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AFiSTRACT 

Curves a r e calculated and plotted to show maximum miss i le ranges from TNT charges 
cased with aluminum or s teel of various thicknesses. The maximum initial missi le velocity 
is assumed to be 10, 000 feet per second. The basis for this assumption is explained. Gen
era l t rajectory formulas a r e derived in the Appendix from which the range may be calculated 
for any initial miss i le velocity, as determined from the ratio of the case weight to the explo 
sive weight. 
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MAXIMUM MISSILE RANGES FROM 
CASED EXPLOSIVE CHARGES 

Introduction 

There has been general interest in the problem of determining the hazard resulting 

from fragmentary miss i les from cased explosive charges. In part icular , use of the cube 

root formula is believed to be unsatisfactory except as a rough est imate, since miss i les 

have been observed beyond the l imits predicted by this formula. In this lepor t an analysis 

is made which takes account of the miss i le size and shape, as well as the weight of the ex

plosive charge. It is found that miss i le size (or thickness) is the most important single 

factor in determining maximum range. Missile thickness is the same as the thickness of 

the surrounding case, unless folding occurs . 

Initial Missile Velocities 

It has been shown that the initial fragment velocity V can be calculated from the 
1/2 ° 

Gurney energy-density constant (2E) ' in conjunction with R, the ratio of case weight to 
1 4 

explosive charge weight. ' For a cylinder containing uniformly packed explosive mater ia l 
the relation is 

I _1 
V^ = (2E)^ (0. 5 + R) ^ 

For a sphere, the expression (0. 5 + R), in the above formula is replaced by (0, 6 + R), 
4 

which resul ts in a slightly lower fragment velocity. This case is not considered here, since 

only maximum velocities a re of interest in the estimation of maximum missi le ranges. 

The greatest possible fragment velocity occurs when the case weight is negligible 

compared to the explosive weight. Then R approaches zero, and the initial fragment ve

locity V approaches V , where 

* 1/3 
Safe Distance (feet) = 600 (charge wt) ' with explosive charge weight measured in 

pounds of TNT equivalent. 
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2 
V =(1 .41) (2E) f t / sec = Maximum initial fragment velocity 

1/2 The Gurney energy-density constant (2E) ' (feet pe r second) is tabulated in Ref.l 
1/2 for a nunaber of different explosives. For TNT the value of (2E) ' is 6940 f t / sec . Thus 

for TNT, after multiplying by 1.41 

V = 9800 f t /sec m ' 

Fo r other chemical explosives the maximum initial fragment velocities differ only slightly 

from the value for TNT. 

Therefore, it will be assumed that any case fragment moves initially at a speed not 

grea te r than 10, 000 feet per second. 

Missile Aerodynamic Drag 

Once the maximum miss i le velocity has been assumed, the only remaining problem 

is to determine the aerodynamic drag force on any shrapnel par t ic le result ing from the 

exploding case. Various drag coefficients are given by Hoerner for a number of regular 
2 

shapes at subsonic and supersonic velocities up to a Mach number of 10 (Chapter 16). 

Since the speed of sound is about 1100 feet per second, a Mach number of 10 corresponds 

to the initial fragment velocity assumed as a msocimum in this report . 

In order to re la te this information to the calculation of drag forces on i r regula r 

shapes such as the shrapnel fragments, it is necessary to consider the aerodynamic drag 

mechanisms operating at supersonic velocities. Only two distinct c lasses of shapes need 

be mentioned. The f i rs t c lass consists of regular ly shaped projecti les which have sharp-

pointed conical or wedge-shaped noses. There is a negligible chance that a shrapnel frag

ment would be produced which possessed a sufficiently regular shape to fall in this c lass . 

Even if one did exist, it would not in general have i ts center of m a s s located so as to in

sure a stable motion through the a i r with the sharp point o r edge headed forward at all 

t imes. 

For these reasons it is only necessary to consider the second class of shapes, ie, 

al l those which do not have the special charac te r i s t ics of the f irs t c lass . A projectile of 

the second class is character ized by a relatively constant drag coefficient over a wide range 

of supersonic velocities. 



Except for regular ly shaped round bodies (eg, spheres or cylinders), the drag coef

ficient C„ for any second-class shape is always greater than 1. 0 for all supersonic and sub

sonic velocit ies. At supersonic velocit ies, even a sphere or a cylinder has a drag coefficient 

which is not appreciably less than 1. 0. The physical bas is for this behavior at transonic and 

supersonic speeds is the occurrence of a detached shock wave some distance in front of the 

projectile. It is known that the shock wave is detached for all projectiles except those in the 

first class mentioned above, for the shock wave can be attached to the (sharp) nose of the 

projectile only when the nose angle is less than 0, where sin 0 = l / M and M = Mach number. 

All other projecti les fall in the second c lass and have a detached shock wave. 

Assuming now that every shrapnel part ic le has a drag coefficient which is never less 

than 1.0, it is sti l l necessary to consider the frontal projected area of the part icle, since 

the actual drag force, as opposed to the drag coefficient, depends on this projected area . 

Thus it is necessary to investigate the orientation of the shrapnel part icle as it moves through 

the a i r , since the frontal projected a rea of any i r regular shape will depend on its orientation. 

In order to see how the various pa ramete r s contribute to the maximum horizontal range, 

we discuss the fundamental range equation A-50 derived in the Appendix: 

Xĵ  = (0.5) wzj^ (1) 

with the symbol notation 

Xp = Horizontal range (ft) 

Zpj = Dimensionless factor obtained from Fig. 1 

w = Relaxation distance (ft) defined by Eq A-21 

Inserting the expression for w given by Eq A-21 into Eq 1 above, 

Xj^= (0. 5)Zj^Q(k"^)^ (2) 

with symbol notation 

Q = Average value of cosine of vector velocity angle with respect to the 
horizontal direction 

k = Character is t ic distance (ft) best defined by Eq A-109 
3. 

Any formula or equation reference with the prefix "A" appears in the Appendix. 
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In Eq 2, the value of Q is given by Eq A-90. which shows that it is nearly equal to the 

cosine of the initial angle B of the projectile velocity vector with respect to the horizontal 

direction. Hence it is fairly accurately known in advance, for a given initial angle B. 

Referring to Fig. 1, we see that z „ in Eq 2 is a logarithmic function of F . Referring to 

Eqs A-68 Eind A-103, it is evident that F depends on the unknown character is t ic distance 

k . Since x„ also depends directly on k , as shown by Eq 2 above, we see that the un-
3. -tv ^ GL 

known charac ter i s t ic distance k is of cr i t ica l and decisive importance. Using magni-

tudes averaged along the entire t rajectory (subscript "a") , the distance k is found to be 
3. 

k ; l = (0 .167) ( s^ ) ( c^ l ) (Pp /p^ ) (3) 

with the notation 

p = Average value of the a i r density (gm/cm ) along the trajectory a 

Pp= Density of projectile (gm/cm ) = Specific gravity of projectile 
relative to water 

{-A' Average value of C Q along the trajectory, where C Q is the drag 
coefficient at any point along the trajectory (dimensionless) 

s = Effective thickness (inches)of the projectile, averaged along 
the trajectory 

3 
The effective thickness s is defined as the projectile volume (in ) divided by the 

2 
frontal projected area (in ) which corresponds to the part icular flight orientation of the 

projectile at the t rajectory point under consideration. 

F rom the preceding analysis it is evident that the only unknown quantity of cri t ical 

importance in finding k is the effective thickness s of the projectile, as just defined. 
3. 

All other quantities in Eq 3 above can be fairly well estimated without detailed analysis. 

For example, we have just seen that the drag coefficient C„ is never less than 1.0, as 

shown by Figs . 17 and 18 in Chapter 16, of Ref 2. The drag coefficient curves of Ref 2 

apply to blunt nosed projectiles moving at Mach numbers from 0. 1 to 10. 0. In order to 

determine the effective thickness s at any point along the trajectory, it is necessary to 

investigate the frontal projected a rea of the projectile corresponding to any possible or i 

entation which may occur during its flight through the a i r . 

The general condition for approximately stable flight of a nonrotating projectile r e 

quires that the center of m a s s should be well ahead of the line of action of the resultant 

aerodynamic drag force for at least a smal l range of orientations of the projectile in any 

direction from a zero-lift attitude. Otherwise the part icular zero-lif t attitude assumed 

is unstable, and the projectile tends to oscil late, or even tumble. For a homogeneous 



nonrotating particle having uniform density, an unstable zero-lift orientation is usually 

reached when the fragment presents i ts minimum frontal projected area . This applies 

especially to a thin flat sheet of mater ia l (provided the sheet is not rotating). An ex

ample of such general behavior is the wobbling flight of a falling leaf. The leaf does not 

move steadily in the edge-on direction, nor does it move with the flat a rea exactly at right 

angles to the flight path. Rather, its direction oscil lates in an i r regular way because of 

inherent instability. Nevertheless the average orientation more often corresponds to the 

maximum area presentation than it does to the edge-on presentation, at least for flat 

leaves. A highly curled leaf does not possess an unambiguous "flat", or "edge-on", o r i 

entation. 

A thin flat sheet is in general unstable when moving edge-on through the a i r , since 

the aerodynamic lift force, at any small angle of attack, acts with a torque couple about 

the center of mass which tends to rotate the sheet into a position with a larger angle of 

attack. The la rger angle of attack resu l t s in an increased torque, which tends to increase 

the angle of attack even further, and so forth. Thus the "leading-edge" type of flight is 

an unstable zero-lift orientation. 

On the contrary, the perpendicular type of zero-lift orientation is at least semistable; 

when a flat shape moves so that the maximum frontal area is presented, there is a range 

of the angle of inclination within which the result ing torque is of the "res tor ing" variety 

instead of the "overturning" variety. The res tor ing torque (approximately cosine) is very 

smal l , which means that the flat shape may oscillate through a considerable angle before 

any appreciable res tor ing torque comes into play. Thus the slightest a ir flow disturbance 

resu l t s in directional oscillations which do not damp out readily. When the fragment turns 

completely over, instead of mere ly oscillating back and forth, a more complicated analy

s is is required. This is presented in the following section. 

Effect of Rotation 

The discussion in the preceding section applies only to a nonrotating projectile. 

Since a case fragment may be rotating after leaving the explosion vicinity, it is essential 

to est imate the effect this will produce on the maximum range distance. Let us analyze 

a simple type of fragment. 



Consider a uniformly thick flat plate of i r r egu la r edge outline, as diagramed below: 

The XY plane is paral le l to either face of the plate. The PZ axis is perpendicular to 

either face of the plate. It is not expected that all fragments will be entirely flat, as in 

the diagram, because bending, curling or folding may take place. These effects will be 

considered la ter , after the simplified analysis . 

