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ABSTRACT 

By means of the Mandelsta·m representation, expressions are 

obtained for the two-pion-exchange contributions to the higher partial 

waves of nucleon-nucleon scattering. A set of ten invariant amplitudes 

is selected, of whi:ch each member obeys the Mandelstam representa­

tion. Dispersion relations are· written for the amplitudes in which the 

discontinuities are absorptive parts for nucleon-antinucleon scattering. 

By means of the unitarity condition the absorptive parts are expressed 

as a partial-wave expansion in terms of the 1T1T- nn partial-wave ampli·­

tudes of Frazer and Fulco,· except for the contributions of ·the pole in 

the pion-nucleon system which are treated exactly in order to ensure. 

better convergence of the partial-wave expansion. Finally, the nucleon-
. . . 

nucleon transition amplitudes in the angular momentum representation 

are expressed in terms of the invariant amplitudes·. 
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I. INTRODUCTION· 

Application of meson theory to the two-nucleon interaction 

has to date, been fraught with great difficulty. 
1

' 
2 

The perturbation 

method of quantum field theory which worked so well in quantum 

electrodynamics is stymied in meson theory by the large magnitude of 

the pion-nucleon coupling constant, so that the convergence of an expan­

sion of the scattering amplitudes in powers of this const;:mt is extremely 

slow -
1
- if the series converges at all. Recently a new approach has m . . . 

entered the picture, that of the dispersion relation of sp.ectral represen-

tation, the most powerful variety of which is the two-dimensional disper­

sion relations first proposed 'by· Mandelstam. 
3 

· The validity of these 

dispersion relations, unfortunately, has only beeri proved to sixth order 

in perturbati'on theory, 3
,.4, 5 and a rigG•r.Qu:s.: proof based on the general 

principles of quantum field theory is not in sight. Nevertheless, the 

Mandel stam representation is plausible, . and we shall assume it to be 

correct for the purpose I? of this paper. ·Indeed, the most convincing 

proof of its correctness would be if it led to .results that agree with 

experiment. A recent article by G. F. Chew reviews the philosophy 

and practice of di'sper sion ~elations; both one- and two -dimensional, 

with copious references. 
6 

Dispersion theory is concerned with the study of the singularities 

of the scattering amplitude.· These singularities occur for unphysical as 

well as physical values of th·e variables that describe the scattering ampli­

tude, and are associated with the possible real (i.e., with momenta on the 
. . . . 

mass shell) intermediate states' into. which the scattering_ amplitude can be 

expanded (see Ref. 6 for details). Iri. making_ approximations, .the main 

assurnptiou i::; Lhat the closer a singularity is to the physical region the 

more important its contribution to the scattering amplitude will be. This 

assumption is necessary, since the close singularities are usually the only 

ones tractable by present methods, and it is also a reasonable-one. For 

instance,. if the residues of two poles are of the same order of magnitude 

then, obviously, the pole closer to the physical region ~ill make the larger 

contribution to the amplitude. Even if the more distant pole has a larger 



.-·5-

residue, the change in the amplitude as a function .of the variable in 

which the poles occur will be induced ·to a much larger extent by the 

nearer ·pole. In many cases the amplitude is normalized at some point 

(i.e., a subtracted dispersion relation is used) by means of information, 

usually experimental, not contained in the dispersion relations; it is 

then the change in the function that is of interest. The same reasoning 

applies to the branch-cuts. 

In the nucleon-nucleon problem the closest singularities are 

the two one-pion exchange poles, whose .use has already borne consider-
? able fruit. First there is the proposal of Chew, as ca:r.:r.ied out by 

Cziffra and Moravcsik, 
8 

for the determination of the pion-nucleon coup­

ling c.onstant directly from n-p angular distributions. There is the 

modified phase shift analysis; 9·• 
10 

first proposed by Moravcsik, in which 

the higherangular momentum states are given directly by the poie terrn 

while the lower ones are treated phenomenologically. There is the cal-

:.~culation of the Asymptotic D-wave function of the deuteron by Wong, 
11 

and the modifications of the effective range formula for nucleon-nucleon 

scattering of Cini, Fubini and .Stanghellini, and <?f NC?yes and Wong; 
12 

the latter works, however, involve more of the Mandelstam representation 

than just the poles. 

After the poles, the close.st singularity is the branch cut due 

to the two-pion intermediate state; it .is with this that the present work is 
i 

concerned. Let p and p, be respectively the final and initial four-momenta 

of one of the nucleons, and t :: - (p
1 

-p)
2 

be the invariant momentl,lm t-ransfer 
. 2 2 2 . 

(we use the metric such that p =g -p
0 

). In nucleon-nucleon scattering the 
. ? . . 

physical region has t ·~ 0, the pole occur:s at t=f.l:.:·' where fl. is the pion 

mass, the two-pion branch cut start~ at t=(2f.L}
2

, and the contribution of 

the next heaviest intermediate ;;;tate, viz. the three-pion state, starts at 
. 2 

t = ( 3f.L) . Thus the three -pion singularity is not much further from the 

physical region than the two-pion singularity. There are, however, two 

main reasons for ignoring singularities other than the poles and the two­

pion cut. Firstly, at present we do not know how to treat the more distant 

singularities, especially those involving intermediate states of tnore than 

two particles. Secondly,. it. is,hoped that the pion-pion resonance :r.ec.ently 

f 
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13 
conjectured in order to describe. nucleon electrom~gnetic structure, 

. \ . 

will serve to increase the contribution of the two-pion state to the ..., 

nucleon-nucleon scattering amplitude ... In the phase- sJ:lift analysis of 

310 9,l.oh· h proton-proton scattering at · Mev t e two one-meson exc ange 

poles were found quite capable of determining the higher phase shifts 

{fro·m L = 4 on up). The present calculation s,hould be able to predict 

some of the higher phase shifts. for which the one -pion exchange poles 

·are inadequate. That the lighter intermediate states shouid determine 

the higher angular momentum states is very plausible on 'elementary 

grounds, since the lighter the intermediate state the longer the range of 

the force to which it gives rise. 

Briefly, our method is as follows: The nn amplitude can be 

expressed in terms of a set of ten invariant functions, which we shall 

call "Mandelstam functions" because they are assumed to obey the 

Mandelstam representation .. These functions· also CJ.escribe nri scattering 

and can be related by means of the s'ubstitution law to the nn amplitude. 

The unitarity condition for the nn scattering amplitude can be written 

symbolically: 21m(nn 1 nn) = r··~nn 1 i)( n~ li )*, where the sum is 

to be taken over all permissible 'real intermediate states. The inter­

mediate state with the lowest mass is the one-pion state which gives 
' . I 

rise to the one-pion exchange pole. The next least massive state is the 

two-pion state which gives rise to ·the two-pion branch cuts in the 

Mandelstam functions. For the reasons given above, states heavier than 

the two-pion will be ignored. It should be noted that since the 2 1T inter­

mediate state starts at an energy less than the lowest possible energy 

for a physical state, we are using the t'initarity condition in an unphysical 

region; this has recently been justified by Mandelstam, 14. The functions 

( n n ,2-'IT) ha.ve been studied by Frazer and Fulco 
15 

(hereafter referred 

to as FF)on the basis of the Mandelstam representation. These functions 

can be evaluated by use of available pion-nucleon scattering data if the 

pion-pion phase shifts are knowri. Thelatter are now being calculated 

by Chew and Mandelstam, 
16 

again utilizing the· Mandelstam representation. 

From :the imaginary part of the nn amplitude as given by the unitarity 
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condition, we can determine the absorptive part of the Mandelstarri 

functions, and by a dispersion relation get the complete function, which 

m turn will give us the nn amplitude. 

Frazer and Fulco's calculation gives (nn !21r) partial wave 

amplitudes; consequently, the nn absorptive part w{ll be given as a 

partial wave (i.e., Legendre polynomial) expansion. Except for very 

low nucleon-nucleon energies, however, the absorptive part becomes 
2 

. singular for values of t just above 41J. , ·the latter being the lower limit 

of the dispersion relation. Consequently, the expansion fails to converge 

over a large part of the region of integration of the dispersion relation. 

The first singula.rity in thP. rt.hsorptive part is due to the existence of the 

one-nucleon pole of the pion-nucleon interaction (hereafter called the 

1m-pole). This pole leads to the "box-diagram" in the nucleon-nucleon 

system, which corresponds to the fourth-'order two-pion exchange Fcynman 
' ' 4'5 

diagram of perturbation theory. Fortunately~· as Mandelstam has shown, ' 

the contribution. of the box diagram to the abs.orptive part can be evaluated 

exactly (cf. Section VIII), so that only the remainO.er of the absorptive part 

need be given as a Legendre polynomial expansion. .It can be shown that 

mathematically this expansion converges for values of -t even greater 

than the three-pion exchange threshold, although there, of course, it soon 

r.eases to give a reason.able approximation to the actual nn amplitude. ll 

is hoped that the convergence is rapid enough for S and P wave two-pion 

intermediate states to suffice for the determination of the higher phase 

shifts of nn scattering .. 

The portion of the absorptive part that is analytically continued. 

by a. partial wave expansion has its singularities neglected. This means 

that the imaginary part of the nucleon-nucleon partial wave amplitudes 

will cotne exclusively f:rom the pux diagl'an1, ;:11,n that the imaginary p~rt 

due to the other contributions must be small for our method to be feasible. 

In general, this will occur only for partial waves of sufficiently high order 

and consequently small magnitude. 
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IL THE FRAZER-FULCO FUNCTIONS 

The 1rn-pole gives rise to an anomalously large S-wave 

contribution to pion-nucleon scattering; a contribution presumably sup-
17 . 

pressed by higher-order terms, The corresponding terms should 

also be suppressed in the nn amplitude, Frazer arid Fulc.o' s calculation, 

however, does not appear to contain a in.echanism which will bring this 

suppression about, the restriction that the '11''11' ....,.. nn amplitude have the 

phase of 'T!''Il' scattering probably.not being sufficient. A phenomenological 
. 18 

means of avoiding this difficulty is based on the observation by Chew 

that the annihilation amplitudes of FF at zero· incoming energy were very 

simply related to pion-nucleon scattering amplitudes at zero momentum 

transfer, In fact, the variable t of FF is the total energy for the anni­

hilation process and the momentum transfer for pion-nucleon scattering. 

Thus, by using experimental pion-nucleon d~ta in forward scattering 

dispersion relations, the 1T'I1'- nn amplitudes at zero total energy can be 

calculated and a subtraction made in FF' s integral equations to normalize 

the functions, This has been done by ·D. Y. Wong, 19 who finds that at 

zero energy the S-wave FF function so calculated is very much less than 

the value due to the 'll'n-pole, It will be remembered that in FF the left­

hand eut is determined from the 'll'n pole plus what is frequently called 

the "rescattering correction", which consists of a partial wave expansion 

as a function of the pion-nucleon scattering angle, and uses experimental 

pion-nucleon phase shifts, According to FF, this expansion should con-
·. 2 19 
verge up to t = -26f-t Wong has compared the correct P-wave anni-

hilation amplitude at t = 0, as determined from \Chew's suggestion, with 

the one determined from ·FF 1 s integral using the roq.gh estimate of the 

pion-pion phase shift obtained by FF from the nucleon eiectromagnetic 

structure, He found that in order to get agreement between the two values, 
. . 2 

1t was necessary to extend the partial wave expansion far beyond t=-26f.1 . 

This indicates that the left -hand cut of the FF functions cannot be deter­

mined from pion-nucleon scattering merely by a partial wave expansion. 

