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Berkeley, California

Jine 9, 1960
ABSTRACT

By means of the Mandelstam representation, expressions are
obtained for the two—pion-exchange contributions to the higher partial
waves of nucleon-nucleén :s.c;atter-ing. ‘A set of ten invariant amplitudes
is selected, of Whi’éh each member obeys the Mandelstam representa-
tion. Dispersion relafions are written for the ami)litudes in which the
discontinuities are absoi‘ptive parts for nuqleén—antinucleon svcattering.
By means of the unitarity conditién the absorptivé parts are expressed
as a partial-wave expansion in termé of the 7 — nn partial-wave ampli-
tudes of Frazer and Fulco, except for the contributions of the pole in
the pion-nucleon system which are treated exactly in order to ensure.
better éonvérgéﬁce of the paftial-\x'/a'v'e expansion., Finally, the nucleon-
nucleon transition amplitudes in the angulé.l; momentum representation
are expressed in terms of the invariant ampl—itudes:.

!



1. INTRODUCTION -

Application of meson theory to the two-nucleon interaction

4

has to date, been fraught with great difficulty. The perturbation
method of quantum field theory which 'wlorkedr's‘o well in quantum
elvectrodynar'nics is étymied in meson theory by the lafge magnitude of
the pion-nucleon coupling censtant, so that the convergence of an expan-
sion of the scattefing emplitudes in powers of this constant is extremely
slow 1; if the series converges at all. Recently a new approach has
entered the picture, that of the dispersion relation of sp’ectral represen-
tation, the most powerful variety of which is the tv;/o-dimensional disper-
sion relations first proposed’ by Mandelstam. 3. The validity of these
dispersion relations, unfortunately, has only been proved to sixth order
in perturbation theory, 34,5 and a rigorous: proof based on the general
principles of quantum field theory is not in sight. Nevértheless, the
Mandelstam representation is plausible, .and we shall assume it to be
correct for the purposes of this paper. 'Indee'd, the most convincing
proof of its correctness would be if it led to results that agree with
experiment., A recent a.rt1cle by G. F. Chew reviews the phllosophy
and practice of dispersion rela.tlons, both one- and two- d1men51ona1
with copious references.

Dispersion theory. is concerned‘v&ith the study of the singularities
of the scattering amplitude. These'singuiarities occur for unphysical as
well aé physical values of the variables that describe the scattering ampli-
tude, and are associated with the Apossiblle feal (i.e., with momenta on the .
’ rnass shell) intermediate states into which the scattering amplitude can be
expanded (see Ref. 6 for detéils), In rnaking_approximations, the main
assumptiou is Lhat the closer.a singularity is to the physical region the
more important its contribution to the scattering amplitude will be. This
assumption is necessary, since the elos_e' singularities are usually the only
~ones tractable by present met.hqu, and it is aiso a'reasonableone. For
instance, if the residues of two poles are of the sam.e order of magnitude
‘then, obviously, the pole closer to the physical region will make the larger

contribution to the amplitude. Even if the more distant pole has a larger

7~
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residue, the change in the amplitude as a function.of the variable in
which the poles occur will be induced to 2 much larger extent by the
nearer pole. In many cases the amplitude is normalized at some point
(i.e., a subtracted dispersion relation is used) by means of information,
usually experimental, not coqtaihed in the disperision relations; it is
then the change in the function that is of interest. The same reasoning
applies to the branch-cuts,

In the nucleon-nucleon problem the closest singularities are
" the two one-pion exchange poles, whose .use has already borne consider-
able fruit. First there is the proposal of Chew, 7 as carried out by
Cziffra and Moravcsik, 8 for the determination of the pion-nucleon coup-
ling constant directly from n-p angular dlstrlbutmns There is the

modified phase shift analys:!.s, 9,1

f1rst proposed by Moravcsik, in which
the higher angular momentum states are given direc‘gly bvy the pole term
while the lower ones are treated phenomenologically. There is the cal-
““’culation of the Asymptotic D-wave function of the deuteron by Wong, 1
and the modifications of the effective range formula for nucleon-nucleon
scattering of Cini, Fubini and Stanghellini, é.nd of Noyes and Wong; 12
the latter works, however, involve more of the Mandelstam representatlion
than just the poles.

After the poles, the closest singularity is the branch cut due
to the two-pion intermediate state; it is with this that the present work is
concerned. Let p' and p, be respect1ve1y the final and initial four-momenta
of one of the nucleons, and t = - (p p) be the invariant momentum transfer
(We use the metric such that p =p poz). In nucleon nucleon- scattermg the
physical region has t £ 0, the pole occurs at t= p- , where p is the pion
mass, the two-pion branch cut starts at t=(Zp) , and the contribution of
the ncxt heaviest 1ntermedw,te SLdLe, viz. the three-pion state, starts at
t= (3|J.) Thus the three-pion singularity is not much further from the
phys1ca.1 region than the two-pion singularity. There are, however, two
main reasons for ignoring singularities other than the poles and the two-
pion cut. Firstly, at preSent we do not know how to treat the more distant
singularities, especially those involving mtermed1ate states of more than

two particles. Secondly, 1t 1s hoped that the pion-pion resonance recently



conjectured in order to describe\nucleon electromagnetic structure,
will serve to increase the contribution of the two-pion state to the

2 :
nucleon-nucleon scattering amplitude. . In the phase-shift-analysis of

proton-proton scattering at 310 Mevg’ 10

the two one-meson exchange
poles were found quite Capablje of deter’mihing the higher phase shifts
(from L = 4 on up). The presenf calculation should be able to predict
some of the higher phase shifts for which t_hé one-pion exchange poles
‘are inadequate. That fhe lighter intermediate states should determine
the higher angular momentum states is. very plausible on elementary
grounds, siﬁce the lighter the intermediate state the longer the range of
‘the force to which it gives rise. "+ | |
Briefly, our method is as follows: The nn amplitude can be

expressed in terms of a setlof ten iﬁvariant functions, which We shall
call "Mandelstam functions' because they are assumed to obéy the
Mandelstam representation. These functions'also describe nn scattering
and can be related by means ofAthe‘s'ublstitut_ion law to the nn amplitude.
The unita¥ity condition for the nn scattering amplitude can be written
symbolically: Zlm<n-ﬁ ' nH) = Z\I_nﬁ— |1><n§ li ‘>*, where the sum is
to be taken over all permissible;kr’eal ~intér’media.‘té states. The inter-
mediate state with the lowest mass is th.e oﬁe-pion éta‘te which gives

rise to the one-pion exchange'pole.' The next least massive state is the
two-pion state which gives rise tothe two-pion Brar;ch cuts in the
Mandelstam functions., For thé reasons given above, states heavief than
the two-pion will be ignored. 1t should be notéd‘ that since the 2 7 inter-
mediate state starts at an energy less than the ioweét possible energy
- for a physical state, we are using the Unitarity condition in an ﬁnphysical
region; this has recently been justified by Mandelstam, 14 The functions
<nH l 2m) have been studied by Frazer and f‘ulcbl-s (hereafter referred
to as FE)on the basis of the Mandelétam representation. These functions -
can be evaluated by use of available pion-nucleon scattering dia‘t.a if the
pion-pion phase shifts are known. Thefiatteir are now being calculated
by Chew and Mandelstam, ‘lé'again utilizing the Mandelstam representation.

From the imaginary part of the nn _‘amplitude as given by the unitarity

« -



condition, we can determ*ne the a.vb'sorptive part of the Mandelstam
functions, and by a dispersion relation get the complete function, which
in turn will give us the nn amplitude. |

Frazer and Fulco's calcu;atton g1ves <nn l 2m) partial wave
amplitudes; consequently, the nn abs_orptlve‘ part will be given as a
partial wave (i. e., Legendre polynomial) expansio‘n-. Except for very
low nucleon-nucleon energies, however, the absorptive part becomes
.svingu].ar for values of t just above 4p2, ‘the latter being the lower limit
of the dispersion relation. Consequently, the expansion fatls‘to converge
over a large part of the region of integration of the dispersion relation.
The first eingularity in the ahsorptive part is due to the existence of the
‘one-nucleon pole of the pion-nucleon.interaction (hereafter called the
mn-pole). This pole leads to the "bex—diag‘ram'f in the nucleon-nucleon
system, which correspdnds to the fqur.th—bfder two-pion exchange Fcynman
diagram of perturbation theory. Fortunateiy', ‘as Mandelstarh has shown, ;
the contribution of the box diagram to the absorptive part can be evaluated
exactly (cf. Section VIII), so that only the remainder of the absorptive part
need be given as a Legendre polynomialbexpansion.‘ It can be shown that
mathematically this expansion converges for values of t even greater
than the three-pion exchange threshold although there, of course, it soon
ceases to give a reasonable approx;matlon to the actual nn amplitude. IL
is hoped that the convergence is rapid enough for 5 and P wave two-pion
intermediate states to suffice for the determination of the higher phase
shifts of nn scattering.. , - o

The portion of the absorpt1ve part that is analytically u,0nt1nucd
by a partial wave expansion has its 31ngu1ar1t1es neglected. This means
that the imaginary part of the nucleon-nucleon partial wave amplitudes
will come exclusively from the b‘ux diapgrani, and that the imaginary part
due to the other contributions must be small for our method to be feasible.
In general, this will occur only for partial waves of sufficiently high order

and consequently small magnitude.



II. THE FRAZER-FULCO FUNCTIONS

The Tn-pole gives rise to an anomalously large S-wave
contribution to pion-nucleofx scattering; a contribution presumably sup-
pressed by higher-order terms. 17 The'vcorre'spon.ding terms should
also be suppressed in the nn amplitude. Frazer and Fulco's caléulation,
however, does not appear to contain a mechanism which will bring this
suppression about, the restriction that the mwm —nn amplitude have the
phase of mw scattering probably not being sufficient. A phenomenological
" means of avoiding this difficulty is based on the observation by Chew18
that the annihilation amplituaes of FF at zero incoming energy were very
simply related to pion-nucleon scattering amplitudes at zero momentum
transfer. In fact, the variable t of FF is fhe total energy fdr the anni-
hilation process and the momentum transfer for pion-nucleon scé.ttering.
. Thus, by using expérimental pion—nucleon data in forward scattering |
dispersion relations, the wm— nn amplitudes at zero total energy can be
calculated and a subtraction made in FF's integral equations to normalize
the functions. This has been dohe by D, Y Wong, 19 who finds that at |
zero energy the S-wave FF function so calculated is very much less than
the value due to the mn-pole. It will be remembered that in FF the left-
hand cut is determined from the wn pole plus what is frequently called
the "réscattering correction', which éonsisvts. of a partial wave expansion
as a function of the pion-nucleon scattering angle, and uses experimental
~pion-nucleon phase shifts. According to FF, this expansion should con-

9

‘verge up to t = —Zépz, Wong1 has compared the correct P-wave anni-
hilation amplitude at t = 0, as determined from iChéw's suggestion, with
the one determined from FF's integral using the rough estimate of the
pion-pion phaée shift obtained by FF from the nucleon electromagnetic
structure. He found that in order to get agreement between the two values,
1t was necessary to extend the partial wave expansion far beyond t=-26p.2.
This indicates that th:'e' left -hand cut of the FF functions cannot be deter-
mined from picn-nucleon scattering 'merély by a partial wave expanéion.
However, the method permitting us to calculate the FF functions at t = 0

also permits us to determine the derivative at the same point.



By normalizing both the functions and their derivatives, it appears

possible to determine what we shall call a "modified FF function '';

which should be reliable of courswe,' the pion-pion. phase shifts are still

needed. 19 , -
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II. THE INVARIANT AMPLITUDES

The S-matrix for a nucleon-nucleon scattering process may

be written:

1 i _l 1 t ] \ ’
p,r,a;q,s :ﬁ: S P, r, a; g, S, B =
é4) ' 4 » 1/2
521+— p+q-P—q)‘
' 4m ‘ \p o4 opoq0

'ﬁr‘a’(%) (p') I_JS‘B'(Z).?(q') M (pll; 'q':, P, d) Um(l) (p).Usﬁ(Z-) (q)

. _ (III-1)
Here p", q' and p, -q, are the fodr—morﬁent; of the two final and initial
particles respectlvely, r , s and r, s their final and initial spins or
helicities and . a ) B and a, B their fmal and initial i-spins. Thé
Dirac-spinors U (p) are elght component entities in the product
space of the i-spin and Dirac- spmor spaces they may be written more

explicitly as U (p) u {p) X where:

p (é) , for the proton

= (O> for the neutron

P
il

.Xn ;

and u (p) is four -component Difac-spinor such that (iy . P + m)u (p)=0.
The matr1x M(p ) q , P, q) is a 64- by 64 matrix in the product space
of the two initial and two final particles. The definition of the S-matrix
‘used here coi‘responds to that of Jauch and Rohrlich.zo

According to the substitution rule, the matrix M(Iﬁw, q', P, q)
describes nucleon-antinucléon and antinucieonaantinucleon scattering as
well as nucleon-nucleon sc.atl:ering'° This rule is implicit in the structure

of perturbation theory (Ref. 20, Sec. 8-5) and also follows from the
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21,22

reduction formulae of Lehmann, Symanzik, and Zimmermann,

as will be shown in Section V. For the scattermg of a nucleon of

four - momentum g and an antinucleon of momentum g into a nucleon

1

of momentum p and antinucleon of momentum p the rule gives:

I i 1 ;l 1 \1/2
( ' q/\—i—rﬁ(p~q+p q)—r————
4 "'ppq q/,

f;(l)(\.ét) I M a0 ¥ o) U,
B | | (II1-2)

The. bars over p and gq on the 1eft merely indicate that p and q are

momenta .0f - antinucleons.
of (III-1) has been absorbed into the matrix element

The spin-and i-spin indices have been sup-

pressed, and the 5,1
on the left.” The overall sign of the left-hand 'side is not' obvious and will
. be determined in Sec't'ion_ V. The Dirac-spinors V. 0.(p) are also eight-

.component entities and may be decomposed into V< (p) = v (p) Xq where
.v (p) is a four- compOnent negatlve energy Dirac-spinor Such that

(-iy.. p + m) v, (p) =0, and the X, are:

= = 1 ! \" - { . A_, . o
XE - Xp - <O/I tor the proton and ctntlorotox1
/o - o
Xy X, 7 ,\ 1 for the neutron and aotlnelltron'.

