320
 UCRL-10925

University of California

Ernest O. Lawrence Radiation Laboratory

PROGRAMS FOR CALCULATING RELATIVE
INTENSITIES IN THE VIBRATIONAL STRUCTURE OF ELECTRONIC BAND SYSTEMS

Berkeley, California

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California
 AEC Contract No. W-7405-eng-48

PROGRAMS FOR CALCULATING RELATIVE INTENSITIES
 IN THE VIBRATIONAL STRUCTURE OF
 ELECTRONIC BAND SYSTEMS
 Richard N. Zare
 November 19, 1963

PROGRAMS FOR CALCULATING RELATIVE INTENSITIES IN THE VIBRATIONAL STRUCTURE OF ELECTRONIC BAND SYSTEMS*
 Richard N. Zare ${ }^{\dagger}$
 Department of Chemistry and Lawrence Radiation Laboratory University of California Berkeley, California
 November 19, 1963

ABSTRACT

Source-deck listings of two computer programs are given for the calculation of relative intensities in the vibrational structure of an electronic transition. The first program finds turning points of an electronic potentialenergy curve by direct numerical evaluation of the Klein action integrals in the RKR procedure. The second program uses these turning points to construct an effective potential for the molecule with rotational quantum number J. The radial Schrödinger equation then is solved for this potential to yield vibrational-rotational wavefunctions from which the program calculates Franck-Condon factors, r-centroids, and relative intensities.
\qquad

[^0]
INTRODUCTION

This report supplements a previous paper, ${ }^{1}$ hereafter referred to as I , which describes the calculation of relative intensities in the vibrational structure of an electronic transition. All computer programs used in I are documented herein.

Much of the programming was done by Mr. J. V. V. Kasper or in collaboration with him. The programs presented are not in final polished form and the author assumes the responsibility for all remaining errors that have gone undetected. No systematic attempt has been made to test all possible branches in these programs. However, these programs have been running successfully for over six months.

Much of the programming logic has been mentioned before in I. Comment cards have been liberally used in the Fortran source deck listings so that a description of the methods used in each program is self-contained. Comment cards also describe fully the preparation of data cards for each program. To further aid the user, sample data decks, which were successfully tested, are included. The output from these sample decks is displayed in the Appendix.

These programs are written for an IBM. 709/7090/7094 installation. All source decks shown are photographic reproductions of machine listings.

PROGGRAM FOR FINDING 'IURNING FOIINTS OF A POTENTLAL BY RKR PROCEDURE

Remarks

The input may be either in the form of spectroscopic constants for the electronic state, or the actual $G(v)$ and B_{v} spectroscopic data. In the former case, the program requires about 3 sec per pair of turning points, whereas in the latter case ${ }^{2}$ it is 5 sec . It is al so possible to use a combina-
 vice versa.

When giving $G(v)$ data, the zero-point energy may be assigned by the user, or found from extrapolation by the program. This latter feature allows the use of zero-line measurements or tabulated $\triangle G(v)$ data.

Limitations

(a) If tabulated $G(v)$ or B_{V} data are used that have anomalous behavior, it is possible for the interpolation procedures NTRPSR or NTRPDP to fail.
(b) If less than eight $G(v)$ or B_{v} data points are to be read in, NUST in subroutine RKR must be modified.
(c) Since errors tend to accumulate in the calculation of the turning points for each higher vibrational level, the potential curve is less accurate as the dissociation limit is approached.

Listing

Table I lists the source decks and Table II gives a sample data deck for the RKR program.

Table I. Source-deck listing for RKR program.

CMAIN	FINDS TURNING POINTS FOR A MOLECULE BY RYDBERG-KLEIN-REES METHOD	MAIN	000
C		MAIN	001
C	USER SPECIFIES CHOICE BETWEEN MASS UNITS BASED ON C12 $=12$, OR	MAIN	002
C	$016=16$.	MAIN	003
c	the following comment cards describe the preparation of data cards	SMAIN	004
C		MAIN	005
	DIMENSION XI(200),YI(200), XO(3000),V(3000),S(3000),KV(200),	MAIN	006
	2 ETRIAL(200),QIRA(2),QIEN(3),QIMS(2),2IMS(2).ZIRA(2).	MAIN	007
	2 ZIEN(3),ECALC(200), XPRN(5),VPRN(5),DTFRMT(10),	MAIN	008
	G(200), BV(200), FMT(24), U(201 , KM1N(200), RMAX(200).	MAIN	009
	DUFMT (10), BVF(200)	MAIN	010
	COMMON XI,YI, XC,V,XH,NSTA,N,MSTA,M,XMIN, XMAX,INSC,MBEG,NUSED,S,	MAIN	011
	Z NI,NS,MAXIT,FACM,ZMU,DE,WE,WEXE,WEYE,WEZE,WETE,BE,ALPHAE,	MAIN	012
	$Z \quad G A M M A E, D E L T A E, A S, B S, M Q, S T E P, U, B V, G, I C K, H, I T R, H D E S, E P S L N E$	MAIN	013
c		MAIN	014
ζ	FIRST CARD IN DATA HAS A ONE TN COLUMN 1 I IF A PPOBLEM FOLLOWG.	MAIN	015
c	VERY LAST CARD IN DATA MUST BE A BLANK CARD.....	MAIN	016
c	CALL TIME(BEGIN)	MAIN	017
1		MAIN	018
	WRITEOUTPUTTAPE6,140,BEGIN	MAIN	019
140	FORMAT (9HO TIME $=$ F10.5)	MAIN	020
	READINPUTTAPE5,100,ITEST	MAIN	021
100	FORMAT (Il)	MAIN	022
	IF (ITEST) 3,400,3	MAIN	023
c	NEXT TWO CARDS IN DATA HAVE NAME OF PROBLEM IN COLUMNS 1-72,	MAIN	024
c		MAIN	025
c	WHERE CARRIAGE CONTROL IS IN COLUMN 1. NEXT CARD HAS IIMS AND	MAIN	026
C	Masses of the two atoms, or iIms and reduced mass in first mass	MAIN	027
c		MAIN	028
C	FIELD WITH SECOND BLANK. IIMS $=1$, MASS UNITS ARE BASED ON C12 $=12$.	MAIN	029
c	IIMS $=2$, MASS UNITS ARE BASED ON $016=16$.	MAIN	030
c		MAIN	031
3	READINPUTTAPE5,101, (FMT(1), I= 1,24)	MAIN	032
101	FORMAT (12A6)	MAIN	033
	READINPUTTAPE5,102,1IMS,ZMAS1,ZMAS2	MAIN	034
102	FORMAT (14,2F10.0)	MAIN	035
c	NEXt CARD In data has I Qhk, and number of levels, Eacih	MAIN	036
σ		MAIN	037
c	IN I4 FORMAT, AS WELL AS THE FORMAT STATEMENT WHICH CONTROLS THE	MAIN	038
c	READING OF THE LEVELS (IN COLUMNS 13-72)--FOR EXAMPLE- (4E16.8)	MAIN	039
c	IQHK $=0$ IF THE FOLLOWING CARDS CONTAIN THE TABULATED G CURVE.	MAIN	040
c	IF A PARTICULAR VALUE IS TO BE INTERPOLATED, SET G(I) = -10.	MAIN	041
c	IF IT IS DESIRED TO USE CONSTANTS TO GENERATE THE ENTIRE	MAIN	042
c	G CURVE, IQHK MUST NOT BE EQUAL TO ZERO.	MAIN	043
c	A HOLLERITH TEXT MUST BE PUNCHED IN COLUMNS 13-72,	MAIN	044
c	AS IT WILL BE PRINTED, E.G., (1H)	MAIN	045
c	the next card in such a case contains	MAIN	046
c	WE, WEXE, WEYE,WEZE, AND WETE.	MAIN	047
c	READINPUTTAPE5,103,IQHK, N,(DTFRMT(I),I=1,10)	MAIN	048
5		MAIN	049
103	FORMAT (214,4X,10A6)IIEN $=2$	MAIN	050
		MAIN	051
6	IF (IQHK) 8,7,8	MAIN	052
	READINPUTTAPE5,114,WE,WEXE,WEYE,WEZE,WETE	MAIN	053
114	FORMAT (5E10.0)GO TO 9	MAIN	054
		MAIN	055
C ${ }^{7}$	READINPUTTAPE5, DTFRMT, (G)(I), I=1,N)	MAIN	056
		MAIN	057

Table I. (Contd.)

UCRL-10925

Table I. (Contd.)

Table I. (Contd.)

```
201 ZMU = 2MASI MAIN 174
    GO TO 204
202 ZMU = ZMAS1*ZMAS2/(ZMAS1+ZMAS2)
204 ZIMS(1) = 1.0
    ZIMS(2) =.9996784
    ZIRA(1) = 1.0
    ZIRA(2) = 1.889766
    ZMU = ZMU * ZIMS(IIMS)
    ZIEN(1) = ZMU * 3.643668E3
    ZIEN(2) = ZMU * 1.6610826E-2
    7IEN(3) = 2MU * 1.339776E2
    FACM = 60.201702/2MU
    206 XI(1) = 0.5
207 00 208 I = 2,N
    IL = I - 1
    XI(I) = XI(IL) + 1.0
208 CONTINUE
    ZERO = 0.0 MAIN 191
    WRITEOUTPUTTAPE7,101,(FMT(I),I=1,24) MAIN 192
    WRITEOUTPUTTAPE7,138,RE,ZERO MAIN 193
    138 FORMAT (1XFQ.7,F1O.3)
210 CALL RKRIRMIN,RMAX,VSTART,VFIN,HDED,NFIN,EVI,U,IQHK,IBHK,IOPEV, MAIN 195
    Z IOPA,BEQUIL,IOPFGI MAIN 196
    GO TO 1 MAIN 197
    400 CALL EXIT MAIN 198
    END
MAIN 199
```

```
CRKR FINDS TURNING POINTS FROM G(V) AND BV DATA, OR FROM CONSTANTS ROM, RKR. OOO
    SUBROUTINE RKR(RMIN,RMAX,VSTA,VFIN,HDED,M,EVI,U,IQHK,IBHK,IOPEV, RKR
    Z IOPA,BEQUIL,IOPFGI
        DIMENSION UEV(3000),EEV(3000),BV(200),BI(3000), RKR RKR
        2 TEMP(200),U(200),RMIN(200),RMAX(200),Y(200),Z(200), RKR OO4
        Z ZOC(9),MZ(5),IZ(5),IB(40),IG(40) RKR
```



```
D_(%)
D_(%)
D_(%)
D_(%)
D_(%)
D_(%)
D_(%)
```



```
D_(%)
D_(%)
```



```
        EV1 = 0.0
    201 CALL TIME(BEGIN)
C TURNING POINTS FOUND FOR V = VSTA,VFIN,HDED.
C INTERPOLATE G(V) AND BV DATA
C 202 JJ =0
    JK=0
    IJ = 0
        IK=0
    HDES = .01
        MBEG = 1
        IF(IOPEV-1)3000,3001,3000
3001 EV1 = Z(1)
3000 WRITEOUTPUTTAPE6,114,NUST
    114 FORMAT (2OHO NUSED IN.BESRKR = I2,1H.1.
    DC 187I = 1;N
    DC 187I = 1;N
    182IJ = IJ + I
    TEMP(IJ)=Y(I)
    U(IJ)=Z(I)
    GO TO 184
    183 JJ = JJ + 1
    UEV(JJ)= Y(I)
    IG(JJ)=I
    184 IF (BV(I)+10.) 185.186.185
    185 IK = IK + 1
    RMIN(IK)=Y(I)
    RMAX(IK) = BV(I)
    GO TO 187
    186 JK = JK + 1
    EV(JK)=Y(I)
    IB(JK) = I
187 CONTINUE
    IF (JJ) 191.191.188
    188 CALL NTRPSR (TEMP,U,UEV,BI,HDES,IJ,JJ,VNIN,VN,INSC,MBEG,NUST) RKR OS5
        LOC = 8 RKR
    IF (INSC) 288,189,288
RKR
001
            003
            RKR 005
```



```
D_(%)
```



```
D_(%)
D_(%)
D_(%)
D_(%)
```



```
D_(%)
D_(%)
D_(%)
    RKR 019
    RKR 020
C
RKR 021
RKR }002
C
    RKR 024
    RKR 024
    RKR 025
    RKR 026
    RKR 027
    RKR 028
    RKR 029
    RKR 029
    IF(1OPEN-1)300003001, RKR
    RKR O31
    RKR 032
    RKR 033
    RKR 034
    RKR 035
    RKR 036
RKR 037
            RKR
RKR
CRKR FINDS TURNING POINTS FROM G(V) AND BV DATA, OR FROM CONSTANTS001
```

```
(200), U(200), RMIN(200), RMAX (200),Y(200), Z(200) ZOC(9),MZ(5),IZ(5),IB(40),IG(40)
RKR
    RKR
    EV1 = Z(1)
RKR 038
RKR 039
RKR 040
RKR 041
RKR 042
RKR 043
RKR 044
RKR 044
RKR 
RKR 047
RKR 048
RKR 049
RKR
187 CONTINUE
RKR
RKR 051
RKR 052
    IF (JJ) 191, 隹,188, RKR
    188 CALL NTRPSR (TEMP,U,UEV,BI,HDES,IJ,JJ,VNIN,VN,INSC,MBEG,NUST), RKR
RKR 053
RKR 056
057
```

Table I. (Contd.)
UCRL-10925

```
    189 DO 190 I = l,JJ RKR
        IJ=IG(I) RKR
        Z(IJ)= BI(I)
190 CONTINUE RKR
    191 IF (JK) 196,196,192
    191 IFALL NTRPSR (RMIN,RMAX,EV,BI,HDES,IK,JK,VNIN,VN,INSC,MBEG,NUST)
    LOC = 9
    193 IF (INSC) 288,194,288
    194 DO 195 I = 1,JK
        IK=IB(I)
        IK=IB(I)
    195 CONTINUE
        196 IF (IQHK) 204,203,204
    204 EVI = -GFUNCF(0.5)
        IOPEV = O 
        IOPEV = ' 
        Z(I) = GFUNCF(Y(I)) + EVI
    170 CONTINUE
        GO TO 211
    203 INTG = INTQ
        MBEG = 1
        M = 1
        UEV(1)=0.
        HDES = 1.
        EVI = -EV1
        IF (EVI) 211,206,206
        206 CALL NTRPSR(Y,Z,UEV,EV,HDES,N,M,VNIN,VN,INSC,MBEG,NUSTI
        LOC = 1
    208 IF (INSC) 288,210,288
    210 EVI = EV(1)
C EVI NOW CONTAINS THE ZERO POINT ENERGY BY EXTRAPOLATION.
    211 IF (IBHK) 171,207,171
    171 EV(1) = BE
        DO 172 I = 1,N
        BV(I) = BFUNCF(Y(I))
    172 CONTINUE
        GO TO 205
    207 IF (IOPA) 2071,2072,2071
2071 EV(1) = BEQUIL
    GO TO 205
2072 CALL NTRPSR (Y,BV,UEV,EV,HDES,N,M,VNIN,VN,INSC,MBEG,NUST)
C EV(1) NOW CONTAINS BE BY EXTRAPOLATION
    LOC = 7
    IF (INSC) 288,205,288.
    205 v(1) = 0.
    E(1) = 0.
    En(1) = Ev(1)
        \because%"ヲ 1 = 1,N
        *(i+i)=Y(1)
    G(I+1)=2(I)
    BO(I+1) = BV(I).
    209 CONTINUE
        NP=N+1
        1F (IOPEV) 2091,2092,2091
2091 CONTINUE
    EV1 = EV1 + G(2)
2092 DO 213 I = 2,NP
    G(I) = G(I) - EVI
RKR
            RKR 061
    RKR 062
    RKR 063
    RKR 063
    RKR 064
    RKR }006
    RKR 066
    RKR 067
    RKR OGR
    RKR 069
    RKR 070
    RKR }07
    RKR 072
    RKR 073
    RKR 074
    RKR }007
    RKR 075
    RKR 076
    RKR 077
    RKR 078
    RKR 079
    RKR 080
    RKR 081
    RKR 081
    RKR 082
    RKR OB4
    RKR 085
RKR 086
RKR 087
RKR 088
RKR 089
RKR 090
RKR 091
RKR }091
RKR 093
RKR 094
RKR 095
RKR }09
RKR 097
RKR 098
RKR 099
    RKR 100
RKR 101
    RKR 102
    RKR
                            103
RKR 105
    RKR 106
    RKR 107
    RKR 108
RKR 109
    RKR 110
    RKR 111
RKR 112
    RKR 113
RKR 114
RKR 115
```

