SANDIA REPORT

SAND2012-7940
Unlimited Release
Printed September 2012

Leveraging Formal Methods and Fuzzing
to Verify Security and Reliability
Properties of Large-Scale
High-Consequence Systems

Joseph R. Ruthruff, Robert C. Armstrong, Benjamin G. Davis, Jackson R. Mayo, and
Ratish J. Punnoose

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories




Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




SAND2012-7940
Unlimited Release
Printed September 2012

Leveraging Formal Methods and Fuzzing to Verify
Security and Reliability Properties of Large-Scale
High-Consequence Systems

Joseph R. Ruthruff
Quantitative Modeling and Analysis Dept.
Sandia National Laboratories
P.O. Box 969, MS 9155
Livermore, CA 94551-0969
jruthru@sandia.gov

Robert C. Armstrong Benjamin G. Davis
Scalable & Secure Systems Research Deptlnformation Assurance Dept.
Sandia National Laboratories Sandia National Laboratories
P.O. Box 969, MS 9158 P.O. Box 969, MS 9011
Livermore, CA 94551-0969 Livermore, CA 94551-0969
rob@sandia.gov bgdavis@sandia.gov
Jackson R. Mayo Ratish J. Punnoose
Scalable Modeling & Analysis Dept. Weapons Subsystems 2 Dept.
Sandia National Laboratories Sandia National Laboratories
P.O. Box 969, MS 919 P.O. Box 969, MS 9110
Livermore, CA 94551-0969 Livermore, CA 94551-0969
jmayo@sandia.gov rjpunno@sandia.gov



Abstract

Formal methods describe a class of system analysis teasiiljat seek to prove specific properties
about analyzed designs, or locate flaws compromising thageepties. As an analysis capability,
these techniques are the subject of increased interestdodiminternal and external customers
of Sandia National Laboratories. Given this lab’s otheraaref expertise, Sandia is uniquely
positioned to advance the state-of-the-art with respeset@ral research and application areas
within formal methods. This research project was a one-g#fart funded by Sandia’s Cyber
Security S&T Investment Area in its Laboratory Directed Reshk & Development program to
investigate the opportunities for formal methods to im@andia’s present mission areas, more
fully understand the needs of the research community in tea af formal methods and where
Sandia can contribute, and clarify from those potentia@aesh paths those that would best advance
the mission-area interests of Sandia. The accomplishnfiemtsthis project reinforce the utility
of formal methods in Sandia, particularly in areas reletan€yber Security, and set the stage
for continued Sandia investments to ensure this capaliitytilized and advanced within this
laboratory to serve the national interest.
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Chapter 1

Introduction

Formal methods describe a class of system analysis tedwsifat seek to prove specific prop-
erties about analyzed designs, or locate flaws compromibioge properties. These techniques
implement advanced logic-based algorithms on abstradtenatical system representations to
rigorously verify critical properties — e.g., “no code inj®ns” or “if X happens then Y always
follows.” Formal methods offer an improved technical bésigeliability and security assessments
of digital systems, especially in high-consequence systesign domains.

Sandia National Laboratories is taking a growing interasthie area of formal methods in
order to provide the highest levels of verification for higbrsequence hardware and software
systems in its digital design domains. In addition to theliappon of formal methods in key
mission areas, Sandia seeks to advance the state-ofttwekarespect to the research literature in
formal verification so this capability can best address #ésdnique problem spaces and analysis
requirements. In particular, as Sandia has in other dom#irsslaboratory seeks opportunities
where it can leverage its existing expertise in other re$eand development areas to advance a
separate but related domain — in this case, formal methods.

The Cyber Security Investment Area in Sandia’s Laboratarngdded Research & Develop-
ment (LDRD) program has been a leader in recognizing the raedrid investing in, building a
research program in the area of formal methods. Since ieptran, the Investment Area Team
(IAT) for Cyber Security has carefully considered the mosttful research paths within formal
methods. These considerations have weighed both (1) this méehe research community and
(2) Sandia’s individual areas of expertise and where theratory may be best positioned to
contribute.

