
SANDIA REPORT
SAND2012-7940
Unlimited Release
Printed September 2012

Leveraging Formal Methods and Fuzzing
to Verify Security and Reliability
Properties of Large-Scale
High-Consequence Systems

Joseph R. Ruthruff, Robert C. Armstrong, Benjamin G. Davis, Jackson R. Mayo, and
Ratish J. Punnoose

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2012-7940
Unlimited Release

Printed September 2012

Leveraging Formal Methods and Fuzzing to Verify
Security and Reliability Properties of Large-Scale

High-Consequence Systems

Joseph R. Ruthruff
Quantitative Modeling and Analysis Dept.

Sandia National Laboratories
P.O. Box 969, MS 9155

Livermore, CA 94551-0969
jruthru@sandia.gov

Robert C. Armstrong
Scalable & Secure Systems Research Dept.

Sandia National Laboratories
P.O. Box 969, MS 9158

Livermore, CA 94551-0969
rob@sandia.gov

Benjamin G. Davis
Information Assurance Dept.
Sandia National Laboratories

P.O. Box 969, MS 9011
Livermore, CA 94551-0969

bgdavis@sandia.gov

Jackson R. Mayo
Scalable Modeling & Analysis Dept.

Sandia National Laboratories
P.O. Box 969, MS 919

Livermore, CA 94551-0969
jmayo@sandia.gov

Ratish J. Punnoose
Weapons Subsystems 2 Dept.
Sandia National Laboratories

P.O. Box 969, MS 9110
Livermore, CA 94551-0969

rjpunno@sandia.gov

3

Abstract

Formal methods describe a class of system analysis techniques that seek to prove specific properties
about analyzed designs, or locate flaws compromising those properties. As an analysis capability,
these techniques are the subject of increased interest fromboth internal and external customers
of Sandia National Laboratories. Given this lab’s other areas of expertise, Sandia is uniquely
positioned to advance the state-of-the-art with respect toseveral research and application areas
within formal methods. This research project was a one-yeareffort funded by Sandia’s Cyber
Security S&T Investment Area in its Laboratory Directed Research & Development program to
investigate the opportunities for formal methods to impactSandia’s present mission areas, more
fully understand the needs of the research community in the area of formal methods and where
Sandia can contribute, and clarify from those potential research paths those that would best advance
the mission-area interests of Sandia. The accomplishmentsfrom this project reinforce the utility
of formal methods in Sandia, particularly in areas relevantto Cyber Security, and set the stage
for continued Sandia investments to ensure this capabilityis utilized and advanced within this
laboratory to serve the national interest.

4

Acknowledgments

The authors thank Jerry McNeish for his comments on a draft ofthis report.

This project was funded in the 2012 Fiscal Year by the Cyber Security S&T Investment Area
in Sandia National Laboratory’s Laboratory Directed Research & Development (LDRD) program.
Any views expressed in this report do not necessarily reflectthose of the Cyber Security Investment
Area Team, the LDRD office at Sandia, or Sandia National Laboratories as a whole.

5

This page intentionally left blank.

Contents

Nomenclature 9

1 Introduction 11

2 Formal Methods Overview 13

Problem Space 13

Formal Methods 14

3 Examples of Formal Verification 19

Rudimentary Security Problem: Bit-string Recognition 19

Design 19

Results 21

Exploring Synergy with Fuzz Testing 21

Rare High-consequence Events Example: Dual-zone Alarm System 22

Design 22

Results 24

4 Scalability Concerns Regarding Formal Verification 27

5 Conclusions 31

References 33

7

List of Figures

2.1 Comparison of testing and simulation versus formal verification methodologies. . . 15

2.2 An example of equivalence checking (blue diamond) in a design and analysis
workflow to validate the model created from a design specification for formal ver-
ification. 17

3.1 The bit-string recognition problem mapping to an analogdomain in Sandia’s Nu-
clear Weapons work. 20

3.2 Example of using formal methods to guide an alternative methodology such as
fuzz testing. In this case, formal methods could restrict a random fuzz search by
eliminating bits that could be responsible for an observed system design flaw. 22

3.3 An illustration of how a race condition in the dual-alarmsensor system results in a
memory overwrite that corrupts the intrusion count. 23

3.4 Sequences of events between two sensors in a hypothetical intrusion sensors, with
possible asynchronous interference. In these examples, the upward ticks are intru-
sions detected by the sensors. 23

3.5 The lowest-probability scenario where the race condition in the dual-alarm sensor
system results in an event wherecount= 2. 24

3.6 Four separate studies attempting to use random testing and simulation to identify
the lowest-probability event (count= 2 on the horizontal axis) in the dual-alarm
system. 25

4.1 Composing formal analyses from one hypothetical verification workflow for Intel’s
i7 Core processor. The orange boxes denote verified areas of the design — in the
latter stages via composition from previous results (dashed orange boxes). 29

8

Nomenclature

DOE Department of Energy

HPC High-Performance Computing

IAT Investment Area Team

LDRD Laboratory Directed Research & Development

NNSA National Nuclear Security Administration

NW Nuclear Weapons

9

This page intentionally left blank.

Chapter 1

Introduction

Formal methods describe a class of system analysis techniques that seek to prove specific prop-
erties about analyzed designs, or locate flaws compromisingthose properties. These techniques
implement advanced logic-based algorithms on abstract mathematical system representations to
rigorously verify critical properties — e.g., “no code injections” or “if X happens then Y always
follows.” Formal methods offer an improved technical basisfor reliability and security assessments
of digital systems, especially in high-consequence systemdesign domains.

