05-76RL01830
  • DOI: 10.2172/1122316 | External Link
  • Office of Scientific & Technical Information Report Number: 1122316
  • Archival Resource Key: ark:/67531/metadc864505

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 31, 2014

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Nov. 28, 2016, 6:21 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stevenson, Jeffry W. & Koeppel, Brian J. FY14 Q1 Progress Report for SECA Core Technology Program, report, January 31, 2014; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc864505/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.