The most general motion of the fragment consists of a displacement of the center of 

mass (Point P) along the line PM, plus a rotation about the center of m a s s . Point P . The 

rotation can be described in t e rms of angular velocity components about the three pr inci

pal perpendicular axes PX, PY, and PZ (fixed with respect to the fragment). The three 

principal axes correspond to the axes of the tensor of inert ia , defined as follows: The 

angular momentum is defined as the product of the tensor of inertia and the angular 

velocity vector. The tensor of inertia is diagonalized (off-diagonal elements a r e zero) 



for only one orientation of a rectangular coordinate system through the center of mass . 

Then the three diagonal elements of the tensor of inertia a re the three "principal" 

moments of inertia (about the axes PX, PY, and PZ, respectively). 

The angular velocity component due to turning about the axis PZ will be called 

"spinning", while the resultant angular velocity about the axis PW due to turning about 

PX and PY will be called "tumbling". Tumbling is measured by a single angular velocity 

vector located along the axis PW, somewhere in the XY plane, whose components a re the 

angular velocities about the PX and PY axes, respectively. 

The direction of motion PM, of the center of mass P, will not remain for any length 

of time near the XY plane (parallel to either face of the plate) because of the instability 

discussed in the previous section. When the direction PM of the center of mass displace

ment is near the XY plane, and there is appreciable "spinning" (about the axis PZ), the 

overturning aerodynamic torque will tend to cause precession of the total angulsu: velocity 

vector. 

If the spinning velocity is relat ively smal l , we may neglect the precession, and con

fine our attention to the tumbling motion. 

Neglecting precession, the axis PW tends to remain fixed in direction relative to 

a stat ionary system of coordinates, because the angular momentum direction remains 

nearly constant after the fragment leaves the explosion. Aerodynamic torque is zero 

on the average, over one complete revolution, for a flat plate, although the torque at 

every instant is not zero. Thus the magnitude of the angular momentum vector is sub

ject to oscillation during the period of one complete tumbling revolution, but exhibits 

negligible net change per revolution. 

As already mentioned, the direction of PM, the displacement of the center of mass , 

cannot remain permanently near the XY plane since this is an unstable configuration. 

Therefore we consider only the case in which the direction of PM is perpendicular to the 

tumbling axis PW which in turn is in the XY plane. 

At any instant of time during a period of revolution (tumbling), the frontal projected 

a rea A of the fragment will have a value which depends on the tumbling angle H at that in

stant. F rom Eq A-1 in the Appendix, the drag force at any instant is proportional to the 

frontal projected a rea A, and to the drag coefficient C_ .̂ In Fig. 29, Chapter 3, of Ref 2 

it is shown that the drag coefficient C_ of a very thin plate is practically constant, and 

greater than 1. 0, over a wide range of inclination angles. According to Eq A-1 , this 

implies that the actual drag force is directly proportional to the projected face area A„ 

of the plate. At any instant this is equal simply to the actual face a rea of the plate A. 

t imes the cosine of the inclination angle H. Thus 



A p = A^(cos H) (0< H< 90°) . (4) 

When the inclination angle H is 90 degrees , the projected face a rea A „ is zero . Since 

the plate which represen t s an actual shrapnel fragment has an appreciable thickness, the 

edge area corresponding to this thickness will produce a certain residual drag force even 

when the inclination angle H is 90 degrees . Thus it is necessary to include the projected 

edge area A_ in calculating the total projected a rea A of the plate at any instant. The 

total projected a rea A at any instant is 

A = Ap + Ag (5) 

in which the projected edge a rea A „ is 

Ag = A sin H (0 < H<.90°) (6) 

and A is an edge area which can be defined in t e r m s of the rotation axis W'PW in the 

diagram. When the inclination angle H is 90 degrees , the projected edge area A is a 

maximum, and equal to A , according to Eq 6. The maximum projected edge a rea A 

is equal to the thickness of the plate t imes the length AB. The length AB is the maximum 

extension of the plate along the rotation axis W'PW. Substituting Eqs 4 and 6 into Eq 5, 

A = Aj cos H + Ag sin H (0 < H:^ 90°) (7) 

The res t r ic t ion of the inclination angle H to the first quadrant is required to insure that 

each separate a rea in Eq 7 remains positive. From the symmetry of the plate, in which 

the edge a rea A is assumed to be perpendicular to the face a rea A it follows that the 

total projected area A will vary in the same way in each of the four quadrants during one 

complete tumbling revolution of the plate. Thus Eq 7 can be used to obtain the projected 

area A at any instant during a complete revolution of the plate. 

Substituting the expression for A from Eq 7 into Eq A - 1 , the drag force f„ at any 

inclination angle H is 

f „ = (0. 5) C^ P V^(A. cos H + A sin H) (8) 
H D a i e 

in which the symbols represent 

C_ = Drag coefficient (dimensionless) 
3 p = Air density (gm/cm ) 

3 



V = Velocity of plate, center of mass (cm/sec) 

fTT = Drag force (dynes) 

The areas A and A. are measured in square centimeters. 

If we define a thick plate shape factor R„ (dimensionless) given by 

R = A /A = edge area - . 
E e' f face area 

we may eliminate A in Eq 8 and obtain 

f„ = (0. 5) C„P V^A.(cos H + R„ sin H) (10) 
xi u a I ill 

Solving Eq A-4 for A gives 

A = 2km(p^Cj^)'-^ (11) 

In Eq 11, define k = k. when A = A.. Then 

A^= 2k^( pC^)~^ (12) 

Substituting the value of A. from Eq 12 into Eq 10 gives 

f^ = k^mV^(cos H + Rg sin H) (13) 

with symbol designation 

m = Mass of plate (gm) 

k„ or k = Air drag parameter defined by Eqs A-4 and A- 3' 

The air drag parameter k has the dimension of reciprocal length, and is the same k p re 

viously appearing as character is t ic distances k or k , noted in connection with Eqs 2 
3 

and 3. 

Assuming a uniform speed of rotation, in which the period of one complete revolution 

is equal to T seconds, the inclination angle H at any instant of time t is found from 

H, , > = 360°(t/T) 

(degrees) ' 

or (14) 

H(radians)=<6-28)(t/T) 



The total drag impulse given to the plate during a complete revolution is four t imes the 

impulse given in one quar ter of a revolution, because the projected area var ies in the same 

way with respect to H in each of the four quadrants. Therefore the average drag force 

can be found from the impulse I given to the plate during one quarter of a complete period 

of revolution, T/4. The impulse for one quarter of a period is 

•I 
T/4 

1 = ] fjjdt (15) 

Therefore, from Eqs 13 and 15, after eliminating H through Eq 14, the impulse I is 

2 f^/^ r 1 
I = k ^ V I cos (6.28 t /T) + Rg sin (6.28 t / T ) d t 

which is equal to 

I = (2ln) k^mV^d + Rg) (T/4) (16) 

The drag impulse I is defined in t e r m s of the average force f during one quarter of a 

period of revolution 

I = ( T / 4 ) f ^ (17) 

Using the value of I from Eq 17, Eq 16 becomes 

f^= (1.57)"^ k^mV^d + Rj,) (18) 

If we consider a nontumbling plate which may oscillate slightly, the average pro

jected a rea A is approximately equal to the face a r ea A„. In this case we set A = A„ in 

Eq A-1 and eliminate A., using Eq 12, which gives 

f J = k ^ V ^ 

(nontumbling) 

We can also obtain the same resul t by simply letting H = 0 in Eq 13. Dividing Eq 18 by 

Eq 19, we obtain 

f^/f.= ( 1 . 5 7 ) ' N l + R E ) (20) 



Equation 20 shows the rat io of the average "tumbling" rotational drag force f to the drag 

force f„ on a nontumbling plate. 

In order to cor rec t the horizontal range when the plate is tumbling, it is only nec

es sa ry to cor rec t the charac ter i s t ic distance k . which corresponds to a nontumbling 

plate. From Eq 19, 

k j ^ = (mV^) fj^ (21) 

If we define a new charac ter i s t ic distance k for the tumbling rotational case, Eq 21 be

comes 

k^^ = (mV^)f'^ (22) 

Dividing Eq 22 by Eq 21 

k-1 
- ^ = f f / f , (23) 

Substituting the value of f„/f from Eq 20 into Eq 23 gives 

^ = (1.57)(1 + R„)'-^ (24) 

^f 

in which k is the corrected value of k„ that must be used when the fragment is tumb

ling during flight. The value of k, is the same as the value of k in Eq A-4 with A replaced 

by A„. Note that R „ is defined by Eq 9. Equation 24 may also be considered to r e p r e 

sent the rat io of the face a rea to the average projected area of the tumbling plate. 

In Eq 24, the correct ion factor k /k„ has its largest value, namely 1. 57, when 

R_ = 0. Clearly, the shape corresponding to a vanishingly small R_ is an "infinitely 

thin" plate. When R_ = 1 . 0 the edge a rea A is equal to the face a rea A. as follows 

from Eq 9. A well-known example of such a regular solid is the cube. The square ba r 

is another example of special symmetry in which R^, = 1. 0 provided the tumbling axis 

PW is paral lel to the longer dimension, as in the diagram. 

Numerous examples of polygonal plates could be given, in which the effective edge 

area is equal to the face area . Note, however, that Eq 24 applies to any flat plate, no 



matter what value of R „ corresponds to it, and the plate does not need to be polygonal. A 

"flat" plate, by definition, has at leas t two equal and para l le l face a reas . 

In Eq 24 the minimum value of k / k . , namely 0. 785, is reached when R_ = 1 . 0 , 

because no la rger value of R_, can occur for any type of fragment. If one considered a 

"mathematical" value of R' grea ter than 1.0, it is evident that it would correspond 
-1 -1 

physically to a shape with (Rj,) = B,„ in which (Rg) is l e s s than 1. 0. An "edge-area" 

greater than a " face-area" has no meaning in t e r m s of the thickness factor R „ ; ie, the 

edge-area must always be l ess than the face-area, by definition. 

Some things should be said concerning the most probable values for Rg in an actual 

.explosion, in which fragments a r e produced by rupturing a meta l case . On general 

principles, one can be su re that the maximum dimension of any fragment will be l ess 

than the radius of the container surrounding the explosive charge, for such devices as 

bombs or depth charges . Of course , when an explosive charge is not "closely" contained 

or when large asymmetr ies exist, the fragments may be l a rger . The largest shrapnel 

fragment from a "closely-cased" bomb will, therefore, have a face area and an edge 

area which correspond to an R „ value, from Eq 9, considerably grea te r than zero. The 

most probable value of R_ is a stat ist ical quantity that can only be found by observing a 

large number of fragnaents from many bomb explosions involving the same type of con

tainer. The "median" of R^, is 0. 50, which is half way between the extreme values; but 

this is not necessar i ly the most probable value of R „ . This could be true only if all values 

of R_ were symmetr ical ly distributed on both sides of the 0. 5 value. As a rough es t i 

mate, until further information is available, one may take R_ = 0. 25 as a "probable min-

imuna". This corresponds to a rea l is t ic "probable maximum" range, since the R „ t e r m 

appears in the denominator of the right side of Eq 24 from which the corrected charac ter 

istic distance k is reckoned, 

r 

The maximum-range curves plotted in Fig. 4 cover (by interpolation) all the pos

sible magnitudes of R „ from zero to 1.0. Therefore, these range curves a re universal , 

and can be used to make more accurate range predictions whenever there is more infor

mation available concerning most probable R_ values that correspond to actual fragments 

from various types of explosions. 