UCRL- 10925
Table I. (Contd.)

```
        Y(I) = V(I) RKR 116
        Z(I) = G(I) RKR
        BV(1) = BO(I)
    213 CONTINUE
        IF (IOPEV) 2131,2132.2131
2131 EVI = -G(2)
2132 IF (NPROB-17) 2133,2134,2133
2134 M = 1
    EV(1) = DE
    CALL NTRPSR (Z,Y,EV,UEV,HDES,NP,M,VNIN,VN,INSC,MBEG,NUST) RKR
    LOC = 2
        IF (INSC) 288,2135,288
    2135 NP = NP + 1
        Y(NP) = UEV
        V(NP) = UEV
        Z(NP) = DE
        G(NP) = DE
        BO(NP) = 0.
        BV(NP) = 0.
2133 Y(1) = 0.
    Z(1) = 0.
    BV(1) = BO(1)
    VMIN = VSTA
    VN = VFIN
    HDES = HDED
    M = 0
    WRITEOUTPUTTAPE6,113,(Y(I),Z(I),I=1,NP)
    113 FORMAT (33HO THE G(V) VALUES USED BELOW ARE / 6(4X1HV10X1HG4X) //
    Z 6(1XF7.3,F12.4))
        WRITEOUTPUTTAPE6,108,(Y(I),BV(I),I=1,NP) RRK 145
    108 FORMAT (33HO THE BV(V) VALUES USED BELOW ARE / 6(4X1HV9X2HBV4X) //RKR 146
        Z 6(1XF7.3,F12.7)) RKR 147
        IF (IQHK) 215,212,215 RKR 148
    215M= XFIXF((VFIN-VSTA)/HDED) + 1
        DO 217 I = 1,M
        OEV(I) = VSTA + FLOATF(I-1)*HDED
        OV(I) = GFUNCF(OEV(I))
    217 CONTINUE
        INSC = 0
        GO TO 218
    212 CALL NTRPDP(V,G,OEV,OV,HDED,NP,M,VSTA,VFIN,INSC,MBEG,NUST)
        LOC = 2
        WRITEOUTPUTTAPE6,106,HDES,VMIN,VN,MBEG,NUST,INSC,NP,M
    RKR
    RK.R
    RKR
    RKR 153
    RKR
    RKR
    RKR 157
    RKR 158
    106 FORMAT (6HOHDES=1PE15.7.7H,VMIN=E15.7,5H,VN=E15.7.7H, MBEG=15/ RKR 159
    29X7H, NUST=15,7H, INSC=15,4H,N=I5,4H,M=15)
    RKR 160
    218 WRITEOUTPUTTAPE6,109 RKR 161
    109 FORMAT (54HO OUTPUT V,G--LEVELS AT WHICH TURNING POINTS ARE FOUND/RKR 162
        Z 6(4X1HV10X1HG4X) //) RKR 163
        WRITEOUTPUTTAPE6,107,(OEV(I),OV(I),I=1,M) R RKR 164
    107 FORMAT (6(1XF7.3,F12.4)) RKR 165
    214 IF (INSC) 288,216,288 1,M R RKR 166
    214 IF (INSC) 288,216,288 1,M R RKR 166
        TEMP(I) = OEV(I) RRR 168
        U(I) = OV(I) RKR 169
    219 CONTINUE RKR
    RKR 170
    RKR 171
C INTEGRATION CONSTANTS
RKR 172
C
RKR
```

Table I. (Contd.)

```
    STEP =.9 RKR 174
    MZ(1) = 101
    MZ(2)=81
    MZ(3) = 61
    IZ(1) = 8
    XGAUS(1,1) =.019855071751232
    XGAUS(1,2)=.101666761293186
    XGAUS(1,3) =.237233795041836
    XGAUS(1.4) =.408282678752175
    XGAUS(1,5)=1. - XGAUS(1,4)
    XGAUS(1,6) = 1. - XGAUS(1,3)
    XGAUS(1,7) = 1. - XGAUS(1,2)
    XGAUS(1,8) = 1. - XGAUS(1,1)
    AGAUS(1,1) = .050614268145188
    AGAUS(1,2) =.111190517226687
    AGAUS(1,3)=.156853322938944
    AGAUS(1,4) =.181341891689181
    AGAUS(1,5)=AGAUS(1,4)
    AGAUS(1,6)=\operatorname{AGAUS}(1,3)
    AGAUS(1,7)=AGAUS(1,2)
    AGAUS(1,8)= AGAUS(1,1)
    IZ(2) = 6
    XGAUS(2,1) =.033765242898424
    XGAUS(2,2) =.169395306766868
    XGAUS(2,3)=.380690406958402
    XGAUS(2,4) = 1. - XGAUS(2,3)
    XGAUS(2,5)=1.-XGAUS(2,2)
    XGAUS(2,6)=1. - XGAUS(2,1)
    AGAUS(2,1)=.085662246189585
    AGAUS(2,2)=.180380786524070
    AGAUS(2,3)=.233956967286345
    AGAUS(2,4) = AGAUS(2,3)
    AGAUS(2,5)=\operatorname{AGAUS}(2,2)
    AGAUS(2,6)=\operatorname{AGAUS}(2,1)
    IZ(3) = 4
    XGAUS(3,1) =.069431844202974
    XGAUS(3,2) =.330009478207572
    XGAUS(3,3)=1.-XGAUS(3,2)
    XGAUS(3,4) = 1. - XGAUS(3,1)
    AGAUS(3,1)=.173927422568727
    AGAUS(3,2) =. 326072577431273
    AGAUS(3,3)=AGAUS(3,2)
    AGAUS(3,4)=\operatorname{AGAUS}(3,1)
    ZG(1) = ZG(3)
    WRITEOUTPUTTAPEG,100
    100 FORMAT (1H1)
224 DO 280 I = 1,M
    TEMPI = OEV(I)
    NUS2 = NUST/2
    NB = NUS2 + 1
    NF = N-NB + 1
    DO 225 J = NB,NF
    IF (TEMPI - V(J)) 235,235,225
225 CONTINUE
    ISG = NF + I
    GO TO 237
235 ISG = J
237 NSTA = ISG - NUS2 RKR 231
    175
    176
    176
    177
    178
    179
    180
    181
    182
    183
    184
    18
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
217
218
219
220
221
222
223
224
225
226
227
228
229
230
```

Table I. (Contd.)

```
D
    VMIN = 0. 
        GEG = 0. . . RKR
        LT = I
        IZGD=0
        GDO = 0.
        FDO = 0.
        ISG=0
        ISB=0
        COMMENCE FINDING TURNING POINTS BY INTEGRATION
        CALL TIME (BEGIA)
D 226 BS = VMIN + (TEMPI - VMIN) * STEP
    227 IF (LT-3) 228,228,301
    228 MO =MZ(LT)
    223 KM = (MQ-1)/2
        TMIN = VMIN
        TS = BS
        A=(TS-TMIN)/FLOATF(MQ-1)
        MX = 0
        IF (IQHK) 401,229,401
    229 CALL NTRPSR(Y,Z,UEV,EV,A,NP,MX,TMIN,TS,INSC,MBEG,NUST)
    230 LOC = 3
    231 IF (INSC) 288,232,288
    232 IF (GDO) 236,233.236
    233MX=0
    IF (IBHK) 403,239,403
    239 CALL NTRPSR(Y,BV,UEV,BI,A,NP,MX,TMIN,TS,INSC,MBEG,NUST)
    I.OC=4
    234 IF (INSC) 288,236,288
    236 DO 238 J = 1,MQ
        DENQ = U(I) - EV(J)
        IF (DENQ) 292,292,241
    241 UEV(J) = 1./SQRTF(DENQ)
        EV(J) = BI(J) * UEV(J)
    238 CONTINUE
        FSUM = UEV(1) + 4.#UEV(2) + UEV(MQ)
        GSUM = EV(1) + 4.*EV(2) + EV(MQ)
    240 DO 242 J = 2,KM
        FSUM = FSUM + 4**UEV (2*J) + 2**UEV(2*J-1)
        GSUM = GSUM + 4.*EV(2*J) + 2.*EV(2*J-1)
    242 CONTINUE
        FEG2 = A*FSUM/3.
        GEG2 = A*GSUM/3.
    250 IF (LT - 1) 262,262,254
    301 I2DO=(LT-1)/3
    IF (IZDO - 3) 304,304,303
    303 IZDO = 3
    304 NGAS = IZ(IZDO)
        DO 306 J = 1,NGAS
D. XG(J)=(BS-VMIN) * XGAUS(IZDO,J) + VMIN
    UEV(J)= XG(J)
    306 CONTINUE
        MST = 1
D EPSH = TEMPI - XG(NGAS)
    FEPS = EPSH
    IF (EPSH(1)) 276,307,308
        232
        FEG = 0. RKR
        233
        234
        235
        36
        237
        238
        239
C
```


Table I. (Contd.)
UCRL-10925

```
    307 IF (EPSH(2)1 276.276,308 RKR 290
    308 IF (IQHK) 405,309,405
    309 CALL NTRPDP(V,G,XG,YG,EPSH,NP,NGAS,VMIN,BS,INSC,MST,NUST)
    LOC = 5
    310 IF (INSC) 288,311,288
    311 IF (IZGD) 312,312,340
    312 IF (GDO) 318,314,318
    314 MST = 1
        IF (IBHK) 407,315,407
    315 CALL NTRPSR (Y,BV,UEV,BI,FEPS,NP,NGAS,TMIN,TS,INSC,MST,NUST)
        LOC = 6
    316 IF (INSG) 288,318,288
    318 FSUM = 0.0
    GSUM = 0.0
    DO 320 J = 1,NGAS
    IF (IOHK) 718,317,718
D 317 DENQ(J) = OV(I) - YG(J)
    718 1F (DENQ(J)) 292,292,323
    323 XG(J) = AGAUS(IZDO,J)/SQRTF(DENQ(J))
        YG(J) = BI(J) * XG(J)
        FSUM = FSUM + XG(J)
        GSUM = GSUM + YG(J)
    320 CONTINUE
        IF (BI(NGAS)-BI(1)) 322,321,322
    321 IZGD = 1
D 322 BSV = BS - VMIN
        FEGZ = BSV * FSSUM
    324 GEG2 = BSV * GSUM
        GO'TO 254
    340 FSUM = 0.0
        DO 342 J = 1,NGAS
        DENQ = OV(I) - YG(J)
        IF (DENQ) 292,292,341
    341 XG(J)= AGAUS(IZDO,J)/SQRTF(DENQ)
    FSUM = FSUM + XG(J)
    342 CONTINUE
        GSUM = BI(NGAS) * FSUM
        GO TO 322
    254 IF (FEG2/FEG - 1.E-6) 255,255,256
    255 FDO = 1.
    256 IF (GEG2/GEG - 1.E-6) 257.257,258
    257 GDO = 1.
    258 IF (A8SF(FEG2/FEG1) - .9) 260,260,259
    259 FDO = 1.
    260 IF (ABSF(GEG2/GEG1) - .9) 262,262,261
    261 GDO = 1.
    262 LT = LT + 1
    FEG1 = FEG2
        GEG1 = GEG2
    264 IF (FDO) 269,266,269
    266 FEG = FEG + FEG2
    268 IF (GDO) 272,270,272
    269 IF (GDO) 276,270,276
    270 GEG = GEG + GEG2
D 272 VMIN = BS
    IF (IOPFG) 273,274,273
273 CALL TIME (AFTEA)
    XTIQ = (AFTEA-BEGIA)*60.
```

Table I. (Contd.)

```
        BEGIA = AFTEA . RKR 348
        WRITEOUTPUTTAPE6,110,FEG,GEG,XTIQ RKR
        #
            RKR
74 IF (LT-20) 226,226,290 352
276 F = FEG * FAC RKR
        GF = GEG / FAC RKR
        RMAXII) = SQRTF(F*F + F/GF) + F . RKR 355
    354
        RMIN(I)=RMAX(I) - 2.*F R RKR 356
        CALL TIME(AFTER)
            RKR 357
        XTIQ = 60.*(AFTER-BEGIN) RKR 358
        BEGIN = AFTER R RKR 3.59
        WRITEOUTPUTTAPE6,104,TEMPI,U(I),RMIN(I),RMAXII),XTIQ,BI(NGAS) RKR 360
    Z ,F,GF .RKR 361
104 FORMAT (1OHO FOR V = F7.3.6H, G = F10.3.14H 1/CM, RMIN = FlO.7. RKR 362
    Z 12H AND RMAX = F10.7.27H ANGSTROMS. THIS REQUIRED F8.5, RKR 363
    2 9H SECONDS. / 20X12H ALSO. BV = F12.7 /20X49H THE KLEIN ARKR 364
    ZCTION INTEGRALS F AND G ARE EQUAL TO 2E15.8///1) RKR 365
        WRITEOUTPUTTAPE7,105,RMIN(I),U(I),RMAX(I),U(I) RKR 366
105 FORMAT (1XF9.7,F10.3 / 1XF9.7.F10.3) RKR 367
280 CONTINUE
    RKR 366
    DO 284 I = 1,N RKR 369
    Z(I)=Z(I+1)
    RKR 370
    Y(I) = Y(I+1). RKR 371
    BV(I)=BV(I+1) RKR 372
, RKR 373
    WRITEOUTPUTTAPE6.100 % RKR 374
286 RETURN
288 ZOC(1)=6H EVI
    ZOC(2) = 6HG(LEV)
    ZOC(3) = 6HS.P.EV
    ZOC(4) = 6HS.P.BV
    ZOC(5) = 6HD.P.EV
    ZOC(6) = 6HD.P.BV
    2OC(7) = 6H BV1
    ZOC(8)=6HG FILL
    ZOC(9) = 6HBVFILL
    WRITEOUTPUTTAPE6,102,ZOC(LOC),U(I)
102 FORMAT (26HO NTRPDP UNSUCCESSFUL FOR A6, 11H. WHEN U = E16.8)
    INTG = 1
    GO TO 286
```



```
    90 WRITEOUTPUTTAPEG,103
103 FORMAT (2OHO TEG REACHED MAXIT ) RKR 390
    INTG=1
    GO TO 286
292 INTG = 1
    WRITEOUTPUTTAPE6,111
111 FORMAT (22HO DENQ IS NOT POSITIVE)
    GO TO 286
401 MX = MQ
    DO 402 J = 1,MQ
    UEV(J)=TMIN + FLOATF(J-I) * A
    EV(J) = GFUNCF(UEV(J))
402 CONTINUE
    GO TO 232
403 MX = MQ
    DO 404 J=1,MQ . . RKR 404
    UEV(J)=TMIN + FLOATF(J-1)*A RKR 405
    RKR 376
    RKR 386
    391
R RKR 397
    RKR 398
    UEV(J) TMIN + FLOATF(J-1) * A . RKR 399
    RKR 400
    RKR 401
    MX MO . . RKR
```

Table I. (Contd.)

```
        BI(J)= BFUNCF(UEV(J)) RKR 406
404 CONTINUE
    GO TO 236
405 CALL DGUNC (XG,DENQ,NGAS.TEMPI)
405 CALL DGUNC (XG,DENQ,NGAS.TEMPI)
407 DO 408 J= = NGAS 
407 DO 408 J= = 1,NGAS 
408 CONTINUE
408 CONTINUE 
    END
RKR 406
RKR 409
RKR 410
RKR 411
RKR 412
RKR 413
RKR 414
```

UCRL- 10925

CNTRPSR	R INTERPOLATION PROGRAM (BY SUCCESSIVE RANGES) SINGLE PREC.	NTRPS000
C		NTRPSOO1
c	the method of lagrange is used. the input points need not be	NTRPS002
c	EQUALLY SPACED. THERE ARE TWO mOdes of input available. the	NTRPS003
c	FIRST OCCURS WHEN M $=0$. THE ABSCISSAE ARE THEN GENERATED FROM	NTRPS004
c	XMIN, XMAX,AND XH. AT EXIT M = NO. OF POINTS FOUND, AND XO	NTRPS005
C	Contains the abscissae. M Will be checkeo to insure that the	NTRPS006
c	DIMENSION IS NOT EXCEEDED. MDIMM = THE DIMENSION OF THE XO, YO	NTRPS007
c	ARRAYS. THE SECOND MODE OCCURS WHEN M IS POSITIVE. THE M	NTRPS008
c	AbSCISSAE ARE then assumed to have been generated prior to	NTRPSOO9
C	ENTRY. THE STARTING INDEX FOR THE OUTPUT ARRAY MUST BE	NTRPSO10
c	SPECIFIED. THE FIRST POINT FOUND WILL BE AT XO(MBEG). XH MUST	NTRPSO11
C	be given since the ordinate for any point closep than .01*xh to	NTRPSO12
c	AN INPUT POINT IS TAKEN AS THAT FOR THE INPUT POINT. -NUSED- IS	NTRPSO13
r	thf Number of points used for each interpolated point *NUSED*	NTRPSO14
c	MUST BE EVEN AND LESS THAN OR EQUAL TO - N -. NUSED $=8$ IS	NTRPSO15
c		NTEPSO16
c	IS FOUND FROM THE NUSED/2 ON EACH SIDE. NTRPSR WILL SCALE AND	NTRPS017
c	RESCALE IN ORDER TO AVOID OVERFLOW. IF THE FIRST SCALING DOES	NTRPSO18
c	NOT SUCCEED, NTRPSR WILL TRY UP TO 7 TIMES MORE BEFORE RETURNING	NTRPS019
c	IN THE ERROR MODE. (INSC = 1)	NTRPSO20
c	INPUT IS $\mathrm{XI}, \mathrm{YI},(\mathrm{XO}), \mathrm{XH}, \mathrm{N}, \mathrm{M},(\mathrm{XMIN}),(\mathrm{XMAX}), \mathrm{MBEG}, \mathrm{NUSED}$.	NTRPS021
c	OUTPUT IS (XO),YO,INSC.	NTRPSO22
c	INSC $=0$ IF PROGRAM WAS SUCCESSFUL. IF NOT, INSC $=1$.	NTRPSO23
c		NTRPSO24
	SUBROUTINE NTRPSRIXJ,YJ, XO, YO, XN, N,K,XNIN, XNAX,INSC,MBEG, NUSED)	NTRPS025
	DIMENSION XI (200),YI(200), XO(3000),YO(3000), XJ(200),YJ(200),	NTRPS026
	2 NUMB(200)	NTRPS027
	MDIMM $=3000$	NTPPS028
	X MAX $=$ XNAX	NTRPS029
	XMIN = XNIN	NTRPS030
	$X H=A B S P(X N)$	NFRPSU31
	$M=K$	NTRPS032
	IREV \equiv -	NTRPSU33
	IREX $=0$	NTRPS034
$C \quad \mathrm{M}$	M IS ZERO, IF XH, XMIN, XMAX ARE TO BE USED. IF M IS NOT = TO	NTRPS035
$C \quad 2$	ZERO, THEN XO(I), I = l,M WILL BE USED AS ABSCISSA.	NTRPS036
2001	IF (M) 270,201,206	NTRPS037
201 M	$M=\operatorname{XINTF}(\operatorname{ABSF}((X M A X-X M I N) / X H))+1$	NTRPS038
C 202	IF M IS MORE THAN DIMENSION OF XO, RETURN IN ERROR MODE.	NTRPS039
	IF (M+MBEG-MDIMM-2) 202,272,272	NTRPS040
	MF $=$ MBEG + M - 1	NTRPS041
	IF (XMAX - XMIN) 203,204,204	NTRPS042
	XMIN = XNAX	NTRPS043
	XMAX $=$ XNIN	NTRPSO44
	IREV $=1$	NTRPS045
204	DO 205 I = MBEG, MF	NTRPS046
	XO(I) $=$ FLOATF(I-MBEG) * XH + XMIN	NTRPS047
205	CONTINUE	NTRPS048
206	DO $207 \mathrm{I}=1, \mathrm{~N}$	NTRPS049
	XI(I) $=$ XJ(I)	NTRPSO50
207	CONTINUE	NTRPS051
	MF = MBEG + M - 1	NTRPS052
	MSTA $=$ MBEG	NTRPS053
	NUST $=$ NUSED $/ 2$	NTRPS054
	NS $=$ NUST + 1	NTRPS055
	$N F=N-N S+1$	NTRPS056
	$N F P=N F+1$	NTRPS057

Table I. (Contd.)

