Reaction mechanisms for barite dissolution and growth

PDF Version Also Available for Download.

Description

In Stack and Rustad (2007), the reactive flux method (Rey and Hynes, 1996) and molecular dynamics (MD) were used to simulate the {001} barite-water interface structure and water exchange rate of aqueous barium ions and barium surface species. Atomic-level mineralwater interfacial structure and kinetics are being studied with increasing precision due to advances in spectroscopic methods at synchrotron x-ray sources as well as improved computational capacity. Better characterization of these interfaces in turn is leading to advances in the understanding of many macroscopic geochemical properties. Overall the barite-water interfacial structure was found to compare well to that estimated using X-ray ... continued below

Physical Description

23 pages

Creation Information

Stack, Andrew G. July 26, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In Stack and Rustad (2007), the reactive flux method (Rey and Hynes, 1996) and molecular dynamics (MD) were used to simulate the {001} barite-water interface structure and water exchange rate of aqueous barium ions and barium surface species. Atomic-level mineralwater interfacial structure and kinetics are being studied with increasing precision due to advances in spectroscopic methods at synchrotron x-ray sources as well as improved computational capacity. Better characterization of these interfaces in turn is leading to advances in the understanding of many macroscopic geochemical properties. Overall the barite-water interfacial structure was found to compare well to that estimated using X-ray reflectivity (XRR) measurements (Fenter et al., 2001), but there was an important difference: the MD predicted an intricate water structure present at the interface with one major peak and several minor peaks whereas the XRR found only a single layer of water. This discrepancy is thought to result from a limited resolution in the Fenter et al. (2001) study as well as over-coordination of surface sulfates by the MD model.

Physical Description

23 pages

Subjects

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE-GATECH-15901-3
  • Grant Number: FG02-07ER15901
  • DOI: 10.2172/1107642 | External Link
  • Office of Scientific & Technical Information Report Number: 1107642
  • Archival Resource Key: ark:/67531/metadc864012

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 26, 2010

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Dec. 1, 2016, 1:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Stack, Andrew G. Reaction mechanisms for barite dissolution and growth, report, July 26, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc864012/: accessed July 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.