Maximum Missile Ranges 

The procedure for calculating the maximum range of a projectile can be developed 

simply from the character is t ic -d is tance Eq 3 in conjunction with the rotation correct ion 

factor just derived in Eq 24. Taking average values along the t rajectory (subscript a) 

the corrected charac ter i s t ic distance is determined from Eq 24. 



(k~J\ = (1.57)4'^) (1+R^)'^ (25) 

in which (k 1 is the corrected value of 1 k„ | due to (tumbling) rotation, and ( k. ) 

is defined by an equation s imi la r to Eq 3, but with A replaced by A„. See Eqs 12, 18, and 

19 above. 

(k f ' \=<0 .167) ( s^ ) ( c^ l )^ (P^/P^) 

(nontumbling fragment) 
(26) 

Equation 26 is identical to Eq 3 except that s is replaced by s„. The quantity s . is 

defined as the fragment (flat-plate) volume divided by the face area A.. Thus s„ is the same 

as the quantity s with A replaced by A.. Therefore, s„ is constant and is practically equal 

to the case thickness s (measured in inches), unless the fragment is bent or curled. Bent 

or curled fragments a re considered in the next section. Equation 26 gives the value of k 

from Eq A-109 averaged along the trajectory, which resul ts in Eq 3 with subscript a, and 

also with the variable projected a rea A replaced by the constant face area A.. Hence the 

subscript f appears in Eq 26 which refers to a nontumbling fragment. 

Substituting the expression for I k . ) from Eq 26 into Eq 25 we obtain the character -
/ -i\ ^ 4 

is t ic distance Ik j for a rotating (tumbling) projectile 

K = (0. 262)(s^,)(c^^) (P„/P,H1 + ^w'^'^ (27) 
TV 0 4 P"̂ a''̂  "E' 

f;1 K= k"M (28) 

by definition. 

The general method for calculating a typical maximum horizontal range distance 

s i l lustrated in Tables I and 11. The various steps in the calc 

column to column in each table according to the following schedule. 

(x„) is i l lustrated in Tables I and 11. The various steps in the calculation proceed from a 
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step 

No. ; Calculation steps 

1 K Characteristic distance, feet, from Eq 27 above 

2 r From EqA-68 with k replaced by (k ) for a 
3 x̂  3 

rotating fragment. From Eq 28 we obtain (k ) 

= K" . Therefore, 
r = K 1^B/.) 

3 B From Fig. 3, using r from Step 2 

4 Q From Eq A-90 with N = 0 since r > 40 for frag

ments. Thus: 

Q = cos B 
m 

5 w From Eq A-21, with k replaced by (k" ) for 
a \ '• ' a 

a rotating fragment. From Eq 28, (k ĵ = K-

Therefore, 

w = KQ 

6 F From Eq A-103, with N = 0. Thus, F = 2r sin B 
' r m 

7 (Zĵ ) From Fig. 1. 

8 (•'̂ R^ Maximum horizontal range, feet, from A-50. 

Thus, 

(Xj^) = (0. 5)w(Zj^) 

Definitions of all symbols involved in the above steps are given in the Appendix in 

connection with the equations located there. 

In order to carry out all the steps it is necessary to know the magnitudes of the fol

lowing quantities: 

s„ &i = Effective fragment thickness (inches) 
f Face area ^ 

(C-̂ ) Drag coefficient, averaged along the trajectory (dimensionless) 
±j a 

3 
Pp Projectile density (gm/cm ), numerically equal to the specific 

gravity relative to water 
o 

â Air density (gm/cm ), averaged along the trajectory 

R_ Dimensionless shape factor, —, ^ 
E ^ Face area 



V-p. Initial speed of fragment (ft/sec) 

g Acceleration due to gravity, 32 f t /sec 

Values assumed for these quantities a re as follows: 

^ B 10, 000 f t /sec 

R Assigned 0. 0, 0.25, 0.50, 0.75, and 1. 0 

Pp 2.7 for aluminum, or 7. 8 for steel 

s„ Assigned values from 0. 5 to 10. 0 inches 

p-\=Cn3){pJp)(l+^^i^^ (29) 

in which 

-1 3 
P = Air specific volume, cm /gm, at a barometr ic p ressure of 

p inches of mercury (for dry air) 

p = 29. 92 inches of mercury 

Fo r use in the Coyote Canyon test field (Sandia facility), the specific volume (Eq 29) 

should be evaluated at a barometr ic p re s su re which corresponds to the average altitude 

of a shrapnel fragment trajectory. This average altitude is taken to be 7500 feet above 

sea level, at which the barometr ic p ressure p is about 22. 65 inches of mercury, accord-
3 

ing to the NACA Standard Atmosphere. The maximum temperature is arbi t rar i ly a s 
sumed to be 30 C (in the summer) . With these values Eq 29 gives the a i r specific 
volume P , averaged along the trajectory, 

3 

P~^ = (1. 13)(10^^cm^/gm 
3 

By Eq 27, the character is t ic distance K is directly proportional to P , and there-
3 

fore K is directly proportional to the absolute air temperature by Eq 29. In order to be 

on the safe side in estimating miss i le ranges, one should choose an air temperature which 

IS as high as ever expected to occur at 7500 feet altitude. This has been assumed as 30 C 

(86 F). There is also a range of possible barometr ic p re s su re s , but this small percentage 

From Ref 3, page 2001. 



variation has been neglected in deriving the value P = (1 . 13)(10 ) cm /gm as the specific 
3 

volume of a i r to be used in fragment range calculations. 

TABLE I 

Initial angle for maximum range of aluminum fragments 
moving at 10, 000 f t /sec , assuming: The shape factor 

-1 3 3 
R = 0. 25, Air specific volume P = 1. 13(10 ) cm /gm, and C = 1.0 

Effective 
fragment 
thickness 

^f 
(in) 

0 . 5 
1.0 
1.5 
2 . 0 
3 .0 
4 . 0 
5. 0 
6 . 0 
7 . 0 
8 .0 

10. 0 

Character is t ic 
distance 

K 

(ft) 

320 
640 
960 

1280 
1920 
2560 
3200 
3840 
4480 
5120 
6400 

A i r 
res is tance 

r 

(g's) 

9740 
4870 
3250 
2440 
1620 
1220 

975 
812 
695 
610 
487 

Angle for 
maximum 

range 
B m 

(deg. ) 

17.5 
18.0 
18.2 
18.5 
19.0 
19. 3 
19. 7 
20, 0 
20. 1 
20.2 
20.5 

Q 
cos B 

m (dimensionless) 

0.95 
0.95 
0.95 
0.95 
0.95 
0.94 
0.94 
0.94 
0.94 
0.94 
0.94 

TABLE II 

Maximum range of aluminum fragments moving at 10, 000 f t /sec 

R = 0. 25, P"^ = (1. 13)(10^) cm^/gm, C = 1.0 

Effective 
fragment 
thickness 

^f 
(in) 

0 . 5 
1. 0 
1.5 
2 . 0 
3 .0 
4. 0 
5. 0 
6. 0 
7. 0 
8 .0 

10.0 

Relaxation 
distance 

w 

(ft) 

304 
608 
910 

1220 
1820 
2400 
3000 
3600 
4200 
4800 
6000 

Acceleration 
ratio 

F 

(dimensionless) 

5820 
3020 
2020 
1550 
1050 

805 
660 
552 
480 
427 
340 

Distance 
rat io 

^R 
(dimensionless) 

11. 1 
10. 3 

9. 9 
9 .6 
9 .2 
8 .9 
8.7 
8 .5 
8. 3 
8.2 
8 . 0 

Maximum 
horizontal 

range 

^R 
(ft) 

1,690 
3,140 
4,500 
5, 850 
8, 350 

10,700 
13,100 
15, 300 
17,400 
19,700 
24,000 



Ranges of I r regular Fragments 

The resu l t s of Table II and of s imi lar calculations a re plotted as curves in Fig. 4 

for aluminum and s teel fragments. The maximum ranges a re given in t e r m s of the fun

damental parameter s., the "effective" fragment thickness, measured in inches. Each 

curve corresponds to a fragment of a certain shape as indicated by a fixed value of the 

shape factor R„. A relatively thin flat fragment corresponds to Rp,= 0. A cube co r r e 

sponds to Rp = 1 . 0 , and intermediate shapes have intermediate Rp magnitudes. 

It must be emphasized that the "effective" thickness s., used in Fig. 4, is not in 

general equal to the container thickness S unless the fragment is approximately a flat 

plate. 

When the fragment consists of a bent, curled, or folded plate, the previous defini

tions must be extended in order to est imate the corresponding range distances. The ef

fective fragment thickness s„ has been defined previously as 

where 
where 

Sj = V^/A^ (30) 

s . = Effective thickness (inches) 
3 

V„ = Fragment volume (in ) 
2 

A„ = Face a rea (in ) 

For a flat plate, the face area A„ is unambiguous, but the "face a rea" A„ of a bent, curled, 

or folded plate is as yet undefined, and has no meaning. In order to extend the definition, 

we refer to Eq 7, which gives the frontal projected a rea A in t e rms of the two areas A 

and A„. From Eq 7, it is c lear that the "edge-area" A is the minimum frontal projected 

area , and this minimum occurs when the inclination angle H is equal to 90 degrees. This 

conclusion applies as yet only to a flat plate. By analogy, let us define A as the mini

mum frontal projected a rea of a bent, curled, or folded plate, and let us choose the angle 

H so that H is 90 degrees when the bent, curled, or folded plate presents its minimum 

frontal projected area. Then, in order to p reserve the form of Eq 7, we define A . as the 

frontal projected a rea of the bent, curled, or folded plate when the inclination angle H is 

zero. Obviously this occurs when the fragment has turned 90 degrees from the position 

where it presented its minimum frontal projected area, defined as A , It follows from this 

extended definition that the generalized "face a rea" A, is always approximately equal to the 

maximum frontal projected a rea of the fragment. 

Using the extended definitions of A and A., derived above, we can calculate the 

values of s . and R„ for a bent, curled, or folded fragment, using Eqs 30 and 9, r espec-
I ill 

tively. The ranges a re then obtained from Fig. 4 using the values of s . and Rp so obtained. 



Results and Discussion 

It is of in teres t to compare the range predictions of the present repor t with the 

ranges predicted by the cube root formula 

1/3 
Range in feet = (600)(charge wt. ) ' (31) 

where charge wt = pounds of TNT equivalent. A miss i le from a 250 -pound TNT eqtiivalent 

explosive charge was observed to land at 5500 feet. According to the cube root, Eq 31, 

the corresponding explosive charge should have been at least 780 pounds. 