UCRL-10925

Table 1. (Contd.)

```
    258 DO 260 I = 1,N2 NTRPS116
        J=N+1 - I NTRPS117
        TEMP = XJ(I)
        TEMS = YJ(I)
        XJ(I) = XJ(J)
        YJ(I) = YJ(J)
        XJ(J) = TEMP
        YJ(J) = TEMS
    260 CONTINUE
    262 RETURN
    270 WRITEOUTPUTTAPE6,2101
2101 FORMAT (44HO ERROR IN INPUT TO NTRPSR. M IS NEGATIVE., 
        INSC = 1
        GO TO 240
    272H=(XMAX-XMIN)/FLOATF(MDIMM-MBEG)
    WRITEQUTPUTTAPEG,?IO2,H
2102 FORMAT (58HO ERROR IN INPUT TO NTRPSR. MINIMUM ALLOWABLE SPACING
    8IS lPE12.3)
        INSC = 1
        GO TO 240
    274 WRITEOUTPUTTAPE6,2103,L
2103 FORMAT (43HO INTRI WAS UNABLE TO INTERPOLATE IN PANGE I3)
        GO TO 240
    100 NCON = 1
        REFA = 1.414214
        NFIN = NSTA + NUSED - 1
        DO 98 I = NSTA,NFIN
        XI(I) = XJ(I)
        YI(I) = YJ(I)
    98 CONTINUE
        NSTAI = NSTA + 1
        XSCALE = (XI(NFIN) - XI(NSTA))/10.
        YMAX = YI(NSTA)
        YMIN = YI(NSTA)
    1001 DO 1002 I = NSTAI,NFIN
        YMAX = MAXIF(YMAX,YII(I))
        YMIN = MINIF(YMIN,YI(I))
1002 CONTINUE
    91 YSCALE = YMAX - YMIN
1003 DO 1004 I = NSTA,NFIN
        XI(I) = XI(I)/XSCALE
        YI(I) = (YI(I)-YMIN)/YSCALE + .5.
1004 CONTINUE
            XH=ABSF(XN)/XSCALE
            MFIN = MSTA + M - 1
            MTA = MSTA
1005 EPSIL = .01**H
    101 DO 110 II= MTA,MFIN
            XO(II) = XO(II)/XSCALE
            YO(11) = 0.0
            PNUM = 1.0
    1011 DO 107 I = NSTA,NFIN
C FIND XO(II)-XI(I) FOR NUMERATOR AND CHECK FOR NEARNESS.
    XNUM = XO(II) - XI(I)
    1012 IF (ABSF(XNUM )-EPSIL) 102,102,103
    102 YO(II) = YI(I)
            GO TO 103
C PNUM = PRODUCT OF ALL XNUM NTRPS173
    NTRPS118
    NTRPS119
    NTRPS120
    NTRPS121
    NTRPS122
    NTRPS123
    NTRPS124
    NTRPS125
    NTRPS126
    NTRPS127
    NTRPS128
    NTRPS129
    NTRPS130
    NTRPS131
    NTRPS132
    NTRPS133
    NTRPS134
    NTRPS135
    NTRPS136
    NTRPS137
    NTRPS138
    NTRPS139
    NTRPS140
    NTRPS141
    NTRPS142
    NTRPS143
    NTRPS144
    NTRPS145
    NTRPS146
    NTRPS147
    NTRPS148
    NTRPS149
    NTRPS150
    NTRPS151
    NTRPS152
    NTRPS153
    NTRPS154
    NTRPS155
    NTRPS156
    NTRPS157
M
    NTRPS159
    NTRPS160
    NTRPS161
    NTRPS162
NTRPS163
NTRPS164
NTRPS165
NTRPS166
NTRPS167
NTRPS168
NTRPS169
NTRPS170
NTRPS171
NTRPS172
```

Table I. (Contd.)

```
    103 PNUM = PNUM*XNUM NTRPS174
C CONSTRUCT DENOMINATOR AND SUM
    PDEN = 1.0
    104 DO 106 J=NSTA,NFIN
1043 IF (I-J) 105,106,105
    105 PDEN = (XI(I) - XI(J))#PDEN
1051 IF QUOTIENT OVERFLOW 1103.106
    106 CONT INUE
        DEN = POEN*XNUM
        YO(II) = YI(I)/DEN + YO(II)
        IF ACCUMULATOR OVERFLOW 1121.107
    107 CONTINUE
        YO(II) = YO(II)*PNUM
    109 YO(II) = (YO(II)-.5)*YSCALE + YMIN
        XO(II)= XO(II) * XSCALE
    110 CONTINUE
        INSC=0
        GO TO 246
1103 WRITEOUTPUTTAPE6,1104,NCON,XSCALE
    WRITEOUTPUTTAPE6,1108,II,I,J
1104 FORMAT (8H NCON = I3, 11H, XSCALE = F10.7)
1108 FORMAT (26H OVERFLOW OCCURRED AT II = I4.4H I = I 3.4H J=I3) NTRPSI95
    NCON = NCON + 1
1105 DO 1106I=NSTA,NFIN NTRPS197
    XI(I) = XI(I)/REFA
1106 CONTINUE
    XO(II) = XO(II) * XSCALE
    MTA = II
    XH = XH /REFA
        XSCALE = XSCALE*REFA
        IF (NCON-8) 1005,1005,1107
1107 INSC = 1
GO TO 246
1121 WRITEOUTPUTTAPE6,1122 NTRPS207
1122 FORMAT {48HO ACCUMULATOR OVERFLOW. DEN MUST BE TOO SMALL, \ NTRPS2O8
    INSC = 1
    GO TO 246
    FREQUENCY 1051(1.9).1001(50).1003(50).101(500).1011(50),
        1 1012(0,0,1),104(50),1043(1,0,1)
    END
NTRPS174
NTRPS176
NTRPS177
NTRPS178
NTRPS179
NTRPS180
NTRPS181
NTRPS182
NTRPS183
NTRPS184
NTRPS185
NTRPS186
NTRPS187
NTRPS188
NTRPS189
NTRPS190
NTRPS191
NTRPS192
NTRPS193
NTRPS195
NTRPS196
NTRPS197
NTRPS199
NTRPS199
NTRPS200
NTRPS201
NTRPS202
NTRPS203
NTRPS204
NTRPS205
NTRPS206
NTRPS208
NTRPS210
NTRPS211
NTRPS212
NTRPS213
```

Table I. (Conld.)
UCRL-10925

CNTRPDP	P INTERPOLATION PROGRAMIBY SUCCESSIVE RANGES) DOUBLE PRECISION.	NTRPD000
C		NTRPD001
c	the method of lagrange is used. the input points need not be	NTRPD002
c	EQUALLY SPACED. there are two modes of input available. the	NTRPD003
c	FIRST OCCURS WHEN M $=0$. THE ABSCISSAE ARE THEN GENERATED FROM	NTRPD004
c	XMIN, XMAX,AND XH. AT EXIT M = NO. OF POINTS FOUND, AND XO	NTRPD005
c	CONTAINS the abscissae. m Will be checked to insure that the	NTRPD006
c	DIMENSION IS NOT EXCEEDED. MDIMM = THE DIMENSION OF THE XO, YO	NTRP0007
c	ARRAYS. THE SECOND MODE OCCURS WHEN M IS POSITIVE. THE M	NTRPD008
c	ABSCISSAE ARE THEN ASSUMED TO HAVE BEEN GENERATED PRIOR TO	NTRPD009
c	ENTRY. THE STARTING INDEX FOR THE OUTPUT ARRAY MUST BE	NTRPDO10
c	SPECIFIED. THE FIRST POINT FOUND WILL BE AT XO(MREG). XH MUST	NTRPDO11
c	BE GIVEN SINCE THE ORDINATE FOR ANY POINT CLOSEP THAN . Ol*XH TO	NTRPDO12
c	AN INPUT POINT IS TAKEN AS THAT FOR THE INPUT POINT. -NUSED- IS	NTRPDO13
C	THE NUMBER OF POINTS USED FOR EACH INTERPOLATED POINT. *NIJSED*	NTRPDO14
\checkmark	MUST BE EVEN AND LESS THAN OR EQUAL TO - - - NUSED $=8$ IS	NTRPDO15
c	SUGGESTED. ANY POINT FARTHER THAN NUSED/2 POINTS FROM EITHER ENDN	NTRPD016
c	IS FOUND FROM THE NUSED/2 ON EACH SIOE. NTRPSR WILL SCALE AND	NTRPD017
C	RESCALE IN ORDER TO AVOID OVERFLOW. IF THE FIRST SCALING DOES	NTRPDO18
c	NOT SUCCEED, NTRPSR WILL TRY UP TO 7 TIMES MORE BEFORE RETURNING	NTRPD019
c	IN THE ERROR MODE. (INSC $=11$	NTRPD020
c	INPUT IS XI,YI, (XO), XH,N,M,(XMIN), (XMAX),MBEG,NUSED.	NTRPDO21
c	OUTPUT IS (XO),YO,INSC.	NTRPD022
c	INSC $=0$ IF PROGRAM WAS SUCCESSFUL. IF NOT, INSC $=1$.	NTRPDO23
C		NTRPDO24
	SUBROUTINE NTRPDP(XJ,YJ, XO,YO, XN,N,K,XNIN,XNAX,INSC,MDEG,NUSED)	NTRPD025
D D	DIMENSION XI(200),YI(200), XJ(200),YJ(200), XO(200),YO(200),XMIN(1)	NTRPD026
2	2 XMAX(1), XNUM(1),EPSIL(1)	NTRPD027
	DIMENSION NUMB (200)	NTRPD028
	MDIMM $=200$	NTRPD029
D $\quad X$	XMAX $=$ XNAX	NTRPD030
D $\quad X$	XMIN $=$ XNIN	NIRPUU31
D $\quad X$	$X H=X N$	NTRPD032
	$M=K$	NTRPDO33
$C \quad \mathrm{M}$	M IS ZERO, IF XH IS TO BE USED. IF NOT, XH=(XMAX-XMIN)/(M-1).	NTRPD034
200 I	IF (M) 270,201,205	NTRPD035
D 201 M	$M=1 N T F(1 X M A X-X M I N) / X H)+1$.	NTRPD036
C I	IF M IS MORE THAN DIMENSION OF XO, RETURN IN ERROR MODE.	NTRPD037
202 I	IF (M+M8EG-MDIMM-2) 203,272,272	NTRPD038
203 M	MF $=$ MBEG + M - 1	NTRPD039
	DO 204 I = MBEG, MF	NTRPD040
D \quad O	XO(1) = FLOATF(I-MBEG) * XH + XMIN	NTRPD041
204	CONTINUE	NTRPD042
205	DO $206 \mathrm{I}=1, \mathrm{~N}$	NTRPD043
D \times	XI(I) $=\mathrm{XJ}(\mathrm{I})$	NTRPD044
206	CONTINUE	NTRPD045
	$M F=M B E G+M-1$	NTRPD046
	MSTA = MBEG	NTRPD047
	NUST $=$ NUSED/2	NTRPD048
	NS $=$ NUST +1	NTRPD049
	$N F=N-N S+1$	NTRPD050
	$N F P=N F+1$	NTRPD051
	DO 207 I = NS,NFP	NTRPD052
	$\operatorname{NUMB(I)~}=0$	NTRPD053
207	CONTINUE.	NTRPD054
2091	IF (NF-NS) $236,210,210$	NTRPD055
210	DO $226 \mathrm{~J}=$ MBEG,MF	NTRPD056
	DO 2241 = NS,NF	NTRPD057

Table I. (Contd.)
UCRL-10925

```
    214 IF (XO(J) - XI(I)) 216,215,224 NTRPDO58
    215 IF (XO(J+20 )-XI(I+200)) 216,216,224
    216 NUMB(I) = NUMB(I) + 1
        GO TO 226
    224 CONTINUE
        NUMB(NFP) = NUMB(NFP) + 1
    226 CONTINUE
        GO TO 238
    236 NUMB(NFP) = M
    238 M = 0
    239 DO 250 L = NS,NFP
        IF (NUMB(L)) 250,250,242
    242 M = NUMB(L)
        NSTA = L - NUST
        GO TO 100
    246 IF (INSC) 274,248,274
    248 MSTA = MSTA + M
    250 CONTINUE
    240 K = MSTA - MBEG
        RETURN
    270 WRITEOUTPUTTAPE6,2101
    2101 FORMAT 144HO ERROR IN INPUT TO NTRPSR. M IS NEGATIVE. )
        INSC = 1
        GO TO 240
    272H=(XMAX-XMIN)/FLOATF(MDIMM-MBEG)
        WRITEOUTPUTTAPE6,2102,H
    21OL FORMAT IS8HO ERROR IN INPUT TO NTRPSR. MINIMUM ALLOWABLE SPACING NTRPDOB4
    21OL FORMAT IS8HO ERROR IN INPUT TO NTRPSR. MINIMUM ALLOWABLE SPACING NTRPOO84
        8IS 1PE12.3) NTRPDO85
        INSC = 1
        GO TO 240
        274 WRITEOUTPUTTAPE6,2103,L
    2103 FORMAT (43HO INTRI WAS UNABLE TO INTERPOLATE IN PANGE I3)
        GO TO 240
    100 NCON = 1
        REFA = 1.414214
        NFIN = NSTA + NUSED - 1
        DO 98 I = NSTA,NFIN
D XI(I) = XJ(I)
D YI(I) = YJ(I)
        98 CONTINUE
            NSTA1 = NSTA + 1
            XSCALE = (XI(NFIN) - XI(NSTA))/10.
            YMAX = YI(NSTA)
            YMIN = YI(NSTA)
    1001 DO 1002 I = NSTAI,NFIN
        YMAX = MAXIF(YMAX,YI(I))
        YMIN = MINIF(YMIN,YI(I))
    1002 CONTINUE
D 91 YSCALE = YMAX - YMIN
    1003 DO 1004 I = NSTA,NFIN
D XI(I) = XI(I)/XSCALE
D YI(I) = (YI(I)-YMIN)/YSCALE + .5
    1004 CONTINUE
D XH = XN /XSCALE
    MFIN = MSTA + M - 1
    MTA = MSTA
D1005 EPSIL = .01*XH
101 DO 110 II= MTA,MFIN
NTRPDO59
    NTRPD060
    NTRPD061
    NTRPD062
    NTRPD063
    NTRPD064
    NTRPD065
    NTRPD066
    NTRPD067
    NTRPD068
    NTRPDOGO
    NTRPD070
    NTRPD071
    NTRPD072
    NTRPD073
    NTRPD074
    NTRPD075
    NTRPD076
    NTRPD077
    NTRPD078
    NTRPD079
    NTRPD080
    NTRPD081
    NTRPD082
    NTRPD083
    NTRPD086
    NTRPD087
    NTRPD088
NTRPD089
NTRPD090
NTRPDO91
NTRPD092
NTRPD093
NTRPDO94
NTRPD095
NTRPD096
NTRPD097
NTRPD098
NTRPD099
NTRPD100
NTRPD101
NTRPD102
NTRPD103
NTRPD104
NTRPD105
NTRPD106
NTRPDIO7
NTRPD108
NTRPD109
NTRPD110
NTRPD111
NTRPD112
NTRPD113
NTRPD114
NTRPD115
```

Table I. (Contd.)
UCRL-10925

```
D XO(II) = XO(II)/XSCALE
D YO(II) = 0.0
D PNUM = 1.0
1011 DO 107 I = NSTA,NFIN
C FIND XO(II)-XI(I) FOR NUMERATOR AND CHECK FOR NEARNESS.
D XNUM = XOIII) - XI(I)
    1012 IF (ABSF(XNUM )-EPSIL) 102,1013.103
    1013 IF (ABSF(XNUM(2))-EPSIL(2)) 102,102,103
D 102 YO(II) = YI(I)
    go ro 109
C PNUM = PRODUCT OF ALL XNUM
D 103 PNUM = PNUM*XNUM
C CONSTRUCT DENOMINATOR AND SUM
PDEN - 1.0
    104 ñ 1 nk .l = NSTA.NFIN
    1043 IF (I-J) 105,106,105
D }105\mathrm{ PDEN = (XI(I) - XI(J))*PDEN
    1051 IF QUOTIENT OVERFLOW 1103.106
    106 CONTINUE
D DEN = PDEN*XNUM.
D YO(II) = YI(I)/DEN + YO(II)
        IF ACCUMULATOR OVERFLOW 1121, 107
    107 CONTINUE
D. YO(II) = YO(II)*PNUM
D 109 YO(II) = (YO(II)-.5)*YSCALE + YMIN
D XO(II) = XO(II) * XSCALE
    110 CONTINUE
                    INSC=0
    GO TO }24
    1103 WRITEOUTPUTTAPE6,1104,NCON,XSCALE
    WRITEOUTPUTTAPE6,1108,II,I,J
    I104 FORMAT 18H NCON = 13, 11H, XSCALE = F10.71
    1108 FORMAT (26H OVERFLOW OCCURRED AT II= I4,4H I= 13,4H J= I3)
    NCON = NCON + 1
    1105 DO 1106 1 = NSTA,NFIN
() XI(I) = XI(I)/REFA
    110% CONTINUE
D XO(II) = XO(II) * XSCALE
    MTA = II
D XH = XH /REFA
D XSCALE = XSCALE*REFA
    IF (NCON-8) 1005,1005,1107
    1107 INSC = 1
    GO TO 246
    1121 WRITEOUTPUTTAPE6,1122
    1122 FORMAT (48HO ACCUMULATOR OVERFLOW. DEN MUST BE TOO SMALL., )
    INSC = I
    GO TO 246
    FREQUENCY 1051(1,9),1001(50),1003(50),101(500),1011(50),
    1 1012(0,0,1),104(50),1043(1,0,1)
    END
```