Fuzz testing (also known as fuzzing) is a technique for gliog random input to applications
in order to evaluate reliability [13]. For some techniquesl @applications, this random input
is structured to a degree in order to generate more meanhiregponses from the application
under test. This methodology has been shown to be usefuh déygloyed effectively, in various
domains for identifying both reliability and security flawssystems [5]. However, the random
input selected during fuzz testing, both its content angcstire, can determine how effective the
methodology will be in discovering flaws in systems. This LDBject (Oracle/Project Number
158744), as originally proposed, sought to inform and dieetomated fuzz testing in order to
improve this latter capability’s effectiveness in ideyitilg reliability and security flaws in high-
consequence systems.
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The direction to a fuzz testing technique in the LDRD would beviged through the use of
formal methods. The proposed research direction was tormfbe input spaces targeted by fuzz
testing using the results of formal verification, such asdmusing on inputs and execution paths
identified by formal verification that produced out-of-nowmli outputs and program behaviors. The
Cyber Security IAT wished to clarify the utility and risks imyaresearch path involving formal
methods before making a significant commitment in this afeasgarch.

Toward this end, this LDRD project was a modest one-yeartafidhe 2012 Fiscal Year to:

1. Investigate the opportunities for formal methods to intpaission areas of concern to the
National Nuclear Security Administration (NNSA).

2. More fully understand the needs of the research commumttye area of formal methods.

3. Clarify the potential research paths that would best fitntingsion-area interests of Sandia
National Laboratories, the NNSA, and the Department of gnéDOE).

This report presents the outcomes and results of this grije@rd delivering on each of the
three aforementioned items. In Chapter 2, we provide mooenmdtion and background on formal
methods. This information is provided in an effort to helgid®n-makers at all levels of manage-
ment — at Sandia and outside this Laboratory — understanidib@tance, potential, and caveats
of these verification capabilities. Chapter 3 presents tlaengke problems we studied to inves-
tigate the utility of formal methods techniques in secudbntexts. Chapter 4 outlines some of
the scalability limitations that must be considered whangiformal methods, and some research
directions that might be considered to address these amcEmally, Chapter 5 summarizes the
key accomplishments of this project.
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Chapter 2

Formal Methods Overview

Problem Space

Software and hardware systems have suffered from desiga fieave their inception, many of
which have been very serious and resulted in significantrgég@nd reliability consequences —
especially for high-consequence systems. News of manyesktevents have reached the public
domain. For example, in the 1980s, software flaws in the Tth2baradiation treatment machine
resulted in at least six accidents where patients were ex{tosx-rays at approximately 100 times
the intended dose when a particular combination of opekaiys were pressed [2]. In 1994, a flaw
in the Intel P5 Pentium floating point unit was independedibgovered and publicly disclosed by
a professor at Lynchburg College in Virginia [11]. This desftaw caused certain floating-point
devision operations to produce incorrect results — acogrth Intel due to missing entries in a
digital divide operation lookup table [16]. Intel later aumced a pre-tax charge of $475 million
against their earnings in order to replace the flawed procgsdter a recall was issued [20]. And
in 1996, an unmanned Ariane 5 rocket exploded 40 secondststoaiden flight because an
assignment of a 64-bit number to a 16-bit buffer overflowedhisToverflow caused the rocket
controller to change its flight path, whereafter it disimetgd and self-destructed [10].

How should system designers safeguard against such demsigg?fISystem testing and simu-
lation is a widespread and effective technique for findinigvgare and hardware flaws, especially
those that appear frequently during observable prograrougieas. One primary benefit of this
strategy is that individual test cases can often directlidate one or more system requirements,
ensuring that an implemented system design is capable aigdehat it is supposed to do.” Un-
fortunately, testing is not particularly effective at ensg that a program “will not do what it is
not supposed to do.” This deficiency stems from several reaso

1. Cost-benefit regarding amount of effofithe effort necessary to uncover flaws in a system’s
behavior space is, at its roots, related to the frequendy witich that flaw manifests itself
into undesirable and observable system behavior. For deaimgpothetically, an operating
system bug that crashes Windows 7 on average every 1,0000008 of use would require
approximately 1,000,000 hours of testing to discover. Is ¢hcost-effective strategy for
discovering such a bug? At the same time, the same bug wolgct & significant num-
ber of users: 12,000 every dagiven the 600 million Windows 7 licenses that Microsoft

1One in 50,000 users every 24-hour day.
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Corporation as announced it has sold [6].