The miss i le in question consists of a 3/8-inch steel plate folded so that the actual 

face area A. is only about (0. 55) t imes the "unfolded" flat plate face area , which we desig

nate as A' . The effective thickness s , is derived from Eq 30 by substituting the relation 

Aj = (0. 55)A^ (32) 

Eliminating A„ from Eq 30 by using Eq 32, 

Sj = (0. 55)'-^Vj(A')"^ = (0. 55)"^S (33) 

But V.(A!,) is simply equal to the "flat plate" thickness designated as S in Eq 33 above. 

This is also the container thickness. Since S is equal to 3/8 inch in the present instance, 

we obtain the effective fragment thickness, 

s^ = (0. 55)"-^(3/8) = 0. 68 inch (34) 

The fragment has a shape corresponding to an R_, value of about 0. 25. Using R „ = 0. 25 

and s . = 0. 68 inch, from Eq 34, the predicted maximum range is obtained as 5750 feet, 

by using Fig. 4. 

This prediction assumes a maximum initial fragment speed of 10, 000 f t /sec , which 

would always be nearly reached when the explosive charge weight is greater than the case 

weight. 

Note that the explosive charge weight does not appear in Fig. 4. Also it should be 

pointed out that the curves in Fig. 4 refer to the range of a projectile which s t a r t s off at 

the optimum initial angle with respect to the horizontal direction, at which the maximum 

possible range occurs for a given initial velocity. It will now be shown that the explosive 

charge weight has an appreciable effect on the maximum horizontal range only when the 

22 



charge weight is much smal ler than the case weight. The formula given in Ref 1 for TNT 

charges is 
j . 

initial miss i le velocity f t / sec = (6940)(0. 5 + R) (35) 

in which 

P Case weight 
" Charge weight (TNT) 

1 /2 
Note that the Gurney energy-density constant (2E) ' is 6940 f t /sec for TNT. As an ex
ample, let us assume that the charge weight is equal to the case weight. Then by defini
tion 

R= 1. 0 

and the corresponding initial miss i le velocity from Eq 35 is 5670 f t /sec . In order to see 

what effect this would have on the maximum range we refer to the eight steps of the calcu

lation schedule preceding Table I. The figures to be used in Step 1, Eq 27, a re 

s . 0. 68 inch, effective fragment thickness 

(C_) 1. 0, drag coefficient 

Pp 7. 8, density of s teel 

-1 3 3 p 1. 13 (10 ) cm /gm, specific volume of air at 7500 ft 
3 

Rp 0. 25, shape factor 

Vg 10, 000 f t /sec , and also 

Vg 5670 f t /sec 

The above values refer to the actual fragment which landed at a distance of 5500 feet. 

These values also refer to the graph (Rp = 0. 25) in Fig. 4 for a steel fragment mov

ing initially at 10, 000 feet per second. Thus the list of eight s teps below serves a double 

purpose. F i r s t , it shows how the maximum horizontal range of a projectile is affected 

by a change in the initial speed. Second, it shows the derivation of a graph in Fig. 4 

which is not included in Table I or II. 



The eight s teps in the calculation of each initial speed a r e : 

K 

r 

B 
m Q 

w 

F 

=̂ R 

^R 

V3=10, 

1260 ft 

2480 

000 

18. 5 degrees 

0.94 

1185 ft 

1570 

9.65 

5720 ft 

V g = 5670 

1260 ft 

797 

20. 0 degrees 

0.94 

1185 ft 

545 

8.5 

5040 ft 

When the weight of the explosive is equal to the case weight, we see that the 43 per

cent reduction in initial speed Vp changes the horizontal range from 5720 to 5040 feet 

which is only a 12-percent reduction from the limiting value for large charge weights. The 

corresponding change in optimum direction angle B is from 18. 5 degrees to 2 0 degrees, 

which is only an 8-percent increase. These resu l t s directly indicate that a negligible 

reduction in the miss i le range occurs even when the explosive charge weight is as small 

as the case weight. If the charge weight is much less than the case weight, one should 

ca r ry out additional calculations s imi lar to those just given in order to make a significant 

downward revision of the safe miss i le ranges given in Fig. 4, which a re the limit values 

approached when the explosive charges a re very large. 

Although the maximum ranges in Fig . 4 were necessar i ly determined only for the 

optimum initial direction angle (B = B ) for each projecti le, it can be shown that the 

corresponding ranges for other direction angles a re not appreciably reduced unless the 

direction angles in question are much less or much grea ter than the optimum for each 

fragment. Thus there is a large solid angle surrounding the explosion, through which 

many fragments will t ravel out to large distances, nearly as great as the maximum ranges 

which a re given in Fig. 4. 

To prove this statement, we calculate the range corresponding to 

Vg = 10,000 f t /sec 

and 

B = 5 degrees 

for the same shrapnel fragment as before. The eight steps of this calculation a re the same 

as the eight steps of the preceding calculation (in the Vp = 1 0 , 000 column), except that 



B = 18. 5 degrees is replaced by B = 5 degrees. Thus we obtain in this instance 

K 

B 

w 

Z T , 

1260 ft 

5 degrees 

1255 ft 

8.2 

r 

Q 
F 

x„ 

2480 

0. 996 

433 

5150 ft 

We see that the range 5150 feet when B = 5 degrees is a reduction of 10 percent from the 

range 5720 feet corresponding to the optimum direction angle B = 1 8. 5 degrees. This 

is nearly the same as the 12-percent reduction already calculated for the reduced initial 

speed 5670ft/sec. This shows that miss i l es can leave the explosion at any angle between 

5 and 18. 5 degrees and sti l l t ravel near ly all the way out to the distance 5720 feet cor

responding to 18. 5 degrees. (The distance 5720 feet is also the one given in Fig, 4.) 

A further calculation shows that the direction angle B can be considerably greater 

than 18. 5 degrees (for the fragment under consideration) before the range drops by as 

much as 10 percent, and it is evident that s imi lar calculations may be made for all the 

ranges indicated by the graphs in Fig. 4. 

Finally, it may be of some interes t to show to what extent the cube root range, Eq 31, 

is supported by the theory derived in this report . F i r s t of all, if the case weight is always 

the same proportion of the explosive charge weight, a geometric analysis (based on con

stant density) shows that the case thickness must vary as the cube root of the charge weight. 

The cube root formula, Eq 31, would then be valid, provided the range were simply pro

portional to the case thickness S. When the curves of Fig. 4 a r e plotted on ordinary 

graph paper instead of on logarithmic graph paper it is found that the relation between the 

"effective" fragment thickness s . and the range is almost a straight line. If the plot in 

each case were exactly a straight line, the trend of the cube root law Eq 31 would be ex

actly confirmed (at least for high-speed fragments). It is evident that in general the case 

weight is not always the same fraction of the charge weight. Therefore, Eq 31 can not be 

correc t for all types of explosions, because a different multiplying factor would be r e 

quired for each different ratio R of the case weight to the explosive charge weight, even 

neglecting the effect of folding or curling of the fragments (which resu l t s in fragments 

which have effective thicknesses different from the case thickness). 

Conclusions 

When the explosive charge weight is grea ter than the case weight, the max

imum horizontal range is obtained from Fig. 4. This range depends only on the 

assumed size and shape of a fragment. 



When the explosive charge weight is much less than the case weight, the 

range of a fragment is significantly less than that shown in Fig. 4 and depends on 

the charge weight as well as on the fragment geometry. The method of calcula

tion is explained in the report . 

Since cube root scaling is relat ively cor rec t , approximate distances 

(neglecting exact fragment geometry), can be found by using the cube roots of 

the different charge weights (pounds), with a single constant multiplying factor 

of 600 feet. More accurate distances must be obtained from a set of different 

multiplying factors. These multiplying factors can be found only by using the 

methods summarized in conclusions 1 and 2 above, supplemented by actual ex

perience with various types of explosions. 
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APPENDIX 

DERIVATION OF GENERAL TRAJECTORY FORMULAS 

Differential Equations 

The motion of a projectile in a i r is re tarded by a drag force f„ which is proportional 

to the square of the projectile velocity V at any point along its path: 

f-^= (0. 5)C^AP^V^ (A-1) 
D D a 

by definition, with 

f Drag force (dynes) 

C„ Drag coefficient (dimensionless) 
2 

A Frontal projected a rea (cm ) 

Pa Density of air (gm/cm ) 

V Projecti le velocity (cm/sec) 

The drag force f rcbults in a deceleration vector a_ for the projectile, directed 

180 degrees relat ive to its velocity vector, as shown in Diagrams 1 and 2 below. The 

magnitude of the deceleration vector is determined by Newton's second law. Hence, 

aj-j=m"^j_j (A-2) 

m Mass of projectile (grams) 
2 

a „ Deceleration of projectile due to drag (cm/sec ) 

f_ Drag force (dynes) 



The direction of the velocity vector V is at an angle b with respect to the horizontal 

direction. The direction of the decelerat ion vector a_ is at an angle 

Diagram 1 
(velocity) 

Diagram 2 
(deceleration) 

I 
V a 

y y 

l 8 0 + b 

of 180 + b with respect to the (forward) horizontal direction, as indicated in Diagram 2. 

Substituting the expression for f— from Eq A-1 into Eq A-2 gives 

^D = *^V' (A-3) 

with 

k = (0. 5)P^Cj^(A/m) (A-4) 

by definition, 

where the symbols have already been defined following Eqs A-1 and A-2. 

The physical meaning of the quantity k is made clear by expressing the drag decelera

tion a in t e r m s of the distance S along the path of the projectile. Let dS be the element of 

length along the path. The drag accelerat ion (-Spv) is identically equal to 

-a^ = dV/dt = (dV/dS)(dS/dt) = VdV/dS 

Therefore, we may rewri te A-3 by substituting for a_ 

-V(dV/dS) = kV^ 



2 
After dividing by V this becomes 

z.qli - k (A-3.) 

Equation A - 3 ' shows that k is simply equal to the relative fractional loss of velocity per 

unit distance along the trajectory, due to the influence of a i r res is tance. 

The deceleration a „ of the projectile always acts in a direction opposite to its ve

locity, as shown in Diagrams 1 and 2, whereas the acceleration g due to gravity always 

acts in the same downward direction at every point along the projectile path. The angle 

b in Diagrams 1 and 2 is in general different for each point along the projectile path, 

since the direction of the velocity vector is continually changing. Thus it is necessary to 

resolve the drag deceleration a_ into horizontal and vertical components, namely, a 

and a as indicated in Diagram 2. In t e rms of the angle b these components may be ex

pressed as 

2 
a = a_ cos b = kV cos b (A-5) 

X D 

2 
a = a^ sin b = kV sin b (A-6) 
y D 

in which a has the magnitude given by Eq A-3. The total resultant projectile acceleration 

components due to the combined effect of gravity and drag a re therefore 

dV /d t = -kV^ cos b (A-7) 
x' 

dV /d t = -g -kV^ sin b (A-8) 

in which the horizontal and ver t ical components V and V of the velocity vector V are as 

indicated by Diagram 1. In t e r m s of the rectangular coordinates of the projectile, x and 

y, and the time t 

V = dx/dt (A-9) 

V = dy/dt (A-10) 

by definition. 