NTRPD 116
NTRPDI17
NTRPDI18
NTRPD119
NTRPD 120
NTRPDI21
NTRPDI22
NTRPD 123
NTRPD124
NTRPD 125
NTRPD 126
NTRPD 127
NTRPD128
NTRPD 129
NTRPO130
NTRPD 131
NTRPD 132
NTRPD 133
NTRPD134
NTRPD135
NTRPD136
NTRPD 137
NTRPD138
NTRPD 139
NTRPD 140
NTRPD141
NTRPD 142
NTRPD 143
NTRPD 144
NTRPD 145
NTRPD146
NTRPD117
NTRPD 148 NTRPD 149 NTRPDI50 NTRPO151 NTRPD 152 NTRPD 153 NTRPD 154 NTRPD 155 NTRPD 156 NTRPD157 NTRPD 158 NTRPD 159 NTRPD 160 NTRPD161 NTRPD162 NTRPD163 NTRPD 164 NTRPD 165 NTRPD 166

UCRL- 10925

```
CDGUNC FINDS G(V) - G(v-x)
    SUBROUTINE DGUNC (XG,DENQ,NGAS,TEMPI)
D DIMENSION XG(20),DENQ(20)
    DIMENSION UEV(3000),EV(3000),BV(200),BI(3000),TEMP(200),U(200),
        y(200),Z(200)
                            DGUNC001
            COMMON Y,TEMP,UEV,EV,Q,NST,N,MST,M,XMIN,XMAX,INSC,MBEG,NUST ,BI,
        Z NI,NS,MAXIT,FACM,ZMU,DE,WE,WEXE,WEYE,WEZE,WETE,BE,ALPHAE,
                        Z GAMMAE,DELTAE, VNIN,BQ,MQ,SPEP, U,BV,Z,ICK,H, K,HDES
        2
                        ,EPSLNE
            V = TEMPI
            VA = V*V
            VB=VA*V
            VC = VB*V
    205 DO 210 I = 1,NGAS
    Y = TEMPI - XG(I)
        X = Y
        XA = X*X
        XB = XA*X
        XC = XB*X
            DENQ(I) = WE*X + (XA-2.*V*X)*WEXE + ((VA*X-V*XA)*3.+XB) * WEYE
        2 + ((VB*X+V*XB)*4*-6.*VA*XA-XC) * WEZE
        Z + ((VC*X-V*XC)*5.+(VA*XB-VB*XA)*10.) * WETE DGUNCO21
    210 CONTINUE
        RETURN
        END
        DGUNCO23
GUNCO
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ctime & & & & & & time & 000 \\
\hline C & DISCARD THI & S SUBROUTINE IF YOUR & 709/7090/7094 & INSTALLATION & HAS & TIME & 001 \\
\hline C & AN ON-LINE & CLOCK AdDRESSABLE BY & CALL TIME(X) & & & time & 002 \\
\hline & SUBROUTINE & TIME( X ) & & & & TIME & 003 \\
\hline 1 & \(x=0.0\) & & & & & TIME & 004 \\
\hline & RETURN & & & & & TIME & 005 \\
\hline & END & & & & & TIME & 006 \\
\hline
\end{tabular}
```


UCRL-10925

Table II: Sample data deck for RKR program.

PROGRAM FOR CALCULATING RELATIVE INTENSITIES

Remarks

The input to this program is extremely flexible. The potential may be generated by subroutine POTGEN or may be read in. The output is FranckCondon factors, relative intensities (quantum $/ \mathrm{sec}$) scaled to ten, relative intensities (energy/sec) scaled to ten; and the off-diagonal matrix elements $\left\langle v^{\prime} J^{\prime}\right| r\left|v^{\prime \prime} J^{\prime \prime}\right\rangle /\left\langle v^{\prime} J^{\prime} \mid v^{\prime \prime} J^{\prime \prime}\right\rangle$ and $\left\langle v^{\prime} J^{\prime}\right| r^{2}\left|v^{\prime \prime} J^{\prime \prime}\right\rangle /\left\langle v^{\prime} J^{\prime} \mid v^{\prime \prime} J^{\prime \prime}\right\rangle$, commonly known as the r-centroid and the square of the r-centroid. The heart of this program is subroutine SCHR which solves the radial Schrödinger equation for its eigenvalues and wavefunctions. This program has been described in detail elsewhere. ${ }^{3}$ About 0.9 min is required to calculate all the above-named quantities for ten vibrational levels of the lower state with four vibrational levels of the upper state. ${ }^{2}$

Limitations

Presently the program will calculate at one time the Franck-Condon factors, etc., of only four specified vibrational levels of the upper state with the vibrational levels of the lower state: Also the same ($\mathrm{J}^{\prime}, \mathrm{J}^{\prime \prime \prime}$) pair must be used for each transition. This is due to lack of additional space in core storage. The program may be easily modified to allow more flexible usage.

Listing

Table III lists the source decks and Table IV gives a sample data deck for the relative-intensity program,

UCRL-10925

Table III. Source-deck listing for relative-intensity program.

UCRL-10925

Table III. (Contd.)

c	IIRA $=2$, DISTANCE IS IN ANGSTROMS.	MAIN	058
c	FOLLOWING CARDS CONTAIN THE INPUT POTENTIAL POINTS.	MAIN	059
c	IF It IS DESIRED TO USE A FUNCTION TO GENERATE THE WhOLE	MAIN	060
C	POTENTIAL CURVE, the first 12 COLUMNS OF The IIPA, ETC. Card	MAIN	061
c	MUST BE BLANK. A HOLLERITH TEXT MUST BE PUNCHED IN 13-72, AS	MAIN	062
c	IT WILL BE PRINTED. THE NEXT CARD IN SUCH A CASE CONTAINS	MAIN	063
c	XMIN, XMAX;ETC.	MAIN	064
c	FIRSt time through is the ground state	MAIN	065
c	the second time through is the upper state	MAIN	066
C	a maximum of four levels of the upper state can be used in	MAIN	067
c	COMPUTING INTENSITIES AT ONE TIME.	MAIN	068
ぐ	IHE SAME VALUE U' IIEN, IIKA,NUE,XH, XMIN,XMAX,IIRAI,NEI	MAIN	069
c	, IIENI MUST BE USED FOR BOTH The ground and upper state	MAIN	070
c		MAIN	071
	IKON = 1	MAIN	072
5	READINPUTTAPE5,103,IIRA,IIEN,N(IKON), (DTFRMT(1), I= 1, 10)	MAIN	073
103	FORMAT (314, 10A6)	MAIN	074
6	IF (IIRA) 7,8,7	MAIN	075
7	NIKON = N(IKON)	MAIN	076
	READINPUTTAPE5,DTFRMT, (XI(I,IKON),YI(I,IKON), I= 1 , NIKON)	MAIN	077
c		MAIN	078
c	NEXT CARD CONTAINS NDE AND THE DISSOCIATION ENEPGY WHERE NDE IS	MAIN	079
c	ZERO IF ZERO PT OF POTENTIAL CURVE IS AT R=INFINITY, OR ONE IF ATM	ATMAIN	080
C	R=REQUILIBRIUM. DISSOCIATION ENERGY HAS SAME UNITS AS POTENTIAL.MA	.MAIN	081
C		MAIN	082
	READINPUTTAPE5,105,NDE, DE(IKON)	MAIN	083
105	FORMAT (I4,F10.0)	MAIN	084
	GO TO 17	MAIN	085
c		MAIN	086
C	NEXT DATA CARD CONTAINS XMIN,XMAX,XH,IIRA, WHERE IIRA GIVES THE	MAIN	087
c	UNITS FOR the min and max distances and the spacing xh.	MAIN	088
c		MAIN	089
8	READINPUTTAPE5,104,DE(IKON),WE(IKON),RE(IKON)	MAIN	090
17	READINPUTTAPE5,104,XMIN, XMAX,XH,IIRAI	MAIN	091
104	FORMAT (3F10.0,14)	MAIN	092
c		MAIN	093
C	NEXT CARD HAS NO. AND IIEN OF EXPECTED ENERGY LEVELS, AND NET	MAIN	094
c	WHICH HAS THE SAME INTERPRETATION FOR ETRIALII) AS NDE DOES FOR	MAIN	095
C	the potential curve above.	MAIN	096
C	It also contains the variable format for reading energy levels	MAIN	097
C		MAIN	098
	READINPUTTAPE5,106,NL(IKON),IIEN1,NET, (DUFMT(I), I=1,10)	MAIN	099
106	FORMAT (314, 10A6)	MAIN	100
	IF (NL) 15,15,14	MAIN	101
14	NLIKCN = NL(IKON)	MAIN	102
c		MAIN	103
C	READ IN ENERGY LEVELS	MAIN	104
c		MAIN	105
	READINPUTTAPE5, DUFMT, (KV(I,IKON), ETRIALII, IKON), I=1,NLIKON)	MAIN	106
c		MAIN	107
c	GO BaCK to statement 5 and read in upper state	MAIN	108
c		MAIN	109
15	GO TO (1501, 1502), IKON	MAIN	110
1501	$1 \mathrm{KCN}=2$	MAIN	111
	GO TO 5	MAIN	112
c		MAIN	113
c	AFTER BOTH THE LOWER AND UPPER STATES ARE READ IN,	MAIN	114
c	D2 NU SCHR MODIFIED FOR THE 709/7090/7094 IS DESCRIBED IN	MAIN	115

UCRL-10925
Table III. (Contd.)

UCRL-10925

Table III. (Contd.)

UCRL- 10925
Table III. (Contd.)

Table III. (Contd:)
UCRL-10925

```
C CHECK FOR RESCALING OF POTENTIAL TO ZERO AT R=INFINITY
    239 IF (NDE) 308,244,240
    MAIN 290
    240 IF (IPOTGN) 244,241,244 MAIN 292
    241 DO 242 I = 1,N
        YI(I)=YI(I) - DE
    242 CONTINUE
        DO 243 I = I,N2
        YI(1,2) = YI(I,2) - DE(2)
    243 CONTINUE
    244 IF (NET) 300,247,245
    25NO246 = = NL N NOL
        ETRIAL(I)=ETRIAL(I)-DE+(BEI-AEI*(FLOATF(I-1)+.5)+GEI*(FLOATF(I-1MAIN 301
        1)+.5)**2)*FLOATF(JROTL*(JROTL+1))/FACM
            MAIN 302
    246 CONTINUE
MAIN 303
        DO 2461 I = 1,NL2 MAIN 304
        ETRIAL(I,2)=ETRIAL(I,2)-DE(2)+(BE2-AE2*(FLOATF(I-1)+.5)+GE2*(FLOMAIN 305
        1ATF(I-1)+.5)**2)*FLOATF(JROTU*(JROTU+1))/FACM MAIN 306
    2461 CONTINUE MAIN
    MAIN 307
    247 DO 248 I = 1,NL
        ECALC(I) = ETRIAL(I)
    248 CONTINUE
        DO 2481 I = 1,NL2
        ECALC(I,2)= ETRIAL(1,2)
    2481 CONTINUE
        IF(IPOTGN) 250,249,250
    249 NUSEO = 8
    CALL TIME(AFTER)
        XTIQ = 60.* (AFTER-BEGIN)
        SEGIN = AFTER
        WRITEOUTPUTTAPE6,131,XTIQ
    MAIN 308
    MAIN 309
    MAIN 310
    MAIN 311
    MAIN 312
    MAIN 313
    MAIN 314
    131 FORMAT (23HO TIME BEFORE POTFIT = F10.5). MAIN 320
    IKON = 1 MAIN 32I
2490 CALL POTFIT(XI(I,IKON);YI(I,IKON),N(IKON),XO,V(I,IKON),M,XH, MAIN 322
    2 XMIN,XMAX,INSC,NUSED,FACMI
    IF (INSC) 1,2491,1
    2491 CALL TIME(AFTER)
    XTIQ = 60.* (AFTER-BEGIN)
    BEGIN = AFTER
    WRITEOUTPUTTAPE6,132,XTIQ
    132 FORMAT (2OHO TIME FOR POTFIT = F10.5) MAIN 329
C PRINT THE POTENTIAL CURVE GENERATED (ANGSTROMS AND I/CM)
    250 WRITEOUTPUTTAPE6,108 MAIN 332
MAIN 331
    108 FORMAT (37HO THE POTENTIAL FUNCTION GENERATED IS /// MAIN 333
    Z 1X 5(3X 4HR(A) 6X 7HV(1/CM) 2X)) MAIN 334
    252 NPOT4 = NPOT*4
    NPOT5 = NPOT*5
MAIN 335
    DO 270 I = 1,M,NPOT5
    256 1F (M-I-NPOT4) 258,262,262
    258 JFIN = (M-I)/NPOT
    260 IF (JFIN) 272,272,264
    262 JFIN = 5
    264 DO 266 J = 1,JFIN
        IPRN = I + NPOT*(J-1)
MAIN 342
    XPRN(J) = XO(IPRN)**529166 MAIN 344
    VPRN(J)=(V(IPRN,IKON)+DE(IKON))*FACM MAIN 345
    266 CONTINUE
    IF (VPRN(1) - 1.E6) 268,269,269 MAIN 347
```

```
    269 WRITEOUTPUTTAPE6,141,(XPRN(J),VPRN(J),J=1,JFIN),IPRN
    141 FORMAT (1XOPF10.6,1PE12.5,4(OPF10.6,1PE12.5),4XI5)
    GO TO 270
    268 WRITEOUTPUTTAPE6,109,(XPRN(J),VPRN(J),J=1,JFIN),IPRN
        109 FORMAT (1X F10.6,F12.4,F10.6,F12.4,F10.6,F12.4,F10.6,F12.4,
    Z
            F10.6,F12.4,4\times151
    MAIN 348
        MAIN }34
        MAIN 350
    MAIN
    70 CONTINUE
    272 CALL TIME(AFTER)
        XTIQ = 60. * (AFTER-BEGIN)
        BEGIN = AFTER
        WRITEOUTPUTTAPE6,135,XTIQ
    135 FORMAT (32HO TIME FOR PRINT OF POTENTIAL = F9.4,9H SECONDS.)
        GO TO (2721,2729), IKON
2721 IKON.= 2
    WRITEOUTPUTTAPE6,101
    GO TO 2490
2729 DO 2728 J = l,M
        V(J,1) = FLOATF(JROTL*(JROOTL+1))/XO(J)**2+V(J,1)
        IF ACCUMULATOR OVERFLOW 2724,2725
2724 V(J,1) = 1.OE+30
2725 V(J,2) = FLOATF(JROTU*(JROTU+1))/XO(J)**2+V(J,2)
        IF ACCUMULATOR OVERFLOW 2727,2728
2727 V(J,2)=1.0E+30
2728 CONTINUE
    2722 MTEMQ = M
        LLK = 0
        KLK = 0
C FIND THE ENERGY LEVELS THROUGH USE OF SCHR.
    27.4 NLIKON = NL(IKON)
        DO 285 I = 1,NLIKON
    276 IF (SCHR(NI,NS,MAXIT,EPS,IPSIQ,V(I,IKON),XO,S ,M ,XMIN,
        Z XMAX,KV(I,IKON),E(ALC(I,IKON),FACM)-1.1 284,278,300
    27.8 LLK = LLK + 1
    280 IF (LLK-LLIM) 284,284,304
    284 M = MILMĊ
        DO 281 J = 1,M
        XO(J) = FLOATF(J-1)*XH + XMIN
    281 CONTINUE
        BVSUM = S(1)**2/XO(1)**2 + 4**S(2)**2/XO(2)**2 + S(M)**2/XO(M)**2 MAIN 386
        KSIMP = M - 1
        DO 287 J = 3,KSIMP,2 MAIN 388
        BVSUM=2.*S(J)**2/XO(J)**2 + 4.*S(J+1)**2/XO(J+1)**2 + BVSUM MAIN 389
    287 CONTINUE
        GO TO (2875,2871), IKON
2871 DO 2872 J = 1,M MAIN 392
    SU(J,I) = S(J)
2872 CONTINUE
GO TO 2878
2875 DO 2877 IK = 1,NL2
    DO 2876 J = 1,M
    XO(J)=(FLOATF(J-1)*XH+XMIN)*SU(J,IK)
2876 CONTINUE
2879 CONTINUE
    CALL SIMP(S,SU(I,IK),M,XH,RESULT(I,IK))
    CALL SIMP(S,XO,M,XH,RCNTRD(I,IK))
2877 CONTINUE
    DO 2882 IK = 1,NL2
    DO 2881 J = 1,M
MAIN 390
MAIN 391
MAIN 393
MAIN 394
MAIN 395
MAIN 396
MAIN 397
MAIN 398
MAIN 399
MAIN 400
MAIN 401
MAIN 402
MAIN }40
MAIN }40
MAIN }40
```


Table III. (Contd.)