2. Coverage of system behavior is limiteBy definition, each test covers only a single path
of possible program behavior. This makes covering the &ygtof a system’s behavior im-
practical for non-trivial systems. (For example, a systeith 800 state variables has a state
space size of ¥° states — larger than the number of protons in the universe

3. Testing does not guarantee correctnegss Edsger Dijkstra, winner of the 1972 Turing
Award? famously stated, “Program testing can be used to show trsepee of bugs, but
never to show their absence!”

Formal Methods

Formal methods refers to a body of verification techniquesdifgital designs — both hardware
and software — that work by building a mathematical modelro&gifact and proving properties
about it [8]. As a field, formal methods has been an area ovexcsearch interest for over 60
years [19]. Several subareas of proof methods have emeiryaalthat time, each with their own
strengths and weaknesses in different problem domainexamnple:

1. Type checkerprove data integrity properties of arbitrary programs migircompilation in
order to help ensure safe system execution during runtife [8

2. Formal specification languaggwovide mathematical descriptions of software or hardware
on which an ultimate design implementation may be basedk&ptogramming languages,
specification languages describe what behavior a systeuaidsimaplement, but not how that
behavior should be implemented in a system design. Thegedges can reveal inconsis-
tencies, ambiguities, and incompleteness that might wikergo undetected.

3. Formal verification techniquesuch as model checkers can exhaustively analyze a mathe-
matical representation of a system’s state space in ordgrotdde proofs of correctness
with respect to certain properties. These properties argt witen categorized asafety
properties that should never be true (e.g., “there shoulddomfinite loops in a software
system”) orlivenessproperties that should always be true (e.g., “an alarm sestsmuld al-
ways be active”). Such assertions can also be disproverawighmification tool identifying a
counterexample to, or violation of, the correctness priyper

4. Interactive theorem proversupport a user’s search for a proof of correctness using tool
provided tactics. The tool automatically checks the ussregated proof to verify its cor-
rectness.

2The Eddington number: approximately®2@4]
3The Association for Computing Machinery’s most prestigioechnical award, and sometimes referred to as the
“Nobel Prize” of Computing.
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Initial state

(a) Testing and simulation covering a deep but narrow (b) Formal verification coverage expands outward,
path within a system’s state space. covering ever-larger portions of a state space.

Figure 2.1. Comparison of testing and simulation versus formal
verification methodologies.

This LDRD project has focused primarily on the verificatioasd of formal methods tech-
niques. Traditional testing and simulation techniquescapable of deep explorations into a state
space in search of bugs, albeit along the narrow path of desprggram execution for each test
(see Figure 2.1(a)). Thus, these techniques are inputrdasethe selected inputs for each test
case drive the system execution path resulting from thattinpn contrast, formal verification
techniques exhaustively explore all areas of the reactstéte space until there is nothing left to
consider (see Figure 2.1(b)). Thus, these techniques #petalriven as they seek to explore and
analyze all possible outputs, and all areas of the possiate space, in order to reason about a
program.

One advantage of formal verification tools is that they cariuly automated. These tools
search for proofs of correctness with respect to certaipgnees, or counterexamples to asserted
properties corresponding to design flaws, without the neediger interaction. Formal verifica-
tion tools may be viewed as having a “lower cost of entry” canggl to other classes of formal
methods techniques such as theorem provers, in that oncedel wiba system exists and cor-
rectness properties of interest have been specified to thethe analysis tasks themselves are
automatically performed. Finally, because of the autothatgure of these techniques, they can
be run on computing clusters, including high-performaramaputing (HPC) platforms, to support
the verification of ever-larger systems. These advantaggeallbreasons why formal verification
techniques are of interest to the problem spaces at Samdiagyaergistic with Sandia’s existing
solution capabilities (such as HPC).

However, the primary disadvantage of formal verificatiochtgiques stems from one of its
strengths: its exhaustive verification of system state esfrmorder to provide proofs of system
behavior (or lack thereof). Formal verification technigsesh as model checkers exhaustively
explore state spaces to reason about behavioral propefsgstems. Non-trivial systems, unfor-
tunately, suffer from exponential explosions in the sizéhefr behavioral state spaces, and despite
research advances, the time and space complexity of foremdication techniques scales poorly
with increasing problem size. Thus, this class of formalhmds techniques commonly cannot
verify realistic systems, such as microprocessors, softwaéth cyber-security considerations, or
complex problem scenarios such as those involving sitnakiawareness.
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Another key disadvantage of formal verification technigajart from the scalability concerns
is the information on which they operate. These techniqegaire a model of the system design
under consideration, as well as a specification to the toot@ming the correctness property or
assertion that is to be analyzed. In the case of the model® #ne unfortunately very few existing
capabilities for automatically building these models fritta system design implementation. This
means that these models are often designed separatelyifeates$ign implementation of a system,
meaning the models may be inaccurate or missing importémation relevant to the analysis.

