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ABSTRACT

A unified treatment of dual loop term and counterterm by means

of their projective group is presented for the one loop case.  The signifi-

cance of parameters in this method of linear differential equations is

discussed for multi loop terms.
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A global approach to multiloop diagrams has been described

.2by Lovelacel and Alessandrini.   The p-loop integral is given in

terms of an automorphic function for a Fuchsian group of the second

kind.  This function conformally maps the fundamental region (whose

shape depends on p) on to the upper half plane in a one-to-one manner.

An earlier and different approach, using harmonic oscillator operators,

was presented by GNSS3 who were able to go a step further and obtain

a new integral, called the counterterm, which could be subtracted

from the infinite loop integral, the difference being finite and

renormalized. 4  Later, Kaku and Scherk5 described in the two-loop

case the mechanism of the touching of isometric circles which gave

the leading divergent contribution.  It has remained an open question:

what is the connection of this counterterm to the underlying Fuchsian

group?  Knowing this may indicate the uniqueness of a given renormali-

zation method and give its p-loop generalization in global form.

We present here a group-theoretical interpretation of the

counterterm which keeps the same Fuchsian group as its infinite loop

integral.  We are able to demonstrate by this method the N.S.4 counter-

term (for p = 1) as the limiting function of a certain sequence;  we

can only conjecture that a similar limiting process will yield the

p-loop counterterms.

It is known that one can generate automorphic functions for

Fuchsian groups by the method of second order differential equations.6

This technique is alternative to the one of Abelian integrals.  Let Yl
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and Y2 be two particular solutions of the 2d order d.e.

y" + p(4)y' + q(C) = 0,                        (1)

and consider the variation of the ratio

yl(4)
z(C) =                                                 (2)

Y2(4)

under a circuit of the independent complex variable c  around a

singular point of the differential equation. Yl(4) becomes  84 (6)

+  by2(4) and Y2 becomes  cyl(C) +  dy2(6), where a, b, c, d are

independent of  c.  Thus, we find

-   az+b                                         (3)z+z= Ez+d = T(z)

which is a projective transformation, an element of a Fuchsian group

associated with the differential equation (monodromic group).  Further

developments lead to the Schwarzian derivative

[z]    =   d.-   (il)    _   1   (z")2                                                                                              (4)
di z' 2  z'

which satisfies

1-2-  2[z]=2q-2 P
di ,                               (5)

a rational function.  z(c) performs a conformal mapping determined by

the parameters in the given functions

1 - a' - a" 1 - T' - T"
p(c) = + ... +                            (6)

 -el  _et
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q(4) = a'a"(el-e2).  (el-et)    + ...   (7)
1

(c-el)...(4-e )
{

C-et

. . + T'T"(et-el)...(et-es)
+ Gn-4(C) }

C-et

and satisfies

1

[Z] =
( 1 - a2 .   (el-e2)...(el-et) + . . .

(c-el)000(4-et)      2
(C-el)

  1 - T2   (et-el)...(et-es)  + gn-4(6) } 0     (8)
2 c- et

Here, a', a" are the exponents and a = a' - a" the exponent-difference

of yl and Y2 belonging to the first singularity el' while G    andn-4

gn-4 are polynomials of degree at most n-4 which contain n-3 arbitrary

so called accessory parameters.  The enumeration.of arbitrary constants

in the differential equation neatly matches that of the Mobius transfor-

mation generators T(z).  For p loops we have p generators with 3p-6

independent real constants.  The differential equation  contains n = 4p

singular points, one for each intersection of an isometric circle in the

z-plane with the real axis (fundamental  circle).  We note that the

fundamental polygon (i.e. the upper half of the fundamental region)

for p loops or p T  generators2 contains 4p sides since it corresponds
Ol

to the double of a surface with p holes, which is a torus with p handles.

-1
The topological symbol for this torus is albla-lb-la2b2a2-lb2

a b a -lb  -1  with 4p letters.  The real constants in the differential
Ppp P

equation are enumerated as follows:  (i)  4p exponent differences of
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the two solutions Yl and Y2 at the 4p singular points;  (ii) 4p-3

cross ratios for locations of 4p singular points on the real axis;

and  (i i i) 4p-3 accessory parameters.    Now the exponent differences

(i)  must be 1/2 so that the isometric circles intersect the real axis

at right angles;  and the isometric circles come in pairs of equal radii,

a fact which changes 4p to 3p in (ii).  We can always arrange things

so that the 3p-3 Riemann moduli or constants in the p generators Ta

are given by the isometric circle positions (ii), leaving free the

accessory parameters (iii). What now is the significance of the

accessory parameters?  Consider the fundamental region of the Fuchsian

group.  If, for example, p = 2, a possible fundamental region RQ is

shown in Fig. 1.  We now mention the significant difference between a

general automorphic function 4(z), defined as the inverse of (2), and

the one defined as the exponential of the Abelian integrals w(z)