UCRL-10925

```
    XO(J)=(FLOATF(J-1)*XH+XMIN)**2*SU(J.IK) MAIN 406
2881
    CONTINUE
    CALL SIMP(S,XO,M,XH,RRCN(I,IK))
2882 CONTINUE
    2878 BVF(I,IKON) = FACM * BVSUM * XH / 3.
        ECALC(I,IKON) = DE(IKON) * FACM + ECALC(I,IKON)
        - CALL TIME(AFTER)
            XTIQ = 60. * (AFTER-BEGTN)
            BEGIN = AFTER
            WRITEOUTPUTTAPE6,162,ECALC(I,IKON),BVF(I,IKON),XTIQ
    162 FORMAT (3OHO SCHR FINDS ENERGY LEVEL G = F11.5.15H 1/CM AND BV =
    Z F11.7,9H 1/CM IN F7.4,9H SECONDS. )
    285 CONTINUE
        GO TO (2852,2851),IKON
2851 IKON = 1 
2851 IKON = = 1
2852 WRITEOUTPUTTAPEG,101
    WRITEOUTPUTTAPE6,110,LLK MAIN 423
    WRITEOUTPUTTAPEG,101 MAIN 422
    WRITEOUTPUTTAPE6,110,LLK MAIN 423
    110 FORMAT (38HO PROGRAM SUCCESSFUL. (MAXIT REACHED I2, 7H TIMES) IMAIN 424
        WRITEOUTPUTTAPEG,128 MAIN 425
    128 FORMAT (35HO THE BELOW IS FOR THE LOWER STATE. ) MAIN 426
    WRITEOUTPUTTAPEG,133 MAIN`427
    133 FORMAT (54HOVIB. NO. GIVEN ENERGY CALC. ENERGY DIFFERENCE MAIN 428
    Z 13X43HGIVEN DELTA G CALC. DELTA G DIFFERENCE /44X MAIN 429
    2 26HDIFFERENCE = CALC. - GIVEN /!) MAIN 430
    280 00 288 I = 1,NL MAIN 431
        ETRIAL(I) = (ETRIAL(I) + DE) * FACM MAIN 432
        DIFF = ECALC(I) - ETRIAL(I) - MAIN }43
        IF (I-1) 290,290,292
    292 DGT = ETRIAL(I) - ETRIAL(I-1)
    DGC = ECALC(1) - ECALC(I-1)
    DIFDE = DGC - DGT
    WRITEOUTPUTTAPE6,136,DGT,DGC,DIFDE
    136 FORMAT ( 64\times3F15.5) MAIN 439
290 WRITEOUTPUTTAPE6,134,KV(I),ETRIAL(I),ECALC(I),DIFF MAN 440
    134 FORMAT (I8, 3F15.5) - MAIN 441
288 CONTINUE
    WRITEOUTPUTTAPEG,130
130 FORMAT (1H128X8HVIB. NO.3X9HCALC. BV //) MAIN 444
130 FORMAT (1H128X8HVIB. NO.3X9HCALC. BV //) MAIN 444
    WRITEOUTPUTTAPE6,129,KV(I),BVF(I) MAIN 446
    129 FORMAT (28XI7,3F15.8)
    294 CONTINUE
    WRITEOUTPUTTAPEG,101
    WRITEOUTPUTTAPE6,137
    137 FORMAT (35HO THE BELOW IS FOR THE UPPER STATE.).) MAIN 451
    WRITEOUTPUTTAPEG,138 MAIN 452
    138 FORMAT (54HOVIB. NO. GIVEN ENERGY CALC. ENERGY DIFFERENCE
    Z /44x26HDIFFERENCE = CALC. - GIVEN //)
    DO 388 I = 1,NL2
        ETRIAL(I,2) = (ETRIAL(I,2) + DE(2)) * FACM
    DIFF= ECALC(I,2)-ETRIAL(I,2)
    DIFF=ECALC(I,2)-ETRIAL(I,2)
    388 CONTINUE
    WRITEOUTPUTTAPEG,130
    DO 394 I = 1,NL2
    WRITEOUTPUTTAPE6,129,KV(I,2),BVF(I,2) MAIN 462
    394 CONTINUE
    MAIN 407
    MAIN 408
    MAIN }40
    MAIN 410
    MAIN 411
    MAIN 412
    MAIN 413
    MAIN }41
    MAIN }41
    MAIN }41
    MAIN 417
    MAIN 418
    MAIN 419
    MAIN 420
    MAIN 434
    MAIN }43
    MAIN 
    MAIN }44
    MAIN }44
    MAIN 447
    CONTINUE 
    MAIN 448
    MAIN }44
    MAIN }45
MAIN 454
    MAIN 455
    MAIN }45
MAIN 459
MAIN }46
```


UCRL-10925

Table III. (Contd.)

```
DO 510 J = 1,NL
    DO 510 IK = 1,NL2
    RCNTRD(J,IK) = RCNTRD(J.IK)*0.529166/RESULT(J,IK)
    RRCN(J,IK) = RRCN(J,IK)*0.529166**2/RESULT(J.IK)
    RESULT(J,IK) = RESULT(J,IK)**2
510 CONTINUE
    WRITE OUTPUT TAPE 6.500
500 FORMAT(24Hl FRANCK-CONDON FACTORS )
    PRFMT(2) = PNFT(NL2)
    WRITE OUTPUT TAPE 6,PRFMT,(KV(J,2),J = 1,NL2)
    DO 520 J = 1,NL
    WRITE OUTPUT TAPE 6,508,KV(J),(RESULT(J,ILK),ILK = 1,NL2)
508 FORMAT(6X,14,4(10X,E10.4,10X))
520 CONTINUE
    WRITE OUTPUT TAPE 6,514
514 FORMAT(32H1 R-C[NTROID FACTORS (NNGSTPOMS),
    WRITE OUTPUT TAPE 6,PRFMT,(KV(J,2),J=1,NL2)
    DO 516 J = 1,NL
    WRITE OUTPUT TAPE 6,508,KV(J),(RCNTRD(J,ILK),ILK = 1,NL2)
516 CONTINUE
    WRITE OUTPUT TAPE 6,517
    FORMAT(17H1 R**2-CENTROIDS )
    WRITE OUTPUT TAPE 6,PRFMT,(KV(J,2),J = 1,NL2)
    DO 518 J = 1,NL
    WRITE CUTPUT TAPE 6,508,KV(J),(RRCN(J,ILK),ILK = 1,NL2)
518 CONTINUE
C CORRECT FOR FREQUENCY DEPENDENCE
C AND,SCALE TO TEN
    DO 5121 IK = 1,NL2
    DIV(IK) = 0.0
    DOIV(IK.) = 0.0
    DO 5121 J = 1,NL
    RESULT(J,IK) = RESULT(J,IK) *(TE+ECALC(IK,2)-ECALC(J,1))**3
    RCNTRD(J,IK) = RESULT(J,IK)*(TE+ECALC(IK,2)-ECALC(J,1))
5121 CONTINUE
    DO 5022 IK = 1,NL2
    DO 5022 J = 1,NL
    DIV(IK) = MAXIF(DIV(IK),RESULT(J,IK))
    DDIV(IK) = MAXIF(DDIV(IK),RCNTRD(J,IK))
5022 CONTINUE
    DO 5023 IK = 1,NL2
    DO 5023 J = 1,NL
    RESULT(J,IK) = RESULT(J,IK)/DIV(IK)*10.0
    RCNTRD(J,IK) = RCNTRD(J,IK)/DDIV(IK)*10.0
5023 CONTINUE
    WRITE OUTPUT TAPE 6,5024
5024 FORMAT(48HI RELATIVE INTENSITY(QUANTUM/SEC) SCALED TO TEN )
    WRITE OUTPUT TAPE 6,PRFMT,(KV(J,2),J = 1,NL2)
    DO 5026 J = 1,NL
    WRITE OUTPUT TAPE 6,509,KV(J),(RESULT(J,ILK),ILK = 1,NL2)
509 FCRMAT(6X,14,4(12X,F6.3,12X))
5026 CONTINUE
    WRITE OUTPUT TAPE 6,5030
5030 FORMAT(47HI RELATIVE INTENSITY(ENERGY/SEC) SCALED TO TEN
WRITE OUTPUT TAPE 6,PRFMT,(KV(J,2),J = 1,NL2)
DO 50.27 J = 1,NL
```

MAIN 464
MAIN 465
MAIN 466
MAIN 467
MAIN 468
MAIN 469
MAIN 470
MAIN 471
MAIN 472
MAIN 473
MAIN 474
MAIN 475
MAIN 476
MAIN 477
MAIN 478
MAIN 479
MAIN 480
MAIN 481
MAIN 482
MAIN 483
MAIN 484
MAIN 485
MAIN 486
MAIN 487
MAIN 488
MAIN 489
MAIN 490
MAIN 491
MAIN 492
MAIN 493
MAIN 494
MAIN 495
MAIN 496
MAIN 497
MAIN 498
MAIN 499
MAIN 500
MAIN 501
MAIN 502
MAIN 503
MAIN 504
MAIN 505
MAIN 506
MAIN 507
MAIN 508
MAIN 509
MAIN 510
MAIN 511
MAIN 512
MAIN 513
MAIN 514
MAIN 515
MAIN 516
MAIN 517
MAIN 518
MAIN 519
MAIN 520
MAIN 521

Table III. (Contd.)
UCRL-10925

```
        WRITE OUTPUT TAPE 6,509,KV(J),(RCNTRD(J,ILK),ILK = 1,NL2) MAIN 522
5027 CONTINUE
        WRITE OUTPUT TAPE 6,5031
        MAIN 523
        MAIN }52
$031 FORMATI12H1 CONSTANTS,
        WRITE OUTPUT TAPE 6,144,JROTL,JROTU
        WRITE OUTPUT TAPE 6,2000,TE,BE1,BE2,AE1,AE2,GE1,GE2
        GO TO 1
    300 KLK = KLK + 1
    301 IF (KLK-KLIM) 284,302,302 MAIN 530
302 WRITEOUTPUTTAPE6,112,KLIM MAIN 5
        M CCESSFUL FOR 12, 28HTH TIME, GO TO NEXT
112 FORMAT (26HO SCHR NOT SUCCESSFUL FOR 12, 28HTH TIME, GO TO NEXT PRMAIN 532
        ZOBLEM. ) MAIN 533
        GO TO 1 MAIN 534
304 WRITEOUTPUTTAPE6,113,LLIM,I MAIN 535
    113 FORMAT (28HO SCHR DID NOT CONVERGE FOR I2,17HTH TIME WHEN I = I3) MAIN 536
    306 GO TO 1 MAIN 537
308 WRITEOUTPUTTAPE6,120,NDE
    306 GO TO 1 MAIN 537
MAIN 538
120 FORMAT (25HO ERROR IN INPUT. NDE = I10)
    GO TO l
400 CALL EXIT
    END
MAIN .539
MAIN 540
400 CALL EXIT MAIN 541
MAIN 542
MAIN 525
    MAIN
        WRITE OUTPUT TAPE 6,2000,TE,BEl,BE2,AEl,AE2,GE1,GE2 MAIN 527
    MAIN 527
    MAIN 528
    MAIN 529
```



```
    MAIN 538
    MAIN 540
```

 POTFTOOO
 POTFT001
    ```
```

CFOTFIT USING NTRPSR,MINFIT,MAXFIT

```
```

CFOTFIT USING NTRPSR,MINFIT,MAXFIT
SUBROUTINE POTFIT (XI,YI,N,XO,V,M,XH,XMIN,XMAX,INSC,NUSED,FACM)
SUBROUTINE POTFIT (XI,YI,N,XO,V,M,XH,XMIN,XMAX,INSC,NUSED,FACM)
DIMENSION XI(400),YI(400),XO(2000),V(2000) POTFTOO2
DIMENSION XI(400),YI(400),XO(2000),V(2000) POTFTOO2
248 MBEG = 1
248 MBEG = 1
XMAXT = XMAX
XMAXT = XMAX
XMINT = XMIN
XMINT = XMIN
C CHECK FOR EXTRAPOLATION AT SMALL R. POTFTOOG
C CHECK FOR EXTRAPOLATION AT SMALL R. POTFTOOG
250 IF (XMIN - XI(1)) 252,254,254 POTFTOO7
250 IF (XMIN - XI(1)) 252,254,254 POTFTOO7
252 XMAX = XI(1)
252 XMAX = XI(1)
CALL MINFIT (XI,YI,N,XO,V,M,XH,XMIN,XMAX,INSC,FACM)
CALL MINFIT (XI,YI,N,XO,V,M,XH,XMIN,XMAX,INSC,FACM)
IF (INSC) 712,253,712
IF (INSC) 712,253,712
253 MT = M
253 MT = M
XMIN = XO(MT) + XH
XMIN = XO(MT) + XH
MBEG = M + 1
MBEG = M + 1
C PREPARE TO INTERPOLATE.
C PREPARE TO INTERPOLATE.
254 M = 0
254 M = 0
XMAX = XMAXT
XMAX = XMAXT
NL}=N-
NL}=N-
256 IF (XMAX-XI(NL))260,260,258
256 IF (XMAX-XI(NL))260,260,258
258 XMAX = XI(NL)
258 XMAX = XI(NL)
260 CALL NTRPSR(XI,YI,XO,V,XH,N,M,XMIN,XMAX,INSC,MBEG,NUSED)
260 CALL NTRPSR(XI,YI,XO,V,XH,N,M,XMIN,XMAX,INSC,MBEG,NUSED)
C
C
CHECK FOR EXTRAPOLATION AT LARGE R.
CHECK FOR EXTRAPOLATION AT LARGE R.
IF (INSC) 712,262,712
IF (INSC) 712,262,712
262 IF (XMAXT-XMAX) 267,267.264
262 IF (XMAXT-XMAX) 267,267.264
264 MBEG = M + MBEG
264 MBEG = M + MBEG
XMIN = XO(MBEG-1) +XH
XMIN = XO(MBEG-1) +XH
XMAX = XMAXT
XMAX = XMAXT
266 CALL MAXFIT (XI,YI,N,XO,V,M,XH,XMIN,XMAX,INSC,FACM,MBEG) POTFTO27
266 CALL MAXFIT (XI,YI,N,XO,V,M,XH,XMIN,XMAX,INSC,FACM,MBEG) POTFTO27
267 XMIN = XMINT
267 XMIN = XMINT
M = M + MBEG - 1
M = M + MBEG - 1
712 RETURN
712 RETURN
END

```
    END
```

```
    POTFT002
    POTFT003
    POTFTOO4
    POTFT005
    POTFT007
    POTFTOO8
    POTFT009
    POTFTO10
    POTFTOl1
    POTFTOl2
    POTFTO13
    POTFiO14
    MNTOROTFTO15
    MNTOROTFTO15
    POTFTO15
    POTFT016
    POTFTO17
    POTFTO18
    POTFT019
    POTFT020
    POTFT021
    POTFTO2?
    POTFTO23
    POTFTO24
    POTFT025
    POTFT026
POTFTO28
POTFTO29
POTFT030
POTFT031
```


UCRL-10925

```
CMINFIT Y = A/X**12+C MINFTOOO
        SUBROUTINE MINFIT (X,Y,N,XO,V,M,XH,XMIN,XMAX,INSC,FACM) MINFTOOL
        SUBROUTINE MINFIT (X,Y,N,XO,V,M,XH,XMIN,XMAX,INSC,FACM) M MINFTOOL
```



```
        M = XFIXF((XMAX-XMIN)/XH) + 1
    A = (Y(1)-Y(2))/(1./X(1)**12-1:/X(2)**12)
    C = Y(1) - A/X(1)**12
```



```
    XO(I) = FLOATF(I-1)*XH + XMIN
    V(I) = R12FUF(XO(I))
214 CONTINUE
    A = A*FACM*.529166**12
    C = C*FACM
    WRITEOUTPUTTAPE6,101,A,C
    MINFT001
        MINFTOO3
        MINFT004
        MINFT005
        MINFT006
    MINFT007
    MINFTOO8
    MINFTOOY
    MINFTOIO
    A
    22+C, WHERE A = 1PE14.7. 9H AND C = [14.7 ) MINFTO15
    RETURN MINFTOLG
    END MINFTOI7
```


UCRL-10925
Table III. (Contd.)

Table III. (Contd.)

```
    DO 208 I = NS,NFP
    NUMB(I) = 0
208 CONTINUE
    IF (XO(MF) - XO(MBEG)) 209,211,211
209 M2 = M/2
    M2F = MBEG + M2 - 1
    DO 210 I = MBEG,M2F
    K = MF + MBEG - I
    TEMP = XO(I)
    XO(I) = XO(K)
    XO(K) = TEMP
210 CONTINUE
    IREV = 1
<11 IF (XIIN)-XI(1)) 212,210,216
212 N2 = N/2
    DO 214 I = 1,N2
    K=N+1-1
    TEMP = XJ(I)
    TEMS = YJ(I)
    XJ(I) = XJ(K)
    YJ(I) = YJ(K)
    XJ(K) = TEMP
    YJ(K) = TEMS
214 CONTINUE
    IREX = 1
216 IF (NF-NS) 236,218,218
218 DO 226 J = MBEG,MF
    DO 224 I = NS,NF
220 IF(XO(J)-XJ(I))222,222,224
222 NUMB(I) = NUMB(I) + 1
    GO TO 226
2>4 CONTINUE
    NUMB(NFP) = NUMB(NFP) + 1
226 CONTINUE
    GO TO 238
236 NUMB(NFP) = M
238 M = 0
239 DO 250 L = NS,NFP
    IF (NUMB(L)) 250,250,242
242 M = NUMB(L)
    NSTA = L - NUST
    GO TO 100
246 IF (INSC) 274,248,274
248 MSTA = MSTA + M
250 CONTINUE
240 K = MSTA - MBEG
    IF (IREV) 256,256,252
252 M2F = K/2 + MBEG - I
    DO 254 1 = MBEG,M2F
    J = MF + MBEG - I
    TEMP = XO(I)
    TEMS = YO(I)
    XO(I) = XO(J)
    YO(I) = YO(J)
    XO(J) = TEMP
    YO(J) = TEMS
254 CONTINUE
256 IF (IREX) 262,262,258
```

NTRPS058
NTRPSO59
NTRPS060
NTRPSO61
NTRPS062
NTRPS063
NTRPSO64
NTRPSO65
NTRPSO66
NTRPS067
NTRPS068
NTRPSO69
NTRPS070
NTRFS071
NTRPSO72
NTRPS073
NTRPS074
NTRPS075
NTRPSO76
NTRPS077
NTRPS078
NTRPS079
NTRPS080
NTRPSO81
NTRPS082
NTRPSO83
NTRPSO84
NTRPS085
NTRPS086
NTRPS087
NIKPSO甘Y
NTRPSO89
NTRPS090
NTRPS091
NTRPSO92
NTRPS093
NTRPSO94
NTRPS095
NTRPSO96
NTRPS097
NTRPS098
NTRPS099
NTRPS 100
NTRPS 101
NTRPS 102
NTRPSI 03
NTRPS 104
NTRPS 105
NTRPS 106
NTRPS107
NTRPS108
NTRPS109
NTRFS110
NTRPS111
NTRPS 112
NTRPS 113
NTRPS114
NTRPS115

Table III. (Contd.)