In the case of correctness properties, it is necessary formaal verification tool to be in-
structed on what to look for to generate proofs of corredriesa system. For example, in the
case of deadlocks for software systems, a tool must be pyojpstructed to look for a circular
dependency between execution threads that are waitingesoance before continuing execution.
Security properties are often more difficult to express dretk than a reliability example such as
the foregoing case of deadlocks, because the conditionslpenabilities in a system that could
lead to such security violations are often more exotic affiicdit to express than traditional re-
liability properties. Also, the models must possess thesseim representativeness to provide the
information needed for a formal analysis, which places @éuion both the language in which the
model is specified and the designer creating that matheahatitfact.

Finally, it is worth drawing parallels between formal verétion and other similar capabili-
ties with which Sandia has experience and expertise. Incpéat, Sandia has been a pioneer in
developing and implementing verification and validationtmeelologies to ensure the predictive
capability and technical pedigree of conclusions drawmfamntinuum-physics models of engi-
neered systems (e.g., [14]). Verification is a process tdirtorthat a continuum physics model
is correctly computing results within the solution codes.(iit is implemented correctly, without
errors), while validation is a process to confirm that maughesults are consistent with real world
phenomena (i.e., the model is implementing the correctireopents).

When viewed from this perspective, the analysis performed fyrmal methods tool is akin
to the verification task, in that it ensures a system desigorisect and error free — at least with
respect to the correctness properties analyzed. Validatighis context, on the other hand, is
what designers and analysts must do to ensure the mathahmatidel being analyzed (verified) is
representative of the actual system design. The modelthatually analyzed by a formal methods
technique is a mathematical model that may abstract mangrddstails of the system. Formal
equivalence checking is one methodology that can help ertbesse system representations are
equivalent to each other [9]. Figure 2.2 illustrates wherehsequivalence checking may fit into
one hypothetical design and analysis workflow.
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Figure 2.2. An example of equivalence checking (blue diamond)
in a design and analysis workflow to validate the model created
from a design specification for formal verification.
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Chapter 3

Examples of Formal Verification

One key objective of this project as defined by the Cyber SgdulRD IAT was to survey and
investigate the advantages and disadvantages of applyingaf verification to security problems,
and to provide the IA with a deeper understanding of formahwoes and how they might map to
cyber security problems. This chapter presents two exaprplelems that were constructed and
investigated to address this objective.

Rudimentary Security Problem: Bit-string Recognition
Design

The first example explored in this work involves a common ggcproblem: bit-string recog-
nition. At its roots, password recognition is a string reaitign problem: verifying that a unique
sequence of characters — and only that sequence — will pgaaidess to a certain system re-
source. Since these letters, numbers, and symbols areatdtinrepresented in digital systems
as sequences of binary bits, this is fundamentally a bigegstecognition problem, and therefore
models a rudimentary but fundamental cyber security proble

It is also noteworthy that this problem also maps to recogmiproblems in analog domains —
not just digital domains such as those involving passwocdggition. For example, in Sandia’s
Nuclear Weapons (NW) work, stronglinks are an importanttgdfsature that serve as a sort of
combination lock to prevent the usage of a weapon — in eitbanal or “abnormal” environments
(e.g., scenarios where the weapon might be exposed to a fire)less deliberate action occurs
[15].

Figure 3.1 illustrates how the bit-string problem can béifased after this analog domain. In
the case of stronglinks, this domain is mechanical. Whenaaglink receives a unique signal, it
interrogates the signal to determine if it is correct, imceatally proceeding along the “tracking
path” on a “pattern wheel” [15]. This tracking path can beutlot of as a maze, with the unique
signal providing the instructions to navigate the maze. lfesdignal is interrogated, if the next
portion of the signal is correct, the stronglink mechartjcaroceeds along this tracking path.
If at any point the signal is not correct, the component ldcks a trapped state, rendering the
weapon inoperable (top of Figure 3.1) [15]. The unique digniypically composed of a series of
electrical pulses (middle of Figure 3.1). The incremenptown/neutral pulses of this signal can
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Figure 3.1. The bit-string recognition problem mapping to an
analog domain in Sandia’s Nuclear Weapons work.

be digitally represented by bits (bottom of Figure 3.1)pwihg this “model” to be analyzed by a
formal verification technique.