Ho'.vever, the method permitting us to calculate .the FF functions at t = 0 

also permits us to determine the derivative at the same point. 
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By normalizing both the functions and their derivatives, it appears 

possible to determine what we shall call a'"modified FF function 11
; 

which should be reliable; of cour s~' the pion -pion. phase shifts are still 
. 19 

needed. 
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III. THE INVARIANT AMPLITUDES 

The S-matrix for a nucleon-nucleon scattering process may 

be written: 

<' ' ' ' ' ' p r,a;q,s,l3 /s p, r, a; q, s, ~> -

+ i k~ (pI + 
( 4 ) l/2 
/' m 

621 q - p - q)! -2 \P 47r. oq opoqb 

(III- l) 
v 

Here p , q and p, q, are the four -momenta of the. two final and initial 
I I . 

particles respectively; r , s and r, s. their final and initial spins or 
I I 

helicities and. a., 13 and a, 13· their final and initial i-spins. The 

Dirac-spinors · U {p) are eight component entities in the product 
r a 

space of the i-spin and Dirac-spinor spaces; they may be written more 

explicitly as U (p) = u (p) X · where: 
·r a.· r a 

X p " (~) , for the proton 

for the ·neutron 

and u (p) is. a :(our-component Dirac-spinor such that (iy . p + m)u (p)=O. 
r I I . r 

The matrix M(p , q, p, q) is a· 64-by-:64 matrix in the product space 

of the two initial' and two final partiCles. The definition of the S-matrix 

'used here corresponds to that of Jauch· and Rohrlich. 
20 

i I 

According to the substitution rule, the matrix M(p , q , p, q) 

describes nucleon-antinucleon and antinucleor.'"""antinucleon scattering as 

well as nucleon-nucleon scattering·. This rule is implicit in the structure 

of perturbation theory (Ref. 20, Sec. 8-5) and also follows from the 
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. 21 22 
reduction formulae of Lehmann, Symanzik, and Z1mmermann, '· 

as will be shown in Section V. For the scattering of a nucleon of 
1 

· four -momentum q and an antinucleon of momentum q into· a nucleon 

of momentum p and antinucleon of momentum p the rule gives: 

( 1 i I. 
...:....1\ l 4 1 .• (p 

4 \ l/2 

\p,p S-11 
\ m 

q, g I = ± -J" S· (p.- g + p- g) 1 

·?lT! opog ago} .. 

- 1 t. _j2) 1 . 1 1 ut ~fr. ) v (g ) M (p , -q , -p, 
.- \ . 

(III- 2) 

1 

The, bars over p and q on the leff merely indicate that p and g are 

momenta ,O;f_-. antinucl'eons.. The spin and i-spin indices have been sup-

pres sed; and the 15 2 1 
of (III:..l) has been absorbed into the matrix element . . 

on the left.· The overall sign of the left-hand side is not obvious and will 

~·c be. determined in Sectl.o~ V. The Dir~c- spinors V r a.(p) are also eight-. 

c.omponent entities and may be decomposed into V. (p) = v (p) X , where .· ra. r a. 
v (p) is a four-component, negative energy Dirac-spinor such that . r . 

(-iy .. p + m) v (p) = 0, and the X are: 
. r . ~ 

x­
P 

= xn 

for the pro'ton and antiproton 

for the neutron and antineutron. 

Thus the i-spin spinor for an outgoing ari.tiriucleon stands on the right 
. . 

just its Dirac- spinor does.. The use of these i- spin spinor s will be 

further discussed in Appendix A. 

We shall assume that the rin inJeraction is charge independent, 

in which case the S-matrix must be invari<;~-nt unper rotations in i- spin 

space. Since onlytw.o' invariants may be for~ed frorn th~ i-spin matrices 

in the product space of the two particles, the matrix M may be ·split into 

two parts: 

M= M + T(l) (III- 3) 
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Throughout this paper our convention will be that the super script "1 11 

I 

ref.ers to particles with momenta p and p whereas "2" refers to 
I 

those with momenta q and q even though, as will be seen below, two 
I 

particles with, for example, momenta p and p may both be in the 

initial state. 

Lorentz invariance ensures that the M± can be split up 

further: 

I I 

M (p, q p, q) = 
n - n 

I:: A (s,, t, t) X ( III-4) 
n 

+ ' I n n 
M (p, q p, q) = I:: B (s, t, t) X 

n 

where the Xn are 16-by-16 matrices which may be functions of the 

four-momenta and the An (s, t,t) and Bn (s, t,t) are arbitrary functions 

of the invariant scalars s, t, and t only. · For the momentum definitions 

of (III-1) and the process shown in Fig. 1, the latter can be written: 

2 
s = - (p + q) = 

I I 2 
(p + q ) 

(III-5) 

I 

(q - p). 

In the barycefitric system, with z 
1 

the cosine of the scattering angle and 

p 
1 

the modulus of barycentric three -momentum, these variables become: 

4 (p 1 
2 + m2) 4E 

2 
s = = 1 

2 
( 1 - z 1) (III- 6) t = 2p . 

1 

t - - 2pl 
2 

(l+z
1

) 

where m is the nucleon mass. Comparing (III-I) and (III-2) we see 

that in the transition from the process described by the fi:rst equation 
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q' 

-t t 

p q 

s 
MU -20627 

Fig. I. Nucleon-nucleon scattering: channel 1. The time direction 
i.s upward. 

: ~ . 

i ) :. ' ~! . .. ;· . 
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I I 

·in Fig. 2, the matrix M(p , q , P•. q) goes to M(p , -q , -p, q). 

Consequently the scalar-s become for the second process: 

2 
s = - (q - p) = 2 

2 p2 ( I + z2) 

I 2 2 2 
t = • (p + p) = 4 (p

2 
+ m ) (III-7) 

t - - (p
1 

- q)
2 = - 2 p 2 (I - z

2
) 

where p
2 

is the modulus of the barycentric three-momentum and z
2 

is the barycentric scattering angle taken, as will always be the case 

for nh processes, between the two nucleons. If will be noted that 

in (III-6) s gave the total energy of the system, whereas in (III-7) the 

total energy was given by t. W.e shall accordingly call the process in 

which s was the total· energy "channel 1", and that in which t was the 

total energy "channel 2". In addition there is the channel, shown in 

Fig~ 3, in which t gives the total energy; this will be called "channel 3". 

According to the substitution rule, all three channels are described by 

the same matrix M. 

As long as the incoming and outgoing particles are on the mass 

shell, the ·variables s, t, and t are not independent, being rela_ted by 

equation: 

s + t + t 2 = 4m . (III- 8) 

In addition to requiring charge independence and Lorentz in­

variance, we shall assume that our interaction is invariant under charge 

conjugation,· parity, and time reversal. There is at present no reason 

to'believe that any of these invariance principles are violated in stron.g 

coupling physics. The matrices Xn must accordingly be chosen so that 

.the interaCtion will be invariant under all these transformations . 
. · n 

The procedure for finding a complete set of X is as follows: 
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p 

-t 

q 
--

t 

MU -20628 

Fig. 2. Nucleon-antinucleon scattering: channel 2 • . , 
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q 

s 

q' 
-
t 

MU -20629 

Fig. 3. Nucleon-antinucleon scattering: channel .3. 
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In the composite space of the two particles construct ali scalars (with 

respect to Lorentz transformations) which can be constructed out of 

the three independent momentum vectors and the '( matrices. Eliminate 

matrices which can be reduced to another matrix because the spinors 

obey the Dirac-equation, and also eliminate those which do not lead to 

in variance under time rever sal, charge conjugation, and parity. This, 

it turns out eliminates all but the following eight forms: 

i'((l). (g,+g) + i'((Z). (pi+ p); i'((l) (g' +g) i'((Z). (pi+ p); 

i y5(1) iy(l). (q' + q)][y5(2) iy(2) (p' + p)J 

l( 1) 1(2) (1) (2) 
; "s "s ; 

(1) (2). (l) (1) 
y . y ; 1'(5 y 

. (2) (2) l 
1'(5 '( ;z-L. 

( 1) . 
(J fl.V 

(J'. 

( 2) 

fl., v=O, 1, ~. ·3 fl.V 

where our representation is such that 

/ .\ 
. _fO -iu.'\ 
V· - : J ' J -

.J \ iaj 0 J (1 0) l,Z,3;f3=iy
0

::: , 
. 0 - 1 . 

y 5 ~ y 1 y 2 y 3 ~ = ~ ( ~ ~) a 
fl.V 

( III-9) 

Not all eight of these can be independent m the subspace in which the 

incoming and outgoing particles are positive energy nucleons. By using 

an explicit representation nf the Dirac-spinors, e. g. 

u ( p) 
r -

= -i'( . p + m 

,.. Jl72 [2·~ (p0+m) · · 

where X 1s a two- component Pauli- spinor, we find that the eight forms 

in (III-9) :educe to five forms, namely those of Wolfenstein and Ashkin, 
23 

\Vhich are frequently misnamed the "non-relativi.stic forms." Since there 

are only five independent matrices in the nn channel, the scattering must 
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be completely describable by only five arbitrary complex functions: 

Thus only five of the eight matrices of (III-9) are independent, and any 

five linearly independent ones should be sufficient to determine the 

scattering amplitude. In earlier works, e. g. Goldberger, Nambu and 
24 

Oehme , the first five were chosen; they ar~, however, less satisfac-

tory th~n the last five for two reasons. Firstly, .the latter give rise to 

simpler crossing relations w.he,reas 1n the former the crossing relations 

are complicated by having the xn be explicit functions of the fqur-:-momenta. 

Secondly, and more importantly, the explicit momentum de­

pendence of the first five matrices forces the An and Bn to have so-called 

"kinematical singularitie s 11 
- singularities not associated with any inter­

mediate states, but due entirely to extraneous momentum factors. It has 
' 25 

been shown by Grisaru and Wong that the last five matrices, which are 

in fact the Fermi !3-decay matrices, do not develop .any extraneous singu­

larities; we shall briefly describe their arguments. 
+ For convenience let us discuss only M-, the arguments for M 

being practically identical. Thus 

M = ~ Xn An ( ~. ~, t) (III- 10) 
n 

where the sum runs over n = S, P, V, A, and T, the letters standing for 

scalar, pseudo scalar, vector, axial ·vector and tensor, respectively; and 

the Xn are defined by 

A 
X = 1. y ( 1 ) y( 1 ) 

5 
. (2) (2) 
1Y5 Y 

( 1)"'' (2) 
(]' f.LV (]'' ,, 

=0,1,2,3 f.LV 

(III- 11) 

.The denominators occurring 1n a perturbation-theoretic expression 

for M would be no different from those occurring in a spinless, scalar 

theory having thee: same spectrum as the present theory. <Sonsequently, it 

::;eem s very reasonable to assume that each element of the matrix 
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~11. = L ( 1 ) ( p I ) L ( 2 ) ( q I ) M - L ( 1 ) ( p) L ( 2 ) ( q ) 

with 

L(p) = (-iy.p+m) 
2m 

(III- 12) 

is an analytic function of the four four-vector variables p , q , p and q, 

except .in those regions in which the amplitude ofthe spinless scalar 

theor.yr •.vould not be analytic. It then follows that for o.ny n the 

·function Tr ( ~///-'.X n ) would also be an analytic function of tbe four-

vector variables with the same region of analyticity as that of :J?{--· This 

wiLh the fact that the trace is invariant under the orthochronous Lorentz 
.. 26 

group implies, according to the theorem of Hall and Wightman,. that 

the trace is an analytic function of the invariant s.calars, except, of course, 

in the region mentioned above. From (III- 10) and ( III-12) we get 

- n 
T r ('J?( X ) = :L: 

- m -
u (s,t,t)A (s,t,t) 
nm 

m 

where 

"-nm (s, t, t) = ;r [ L(l) (p
0

) L(Z) (q 
0

) Xm L( I) (p) L(Z) (q) Xn ] 

... , . ~ . ; •'. ~ 

The. <7·nm (s, t,t) are obviously analytic functions of s, t, and:t', but they 
n -

may vanish for some value of the invariant scalars, forcing A (s, t, t) 

to have a pole at that point, unless the traces on the left happened to vanish 

there too. Solving the above set of equations for Am w~ o·btain: 

Am ( s, t, t) = :L: 
n 

where the l3mn are an~lytic functions and 6. = det II am~ II . This deter-
. 25 -t)3 minant, according to Grisaru and Wong, is given by 6. = c( s, t, 

-.:.c'·c!.·,, . n n 
where c is a coiistant. · Thus if our invarian,t amplitudes A and B ·have 

•'il .. ... :. 
any extraneous singularities they can only be the poles that could occur 

when one of the i~"v:'a~iilt-D.t scalars vanishes. In Section VI we \¥ill derive 

a definite' re lation'beE.;:,veen An. Bn, and nn transition 'amplitudes for 

helicity states in channel 2. In this channel s is the momentum transfer 
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and t the crossed-momentum transfer, and it can b.e made plausible 

that both An and Bn remain finite as s or t goes to zero; We shall 

return to this point in Section VI. The same procedure involving eithe:T 

channels 1 or 2 would establish that An and Bn remain finite as t goes 

to zero. We may thus conclude that the only singularities occurring in 
... ~ . 

the invariant amplitudes An(s, t, t) and Bn(s, t, t) are those which also 

occur in the scalar, spinless theory, provided we choose the set of Xn 

given in (III-11). 
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IV. THE MANDELSTA.M REPRESENTATION 

At this point we make the crucial assumption that the anal yti­

city properties of the amplitude of our spinless scalar theory are such 

that the amplitude has a Mandelstam representation. Beyond what has 

already been said in the introduction (Section I), we shall not attempt to 

justify this assu.mption.'her-e. The arguments of the previous section then 
. . -11 

show that if we choose the X of(III-11), i.e., n = S;T,V,A,P, buLh lh.; 

An(s, t,t j and Bn{s, t,t) will also have a Mandelstam representation. 