In Eqs A-7 and A-8 the projectile acceleration components dV /dt and dV /d t a re 
^ y 

both negative, because the projectile velocity is decreasing as the time t is increasing. 



From Eqs A-9 and A-10 and the definition of the tangent of b in Diagram 1 

V /V^ = tan b = dy/dx (A-U) 

From Diagram 1 and the definitions of the sine and cosine 

cos b = V / V (A-12) 

s i n b = V / V (A-13) 

Dividing Eq A-8 by Eq A-7 gives 

dV /dV = t a n b + g(kV^)"-^(sec b) (A-14) 

y X 

Introducing a new variable, let 

u= tan b (A-15) 

by definition. 

Then from Eq A-11 
V = uV (A 16) 

y X 

Differentiating Eq A-16 with respect to V resu l t s in 
X 

dV /dV = u + V (du/dV ) (A-17) 
y' X X ' X 

Substituting the value of dV /dV from Eq A-17 into Eq A-14 and noting that u = tan b 
y X 

as defined in Eq A-15 we obtain 

From Eq A-12 

V (du/dV ) = g(kV^)'^ (sec b) (A-18) 

V= V^(sec b) (A-19) 

Substituting the value of V from Eq A-19 into Eq A-18 and dividing by V gives 

du/dV^= gV^^[(k"^)(cos b)] (A-20) 



!

Q = average value of (cos b) = (cos b) 

w = average value of k (cos b) = (k ) (cos b) 

w = ( k ' ^ ) Q=(k ' -^) (cos b) (A-21) 
a a a 

in which w is the average value of k (cos b) along a short a rc of the trajectory. Then 

one can integrate Eq A-20 along this short a r c for which k" (cos b) is nearly constant. 

Integrating A-20, using A-21, gives 

u = Ug + (0. 5)gwrvJ^ - Y~J\ (A-22) 

where u_ is the initial value u and V. is the initial value of V at the beginning of the short 

arc of the trajectory. F r o m Eqs A-21 and A-4 

w= 2(P C^) ' ^ (m/A)Q (A-23) 
a D a 

in which average values of C ^ and p along the short a rc must be used, as well as Q which 

is the average value of (cos b). Let the initial value of b at the beginning of the short a rc 

of the t rajectory be defined as B. Then from Eqs A-15 and A-12 

u = tan B (A-24) 

V, = V„ cos B (A-25) 

in which V_ is the initial value of V at the beginning of the a rc . In other words, V„ 

is the initial magnitude of the velocity vector. Thus all the quantities have been defined, 

that appear in Eq A-22. F rom Eqs A-15 and A - U it follows that in Eq A-22 

u = dy/dx = slope of t ra jec tory (A-26) 

where x and y a re the rectangular coordinates of the projectile at any point along its path, 

relative to the start ing point. In order to ca r ry out the integration of Eq A-22 to determine 

the shape of the projectile path in t e rms of the rectangular coordinates x and y, it is nec

essary to evaluate the unknown horizontal velocity component V which appears in Eq A-22. 

To determine V it is evident that Eq A-7 must be integrated. To do this we note 

that 

dV /d t = (dV /dx)( dx/dt), identically. (A-27) 



But from Eq A-9 this can be written as 

dV / d t = V (dV /dx) (A-28) 

Substituting the expression for dV /d t from Eq A-28 and the expression fo r V from A-19, 

the acceleration formula,Eq A-7, is modified so that only the unknown quantities x and V 

a re present . 

dV / d x = -Msec b)V (A-29) 

In obtaining Eq A-29, we have divided both sides of the intermediate equation by V (which 

may be done legitimately, since V is never equal to ze ro ) . Equation A-29 may be r e a r 

ranged to give 

dV , 
^ - (A-30) 
X k (cos b) 

Over a short section of trajectory for which k (cos b) is nearly constant, we use the aver 

age value defined by Eq A-21 , and Eq A-30 becomes 

dV^/V^= -dx/w (A-31) 

in which the explicit representat ion of w is given by Eq A-23. Integrating Eq A-31 we ob

tain 

logg(V^/V^)= -x/w 

in which V = V when x = 0 at the beginning point of the trajectory, as defined by Eq A-25. 

Solving for V gives 

V^/V^ = exp ( -x/w) (A-32) 

in which exp is the exponential function to the base e. 

In Eq A-32 all the symbols have been defined previously. In part icular , the expres

sion for w is given by Eq A-23. F rom Eq A-32 it is evident that w is the horizontal dis

tance X at which the horizontal velocity component V has fallen to l / e of its initial magni

tude. Note that exp (-1)= l / e = 1/2. 72= 0. 368, because of the propert ies of the exponen

tial function. Thus w may be called the "relaxation distance". 

The time of flight t is found from substituting the expression forV from A-9 into A-32 

and taking the reciprocal . This gives 

dx/dt = V^ exp (-x/w) (A-33) 



dt /dx= V[^exp(x/w) (A-34) 

Integrating Eq A-34 between l imits t = 0 when x = 0 t o t = t at a horizontal distance 

X along the trajectory measured from the beginning the time of flight t is 

t^ = (w/V^)(-l + exp x/w) (A-35) 

in which t is in seconds if w is in feet and V, is in feet per second, x 1 *̂  

In order to find the vert ical height y Eq A-22 must be integrated. Substituting the 

expression for u from Eq A-26, the expression for V from Eq A-32, and the expression 

for u-p. from Eq A-24, Eq A-22 can be written as 

^ ^ ^ = 1 - F ' ^ [ - l + exp(2x/w)] (A-36) 

in which, by definition, 

F = 2(wg)'^V^(tan B) (A-37) 

and V^ is given by Eq A-25. 

Substituting the expression for V. from Eq A-25 into Eq A-37, and observing that 

2 sin B cos B = sin 2B 

from trigonometry, Eq A-37 becomes 

F = ( w g ) ' V g S i n 2B (A-38) 

in which V^, is the initial magnitude of the projectile velocity, at the beginning of its path. 

Integrating Eq A-36 with the initial condition y = 0 when x = 0 at the beginning of the 

trajectory, we find 

y / x = (tan B)(l - F ' - ^ E ) (A-39) 

in which, by definition. 

E = -1 + (2x/w)"-^[-l + exp (2x/w)] (A-40) 

The horizontal distance of any point along the trajectory is x, measured from the 

start ing point. The "relaxation distance" is w which is given by Eq A-2 3. The dimension-

less distance ratios x/w and 2x/w appear in Eqs A-40, A-36, A-35, and A-32. For this 

reason it is convenient to define a new symbol z to represent one of these dimensionless 



distance ra t ios . Let 

z = 2x/w (A-41) 

by definition. Then the fundamental t rajectory formulas, Eqs A-40, A-36, A-35, and A-32 

can all be expressed in a simplified form in t e r m s of this new dimensionless distance ra t io , 

z. 

Using A-41, the definition of E in Eq A-40 becomes 

E = -1 + z"^(- l + exp z) (A-42) 

Substituting the expression for E from Eq A-42 into Eq A-39, we find the equation 

of the trajectory in rectangular coordinates x and y 

_ Z ^ = 1 - F"^ [-1 + z ' ^ ( - l + exp z)] (A-43) 

in which z is defined by Eq A-41 in te r ras of the horizontal distance x and the relaxation 

distance w. The relaxation distance w is given by Eq A-2 3. Using EqA-41 , the slope formula 

Eq A-36 can be written as 

V /V 
tanb y' x , T-i-1/ 1 , \ /^ A A \ Ta-FB = -tkw = 1 - ̂  (-1 + exp z) (A-44) 

in which we have used the various equivalent slope representat ions 

tan b = dy/dx = V / V 
y X 

from Eq A-11 . (Note that b is the angle of the velocity vector. ) 

In order to i l lustrate the use of these formulas, let us find the altitude of the highest 

point of the trajectory. This is found from the equation of the trajectory, A-43, which gives 

the altitude y in t e r m s of the horizontal distance x. The horizontal distance x correspond

ing to the highest point of the t rajectory is found from Eq A-44 which gives the slope of 

the trajectory, tan b, at any point. At the highest point of the trajectory the projectile is 

moving horizontally, and the velocity vector angle b is zero (relative to the horizontal di

rection). Thus tan b = 0 and Eq A-44 then requi res that 

F = -1 + exp z (A-45) 
m 



in which z represen ts the part icular value of z corresponding to the distance x at which 

the highest point of the t rajectory occurs . Thus from Eq A-41, solving for x gives the 

horizontal distance x at which the highest point is located: 

x ^ = (0. 5)wz^ (A-46) 
m m 

The value of z must be determined from Eq A-45 by solving for z , which gives 

z = log (1 + F) (A-47) 
m ^e 

in which F is defined by Eq A-38. Having determined x and z , we substitute these 
'' ^ ^ m m 

values into Eq A-43 to determine the maximum trajectory altitude y 

Horizontal Range 

It is frequently required to determine the horizontal range x^ for a trajectory, as 

well as the maximum altitude y . The range Xp is defined as the distance x in Eq A-43 

at which the relat ive vert ical altitude y is equal to zero. Since x is never zero except at 

the beginning of the trajectory, this condition applied to Eq A-43 requires that the square 

bracket must be equal to F. Thus, 

F = -1 + z^^ ( - l + exp Zĵ ) (A-49) 

in which z represents the part icular value of z corresponding to the range distance x„ 

in Eq A-41 . Thus in this case we solve Eq A-41 for x and substitute x 

x ^ = (0. 5)wz„ (A-50) 

Note that z_ is the solution of Eq A-49 above, and Xp is the horizontal range. 

It is impossible to solve Eq A-49 explicitly for z„ in t e rms of F using elementary 

functions, unless an infinite se r ies is used. For specific numerical solutions, one must 

use t r ia l and e r ro r , Newton's method of approximation, or some graphical method. A 

graphical method is i l lustrated in Fig. 2 in which F is plotted in t e rms of z_ when z_ 

does not exceed 3. 0. vVhen z„ is grea ter than 2 the rapid change of exp z„ makes it de

sirable to use logari thms. Taking the logarithm of each side of Eq A-49, after adding 1 

to each side of the equation, gives 



log^Q(F + 1) = logjQ[z^^(-l + exp Zj^)] (A-51) 

In Fig. 1 various values of log, Q (F + 1) have been plotted as a curve, in t e r m s of the 

quantity z„ according to Eq A-51. Note that log. Q ( F + 1) = 0 when z„ = 0. From Fig. 1 

it is possible to determine z „ from any given F over a wide range. \Vhen z_ is l e ss than 

2 it is preferable to use Fig. 2 instead of Fig. 1 because of the grea ter percentage accu

racy with which z„ can be read on the scale of the graph. The range of F covered in Fig. 1 

is expected to cover all cases occurring in pract ice , because the largest F in Fig. 1 cor

responds to an initial a i r res is tance r of about one million t imes gravity. (See Eq A-103 

in which N is smal l compared to 1. 0.) 