Consider a digital context where a circuit is cut to validate. (recognize) input sequences
such as for password recognition, or the model validatioam whique signal to be recognized by a
stronglink. To analyze this example problem, an algorithas weveloped to generate thousands
of circuits “grown” using hybrid genetic programming. Tlakjorithm was designed to generate
circuits recognizing bit strings of up to 64 bits in lengthh.was also designed so that the gener-
ated circuits would retain realistic characteristics offam-engineered circuits. In particular, for
relatively simple problems — i.e., those where a very shii$toing is to be recognized — exact
solutions are obtainable, meaning the generated circulitbevperfect: they will properly accept
exactly one bit-string, and reject all others. For reldyiveard problems — i.e., those where very
long bit-strings are to be recognized — the generated ¢gewuld have rare design errors of less
than 1%, meaning the circuit would improperly accept sontestoing sequences in addition to
the correct sequence. Two reasons an automated approatchkeador generating these circuit
models were to:

1. Create models that can automatically be formally analgzabwithout human intervention.

2. Avoid potentially subjective translations by humansg iatmodeling language that would be
suitable for formal verification

20



Results

To validate this model using formal verification, this prdjeonsidered the use of model check-
ing with the NuSMV open-source model checker [1]. NuSMV uasesodeling language that is
similar to an HDL-level language. The circuits are représem@as Boolean networks, thereby pro-
viding a representation approximately at the netlist leVéle generated circuits are feed forward,
thereby reminiscent of neural networks, and are thereforigeld to low-complexity, rudimentary
problem spaces (such as this one).

The results of using formal verification to validate thesewt models was convincing. For
over 7,000 models, NuSMV had a perfect track record in:

e Proving that every error-free circuit was indeed erroefréhe proof provided by NuSMV
was an exhaustive exploration of the behavioral state dpate tool, identifying no cases
where an invalid bit string was improperly recognized.

e Proving that every erroneous circuit with an error was imdié@ved. The proof provided
by NuSMV of this flaw is a counter-example emitted by the tdaging the input improp-
erly recognized by the circuit, and the behavioral path uadten by the circuit during that
erroneous recognition.

Furthermore, for each erroneous circuit, this investaratonsidered whether traditional test-
ing and simulation would have uncovered the same flaw. Thispeaformed by generating 1,000
random tests for each erroneous 32-bit circuit. In no cadeudy of these 1,000 tests identify the
design flaws in the circuits. However, as stated above, fover#ication via NuSMV identified
the flaws in every case.

Exploring Synergy with Fuzz Testing

One direction explored for this example is possible syndrgyveen the formal verification
approach described earlier and fuzz testing. It was theatams®f this team that a fuzz-testing
effort that is guided by insights gleaned from formal methodn provide utility to the fuzzer.

As stated earlier, and intuitively, a bit-string recogmitiprogram or circuit should recognize
a single string, and reject all others. This string can bméer the “gold string.” Consider the
case where a program or circuit designed to implement aiiiigsrecognition solution has design
flaws, and other input strings other than the gold stringrapgoperly accepted. One approach that
could assist a designer’s effort to identify the specific ftagponsible for this erroneous behavior
is to use formal methods to prove whether certain bits in putistring are responsible for the
erroneous behavior in terms of the flawed design implemientat

Figure 3.2 illustrates this workflow. For any particular@gnition program or circuit, certain
single bits in an input string can be formally proven to bgotitorrectly — that is, correctly set to
that of the gold string — regardless of the rest of the bitss €ffectively eliminates the possibility
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For some single bits in program
input can be formally proved to
<—— output correctly, regardless of the
other bits: the rest of the
configurations must be tested

Figure 3.2. Example of using formal methods to guide an al-
ternative methodology such as fuzz testing. In this case, formal
methods could restrict a random fuzz search by eliminating bits
that could be responsible for an observed system design flaw.

that the processing and recognition of those particulanbduld be responsible for the erroneous
acceptance of invalid bit strings, leaving a requiremeat the rest of the configurations be tested.
This ability to eliminate such bits means that the randonmctespace explored by a fuzz-testing
technique can be reduced to a more profitable space. For éxafipcan be formally proven that
10 bits from a 64-bit gold string must be set for the stringéarécognized, a fuzzing search can
be improved 2° or 1,000 times.