Consequently, An( s, t, t) may be written: . 

n -
A ( s, t, t) = poles 

+~ 
l 

1T 

n I 
a

2 
(t ) 

--,c---+ 
l 

t - t 
1T 

i 

n '-' a
2 3 

( t , t ) 

dt i 

( t -d(t ~ t) 

i 

dt 

n ' a
3 

(t ) 

t - t 

(IV- l) 

with a similar expression for .Bn(s, t,t). The poles have been adequately 

discus sed i.n R~L 9 and will be ignored herea.Ile.r. The next two term CJ of 

(IV -1) are frequently called "subtraction terms," and curreoJJUud tu dia~ 

grams of the type shown in Figs. 4a and 4b. Figure ·1b involves u two· 

nucleon intermediate state, and Fig. 4a shows the three-pion intermediate 

."''l':"tt.P. fhH.t. i::l th~ lightest intermediate state whir.h r.an occur in a subtraction 

terrrL Sinc.e we are not including anything more massive than two-pion 

stateE:, we can ignore all the subtraction terms. The weight ftmctions a
12 

n, 

a 1 J n and a
2 3 

n are everywhere real, and each vanishes outside a region 

bounded by a curve whose asymptotes are: 

s =~2m}2 
and t = (2fJ.)

2 
for a1l2 n(s,~), s = ({m)

2 
andt=:_{2!J.)

2 
for a 13 

(s, t), and finally, t = (2!J.) and t = {2!J.) for a
23

(t, t). 
~ 
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Mandelstam 
4

• 
5 

has calculated these boundary curves using 

the spinless scalar theory which, according to ou·r earlier discussion, 

must give the same results as the pseudoscalar spin-one-half theory. 

Indeed, we shall find the boundary curves as a by-product of our calcu­

lation of the effect of the rr-n pole in Section VIII, and they will turn out 

to be those predicted by Maridelstam. Spin, it appears, is not an essen­

tial complication, it merely complicates the algebra. We give below the 

curves obtained in Ref. S. The weight function a 12 (!;;, L) is nc•n-:r.ero 
::J 

inside the parabolic boundary curve c
12

, (cf. Fig. 5), which is: 
) 

2 2 4 
(s- 4n"1 )(t- 4j..l.) = 4!J. (IV -Za) 

The curve c
13 

for a
13 

(~Jt) is the same as c
12 

except that t- t. The 

curve c
2 3 

is the boundary of the union of the areas bounded by the two 

parabo:i.as: 

(t 
(IV-Zb) 

The denominator of the la.st term in (IV -1) rnay be 5.-plit i1ito 

partial :fractions: 

l l (. l 
+ 

l ) = 
(t -t)(t -t) (t +t+ 

2 
s - 4m ) - t t - t 

where we have used the relation:· s + t + t "-' 4ru 
2 

With the aid of the 

above result, (IV -1) may be rewritten as a one-dimensional dispersion 

:rt:":lati.on; 

00 

n - l 1 A "(s, L, t) 
- Tr 4f.L2 

I 

dt 

n I 
A

2 
(s, t) 

1 +­
:rr t - t 

n -' A
3 

(s, t ) 
(IV- 3) 

t - t 

where we have set: 
00 n i i 00 n 1_ i 

n, ' . 1 { i a 12 { s ' t ) 
+.!.. ~~2 

a 23 (t ' t ) 
I dt A

1 
(s,t) = 

~rn2 
ds ' . 2 'IT 'IT 

s - s t + t + s- ~tm 
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00 I _:_I 
00 I I 

12 
n· 

Iz 
n 

I l I a 13 ( s t ) 
+.!_ 

I a23 (t ' 
t ) 

n -
) ds dt A

3 
(s, t = 2 1T 1T 

t+t + s - 4m s - s 
-:--~m 4f.L 

(IV -4) 

n -
The expressions for B (~. t, t) are precisely parallel. 

The range of the invariant scalars for an actual physical nn 

~cattering process in channei 2 is such that t ~:4m2 
and s, t ~· 0. In 

this range none of the denominators in (IV -4) can vanish, so that both 
n · n 

A
2 

and. A
3 

are real; only the first denominator of (IV -3) can vanish. 

Therefor.e, 

. 2 
t ~4m ; S, t -c~· 0. (IV- 5) 

Thus, once I~ An ( s, t, :t') is known in the physical region for channel 

2, . A
2 

(s, t) can be.determined everywhere by analytic continuation. 
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I 
I 
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~ I ------t --- ---------- --T- ------
t · I 

s=4m 2 1 I C12 . 

I I 

t I 
l~t=9,u2 

' 

MU -l.0630 

Fig. 5. Boundaries of the functions a
12

°(s, t) and b
12 

n(s, t). 
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V .. SUBSTITUTION RULE AND CROSSING 

In this s·ection we sh."all use the reduction formulae to determine 

the sign of the right-hand side of (III~2), and the relation between the 
n · n ·-

A2 (s,t)andA
3 

(s;t)of{IV-3). 

If at (p) is the creation operator for a nucleon in an asymptotic 

state of momentum p, we define a two-nucleon asymptotic state by 

I p, q) =at (p)at (q) I 0), and the conjugate' state by-(p, q I= ( 0 I a (q). 

a (p), where .1 0). is the vacuum. 

For convenience we will let. 

I I I . ( 4) I i . I 

M ( p , q , p, q)·= 6 (p +q - P.- q) M (p , q , p, q) 

where M is the 64-by- 64 matrix of (III- i). 
. . . . 

Suppressing. spin and i-spin 

indices, we may rewrite the latter equation: 

/ .. 

1 

I I . >· 1 '( ' q S-1 I p, q = 4rr2 

I I I I 

ui <P) uj {q) M{ij)(k.e) <P • q • p, q) uk(p) 0 .e ·(q) · · (V-1) 

The indices i, j, k, and i, refer to the rows and columns ·of the matrices 

and not necessarily to spin or i:-spin quantum numbers .. 

The reduction formulae of Lehmann, Symanzik a,nd Zimmerman
21 

have been extended to spinors by Schweber; 22 whoseformalism gives us: 
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The functions n.(x) is the jth component of the eight- component entity 
J . . 

that is the source function for the nucleon system,. i.e. 

(-y!J.al-1 + m) (jJ (x) =rl~(x), ljJ (x) being the field va:dable for the nucleon 

.. field. For n Cx) we have the relation: n (x) = ~ (x) (a yfl + m). Regarding 
. fl 

the time-ordered product inside the vacuum-expectation value, the only 

pr.operty which concerns us is that its· factors antic om mute. Comparing 

· . (Y- 1) and {V -2) we see that: 

M
l ·. ( I I ) = (i)3 f·d4 I ~d4 I ;/'d4 (d4 -i(pl • XI +q; • yl -p.x~q.y) 
(ijHk£) P ,q' p,q ( 2 1T)~ x )a y x jc y e . 

(o!T { ni (y
0

)!\(x
0

)i'lk(x)IT1 (y)} lo) . (V -3) 

For a np. scattering in channel 2 we have: 

I I 

U.(p)V.(q) 
l J 

(V -4) 

Since the components of the source functiun1:; anticom rnute we find that: 

T{?ik (x) s:li (x
0

) ?i£ (y) s:lj (y
0

) } = 
·· ........ 

+ T { !lj (y
0

) "; (x
0

) i"'J.o (x)1l 1 (y)} . (V ..... ~·> 

Combining. the ·la.st three equations we observe that the positive sign is 

<
the correct one i)n (III~~)., th(a

4
t) is

1

: . 

1 

.. ( 
4

.. )
1

/
2 

1 1 l (j ( + ) m .... J 

p 'p. I S-1 I q, q . = ~2 p p -q -q: .1 I . : • . 

1T . P oq oPoqo · 

d 1} I - (2) I . I I' . ( 1) (2) 
U' (p ) V (q ) M (p , - q , ..;p, q) V · (p) U · (q). (V -6) 
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The, analogous eq~~tio~;for . nn si::attering·J.n channel 3, ·-i.e:,. for 
I I . · 

. ( p .,. q- 1 s.:.11·p, q- ) , has a minus sign -in: ·front of th~ right-hand m~mb~r. 
Let us now turn to the relatio~ between A

2 
(s, t) and A 3 (s, t). 

·If in (V-2) the particle designated by p is interchanged with that 
I . 

designated by· q , ·the reductiqn_ formula bec·omes: 

I . I 

u. (p ) u. (q ) 
1 J 

fd
4 ~~-4 1 )(4 (4 -i(p

1

• x
1

+q
1

.y -p. x-q .·y) 
X . d y d X )d y e .. 

(o IT { ni (x') n//> nk (x) n 1 (y) I o) uk (p) u 1 (q). ( v -7) 

The time-orde.r.e:d· product in {V-7) differs from the one in (V-3) only 

in the order of the first two factors; consequent! y 

I I I I I' ) . ('' .4 ')l /2 i ( q 'p S-1 p, q = - 4:2 m . Ui (p ) 
\ Po q o Po qo 

. . . 

i I I 

M (ij)(k£) (p ' q ; p,. q) uk·(p) U £ (q). 

Hence, 

< 
I I I . ,. \ 

q , p Is - 1 p, ~· = ~·. q' I S-1 p, q) 

i u. (q ) 
J 

(V -8) 

.. where the right-hand term is ·given by ( 111-1) .. On the other hand, merely 

by interchanging labels in the final state of (III-1) we get: 

i I 

s , · p , p ., r , 
: ' ' f 

a' I S 1 I p, r, a; q, s, 
\ 

p) -
I 

L 

(1) i (2) I .. I I . (l) . (2) 
U Cl s' f3' ( q ) UrI ci I ( p ) M( q ' p ' p 'q) U r a ( p) Us p ( q). 

( v -9) 
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I I . 

In terms of the invariant scalars the interchange q -+--p implies that 

t-+--t. Comparing (V-8) and (V-9), and making use of the expansion of 

M as given by (III-3) and (III:..4) we obtain:· 

where xm is defined by: 

'T li 

-a a 

U I ( l) ( q I) U I ( 2) (pI) Xm U ( 1) ( p) U ( 2) ( q) • 
s . r r . s 

It can easily be shown that: 

5 i /S: I = l 't· ( /S: I I) I + 'T • -'T ~I ~) o.p Pu 2 ·.· · uu f3f3 .w.ua 1-'1-' 

.!n'~ . .;::~· n = :}e 6n' n 6p' ~ - :!:a' n . .::~· ~) 
·and xm is related Sc::> xn by the well-known "reshuffle theC?rem" 

which gives the relation 

xm = !:: z . xn 
mri n 

with 

.I z I l 
= 4 mn 

. ·~ -.· 

·. 

6 0 

2 

ii, 

l l l 

0 2' -4 

-2 0 6 

0 ~2 -4 

'1 -1 l 
0 

(V-10) 

f F
. 27 o 1erz, . 

(V-12) 

(V-13). 
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where the order of the rows and columns is:: S, V, T, A, P. Substituting 

(V-11) and (V-12) into (V-10) arrlcomparing the coefficients of the i-spin 

and (3-decay matrices, we obtain: 

n - 1 
Z [Am(s,t, t) + 3 

m ;_ 
t)] A ( s, t, t) = - 2 L: B ( s, t, 

mn 
m 

n - 1 Z [ Am(s,t,t) m - l (V-14) B ( s, t, t) = - 2 L: -B (s,t,t) 
mn 

m 

Equation (IV-3) states that: 

m -
A (s,t,t) 

1 I 

dt 

n I 
A

3 
(s,t) 

(V-15) 
'IT 

t - t 

m -
with a similar expression for B (s,t,t). Upon substituting (IV-3) and 

I 

(V-15) into (V-14) and equating the integrands over t we get, finally: 

A 3 n( s,t) = - } ~ Zmn:r';'! s, t) + 3B2 m( ~.t)] 
B 3 n( s,t)= - } ~ Zrrn [A2 m( s,t)- B2 m( s, t) ] . 