For values of z_j grea ter than 4. 0, the r ight side of Eq A-49 can be represented to 

a very close approximation by the more simple function 

^R^ ^^P ^R 

Therefore, 

•1 
F ^ Zj^ exp Zj^ (A-52) 

when z_j is g rea te r than 4. 0. 

If the relaxation distance w given by Eq A-23 is nearly constant along a section of a 

trajectory, the conditions at the end of the section can be calculated with adequate accuracy 

from the conditions at the beginning of the section. 

This follows because the value of k (cos b) at any point along the section is never 

very far from the average value of k (cos b) defined as w in Eqs A-21 and A-23. In 

general, the total t ra jectory must be divided into sections over which the drag coefficient 

C is nearly constant, because the drag coefficient variation is usually the major cause 

of change in k (cos b). For high-angle t ra jec tor ies the variation of (cos b) must also be 

taken into account, since b var ies over a wider range for different points along the t ra jec

tory. The a i r density p also var ies along a t ra jectory section, and this variation must be 

included in the accurate calculation of any projectile path which r i s e s vert ically more than 

about 3300 feet above the start ing point. An altitude change of 3300 feet (1. 0 kilometer) 

resu l t s in an a i r density change of about 10 percent, according to the NACA standard 

atmosphere, quoted in Ref 3, page 3130. 

If an average air density is used in the calculation, the air density at any point would 

always be within ±5 percent of the average density for any trajectory which r i s e s less than 

3300 feet above the start ing point. 

file:///Vhen


Initial Angle for Maximum Range 

Assuming sufficiently constant conditions over the entire trajectory, one can deter

mine approximately the initial angle B at which the maximum range (x„) occurs in 

Eq A-50. In a vacuum the maximum range occurs when the initial angle B is 45 degrees. 

Thus, 

(B ) = 4 5 degrees m vac ^ 

The air res i s tance changes this, and (B ) is no longer 45 degrees. To calculate the mag

nitude of the initial angle (B ) which resu l t s in the maximum horizontal range, the pro

cedure is to differentiate the range x„ with respect to B and set the result equal to zero. 

Thus, 

(dXj^/dB) = 0 (A-53) 

when 

B= B 
m 

Substituting the expression for x„ from Eq A-50 into Eq A-53 

Zj^^(dZj^/dB) = -w'^(dw/dB) (A-54) 

when 

B= B 
m 

Note that w is obtained from Eq A-21 and Eq A-4. Thus, 

a 
Also, 

w= Qk"-^ (A-55) 

from Eq A-4, and 

k"-"- = 2(P C ^ ) ' ^ ( m / A ) (A-56) 
a a D a ' 

Q= (cosb) (A-57) 
3. 

by definition from Eq A-21. 

Differentiating Eq A-52 with respect to B gives 

F'-^(dF/dB) = (Zj^ - l)z^^ (dz /dB) (A-58) 



in which z„ must always be greater than 4. 0. 

Differentiating Eq A-38 with r e spec t to B gives: 

dF/dB = ( w g ) ' ^ v | [2(cos 2B) -w"^s in 2B)(dw/dB)] (A-59) 

Differentiating Eq A-55 with respect to B gives 

dw/dB= k"^(dQ/dB) (A-60) 

From Eqs A-60 and A-55 

w'-^(dw/dB) = Q'^(dQ/dB) (A-61) 

Dividing Eq A-59 by Eq A-38 gives 

F'-^(dF/dB) = 2(ctn 2B) - w"'^(dw/dB) (A-62) 

Substituting the expression for F ' (dF/dB) from Eq A-62 into Eq A-58 we obtain: 

• z ; , W / d B ) = ^ " ^ ^ ^ - ^ ' < ^ W d B ) (^.g3) 
rl xt Z_ - 1 

rt 
Substituting the expression for z„ (dz/dB) from Eq A-63 into Eq A-54 and solving for z„ 

= 2 - 2 [w ' \ dw/dB) t an2Bj ' ^ (A-64) 

Substituting the expression for w (dw/dB) from Eq A-61 into Eq A-64 gives, for z. 

^R 

R 
greater than 4. 0, 

-1 
(0. 5)Zj^= 1 - rQ'^(dQ/dB)tan2Bl (A-65) 

Since the relation between Q and B is unknown at present , it is not possible to pro

ceed further with the solution of Eq A-65 until an analysis of Q has been car r ied out. Then 

the initial angle B for maximum range can be found from the fundamental equation, Eq A-65, 

for any given magnitude of z_. 

Asymmetr ic Trajector ies 

The derivation of Eq A-65 is based on the asymptotic formula, Eq A-52, which gives the 

approximate relat ion between F and z^ for all ẑ -, which a re grea te r than 4. 0. It will be 

proved that the a i r res i s tance r , compared to the acceleration of gravity, is proportional 



to F. Also, z_ depends on log-j..(F + 1) according to the curve in Fig. 1, which shows 

that a very large value for F resul ts from a small value for Zp. When z^ is greater than 

7. 0 the air res is tance is , therefore, quite large compared to gravity. 

Just how large this air res is tance can become should be investigated, because it 

turns out that the shape of the t rajectory approaches a limiting form when this resis tance 

is large. F rom this limiting t rajectory shape it is possible to estimate the dependence of 

Q relative to the initial t rajectory angle B. From this relation of Q with respect to B it 

is possible to determine Q~'^(dQ/dB) which can be substituted into the fundamental formula, 

Eq A-65. Finally, the determination of the initial angle B for maximum range can be de

termined from Eq A-65 after Q (dQ/dB) has been obtained. 

Let the dimensionless ratio of the "initial" air res is tance deceleration a' to the ac

celeration g due to gravity be defined as r . Then, 

r = a ^ g (A-66) 

From Eq A-3, using the initial velocity V„ and the average value of k along the trajectory 

(which is defined as k ), 
a. 

a' = k V?, = "initial" deceleration* (A-67) 

D a B 

From Eq A-67, substituting a' into Eq A-66 

r = g " ^ k ^ v | (A-68) 

The relaxation distance w also depends on k according to Eq A-55 

w = k Q a 

which may be solved for k 

k = w'-^Q (A-69) 
a 

Substituting k from Eq A-69 into Eq A-68 
3 

r = (wg)"^v |Q (A-70) 

As shown by Eq A-67, the "initial" deceleration a|-) is not really the exact initial de
celeration, because ka is not exactly equal to k. Use of ka in place of k is required for 
mathematical convenience in order to make a simple derivation of Eq A-71, a relation of 
fundamental significance. 



Dividing Eq A-70 by Eq A-38 gives: 

r = FQ(sin 2B)"^ (A-71) 

Equation A-71 shows that r is proportional to F as was stated previously. The factor 

of proportionality is Q (sin 2B) . This depends on the unknown quantity Q which is the 

average value of (cos b) along the trajectory. Evidently this quantity Q can not be closely 

estimated unless something is known in detail about the trajectory. All that can be stated 

with certainty in general is that 

0< Q < 1.0 (A-72) 

because (cos b) is always in a range 

0 < cos b < 1. 0 (A-73) 

The range given by Eq A-73 follows from the tr igonometric formula cos b = cos (-b), 

since 

-90° < b < 90° (A-74) 

for any t rajectory if the effect of windage is neglected. 

In order to determine Q to within c loser l imits than those given by Eq A-72 we shall 

calculate a typically asymmetr ic shrapnel t ra jectory which s t a r t s off at an angle B equal 

to 20 degrees . It will be proved later that this angle is somewhere near the angle which 

gives the maximum horizontal range. F r o m Table II, already calculated, it can be seen 

that a typical aluminum fragment, l e ss than 1. 5 inches thick, has a value of z „ equal to 

10 or more . A value of 

Zj^= 11.0 (A-75) 

will be assumed in the calculation of the "representa t ive" t rajectory with B = 20 degrees. 

By referr ing to Eq A-49, it is found that the magnitude of F corresponding to Zp = 11.0 

is 

F = 5500 (A-76) 

In order to determine r from Eq A-71 it is necessary to determine sin 2B as well as F . 

It has been assumed that B = 20 degrees for the part icular t rajectory under consider

ation. Therefore, 

sin 2B = sin 40° = 0. 64 (A-77) 



It will be p roved l a t e r tha t t he a v e r a g e va lue of (cos b) i s n e a r l y equal to cos B. Hence , 

a s a f i r s t a p p r o x i m a t i o n , we s e t 

QgQ = cos 20° = 0. 94 (A-78) 

By us ing the m a g n i t u d e s of F and Q and s i n 2B jus t d e t e r m i n e d , the a i r r e s i s t a n c e r 

i s found f rom Eq A-71 to be equal to 8000. Th i s m e a n s tha t the p ro j ec t i l e i s in i t ia l ly s u b 

j e c t e d to a d e c e l e r a t i n g f o r c e which i s 8000 t i m e s a s l a r g e a s the fo r ce due to g rav i ty . It 

i s expec ted , t h e r e f o r e , t h a t the s h a p e of t he t r a j e c t o r y for t h i s l a r g e a i r r e s i s t a n c e might 

be c o n s i d e r a b l y di f ferent f r o m the pe r f ec t ly s y m m e t r i c t r a j e c t o r y in a vacuum, o r the 

n e a r l y s y m m e t r i c shape when r i s only a few t i m e s the g r a v i t y a c c e l e r a t i o n . 

The m o s t i m p o r t a n t quan t i t i e s r e q u i r e d to e s t a b l i s h the g e n e r a l shape of a t r a j e c t o r y 

a r e : 

Range x^ 

M a x i m u m height y 

Hor i zon t a l loca t ion of the x„ 
m a x i m u m height 

Angle of i m p a c t b 

m 

R 

The angle of i m p a c t g ives the d i r e c t i o n of the p ro j ec t i l e ve loc i ty at the point of impac t , 

at a ho r i zon t a l d i s t ance x „ fi 'om the s t a r t i n g point ( s ee D i a g r a m 3, below Eq A-89) . To 

d e t e r m i n e x and y we u s e the fundamenta l t r a j e c t o r y f o r m u l a s of Eqs A-46 , A - 4 7 , and 

A - 4 8 a l r e a d y de r ived . 