Thus the i-spin'spinor for an outgomg a.ntmucleon stands on the right

just its Dirac- spinor does. The use of these i- spm spmors will be

further discussed in Append1x A.
We shall assume that the nn’ interaction is charge independent,

in which casé the S-matrix must be invariaht under rotations in i-spin

space. Since only two 1nvar1ants rnay be formed from the i- spm matrlces

in the product space of the two part1c1es, the matrix M may be-split into

two parts: . .
A2 Mt B (111-3)

oo

M=M + 1)
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Throughout this paper our convention will be that the superscript U
. :
‘refers to particles with momenta p and p whereas "2"
: 1

those with momenta g and q even though as will be seen below, two

refers to

particles with, for example, momenta p and p may both be in the
initial state.

. . . + .
Lorentz invariance ensures that the M~ can be split up

further:
. 1o 'n . n ' '
M (p,q p, q) = Z A (s, t, t)X (11I-4)
A n 4
[ ’ _
M (p,q9 P, q) = = B" (s, t, T) X"
n

where the X' are 16-by-16 matrices which may be functions of the

four -momenta and the A" (s,t,t) and B" (s,t,t) are arbitrary functions

of the invariant scalars s, t, and t only. " For the momentum definitions

of (III-1) and the processi shown in Fig. 1, the latter can be written:
=—(p+q) —-(p +q)

=-(p -p’=-(q -a | | ‘ (II-5)

=-(i>'-q)2=—(q'-p)-

In the barycentric system, with z, the cosine of the scattering angle and

Py the modulus of barycentric three-momentum, these variables become:

2

s=4(p12+m2)= 4E1

t = 2p12- (1-2z)) (111-6)

T=-2'p12(1+z1)

where m is the nucleon mass. Comparing (III-1) and (III-2) we see

that in the transition from the process described by the first equation
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MU-20627

\

~ Fig. 1. Nucleon-nucleon scattering: channel 1. The time direction
is upward. ' '
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1 ' ' v
"in Fig. 2, the matrix M(p, q, p, q) goes to M(p , -q, -p, q).

Consequently the scalars become for the second process:

g-pi=-2p," (1432,

S.=

t=e(p+ p)2=4(p22+m2) o o (111-7)
— ' 2 :

t =-(p -q) =-2p,(1-132,)

where P, is the modulus of the barycentric three-momentum and zé
is the barycentric scattering angle taken, as will always be the case
for nn processes, between the two nucleons. It will be noted that
in (III-6) s gave the total energy of the system, whereas in (III-7) the
total energy was given by t. We shall accordingly call the process in
which s was the total‘energy ""channel 1'", and that in which t was the
_total energy ''channel 2". In addition there is the channel, shown in
Fig. 3, in which t gives the total energy; this will be called '"channel 3'.
According to the substitution rule, all threeAchanvnels’ are described by
the éame matrix M. '

As long as the incoming and outgoing particles are on the mass
shell, the variables s, t, and t are not independent, being rela'ted by

equation:
s+t+T = 4m?. b | (111-8)

In addition to requiring charge independence and Lorentz in-
variance, we shall assume that our interaction is invariant under charge -
conjugation, parity, and time reversal. There is at present no reason ‘
to'believe that any of these invariance principles are violated in strong
coupling physics. The matrices X" must accordingly be chosen so that
the interaction will be invariant under all these transformations.

The procedure for finding a complete set of X" is as follows:
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MU-20628

Fig. 2. Nucleon-antinucleon scattering: channel 2,
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MU -20629

Fig. 3. Nucleon-antinucleon scattering: channel 3,
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In the composite space of the two particles construct all scalars (with
respect to Lorentz transformations) which can be constructed out of

fhe ‘tHrée independent momentum vectors and the y matrices. Eliminate
matrices which can be reduced to another matrix because the spinors
obey the Dirac-equation, and also eliminate those which do not lead to
invariance under time reversal, charge éonjugation, and parity. This,

it turns out eliminates all but the following eight forms:

R R M SN H L PRI BV B P
- . 1 i . y 1
‘v5(1) i) (g + q)] [YS(Z) i e+ p)J ;
L
1 1
(D@, () (2),
1 ' 2
(1) 24y 0Dy @) 2 1y oDy @),
) M, V:O: 1: 2"3 pv
(I1I-9)
where our representation is such that
.'/ . '\\ .
"Y~={ 0 dcj\, j=1,2,3;B-= iy0= Lo )
T lie 0 : S\ -1
A
_ _ 0 1 1 (
Yg T Yy Y, Y3 B=- 1] 4> %Wy = ZT YL YUY, Yu) .

Ncot all eight of these can be independent in the subspace in which the
incoming and outgoing particles are positive energy nucleons. By using

an explicit representation of the Dirac-spinors, e.g.

-iy . + m
u (p)= ~Y-F 72 (X
¢m (po’“m)}" 0
L
where X L is a two-component Pauli-spinor, we find that the eight forms
) 23

in (III-9) reduce to five forms, namely thcse of Wolfenstein and Ashkin,

1

which are frequently misnamed the ''non-relativistic forms.'" Since there

are only five independent matrices in the nn channel, the scattering must
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be‘completely describable by only five arbitrary complex functions.
' Thus only five of the eight matrices of (III;9) are independent, and any
five linearly independent ones should be sufficient to determine the
scattering amplitude. In earlier works, e.g. Gbldberger, Nambu and
Oehme24, the first five were chosen; they are, however, less satisfac-
tory than the last five for two reasons. Firstly, the latter give rise to
simpler crossing relations whereas in the former the crossing relations
afe complicated by having the X" be explicit functions of the four-momenta.
- Secondly, and more importantly, the explicit momentum de-

pendence of the first five matrices forces the A™ and B" to have so-called
""kinematical singularities" _ singularities not associated with any inter-
mediate states, but due entirely to extraneous momentum factors. It has
been shown by Grisaru and Wong25 that the last five matrices, which are
in fact the Fermi B-decay matrices, do not develop any extraneous singu-
larities; we shall briefly describe their arguments.

| For convenience let us discuss only M, the arguments for M+
" being practically identical. Thus
n

- Tl

M = X A
n

(s, t, t) : : (1II-10)

where the sum runs over n= S, P, V, A, and T, the letters standing for
scalar, pseudoscalar, vector, axial 'vector and tensor, respectively; and

the X" are defined by

xS = (D (1, 5P (D) (2) V(D) (2)

Y5 Y5 - ;
A =iy DD 2@ 5T Ly Sy (@
. _ g
. pv=0,1,2,3 [TV

(I11-11)

. The denominators occurring I a perturbation-theoretic expression
for. M~ would be no different from those occurring in a spinless, scalar
theory having the same spectrum as the present theory. Consequently, it

seems very reasonable to assume that each element of the matrix
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7 = L (pf) L(?) (q') YEB AR (p) L.(2) (q) . . - : (111-12)
with ' ‘ ‘ ‘

L(p) = (-1iy .251+ m)

. 1 P
is an analytic function of the four four-vector variables p, q, p and g,

except in those regions in which the amplitude of the spinless scalar
theory would not be analytic. It then follows that for any n the

-function Tr (}/] B {'_X ‘n ) would also be an analytic function of the four-
vector variables with the same region of analyticity as that of )77 This
with the fact that the trace is invariant under the orthochronous Lorentz
group implies, according to the theorem of Hall and W1ghtman,-26 that

the trace is an analytic function of the invariant scalars, except, of course,

in the region mentioned above. From (III-10) and (III-12) we get

(s, t, t)

Tr (970 X)) = £ a__ (s, t, D A
m

where

nm

Thea (s, t,T) are obviously analytic functions of s, t, and T, but they
may vanish for some value of the invariant scalars, forcing A" (s, t, t)
to have a pole at that point, unless the traces on the left happened to vanish

there too. Solving the above set of equations for A" we obtain:

m - an(s, tt) - N
A (s, t, t ) = E Y — TI‘ (% X")
where the By mn 27 analyt1c functions and A = det H a. ” This deter-
-minant accordmg to Grisaru and Wong, is given by A = c(s, t, 7)3

where ¢ is a constant Thus if our invariant amplitudes A" and B" have
any extraneous sxngular1t1es they can only be the poles that could occur
when one of the invariant scalars vanishes. In Section VI we will derive
a definite re lation Between A” , Bn, and nn transition amplitudes for

helicity states in channel 2. In this channel s 1is the momentum transfer
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L LN

and t the crossed-momentum transfer, and it can be made plausible
that both A" and B" remain finite as s or t goes to zero. We shall
return to this point in Section VI. The same pr.ocedure involving either
" channels 1 or 2 would establish that A" and B" remain finite as t goes
to zero. We may thus. conclude that the only singularities occurring in
the invariant amplitudes An(s, t, t) and Bﬁ(s, t, t) are those which also
occur in the scalar, spinless theory, provided we choose the set of x" |

given in (III-11).



_21-

1Iv. THE MANDELSTAM REPRESENTATION

At this point we make the crucial assumption that the analyti-
city properties of the amplitude of our spinless scalar theory are such '
that the amplitude has a Mandelstam representation. Beyond what has
already been said in the introduction {(Section I), we shall not attempt to
justify this a,s.su.mptiorll"h,era The arguments of the previous section then
show that if we choose the X of {III-11), i.e., n=85; T, V, A, P, bulh (he
An(s, t,t ) and Bn(s, t,t) will also have a Mandelstam representation.

Consequently, An(.s, t, t ) may be written:

- L7 : azn(t') ) : a3“(t')
An(s,t,T) = poles +_ﬂ' dt —_— + ?r' . dT _—Q—_—
(3H)2 t -t (3 )2 t -t
] (S ’ S t)
+ 1—2 f dt —,——,——2 +——] 1'3
Zm) 21 {s -s)(t -t) Zm Zp)a (s —s)(t -t)
1 7 g 7 g 423 <t ) (IV l).
vz / o , i e
(2) {2p)

with'a similar expression for B (s, t,t). The poles have been adequately
discussed in Ref. 9 and will be ignored herealler. The next two tcrmo of
(IV-1) are frequently called "subtraction terms," and correspond to dia-=
grams ot the type shown in Figs. 4a and 4b. Figur.e 4b involves a two-
nucleon intermediate state, and Fig. 4a shows the three-pion intermediate
state that ia the lightest intermediate state which can occur in a subtraction
term. Since we are not including anything more massive than two-pion
states, we can igﬁore all the subtraction terms. The weight functions alzn,
aun and as 3n are everywhere real, and each vanishes outside a region

bounded by a curve whose asymptotes are:

2m)” and t = (20)° for a,,™s, 1), s = (2m)° and T = (2p)° for a
’ — —
), and finally, t=(2p) and t = (Z|J,)Z for a t).