(V-16) 

In the nn channel (channel 1), according to Eq. (III-6), 
2 . - ·2 

t = 2p 1 (l-z
1

) and t = -2p
1 

(l+z
1

). For convenience, let us define: 

00 n I l 2 1 
(" 

i A
2 

(s,t) 
Fn( z ) =-

)4l 
dt pl ,. 

1 'IT I 

t - t I 

> (V-17) 
00 ·n I 

2 . 1 f 1dt' 
B

2 
( s, t ) I 

n 

J G (pl z ) = -
I rr 

t - t 
4j.J.2 

Then, Eqs. (V-16) and (IV-3) imply that: 

An(s,t,t) = Fn(p/ z 1)-} ~ Zmn [ Fm(p/,- m 2 ] z l) + 3G ( p l , - z l) 

n - · - n . 2 ) 1 [ 11.1 2 ' B (s,t,t) = G (p 1 , z 1 - 2 L: Zmn F (p
1

, -z
1
)-

m 

·m 2 · ] 
G. (p 1 , - z~ ) 

(V-18) 
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For the phase shift analysis it may be desirable to directly 

determine coefficients A i. n( s) and B i. n( s) of the expansions: 

n - n ~ l 
A ( s, t, t ) = ;= O ( 2 i. + 1) A i. ( s) B i. ( z 1 ) ! 

~ ? 
Bn(s, t, t) = ~ (2/.+1) Bi.~s)P1 (z 1 ). Ji 

i. =0 

N d . H . 28,29 ow, accor 1ng to e1ne, . 

(V-19) 

1 
--,----- = 

t -t 

1 ~ 1 
---~---- = I:: ( 2 i. + 1) -2 

2p12r_t_2-+1-z1] J.=o 2p1 

l2P 1 

Ql (2~/ +!)Pi (zl). 

(V -20) 

where Q i is a Legendre function of the. second kind, so that by virtqe of 

(V-17) and (V-18) and the relati~n Pi.(z
1

) = (-1/Pi.(z
1

), 

we rna y write: 

' 

where: 
I 
\ 

~ 

n 2 1 ( 
F i. (p 1 ) = 2 I 

21Tp 1 ' i ·L. 
,/41J. 

~ 

n 2· 1 

1~2 G 1 (p 1 ) = 2 
21Tp 1 

m 

I 

dt Qi. 

[F/"'!pl2) + 3G/"'!p/) l 
[ F l m(p I~) - G l m(p /) ] 

(2:'12 
\ 

I ) I l I A
2
(s, t ) 

I c +I)B2(s, 
I t 

dt Qi. -2 t ) 
2p1 

-

(V-21} 

(V-22) 

The Qi. are fairly simple functions which can easily be calculated.: 

they are tabulated in Ref. 29. 
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·-vi. THE nn·· T-MATRIX AND ITS RELATiON 
TO THE MANDELSTAM AMPLITUDES 

A function with a more convenient unitarity condition than that 

of the S-matrix is the T-matrix as deiined by Moller. 
30 

I(y
2 

and y
1 

refer t'o .misce:llaneous quantum numbers in the final and initial states, 

resp·e:ctively, we have in the barycentric system: 

where e2 4>2 and e 1 4>1 a,re the ba;ycentric scattering angles of the 

-particles designated by k 
2 

and k 
1 

respectively, and w is the bary­

centric energy. If we restrict ourselves to tw9-particle intermediate 

states, th·e unitarity condition for our S-matrix is 

: 6;y? '{ l <$( 3 ) ( k i .:_ k I . ) 6(3) ( k. - _k 1) • 
.... -2 - 1. . -2 

( VI-2) 
On : ... s,ubs:titu.ting (VI-i) into (VI-2) and carrying out the integrations over 

the intermediate momenta we get_:. 

!:: 

'Yi. 

1 
( 
! 

/ : 

'·' - 1 

d(cos e.) 
1 

* I i \ 
. T j8. ~.; 'Y·) 
i I 1 1 1 
I . I, 

(VI-3) 
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- -- 3 3-' ~ '. 

where we have assumed that the T-matrix is symmetric, i.e . 

. (ezo' YziTt ho;vl) "(ezo;vziT lelo;yl)*. 
case only for 4» · = 4» = 0 2 l 

which is true in our 

For orientation purposes it may be noted that the T-rnatrix used 

here is related to the differe.ntial cross-section for distinguishable particles 

by: 

00;'1~ 
2 

In the barycentric systematic the S-matrix for channel 2 1s related 

to the T-matrix by: 

I I - I 
r , a ; p, r, a, 

1 

S - 1 

, ( 4) I · I 2 < I I I I 
= lli (p + p"7q-q )-- e +; r 'r; a a 

p2E2. 

_11 i ) 

q, s, !); q ' s '13 

I ·r I e 4>; 
I ' ... ~1) 

s ' . s . ; ' '13·, t-' 

(Vl-4) 

The angles give the' direction of the nucleons (not antinucleons); the indices 

t and s refer to helicity states as d~fined by Jacob and W.ick, 
31 

rather 

than to the more usual i-component of spin states. In (VI-4) the nucleon 

he!l'city and i-spin indices are always written before those of the anti.:. 

nucleon, and their somewhat unusual assignment stems from the desire 

t~ keep the sarne set of indices for the same nucleon line, no matter how 

·the latt:er may be twisted in going from one channel to another under the 

substitution rule. Finally, the bar over the T indicates tha~ we are 

referring to the T -matrix for channel 2 .. 

From (V- 6) and (Vl-4) we get: 

2 
m p2 

2 
8rr E

2 
(VI- 5) 
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accox·ding to (III-3) ?-nd Appendix A· 

(VI- 6) 

where P 
1 

is the projection operator for a. state with total i- spin I in " 

channel 2. Thus the T·-matrix for a state with definite i-spin is: 

._(VI-7) 

where we must choose 
+ ( 

M for I = 1 and M. for I = 0. 

Fo:r apartic,ular i-:spin the matrix M can .be expressed in 

terms of five. arbitrary func~ ions, ·which. implies that only £ive of the 
' sixteen possible combinations of initial and final pelicity states can. be 

independent. This can also be shown by applying time rever sal and parity 

invarianc~, /and charge independence, directly to the helicity-state ampli­

tudes; using .the rule given. by Jacob and· Wick. 
31 

It will be found that the 

following five matrix elements are independent; they will be designated 

by the numbers 1 through 5: 

iJ. = 1 2 3 4 5 
I I 

{r r)(ss) = «++H++) (++H+- > ( ++)(--) (+-H+--) (+-)(-+) (VI- 5) 

For simplicity we write: 

~I.. . . ') -I .. 
T OO; s, s = T (z

2
>. 

. . ~ . . 

where the matrix element is between the five basic states of (VI-S). 

Using {IH-4) and (VI-4) we can ~xpress the T-ma.trix elements in terms 

of the Mandelstam functio_ns·: 

/ 



- 3'5 -. 

2 

·'-T O ( z ) = 
m P2 z: n t) 

2 
a A (s, t, 

1.1 2 41T E
2 

n J.ln . 

(VI-9) 
2 

- 1 m ·P2 n 
t, t) T ( z

2
) = 2 . I; a B (s, 

·1.1 41T E
2 

n J.ln 

where the sum runs over n = S, T, V, A, · P, and where, 

'J.'hP. 1.1 refers to the five basic amplitudes of (VI-8). In Table I the 

functions a . are given; they have been calculated using the explicit 
J.ln . 

rep:resentation of the helicity-spinors described in Appendix B. In the 

table, p and E are the barycentric three-momentum and energy respectively, 

b. 
2 

= 2p
2

( 1-z), ~ 2 
= 2p

2
( l+z), where z is the barycentric scatteri~g angle. 

In terms of the invariant scalars we would have in channel 2 the relations: 
z 2 · 2 ·2 2 

b. = ::,..;t, ~ = - s, and 4E = 4(p + m ) = t. 

Equation (VI-9) may be solved for the Mandelstam functions:. 

n - ~11T2 E2 5 - 0 
A (s, t, t) = 2 I; bn1.1 ·TfJ. (zz) 

n -
B ( s, t, t) = 

m p? 1.1= 1 
!...-

5 
I; 

fJ.=l 
T 

1.1 

ni.J. ni.J. ni.J. 

(VI-11) 

where b = (a -l) . The matrix lib ·11is given in Table II. 

In the physical region for c.hannel 2 the functions b are 
ni.J. 

l"r.nl; from (IV· 5) we have, therefore, in this re~irm: 

2 
5 4 1T. E

2
· 

- 0 :t b 1m
2 2 T 

m P? 1.1-1 ni.J. p.( z 2) 
.... 

n 
A 

2 
( s, t) = 

n 
B

2 
(s,t) = 

2 . (:VI-12) 
4 1T E

2 
5 

- 1 
2 

I; b 1m
2 

T 
m P2 J.l-1 ni.J. J.l(z2) 



Table I 

The Matrix ! J ap.n II oJ Equation (VI-10} 

r, s v T A p 

" 
. 1 

6.2 -~2 6.2- t2 ~··- ... . 
2/ 2 2 2 (++H++} p m 

4 2 2 -1 -E /m 
p. 4p 

2 

(++)( +-) 0 .6. t E 6.tE 0 0 r· 
2mp 

2 
2mp 

2 w 
0' 
I 

3 
6.2 - ~ 2 (2E2 -m2)(6.2 -t 2) 

( ++ )(--) 2 2 E2/m2 p /m 
4p2 4 2 2 

1 
p m 

4 
-E2 t,2 

( +- )( +-) 0 -~ 2 ;2~2 t; 2 /2m2 0 2 2 
2m p 

1::: 

-6.2 E2 
(+-){-+} 0 -6.2 /2p2 -6.2 /2m2 0 2 2 

2p m 
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I I 

(r r)(ss ) 

,s 

v 

T 

,,A 
~ h 

p 

1 
(++)(++) 

2 /' 2 m ... p 

0 

0 

0 

-m2 I 2E2 

Table II 

The Matrix ljbn••l·l Being the Inverse of r a II 
I I r-: 'I !J.ll 

2 
(++)(+-) 

m(t2 -62)(E2+m2) 
? 

2L::.t E p 
... 

-Z.m 
3 

~ t E 

2mE/ ~t 

0 

2 2) m(t -6. 

2~ t, E 

3 
(++)(--) 

2 
m /2p 

2 

0 

o· 

0 

m2 I 2E2 

4 
(+- )(+-) 

. 2 2 2 
-m (2p -t, ) 

2p2 t2 

-mz/ t 2 . 

m2/t2 

m2/ t 2., 

2 2 
-m (2E-t, ) 

2E2 t2 

') 2 -62) m-(2p 

, 2 62 
~P . 

-m2/ 62 
I 

I.J,) 
-...) 

I 

m2/ 62 

-m2/ 62. 

m
2
(2E

2 
-6

2
) 

2E2 6 2 
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where the subscript 2 _after the "Im" indicates that we are r-eferring to 

the imaginary part in the physical region for channel 2. 

Finally, we fulfil our promise of Section III and indicate that 

the An and Bn remain finite as s or t goes to zero. We shall specifi­

cally discuss An, the a~guments for Bn being identical. According to 

Jacob and Wick, 
31 

the amplitude T 0 
( z)may be written as a partial 

f.1 
wave expansion o·f the form: 

(90; r'' r I To I 00; s, •>= io ( 2J:l ) e -i( ,• -~ du' ~(9) 'T/(J) 

(VI-13) 
i 

where ·.A and A are the differences between the nucleon and antinucleon 

helicities for the final and initial states respectively. The functions 

dAA' J( 8) are given in Ref. 31 axil·· 

1\ s, s) 
.2 

When t is zero, so 1s /j. , and if in addition p 2 F 0 then 8 is zero, too, 

From Table II we see that as /j.-+0, bn
2 

-1/ e:..andbn 5 :-ljjj.2£orallh,.whilethe 

remaining b stay finite. For f.!. = 2 and f.!. = 5 the d-functions in (VI-13) 
J nf.L . . 

are d 0 1 ( 8), respective! y; and from Appendix A of Ref. 31 we obtain: 
i 

sin e p J (cos 8) 

j J(J + l) 

r 
(1- q)S 8) l. I 

J(J+l) P J (cos 8) 

Thus, as fJ -+0 both jj.-l d J (8) 
01 

l 
II 

- ( 1 +cos 8) P J (cos 8) J. 
d A -2. d J ( f:J) • f" • an ~...:>. -ll r~ma1n 1n1te. 