F r o m Eq A-48 

in which, by def ini t ion. 

y ^ = x ^ ( t a n B)( l - F ^ / F ) (A-7 9) 
m m m ' 

F = - 1 -I-z"-^(-l + exp z ) (A-80) 

m m '̂  m 

F r o m Eqs A-46 and A - 4 7 , u s i n g F = 5500 a s a l r e a d y d e t e r m i n e d for z_ = 11 . 0 we find 

z = 2x w"^ = 8.6 = log 5501 (A-81) 

m m ®e 
Subst i tu t ing the magn i tude of z f rom Eq A-81 into Eq A-80 g ives : 

F = 602 (A-82) 
m 



Dividing Eq A-79 by 0. 5 w and using Eq A-81 we find 

2 y ^ / w = Zjn^tan B)(l - F ^ / F ) (A-83) 

Substituting 

z ^ = m 
F = 

F = m 

8.6 

5500 

602 

B = 20 degrees 

into Eq A-83 gives the magnitude of 2y /w 
m ' 

Since 

from Eq A-81 , and 

2 y ^ / w = 2 .8 (A-84) 

z = 2x / w = 8. 6 m m' 

from Eqs A-50 and A-75, we obtain 

x ^ / x j ^ = 8.6/11 = 0.78 (A-85) 

y^ /Xj^ = 2. 8/11 = 0. 26 (A-86) 

It is also of interest to calculate the "impact angle" b„ at which the projectile lands 

end of its path through the a i r . 

assumed previously. From Eq A-44 

at the end of its path through the a i r . This is found from (tan b) for the value z„ = 11. 0 as 
R 

tan bpj . 
" = 1 - F ' ^ - 1 + exp z„) (A-87) tan B ^ ' . ^ • ^^f -R 

in which 

Z j^=11 .0 

tan B = tan 20° = 0. 364 

F = 5500 

Substituting the above magnitudes into Eq A-87 we obtain 

tan bj^ = -4 . 0 (A-88) 



Evaluating Eq A-88, 

tan (-b„) = 4. 0 
XV 

ctn (-b„) = 0. 25 
K 

tan (90° + h^) = 0. 25 

90° + b „ = 14° 
xt 

b„ = -90° + 14° 
XV 

(A-89) 

b „ = Impact angle 

The magnitudes given by Eqs A-89, A-85, and A-86 have been plotted to scale in 

Diagram 3. The scale is determined by the horizontal range x_ which is taken to be 10 cm. 
R 

Diagram 3 

Trajectory for Air Resistance 
r = 8000 t imes Gravity 

APEX ' 

In the calculation of the t rajectory form illustrated in Diagram 3 it has been assumed 

that the relaxation distance w has the same magnitude at all points along the trajectory. 

This follows from the definitions 

2x / w = z 
R R 

2x /w = z m' m 
2y /w = Relative altitude 



from which Eqs A-85 and A-86 were derived. The use of a constant magnitude for w implies 

a constant value of Q as shown by Eq A-21. Since a constant magnitude for Q has therefore 

been assumed in calculating the t ra jec tory shape in Diagram 3, it i s necessary to investi

gate how closely the constant value, 

Q-Q = cos 20° = 0. 94 , 

from Eq A-78, actually applies to the trajectory. We a r e also assuming that a negligible 

change in w occurs due to variat ion of C_̂  o r p along the t rajectory. Compare Eqs A-21 

and A-23. 

Considering the t rajectory in Diagram 3, we see that Q is practically equal to cos B 

Q = cos B = cos 20° = 0. 94 

along the section from the points P to P . , since the section is almost a straight line be

tween these points. Between the points P , and P_ the t rajectory angle b changes from 20 

degrees to zero (at the point P ) and down to -20 degrees . Thus (cos b) changes from 0. 94 

to 1. 0 and back to 0. 94, which gives (cos b) = Q,-, ^̂  = 0. 97 for the section between 
^ average P . P_ 

P . and T?„. Between points P_ and P„ (ie, along the section P^^'i^ ^^^ angle b is approxi

mately -45 degrees and Q is 0. 7. 
Thus the average value of Q for the entire section P . P P„ is approxinaately 

Q = (0. 5)(0. 7 -I- 0.97) 
1 2 3 

= 0.84 

Finally, the average for the section P P„ is nearly 

Qr> ID = 0 . 5(0. 84 + 0. 94) = 0. 89 
^ o ^ 3 

which only differs by 5 percent from the value cos B = 0. 94 for the section P P . These 

resul ts suggest that for a t rajectory shape s imilar to Diagram 3, but with a different initial 

angle B, one can use an "effective" value of Q in the calculation, in which Q is defined by 

the following fundamental formula: 

Q = (1 + N )(cos B) (A-90) 
r 

where N is an unknown relat ive fractional correct ion t e rm which i s , presumably, only a 

few percent. The subscript r implies that N may vary with r which is the initial relat ive 

a i r res is tance compared to the force of gravity. Since we base Q on the part icular "average ' 



value of (cos b) along the entire t rajectory which gives the correc t range (which is unknown 

in advance), it is evident that Eq A-90 mere ly re la tes one unknown Q in t e rms of another 

unknown N . The advantage comes about because N can be shown to be nearly constant 

for different values of cos B and also nearly constant for a wide range of the relat ive a i r 

res i s tance r . Since N depends on the shape of the trajectory, we would expect N to r e 

main nearly constant if the t rajectory shape should remain nearly constant. On general 

principles, one expects that the t rajectory shape should depend on the initial angle B and 

on the initial relative a i r res is tance r compared to gravity. From the calculations leading 

to Diagram 3 we know that r may be at least as large as 8000, but the corresponding value 

for Zpj is only 11.0. Thus it seems reasonable to investigate how the trajectory shape 

var ies with different values of z „ for a fixed initial angle B. 
R 

The question a r i ses as to how the trajectory shape should be described mathematically. 

The location of the highest point of the t rajectory seems to be a significant parameter to in

dicate the shape, .because it is a direct measure of the amount of asymmetry. For perfectly 

symmetr ic t ra jector ies (with any initial angle B) which occur when there is negligible air 

res is tance deceleration (r = 0) the relat ive location of the highest point of the trajectory is 

exactly half way between the s tar t ing point and the impact point. Then 

for perfect symmetry, where in general the symmetry parameter is defined to be the di

mensionless distance ra t io 

X /x_. = Relative location of apex (A-92) 

(See Diagram 3) 

The departure from perfect symmetry would naturally be expressed as an "asymmetry ' 

pa rameter given by 

(x^ /x j^ - 0. 5) 

because the asymmetry parameter is zero for perfect symmetry, from Eq A-91. 

F rom Eqs A-46 and A-50 

X = 0 . 5wz m m 

^R = °- ^^^R 

so that Eq A-92 also can be expressed as 

z Iz^ = X / x „ = apex location (A-93) 

m' R m' R ^ 



The evaluation of the rat io z / z _ in Eq A-93 can be ca r r i ed out in t e r m s of the single 

variable z „ by using Eq A-45. Solving Eq A-45 for exp z gives 
XV m 

exp z ^ = 1 + F (A-94) 

Substituting the expression for F from Eq A-49 into Eq A-94 we obtain 

exp z ^ = z ^ (-1 -t- exp z^^) (A-95) 

which may be written also 

exp z ^ = z ^ (exp Zj^) jl - exp (-Zj^)j (A-96) 

after factoring exp z „ from the parenthesis in Eq A-95. SolvingEq A-96 for z by taking the 

logarithm of both sides of the equation. 

z m = Zj^ - loggZj^ + logg [l - exp (-Zj^)J (A-97) 

Dividing both sides of Eq A-97 by z „ we obtain the desired formula for z / z „ in t e r m s of 
m' R 

z_ for use in Eq A-93. 

V / ^ R = ^ - ^R^ ^°Se^R •" ^R^ ^°Sef ' ^ ^ ^ ' ^ R ^ ] <^-9«) 

When z„ is not less than 4 the third t e rm on the right side of Eq A-98 is negligible com

pared to 1 as can be easily proved by expanding the logarithm of [1 - exp ( - z_ ) ] . For 

example, when z,-, = 4. 0, rt 

exp (-4) = (55)"-^ = 0.018 

and log (1 - 0. 018) is very nearly -0 . 018 from the expansion 

2 
l o g g d -t-n) = n - i i - + 

Therefore the absolute value of the third te rm on the right of Eq A-98 for z^ = 4. 0 is 

(0.018)(l/4) = 0. 0045, which is negligible compared to 1. 0 being only 0.45 percent. When 

Zp is greater than 4. 0 the te rm is even less than 0. 0045. It is of interest to investigate 

the remaining expression for z /z,-, in Eq A-98 when z_ becomes large. Then, 
m rt rl 

^J^r, = ^-^'^ log.z„ (A-99) m ' - R ^ "R ^"Sg-R 

[ ^ p > 4 1 



Hence, finally, the relat ive horizontal location 

X / x „ 
m' R 

of the highest point of the t rajectory, or "apex",, is found from Eqs A-99 and A-93 to be 

-1 
, / X R = 1 - Z ; log (A-100) 

"m'^^R "R ^"»e R 

when z_ is not less than 4. 0. Table A-I gives various x / x „ calculated from Eq A-lOO 

for integer z_ from 4 to 12. 

Note: log^Zj^=2.3 1og^QZj^ 

Corresponding magnitudes of F from Eq A-49 and r from Eq A-71 are also given. The 

values of r obtained from Eq A-71 a re for 

Q = cos 20° = 0. 94 = cos B 

B = 20 degrees 

The representat ive t rajectory shown in Diagram 3 was calculated for an initial angle B 

equal to 20 degrees , and with r = 8000. 

TABLE A-I 

Relative Apex Location for B = 20 Degrees 

Dimensionless 
distance 

rat io 
2 R 

0 
4 
5 
6 
7 
8 
9 

10 
11 (Dia 3) 
12 

Dimensionless 
accelerat ion 

ra t io 
F 

0 
12.5 
28.7 
66. 0 

156.0 
368.0 
904.0 

2240.0 
5500. 0 

13400.0 

Relative 
apex 

location 
^m/^R 

0.50 
0.65 
0.68 
0.70 
0.72 
0.74 
0.76 
0.77 
0.78 
0.79 

A i r 
resis tance 

(g's) 
r 

0 
18.2 
42.5 
96.0 

228.0 
538.0 

1330.0 
3280.0 
8000. 0 

19600. 0 

In Table A-I, above, the magnitudes corresponding to z„ = 11. 0 

^R = 
F = 

r = 

X / x „ = m ' R 

11 

5500 

8000 

0. 78 

51 



have been determined already for the t rajectory of Diagram 3. Also, in Table A-I the var i 

ous magnitudes a re all calculated for the single initial angle B = 20 degrees . 

The question now a r i s e s as to how the relat ive apex location x /x . , changes when B 

changes, for a given fixed value of the a i r r es i s t ance r . 

F rom Eq A-71 , and a simple tr igonometric identity. 

From Eq A-90, 

r = FQ(2 sin B cos B)'-^ (A-101) 

Q= (1 + N ) cos B 

Substituting the expression for Q into Eq A-101 gives 

r = F(2 sin B)"^(l + N ) (A-102) 
r 

Solving Eq A-102 for F 

F = 2(sin B)(l + N )'-^r (A-103) 
r 

The expression for r in t e r m s of p r imary physical quantities is easily determined 

frona the fundamental definition in Eq A-68. 