S

(s

- s
t

236



- -22-

MU-20631

Fig. 4a and 4b. Typical "subtraction terms,"
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Mandelstam4’ > has calculated these boundary curves using
the spinless scalar theory which, according to our earlier discussion,
must give the same results as the pseudoscalar spin-one-half theory.
Indeed, we shall find the boundary curves asA a by-product of our calcu-
lation of the effect of the w-n pole in Section VIII, and tl;ley will turn out
to be those predicted b}'r Mandelstam. Spin, it appears, is not an essen-
tial complication, it merely complicates the algebra. We give below the
curves obtained in Ref. 5. ‘I'he weight function alJZ(s’ ) is non=zero

inside the parabolic boundary curve C (cf. Fig. 5), which is:

12’

(s - 4m2)(t = 4|.:.2) = 494. ' , (IV-2a)

The curve C13 for a (El_t) is the same as C12 except that t -~7t. The

13

curve C23 is the boundary of the union of the areas bounded by the two

paraboias:
2 2 4
t - 4m (t - 4 = 4
( ) M) s (IV-2b)

(t - 4p®) (¢ - am%)= 4*

The denominator of the last term in (IV-1) may be aplit into

partial fractions:

i 1 1 1
T T ~ T t = )

T a— —

(t -t){t -T) (t +T+s - 4m%) t -t t -t

where we have used the relation: s + t + € = 41‘1‘12. With the aid of the
above result, (IV-1) may be rewritten as a one-dimensional dispersion

relation:

o n ’ ) n 1.
n _ 1 i AZ (S:t) 1 f D | A3 (S, t )
A‘-(S, {., L) :.; dt —_— +—7Fj dt —T > (IV-3)
2 t -t : 2 T -t
4 A4
where we have set:
o n ' o1 o n ot
n. | 'd “alz {s,t) 1 1t a23 (t,t )
A.} (S,t;:;r- ! ds —-——-r——+F dt T T 2
/ ) s -s , . t 4T +s-4m
4 “ Ap
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© . [ © - to_ ot

n, - —_ n .
. , a (s, t ) , y a (t, t )
A3n(s, t )= L ds ’——T———13 + % dt ,Zi, >
: n 2 s -5 2 t+t +s - 4m
4m 4 :
C(IV-4)
The expressmns for B" (s, t, t) are prec1se1y parallel

The range of the 1nvar1ant scalars for an actual physical nn
écattering process in channel 2 is such that t> 4m2 and s, t <0. In

this range none of the denominators .‘in,(.IV-4)~can vanish, so that both

AZn and A3n are real; only the first denominator of (IV-3) can.van1sh.
Therefore, - '
Im A™s, t, T) = A,% (s, t); t324m"; s, T < 0. - (IV-5)

Thus, once Im A" (s, t, t) is known in the physical region for channel

2, . AZ (s, t) can be determined everywhere by analytic continuation.
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Fig. 5. Boundaries of the functions alzn(s,t) and blZn(s' t).
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V.. SUBSTITUTION RULE AND CROSSING

 In this section we shall use the re‘dﬁ‘ction formulae to determine
the sign of the right-hand side 'of (I1II-2), and the _reia.tion betweén 1_:he‘
A" (s, tyand A" (s, T) of (IV-3). o
If a ¥ (p) is the creation operator for a nucleon in an asymptotic
_sfate of momentum. p, we define a two-nucleon asymptotic staté by .
[p,q> = a,'T (p)'aT (q) l 0> , and the conjugate.: state by -<p, q| = <O| a (q).
a (p), where ’ O>,is the vacuum.

For convenience we will let.

ot vt A‘ (4) 9 (I ’ L
M(p,q,p,q)=8 (ptq-p-q)M(p, g, p, q)

whére M is the 64-by-64 matrix of (III-1). Suppressing spin and i-spin

indices, we may rewrite the latter equation: '
b co , 1 . . ' 1/2
P, q |S-1|pq)= — — —
4m Podo0Ped /)

The indices i, j, k, and £, refer to the rows and columns of the. matrices

and not necessarily to spin or i-spin quantum numbers."

The reduction formulae of Lehmann, Symanzik and Zimrn,ermanz !

have been extended to spinors by Schweber, 22 whose formalism gives us:
: ’ ' - :
' ! n4 4 : 1/2 1 '
: i m — =
_é,qls'llp,q>= ()6 — -] Ui(p)UJ-(q)A

C ' 1 1 ' 1 o
SR ] i : ,
j[d‘}x [d4y ﬁélx /d4y ot (p. x+q.y-p.x-q.Yy)

o|T {nj (y) 9, () B (0 T (9 T, | 0> Uy (2) U, (). (V-2)
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The functions £, (x) is the jth component of the eight—component entity
that is the source function for the nucleon system,  i.e. '

(YP‘BH +m) §(x) =(x), ¥ (x) be1ng the field variable for the nucleon

.. field. For Q(x) we have the relation: Q(x) =¥(x)(d Yy + m). Regarding
the time-ordered product inside the vacuum-expectation value, the only
property which concerns us is that its factors anticommute. Comparing

~(V-1) and (V-2) we see that:

l. ‘ ' 1 () _( + : )
M (ipacny Peas poal = (Z:) [ ﬁY]dX/dy i(p . x +q .y Pxqy
<O [T {Qj (Y')Qi(xmk(x)'nﬁ (y)} |o> ' 4 (V-3)

For a nn scattering in channel 2 we have:

l./' — o :,(i)/l | -m4 ﬁ(l)v ( l)

P 09 0Po9
[dxﬁ‘i‘/ dye-l(p 2v'+p-x-q'»yf-q-y)
<0Ile(X)Q(X)Q (YQ(Y)}|0>V (p)U(q) (V-4)

Sincc the components of the source functwnb anticommute we find that:

_ T .
T{nk () 2 (x )2y {y) 2 (y ) } =
+ T {sz (y )iz, (A)uk (x)"z (y)} . (V.5

. Combining the last three equations we observe that the positive sign is

the correct one in (III-2), that is: ‘
‘ i 4 1/2
- A = _+1 m _:; .
<D"; IS_IIq a> - 4 2 6( )(p tp- q Q) ¥ T - \ -
L , T ~ P (9 oP(9 / .
: 07 0070 :

) @ (g )y MpL - g5 pq) VI (p) U (q). (V-6
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The -analogous: equatwn for . nn scattermg in channel 3,"i.e., for

» <p q IS llp, q > has a minus sign in front of the right- -hand member.
Let us now turn to the relatlon between A (s t) and A3 (s t).

“If in (V-2) the part1c1e designated by p is mterchanged with that

designated by ' q , the reduct1on formula becomes:

1 ' | ' ’ .4 ’ 4 | ' | f .
<q,Pi.S‘1lp,q> - 6’\/"L_ U. (p)UJ( q)

‘ Cem” TP gdgPe9g

/d fdyjdxﬁye-l(p x+q.y p.x-q.)

OIT 2, (x) 2y ) T (x) T (y)|o> U (p) U, (@). © (V-7)

The time- orde,red product in (V-7) differs from the one in (V-3) only

in the order of the first two factors consequently

cl

/v ‘ y - /2 o
<q»p.5-1 P,q )= -— — U (p) ‘J-<q)
' 4m \Pp99Pg9)

M (3)(10) (P, g p.g) U (P) U, (q)
Hence,

ooy Gl o

~where the right-hand term is given by (III-1). On the other hand, merely

S-1

by interchanging labels in the final state of (III-1) we get:

//' i.'v t v w: T S
\CJ y S, By P‘: r, a S‘ IIP, r, a; qy S, B/:
- ' . N L
i 4 ot \1/2
— (P *+a-p-q)|—1: P
4m " Podyg pQ:,qO‘/

5.

AN R o) Mig' ' p10) U Bipru P a.

o a . o ra
(V-9)
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. i 1 (I
In terms of the invariant scalars the interchange .q «—=p implies that
t<——t. 'Comparing (V-8) and (V-9), and making use of the expansioﬁ of
M as given by (III-3) and (III-4) we obtain: -

n. ! 1 n - ‘ . ' n ray
- X 50.'06 A(s’t’t)+1aa'lﬁf3§(s?t’t)

2 BB
=z X" § 6 AT(s, ) 4 7! t B™M(s, T, t) | V-10)
m | af Ba (s, tt, Jﬁa'laﬁ (s, t, ’ (V-10)

where X is defined by:

a M e w8 () X0 Py u P (q) -

M) P ) %™ u M) e B (g

It can easily be shown that: '

a4

. 6u'np 6"3'0, -

™| —~
2

(V-11).

' 1 __._]_‘,'»I‘ ' 1 1
Iqﬁ'lﬁa 23&aa666 Iua'lﬁﬁ

— | J
‘and X is related to X" by the wéll-known "reshuffle theorem' of Fierz, >

which gives the relation

o 'n o ‘ ' ,
X -ﬁ z_s X, . : . ‘ (V-12)

with

1 1 1
) 0 2-4
: ! .
l z =31 60-206 . (V-13)
42 024

, 1-1 "1-1 1
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where the order of the rows and columns is:: S, V, T, A, P. Substituting
(V-11) and {V-12) into (V-10) and comparing the coefficients of the i-spin

and 8-decay matrices, we obtain:

- .n | ) m, — ..m —
A(s,t,t)--z = Zmn[A (s,t, t)+ 3 B (s,t,t)}
m
n - _ 1 m, — m, —
B(s,t,t) = - > = Zmn[A (s,t,t) - B (s,t,t) ] (V-14)
m :
Equation (IV-3) states that:
o0 m. [>e] .
o ) iy AZ ;(i’t) 1 Sy 3 (s, t) .
(s, t,t) = — ‘ dt -—_—,—-——+; dt ——— (V-15)
: T 2 t -t 2 t -t
4 4

with a similar expression for Bm(s,T,t). Upon substituting (IV-3) and
1!
(V-15) into (V-14) and equating the integrands over t we get, finally:

| =
g M

Z@[A?(Sj) + 3B2m(é,_f)} (V-16)

Pt

— m, — m
B, (s, t)= - > I Zr‘nn{AZ (s, t)- B2 (s, t) ] .
m

In the nn channel (channel 1), according to Eq. (III-6),
t= Zpl2 (l-'zl) and t = —2p12(1+z1), For convenience, let us define:

P

Z(St)

I
F'(p ¢ a) =1
1 1 ™ 2 _ t .
4p \ (V-17)
, ‘

n . 1 I (S: ) !
G (plz’ 20 =7 f 2 |
. t

2
.

Then, Egs. (V-16) and (IV-3) imply that:

n — 2 1 2 ' 2
A(s,t,T) = Fn(pl L z2) -5 2 2 [F,m(p1 N 3Gm(pl , - zl)}

BYs,6,7) = GMp %) 2)) -

o)
g 8M
N
5
=
[ om—
'ij-'
A::.'
—
[
1
N
i
0
B
o]
5
o
1]
N
o
=
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For the phase shift analysis it may be desirable to .directly

determine coefficients A ﬁn(s) and Bln(s) of the expansions:

A(s, £, T) = T (20+1) Al(s) B,(z,) ] _
£=0 i
w (V-19)

?
BMs, t, T)= = (24+1) B As)P (z.).
_ ] FARS
2=0
Now, according to Heine, 28,29
t
1 1 * 1 t
— T ' ;= T (24—, Q, z T 1Py (z)).
t -t 2p 2t t1los 2=0 2p, 2p |
1 2 2R
2p

1 A , (V-20)

where Q£ is a Legeﬁ'dre functi?n of the second kind, so that by virtye of

(V-17) and (V-18) and the relation P(z) = (—41)£P£(zl),

we may write: ‘

o 1

A8 =F M py2) L)z [F P(p,%) +3G,™(p 2)}
' ) mn ? 1 2 1

m

2, 1 i
B,%s) = ¢,%p,%) - z(mlﬁfﬁ zZ_

[Fzm(pl“) - G,Mp, ") } |

n
J
; (V-21)
where: ’\
7 R
n, 2, _ 1 ! t . i
Fﬁ (Pl ) > | dt Q,Q — I 1) Az(s, t)
2mp \ 2p
1 _,'4 2 1
M > (V-22)
[~ o] . 1
n 2 1 ! t 1
Gz(pl)"—Z dt Q,(— *+1]B,(s t)
2mp 2p ’
1 2 1
4p

The Qﬂ are fairly simple functions which can easily be caICulé.ted.:

they are tabulated in Ref. 29,
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V1.  THE nn" T-MATRIX AND ITS RELATION
TO THE MANDELSTAM AMPLITUDES

A function with a more convenient unitarity condition than that
. . . he -' ! 3 :
of the S-matrix is the T-matrix as defined by Moller. AO If Y, and Y,
“ refer to miscellaneous guantum number’s in the final and 1n1t1a1 states,

‘ respectlvely, we have in the barycentric system

1 1
<k 2 K20 Y2 kp Ky Yl)

, +w \I/Z/w 1/2
16(4)(k2+k 2 2

e () )
< b5 Y, [T le b5 v > ‘ (VI-1)

)

where 6 ¢>2 and 0 ¢1 are the barycentrlc scattermg angles of the
i

-part1cles de51gnated_ by k 2 and k respectively, and w is the bary-

S-1

. centric energy. If we restrict oursel,ves to two-particle intermediate
states, thie unitarity condition for our S-matrix is
' /
3 3 ! .
= |’ Ak, <k S KoY,
Yl / -