. n 
Hence, by virtue of (VI-ll ), it is reasonable to assume that A ( s, t, t) 

remains finite as t-+ 0. This is not by any means a conclusive proof, 
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· -1/2 - o· . 
since there is no guarantee that the series· (l-z

2
) T 

2 
(z

2
) and 

. -1 - 0 . 
(l-z

2
) T 

5 
(z

2
) remain finite as z

2 
approaches one. A similar 

argument could be used to discuss the point s = 0 (i.e., I; 
2 = 0). 

.. 
\_ 
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. VII. THE POLYNOMIAL EXPANSION 

We now turn to the problem of determining the functions 

A
2 

n (s, t) and B
2 

n (s·, t). According to (VI.,.l2), these functions can be 

given in terms of Im
2 

T f.ll (z
2

). which in turn can be determined by 

means of the unitarity condition (VI-3). For the reasons indicated in. 

Section I we shall assume that only the two-pion intermediate state 

contributions to the unitarity condition need be considered, and except 

for· the box diagram which will be calculated exactly, that, .A., S and. P 

wave two -pion states will be sufficient to .determine the higher angular 

momentum states of nn s:cattering. Thus, by using unitarity we can 

get Iml Tf.ll (z 2 ) in the physical region for channel 2, L e., s ~ 0 and 

t·~4m, in terms.ofthe FF functions, and then (VI-12) will give 

. A
2 

n ( s, t) and B
2 

n { s, t) and B
2 

n ( s, t) in this same r~gion. Since 

their analyticity properties are known from (IV -4), the absorptive parts 

may be analytically continued into the region s ~4m2 
and t ·>4f.l

2
, in 

which they are required for the dispersion relations ·(V -17). It should 

be emphasized that whereas Im
2 

T 
1 

(z
2

) and b ·of (VI-12) may indi-
. f.l . Hf.l 

vidually be singular at many points in the unphysical region for channel 2, 

when combined according to {VI-12) the result must have the analyticity 

properties indicated by {IV -4), if the Mande"lstam functions actually obey 

the Mandelstam representation. 

In the two -pion approxim;tti.on 1 then, the unitarity COl'ldition 

(VI-3) may be written: 

Irn 2 'l\/<z2 ) = 1/2 L d(cos e) J:d+ ~20; ~·I T 1 i e~~O; +1
ie+ )* 
(VII-1) 

I 

where X. and A are the nucleon n;1inus the antinucleon helicities for the 

initial and final states respectively, and 

( 8
1 

«J»
1

; A T I fJcf>) is a T·-matrix element for the process 1r1r- nn. 
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Our T -matrix element is related to the J of : FF by: 

. ..:·· 

\ 
00 \ 
/ 

·.,_I 
++ 

( k) 1/2 
P2 ~I = 1/.JT 2 1T _ + _ 

(VII-2) 

Here Pz and k are the barycentric nucleon and pion momenta resp~c-
- . [ 2J 1/2 [ L l 1/L if"L: I tiVely, 1, e., p 2 = ( 1/4) t-m . k = ( 1/4) t - IJ. J , and the .:r ++ 

are the functions of FF Eqs. (3.9) and (3.10), except that the i-spin 

eigenamplitudes A. 0 
and A 

1 
of FF Eq. (2.8) are used in FF Eqs. (3.3) 

and ( 3 .4). Finally, the S-matrix of FF has been multiplied by 2 -l/
2 

to . 

take into account the indistinguishability of the initial pions when in a 

state of definite i- spin. 

Sibce~the·1T~1T--nn amplitudes are obtained as partial waves of 

definite helicity, we make a partial wave expansion according to the method 

of Jacob and Wick:
31 

(LJ+l) 
1'TT e i(M-,.~;)'f'

1

e-iMA/., I \ . J·. 1 ·.·. J 
\"' T (J, M) /dM~--(f~.)~~-9 (0), 

J,M 

(VII-3} 

~'h·e:r·e the.d-functions are those of Ref. 31, M is the z-component of 

. the total angular momentum, and the blank in the ket on the right-hand 

side refers t? the lack of helicity of the two-pion state. Substituting 

(VI~·-3) into the, unitarity condition ('VII-1), and ma~ing use of the relations: 

2lT 1 . 

( e i ( .M - M ) 4» d <!> = 2 'IT' 15 ' 

)O MM 

I 

sin 8 d 8 dMOJ (8) dMOJ (8) = 

J 
dM~ (0) = SM'X.' we get: 
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_I . (2J+l) J ;\• I · /')' ~~- I f\; · 
Im 2 Tf-L(z 2 )=1/2Y:\"""""41T d~>._' (e2)\~.T(J,~) \~ T(J,~) (V.II-

4
) 

The functions ( ~ / T 1
(J·, M) /) are actually independent of M. owing to 

rotational invariance; they are related to the f±J (t)_ of. FF by: 

< 
,. ' . rk (p k)J 

0 'ITI(J) I)= l/,)2 ,J ~ 2E2 f+/ (t) 

< +1 T
1(J)l;= (I i T 1(J) /)= i/..J2 .ff; . (p2 k)J f -IJ (t). (VII-5) 

in which the f±/ (t) are those of FF,. except, again, that the i-spin 

eigenamplitudes of FF ~q. (Zt.8) mu,st be used. For example, Eq. (3.16) 

of F:Jf would read: 

f J. = l j81r .j J( J + l) l ( B I B 1) 
-I 2J-f.l (pq)J-l J-1 - J+l 

0 - (+) 1 ( ) J 
with B J = ,) 6 B J , B J = 2B J - Actually, the f± (t) should be the 

modified. FF functions discussed in Section II of the present wor~~ 

In order to calculate tli:e:::absorpthe parts, we substitute the 
-I . 

Im 2 Tf-L (z 2 ) of (VII-4) into (VI-12) and express z
2

, k, E 2 and Pz. in term.s 

of s and t. The result is a Legendre function expansion in terms of 

z = -- 2 (~2 + l )\ = - (' 2 s + t - 4;n 
2
\. 

2p t - 4m J 

In the region of interest Io:r the dispersion relation we have 

s ) 4m
2 

and oo >t :> 4f-L
2

, so that / z 2 ·I) I for all of the range of integration 

in (IV-3), and the expansion ~ay diverge. According to Neumann1 s 
32 

theorem, a Legendre function expansion in z = cose converges inside 

an ellipse in the complex z-plane that.has foci at +l and -1,. and passes 

throug~ the nearest singularity. In the pr~esent case z
2 

is always real, 

and it is easily seen that the expansion for A
2
n(s, t) will converge except; 

for points at which A
2

n (s, t) is f?_ingular. From (IV-4) v.re not.e th~t. for 

s~ i.t;m
2

,_ A
2
(s,t) has a singularity in the region in which a 12nls-~th~' 

non-zero; this, according to (IV-2a), will oc'cur when: t>-4JJ.
2

t 4f.L
4
(s-4m

2
)-

1
, 
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which would give us a very short range of integration before the expansion 

begins to diverge. The curve c
12 

is, according to Mandelstam, 
4

• 
5 

the 

boundary of the contribution of the rr-n pole alone to the spectral functions 

a
12

n (s,t) and b
12

n (s,t), other contributions not entering until we reach 
I II 

the curves C 
12 

and C 
12 

of Fig. 5. Since the TT-n pole contri rutions to 

the TTTT -+nn amplitude are easily determined, we can by means of (VII-l) 

and (VI-12) calculate its effect on the absorptive parts, without recourse 

· to a partial wave expansion; this is done in Section VIII. Each absorptive 

part in the two-pion approximation will consequently consist of three terms: 

n 1 n "n ·~n 
A 2 ( s, t) = A z. .( s, l) + ·A 2 ( s, t) - A 2 ( s, t). . (VII-6) 

with a similar expression for B
2 

n (s, t). 
.·1 n 

In the above equation .A .
2 

( s, t) 

is the partial wave expansion in terms of the modified FF functions, 
II 

A 
2 
n(s, t) gives the TT-n pole term (i.e. the box-diagram). in .unexpanded 

form, and A
2 

n (s, t) is a partial wave expansion of the pole term, in-
. I n 

volving the same number of partial waves as A 
2 

(s, t). The function 

A
2 

11 
(s, t) is required because the FF functions ~lready contain the rr-n 

pole contributions in par.tial wave form which must be subtra<;:ted out by· 
..... ~ .. n 

means·of A
2 

(s,t). 

' .. · The curve C m Fig. 5 is the boundary of the ni.ree-pion 
12' 4 5 

contribution and can be calculated using Mandelstam 1 s method ' by 

considering an intermediate state involving a pion and a particle of twice 

h .. 33 . h l . t ep1·onmass. T e resu t 1s: 

411 2 \ ] l/2 
--'----.....,;-2 ) ' . 
s-4m 

II 2 
~"" 4n"' . The r.tll"vP. \. 

12 
i::J the boundary 

of the higher order two-pion exchange contributions, an~ has asymptotes 
2 2 

t = (2j.i) and s = (2m + j.i) . It can be determined by merely r·eplacing one 

of the nucleons in the calculation of C 
12 

by a particle of the mass of a 

nucleon plus a pion, the result is: 

s - (2m +j.i) 
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II 

For·1· s= · l~ s~ th.a.n 'the :~symptote of C 
12

, L'e., for a: nucleon kirietic 

energy in the laboratory system. TL ~ 287 Mev,(s-4m
2

=4p1
2

=2m TL)' 

the series for A
2 

n ( s, ~ t), in th·e 'two-pion app.~?~ix:nati'cin, ·will converge 

for all values of t,; however, once t crosses C 
12 

the two-pion approxi­

mation soon loses ~ts valiciityJ a,lthoqgh it wil.l not,do. so iminediately since 

the three-pion .contributions will, in all probability, be initially small. For 
.1.. II . . 2 

TL ~· 7.00 Me.v, c 12and C 1:2 int:rsect at t :::::. 9,-2.1-L ; thus, once the rr-n pole 

term has been subtracted out, tlfe partial wave expansion will converge up 

to t = 9.2 for TL·· ~ 700 Mev. For values of T L> 700 Mev the expansion 
II 

will Gor:verge for values of t given by C 
12

. 

The foregoing re~arks illustrate a gen:eral property of sc:attering 
. . 4 5 

amplitu~es that was first pointed out by Mandelstam. ' Consider a 

scatte:H.ng amplitude in the approximation that only the lowest mass two-. 

particle intermediate state is included. If the interaction is such that no .. 

box-type diagram exists,. i.e., there is no three-particle vertex like the 

pion-nucleon vertex, then in the lowef)t approximation the actual values of 

the two-dime~sional spectral functions may b~ ignored, and only the bound­

ary curves are needed. This, for example, is the state of affairs in the. 

pion:-pion problem. If, however, there is a three-particle vertex such that 

a box-type diagram exists, the value of the spectral function due to the box­

diagram must be known in closed, i.e., not partial wave, form. In prin­

ciple, as we shall see in the next section, this is always po.ssible. 
I I .. 

Finally, we write A 
2

n (s,t) and B 
2

n (s,t) in terms of the modified 

FF functions. From Appendix A of Ref. 31, we get for the functions: 

. d ~ f J ( e) ' with z = c 0 s B 

D 10 I 

doo <B) = I', dAA (B) = 0, A and A i 0 

I I 

l/.J2 Jl 
2 I 

d qo < B) = z, d l,d (B) - - - z d 11 (~) = l(2(l+z) ' 

I I •'· 
d (B) = '1/2 ( l z). - l l I',• 

! .... .,• 

(VII-7) 

Using (VII-4) with J = 0 and l only, together with (VII-5), (VII-7) and 
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(Vl-12), and recalling from FF that f+
0

2 J+l(t) ~f±1
2 J(t)= O,we get: 

I 5 4 TT. 
A 2 (s;t) = 2 2 

(t-4m ) 

0 
f+O (t) 

2 

I v I T . I A I ·. 