Rare High-consequence Events Example: Dual-zone Alarm System
Design

The second example explored in this project was also ingjyea similar problem observed
in a real application in Sandia’s mission space. This examphcerns a dual-zone alarm sensor
system. The design explored in this example is a simplispeasentation of a system containing
two alarm sensors to detect intrusions. When an intrusiorggdred in either zone, the respective
sensor asynchronously updates an intrusion coucden) in a non-volatile shared memory space.
The system is designed to have controlled access to the rggmensure that only one sensor at
a time has write access to the counter.

In the actual application inspiring this example, a flaw fowuring the design phase of the
dual-alarm system resulted in a race condition that careaaesnory overwrites that would corrupt
the intrusion count and result in an inaccurate number aisgmbns being reported. An example of
one of the many sequences of events that would cause thigptior is shown in Figure 3.3. In
these cases, the counter would report a lower number ofintra than actually took place.

From a verification standpoint, asynchronous, sequenseebavents are very difficult to verify
because the particular sequences that can cause problere care, and the observable behavior
fleeting in terms of the duration of time at which an error niigh observed. Examples of this
challenge are shown in Figure 3.4.
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count - register [4]
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count - register [4]
count =5
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Figure 3.3. An illustration of how a race condition in the dual-
alarm sensor system results in a memory overwrite that corrupts
the intrusion count.
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Time > Time >
(a) Sequence-based events for two hypothetical alarm (b) Interference where overlapping sequences may
sensors0 andSl. cause contention for the shared memory space storing

the intrusion counter.

Figure 3.4. Sequences of events between two sensors in a hy-
pothetical intrusion sensors, with possible asynchronous interfer-
ence. In these examples, the upward ticks are intrusions detected
by the sensors.
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Figure 3.5. The lowest-probability scenario where the race con-
dition in the dual-alarm sensor system results in an event where
count= 2.

Traditional testing- and simulation-based approachesairevell-suited in verifying such sys-
tems because individual tests and simulations only scthtchossible behavior space of a system
(recall Figure 2.1(a)), and are therefore unlikely to urezaare events. It follows that they are es-
pecially unlikely to detected sequences of low-probabgients. Formal verification techniques,
on the other hand, are uniquely capable of identifying tleesats through the gradual but exhaus-
tive verification of the entire behavioral state space (ideig all possible sequences of events), as
illustrated in Figure 2.1(b).

In this project, a comparison was performed regarding tharsge abilities of testing and sim-
ulation versus formal verification to detect very low prottigbbut potentially high consequence
events associated with memory corruptions resulting is thce condition. Figure 3.5 illustrates
the scenario corresponding to the “worst-case” sequeneeeanits. In this scenario, 10 intrusions
on each sensor, which should result in an intrustonnt= 20, instead results in an intrusion
count= 2.

Results

Formal verification was able to detect the presence of treecandition flaw in this system de-
sign, and the sequence of events leading to the “worst-caseiory space corruption obunt= 2,
within a few minutes of execution on a desktop workstatiangia single processor. In particular,
a Promela model [7] was built based on a version of this systesquirements and analyzed using
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(c) 10,000 random simulations. (d) 10,000,000 random simulations.

Figure 3.6. Four separate studies attempting to use random
testing and simulation to identify the lowest-probability event
(count= 2 on the horizontal axis) in the dual-alarm system.

the SPIN model checker [7] on that single processor.