\

!x 1 \ ! ' ' A
slk_i,}ci;yi/ k. kv, [S 'ki’ki”i./

' (3)
27k )BT, - k)
o (VI-2)
On .. subst1tut1ng (VI-1) into (VI-2) and carrymg out the integrations over

the intermediate momenta we get

-1
= ov;v, ‘5(3)(5

' A
2 Im <620; Y, }T, 910; Y =-

[ [ /o 0. ! o 6.0\ /oo, P
Z. | d (cos Gi) ] d«i»i 920,.\(2 T ‘ei‘bi’vi/ 60; Yy ‘T !Gi b.; Yi/ )
YI,) . ; i . N P [
B ' S g . J ' o ) .
: - 0 . . )

(VI-3)
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where we have assumed that the T-matrix is symmetric, i.e.

et 0o\ L " o \* A
A<92°’ Yle 910’Y1/ =\ 0207, [T 10,05y -, which is true in our

case only for ¢2 ¢1 =0
For orientation purposes it may be noted that the T- matrlx used

- here is related to the differential cross-section for dlst1ngu1shable part1c1es

by:

0, ,(0,8) = lz" @ v, T oo;v1>

In the barycentric systematic the S=matrix for channel 2 is related

i '_l‘l'i
q, s, B; g9, s,PB

_ i g(4), o2
= i& (p+‘p—.q-q)1-)—2fZ 6¢ r,r aa

2

to the T-matrix by:

/l 1 - }S‘_:l

\p» r,a;p, ¥, 0-,‘

T ieq’; s".s.’f ]3"{ ﬁ'>

_ (VI-4)
The angles give the direction of the nucleons (nbt antinucleo;is); the indices
¥ and s refer to helicity states as defined by Jacob and Wick, 31 rather
than to tHe more usual zZ-component of spin states. In (VI-4) the nucleon
‘helijcity and i-spin indices are always written before those of the antiZ
nucleon., and their somewhat unusual assignment stems from the desire
to keep the same set of indices for the same nucleon line, no matter how
“the latter may be twisted in going from one channel to another under the
substitution rule. Finally, the bar over the T md1cates that we are
referring to the T-matrix for channel 2. |

From (V-6) and (VI—4) we get:

<9'¢l;rl,r; u',u T IO s, s; P, p>
m2p4 R ' - E

. . 2 ﬁr,-n,~(1)(p. ) ‘Vslﬁu(z)(q )M (p, -q, -.p, q) Vru(l)(p) Usﬁ(z)(q)
T E, A

(VI-5)
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according to (III-3) and Appendix A"

TM=2(M P

+ 5 -
.+ M B, . e

where 51 is the projection operator for a state with total i-spin I in

channel 2. Thus the T-matrix for a state with definite i-spin is:

mZ . 1 ' 2 ‘ :
—-—;;—-G’r o (p'):VS' ( ){q') M*(p —q'-p,q) vr(lé(p) us(z)(q)
. AVI-T7)

~where we mest choose M‘i~ for I (-—- ‘1 and M_ for 1= OV

For a particular i-spin the matrix M can be expressed 1n
terms of five arbitrary functions, which. 1mp11es that only five of the
. sixteen possible combinations of initial and final helicity states can be
independent. This can also be shown by applying time reversal and parity
invariance, /a:.nd'charge independeﬁce, directly to the helicity-state ampli-
tudes, ﬁsing the rule given. by Jacob and Wick. 31' It will be found that the
following five matrix elements are indepehdent; they will be designated

by the numbers 1 through 5:

1 2 3 S4B

M
(x =)ss)

(HE)(HH) (FH)H-) (HH)--) (H-)0E=) (+-)(-+) (VI-5)

For simplicity we write:

1 1 | ! L o
_ =1
<620, r,r | OQ, s, s> = TP- {ZZ)'<

where the matrix element is between the five basic states of (VI—Q)

-TI

. Using (III-4) and (VI-4) we can express the T-matrix elements in terms

of the Mandelstam functlons
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i m p
T 02y = 2 T.a_ A"(s, t, T)
Lt A-Z 4'rr'2E n M0 .
2 . (VI-9)
T l(z )= Z_ z a Bn(s, t, t)
K 2 4172'E n Ko '

2

where the sum runs over n = S, T, V, A, P, and where,

ain = TN @) FH (@) X ey o) (),

(VI-10)
The p refers to the five basic axvnplitudes of (VI-8). In Tq.ble I the

functions a o are given; they have been calculated using the explicit

representation of the helicity-spinors described in Appendix B. In the

table, p and E are the barycentric three-momentum and energy respectively,
5 .

A= sz(l—z), gz = 2p2(1+z), where z is the barycentric scattering angle.

In terms of the invariant scalars we would have in channel 2 the relations:

AZ = =t l_,z-= - s, and 4E2 = 4(p2 + mZ) = t. ‘ A
Equation (VI-9) may be solved for the Mandelstam functions:.
I zﬂﬁZEz 5 _ 0
A%s, )= LSz b T U (z,)
2 _ np R 2
m-p, p=1 , . _
_2 : (VI-11)
n _ 4T E2 5 1 :
B(s,t, t)= T b T " (z,)
-] Dp M 2
m p, p=1
where b_ = (a”') . The matrix ||b_ ||is given in Table II.
: n D ny

In the physical region for channel 2 the functions bn

are
real; from (IV-5) we have. therefore, in this region:
411‘.2E -5
Al(s,t) = 2 B b ImZT‘? \
mp, R-1 B M.'ZZ
2 (VI-12)
a 4 E2 5 —1 ‘ .
BZ (S,t) = —2—-— = b Im T



Table !

The Matrix || am{ |of Equation (VI-10)
13 IJ‘ .l L :
(r'xYss ) S v T A P
R > AL A2 - ¢? 5
(++H(++) p /m 5 v -1 -E%/
4p. 4p
2
(-{-'{-:l(-i-—) 0 AL EZ AL EZ 0 0
2mp 2mp
3 2,2 2 2,2 .2
2, 2 A° - (2E°- A° L% 2, 2
(++)(--) p’ /m & 5% (2B _m N4 -C ) 1 E? /m
4p 4p m
4 2,2 oL
-E 2 -2 2, 2
(+-)(+-) 0 =5 % /2p ¢°/2m 0
. 2m - p
=
z 2 2
(+-)4-4) 0 - INVY -a% fom® 0
2p m

-9¢ =



s

Table 1I
The Matrix |[|b U Being the Inverse of || a “
ol - el
1 " 1 1 . _ 2 3 ) - 4 5
(r r)(ss) (++)(++) (FE)(+-) (++)(--) (+-)(+-) (+-)-+)
N : ‘
2 2,2, 2. 2,2 ,2 2,02 2
2, 2 ~A° 2 - - -
.S m? /2p m(f -A )(E2+m ) mZ/Zp m (gp Zt ) m (gp ZA )
2AL Ep 2p ¢ ip A
~2m° 2,,2 - 2, .2
v 0 = 0 -m"~/¢” -m“/ A
{ E
T 0 2mE/ At 0 mz/ gz mz/ A%
s .
+A 0 0 0 mz/ gz —mz/ N
N 2 2 | 2 2 2,2 2
m/ 2B m(g“-£°) ml/oE? R 2EL]) m (2E”-4")
2A L E 2E° ¢ 2E° A

_Ls—
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where the subscript 2 after the "Im'' indicates that we are feferring to
the imaginary part in the physical region for channel 2.

Finally, v;re fulfil our promise of Section III and indicate that
the An and B" remain f1n1te as s or t goes to zero. We shall specifi-
cally discuss A", the arguments for B" being identical. According to
Jacob and Wick, 31 the amplitude T 0 {z)may be written as a partial
wave expansion of the form: "

| 00 ' . ! '
v ol N 2J41 , _-i( X - = 0
00; x',x [ T0]00; o,8ye = (ZEL) Mg g 10
J=0 . (
P

" where ‘A and A\ are the differences between the nucleon and antinucleon

.(VI-13)

hel1c1t1es for the final and initial states respectively. The functions

(6) ar e given in Ref. 31 apd’
AN

—_ 1
T(I)(J)=<r,r s )
0
When t is zero, so is AZ, and if in addition pzf. 0 then 6 is zero, too,
From Table II we see thatas A—0, b ~1/Aandb_s~1/A*for all n, while the

n2z
remammg b np stay finite., For pm =2 and p = 5 the d-functions in (VI-13)

)\

T(J, I)

are d 01 (9), respect1ve1y, and from Appendix A of Ref 31 we ob tain:

T sin 6 P (cos 9)
dg, (8) = -

~ 33T + 1)

a_ o =07 a) Tima =

r 1
1- cos 8) | ' i '
(J(Jﬂf >l-PJ(cos0)—(l+cose)PJ(COSQ)IJ‘.
i -1 J -2 J P
Thus, as 6 -0 both A dOl (6) and A d_»11 (6) remain finite.

Hence, by virtue of (VI-11), it is reasonable to assume that An(s, t, t)

remains finite as t = 0. This is not by any means a conclusive proof,
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since there is no guarantee that the series'(l—zz)_l/2 T 02 (z,) and
"1 =0 =
(l-zZ) T 2

argument could be used to discuss the point s = 0 (i.e. ,LZ = 0).

5 (zz)‘ remain finite as z., approaches one. A similar



. VII. THE POLYNOMIAL EXPANSION

We now turn to the problem of determmmg the functions

n {s, t) and B2 (s, t). According to (VI-12), these funct1ons can be
given in terms of Im2 THI (ZZ)’ which in turn can be determined by
means of the unitarity condition (VI-3). For the reasons indicated in .
Section I we shall assume that only the two-pion intermediate state
contributions to the unitarity condition need be considered, and except
for the box diagra’m which will be calculated exactly, that, A, S and P
wave two-pion states will be sufficient to determine the higher angular
momentum states of nn scattering. Thus, by using unitarity we can
get Im TH (ZZ) in the physical region fpr channel 2, i.e., s< 0 and

> 4m~, in terms of the FF functions, and then (VI-12) will give
' o (s, t} and an(s, t} and an (s, .t) in this same région., Since
their analyticity properties are known from (IV-4), the absorptive parts
may be anaiytu:ally continued into the region s> 4m2 and t 3492, in
which they are required for the dispersion relations '(V;l7). It should
be emphasized that whereas .'LmZ '_I‘HI (ZZ) apd bnp. of (VI-12) m.ay indi-
vidually be singular at many points in the unphysical region for channel 2,
when combined according to (VI-12}) the fe‘sult must have the analyticity
" properties ‘indicated by (IV-4), if the Mandelstam functions a.,c.tualvly obey
the Mandelstam representation.
In the two-pion approximation, then, the unitarity condition

(VI-3) may be written:

1 Zr TR ARTIES
= 1 - RERES S L
Im, TH,(ZZ)_ I/ZIi d(cos e)fo‘dqfézo,x IT le¢><oo,xl"r i!'%/
: | | | (VII-1)

1 . . .
where A and A are the nucleon minus the antinucleon helicities for the -

initial and final states respectively, and

Gayary

6¢/ is a T-matrix element for the process mT — nn.
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. . Yo e
Our T-matrix element is related to the L]L of . FE. by:
1/2

GO B | I i . (pz k) g5 ) .I

<e¢;o T 9¢>=1/~/§ — f i
' L 1/2
|1 \ (p, k)
n I VAP IS & I = ‘P2 771

0 ¢; +1 ’T '00y=-700; -1lT | 00 ) = 1A2 g ,

< ¢ | ; \ | / X 2w +-
' ' - (VII-2)

Here p, and k are the barycentric nucleon and pion momenta respec-
. | 211/2 271/2 7
tively, i,e., p, = [(1/4) t-m”] k=[(1/a)t - 1172, and the 7,
are the functions of FF Egs. (3.9) and (3.10), except that the i-spin
eigenamplitudes AO and Al of FF Eq. (2.8) are used in FF Eqgs.(3.3)
and (3.4). Finally, the S-matrix of FF has been multiplied by 2-1/2 to :
take into account the indistinguishability of the initial pions when in a
state of definite 1-spin.
Sitice:the mmenn amplitudes are obtained as partial waves of
definite helicity, we make a partial wave expansion according to the method
: ars 1. 31
of Jacob and Wick:

' <‘9A'¢'-;- A 9¢> =

A e . v /
iy (_‘j’;j) M0 -ime [
I M

TI

T (7, M)

\ N P 3
/dM-’X(Q,)gM_p (0),

. - (VII-3)
W'He'i"e.the'd—functions are those of Ref. 31, M 1is the z-component of
:the total angulaf momentum, and the blank in the ket on the right-hand
side refers fp the lack of helicity of the two-pion state. Substituting

(VIZ_['-3) into the unitarity condition ,(VII—l), and making use of the relations:
2w [
i(M-M )¢ _ '
e | do = 27 6MM
0

v

4
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B [\
TH(J, \) /

, .
: J 0\

=1 - 2J+1 ' g S

ImZTH (z,) =1/2 ?(4—w> dy (92)<x ,T (J, \) )< |

: ' ' ‘ (VII-4)
The functions <)\ ,TI(J', M) ’> are actually independent of M owing to

rotational invariance; they are related to the f:t (t) of FF by:

i1 i o [« (P‘zk)J I
<0!T(J)‘,>= 1/N2 g —— fp ()

2

<+1 T?(J)j): \/-1 !TI(J) [\/: 1/~/_sz€- | (pzk)J f_I'J (), - (vmes),

in which the f:ﬂJ (t) are those of FF, except, again, that the i-spin
eigenamplitudes of FF Eq. (2.8) must be used. For example, Eq. (3.16)
of FF would read:

NJ(J+1) 1 1 -
2JF1 J-1 (BJ-I - B
(pq) :

I

£ =1 /8w )

with BJ0 -N6 BJ(+), BJl = ZBJ(-), Actually, the f:hJ(t) should be the
modified. FF functions discussed in Section II of the present work.
In order to calculate tlie:absorptie parts, we substitute the
=1 . '
Iml2 Tp (ZZ) of (VII-4) into (VI-12) and express Zys k, EZ

of s and t. The resultis a Legendre function expansion in terms of .