For a given fixed r , we see from Eq A-103 that F is nearly proportional to (sin B), 

since N is small and nearly constant. F rom Fig. 1 the quantity z_ is nearly proportional 

to log, „ F, since the graph is nearly a straight line. Hence z„ var ies nearly as log. „ 

(sin B), which means that z_ var ies slowly with respec t to B. F r o m Table A-I it is 

evident that the apex location changes slowly with respec t to a change of z„ when z^ is 

greater than 5. 0, or r is grea ter than 40. 0. Hence, finally, the apex location changes 

at a doubly slow ra te with respect to a change of B. 

From Eq A-103 we see that F is not only proportional to (sin B) but also proportional 

to r . Therefore, the change of apex location in Table A-I due to a given fractional change 

of r is exactly the same as the change of apex location due to the same fractional change 

of (sin B). This is proportional to the fractional change (dB/B), with a factor (B ctn B), 

since the fractional change of (sin B) is 

d ^ H ^ = ^ S ^ ^ = [B(ctn B)](dB/B) S (cos B)(dB/B) (A-104) 

Since the relat ive apex location x / x _ changes at a very slow rate with respec t to 

either r or B, when r is g rea te r than 40, the t rajectory shape always remains fairly s imi

lar to the representat ive one shown in Diagram 3, for which it was shown that Eq A-90 
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could be applied with good accuracy. Therefore, it should be possible to apply Eq A-90 

over a wide range of B and r . 

Differentiating both sides of Eq A-90 with respect to B, we obtain 

dQ/dB = -(1 + N ) sin B (A-105) 

Dividing Eq A-105 by Eq A-90 

Substituting the expression for 

Q ^(dQ/dB) = -tan B (A-106) 

Q"^dQ/dB) 

from Eq A-106 into Eq A-65 gives the following fundamental formula for the initial angle 

B at which the maximum horizontal range occurs : 
m ° 

z„ = 2(1 + ctn B ctn 2B ) (A-107) 
R m m 

Equation A-107 applies only when z „ is not less than 4. 0, as already explained. In 

order to re la te the initial angle B in Eq A-107 to the relative air res is tance r for various 

magnitudes of B and r , it is necessary to make intermediate calculations of z_ and F. 

The steps in the procedure a re : 

(a) z „ from Eq A-107, given B 

(b) F from Eq A-49, using z „ 

(c) r from Eq A-102 using F from (b) and given B 
m 

In order to use Eq A-102 it is necessary to make some assumptions concerning N . 

If a constant value of N ,̂ is not assumed, it is necessary to use a s e r i e s of successive ap

proximations to establish N for each t rajectory corresponding to a given value of r and of 

B . This is not justified because of the already existing uncertainties in the variations 

of p and of C„ along the t ra jec tor ies . Hence it will be assumed, when r exceeds 40, that 
3. i-/ 

N = 0 since this is as good a constant value as is known over a wide range of r and B. 

The required formulas a re listed together for convenience of reference: 
(a) z„ = 2(1 + ctn B _ ctn 2B_) 

rt - m m 
(b) F = -1 + z ^ (-1 + exp z^) 
(c) r = F(2 sin B )~^ 

The resu l t s of various calculations using (a), (b), and (c) are collected in Table A-II. 

The quantities B and log. „(r + 1) from Table A-II are plotted as a graph in Fig. 3. F rom 

Fig. 3, for any given a i r res is tance r over a wide range of typical magnitudes, one can 



immediately find the corresponding initial angle B at which a projectile must be star ted 

in order to reach i ts maximum horizontal range, (x^,) . The initial a i r res i s tance r 
X\ 1X13.x 

is obtained from Eq A-68 in t e r m s of p r imary physical pa ramete rs of the projectile and 

the air . 

TABLE A-II 

Initial Angle for Maximum Range 

Initial 
angle 

(degrees) 
Bm 

45 
30 
25 
22.5 
20 
17 
15 
10 

Distance 
ratio 

ZR 

0 
4 . 0 
5 . 6 
6. 8 
8.5 

11.7 
14.9 
33.2 

Acceleration 
rat io 

F 

0 
12.5 
47 .0 

133.0 
590.0 

1.03(10*) 
2. 0(10^) 
6.7(10l2) 

A i r 
res is tance 

(g's) 
r 

0 
12.5 
55.00 

173. 0 
870. 0 

1.77(10*) 
3. 86(10^) 
1.92(1013) 

Quantity 
plotted in 

Fig. 3 
log l0 ( r + 1) 

0 
1.13 
1.75 
2.24 
2.94 
4. 25 
5.59 

For B = 4 5 degrees , the a i r res is tance r is zero. F rom Eq A-102 it follows that 

F = 0. Also, from the limit of Eq A-49, or from Fig. 2, we see that z 

log. _ (1 + r) = 0 when r = 0. 
R 0. Finally, 

Summary 

For convenience of reference, all the more fundamental t rajectory formulas (equa

tions) a re collected and listed below with notes describing the location of the preceding 

formulas from which they were taken: 

k'^ = ( p ' V l S . 25)C'^(m/A) a L) (A-108) 

(converting Eq A-4 from cm to feet) 

k A character is t ic length (feet), re la ted to the relaxation distance. 

k A deceleration parameter (feet ), which is defined as the fractional 
loss of velocity, per unit distance, due to a i r res is tance (see A - 3 ' above). 

3 
p Air density (gm/cm ) = specific gravity relative to water. 

Cj^ Drag coefficient (dimensionless). 

m Mass of projectile (gm). 
2 

A Frontal projected area (cm )« 



The u s e of Eq A - 1 0 8 is s impl i f i ed in m a n y c a s e s by e x p r e s s i n g the p r o j e c t i l e m a s s 

m in t e r m s of i t s dens i t y and v o l u m e . A l s o , the vo lume can be e x p r e s s e d in cubic inches 
3 

i n s t e a d of c m . Equa t ion A - 1 0 8 b e c o m e s 

k"^ = ( s / 6 ) ( P p / p^)C'^ (A-109) 

k C h a r a c t e r i s t i c length (feet) . 

s "Ef fec t ive" p r o j e c t i l e t h i c k n e s s ( inches ) , defined a s the p ro j ec t i l e 
vo lume (in ), divided by the f ron ta l p ro j ec t ed a r e a ( in^) . 

3 
Pp P r o j e c t i l e dens i ty ( g m / c m ) = spec i f ic g rav i ty r e l a t i v e to w a t e r , 

defined a s the m a s s (gm) , d iv ided by the vo lume (cm ). 
3 

p Ai r dens i t y ( g m / c m ). 
3 

C_ D r a g coeff ic ient ( d i m e n s i o n l e s s ) . 

F r o m Eq A - 2 1 

w = k"-^Q 
a 

w Re laxa t ion d i s t ance (feet). 

k A v e r a g e value of k a long the t r a j e c t o r y . 
3 

Q A v e r a g e value of (cos b) a long the t r a j e c t o r y . 
b Angle of ve loc i ty v e c t o r wi th r e s p e c t to the ho r i zon ta l d i r ec t ion . 

F r o m Eq A - 9 0 

Q = (cos B)( l + N ) 

Q A v e r a g e va lue of (cos b) a long the t r a j e c t o r y . 

B Ini t ia l va lue of b a t t h e beg inn ing of the t r a j e c t o r y . 

N Re la t ive f r ac t iona l c o r r e c t i o n t e r m ( s m a l l c o m p a r e d to 1. 0). 

F r o m Eq A - 6 8 

- l i ^ 2̂ 
^ a B 

r Ini t ia l a i r r e s i s t a n c e d r a g d e c e l e r a t i o n , divided by the a c c e l e r a t i o n due 

to g r a v i t y ( d i m e n s i o n l e s s r a t i o ) . 

g A c c e l e r a t i o n due to g r a v i t y , 32 f t / s e c . 

V-p. Ini t ia l p r o j e c t i l e ve loc i ty ( f t / s e c ) . 

In o t h e r w o r d s , r m e a s u r e s the in i t ia l d r a g on the p ro j ec t i l e in t e r m s of "g u n i t s " . 



From Eq A-103 

F = 2r(sin B)(l + N )~^ 

F = Dimensionless deceleration ra t io , related to the initial drag deceleration r . 
Also, F may be considered to be the vacuum range (g~-'^v2 sin 2B) divided 
by the relaxation distance w, as expressed by Eq A-38, 

The relaxation distance w is the horizontal distance at which the horizontal velocity 

component V has declined to l / e of its initial value V. at the beginning of the trajectory. 

(See Eq A-32 below. ) 

From Eq A-41 
z = 2(x/w) 

x Horizontal distance along the t rajectory (feet). 

w Relaxation distance (feet). 

z Dimensionless horizontal distance ra t io . 

From Eq A-32 

V = V. exp (-x/w) 

V Horizontal component of the projectile velocity at any point along the 
t rajectory (ft/sec). 

V^ Initial value of V at the beginning of the trajectory (ft/sec). 

From Eq A-35 

t^= (w/V^)[- l + exp (x/w)] 

t = Time of flight (seconds) at horizontal distance x (feet), along the trajectory. 

From Eq A-44 

V /V 
t a n b y ' X , - n - l / i > \ 
T s = -r^—s- = 1 - F (-1 + exp z) 
tan B tan B ^ 

V = Vertical component of the projectile velocity at any point along its t r a -

tan b = Slope of trajectory at any point 

Vertical compo 

jectory (ft/sec) 

From Eq A-43 

F '^T- l + z " ^ ( - l + exp z) tan B 

y = Vertical altitude (feet), relative to beginning point of the trajectory, at a 
horizontal distance x feet along the trajectory. 



From Eq A-79 

From Eq A-80 

From Eqs A-47 and A-46 

From Eq A-46 

y ^ = x^( tan B)(l - F /F ) m m m' 

F = -1 + z" (-1 + exp z ) m m ^ m 

z = log (1 + F) = 2x /w m *e m' 

X = (0. 5)wz m m 

y = Maximum vert ical height (feet), of projectile, above the starting point. 

X = Horizontal distance (feet), of projectile when it is at its maximum vertical 
height. 

From Eq A-50 

x „ = (0. 5)wZj, 

in which Zp is the solution of the following equation. 

From Eq A-49 

F = -1 + z^^(-l + exp z^) 

The solution z „ of Eq A-49 is obtained from the graphs plotted in Figs . 1 and 2. 

F rom Eq A-107 

z„ = 2(1 + ctn B ctn 2B ) K m m 

B = Initial t rajectory angle B at which a projectile will reach the maximum 
horizontal range Xp. 

Values of z „ have been calculated and collected in Table A-II for various B . Values K m 
of B have been plotted as a graph in Fig. 3 in t e r m s of the initial air resis tance r . The 

initial air res is tance r is obtained from Eq A-68, above. 

When r exceeds 40, the correct ion te rm N in Eq A-90 is taken to be zero except for 

very accurate t rajectory calculations in which successive approximations are used, and the 

total t rajectory is divided into sections over which k and (cos b) are nearly constant. How

ever, N may be different from zero when the a i r res is tance r is less than 40. 
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