In contrast, as Figure 3.6 illustrates, testing and sinarausing up to 10,000,000 randomly
generated tests, was not able to identify this same “wa@sétsequence of events. In fact, as Fig-
ure 3.6(d) shows, the 10,000,000 simulations did not evemeodose to this worst-case scenario,
finding sequences of events leading onlgbnintbeing as low as 9. These 10,000,000 simulations
took approximately one hour to run on the same workstation.
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Chapter 4

Scalability Concerns Regarding Formal
Verification

As mentioned earlier, within the class of formal method$itégues, formal verification al-
gorithms rigorously verify the absence of specified flawsandware and software systems. As
such, despite their use of abstract mathematical repassm of a system to verify critical system
properties, these techniques inherently suffer from bdélalimitations that restrict their ability
to reason about ever-larger and more complicated systerhs.fuhdamental reason for this is
an explosion in the size of a system’s potential behavidedkésspace that must be analyzed and
reasoned about. These state spaces most often grow exjptlpdat non-trivial digital designs.
As a simple example of this type of growth behavior, a micogpssor with 1,000,000 transistors
has 2:000000 hossible states. By increasing the exponent, it is easy th@geadding transistors
exponentially increases the theoretical state space size.

Which formal verification techniques should be focused oreliver meaningful analyses for
digital systems despite these challenges? Perhaps thewnestpread formal verification tech-
nique is model checking, which explicitly and exhaustivekplores state spaces to reason about
behavior properties of finite-state systems. Because maattsystems suffer from an exponen-
tial state-space explosion, rigorous simplifications saglsymmetry and partial-order reductions
are used by the algorithms to collapse state spaces to mablagezes. Application of increased
computational capabilities has also made it feasible tonms#el checking to analyze increasingly
large problems.

However, the time and space complexity of model checkinigsstales poorly with increasing
problem size. This commonly puts realistic systems, esgfigdhose with complex design ar-
chitectures or complicated correctness properties tdyerie.g., systems with important cyber-
security considerations such as scenarios involving teitioa awareness — out of the reach of
model checkers. In fact, such scalability consideratioadle primary reason model checking has
not been more widely adopted for the verification of bothwafte and hardware systems.

For this reason, the research community has sought to iraghevscalability of model check-
ing techniques since their inception. Ideally, model clmgkechniques would be capable of
distributed state space exploration using parallel omeraion computing clusters with very large
numbers of processors. (Of course, other meaningful inggn@nts can be imagined, but the abil-
ity to run on thousands of processors as a high-performamoguating code, cannot be dismissed.)
However, in the formal methods research literature, parathd distributed model checking is a
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generally unsolved problem, whose difficulty derives framtention for the shared representation
of the state space. Although parallel and distributed @agning frameworks have been proposed
for some model checking techniques (e.qg., [17, 12]), to thegee remains no technique capable of
scaling to large computing clusters with thousands of gsaes, and the research community has
not seen a meaningful improvement in this area in years.

If capabilities for fully parallel and distributed formagkification existed, they might be viewed
as a top-down approach to verification in that the analysisldvtake place at the full system
design level and explore the resulting state spaces at ting @oints to system execution. An
alternative strategy for addressing scalability is whaghhbe viewed as a bottom-up approach,
where verification takes place for individual componentsusystems. The results from these
separate analyses would then be composed into increadargly assessments until the entire
system can be reasoned about in a mathematically soundfiegiven the individual verifications
performed at lower levels of the design. This is a researed malled out by the White House
National Science and Technology Council as follows: “Thesaesh challenges of this theme
include. .. (m)athematically sound techniques to support combinatfonodels and composition
of results from separate components” [18].

Figure 4.1 illustrates how this approach may work in practthen developed by supporting re-
search. Intel uses formal methods as their principal vatiba strategy for their microprocessors,
including the i7 Core Processor. While the authors of this negh@ not have detailed knowledge
about how formal verification is specifically integratecoimitel’s design and analysis workflows,
it is safe to surmise that Intel cannot analyze the entirgapiocessor at once, as it is known that
microprocessors are generally far too large to analyze fwitimal verification due to their large
state spaces — particularly for general-purpose commaddgessors. Therefore, Intel and simi-
lar entities must verify individual components and subsys, thereby presenting the opportunity
stated above to compose those results into an analysis sf#tem. In short, composing results
would be highly synergistic with the current workflows ablgaitilized by designers and analysts,
who already have to verify components or subsystems ingialig due to scalability restrictions,
but would like to reason about the full system if that weregils.

Other than these approaches, the current state-of-thieetrties some model checking tech-
niques that can operate in parallel on a small scale. For pbearBPIN is one model checker
that has been extended to support multi-core processoiterttires [7]. The “portfolio” method
is an alternative strategy that attempts many differenfigaration options for formal method
techniques — not just model checkers — in an embarrassiragigilpl attempt to determine the
optimal configuration for any particular problem [3].