_ s \ '25+t—4m2
S e TR R o).
2p t - 4m '

In the region of interest [or the dispersion relation we have

and p'z, in terms

s >4m2 and « >t ;4}12, so that 'ZZ |>' for all of the range of integration
in (IV-3), and the expansion may diverge. According to Neumann's
theorem, 32 a Legendre function expansion in z = cosf converges inside
an ellipse in the complex z-plane that has foci at +1 and -vl,.a'nd passes

through the nearest singularity. In the present case z, is always real,

2

and it is easily seen that the expansion for Azn(s, t) will converge except .

for points at which AZn (s, t) is singular. From (IV-4) we note that for
s tis

s> ‘.E;mz, A,(s,t) has a singularity in the region in which a
: Z+ 4p.4(s-4.m2')—

12
non-zero; this, according to (IV-2a), will occur when: t>4p,

1

H
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which would give us a very short range of integration before the expansion

4, 5 the

.begins to diverge. The curve C12 is, according to Mandelstam,
boundary of the contribution of the m-n pole alone to the spectral functions
alzr1 (s, t) an:i blzn (s,”t), other contributions not entering until we reach -
the curves C 12 and C 12 of Fig. 5. Since the w-n pole contrihbutions to
the mr—nn amplitude are easily determined, we can by means of (VII-1)
and (VI-.IZ) calculate its effect on the absorptive pafts, without recourse
'to a partial wave expansion; this iz donc in Section VIII, Each absorptive
 part in the two-pion approximation will consequently consist of three terms:

A s, )= AL (s, 0rA (s, 0 - A7 (s, ). (VII-6)
with a similar expression for an (s, t). In the above equation _A'Zn(s, t)
is the partial wave expansion in terms of the modified FF functions,
A"Zn(s, t) g1ves the w-n pole term (i.e. the box-diagram) in unexpanded
form, and A (s t) 1is a partial wave expansmn of the pole term, in-
volvmg the same number of partial waves as A (s, t). The function
7\2 (s,t) is required because the FF functions already cdntain the m-n
pole contrlbutlons in partial wave form which must be subtracted out by -
means’ of A % (s, t). ‘A

The curve C 12 in Fig. 5 is the boundary of the?t"l'ii'e:ési)ion

contribution and can be calculated using Mandelstam's method ’7 by

considering an intermediate state involving a pion and a part1cle of twice

’ 12
of the higher order two-pion exchange contributions, any has asymptotes

theplonmass 33 The result is: , '
2 2 2\ 172
t—4p2=H2+LZ+4p2[<l+ P 2><1+L2—)J .
s-4m : s-4m s-4m-
. . . 2 2 1t .
with the asymptotes: t =9, 8 = 4m° . The eurve G __ ia thc boundary

t = (2|J.)2 and s = (Zm + p)z. It can be determined by merely replacing one
of the nucleons in the calculation of C by a particle of the mass of a

nucleon plus a pion, the result is:

t _ 4P-2 - ﬁ:‘—zﬂ(mﬂi) s + (m -1 )(Z.m + ) ]
| ) [(s-p) S-(Zm+|J.)J



For" s Iéss than the asymptote of. c i‘e., for a nucleon'kiﬁetic

energy in the laboratory system TL <12287 Mev,(s 4m 4p12—2m T ),

the series for AZI.1 (s,:t), 1n the two-pion approx1mat1on, “will converge

for all values of t; however, once t crosses C 12 the two-pion approxi- -
mation soon loses its \}alidity) alt’hoi.}gh it will not do- so immediately since
the three-pion 'contributions will, in all probability, be initially small. For

. 1t
T ® 700 Mev, Clzand C 12 mtersect at t= 9 Zp. ; thus, once the m-n pole
term has been subtracted out, the part1a1 wave expansmn will converge up
tot=29.2 for TL\ 700 Mev. For values of TL> 700 Mev the expansion

1

will converge for values of t given by C 12°

The foregoing remarks illustrate a gerieral property of scattering

»

amplituc_les that was first pointed out by Mandelstam. Consider a
scatte"r“ing amplifude in the approximation that .onlly the lowest mass two- .
particle intermediate state is included. If thé interacfioq is such that no
box-type diagram exists, i.e., there is no three-particle vertex like the
pion-nucleon vertex, then in the lowest approximation the actual values of
the two-dimensional spéctral functions rhay be igﬁored, and only the bound-
afy curves are needed. | This, for example, is the state of affairs in the.
pion-pion problem. If, however, there is a three-particle vertex such that
a box-type diagram exists, the value of the spectral furict_ion due to the box-
diagram must be known in closed, i.e., not partial wave, form. In prin-
ciple, as we shall see in the next section, thlS is always possible.
- Finally, we write A (s t) and B (s, t) in terms of the modified

FF {functions. From Appendlx A of Ref. 31 we get for the functions:

J (6), with z = cosG ' .

D (6) =1, 4)\)\'0 (6) = 0, \and A £0
ago (=2 & (@) =-YNEN1-22 d | (0= 1/2(1+2)
. Fl =172 Az:);."; o - o 2 | (v

Using (VII-4) with J = 0 and 1 only, together with (VII-S), (VII-7) and
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(VI-12), and recalling from FF that £, ;>3 1(t) =1, %)= O.Wé get:
T 2 : 2
'S, .\ _ 4 t - 4p 0
A (s, t) = \/ f (t)
2 (t-am2)2 t +0
A'Zv(s, t) = A'ZT (s, t) = A' A (s, t) = A"2 (s, t)=0
: 2 3/2 ] i 12
s 3 (t - 4p%) 2o 1,0 1%
B (s, t) = - , (2s +t - 4m 8 if, . " (t)
2.\ 32t1-/2 (4 _ )% { [T+1 ‘
ﬁ 2 L - ol 2 ]
- Je (t+am) g (t{)‘ B GE S IO .
. ' _au2y3/2 T :
'V, . _ 37 (t= 4p7) 1 1%
B, (s, t) = - 35 4N2m f (t) f (t)
52 o (amZ )72 [ -1
- el ]
l R . - 12 3/21,/‘3' 2 1 .
B, N =37 C 44*; ) & '1[-%;;1(':) e, |
el “ . . dmo-t - ) ‘ : S A
ST 'I,f-l ) l ] |
B'ZA(S, V=0
. . ) . 2 ) ) —_
P B 3w (t - 4p7)3/2 2 [»\/2 1 1
B (s, t) = - =5 (2s +t -4m"7) — (t) £ (t)
32 (4m2—t) t.l/.?. . m -1
i Ly ] C(VII-8)

The expressions for A (s, t) and B (s, t) may be obtamed
from (VII-8) by merely subst1tut1ng the funct1ons g:tI (t) for the f 4] (t),

where the former are the m-n pole term partial waves given in (VIII-2).
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VIII. THE w-n POLE CONTRIBUTIONS

In this section we calculate the contribution to Azn (s, t) and
an (s, t) due to the m-n pole, or box-diagram, both in terms of partial
waves and as a closed expression.

) The functions corresponding to the f £ (t), but containing mly
the m-n pole term will be denoted by 841 (t) They are easily obtained
from FF. From Eq. (4.1) of FF we get for the pole term in the bary-

-
centric system of the process ww-enn:

Bp) (2) = 4 g ( s P > (V1)
4 2E - - 2pkz 2E"-p + 2pkz |

whére A* and B are.the invariant functions of FF with the suBscript-P
standing for pole, g is the renormalized unrationalized pion-nucleon
coupling constant (g = 14.4), p and k are respectively the nucleon andp1on
momentum, z 1s the cosine of the barycentric scattering angle, and

E2 = p2 + mz = k + p.z. ‘Making use of FF Egs. (3.17), (3.15), and (2.8),

as well as the expansion used in our (V-20) we easily obtain:

. 7 2 .
J. N6g'm |y My ) ] :
g (t)= ——— | 5= Q & L J even
+0 (pk)J 2p J \Zp J J
= 0, J odd.
¢ iy = NENIGT) | ( /y’)
-0 (2J+1)(pk)J - Zp) J+1 \Zp , J even
= 0 | J odd
T : Zgzrf) Y Y -
gy ()= = 5= Q:(5-), ‘ J odd
+1 (pk)J 2p J2p 4

= 0 J even
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2 - O\ |
I, _ 2gNI(I+1) Y X\ |
g ()= B o [QJ_1<—2—15) - Qpy <21>] ., Jodd

(2J+1)(pk)

0, ‘ J even. (VIII-2)

The QJ are the Legendre functions of the second kind used in (V-20); and
since t, which is the total energy in our channel 2, is also the total

energy for the process wm-»nn, we have:

t = 48 = 4% + p°) = 4(p° + m%)
and

y - 2B pf |t -2t
Vi k ‘~. '\/t _ 492

i+ To get the AZ (s, t) and B,

(s, t) we need merely to replace’
1 (t) by g, Ity in (VII- 8). o

2

" We now turn to the problem of calculatmg the unexpanded m-n
ll i ll
pole terms A (s, t) and B (s, t). From the equatmn in FF and
our (VII 2), the T-matrix for the pole term in the process T - nn can

be wrltten

U kY 1/2 1 () I

0 ¢; N |T Q¢>=— — B (Z)h, (6, 6d),
< |"P | \z (am)’E P A
here:

! _ . 1
- 1 .4 -

hy (604 6¢)= T'pyiy . k, V.(p), A=r -r,  (VII-3)

li 1 is the barycentric three- momentum of one of the incoming pions

— it makes no dlffcrence which one, since overall 51gns are irrelevant

for our purposes —° p (Z) is given by (VIII-1) in which:

» k ' ' '
2 -""‘;l:zz-{.yy COS(9‘¢)9

1 1 ] !
z =cos 8, y =sin 8, etc.

a4
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‘The functions h \’ when evaluated in terms of the.helicity spinors given

in Appendix B, are

T L 1 —i¢. .
h (04, 0)=-28 |yt ye " (ZFz)
‘ 1+ 2
11 . L itb. ‘
h(04, 08)= 25 |yl yel (2t2)
. | 1+ 2
h, 06, 0d)=kz., | (VII-4)

The unitarity condition (VII-1) now tells us that:

' 1 A ' _
T (%) = pk N * '
ImZ TPIJ' (ZZ) = m [1 dz/ dd) h)\ (920, 9¢)‘hx (.00,. Gd))

0

(8 ) {2)
BP (Z) BP- (z).
(VIII-5)

“here
Z -2,z % y,y cos .
In (VIII-4) the subscript '""P'" shows that the pole contribution is meant,

and the """ refers to the five basic helicity states of (VI-8). Equation
(2.8) of FF implies that: ' ‘

n

',Im2 TP;L(O) (z 6 Imz TPH(+) (ZZ)

2)

1

I.mZ TPp (z,)

4 Im, "rpp(') (z.).
Ty 4 Z2

o 0

The integrals (VIII-5) can be performed, but since they are

messy we shall not burden the reader with the intermediate details, but
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merely with the results. In Appendix C we shall indicate how the

-

integrations may be done. The result is;

o= 0 = 0
Im Tpl (z) = Im TP3 (z)

4 M .
+
——————3g ok Z—(W +w,) -4 n<————Y 22p>+1}
8wE p p Y- P :

im‘T 012) = % {(1-z)wl
v |
- (1 + 2) W,J + 5= Un (Y—ﬁ’ﬂ
o l.-p Y-L.P

- . ‘2 | .
Im TP4°(Z)= _I_éf’r_g(]_‘;_z)__{[iF’_ (1 - zA) - (3 - z)j W

2
Y
2 Y Y+t ip
— - D+z)w, Do £ o2 (1 +
(Y ) ( z) W, o n_<v-2p> (1 + 2)
Py 2
vy = 0 = -3g  k 4p
Im Tpg (2) = - 16np(1-a{<l'7)(}‘z)w1
' 4p° | b ape
} ) p , Y Yy t2p
-Z-(l-z)}

gmk
Im Pl()‘ImTP3() T (W, - W
. STtEp

2)