A 
2 

(s, t) =A 
2 

(s, t) =A 
2 

(s, t) =A 
2 

(s, t) = 0 

I S 3TT (t - 4f.1.2}?/2 2 [ i 12. 
B Z·. (_s, t) = - / 2 2 (2 s + t - 4m 8 If. ~q 1 

(t) I 
32t

1 2 
(4m . - t) · ' 

IV 
. B 

2 
( s, · t) 

3 TT (t-o::o 4f.1.2 )3; 2 r 1 
32.. 2 1/2 l4~m f+1 (t) 

( 4m -t)t 

- t If- I 1 ( t) 12] 

1 
f_]. (t) 

I T( ) 3TT (t - 4f! ) J: . .Jl f .l(t) f 1 (t) 
·B· 2 ·. s; t -·= · 32 2 .. m:- + 1 -1 

. z 3/2 1 ~~ I ". * 
· .· 4m -. t - . . .r t. ,:; .. ~ .·: .. :: ::: .. t.:r;·_; . : .. 

. ·i"A···.: 
B 2 :. (s, t) = 0 

1 
. p 3 TT ( t - 4 fJ. 

2 
)5/2 2 [ J2 1 1 

B 2 (s, t)=- -32 (2s+t-4m )_ m- f+l (t)f_ 1 (t) 
(4m 2 -t) t 112 

(VII-8) 

- n - n The expressions for A
2 

(s, t) and B
2 

.(s, t) may be obtaineq 

from (VII-8) by merely substituting the functions g±/ (t) for the f±/(t), 

where the former are the TT-n pole term partial waves given in (VIII-2). 
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VIII. THE 1T-n POLE CONTRIBUTIONS 

In this section we calculate the contribution to A
2 

n (s, t) and 
n B

2 
( s, t) due to the 1T-n pole, or box-diagram, both in terms of partial 

waves and as a closed expression. 

The func;rti'ons corresponding to the f±I J(t), but containing cnly 

the 1T-n pole term will be denoted by g±/(t). They are easily obtained 

from FF. From Eq. ( 4'.1) of FF we get for the pole term in the bary--centric system of the process 1T1T-nn: 

± 
Ap = 0 

(±) 2 ( 1 l ) B (z) = 41T g --:::;-~--- + 2 2 . 
. p 2E

2 
-J.L

2 
- 2pkz 2E -J.L + 2pkz · 

(VIII-l) 

wh~~·~ A± and B± are. the invariant functions of FF with the subscript- P 

standing for pole, g is the re.normalized unrationalized pion-nucleon 

coupling constant (g
2

1::!- 14.4), p and k are respectiv~ly the nucleon andpion 

momentum, z is the cosine of the barycentric scattering angle, and 
2 2 2 2 2 

E = p + m = k + IJ. Making use of FF Eqs. (3.17), (3.15), and (2.8), 

as well as the expansion used in our (V -20) we easily obtain: 

- 2 [ l v) 1 g+O J(t) = ,J6gm ·y 
J even 

(pk)J 2p 
0 

J \ 2p - "Jo j · 

= 0, J ()dd. 

J6 g2.J J(J+1) 
[ QJ-1 ( ' Q . ( v)] ' J '( \ 

g_o (t) = 
(2J+ l )(pk)J 2p) J+ 1 \ 2p , . J even 

= 0 J odd 

. .T . 2 . 
2g m 'I 

QJ(2yp)' J odd g+1 (t) = 
(p k)J 2p 

= 0 J even 
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J odd 

= 0, J even. (VIII-2) 

The Q J are the Legendre functions of the second kind used in (V -20); and 

since t, which is the total energy in our channel 2, is also the total 

energy for the process rrrr-nn, we have: 

2 2 2 2 2 
t = 4E = 4(k + IJ. ) = 4(p + m ) 

and 

""'n . - n 
To get the A

2 
(s, t) and Bz. (s, t) we need merely to replace· 

f±/( t) by g:1:/( t) in (VII- 8). 

· We now turn to the problem of calculating the unexpanded 'IT.-n 
I 'rt . ~ tIn ··. . ·. 

pole terms A
2 

( s, t) and B
2

. ( s, t). From the equation· in FF, and 

o~r (VII-2 ), the T -matrix for. the pole term in the process rrrr - nn can 

be ~rittE:m: 

here: 

I I 

h>.. ( e 4>, ec~») = tJ I (p )· i Y . k l V ( p), 
r - - r 

A. = r - r, (VIII-3) 

~ 1 is the barycentric three -momentum of one of the incoming pions 

-· . it makes no difference which one, since overall signs are ~rrelevant 

for our purposes Bp ±( Z) is given by (VIII-1) in which: 

I 
k J?' I I 

z = . -:1 = z z + yy cos ( e - cf»), pk 

where 
I I I 

z = cos e, y = sin e ' etc. 
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The functions h X.' when evaluated in terms of the helicity spinors given 

in Appendix B, are 

'I I 

.h+( e If> , e cl>) = 
Ek 
m 

I I Ek 
h ( e c1> , e +) = 

m 

I I 

h 0 (e c1> , e cf») = k.z. 

y' e -icf»
1 

(Z + ~) J . 
1 + z 

I J I icf» 
y e (Z+z) 

' ' 
1 + i 

The unitarity condition (VII-1) now tells us that: 

(VIII:-4) 

Bp(±)(~); Bp~±) (z). 

(VIli-S) 

here 

In (VIII-4) the subscript "P'' shows that the pole contribution is meant, 

and the ;;f.L" · refers to the five basic helicity states of (VI-8). Eq1-1ation 

(2 .8) of FF implies that: 

Im T . ( 0 ) ( z ) = 6 I T ( +) ( ) 
. 2 Pf.L 2 m2 Pf.L z2 

= 4 Im
7 

Tp (-) (z,) . 
.... f.L .'-

The integrals (VIli-S) can be performed, but since they are 

messy we shall not burden the reader with the intermediate details, but 
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me:J;"ely with the results. In Appendix C we .shall indicate how the 

integrations may .be done. The result is: 

. - 0 - 0 
Im TPl (z) = Im Tp3 (z) 

= 3g 4 m2k [ .!_ (W + W ) - 1 in("+ 2p) + 1 l :. 
S1TE2 p 2 l 2 2p '( - 2p 

Im TP
2 
° ( z) = 3 g m k ( l - z) W 

4 . { 
161rEyp 1 

-(I + z) wzj + :; ln (~ : 2fp}1 
...,--r-=3=-gT"'4 ,..,k,..,......._ { r 4"p22 
161Tp(l+z) l 

1 
(1-z)-(3-z)JWl 

- { 
4

P
2

2 
- l ) ( l + z) W 

2 
1 in ( '( ·~ ~ p) -2 (l -+: z) } 

. '( p '( p 

4 { ( 
-3g k 

.... 1-r-61T--=p '--T( ~~ -z-.) 1 - 4~22 ) ( I - z) WI .. ~ :'·' . 

!. 4 2 

' .. :-:-;·-,.- _(3 +z)- ~2 (1 -. ) l w '( <" + 2p) 
2 + p in y - 2p 

. .. ' ' ' - 2 (I - z ) ! 
- 1 - 1 

Im Tp 1 (z) = lm Tp3 (z·) = 

- 1 · . -g mk + 2 
4 [ ] I m T PZ ( z ) = S1rp E y ( 1 - z ) W l + (1 + z ) W 2 - 2Yp i n ( ~ . _ 2 ~ ) 

. . ·: . ..· ~ .. 
. 4 

- 1· - g k 
Im TP4 (z) = 8 1Tp( l + z) 

2 l f j .. 
-
4~ < 1 +. z >' w.~ 
'( . 

. ;. 
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+ ( 1 - '4~
2 

).(1 + z) W 2 - ~ £n 
'I 

- .1 
lm TPS (z) = g 

4 k {(1 2 \. 

- L 2 ) ( 1 -. z) .w I' . 8Tr p ( 1 - ·z) . 4p . 

[
r:-3 - 4P

2
(1-z)j-w _Y£n("+- 2p\ 

+ : + z "2 . 2 p ·." - Z..p ) 

Here, 'I has the same meaning ·as in (VIII-2 ), y is sin 8, and 

·2 

w = --~"-------
1 4p 

2 
( l - Z) X l 

w = 
2 

2 
.'(' £n 

2 . . .. 
4p. ( 1 + Z) X l 

From (Vl-12) and(VIII-6), together. with the relations 

(VIII-6) 

2 . ' 2 2 2 
s ,= -: 2p. ( 1-t~), t = 4(p +m_ ) =. 4E., we can get the Tr-n pole contributions 

to the absorptive parts in channel 2; these turn out to be: 

"S 
.A2 (s, t.) 

= .. ·. 3 11 
2. [4m2. ( 2 s + t - 4rn 

2 
)
2 j 

2 --t- - . 2 . 
s( s + t -. 4m ) s ( s + t - .4m ) 

1 
2 

( s+t-4rn ) 

... 2] 
2Zs. + .t -= 1~ 
'I ( s+t-4m ) 

2 
s+t-4m 

~ + 2 s + t - 4m
2

] 

S'f 



I h)/ 
A

2 
(s, t) 

311 

"T 
A

2 
(s, t) 

3., 

X [I 
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1 2 1 
2 l 

2 
( s + t .,.4m ) 
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= 

1 
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where 

4[ 2 11
/

2 
4 Tf cg~·~t(~t ,-_4....!..1J.---.:..)-=...J __ 

11 = TTg Ek = - 4 
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I ) · .... w
0 

- y £n I Y + 2P - 2 = · Y · · . in 
- 2 p \ y - 2 p ' . ( t . - 4in 2) 1/2 

In .. te~ms of the scalar invariants of channel 2 the functions 

W 
1 

and W 
2 

are: 

2 
w 1 = ----=y-· ·_""""'2--

2(s + t -4m ) x
1 

o 41'4- (t- 41'2)~s -.4m2) ]1/2 

-s(:t - 4j.! ) 

y 
2 = t - 2j.! 

(t - 4j.!2)1/2 

The above logarithmic functions are defined on those Riemann sheets 
· II II 

which make A
2 

n( s, ·t) and :B
2 

n ( s, t) real' in the physical region for 

channel 2. For ·the disper s.ion relation, however, they must be anal yti­

cally continued into the region s >4m
2

, t >' 4~2 and care must be taken 

to remain on that branch of the logarithm which gives a real .absorptive 
. 2 

part for s < 0, t > 4m 

The function W O is actually; 

W 0 o 2 Q I (< t :~n ~) 1{2) 

the Q 
1 

being a Legendre fun'ction of the· second kind, and both it and its 
2 2 2 

argument ar~ ~e~l for t > 4.m . For _4j.1 , < t.<_.~m , .. W 0 b~come s: 
'•' ·•• :. ,11 · ... 
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. ('{(4m
2

- t)-
1

/
2 

+ i) 
fn·. 2 -1/2. -2 

\'{(4~ -t) .-1 

= '{ 
i (4m 2 - t) 

172 

- 1 [ (4m
2 

-. t) 
1

/
2

] 2 · 2 tan -2, 41J. <: t < 4m . 
. '{ 

2 
Note that there is no discontinuity at t = 4m , and that 

2 . 
as t- 4m . 

"""h f 1 W · b1 s.·iuce il ha~ uo ~iuuu1a.l·lties it~ -:a. e unct on 
1 

'!.S no p:ru em o 

the region of interest and x 1 is real throughout. 

In the function W 
2

, x
2 

becomes pure imaginary for: 

2 ' s- 4m 

so that W 
2 

must be written: 

w2 = ~.:fx2 1 1n Gc:r-:) 
2 

= y." . 

. s ~~21 
. -1 

tan 
l 

fzl' 0 ./.<. tan;:, 1 l < Tr I x2 j '-, 2. 

W 2 bec~mes singular when 

"··.·.' 

i.e. , at the curve C 
12 

of (IV -2a). 

bounded by. C 
12

, 

and is complex inside the :region 

w2 =- 2s~~2 J H: ~~=~~ + 

2 . 
'{ Trl 

Zslxzj 
4

. 4 
'jJ. 

2 s- 4m 
:. '· 

. 2 
, s >4m .. 

The Mandelstam functlo~s,. as .. calc~1ated.he:r;e, will' be real except for an 

imaginary part coming from the imaginary part of W 
2

. The nn phase 

/ 
~: 
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shifts' for which.·our .calculation has validity will be small, so that the 
I • ' ' . • . 

imaginary parts of the amplitudes will be negligible. Moreover, the 

. imaginary parct of the amplitude can easily be determined once the real 

part is known, We will consequently ignore the imaginary part of W 
2

. 