```
    258 DO 260 I = 1,N2
    NTRPS116
        J=N+1-I
        TEMP = XJ(I)
        TEMS = YJ(I)
        XJ(I) = XJ(J)
        YJ(I) = YJ(J)
        XJ(J) = TEMP
        YJ(J) = TEMS
    260 CONTINUE
262 RETURN
270 WRITEOUTPUTTAPE6,2101 NTRPS126
2101 FORMAT (44HO ERROR IN INPUT IO NTRPSR. M IS NEGATIVE. )
    INSC = 1
        GO TO 240
272H=(XMAX-XMIN)/FLOATF(MDIMM-MBEG). NTRPS130
    WRITEOUTPUTTAPE6,2102,H
2102.FORMAT (58HO ERROR IN INPUT TO NTRPSR. MINIMUM ALLOWABLE SPACING NTRPS132
    8IS 1PE12.3)
            INSC=1
        GO TO 240
274 WRITEOUTPUTTAPE6,2103,L NTRPS136
2103 FORMAT (43HO INTR1 WAS UNABLE TO INTERPOLATE IN PANGE I3)
    GO TO 240
    100 NCON = 1
        REFA = 1.414214
        NFIN 三 NSTA + NUSEO - 1
        DO 98 I = NSTA,NFIN
    XI(I) = XJ(I)
    YI(I)=YJ(I)
    98 CONTINUE
        NSTAI = NSTA + I
            XSCALE = (XI(NFIN) - XI(NSTA))/10. NTRPS147
    IF (XSCALE) 995,991,995
    991 XSCALE = 1.
    995 YMAX = YI(NSTA)
        YMIN = YI(NSTA)
1001 DO 1002 I = NSTAI,NFIN
        YMAX = MAXIF(YMAX,YI(I))
        YMIN = MINIF(YMIN,YI(I))
1002 CONTINUE
        91 YSCALE = YMAX - YMIN
            IF (YSCALE) 915,915,1003
    915 YSCALE = 1.
1003 DO 1004 1 = NSTA,NFIN
    XI(I) = XI(I)/XSCALE
    YI(I) = (YII(I)-YMIN)/YSCALE + .5
1004 CONTINUE
XH=ABSF(XN)/XSCALE
            MFIN = MSTA +M-1
            MTA = MSTA
1005 EPSIL = .01**H
    101 DO 110 II= MTA,MFIN
            XO(II) = XO(II)/XSCALE
            YO(II) = 0.0
            PNUM = 1.0
1011 00 107 I = NSTA,NFIN
C FIND XO(III-XI(I) FOR NUMERATOR AND CHECK FOR NEARNESS.
    XNUMM= XOIII) - XI(I)
NTRPS117
NTRPS118
NTRPS119
NTRPS120
NTRPS121
NTRPS122
NTRPS123
NTRPS124
NTRPS125
NTRPS126
NTRPS127
NTRPS128
NTRPS129
NTRPS130
NTRPS133
NTRPS134
NTRPS 135.
NTRPS136
NTRPS137
NTRPS138
NTRPS139
NTRPS140
NTRPS141
    XI(I) XJ(I)
NTRPS142
NTRPS143
NTRPS144
NTRPS145
NTRPS146
NTRPS147
NTRPS148
NTRPS149
```



```
NTRPS150
NTRPS152
NTRPS153
NTRPS154
NTRPS155
NTRPS156
NTRPS157
NTRPS158
NTRPS159
    XI(I)=XI(I)/XSCALE NYSCALE + .5 N NTMPS160
NTRPS161
NTRPS162
NTRPS163
NTRPS164
NTRPS165
NTRPS166
NTRPS167
NTRPS168
NTRPS168
NTRPS170
NTRPS171
```

Table III. (Contd.)

```
    1012 IF (ABSF(XNUM )-EPSIL) 102,102,103 NTRPS174
    102 YO(II) = YI(I) NTRPS175
            GO TO 109
C PNUM = PRODUCT OF ALL XNUM
    103 PNUM = PNUM*XNUM
C CONSTRUCT DENOMINATOR AND SUM
        PDEN = 1.0
    104 DO 106 J = NSTA,NFIN
1043 IF (I-J) 105,106,105
    105 PDEN = (XI(I) - XI(J))*FDEN
1051 IF QUOTIENT OVERFLOW 1103,106
    106 CONTINUE
        DEN = PDEN*XNUM
        YU(II) 三 Y|(II)/UEN + YU(II)
        IF ACCUMULATOR OVERFLOW 1121, 107
    107 CONTINUE
        YO(II) = YO(III*PNUM
    109 YO(II) = (YO(III-.5)*YSCALE + YMIN
        XO(II) = XO(II) * XSCALE
    110 CONTINUE
        INSC = 0
        GO TO 246
1103 WRITEOUTPUTTAPE6,1104,NCON,XSCALE
    WRITEOUTPUTTAPEG,1108,II,I,J
1104 FORMAT (8H NCON = 13, 11H, XSCALE = F10.7)
1108 FORMAT (26H OVERFLOW OCCURRED AT II= 14,4H I= 13,4H J= 13)
    NCON = NCON + 1
1105 DO 1106 I = NSTA,NFIN
    XI(I) = XI(I)/REFA
1106 CONTINUE
    XO(II) = XO(II) * XSCALE
    MTA = II
    XH = XH /REFA
    XSCALE = XSCALE*REFA
    IF (NCON-8) 1005,1005,1107
1107 INSC = 1
    GO TO 246
1121 WRITEOUTPUTTAPEG,1122
1122 FORMAT 148HO ACCUMULATOR OVERFLOW. DEN MUST BE TOO SMALL. ,
    INSC = 1
    GO TO 246
    FREQUENCY 1051(1,9),1001(50),1003(50),101(500),1011(50),
        1 1012(0,0,1),104(50),1043(1,0,1)
        END
    NTRPS176
    NTRPS177
    NTRPS178
    NTRPS179
    NTRPS180
    NTRPS181
    NTRPS182
    NTRPS183
    NTRPS184
    NTRPS185
    NTRPS186
    NTRPS187
    NTRPS188
    NTRPS189
    NTRPS190
    NTRPS191
    NTRPS192
    NTRPS193
    NTRPS194
    NTRPS195
    NTRPS196
    NTRPS197
    NTRPS198
    NTRPS199
    NTRPS200
    NTRPS201
    NTRPS202
    NTRPS203
    NTRPS2O4
    NTRRS205
    NTRPS206
    NTRPS207
    NTRPS208
    NTRPS209
    NTRPS210
    NTRPS211
    NTRPS212
    NTRPS213
    NTRPS214
    NTRPS215
    NTRPS216
    NTRPS217
```


Table III. (Contd.)

| CTIME | | | | | TIME | 000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | DISCARD THIS SUBROUTINE IF YOUR | 709/7090/7094 | INSTALLATION | HAS | TIME | 001 |
| C | AN ON-LINE CLOCK ADDRESSABLE BY | CALL TIME(X) | | | TIME | 002 |
| | Subroutine time x) | | | | TIME | 003 |
| 1 | $x=0.0$ | | | | TIME | 004 |
| | RETURN | | | | TIME | 005 |
| | END | . | | | TIME | 006 |

CPOTGEN THIS IS A DUMMY SUBROUTINE POTGN000
C POTGEN GENERATES THE POTENTIAL. NOO1SUBROUTINE POTGENIIPOTGN,DE,NDE,IIRA,IIEN,RE,ETRIAL,KV,NL,IIENI, POTGNOO22 NET,WE,ZMU,XMAX,XMIN,XH,FACM,XO,V,MIPOTGNOO3
1 IPOTGN = 10 POTGN004 POTGN005RETURNEND

UCRL-10925

Table III. (Contd.)

```
CSCHRV PRINTS EVERY -IPSIQ-TH POINT OF THE WAVE FUNCTIONS. SCHRVOOO
C RADIAL SOLUTION TO SCHRODINGER EQUATION SUBROUTINE SCHRVOOI
    FUNCTION SCHR (NI,NS,MAXIT,EPS,IPSIQ,V,P,S,N,RMIN,RMAX,KV,EO,FACMISCHRVOO2
    DIMENSION V(2000,2),S(2000),P(2000),Y(3). SCHRVOO3
        USE UNITS SUCH THAT SCHR EQN IS-PSI2 + (E-VIPSI = 0 SCHRVOO4
    NI=1, PRINT ITERATIONS
    NI=OTHERWISF, DONT PRINT
    NS=1, PRINT SOLUTIONS WITH EACH ENERGY LEVEL SCHRVOOT
    NS=33, PRINT ENERGY LEVELS ONLLY SCHRVOO8
    NS=OTHERWISE, DONT PRINT SCHRVOO9
        IF(NI-1)6,4,6 SCHRVO1O
    4.EPRIN = EO*FACM
        WRITEOUTPUTTAPE6,5,KV,EPRIN SCHRVO12
    5
    FORMAT 147HISCHR- SOLUTION OF RADIAL SCHR. EQUATION FOR V = I3, 5X SCHRVO13
        2 7HETRIAL= IPE15.7. 9H 1!/CM) , SCHRVO14
        WRITEOUTPUTTAPE6,3 SCHR̈VO15
        FORMAT(TOHO ITER E F F(E) UF(E) SCMRVOIO
        X D(E) ) SCHRVO17
    6 CALL EFMT(K) SCHRVO18
        H=(RMAX-RMIN)/FLOATF(N-1) SCHRVO19
        H2=H**2
    8 HV=H2/12.
        E=EO .
        TEST = -1.
        DE=0.
C
            START ITER LOOP
            SCHRVO21
            SCHRV022
            SCHRVO23
            SCHRV024
            SCHRVO25
            SCHRV026
    12 DO 171.IT=1,MAXIT . . . SCHRVO28
    SCHRV027
C U..START INWARD INTEGRATION. SCHRVO29
30 P(N)=1.E-30 SCHRVO30
    32 GN=V(N)-E SGHRVOSI
    34 GI=V(N-1)-E SCHRVO32
C •..TEST IF E TOO HIGH SCHRVO33
    IF(GI) 35, 36, 36 SCHRVO34
    35 WRITEOUTPUTTAPE6,899
    SCHRVO35
899 FORMAT(5OH DIFFERENCE EQUATION SOLUTION TECHNIQUE FAILS )SCHRVO36
    SCHR = 2.
    SCHRV037
        GO TO 250
    SCHRV038
    36 P(N-1)=P(N)*EXPF(RMAX*SQRTF(GN)-(RMAX-H)*SQRTF(GI))
    SCHRV039
    38 Y=(1.-HV*GN)*P(N
    40 Y(2)=(1.-HV*GI)*P(N-1)
C •...INTEGRATE
    K=0
    SCHR
    SCHRV043
    44 M=N-2
    46 Y(3)=Y(2)+((Y(2)-Y)+H2*GI*P(M+1))}\mathrm{ SCHRVO45
    GI=V(M)-E
    50 P(M)=Y(3)/(1.-HV*GI)
C ....TEST FOR OVERFLOW
    52 IF(K)54.70.54
C OVERFLOW . . : SCHRV049
C M..OOVERFLOW, % . . . . SCHRVO5O
```



```
        MI=M+1 & . . . . . . . NCHRVO52
    PM=P(M1) SCHRV053
```



```
    56. P(J)=P(J)/PM SCHRVO55
```



```
    60 Y(2)=Y(2)/PM SCHRVO57
```

Table III. (Contd.)

```
    62 Y(3)=Y(3)/PM SCHRVO58
            GI= V(M+1) - E & SHCNRO59
            GO TO 46
                    SCHRV060
C .....TEST FOR CROSSING PT.
SCHRV061
    70 IF(ABSF(P(M))-ABSF(P(M+1)) 1 90, 90, 72
72 IF(M-2) 90.90.81
    81 Y= Y(2)
    82 Y(2)=Y(3)
    84 M=M-1
    86.GOTO 46
C
    90
            PM=P(M)
    MSAVE = M
    92 YIN=Y(2)/PM
    9 4 ~ D O ~ 9 6 ~ J = M , N
    96 P(J)=P(J)/PM
C
    100 P(1)=1.E-20
    102 Y=0.
    104 GI=V-E
    106 Y(2)=(1.-HV*GI)*P
        K = 0
    SCHRV062
        M=M-1
            P(J)=P(J)/PM
    .....START OUTWARD INTEGRATION
        SCHRV063
        SCHRV064
        SCHRV065
    SCHRV066
    SCHRV067
    SCHRV068
    SCHRV069
    SCHRV070
    SCHRV071
    SCHRV072
    SCHRV073
    SCHRV074
    SCHRV075
    SCHRV076
    SCHRV077
    SCHRV078
    SCHRV079
        108 DO 132 I=2,M SCHRVO82
        110 Y(3)=Y(2)+((Y(2)-Y)+H2*GI*P(1-1))
        112 GI=V(I)=E
        SCHRVOS3
    114P(I)=Y(3)/(1.-HV*GI)
    SCHRVO84
C .....TEST FOR OVERFLOW
    116 IF(K)118,130,118
    118 K=0
        I1=1-1
    PM=P(I1)
    DO 120 J=1,I1 SCHRVO91
    120 P(J)=P(J)/PM
    122 Y=Y/PM
    l22 Y=Y/PM
    126 Y(3)=Y(3)/PM SCHRV095
        GI=V(Il)-E
        GO TO 110
C
    130 Y=Y(2)
    132.}Y(2)=Y(3
C
    134
    .....FINISHED OUTWARD INTEGRATION
    PM=P(M)
        IF(PM)135,149,135
        135 YOUT=Y/PM
    136 YM=Y(3)/PM
    138 DO 140 J=1,M
    140. P(J)=P(J)/PM
C
C
    142 DF=0.
144 DO 146 J=1,N
146 DF=DF-P(J)**2
148 F=(-YOUT-YIN+2.*YM)/H2+(V(M)-E)
SCHRV086
SCHRV087
SCHRV088
    SCHRV089
    SCHRV090
    SCHRVO91
    SCHRV092
    SCHRV093
    SCHRV094
SCHRV095
    SCHRV096
\(P M=P(M)\)
SCHRVO97
CHHVVO98
    GO TO 
SCHRVO98
SCHRV099
SCHRV100
SCHRV101
SCHRV102
SCHRV103
SCHRV104
SCHRV105
SCHRV106
SCHRV107
C
SCHRV108
c .....CORRECTION
SCHRV109
109
C
SCHRV110
SCHRV112
SCHRV113
    146 DF=DF-P(J)**2
SCHRV114
SCHRV114
SCHRV115
```

UCRL-10925
Table III. (Contd.)

Table III. (Contd.)