4
T,y 8 mk v +2p

: . . 4 . .
= L,.._ = -gk 2 '
Im TP4 () = 8mp(l + z) [3_2_%(1#2)]\”'1
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A 2 . . S
+ (1 -’%Muz)w -Y 4n (Y+ 2p>"f..._.,. o

4 ¥ '
= 1 _ g k
mTps (27 - e (- ) (* '—)“ SWy
r

) ]
+F¢z-4p(1_mJ 2-11<Y*?> (VIII-6)
SV P Y -2p )

Here, y has the same méaning'as in (VIII-2), is sin 6, and

2 X, + 1
W1 = ZY n [——
x, - 1
4p~(1 - z) X, 1
. . 2 x, + 1
2 2 x, - 1
‘ 4p (1 + z) x4 2
F2 2 11/2 2,2 N
Iy -4p" (1+2) Y -4p” (- 2)
X T T3 . T > : .
[ 487 (1 -72) [ 4p° (1+2)
From (VI- 12) and’ (VIII 6), together with the relations
s = - Zp (l+z), t = 4(p +m ) = 4E2 we can get the m-n pole contributions

to the absorptlve parts in channel 2; these turn out to be:

\
1

”S
.
Ay sewh 4m“_(zs+t-4m)
., 3:1‘]' s(s +t .-.4,1‘11.2). t s(s+t—4rn )
3= %1-'—' (4m ~ t)Z +(4rn -t) _2+ 1 20.
.st{st+t-4m"™) s (s+t- 4m ) (4m~ - t)
12,2, 1 Zs"-i-t‘-hél‘m‘2
Pglprdr—t s ptiatm |y
s (s+t-4m ) v (s+t-4m ©)
. 2
) 1 . [té_ ,A‘Z‘_l+23+t2—4m w,
(s+t-4m ) [ s+t-4m S sy
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llxv r
By (880 s +t-am®) |1 (am” -y
3'.1‘1 s -( s + t—'4m2) t s(s + t-4m2)
(2st t-4m?) dm? tH(4m® - )% ! Vo
st(s + t—4m2) s(s + t-41'112) J (4m2—t)
112, 2 1 (4m” -t) |
Liz,z R — W,
sis s + t-4m” Y (s+t-4m") j
] 2 2 1,(4m% -t | w
b —_— T - —— 2+-§-+ Z. 2.
(s i-'.t..-4111°) I. 9+t -4m vy s
HT 2 2 .
Ay 189 2028+ t-am’)am® - 1) |, (t+2s -4mP)
3 T 2 2.2 2
n s (s+t-4m") s(s + t-4m")
v | (4m® - 0% | Wo 12 1 . (am?-t) |
- T 2 2 T sls Z2 2 2
s(s. + t-4m™) (4m"” -t) s + t-4m Y (s+t-4m™)
! 2 1 (4w —t) ‘1
+ T - o ,ll; - W
(s + t-4m°) S+t -4m” s vo s
A . . ] : . .
Ay sty 2 s +t-4m2)2} ] 1
e = - = (1 - 1|+l —
- s{(s + t-4m") s{s + t-4m~), s (s + t-4m™)"
1 {2 1 (28 + t —4m2) ]
ey T Tt 3 —- | W
& 1°F s + 1 -4 Y(s + t-4m™) } :
] w ‘ . .' " 2
R 5 (2s %t - 4m®)

(t+sl4m&)'s+t-4m2 : v s

+ 1
s

2

™)
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llp
. A Z(S’,t) - 2 . i 4m2 - (2 s+t- 4m2)2
- 3n s(t + s—4m2) t "s{s +t —4m2)«
4 (4w’ S H° 2 201 Yo
st{s + t-4m") ' s° (s+t-4m7) || (4m -t)
1 [?z 2 2 | (4m2—t)
ro|s e —+ = =1 W,
5 1°® s+t -4m Y(s+t-4m")
g ]
2|
1 2 2 1 2s+t-4m W
) 2, |t 2 s 2 _ i 2
(s +t-4m") _ s+t-4m Y s ]
1t 2 3
B, (s, t) -
Z - (st 4m;2 t2 4 (t + s)(s - 4m?) (W, + 2)
n t s“(s +t - 4m"“) J
12 2 1 (zs + t - 4m?) |
tsiste? — R W
5|8 t+s -4m v'(s +t -4m°“)
RE 2 1 (2s +t - 4m°%)
* Z, |t z 5" z v
(s +t-4m") t+s -4m S Yy s
1y ' .
B v(s, t) _ -1 , 4m2 (4mZ - t)z' ]
> - = 5 2 - T + > (WO+2)
n ‘ s{s +t -4m") s{s+t-4m")
12,2 1 (4m® -t
+'§‘_+t_— — 2 .2 —— )2 Wy
[S s+t -4m"“ Y (s+t-4m") -
| S .
) - 2. 2. 1l Gmo ey W,
(s +t -4m" ) t+ s - 4m s v s
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B”T(s t) ‘ ]
2 SN — | (4m® - 0% + %+ (am® - t) s | (W,t2)
n- s (s+t-4m") ‘
{ A 2
12 1 (4m°- t) W
i T T2 z 1
s 1.8 s+t -4m Y(s+t-4m")
2 1
1 2 1 (4m° - t)
- ) 2 °s 2 v,
(s +t-4m") s +t-4m _ Y s
1A . .
B, (s t) (4m2 S )t + 2s - 4m°©) (W +2)
Zn s (s + t - 4m 2)2 0 :
L2,
1 2 1 L (2s+t-4am®) o,y
“Ss |s 2 2 2 1
1% .s+t-4m -y(s+-t-4m~)J
1 2 L Ll @s+t-4m)
s+ ¢ —41112 s + L - 41’1’12' S' ' ‘Yz s J 2
Ilp ‘ . .
B. (‘q: f') 5z ?‘ . ! Do f
& > = - (Ls rt- 411’ ) : r 4 (‘t+ s) (s’ - 4m“)f (WO + 2)
n . ts (q + t -41‘1‘1 ) [ ' '
- . :
+l _2_+£+ ! 2+(.22‘s+t-4m; W1
S 1% ' 54t -4m Y(s+t-4m™)
1 : 2 2 1 (25 + t - 4m?)
e T - T+, s 5 LU W
(s +t -4m™) stt-4m s Y s
o ' (VIII-7)
where
' 1/2
4 2.1
n = 1Tg4 Exk=- T8 [t(t4—4|.L ) 3
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y(t-- 4m‘2)'1./‘2 10,

Jy+2 o Sy
W, =Y 4n 11—-—E>>-2=——ﬁ—«£n —
0 2p \y -2p /) C(t- 4i’n2)1 2 it _4m2)—1/2 1

In terms of the scalar 1nvar1ants of channel 2 the functions

W‘ . and W are:

1
-2 x1+1
wW. = Y In
1 ‘ 2 x, -1
2(~s+t—4m)x1 1
. 2 x, + 1
w, =Y 2
2 <ZSX2 xz-l
% =[4p +(t-4p. )(s+t) ‘1/2
1 l(t—4p)(t+s-4m) ‘
y J —(t—4|J.)(s—4m) 172
e “stt - 4p°)
t—Zp,
Y ST
(t - 4p7)"

The above logar1thm1c functmns are defmed on those Rlemann sheets
which make A (s, ‘t) and B (s, t) real‘in the physical region for
channel 2. For the d1spers‘1on relation, however, they must be analyti-
cally continued into the region s >4m2, £ > 4}12 and care must be taken
to remain on that branch of the logarithm which gives a real absorptive
part for s <0, t >4m°. | | | ‘

The function W is actually;

Y
! (t 41112 172

the Q belng a Legendre funct1on of the second kind, and both it and its

a.rgument are real for t >4,m_2.. For 4|J. <t< 4m2, W becomes:
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i ’ - .
W = Y in 4y(4m2 - t) 1/2 + 1 2
0 i(am® -y /2 Cyiam® oy TV
' | 2 1)z | .
= gY 172 tam"‘l (4m - t) -2, 4p% <t < 4m®
(4m~ - t) Y :

Note that there is no discontinuity at t = 4m2, and that
(t - 4m2)"l W0-> (3y2)_l as t —>4m2.

The function W1 is no problem‘ since il has no singularities in
the region of interest and X, is real throughout.

In the function WZ’ X, becomes pure imagiﬁary for:

4p4

s >0, 0<(t-4|.;.-2)< 5
s -4m

3

so that W2 must be written:

2 1 1
w., = X in : 2 \
2 281|x ' i, -1
’2’ 2
2
= :‘{ tan—1 :', 0 < tan i \g
2 21 2}

W2 ‘becomes singular when

4 .
4p - (t - 4p2)'(s - 4m\2) = 0,

i.e., at the curve ClZ of (IV-2a), and is‘complex inéid_e the region

bounded by CIZ’
2 S S .

,t—4|.i&>-i*——-,_,s>4mz.
s - 4m” :

2 yzwi
* 238|x
2 - , 2

_The Mandelstam funct’id'hs., .as,:,_callct;lated.hex_;‘e, will be real except for an

imaginary part coming from the imaginary part of WZ' The nn phase
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shifts for wh1ch -our calculatmn has val1d1ty will be small, so that the .
1n:1ag1nary parts of the a.mphtudes W111 be negligible. Moreover, the
.imaginary part of the amplitude can easily be determined once the real
part is‘ known, We will consequently ignore the 1mag1nary part of WZ
To summarize, for s >4m2, t >4p the three functions WO’

W ., and W‘Z are:

1
. 2.-1/2
W0 = h{ 7172 In y(t - 4m2)_1/2+ 1 -2, t >4m2
(t - 4m™) v(t - 4m") -1
1 2 1/2 :
= ZZY 172 - tan_l (4m - t) -2, 4|.12 <t <-’-1m2
- (4m - t) Y :
2 - x, +1
W1 = A > In Xl_ T t>4p;-2
2(s + t -4m )x1 1
% = [4p4+ (t -492)‘(5 + t) L/2
Vool (e - ap®)t + s - 4m?)
2 / ' 4 .
W2=»SYX ‘.'tannl XI , 0<t-4p,2 <-.4H_2
‘ ZI 2 s - 4m
0O<tan™? L T
X o2
2]

2 /1+|X‘\ 4
R el L B B
' , !Zi .5 - 4m

-(t—4p )(s-4m) 1/2
- (t-4u)

t-2|.1

e o . .. (vi-8
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IX. ANGULAR MOMENTUM DECOMPOSITION OF nn AMPLITUDES

In this s_,ection we relate the amplitudes Alrn(:é) and Bl é_(.s) of
(V-19) to nucleon-nucleon phase shifts. Since all previous phase-shift
calculations have been done in terms of z-comi:)orient of spin rather |
than helicity states, we will use the former throughbiit this section.

The T-matrix in channel 1 is (cf VI-5):

<9'4"; r', s'; o.', [3' gT 00; r, s; a, |3>

mZE = (1), ''=
- > U LI | (P ) U'l
grlE T @ s

ey M, o, B ) Urd(l_?gp) Usﬁ(z)(q),

P

- (IX-1)

' . ! 1
where the indices r, s, r, s now refer to.z-components of spin rather:

than to helicities. The i-spin projection operators in channel 1 are:

P, = 211(1 -1(1) 1(2))
] (1) (2)
Pi = E(3 +T - T )
so tha.t‘:‘
M=M | m(l) i(z) Mt
= (M~ -‘.3-M+) Po +(M' + M+) P, | ’ (1X-2)

The T-matrix for a s_c.attéring in a state of definite i-spin and definite

initial and final total spin is:

m2 : .nDI'n

/ ' 1‘ ,
- N - D <
&6 é, ¢ |T ,90,0' = rzll cq o (s, t, t) e

-i(cr'.—cr)¢ (IX-3)

(4m)°
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. .
where ¢ and ¢ are 1, 0, and -1 for the triplet spin state, and ¢ = S

will designate the singlet state. The functions <y Un are the proper

combinations of the terms:

= (), =2, e (1) (2)
u, (p ) ug (@) X u """ (p)u, """ (q)
to give the final and initial total-spin states designated by o and 0;

they are tabulated in Table IlI, and have been calculated using the
explicit Dirac-spinor representation of Appendix B. The Co'on of
Table III are not all independent, since according to Wolfenstein and

.23, . : . . - .
Ashkin, time reversal invariance gives rise to the: relations:

n

)=y (c n__ n n
01 11 00

P n
N2 z(c10 + c -lel ).

From (III-4) and (IX-2) the functions DIM{S3 & t) are:

’

On n n

D "=A"-3B
(1X-4)

In n n

D A +B".

Finally, the right-hand side of {IX-3) has been rhuitiplied by 1/2 because
" nucleons when in states of definite i-spin and definite ordinary spin are
indistinguishable particles, whereas the matrix M 'is calculated as
~though they were distinguishable.