To summarize, for s >4m
2

, t > 41J.
2 

.the three functions W 
0

, 

W i.' an.d W 2 are: 

w 1 = 
2 

y 
2 

2 ( s + t ~ 4m. ) x 1 

2 
-2, t > 4m 

.2 
t ><¥ 

i . -1 ~xl2/)' W 2 = s\xzl. tan 
2 4 

4 
0 < t - 4fl < _..._,_fl __ _, 

s - 4m 2 

X : 
2 

2 
y 

0 <tan 
- 1 1 TT 

< 2 

[ 
4 2 . 2]1/2 4fl - ( t- 4p. )( s

2
- 4m ) · . 

- s ( t - 4fl ) 

(VIII- 8) 
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IX. ANGULAR MOMENTUM DECOMPOSITION OF nn AMPLITUDES 

'n'·· n In this sec::tion we relate the amplitudes A
1 

( s) and B £ ( s) of 

(V -19) to nucleon-nucleon phase shifts. Sin::e all previous phase-' shift 

calculations have been done in terms of z-comporient of spin rather 
. . 

than helicity states, we will use the former throughout this section. 

The T-matrix in channel 1 is (cf VI-5): 

e ~; < 
1•.1 

r , s ; a , ~· IT /oo; r, s; a, ~) 
11.1

2p- (1) 1 
= (2) 1 1 (1) (2) 

= u I I (.P ) u 'I I (q ) M(p ' q ' p, q) u . (p) (J (y) s·iE r a s 13 ra .·j sj3 ' 

(IX-1) 

where the indices . r , s·, r, s now refer to .z-components of spin rather· 

than to helicities. The i-spin projection operators in channel 1 are: 

p = .!. ( 1 - 'T( 1) 
0 4 -

(2) 
'T ) 

so that: 

(IX-2) 

The T -matrix for a scattering in a state of definite t- spin and definite 

initial and final total spin is: 

(IX- 3) 
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I 

where a and a are 1, 0, and -1 for the triplet spin state, and a = S 

will designate the singlet state. 

combinations of the terms: 

The functions c 1 n are the p:x;oper 
a a 

. (1) I (2} I n (1) (2) 
ur 1 (p ) us' (q ) X. ur (p) us .(q) 

I 

to give the final and initial total- spin states designated py a and a; 

they are tabulated in Table III, and have been calculated using the 

explicit Dirac-spinor representation of Appendix B. The c 1 n of 
a a 

Table III are not all independent, since according to Wolfenstein and 

Ashkin, 
23 

time reversal invariance gives rise to -the; relations: 

From (III-4) and (IX-2) the functions Din(s-, t,t) are: 

(IX -4) 

. . 
Finally, the right-hand side of (IX-3) has been multiplied by 1/2 because 

nucleons when in states of definite i- spin and definite ordinary spin are 

indistinguishable particles, whereas the matrix M is calculated as 

though they were distinguishable. . r-
The D n can be expanded in terms of Legendre polynomials: 

In· co In 
D = ~ (21 + 1) D

1 
P

1 
(z) · 

r-o 
(IX- 5) 

where the n/n n n 
are related to the A and B

1 
of (V-19) and (V-21) by 

1 . 

D On~ A n - 3 B n 

1 1 1 1 
(IX-6) 

ln An+ B n 
Di = J 1 1 
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Table III 

The Functions c . 1 n of Equation'( [X- 3) . u u . 
The T~ble actually contains 2m 2 c I n z =cos e, y =sin e. . u u 

s 

(E-m)
2

z
2

- p
2

z 

+2Em 

(E-m)y[E:..:.. 
2 ,m 

-(E-m)z] 

- (E-m)yr·E-"-
2 - .m 

- (E-m)z ] 

1 . 2 2 ') 
- r(E-rn) z - 2p~ z 2 - . 

t (E + m)
2 

l 2 . 2 
-(E-m) (1-z ) 2 . 

v 

? 

-2m(E-m} z~ 
2 

+4p z + 2Em 

.J2 y(E -m)[.mz 

-2(E+m)] 

T 

2• 
2[E(E-m)z 

+ 3p
2

z + Em] 

-.J2(E -m)y[Ez 

+ 3(E+m)] 
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-2[(E-m)mz
2 

., 
. 2p""z - Em] 

-[2 (.E-m)ylmz 

+(E+m)] 

.J2 (E-mb;(Ez + -..JY (E-m)myz .J2(E-m)y(Ez 

E + m) 

2 ?· 2 
E(E-m)z. + 2p""z -m[(E-m)z 

+ E(E+m) =(E+m)]_. 

+ .E + m) 

2 . 2 
E(E-m)z + 2p z 

+ E (E + m) 

2 
E(E-m)( 1-z ) 

: 2 . 2 
:-m( E-m)O'-z ) E{E -m)( 1-z ) 

p 

2 
-p z (l-z) 

2 
p y (1-z) 

rz 

2 
p y (1-z) 

.J2 

l 2 . , 2 
--p (1-.z)· 

2· 

1 2 2 . 
- - p ( 1-z ) 
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The purpose .of this section is to ·relate the· ·D f. In which ·are 

.obt'ait:l.ed from the dispersion relations to. T-matrix.elements in :·the 

~ngular momentum representation: ( J, M, L, S I T 1 
jJ, M, L, S), 

1 . '• I ! 

where L and L are the final and initial orbital angular momenta, S 

the total spin and M = J . 
z 

Note that J, · M, S and I are all conserved 

and that the matrix element must be independent of M owing to rotational 

in variance. To see that S is conserved we observe that an exchange· of 

particles in the initial state. vector produces a factor: 

(-l)L'+ (S + l) +(I+ 1) = (-l)L+S+I 

which must be negative by the Pauli principle; that is, L + S +I must be 
. . . . I 

odd. Now I is conserved, and parity conservation requires that L - L 

be even, so that if L + S + I is to be odd for the final as well as for the 
I 

initial state, S · - S ·must b.e even. For the scattering of two. spin-1 /2 

particles sf - si = 0 or 1, hence in this case sf - si = 0, and s is 

conserved. Consequently, we may write the T-·mattr;:;-iix elements that are 

non-zero as follows: 

For the spi.n- singlet: 

T / = .(J. M, J, 0 I T 1 
;J, M, J, 0 ) . (IX-7a) 

For the spin-triplet, we 'have matrix elements T I when the initial and 
LJ 

final L values are the same; specifically these elements are: 

T JJ 
I 

<J·. M,.J, 1 IT
1 i J, M, J, 1) = 

:T J-f- lJ ·= I \J,. M,. J·±. 1, 1 I TI I J,- M, . .T' ± 1, 1) 
I 

and when L - L = ± ' . (IX-7b) . .... 
•' 

. rJ 
<J, 

. ,. If . 
~r. 1) T = M, J+ 1,1 !T lJ, J - 1' ; . 

= <J, M, J I I I 1, 1 T I J, M, J + 1, 1) 
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where the latter equality comes from the symmetry of the T-matrix. 
. 34 

The above expression-s are related to the aLJ of Stapp et.al.· as 

follows: 

aL=iTL' 

The T-matrix can be written: 

where: 

YLL:zj(e<j>) being a spherical harmonic, defined as in Appendix A of Blatt 

: d w· . . k' pf 35 S1'nce an e1ss o · .. 

Y L~ (00) = 
z 

we obtain 

j 2L + 1 
' · 4rr 

. r···----~--

= 'f,, L Y L' L' z < e+>(L' L' z "'/Til~+/ z ~4: I 
(IX-8) 

I 

where now L ::::: u - u by conservation of the z-component of total 

angular momentum. 

The c ' n of (IX-J) a1't: functions of sinB and cos e, and by 
(J (J 

usirtg the recursion relations for Legemhe !JOlyno!uials, (IX-3) can be 

rewritten in the form: 

y I I 

LL 
z 

( e<l>) K . 1 IL 
(J (J 

I 

(IX-9) 
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' 
where the K ' IL are known functions of the Dn I, and of E· and p, but. 

(J (J X. 

have no angular dependence. Comparing (IX-8) and (IX-9) we see that: 
. '·-

(IX- 10) 

I 

In the spin- singlet case L = I = J, and we immediately get the 

T I 
J 

K 
ss 

IJ (IX-11) 

ll}. the. spin-triplet case matters are not as simple,. since we 
I I i . I . 

may have J =- L or L + 1 and L = L or L +2, and it is necessary to 

project out the T-matrix element referring to the various values of J 
IL' 

and "L. For this purpose we calculate from the K 1 the functions: 

H I ICJ = 
. L J . :I:, 

(J =0±1 

I 

<JCJ,L, 

(J (J . 

' ' ~ L z = CJ-CJ ,. CJ/ 

i 

K I IL 
(J (J ' 

(JX- 12) 

where < J, CJ, L
1

··, 1 I L 1 

L
1 

z = CJ --:=- CJ· , CJ ') .is ~ Clebsch-Gordon 

coefficient that relates the LL CJ representation (recall that CJ stands 
z 

for S = 1, S = CJ) to the J M L S representation. From conservation ., z .· 
of angular momentum: 

i I 

M = L + CJ ··= L + CJ , 
z z· 

' ' ·.but L . =· 0, so that M = CJ and L = CJ -CJ • Upon combining (IX-10) 
z z 

·and (IX- l2 L and making· use of the orthogonality properties of Clebsch-

Gordori coefficients, we get: 

HL.,JJrr .. = .. 2.J 
1 

, (J .tiJ, L
1

, 1 I T 1 jL, 0, (r \
1
. ~. . •.· 

:L'=L ,L.±2· ,j~ - (IX-13) 

.• ' 
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Now: 

I 

and since the interaction conserves J only, the J = J terin will contri-

bute in (IX- 13) thus: 

H ·, Ia 
LJ 

I 

~ 
't~· 

(IX-14) 

For L = J only one term occurs in Eq. (IX-14); namely the one in 

which L = J; thus we have 

Ia I < ,. \ /iJ+1 
HJJ = TJJ J,a,J,l J,O,a/i~ 

Using this equation for a = + 1 or -1 (for a = 0 both sides vanish 

i~entically) we can express the T J/ in terms of the H J/a When 

L = J + 1, for example, there will be two terms in (IX-14) corresponding 

to L = J + 1 and L = J - 1, hence 

lJ < .I ) /2J-=l + T J, a, J- 1, 1 J- 1, 0, a 11~ (IX- 15) 

Equation (IX-15) is actually a set of three equations, one for each per­

missible value_ of a, and each equation involves the same two quantities 
I lJ 

T J+ 1 J and T Any two of these relations are independent and can b€! 

used to solve for TJ+l, /and TIJ in terms of the HJ+l/a. Similarly, 

TJ-!,JI a~d TIJ can be obtained in terms of HJ-l/a· Since the HL'/a 

are known functions of the· D 
1 

I by virtue of (iX-12 ), the T -matrix 

elements have been expressed in terms of the Mandelstam amplitudes. 
~ . 

In (IX-16) below we give give the result of this procedure; the 

functions designated by·~ are the. T-matrix ele~ents due to the one-pion 
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·exchange ·pole, which we have ignored up to now, and which have been 

give.n previously.9 The f~mctions cjn.(j = 0, 1, 2,·3, 4; n ~ S, V, T, A, P) 

are given in Table IV. For the spin- singlet: 

For the spin-triplet: 

+ (2J + ll.[ (E + .m)2 c In- P2 c2 n)]DJ+ /n 

+ ZJ(J + I )(E - m)
2 

c 1 n DJ _ /n + (2J+1)[2(J+l) c; -c 
3
n] 

X 2 D In } p J 

. T I= -:f + __ __.P...__-....- .:En {2J(J + l)(E- m)2 cln DJ+lin 
. J- 1,3 J- l J 81rE( 2 J + 1) 2 

+ [ ( 2 2 n n 2 n· 2 n ] · In . 2 J + 1) (E + m) c1 - 2Em c 1 - (2J+1) (E+m) c
1 

-p c
2

_ ) o
3

_
1 

n n 2 In } + (2J + 1)(2J c 1 + c
3 

) p DJ 
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~n s 

0 

1 1 

2 0 

3 - 1 

4 - 1 

- r ·• 
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Table IV 

C.n of Equation (IX-16) 
J 

v T A 

1 1 1 

1 -1 1 

2 0 2 

3 -1 

p 

2 
p 

0 

- 1 

1 

0 

/ 



· . 2 n n_ In} 
+(2J+l~2p {c 2 -c4 JDJ . 