```
    228 FORMAT(6(I5,1PE15.7)) SCHRV174
232 WRITEOUTPUTTAPE6,228,(I,S(I),I=J,IL,IPSID)
234 CONTINUE
236 EO=E
IF(NS-33) 874,875,874
SCHRV175
SCHRV176
SCHRV177
875 WRITEOUTPUTTAPE6,876,KV,E
SCHRV178
SCHRV179
876 FORMAT(5OHO SOLUTION OF RADIAL SCHRODINGER EQUATION FOR V = 13.
l 7H E = lPE15.7 1
SCHRV180
SCHRV181
874 CONTINUE SCHRV182
250 RETURN SCHRV1R%
FREQUENCY 52(0,1,0),70(0,0,1),72(0,0,1),94(100),55(50),108(100),11SCHRV184
16(0,1,0),138(100),144(200),152(1,0,0), 202(200) SCHRV185
END
SCHRV185
SCHRV186
```

Table III. (Contd.)
UCFL-10925
COUNT 80 EFMT 000

LBL EFMT EFMT 001
REM NU EFM,EFM AND LFM FOR FORTRAN 2 EFMT 002
REM
ENTRY EFM
ENTRY EFMT
LFM OCT 476000000004
TTR 1,4
EFMT CLA 1,4
STA SETN+1
CIA TTR
TXI EFM+1,4:-1
EFM CLA HPR
STO OVER+2
OCT 476000000002
SET CLA X TTR ANALY
STO 8
TIR 1,4
$\times \quad$ tTR analy
ANALY SXD SAVEX,I
LXD 0,1
TTR * $+14,1$
TTR MQO
SAVEX PZE
TTR ACMQ
TTR AC
TTR MQ
ZERO PZE
TTR ACMQO AC AND MQ OVER
tTR ACO
AC CLA ZERO
tTR RETRN
ACMQ CLA ZERO
3
TTR MB
MQ OVER
SAVE XA IN DEC.,THEN ACC.
11
10
9
TTR ACMQO

LDQ ZERO

1. MQ UNDER

RETRN LXD SAVEX, 1
sto savex
CLA 0
STA *+2
CLA SAVEX
TTR **
ACMQO ORA MAX
MQO STO SAVEA
LLS 0
LDQ MAX
LRS 0
TTR OVER+1
ACO ORA MAX
over sto savea
CLA 0
HPR 63
PAUSE OVERFLOW
CLA SAVEA PRESS START TO CONTINUE
TTR RETRN
SAVEA PZE
THREE PZE 0,0,3
TTR TTR SETN
HPR HPR 63
SETN ANA THREE
STO -
TTR OVER+3
MAX OCT 377777777777
END

EFMT 003
EFMT 004
EFMT 005
EFMT 006
EFMT 007
EFMT 008
EFMT 009
EFMT 010
EFMT 011
EFMT 012
EFMT 013
EFMT 014
EFMT 015
EFMT 01.6
EFMT 017
EFMT O18
EFMT 019
EFMT 020
EFMT 021
EFMT 022
EFMT 023
EFMT 024
EFMT 025
EFMT 026
EFMT 027
EFMT 028
EFMT 029
EFMT 030
EFMT 031
EFMT 032
EFMT 033
EFMT 034
EFMT 035
EFMT 036
EFMT 037
EFMT 038
EFMT 039
EFMT 040
EFMT 041
EFMT 042
EFMT 043
EFMT 044
EFMT 045
EFMT 046
EFMT 047
EFMT 048
EFMT 049
EFMT 050
EFMT 051
EFMT 052
EFMT 053
EFMT 054
EFMT 055
EFMT 056
EFMT 057
EFMT 058
EFMT 059
EFMT 060
EFMT 061

Table IV. Sample data deck for relative-intensity program.

| * DATA | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| 1 SILICON NITRIDE INTENSITY DISTRIBUTION | | | TEST | PROGRAM |
| 29.33526 | | | | |
| 22^{25} | 25 (2F10.0) | | | |
| 1.361317012376 .760 | | | | |
| 1.368618911369 .400 | | | | |
| 1.376464310348 .920 | | | | |
| 1.38490469315 .320 | | | | |
| 1.3941121 8268.60n | | | | |
| 1.4041987 7208.760 | | | | |
| 1.41543996135 .800 | | | | |
| 1.42813045049 .720 | | | | |
| $1.4428560 \quad 3950.520$ | | | | |
| 1.4605683 2838.200 | | | | |
| 1.4834289 1712.760 | | | | |
| $1.5188710 \quad 574.200$ | | | | |
| 1.5718000 0. | | | | |
| 1.6311431 574.200 | | | | |
| 1.67882441712 .760 | | | | |
| $1.7140474 \quad 2838.200$ | | | | |
| $1.7442476 \quad 3950.520$ | | | | |
| 1.77159365049 .720 | | | | |
| 1.79702816135 .800 | | | | |
| 1.82115727208 .760 | | | | |
| 1.84425788268 .600 | | | | |
| 1.86663289315 .320 | | | | |
| 1.888369510348 .920 | | | | |
| 1.909675311369 .400 | | | | |
| 1.930579812376 .760 | | | | |
| 150488.0 | | | | |
| 1.100 2. | $2.100 \quad 0.001$ | 2 | | |
| 1021 (8XI2,F10.0) | | | | |
| $0 \quad 574.200$ | | | | |
| 11712.760 | | | | |
| 22838.200 | | | | |
| 33950.520 | | | | |
| 45049.720 | | | | |
| $5 \quad 6135.800$ | | | | |
| 6 7208.760 | | | | |
| $7 \quad 8268.600$ | | | | |
| 8 | 9315.320 | | | |
| 910348.920 | | | | |
| $2225 \quad 2 \mathrm{~F} 10.0)$ | | | | |
| 1.384105010068 .404 | | | | |
| 1.38829949287 .577 | | | | |
| 1.39357688499 .421 | | | | |
| 1.39993767699 .832 | | | | |
| 1.40741296885 .047 | | | | |
| 1.41608056051 .643 | | | | |
| 1.42610435196 .535 | | | | |
| 1.43772494316 .981 | | | | |
| 1.45147113410 .577 | | | | |
| 1.4682963 2475.260 | | | | |
| 1.49036741509 .307 | | | | |
| 1.5254273511 .333 | | | | |
| 1.5800000 0. | | | | |
| 1.6445856 | 511.333 | | | |

Table IV. (Contd.)

| 1.69962781509 .307 | | | |
| :---: | :---: | :---: | :---: |
| 1.7421381 2475.260 | | | |
| 1.77987023410 .577 | | | |
| 1.81498044316 .981 | | | |
| 1.8404052 5176.535 | | | |
| 1.88066916051 .643 | | | |
| 1.91195476885 .047 | | | |
| 1.94238047699 .832 | | | |
| 1.97195798499 .421 | | | |
| 2.0006375 9287.577 | | | |
| 2.028327110068 .404 | | | |
| 115872.0 | | | |
| 1.100 | 2.100 | 0.001 | 2 |
| 42 | 21 | (8×12,F10. | |
| | 511 | . 333 | |
| | 1509 | . 307 | |
| | 22475 | . 260 | |
| | 33410 | . 577 | |
| 66 | 61010 | 0.001 | |
| 0.7310 | | | |
| 0.00567 | | | |
| | | | |
| | | | |
| 24300.0 | | | |
| 5 | | | |

APPENDIX: COMPUTER OUTPUT OF SAMPLE DATA DECKS

Table V shows the computer output when the sample data deck given in Table II is run with the RKR program compiled from Table I; Table VI shows the computer output when the sample data deck given in Table IV is run with the relative-intensity program compiled from Table III:

Table V: RKR program output.
RKR PRCCEDURE $\triangle F P L I E E$ TC THE X STATE GF SI-ICCN IIITRIDE TEST PRCGRAM. mQEEGLLAR CENStaNIS aRE JAKEN fRGN JENKINS ANC DE LASZLO

THE RECECEC MASS CE THE ThC ATGMS, RASEE CN OIE=16, IS 9.335260

IURNing fCints are genekatec gy censtants
THE GIV: CGRVG ES CENSTRUCTEC FRGM THE FOLLDWING INPAT DATA.
WE A LISI.GBCA WEXP = 6.5ECC; WEYE =. , WEZE = . WETE =.
the gyivi curve is censthuctec from the falzowing input data.
$B E \Rightarrow 7.31000 E-01 ; A L P M A E=5.6700 E-03$, LAMMAE $=-0 . \quad$, OELTAE $=-0 . \quad$, EPSLNE $=-0$.

RKR PRCCEDURE APPLIEC TC THE X STATE OF SILICON NITEIDE TEST PRGGRAM molequlah constants are taken fren jenkins and de laszlo

NUSEC IN BEGRKR= $=8$.

 $\begin{array}{ll}\text { ALSC; BV }=0.6828050 \\ \text { THE KLEIN ACTIGN INTEGRALS F AND G ARE EQUAL TO } & 0.24086412 E-030.93173706 E-0 L\end{array}$
FGR $V=3.500 ; G=10340.920 \mathrm{~L} / \mathrm{CM}, \mathrm{RHIN}=1.3764643$ AND RMAX $=1.8883695$ ANGSTRDMS. THIS REQUIREC O. SECONOS. THE KLEIN ACTIGN INTEGRALS F ANO G ARE EQUAL TO $0.25595257 E-000.98470822 E-01$

Table VI. Relative-intensity program output.

the thial enfrgy levels in 1/CM arf given bflow.

RMII: $=1.1000000$, RHAX $=2.1000$ OCO, SHACING $=0.0010000$, ALL IN ANGSI.
the trial fagrgy lfyfls in i/Gm nee given beldw.

| level | Enercy | | Level | ENERGY | | LEVEL | enesgy | | LFVEL | FOUFRGY | LEVEL | energy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 5.1123299E | 02 | 1 | 1.5073070 E | 03 | 2 | 2.4752600 E | 03 | 3 | 3.4105770 E | 03 | |

[^1]disseciation energy in same vilts as abijve is. D. $15871999 E 05$

Table VI. (Cortd.)
SILICON MIIRIDE IMTFASITY OISTRIBUTION
TEST PROGRAM1
TIMF BEFGRE PGTFIT $=0$.
 RIGHT END UF POTENTIAL FUNCTICN IS FOUNP FPOM Y=A/X*B, WHERE $A=-0.1843505 E 06$ AND $B=0.2396292 E 01$ TIME FUR POTFIT = 0 .
the poitential function generateo is

| R(A) | V(1/CN) | P. (A) | V(1/C.N) | R(A) | V(1/C.M) | R(A) | V(1/CN) | R(A) | V(1/CM) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.100000 | 205274.6.602 | 1.105000 | 174199.1792 | 1.110000 | 183756.4551 | 1.115000 | 173907.6738 | 1.120000 | 164616.6484 | 21 |
| 1.125000 | 155849.4902 | 1.130000 | 147574.5371 | 1.135000 | 139762.1484 | 1.140000 | 132384.6191 | 1.145000 | 125415.9453 | 45 |
| 1.150000 | 118831.890t | 1.153000 | 112609.6572 | 1.160000 | 106727.9414 | 1.165000 | 101166.7441 | 1.170000 | 95907.3340 | 71 |
| 1.175000 | 90732.1533 | 1.180000 | 86224.7275 | 1.185000 | 81769.59 .77 | 1.190000 | 77552.2588 | 1.195000 | 73559.1143 | 96 |
| 1.200000 | +9777.3779 | 1.205000 | 66195.0381 | 1.210000 | 62800.8198 | 1.215000 | 59584.1284 | 1.220000 | 56535.0068 | 121 |
| 1.225000 | 53644.0340 | 1.230000 | 50902.5591 | 1.235000 | 48302.1587 | 1.240000 | 45835.0869 | 1.245000 | 43494.0078 | 146 |
| 1.250000 | 41272.0205 | 1.255000 | 39162.6240 | 1.260000 | 37159.6997 | 1.265000 | 35257.4858 | 1.270000 | 33450.5459 | 171 |
| 1.275000 | 21737.7578 | 1.280000 | 30102.3035 | 1.285000 | 28551.6296 | 1.290000 | 27077.4470 | 1.295000 | 25675.7041 | 196 |
| 1.300000 | 24343.5852 | 1.305000 | 23074.4841 | 1.310000 | 21867.9983 | 1.315000 | 20719.9128 | 1.320000 | 19627.2021 | 221 |
| 1.325000 | 18585.9766 | 1.330000 | 17596.5986 | 1.335000 | 16653.4219 | 1.340000 | 15755.0769 | 1.345000 | 14899.2701 | 245 |
| 1.350000 | 14083.8391 | 1.355000 | 13306.7396 | 1.360000 | 12566.0364 | 1.365000 | 11859.6443 | 1.370000 | 11185.7922 | 271 |
| 1.375000 | 10535.2366 | 1.380000 | 9.907 .3490 | 1.385000 | 9304.0481 | 1.390000 | 8725.9846 | 1.395000 | 8171.7239 | 296 |
| 1.400000 | 1639.0359 | 1.405000 | 7128.5466 | 1.410000 | 6641.1568 | 1.415000 | 6175.7377 | 1.420000 | 5730.6632 | 321 |
| 1.425000 | 530'5.6486 | 1.430000 | 4900.7443 | 1.435000 | 4515.9811 | 1.440000 | 4150.6864 | 1.445000 | 3804.0929 | 345 |
| 1.450000 | 3475.4547 | 1.455000 | 3164.4078 | 1.460000 | 2870.5324 | 1.465000 | 2573.6631 | 1.470000 | 2333.3247 | 371 |
| 1.475000 | 208.9.102? | 1.480000 | 1860.5940 | 1.485000 | 1647.3567 | 1.490000 | 1448.9069 | 1.495000 | 1264.9209 | 396 |
| 1.500000 | 1095.012 d | 1.505000 | 938.8093 | 1.510000 | 775.9440 | 1.515000 | 666.0608 | 1.520000 | 548.8205 | 421 |
| 1.525000 | 443.9079 | 1.530000 | 350.7660 | 1.535000 | 269.6675 | 1.540000 | 199.6944 | 1.545000 | 140.7352 | 446 |
| 1.550000 | 92.4944 | 1.555000 | 54.6443 | 1.560000 | 26.9235 | 1.565000 | 9.0385 | 1.570000 | 0.7111 | 471 |
| 1.575000 | 1.6714 | 1.590000 | 11.6533 | 1.585000 | 30.3970 | 1.590000 | 57.6488 | 1.595000 | 93.1608 | 496 |
| 1.600000 | 136.6716 | 1.605000 | 188.0049 | 1.610000 | 246.8704 | 1.615000 | 313.0620 | 1.620000 | 386.3606 | 521 |
| 1.525000 | 466.5507 | 1.630000 | 553.4224 | 1.6 .35000 | 646.7746 | 1.640000 | 746.4041 | 1.645000 | 852.1140 | 545 |
| 1.550000 | 963.7133 | 1.655000 | 1081.0151 | 1.660000 | 1203.8379 | 1.665000 | 1332.0043 | 1.670000 | 1465.3398 | 571 |
| 1.675000 | 1603.6760 | 1.6R0000 | 1746.8437 | 1.685000 | 1894.6728 | 1.690000 | 2047.0255 | 1.695000 | 2203.7491 | 596 |
| 1.700000 | 2364.6935 | 1.705000 | 2529.7126 | 1.710000 | 2698.6600 | 1.715000 | 2871.4026 | 1.720000 | 3047.8218 | 621 |
| 1.125000 | 1227.7373 | 1.730000 | 3411.0101 | 1.735000 | 3597.5085 | 1.740000 | 3787.1060 | 1.745000 | 3979.6739 | 646 |
| 1.750000 | 4175.0509 | 1.755000 | 4373.2339 | 1.760000 | 4574.1024 | 1.765000 | 4777.5763 | 1.770000 | 4983.5575 | 671 |
| 1.775000 | 5192.0093 | 1.730000 | 3402.7653 | 1.785000 | 5615.6592 | 1.790000 | 5830.5624 | 1.795000 | 5047.3519 | 676 |
| 1.900000 | 6265.8502 | 1.805000 | 6486.0188 | 1.310000 | 6707.9674 | 1.815000 | 6931.3579 | 1.820000 | 7156.4438 | 721 |
| 1.825000 | 7383.1766 | 1.830000 | 7611.3573 | 1. 8.35000 | 7840.8148 | 1.840000 | 8071.4157 | 1.845000 | 9303.0166 | 746 |
| 1.850000 | 3535.4227 | 1.855000 | 8769.7648 | 1.860000 | 9003.0602 | 1.865000 | 9238.2977 | 1.870000 | 9474.4625 | 771 |
| 1.275000 | 9711.5072 | 1.890000 | 7949.3544 | 1.885000 | 10187.8752 | 1.890000 | 10426.7159 | 1.895000 | 10666.2990 | 775 |
| 1.900000 | 1.0705 .8453 | 1.935000 | 11145.4172 | 1.910000 | 11385.3303 | 1.915000 | 11629.5367 | 1.920000 | 11871.5869 | 821 |
| 1.725000 | 12111.5048 | 1.930000 | 12349.3149 | 1.935000 | 12585.0442 | 1.940000 | 12818.7108 | 1.945000 | 13050.3424 | 84.5 |
| 1.950000 | 13279.9598 | 1.955000 | 13507.5980 | 1.960000 | 13733.2465 | 1.965000 | 13956.7574 | 1.970000 | 14178.7441 | 871 |
| 1.975000 | 14392.6281 | 1.980000 | 14616.52.98 | 1.935000 | 14832.7671 | 1.990000 | 15047.0646 | 1.995000 | 15259.5416 | 896 |
| 2.000000 | 15470.? 19 ? | 2.005000 | 19679.1121 | 2.010000 | 15886.2465 | 2.015000 | 16091.6366 | 2.020000 | 16295.3030 | 721 |
| 2.025000 | 16497.2644 | 2.030000 | 16697. 5393 | 2.035000 | 16896.1458 | 2.040000 | 17093.1035 | 2.045000 | 17288.4270 | 946 |
| 2.050000 | 1744).1357 | 2.055000 | 17674.2454 | 2.060000 | 17864.7749 | 2.065000 | 18053.7412 | 2.070000 | 18241.1592 | 971 |
| 2.075000 | 19427.045,7 | 2.030000 | 1:3611.4172 | 2.035000 | 18794.2893 | 2.090000 | 18975.6775 | 2.095000 | 19155.5991 | 975 |

Table VI. (Contd.)
SILICON HIT:IDE INTE:MSITY OISTRICUTION
test program

RIGHT END OF POTENTIAL FUNCTIGN IS FOUMI. FROM Y=A/Xa\&, WHERE $A=-0.3839180 E$ O7 ANC B $=0.9183305 E 01$
TIME FOR POTFIT = 0.
the potentidl function : Enderateg is