The DH1 can be expanded in terms of Legendre polynomials:

In-_ g A In |
D" = X (24 + 1)‘D£ PZ (z)- (IX-5)
£=0
I »
where the Dl T are related to the A‘erl and an of (V-19) and (V-21) by
On _ n n
D.ﬂ = Ag -3 BE
(IX-6)
In n n
D2 = Al + BI J



Table III

The Functions ¢ ' " of Equation (IX-3)
. g r _ o
. z=cosf, y=sinf.

The Té.ibl_'e actually contains 2m o' o
n S v T A _ P
- )
'Cssn pz(l—z) + E.mz 4p2 + .Zm'2 -};(pzz + 3E2) -2(2E" + mz) pZ(l - z)
" T - ) [l
COOn .(E-m)zzz - pzz -2m(E-m) z~ Z[E(E-m)z2 —ZL(E—m)mzZ —pzz (1-2)
+2Em +4p2z + 2Em + 3p2z + Em] ' .2p“z - Em]
- n (E-m)y A ' p‘2 (1-2)
‘c’.lo = —-Z—[E—m '\fiy(E—m)['_'mz -\/E(E—m)y[Ez \]E(E—m)yf_mz y___
: NZ
- 0™ -(E-m)z] -2(E+m)] + 3(E+m)] +(E+m)]
n (E-m)y °y (1-2)
o1 ' -—ém—y[E-‘?m NZ (E-m)%(Ez + -NZ(E-m)myz ~NZ(E-m)y(Ez Pyl -2
' ' 4 N2
—Cu_ln - (E-m)z ] E + m) + E + m)
' > 2 2 ' ) L,
CIln %[(E-m)"_zz— 2p_z -E(F.I-m)z.2 +2p°z -m[(E—m)z2 E(E-m)z2+ szzA - %.pz (1 - “z)z'
e, + (E + m)° +E(E+m) - =(E+m)] + E (E + m) "
¢\ "= F(EB-m)f(1-2")  E(E-m)(1-z®)  -m(E-m)(i-2°) E(E-m)(1-2°) -3 pP (1%

687 .
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The purpose of this section is to-relate the -DIIn whichare
obtained from the dispersion relations to. T- matrix elements in-the
angular rnornentum representation: <J M, L S ITI JJ M, L, S>
where L and L are the final and initial orb1ta1 angular momenta, S
the total spin and M = Jz. Note that J, M, S and I are “all conserved
and that the matrix element must be independent of M owing to rotational
invariance.. To see that S is cortserved wé observe that an exchange" of
particles in'the initial state vector produceé a factor:

L+S+1

L+(S+1) +(I+1) 1)

(-1)
which must be negative by the Pauli prmc1p1e that is, L + S+1 must be
odd. Now I is conserved, and parlty conservation requires that L L
be even, so that if L + S+ 1 is to be odd for the final as well as for the
initial state, S' - S ‘must be even. For the scattermg of two. spm 1/2
particles Sf - Si = 0 or 1, hence in this case Sf Si 0, and S is
conserved. Consequently, we may write the T-matrix elements that are
non-zero as follows: .

For the spin-singlet:

T - .<J, M, J, 0 'TI 3. M, 3, 0 > : (1X-7a)

For the spin-triplet, we have matrix elements T I when the initial and

final L wvalues are the same; specifically these elements are:

TJJ B <J!‘ M:.Js 1T lJ’ M’ J, l/

TJ“J-: <J M, J-+1, ‘TIlJ M,~.T,.:h1, 1>

and when L - L = :,l:{: | S " (IX-7b)

"; P ‘<_‘~' ! . .. . .
TV - <J, M, J+ 1,1!TI§J, M, J-1, 1>

|
<J‘, M, T - 1,1lTI}J, M, T+ 1, 1>
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where the latter equality comes from the symmetry of the T-matrix.

: ' 34
The above expressions are related to the a of Stapp et.al, as

LY
follows:

e J_ .J
GLJ—ITLJ, a = -1T".

The T- matr1x can be written:

< 9¢,'0' 1Tlieo¢o,g> =4 ) <9¢iL L\<L o T ,LL ><1_,L P0¢p>

“where:

LLZ>' = YLLZ (64),

' YLL (06¢) being a spherical harmonic, defined as in Appendix A of Blatt
, Z
and Weisskopf. 35 Since

(o
NL

Y, . (00)= /2L+1
"LL, o aLo,

we obtain

<9¢,a' |1 [oo,o> =T Y, (68) 'L 'o ‘LO>J 2L + 1
o L', L z \ 2
(IX-8)
where now L'Z = o - 0' by conservation of the z-component of total
angular momentum.
The Co’.o'n of (IX-3) ave functions of sin'® and coc 6, and by
using the recursion relations for Legendre pulynoinials, (IX-3) can be

rewritten in the form:

] ] ' . ’
! L' z
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1L

where the KU'O_ are known functions of the D and of E and p, but.

1
z ’
have no angular dependence. Comparing (IX-8) and (IX-9) we see that:

v ‘ N\
1 1 H 1 ’ . .
k' o <L,LZ= o-0 ,0 !TI|L00> NEEEL (IX-10)

g L

o :
In the spin-singlet case LL = 1 = J, and we immediately get the

. relation: o .
1 [ am Iy | | S
TJ - 2J+1 Kss ' (IX-11)

In the Spln tr1p1et case matters are not as simple,. since we
1

may have J = L or L +land L =L or L + 2, and it is necessary to

project out the T-matrix element referring to the various values of J

: t
and L. For this purpose we calculate from the K&'UI'L the functions:
: :
1 1 1 1
HlIO"—" E, <JO’,L,1'L,L =0-0, 0O K‘ IL’
SLJ = z oo
o =0+]

(IX-12)

]

EEEEE ) 1 S N\ -
where <J, 0, L', 1 | L L . - c =0, 0>' is a Clebsch-Gordon
coefficient that relates the LL o representation (recall that ¢ stands
for S =1, SZ =o)tothe I M L S representatlon From conservation »

of angular mormentum:

- i
'MﬁLz-For“:L + 0,
. Ty . o
"but L, =0, sothat M= ¢ and L =0-0 . Upon combmmg (IX 10)
-and (IX 12), and rnakmg use of the orthogonahty propertles of Clebsch-
Gordon coeff1c1ents, we get ‘

Copp v ATl ) l 1} .\ [2L+1 |

L=L, L:tZ



Now: o '
v .- / ) : ’ '
- LOo =E’J/'0,L‘,1 KJ,O,L,IIL,O,U ‘
‘ J1 _ ~
1
and since the interaction conserves J only, the J = J term will contri-

bute in (IX-13) thus:

. 1 ’ "
H' Y-z | J,L'T,L,l,TI!J,G,T/,,><J,rr,L,1 jebt 1
LJ I t k ’ 47?
L=L, L+2 4

(IX-14)

For LL = J only one term occurs in Eq. (IX-14), namely the one in

which L = J; thus we have

Io _ I ' 27 + 1
Hy; o =Ty <J,0,J,AI!J,O,0> T

Using this equation for o = + 1 or -1 (for ¢ = 0 both sides vanish

1dent1ca11y) we can express the TJJI in terms of the HJJIU. When

L = J + 1, for example, there will be two terms in (IX-14) correSpondmg
.toLiJ+1andL=J—l, hence:

PR L S B N L2

HJ+1J = 1J+1.]' <J,U,J+I,1 ‘J+1,0,0'>‘. in

+ <J,a,J ; l,l'J - 1,0,,o> ZJ4;T1 . (IX-15)

Equation (IX-15) is actually a set of three equations, one for each per-

missible value of ¢, and each equation involves the same two quantities

TJ+1JI and TIJ- Anv two of these relations are mdependent and can he

I and TIJ in terms of the H Io Similarly,
17 J+1,J 10J+1J 1o
- n - - . '
TJ—l,I apd T can be obta1nc<Ii in terms of HJ-IJ . Since the HL 3
are known functions of the- D by virtue of (IX-12), the T-matrix

used to solve for T

elements have been expressed in terms of the Mandelstam amplitudes.
In (IX- 16) below we give give the result of this procedure the

functions deslgnated by T are the T-matrix elements due to the one- pion
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,exchange‘p'ole, which we have ignoffed up to now, and which ha\(e been_"

given‘pre\'/iously.g The functions, cjn'(j =0,1,2,3,4;,n="8,V, T, A, P)
are given in Table IV. For the spin-sin'glet:

1_21 p - n_ In, 2, n n,
SEE SR 5o f{‘”*'”co Dy tpile, -ep)

In - In
[JDJ_J +(I+ 1) D J}

For the spin-triplet:
L L_A 1 ) 2 'n 2 n] : '~ In
TJJ -TJJ'+ 8ﬂE(ZJ.'+1~f'{[(E+m) ¢ +p 'CZ J(2J+l) DJ |

2 n | . - In In
+p, c3g[JDJ+1 f(J+l).DJ_l ]}

T.'J+1;II;= {I\J;ul +—"‘—p—'—2 2{ 2 J?‘(E + m)‘2 cln-_ZEm éln
T 8wE(2J + 1) n
+ (23 + 1),‘ (E + m)* cl“-p2 cz“) DJ+1In
£ 233 + 1)(E - m)zcln DJ_lln +(ZJ+.1)[2(J+1)c4ﬁ-c;n]
X p° DJIn }
TJ-IIJI =?J-1J * 8wE(zI; e 1) 2 i {ZJ(J + 1)(E - m)? c,” DJHIn

+ 2T+ D3(E + m)° ¢, 2Em ¢ - (2J+1) (E+m)2C1ny‘p2Czn)] Di-lln

+(27+ 12T ¢\ + ;™ p? DI
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Table IV

The Function cjn of Equation (IX-16)

S \% T . A

P
0 p2 + Zm2 Z(sz + mZ) -()E2 -Z(sz + 3m? )
1 1 1 1 1 0 |
'2. 0 1 -1 1 -1
3 -1 2 O, 2 1
4 -1 3 3 -1 0
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8rE(27+1)° n

A ’ . ’ )
- U NI oy g2 e o (E-m)ic.? | D,
2 - 1 J+1
r 2 n 2 n In - 2, n In
+ [(ZJ + 1) p° ¢, +4E - m)® ¢)" Dy | +23+12pTe, ~¢,D; }
(IX-16)

Note that because of the Pauli principle L' and L are odd for I=5 and
even for I1# S, where S is the total spin. ’

For the sake of completeness we give the one-pion exchange terms
explicitly: '
For the spin-singlet:

AN 21RE - 1 2 1 .
Ty = @mze |[UF D9 09y, -(2I+1Q; TAO
: ) _

a;pg

—ZE (%1 - %) 7=0.

For the spin-triplet: .

2
/\\ 1 '@ng : r

T3 =<77rﬂﬁﬁ§‘[JQJ+1+‘J+1)QJ-1'(ZJ*‘l’QJ]'
2 : ‘
A (“_)_2‘}4}1 zE Qg1 - Q)
J+1J

/\\ I —O'I pg

Ty = (‘2"J'_T_+1 7 (Qp - Q)

ALY _ a; pg” -

Zrze A0 1 ) Q1 ¥ Q51 -2 95 - (1X-17)
: 5 :

where a; = 1, oy = - 3; and Q \ b 2') is a Legendre function of the
second kind. Note that in (IX-17) Q' Zp ust be taken to be identically

zero. For the relations between our T matrix elements and phase shifts,

‘'see Ref. 34,
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- X. CONCLUSION

Because of the lack of reliable values for thé FF fuﬁctions,
no numerical results could be included. It is hoped that the calculations
of the modified 'FF functions currently Being made by Ball and Wong36
will soon remedy this lack, and it should then be possible to calculate
several of the phase-shifts just below those adequately given by the one-
pion cxchange pole,

Calculations very similar to, but much more ambitious in scope
than the preéent ones, are being carried out by Goldberger, Grisaru,
Muedowell, Noyes, and D. Woﬁg. 37 These authors write dispersion
relations for partial wave amplitudes in the nucleon-nucleon channel,
which will enable them to involve the unitarity condition inAthat ﬁhannel,
and thus derive a set of coupied integré.l equations by means of the n' /D
technique of Chew and Mandelstarri.'lé They also include coulomb
corrections, as well as phenomenological singularities to represent
three-pion and higher mass contributions, and should consequently be-able
to predict successfully the values of the phase-shifts of much lower angular
momentum states than can be done by the method presented here.

In our procedure we have neglected what in the language of partial
wave dispersion relations is called the right-hand or unitarity _'cut (cf. Ref:16),
for example, except for the contributions of the m-n pole; thus-the amplitude
that we get is an integral over the left-hand cut alone.