(IX- 16) 

I 

Note that because of the Pauli principle L and L are odd for I = S and 

even for I iS, where S is the total spin. 

For the sake of completeness we give the one -pion exchange terms 

explicit! y: 

For the spin- singlet: 

2 . 
1\ I 9.-I~g · [ 
~J = (2Ttl)2E. (J + l)_QJ+l+J QJ-1- ( 2 J + l) QJ 

2 
aipg 

= (Q Q ) J = 0. 2E 1 - 0 

For ·the spin-triplet: · 

2 
;\ I -o.:rpg · r 
T JJ = (2J+l) 2E l JQJ+l + (J+l) 0 J-l 

2. . 
'-a pg 

~J+l/ = (2j+l) 2E (QJ+l - QJ) 

2 
/\ I -a pg 
T I . 

J-lJ = (2J+l) 2E 

2 
r\u ai pg . 
T = (2J+1)2E 1/'J(J + l) 

] , J F o 

(IX-1 7) [ QJ+l + QJ-1 -2 QJ l 
. ( 2 . 

where a 1 = 1, a 0 = - 3; and Q J \1 + fJ. 2- l is a Legendre function of the 

second kind. Note that in (IX-17). Q _
2t dust be taken to be identically 

zero. For the relations between our T-matrix elements and phase shifts, 

see Ref. 34. 
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· X. CONCLUSION 

Because of the lack of reliable values for the FF functions, 

no numerical results could be included. It is hoped that the calculations 
36 

of the modified · FF functions currently' being made by Ball and Wong 

wili soon remedy thi.s lack, and it should then be possible to calculate 

several of the phase-shifts just below those adequately given by the one­

pion exchange pole. 

Calculations very similar to, but much more ambitious in scope 

than the present ones, are being carried out by Goldberger, Grisaru, 

Mcdowell, Noyes, and D. Wong. 
37 

The.se authors write dispersion 

relations for partial wave amplitudes in the nucleon-nucleon channel, 

which will enable them to involve the unitarity condition inthat channel, 

and thus derive a set of coupled integral equations by means of the n /D 

technique of Chew and Mandelstarri . .l 6 
They also include coulomb 

corrections, as well as phenomenologica1 singularities to represent 

three -pion and higher mass contributions, and should conseq,uently be able 

to predict successfully the values of the phase-shifts of much lower angular 

momentum states than can be done by the method presented here. 

In our procedure we have neglected what in the language of partial 

wave dispersion relations is called the right-hand or unitarity cut (cf. ReL 16), 

for e:Rample, except for the contributions of the ;n:-n pole; thus- the amplitude 

that we get is an integral over the left-hand cut alone. 

Considerations similar to ours have been employed in a recent 

paper by Amati, Leader, and Vitale, 
38 

although these author~ do not in­

clude the complete unexpanded lT-n pole term. 
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APPENDICES 

A. The 1-Spin Formalism 

r he i- spin formalism for ai_ltinucleons used ·in this thesis is 

not new, having been treated by Malenka and Primakoff, 
39 

yet seems 

:;>ufficiently rare in actual application to merit some disctiss·ion. 

The formalism is based on the observation that the field variable 

.ljf(x} ~or(.a fou.r:-componenJ-spinor field involves hoth the particle and its 

.. : . ~nti,-pa,r#cl.e, so that whei.l the neutron and proton fields are combined 

}r1to ope. eight-.~o:mponent-spinor Jield it is natural to write its· field 

yariable:. . . .. 

. · . ·(· (x) \ . .. .. . . ' ·tV 

q,(x) = <!>:(x) ) (A -1) 

where ljJ (x) and ljJ {x) are the proton and neutron field variables res-
p n 

pectively. The adjoint spinor is then 

ilJ ( x) 
n 

(A-2) 

where ljJ {x) = LjJ t(x} f3 etc., and f3 is given just below (III-9). Expanding 
p p 

tjJ(x) in terms of cr.eation and dest'r,uatiori operators; 

. ljJ{x) =(~TT)3/z·)( d3pft I:{'a"(p·)U"(p) eip,x+b"t(p)V"(p)e-ip,x} 

. a . · {A-2) 

where the index a can be + or - corresponding to. r
3 

~- + 1 or -1 

respectively, destroys a particle and b an antiparticle, and all ordinary­
(!_ 

spiu .indices have been suppressed. The U and V are defined as follows: 
. , ·· · a . a . 

(A-3) 

V (p) =v(p)x-
a a 
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with x+ = (~) , X_= (~)and X(L = x(-a.). The u(p) and v(p) are 

ordinary four -component Dirac- spinor s. 

It is immediately obvious that with these definitions the matrix 

f loses all meaning as an i-spin operator for antiparticles; instead, the ......... 

i-spin operator ·for both particles and antiparticles is now: 

1 )'- 3 :f = '2 : 4J ~:! 4J d x: . . (A-4) 

where ~ is actually (g ~) and the '':" indicates that a normal product 

is to be formed. The 1mportant point here is that the i- spinor of the 

outgoing antinucleon stands to the right of 'T' while that of the ingoing 

antinucleon stands to the left, just as their 11 spin-spinor·s" do.· Con-

sequently, under the substitution rule the U and·. V 

precisely as the u and v spinors do. 

spinors behave 

From (A-4) and the relations: 

J U (p) ~ u (p) ~ V(p)~v(p) ~ E/m 

Lv(p) ~ u (p) = u(p) ~ v (p) = o 

we get:·. 

f+ ~ :r 1 + l:r2 = j d
3

p [ a+t(p) a_(p)- b+t(p) b_ (p)] 

.jl' 

iT-~ :r 1 ~ iT2 ~ J d 3
p [a_t(p) a+(p)- bt (p) b+(p) ] 

lT 3 ~ i ) d
3

p [a+ t (p) a +(p) - a t(p) a _(p) + b+ t(p) b+(p) C b _t(p) b _(p)] 

(,A-5) 

With these rules, states consisting of a nucleon and an antinucleon no 

longer combine into states of total i-spin by means of the usual Clebsch­

Gordon coeffidents. If the state with total i- spin 1 and 1
3 

= t 1 is 
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where: 

! pn) = 
' t b t Jvac), a+ + 

then: 

,1, o) = 1 
T pn) l 

.-,-. 

'fi 

~2 [I nfl) PP) l ''._ 

= 

Similarly: 

Since the I = 0 state is not coupled to the I = 1 states the overall sign 

of the former is arbitrary .. We thus have: 

j1. 1)=Jpn) 
\1, o) = ~ 2 [ jn n) -J p P)] 
\1, -1)= ' In p) 
I o, o) = ~ [Inn) + / P P) ]. 

(A-6) 

In channel 2 a projection operator for a state with total i- spin 

I n-1a.y lit: written: 

7' 
( 1) ,.<2) (A-7) 

In this channel, however, "particle 1" refers to an outgoing nucleon and 

outgoing antinucleon, whereas 11 particl:e 2. 11 refers to an incoming nucleon 
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and antinucleon ( cf. (III-2) . Thus, for example, we should have in 

this channel: 

/p n , . .,.( l) . T In p \ = X t T X- . X_. t T X 
\ - -21 / p- n p - n 

where x =x =x- x-=x p + p' n 

and 

If we apply the i-spin states of (A-6) to the operators _1. ~nd 

.,.( l) . z..( 2 ) with the proviso that the states are in channel 2, we get: 

(r', I , I \ 

I 311 I I, I3) = 2 6I' I IS' 
I 3 I3 

= 0 

(I', I I 31 !.( 1) . !.(2) I I, \ 
I3/ = 25I' I 

= 0 

From Eqs. (A-7) and (A-8) we find: 

so that 

- l p =- 1, 
0 2 

I= 0 

1 = 1 

S' 
I 3 I3 I = 1 

I::: 0 (A-8) 

', .. /' 
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B. The Dirac-Spinors 

This appendix is concerned with the explicit representation of 

the Dirac-spinors, helicity and z-component of spin, used in this thesis. 

The z-component of spin spinors u (p) are obtained by applying 
r . 

a Lorentz transformation in the -p direction to a spinor having the spin 

r in the rest system. 

where: L{p) = 
-iy . p + m 

2m 

...,..._ 

as in {III-12) 

The spinor v (p) is the charge conjugate of u (p) 
r r 

>:c . * 
v {p) = c u (p) 

r r 

where 

Since 

we have 

v (p} 
.r . 

(B -1) 

(B -2) 

The helicity spinor s are· obtained by first rotating a spin or in 

the rest system until its spin direction is the same as, or opposite to, 

the direction of the ~omentum p and then applying a Lo1·entz trans-· ...,...... 
formation in the direction -p. Thus -· 



... ·.-~ 

r 

-73-

(p) ~ L(p) :2: rd) ( Xr) 
u = 

\ 0 
r m +Po 

(B-3} 

1 + a 
. /\ • n a 

~ (n') 
z 

= Jz(I +cos e) ' 

where "' is a unit vector in the direction n of p, e is tl).e angle between 

·;~ and an arbitrarily chosen z-axis. The operator L: (':i') is then the 
. . 31 

rotation operator Ref), e: -:4- of Jacob and Wick for the spinor case, 

For antiparticle we use (B-2): 

v 
r 

(p) 

. \ 
* * * (x ). 

C L, (p) ~ (n) ;·· .. 0 r 

( 

0 .\ 

L( - p) L: in) - i a y X r ) (B-4) 

In Ref. 31 the two particle states are defined so that in the 

barycentric system the sa.me rotation can be applied to both particles .. 

Consider two particles of momenta p
1 

and p
2 

and helicities r and s 

in the barycentric system. Then the spinor fnr one particle is: 

2m 
m+E 

where n.l is in the direction of g
1 

, whereas the spinor for the other 

particle is: 

us (Pz) = Jmz: E L(pl) E (,}1) ( \i"} 
in accordance with Eqs. (13), (14) and (15) of Ref. 31. In Section VI 

the antiparticles of channel 2 were always taken to be spinors of thili 

latter type, so tlrat the duection of scattering was defined by the nucleons 

rather than by the anti-nucleons. 
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C. Integrals 

We sketch here the method by which the integral$. of Section 

VIII may be performed. 

The integrals of ~ are done first. They are most easily per­

formed by making the subst~tution s = e i~ and then integrating over the 

unit circle. • .. 

The resulting expressions can alw.~ys be written as a sum of 

integrals of the following types: 

I d 

Il 
z 

= 
a+f3 z 

1· 
d 

. 12. 
z 

= I 1./2' . 
1 

X 

1 
d 

I3 L 
z 

= 
X 1/2 i ' (a+f3z) 

where 

with 
i 2 

' . .. .. .( f3 . ) . = 

and where it must be remembe.red that the integrals should be performed 

when the variables that are not being inte~rated over are in the physical 

range for channel 2. 

Since 11 and 12 are merely special cases of I
3 

we shall only 

show explicitly how the latter may be doi'le. 

For this purpose. c'onsider the integral: 
! . 
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I = dz ( dcf> 
1 J

l 21T 

-1 ) 0 
(a+l3. z) (a+ 13 Z ) 

·where 

2 1/2 2 1/2 
Z = z

2 
Z + ( 1 - Z ) ( 1 - z 2 ) COS cf>. 

The integral over 4> gives: 

1 

1 • z,. f 
-1 

dz 

so that I = 21T I
3 

. 
/\ 1\ . . ,., 

On the other hand, define three unit vectors n, n
1

, · a;nd n
2 

such that 

-"\ z = n 
. I\, 

Z = n 

and the integral becomes: 

( + P. ."" "' v: + r.{\ "'n\2 ) a t-' n . n 1 ~~.a t-'n . 

...... 

By means 6£ the Feynman rules for the combination of denominators 
40 

we find that 

1 1 0 

where 

rlt f ~ d
3

ri 2. 
(a+h . N) 

'A /\ 
N = 13 n 1 t + l3 n 2 ( 1 - t) 
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Let us pick a coordinate system in which N is along the z -axis, and 
I I ~ 

let e <f> be the direction angles of ~ with respect to this new axis. 
, I 

, Then since --~ . N i.s independent of cf> we get 

i 

dz 

where z I = cos e I and N = I ~ I· 
The last expres.sion is easily integrated over ·z to give:· 

13 = 2 l dt 

so that: 

2 
£n (·~)\ X - 1 

~ . . .. 

·J. 
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