| $R(A)$ | V(1/P.19) | R(i) | V11/C: | R(A) | V(1/CM) | R(A) | V(1/CM) | $\mathrm{R}(\mathrm{A})$ | V(1/CM) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.100000 | 313082.3633 | i. 105000 | 214813.ç97 | 1.110000 | 297587.88.28 | 1.115000 | 291347.c344 | 1.120000 | 266011.6016 | 21 |
| 1.125000 | 251555.0939 | 1.130000 | 237905.1756 | 1.135000 | 275018.8730 | 1.140000 | 212849.5665 | 1.145000 | 201354.6758 | 46 |
| 1.150000 | 190494.2188 | 1.155000 | 180230.6979 | 1.160000 | 179528.6445 | 1.165000 | 161355. 5965 | 1.170000 | 152677.9531 | 71 |
| 1.175000 | 144473.3439 | 1.180000 | 136708.c023 | 1.185000 | 129359.6260 | 1.190000 | 122403.C869 | 1.195000 | 115816.3584 | 95 |
| 1.20000 | 109578.3477 | 1.205000 | $103660 . \hat{c}<51$ | 1.210000 | 98070.4512 | 1.215000 | 92764.4902 | 1.220000 | 87734.9345 | 121 |
| 1.225000 | \$2966.3320 | 1.230050 | 78444.1611 | 1.235000 | 74154.7754 | 1.240000 | 70085.:184 | 1.245000 | 66223.6875 | 146 |
| 1.250000 | 62550.4 .790 | 1.255000 | 59079.0308 | 1.260000 | 55775.1885 | 1.265000 | 52637.6688 | 1.270000 | 49653.9048 | 171 |
| 1.275000 | 46825.0477 | 1.280000 | 44132.9478 | 1.285000 | 41576.0977 | 1.290000 | 39144.c179 | 1.255000 | 36832.2319 | 195 |
| 1.300000 | 346133.2307 | 1.305000 | 32541.6056 | 1.310000 | 3C551.38.60 | 1.315000 | 28657.6.079 | 1.320000 | 26855.1719 | 221 |
| 1.325000 | 25.130 .3435 | 1.330000 | 23505.6565 | 1.335000 | $\overline{21949.8940 ~}$ | 1.340000 | 20468.066? | 1.345000 | 19053.4048 | 246 |
| 1.350000 | 17711.3440 | 1.355000 | 16429.5110 | 1.360000 | 15207.7144 | 1.36 .5000 | 14042.9445 | 1.370000 | 12932.3400 | 271 |
| 1.375000 | 1187?.1987 | 1.396000 | 10862.9611 | 1.385000 | 9854.9602 | 1.390000 | 9016.0759 | 1.3951000 | 8307.4109 | 295 |
| 1.400000 | 76.92.5469 | 1.405000 | 7136.3415 | 1.410000 | 6625.4777 | 1.415000 | 6150.8122 | 1.420000 | 5705.0557 | 321 |
| 1.425000 | 5235.92\%.1 | 1.436000 | 4889.3934 | 1.435000 | 4513.5172 | 1. 440000 | 4157.3465 | 1.445000 | 3820.1700 | 345 |
| 1.450000 | 3501.1172 | 1.455000 | 3199.:960 | 1.460000 | 2913.7604 | 1.465000 | 2644.3413 | 1.470000 | 2390.4904 | 371 |
| 1.475000 | 2151.8147 | 1.480000 | 1927.9307 | 1.485000 | 1718.4811 | 1.490000 | 1523.1170 | 1.405000 | 1341.4402 | 396 |
| 1.500000 | 1173.1340 | 1.505000 | 1017.8584 | 1.510000 | 875.2610 | 1.515000 | 744.9873 | 1.520000 | 626.6684 | 421 |
| 1.525000 | 519.9307. | 1.530000 | 424.2486 | 1.535000 | 339.1136 | 1.540000 | 264.483? | 1.545000 | 199.8984 | 445 |
| 1.550000 | 145.0051 | 1.555000 | 99.4539 | 1.560000 | 82.9005 | 1.565000 | 35.0074 | 1.570000 | 15.4422 | 471 |
| 1.575000 | 3.8795 | 1.580000 | -0. | 1.585000 | 3.4838 | 1.590000 | $14.034{ }^{\text {j }}$ | 1.595.300 | 31.3561 | 476 |
| 1.600000 | 55.1505 | 1.605000 | 85.16 .37 | 1.610000 | 121.095s | 1.615000 | 162.090\% | 1.620 .900 | 209.6907 | 521 |
| 1.623000 | 26i.8468 | 1.630000 | 318.9180 | 1.635000 | 380.6708 | $1.6,40000$ | 446.8793 | 1.645000 | 517.3263 | 546 |
| 1.656000 | 591.7800 | 1.655000 | 670.0779 | 1.660000 | 752.0042 | 1.605000 | 837.375? | 1.670300 | 926.0130 | 571 |
| 1.675000 | 1017.7440 | 1.680000 | 1112.9018 | 1.685000 | 1209.8268. | 1.690000 | 1309.8631 | 1.675000 | 1412.3639 | 596 |
| 1.700000 | 1517.1861 | 1.705000 | 1624.2155 | 1.710000 | 1733.2920 | 1.715000 | 1844.2897 | 1.720500 | 1957.0878 | 621 |
| 1.725000 | 2071.5687 | 1.730000 | 2187.5226 | 1.735000 | 2305.1423 | 1.740000 | 2424.0285 | 1.745000 | 2544.1825 | 645 |
| 1.750000 | 266'5.5164 | 1.755000 | 2787.9460 | 1.760000 | 2911.3916 | 1.765000 | 3035.7765 | 1.770000 | 3161:0305 | 671 |
| 1.775000 | 3287.0944 | 1.7E0000 | 3413.3755 | 1.785000 | 3541.3351 | 1.790000 | 3669.7183 | 1.795000 | 3798.0745 | 676 |
| 1.800000 | 3927.2545 | 1.805000 | 4056.9131 | 1.810000 | 4187.0065 | 1.815000 | 4317.*925 | 1.820000 | +448.3563 | 721 |
| 1.825000 | 4579.5283 | 1.830000 | 4710.9673 | 1.835000 | 4842.6364 | 1.84:0000 | 4974.5015 | 1.845000 | 5106.5333 | 746 |
| 1.850000 | 5235.6945 | 1.855000 | 5370.7554 | 1.860000 | 5503.3789 | 1.865000 | 5635.3083 | 1.870000 | 5768.3916 . | 771 |
| 1.875000 | 5.901 .0767 | 1.850000 | 6033.3647 | 1.885000 | 6166.7785 | 1.892000 | 6299.797? | 1.895000 | 5432.9152 | 796 |
| 1.900000 | 6564.1324 | 1.905000 | 6699.4464 | 1.910000 | 6832.8605 | 1.915000 | 6966.3717 | 1.920000 | 7099.9904 | 821 |
| 1.925000 | 7233.7340 | 1.930000 | 7367.3164 | 1.935000 | 7501.6541 | 1.945000 | 7635.3667 | 1.945000 | 7770.2760 | 846 |
| 1.750000 | 7904.9041 | 1.955000 | 8039.7776 | 1.960000 | 8174.9732 | 1.965000 | 8310.3715 | 1.970000 | 8446.1519 | 871 |
| 1.975000 | 8582.2997 | 1.980000 | 8714.3485 | 1.985000 | 8855.8387 | 1.990000 | 8993.3083 | 1.975000 | 7131.3016 | 896 |
| 2.000000 | 9267.8649 | 2.005000 | 9417.7734 | 2.010000 | 9563.7174 | 2.015000 | 9706. 2117 | 2.020000 | 9844.9547 | 921 |
| 2.025000 | 9980.2441 | 2.030000 | 10112.1746 | 2.035000 | 10240.8 .567 | 2.040000 | 10366.3202 | 2.045000 | 10488.7103 | 946 |
| 2.050000 | 10608.0906 | 2.055000 | 10724.5422 | 2.060000 | 10338.1436 | 2.065000 | 10948.3717 | 2.070000 | 11057.1008 | 771 |
| 2.075000 | 11162.6027 | 2.080000 | 11265.5474 | 2.085000 | 11366.0916 | 2.090000 | 11454.334.1 | 2.095000 | 11559.7064 | 996 |

TIME FOR PRINT GE POTFNTIAL $=0$. SECONDS
SCHR FINDS ENERGY LEVEL G $=510.747681 / C M$ ANO BV $=0.7133588 \mathrm{~L} / \mathrm{CM}$ IN $0 . \quad$ SECONDS.

SCHR FINOS ENFRGY LEVEL G $=2475.1046631 / C M$ AND BV $=0.69757251 /$ CM IN O. SECRENS.

| | | | | | | | | Tabl | le | | (Contd.) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCHR | FINDS | EMERT, Y | LEVEL | G | $=$ | 3410.938 .38 | 1/CM | Aind | BV | $=$ | 0.5871293 | 1/Cid | IV | 0. | SECCNDS. |
| ST,HR | I ANC: | ENERT,Y | LEvel | G | $=$ | 574.28706 | 1/CM | AND | BV | $=$ | 0.7281663 | 1/CM | IN | 0. | SECONDS. |
| SCHR | FINOS | OnfR:Y | LFVEL | 6 | = | 1712.75313 | 1/CM | Avo | BV | $=$ | 0.7224968 | 1/CH | 1* | 0. | SECONDS |
| SC.HR | FINDS | Enfrgy | LEVEL | G | $=$ | 2839.48242 | 1/CM | And | BV | $=$ | 0.7168278 | 1/CH | IN | 0. | SECONDS. |
| SCHR | finos | Enfrgy | Level | G | $=$ | 3950.97547 | 1/C.M | AND | 8 V | $=$ | 0.7111584 | 1/CM | IN | 0. | SECONDS. |
| SCHP | Flisos | EMERS. | LEVFL | s | = | 5050.12109 | 1/CM | AND | 8 V | $=$ | 0.9054850 | 1/CM | IN | 0. | SECONOS. |
| SCHR | FINDS | ENEK:Y | LEVEL | 6 | = | 5136.20654 | 1/CM | A 40 | BV | $=$ | 0.6998171 | 1/CM | IN | 0. | SECONDS. |
| SCHR | Finds | EnERTY | LEVEl | \bigcirc | = | 7209.21094 | 1/CM | A.vo | BV | $=$ | 0.6941557 | 1/CM. | IN | 0. | SECONOS. |
| SCHR | FINDS | ENERS\% | LFVFL | \bigcirc | $=$ | 8269.12012 | 1/CM | Avo | BV | = | 0.5884710 | 1/CM | IN | 0. | SECONDS. |
| SCHR | FINOS | Enferst | LEVEL | $\stackrel{1}{0}$ | = | 9315.99746 | 1/CM | AND ${ }^{\circ}$ | BV | $=$ | 0.6 .827840 | 1/CH | IN | 0. | SECONDS. |
| SCHR | finds | E'sertiy | LEvEl | G | $=$ | 10349.67578 | 1/CM | ANI) | BV | $=$ | 0.6 .770849 | 1/CM | IN | 0. | SECONDS. |

SILICON NItEIDE intevsity DIStribution
test program
prigran successful. (ivaxit reacheo o times)
the below is fu: the lower state.
vib. NO. GIVFV ENEBGY CALC. ENERGY

| 0 | 574.20011 | 574.28906 |
| :--- | ---: | ---: |
| 1 | $17: 2.76016$ | 1712.35313 |
| 2 | 2838.20023 | 2838.48242 |
| 3 | 3950.51993 | 3950.87549 |
| 4 | 5049.77003 | 5050.12109 |
| 5 | 6135.79974 | 6136.20654 |
| 6 | 7208.75989 | 7209.21094 |
| 7 | 9268.59961 | 8269.12012 |
| 8 | 9315.31982 | 9315.89746 |
| 9 | 10318.91968 | 10349.67578 |

Table VI. (Contd.)
UCRL- 10925
VIB. NTI. CALC. EV
$0 \quad 0.72 n 16626$
$1 \quad 0.72240678$
2 0.71692784
$3 \quad 0.71115841$
$4 \quad 0.70548503$
0.67981708
$6 \quad 0.0 .9415566$ 0.63847096 0.188278404 0.67708492

Silichn nitrife intansity oistributinn

THE BELDW IS FIIM THE UPPER STATF.
VIB. MO. GIVEN EMERGY CALG. ENEKGY

DIFFFRFNCE DIFFERENCE = CALC. - GIVEN

| 0 | 511.3331% | 510.74768 |
| ---: | ---: | ---: |
| 1 | .5509 .30696 | 1508.87561 |
| 2 | 2475.26004 | 2475.114 .663 |
| 3 | 3410.57694 | 3410.83838 |

-0.54544
-0.43135
-0.21341
0.26154

VIB. NO. CALC. BV
$0 \quad 0.71835880$
10.70797616
$2 \quad 0.63757245$
$3 \quad 0.68712933$

Table VI. (Contd.)

FRANCK-CGNDON FACTORS

| $v \cdot I$ | $V O=0$ |
| :---: | :---: |
| 0 | 0.9812 E 00 |
| 1 | $0.1691 \mathrm{E}-01$ |
| 2 | $0.1760 \mathrm{E}-02$ |
| 3 | $0.8105 \mathrm{E}-04$ |
| 4 | $0.4064 \mathrm{E}-05$ |
| 5 | $0.1551 \mathrm{E}-06$ |
| 6 | $0.1278 \mathrm{E}-07$ |
| 7 | $0.3751 \mathrm{E}-09$ |
| 3 | $0.1501 \mathrm{E}-09$ |
| 9 | $0.4100 \mathrm{E}-09$ |

R-CENTRCIG FACIORS IAVCSTROMS

| V', | $v^{\prime}=$ | 0 |
| :---: | :---: | :---: |
| 0 | 0.1582 E | 01 |
| 1 | $0.1906 E$ | 01 |
| 2 | 0.1733 E | 01 |
| 3 | $0.1911 E$ | 01 |
| 4 | 0.1894 E | 01 |
| 5 | 0.2009 E | 01 |
| 6 | 0.1488 E | 01 |
| 7 | $0.2056 E$ | 01 |
| 8 | 0.13215 | 0.1 |
| 9 | 0.1439 E | 01 |

$0.1582 E 01$. 1906 E 01 .1733E 01 $0.1911 E 01$ $0.1894 E 01$ 0.1888E OI 0.1888 E 0.1321501 0.1439 E 01
$v^{\prime}=1$
$0.1862 \mathrm{~F}-01$ 0.9232 E 0 0.5015E-01 0.7427E-02 $0.5441 \mathrm{~F}-03$ $0.3818 \mathrm{E}-04$ $0.2180 \mathrm{E}-05$ $0.1336 E-06$ 0.1471 E-07 $0.3401 \mathrm{E}-08$
$v^{\prime}=2$
0.9118E-04 0.5966E-01 $0.8193 E 00$ $0.9868 \mathrm{E}-01$ 0.1995E-01 0.2149E-02 0.2003E-03 0.1611E-04 $0.8705 E-08$ $0.1801 E-06$
$V^{\prime}=3$
0.4651E-04 $0.2385 E-07$ $0.1274 \mathrm{E}-00$ 0.6680 E 00 $0.1549 E-00$ $0.4233 \mathrm{E}-01$ $0.4233 \mathrm{E}-01$ $0.7658 \mathrm{E}-03$ $0.8276 E-04$ 0.4551E-05

R*=2-CENTRCITS

| $v i$ | $v=0$ |
| :---: | :---: |
| 0 | $0.2503 E 01$ |
| 1 | $0.3532 E 01$ |
| 2 | $0.3044 E 01$ |
| 3 | $0.3587 E 01$ |
| 4 | $0.3615 E 01$ |
| 5 | $0.3977 E 01$ |
| 6 | $0.3616 E 01$ |
| 7 | $0.4176 F 01$ |
| 8 | $0.1626 E 01$ |
| 9 | $0.2080 E 01$ |

$v^{\prime}=1$
$v^{\prime}=2$
$=3$
$0.1710 E 01$ $0.1489 \mathrm{E} \quad 03$ 0.1442 El $0.1611 E$ OI 0.1830 E J $0.1804 E$ OL $0.1890 E$ OL 0.1890 E OL $0.1953 E 01$ $0.2129 E 01$
$0.2791 E 01$
$0.1393 E 01$
$0.1603 E 01$
$0.1842 E O 1$
0.1786 E 01
0.1892 E OL
$0.1915 E 01$
$0.1962 E$ OI
$0.2078 E 01$
0.1788 E 01
$0.6121 E 01$ $0.1872 E 01$ $0.2579 E 01$ $0.3341 E 01$ 0.3209 F DI 0.3550 E O1 0.3673 E OI 0.3838 E OL 0.4265 E OI $0.3291 E$ OI
$v^{\prime}=3$
$0.2761 E 01$
0.4512 E 03 0.2059 E 5 0.2609 E 01 $0.3311 E 01$ $0.3311 E$ OI
$0.3268 E$ OI $0.3552 E 01$ $0.3711 E$ OL $0.3812 E \mathrm{OL}$ $0.4440 E 01$

Table VI. (Contd.)
RELATIVE IPTENSITYIOUANTUM/SECI SCALED TO TEN

| v' | $v^{\prime}=0$ | $v=1$ |
| ---: | ---: | ---: |
| 0 | 10.000 | 0.232 |
| 1 | 0.147 | 10.000 |
| 2 | 0.017 | 0.471 |
| 3 | 0.001 | 0.006 |
| 4 | 0.000 | 0.004 |
| 5 | 0.000 | 0.000 |
| 6 | 0.000 | 0.000 |
| 7 | 0.000 | 0.000 |
| 8 | 0.000 | 0.000 |
| 7 | 0.000 | 0.000 |

$v^{\prime}=2$
0.001
0.836
10.000
1.042
0.182
0.017
0.001
0.000
0.000
0.0 .00
$v=3$
0.000
2.188
2.188
10.000
2.011
0.474
0.053
0.052
0.036
0.001
0.000

RELATIVE INTENSITY(ENERGY/SFC) SCALED TE TEN

| $w r$ | $v i=0$ | $w '=1$ |
| ---: | :---: | ---: |
| 0 | 10.000 | 0.243 |
| 1 | 0.142 | 10.000 |
| 2 | 0.012 | 0.449 |
| 3 | 0.000 | 0.054 |
| 4 | 0.000 | 0.003 |
| 5 | 0.000 | 0.000 |
| 6 | 0.000 | 0.000 |
| 7 | 0.000 | 0.000 |
| 8 | 0.000 | 0.000 |
| 9 | 0.000 | 0.030 |

$v=2$
0.002
0.875
10.00 c
0.996
0.165
0.016
0.001
0.001
0.000
0.000
$v^{\prime}=3$
0.001
0.000
2.291
10.000
1.918
0.431
0.053
0.0 .35
0.000
0.000

```
CONSTANTS
O
    0.24299999E 05
    0.73100000E OO
    .73100000E OO
    .72350G0CE O
    0.56699G79E-02
    0.10370COOE-01
    -0.
TIME = 0.
```


REFERENCES

1. R. N. Zare, Lawrence Radiation Laboratory Report UCRL-11110, November 1963, J. Chem. Phys. (to be published).
2. All timing information refers to IBM 7094.
3. R. N. Zare and J. K. Cashion, Lawrence Radiation Laboratory Report UCRL-10881, July 1963 (unpublished).

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information containcd in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employce of such cuntractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

[^0]: * Work done under the auspices of the U. S. Atomic Energy Commission.
 \dagger Now at Harvard University, Cambridge, Massachusetts.

[^1]: CONVERGFNCF. GRITERIOM IS ERROR LESS THAS $1.00 E-03$ I/CM