L c onsiderations similar to ours have been employed in a recent
paper by Amati, Leader, and Vitale, 38 although these authors do not in-

clude the complete unexpanded w-n pole term.
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‘" APPENDICES

”A. The 1-Spin Formallsm

The i-spin formahsm for antinucleons used in this thesis is

39

not new, having been treated by Malenka and Primakoff, yet seems

. sufficiently rare in actual application to merit some discussion.

The formalism is based on the observation that the field variable

. Y(x) for,a four-component-spinor field involves both the particle and its
anti,—pa,xj_:ticl.e,,.' so that when the neutron and proton fields are combined

into one eight-component-spinor field it is natural to write its'field

¢(X).= llJn(X) : o - (A-D)

where Lj;p(x) and q;n(x) are the proton and neutron field variables res-

pectively. The adjoint spinor is then
¥ (x) = (LPP(X), b (x) o ‘ N (A-2)
where q; {x) = pT(x) B etc., and B is given Just below (III 9) Expanding

U(x) in terms of creation and destruction operators

- (A-2)

where the.index a can be + or - cor‘reépo{ri‘d“ing tovl3 ="+1 or -1

respectively, destroys a particle and bn -an antiparticle, and all ordinary-

spiu indices have been suppressed. The Ua. and V(1 are defined as follows:

O I

ulp) x -
| (A-3)

]

v.(p) =vlp) X3
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with Xy = ((1)) y X = <c1)> and Xy = X(—o.) . . The u(p) and »v(p.) are
ordinary four-component Dirac-spinors. o L

It is immediately obvious that with these definitions the matrix
7. loses all meaning as an i-spin operator for antiparticles; instead, the
i-spin operator for both particles and antiparticles is now: .

-

T =/ Ty dx (A

where B is actually g g and the '":'" indicates that a normal prociuct
is to be formed. The important point here is that the i-spinor of the
outgoing antinucleon stands to the right of 7 while that of the ingoing
antinucleon stands to the left, just as their ''spin-spinors' do. Con-
sequently, under the substitution rule the U and .V spinors behave
precisely as the u and v spinors dé. -

From (A-4) and the relations:

IG (p) Bu(p) = vEIPv(p) = E/m
l?(p) Bu(p)= u(p)Bvip)=0

we get:

=T+ 1."1"2 =]d3p [a+T(p) a (p) - b+T(p) b_ (p)J

=
+ -
I

{T_ - T, - iT, =J a>p [a_T(p) a (p)- bl (p) b, (p) J

(A-5)

With these rules, states consisting of a nucleon and an antinucleon no
longer combine into states of total i-spin by means of the usual Clebsch-

- Gordon coefficients. If the state with total i-spin 1 and 1, = +1 is

3
1, l> = pH>
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-

N2

—

Similarly:

.1,-1>=i T llO
N2 T

Ty

. Since the I =0 state is not coupled to the I =1 states the overall sign

of the former is arbitrary.. We thus have:

'“?>T%p5>} R R

L (oY + |55y |
= — nn +|pp . .
N2 [ | '
_ In channel 2 a proj'ection'Operator’ for a state with total i-spin
I inay be wrilten:
o () (2 ]
17 3 AR | (A-7)
In this channel, however, ''particle 1'" refers to an outgoing nucleon and

outgoing antinucleon, whereas ''particke 2" refers to an incoming nucleon
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and antinucleon (cf. (III-2) . Thus, for example, we should have in '

this channel:

/= 4D laz) =y 1 f
’\Pn A 'I'.Zinp/_xp IXn - Xg IXnq
where X =X, = Xg» Xz TX_FXph

and
foalilas Y= o f t
.’-\P n .ll ‘,np = Xp XH X; Xn .

If we apply the i-spin states of (A-6) to the operators 1. and

A %) Gith the proviso that the states are in channel 2, we get!

[y T B \
1,1 '11,1):2@' 5. I=0
< 31| 13 11 "I, 1,
| =0 1=1
boor (1) A(2>|‘ \ =
1,1 IT T I, 1, ) = 28.'. &' _
< 3| % % 3/ 1T 1,1, I=1
- 0 i=o0 (A-8)

_ 1 - 0. - _1
29 7+ Pp=0 23,=0, by =5
so that )
= 1 = _ 1 (1) (2)
Po —z 1, P]. —Z z: R "7;
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B. The Dirac-Spinors

This appendix is concerned with the explicit representation of
the Dirac-spinors, helicity and z-component of spin, used in this thesis.

The z-component of spin spinors ur(p) are obtaine.d by applying
a Lorentz transformation in the -p direction to a spinor having the spin
r in the rest system. -

[ x

u_(p) = fn“_’;p—o L(p) ( 0”) | ~(B-1)

where: L{p) = &2}%+—m , as in (III-12)

()= (0)

The spinor Vr(p) is the charge conjugate of ‘ur(p)

A}

ook

v.py= C u (p) (B-2)
where

C =

-ioc O

Sinc.e

cy cl=y*

YH YH

we have

|

The helicity spinors are obtained by first rotating a spinor in

am
v (p) = L{-p) | :
the rest system until its spin direction is the same as, or opposite to,
the direction of the momentum p and then applying a Lorentz trans-

A~

formation in the direction -p. Thus
it~
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Xy | |
u_(p) = /f—f‘—; L(p) z(n)< ) (B-3).

0
A
l+oc!neo

261\) = N2(1 + cos @)

I\ . . .
where n is a unit vector in the direction of p, 6 is the angle betwcen
v . N . A
% and an arbitrarily chosen z-axis. The operator Z (n) is then the
31 .
rotation operator R 0, -9 "of Jacob and Wick™ for the spinor case,

For antiparticle we ube (B-2):

2m * 0K * .Xr\
O O RN ) |
m | 0 A\
= ™D L(-p) Z4n) —wyxr) . ‘ . (B-4)

In Ref. 31 the two particle states are defined so that in the
barycentric system the same rotation can be applied to both particles.
Consider two particles of rmnomenta Py and P, and helicities r and s
in the barycentric system. Then the spinor fnr one particle is:

~ X
B 2m A
ulpy) = g e MR Z(ng) { g

T

where n, is in the direction of p., whercas the spinor tor the other

particle is:

: —- .,
u  (p,) = :-‘——mer 'L(p_z) Zﬁ‘])K (')s).

in accordance with Eqs. (13), (14) and (15) of Ref. 31. In Section VI
the antiparticles of channel 2 were always taken to be spinors of this
latter type, so that the direction of scattering was defined by the nucleons

rather than by the anti-nucleons.
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C. Integrals

" We sketch here the method by which the integrals of Section
VIII may be performed. ,
The integrals of ¢ are done first. They are most easily per-

formed by making the substitution £ = e1¢ and then integrating over the

unit cir cle.

The resulting expressions can always be written as a sum of

integrals of the following types:

L d_
-1 \
1 dz
'IZ-. ::j _T/Z'
X
-1
L d
1, = z
] ’
3 J (a + B 2) .Xl/Z
-1 )

where

2

X1/2='\/Bzz2.+2azz 2)-

> + 0.2— Bz(l—z

with .. . . .(ﬁ'-)z = BZ; _u2‘> BZ'»

and where it must be remembered that the integrals should be performed

when the variables that are not'being integrated over are in the physical
range for channel 2. o

Since 11 and 12 dre merely special cases of 13 we shall ouly

show explicitly how the latter may be done.

For this purpose consider the integral}
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1 2w
I = dz dé - ; !
: " {(atB'z)(a+ B Z)
-1 0 .
where
A L, 1/2 , 1/2
Z = z2z+(1-z) (l—zz) cos ¢.

The integral over ¢ gives:

1
dz

(a4 z) X/°

I = 27 -
-1

so that I = 211'13 .

On the other hand, define three unit vectors /1\1, n,, and n

such that
A 7 = A A _A A
z = n n, = n n,, 2z, =10 n,
and the integral becomes:
L= ] - a’f
3 7 2w ' N

(a + B 1. n1Xa+{3/r} . ﬁ\‘z)

By means of the Feynman rules for the combination of denOminators4o
we find that
| o

1 a>a

'y = = dt. . z
- (a+h . N)
0 X

where
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Let us pick a coordinate system in which N is along the z-axis, and
1 i o
let 8 ¢ Dbe the direction angles of o with respect to this new axis.
v !
. Then since . N is independent of ¢ we get

S T 1 o
13 =. dt dZi 2
‘ (e + N_ )

] 1
where z =cos 6 and N = Nll.

oon

The last expression is easily integrated over 'z to gdive: -

1
. dt
I, = 2 :
3: / c’3.2 . NZ
0 - .
so that:
2 A [ x+ 1\-'
1 = - - In :
3 - 5 . 1/2 > > . 1/2 : x -1
(P7-BB =z,) {2a° -B -'BB z,) ‘ S

X = 5T
\» B - BB 2,




N

o W

o]

10.
11.
12.

13.
14.
15.
16.

17.
18.
19.
20.

21.

48]
S8

-77-

REFERENCES

.

R. J. N. Phillips, Repts. Progr. Phys. 22, 562-634 (1959).
J. L. Gammel and R. M. Thaler, Phenomenology of the Nucleon-

Nucleon Interaction. Los Alamos Scientific Laboratory (To be

published in Elementary-Particle and Cosmic Ray Physics).
S. Mandelstam, Phys. Rev. 112, 1344 (1958).

'S. Mandelstam, Phys. Rev. 115, 1741 (1959).

S. Mandelstam, Phys. Rev. 115, 1752 (1959).

G. F. Chew, Ann. Revs. Nuclear Sci. 9, 29 (1959).

G. Fu .-€hew, .. ., Phys. Rev, 112, 1380 (1958).

P. Cziffra and M. Moravcsik, Phys. Rev. 116, 226 (1959).

P. Cziffra, MacGregor, Moravcsik, and Stapp, Phys. Rev. 114,
880 (1959). '

MacGregor, M. Moravcsik, and H. Stapp, Phys. Rev. 116, 1248 (1959).

D. Y. Wong, Phys. Rev. Letters 2, 406, (1959).

M. Cini, S. Fubini and A. Stanghellini, Phys. Rev. 114, 1633, (1959).

H. P. Noyes and D. Y. Wong, Phys. Rev. Letters 3, 191 (1959).
W. R. Frazer and J. R. Fulco, Phys. Rev. Letters2, 365 (1959).
S. Mandelstam, Phys. Rcv. Letters 4, 85 (1960).

W. R. Frazer and J. R. Fulco, Phys. Kev.'ﬁ, 1603'(1960)

G. F. Chew and S. Mandelstam, Theory of the Low-Energy Pion-

Pion Interaction, UCRL-8728, April 1959 (to be published in Phys.Rev.);

G. F. Chew and S. Mandelstam, Theory of the Low-Energy Pion-
Pion Intcraction; Part II, UCRL-9126, March 1940,

See Sec. 3.3 H of Ref. 1.

G. F. Chew, private communication.

D. Y. Wong, private communication.

J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons

(Addison Wesley Publishing Co., Cambridge, Mass., 1955).

H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo cirhento
1, 205 (1955).

For the application of reduction formula to spinor fields see:

S. Schweber, Nuovo cimento 2, 173 (1955).



23,
24.
25,
26.

27.

28.

29.

30.

31,
32.
33,
34;.

35.

36.
37.
38,
39.
40.

-78-

L. Wolfenstein and J. Ashkin, Phys. Rev. ii_.‘)_, 947 (1952).

"M. L. Goldberger, Y. Nambu and R. Oehme, Ann. Phys. 2, 266 (1957).

M. T. Grisaru and D. Y. Wong, private cbmmunicafion,

D. Hall and A. S. Wightman, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 31, No. 5(1957). - '

R. H. .Good, Revs. Modern Phys. 27, 187 (1955). H. Umezawa,
Quantum Field Theory (Interscience Publishers, New York, 1956),
p. 11i9. A

E. T. Whittaker and G. N. Watson, A. Course in Modern Analysis
(Cambridge University Press, 1940), 4th ed., pp. 316 and 322.

P. M. Morse and H. Feshbach, Method.s of TheoreticallPhy-sics
{McGraw-Hill Book Company, Inc., New York, 1953) Part 'II,

pp. 1327-1328. ‘

W. Ngller, Kgl. Danské Videnskab. Selskab, Mat. -fys. Medd. Q,-
No. 1 (1945). o

M. Jacob and G. C. Wick, Ann. Phys. 7, 404-428 (1959).

~Ref. 28, p. 322.

S. Mandelstam, private éommunication. ' .

H. P. Stapp, T. J. Ypsilantis and N. Metropolis, Phys.,.Rev. 105,
302 (1957).

J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physicé
(John Wiley and Sons, New York, 1952).

J. Ball and D. Y. Wong, private communication.

D. Y. Wong, private communication, ' :
D. Amati, E. Leader, and B. Vitale, CERN preprint (unpublished).
B. J. Malenka and H. Primakoff, Phys. Rev. 105, 338 (1957).

Ref. 20, Eq. (A5-3), p. 454.



This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. .

As used in the above, '"person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.