usually considered.  Both 4(z) and exp(w(z)) will yield a one-to-one

mapping of R  on the upper half & plane;  but with 4(z) we can choose

the accessory parameters so that the mapping is many-to-one.  That is,

the n-sheeted covering R   of R  (Fig. 1) can be mapped by 4(Z)
on

on the upper half plane.  (It may be possible to do this with  w(z),

but we cannot say at present anything about it.)  Now the one-to-one

1

mapping yields the p-loop integrand.   We now show that the oo-to-one

mapping yields the counterterm  in the case p = l.  Let us consider

the d.e.

4.ici , -+ -1_) f!£ + ,=0   (9)1                     By(c)

di     Z  4-el   4-e2   4-e3
di (4-el)(c-e2)(4-e3)
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which contains the accessory parameter B.  We can bring it into the  form

d2      +   DB   y(z)   6 0 (10)
dz

by'introducing a general elliptic integral

di                                              (11)-        =    ,/D( 4-el)( 4-e2)( 4-5)
dz

whose periods are defined by the singular points el = 4(0), e2 = 4(-wl)

and e3 = 4(wl-iw2).  Choosing as the 2 independent solutions the expon-

ential forms we find for the ratio z of eq. 2,

z = exp(-2i A- -z). (12)

for the kinds of groups involved here it has been shown7 that the

accessory parameter is quantised to have the values (with w2=  )   BD = -k2/4,

where k is an odd integer.  Then the mapping of the lower half  6-plane

with ei on the real axis is into a rectangle (0, -wl' i -wl' i ) in the z

plane by (11).  This in turn by (12) is mapped into the upper half of an

annulus for k = 1, or into additional annuli attached to this for higher

values of k, which cover the region multiply.  This displays the role of

the accessory parameter (fig. 2).

Since, however, the radii of these annuli will also vary with k

we are forced to change the positions of the e. in the  4-plane simultaneously
1

into eik in order to keep the radii fixed at 1 and K respectively as

required by the Mobius group   (K is the multiplier in the generator8).
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This can be achieved by setting wl=- (ln K)/k.
If for the sake of tranparency we make the particular choice

el= , e2=1, e3=(al - a3)/a2 - a3)' D = 4(a2 - a3), then we get a very

simple elliptic function in terms of the Weierstrass function  (z) =

p (i 'wl i„)

c(i) = al-a3    ,                                  (12)

di(i)-a3

where al' a2' a3 are the values of p at the arguments z = wl' wl + iA,

in, respectively.

On using homogeneity relations  this function becomes

alk - a3k

4(Z) = ,ln z 1  ik Tr,
(13)

P Cln--K     1   7 1 TirK'-a3k

where a  and a  are now the values of 8 (u  1/2, iklr/lnK) at u = 1/2lk      3k

and ik /lnK, respectively.  This automorphic function (13) will be

single-valued in the z-plane for k=1 and multiple-valued for all

higher odd values of k, and it can be viewed as the automorphic master-

function from which both loop term and counterterm derive:  For k=1

this will give the automorphic part exp{wz.z (z) + w (z)}  inZ.Z*
1 0 1 0

Lovelace's formulation of the one-loop amplitude, up to a -dependent

factors and with z. = Ei , z  = z  = E' of fig. 2.  To show this one

has merely to use the expansion of an automorphic function in terms

11
of   01-functions of the variable  D (first Abelian integral)   and to

compare it to the well known representation of p in the same functions.
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10
For k= o. on the other hand the masterfunction (13) becomes

the counterterm of GNSS3 (with our special choice of para-

meters)

. 2, 1 n Z
4- = sin IT- ) (14)

'ln   K      o

This is therefore seen to be an oo -valued automorphic function of the

same Moebius group.  The crucial relation is  Bk = - e3k ln2K/16w2,

between the accessory parameter of the corresponding d.e. and the

regular sinular point e3k' which moves to infinity as k increases.

Its qualification as a counterterm derives immediately from the fact

that the main term with k=1 has exactly the same limiting function

(14) for ln K+0 (parabolic limit), since k and ln K appear in the

same factor.

The generalisation to arbitrary positions of zi and z0, z0* will

yield other rational functions of p . Similar oo-valued functions

also exist for all other multiply connected fundamental regions so that

this method can be extended to investigate counterterms for multi-

loop expressions.
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Figure Captions

Figure 1:  Fundamental region R  in the two loop case after application
-1       -1

of a Mobius tranformation.  a, a  , b, b are the isometric

circles, c is the principle circle.

Figure 2:  Twice covered half annulus for one loop  case.
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