These methods, while important advances in the reseaechtlire, fall short of a fully parallel
and distributed approach that scales to thousands of o svhich would allow model checking
techniques to be brought to bear on increasingly compleklenos, such as those pertaining to
cyber-security. They also do not attempt to address théectygd of composing formal analyses
from small portions of a system into a rigorous analysis far $ystem as a whole. However, a
project seeking to address this latter challenge has beetetuby the Cyber Security Investment
Area in FY13 within Sandia’s LDRD program.
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Chapter 5

Conclusions

The purpose and goals of this one-year LDRD project were t@egwand investigate the advan-
tages and disadvantages of applying formal methods to gmokpace of relevance to the Cyber
Security Investment Area. It was also desired to provideGkiber Security IAT with a deeper
understanding of formal methods more generally, partibulaith respect to the scalability of the
techniques and their applicability to security problems.

Cyber Security at Sandia has broad reach across the labgratpacting work in Homeland
Security, Energy Infrastructure, Nuclear Weapons, andkviarothers. As such, this project team
examined two hypothetical security problems that weregihesd to provide broad insights into the
applicability of formal verification techniques into theseblem spaces. The selected problems
were inspired by real problem instances observed by teamoeesim the aforementioned mission
areas. The results provided by these example problems ardiigive, technically sound, and
convincing — supporting growing acknowledgment of the agalility of formal methods both
internally within Sandia and externally, including Sandistomers.

This project also explored possible synergy between fom&thods and fuzz testing to clarify
future research paths in this direction. Finally, this pobjidentified opportunities for advancing
the scalability of formal verification techniques. Many bése research opportunities are syner-
gistic with Sandia’s strengths and targeted to the needstbfthe larger research community and
the national security interests of the country.

Several efforts within this laboratory have momentum assaltef this project. First, a San-
dia team with expertise in formal verification is well-pasited to deliver state-of-the-art research
results in composing formal analyses in a new three-year LIPRiject that is starting in FY13.
As discussed in Section 4, this research direction has gymnéth the design and analysis work-
flows already being utilized to employ formal methods giviea éxisting scalability concerns of
those techniques. Second, this team and others at Sangieepaged to build additional research
programs in other formal methods areas, especially comgetine scalability of the techniques. In
fact, this team in particular has several research ideasivilidbe developed and proposed in the
months to come.

Third, we have broadened our connections with industry @ad@mic institutions working on
research and development areas in formal methods. Thisdeasred through separate outreach
efforts as well as connections made at research confereweare actively considering collabo-
rating with some of these parties in our formal methods mesearojects beginning in FY13.
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Fourth, members of our team have used the knowledge andtiesepérey have acquired
through their involvement in this project to provide postand immediate impact to other projects
in Sandia’s mission areas. In particular, some of this pigéeam members were approached to
separately contribute to the analysis and verification efitiiprogress design on an NW subsys-
tem. These researchers have developed and conducted nalges that have resulted in key
improvements to that NW subsystem. These design improvismelh increase the reliability of
the NW subsystem under both normal and abnormal conditemd,illustrate the clear impact
of capabilities fostered by LDRD to improve design and vegiien processes in Sandia’s NW
mission area. The capabilities developed to conduct thatyais are rooted in both new research
directions that drive the state-of-the-art with respeatdnfication of high-consequence systems,
and effective methodologies and frameworks to seamlestdgiate new verification practices into
NW design efforts. Although this LDRD project did not suppthie development and application
of these capabilities to this NW subsystem, the support ®fGfiber Security LDRD IA should
be credited with investing in developing the knowledge lasexpertise in formal methods that
allowed these capabilities to be developed. Without thegmalailities supported by LDRD and
the close collaborative partnership between those raseargvith NW designers, identifying the
design opportunities for improvement in this NW subsystemuidl not have been possible.

Finally, this project has positioned Sandia to continuenidigng and implementing formal
methods for security properties and complex cyber secsciéynarios, given the unique and chal-
lenging problem spaces in Sandia’s mission areas. Therdivg anterest at present in the ability
of formal methods to improve the security and reliabilityesfgineered digital systems — hard-
ware and software — and Sandia is no exception to this trendenGhis lab’s unique areas of
expertise, Sandia is well positioned to advance the statieecdrt in formal methods in the years
to come.
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