Sandia National Laboratories is taking a growing interest in the area of formal methods in
order to provide the highest levels of verification for high-consequence hardware and software
systems in its digital design domains. In addition to the application of formal methods in key
mission areas, Sandia seeks to advance the state-of-the-art with respect to the research literature in
formal verification so this capability can best address Sandia’s unique problem spaces and analysis
requirements. In particular, as Sandia has in other domains, this laboratory seeks opportunities
where it can leverage its existing expertise in other research and development areas to advance a
separate but related domain — in this case, formal methods.

The Cyber Security Investment Area in Sandia’s Laboratory-Directed Research & Develop-
ment (LDRD) program has been a leader in recognizing the need for, and investing in, building a
research program in the area of formal methods. Since its inception, the Investment Area Team
(IAT) for Cyber Security has carefully considered the most fruitful research paths within formal
methods. These considerations have weighed both (1) the needs of the research community and
(2) Sandia’s individual areas of expertise and where this laboratory may be best positioned to
contribute.

Fuzz testing (also known as fuzzing) is a technique for providing random input to applications
in order to evaluate reliability [13]. For some techniques and applications, this random input
is structured to a degree in order to generate more meaningful responses from the application
under test. This methodology has been shown to be useful, when deployed effectively, in various
domains for identifying both reliability and security flawsin systems [5]. However, the random
input selected during fuzz testing, both its content and structure, can determine how effective the
methodology will be in discovering flaws in systems. This LDRDproject (Oracle/Project Number
158744), as originally proposed, sought to inform and direct automated fuzz testing in order to
improve this latter capability’s effectiveness in identifying reliability and security flaws in high-
consequence systems.

11

The direction to a fuzz testing technique in the LDRD would be provided through the use of
formal methods. The proposed research direction was to inform the input spaces targeted by fuzz
testing using the results of formal verification, such as by focusing on inputs and execution paths
identified by formal verification that produced out-of-nominal outputs and program behaviors. The
Cyber Security IAT wished to clarify the utility and risks in any research path involving formal
methods before making a significant commitment in this area of research.

Toward this end, this LDRD project was a modest one-year effort in the 2012 Fiscal Year to:

1. Investigate the opportunities for formal methods to impact mission areas of concern to the
National Nuclear Security Administration (NNSA).

2. More fully understand the needs of the research communityin the area of formal methods.

3. Clarify the potential research paths that would best fit themission-area interests of Sandia
National Laboratories, the NNSA, and the Department of Energy (DOE).

This report presents the outcomes and results of this project toward delivering on each of the
three aforementioned items. In Chapter 2, we provide more information and background on formal
methods. This information is provided in an effort to help decision-makers at all levels of manage-
ment — at Sandia and outside this Laboratory – understand theimportance, potential, and caveats
of these verification capabilities. Chapter 3 presents the example problems we studied to inves-
tigate the utility of formal methods techniques in securitycontexts. Chapter 4 outlines some of
the scalability limitations that must be considered when using formal methods, and some research
directions that might be considered to address these concerns. Finally, Chapter 5 summarizes the
key accomplishments of this project.

12

Chapter 2

Formal Methods Overview

Problem Space

Software and hardware systems have suffered from design flaws since their inception, many of
which have been very serious and resulted in significant security and reliability consequences —
especially for high-consequence systems. News of many of these events have reached the public
domain. For example, in the 1980s, software flaws in the Therac 25 radiation treatment machine
resulted in at least six accidents where patients were exposed to X-rays at approximately 100 times
the intended dose when a particular combination of operatorkeys were pressed [2]. In 1994, a flaw
in the Intel P5 Pentium floating point unit was independentlydiscovered and publicly disclosed by
a professor at Lynchburg College in Virginia [11]. This design flaw caused certain floating-point
devision operations to produce incorrect results — according to Intel due to missing entries in a
digital divide operation lookup table [16]. Intel later announced a pre-tax charge of $475 million
against their earnings in order to replace the flawed processors after a recall was issued [20]. And
in 1996, an unmanned Ariane 5 rocket exploded 40 seconds intoits maiden flight because an
assignment of a 64-bit number to a 16-bit buffer overflowed. This overflow caused the rocket
controller to change its flight path, whereafter it disintegrated and self-destructed [10].

How should system designers safeguard against such design flaws? System testing and simu-
lation is a widespread and effective technique for finding software and hardware flaws, especially
those that appear frequently during observable program executions. One primary benefit of this
strategy is that individual test cases can often directly validate one or more system requirements,
ensuring that an implemented system design is capable of “doing what it is supposed to do.” Un-
fortunately, testing is not particularly effective at ensuring that a program “will not do what it is
not supposed to do.” This deficiency stems from several reasons:

1. Cost-benefit regarding amount of effort.The effort necessary to uncover flaws in a system’s
behavior space is, at its roots, related to the frequency with which that flaw manifests itself
into undesirable and observable system behavior. For example, hypothetically, an operating
system bug that crashes Windows 7 on average every 1,000,000hours of use would require
approximately 1,000,000 hours of testing to discover. Is this a cost-effective strategy for
discovering such a bug? At the same time, the same bug would affect a significant num-
ber of users: 12,000 every day1 given the 600 million Windows 7 licenses that Microsoft

1One in 50,000 users every 24-hour day.

13

Corporation as announced it has sold [6].

2. Coverage of system behavior is limited.By definition, each test covers only a single path
of possible program behavior. This makes covering the entirety of a system’s behavior im-
practical for non-trivial systems. (For example, a system with 300 state variables has a state
space size of 2300 states — larger than the number of protons in the universe2.)

3. Testing does not guarantee correctness.As Edsger Dijkstra, winner of the 1972 Turing
Award,3 famously stated, “Program testing can be used to show the presence of bugs, but
never to show their absence!”

Formal Methods

Formal methods refers to a body of verification techniques for digital designs — both hardware
and software — that work by building a mathematical model of an artifact and proving properties
about it [8]. As a field, formal methods has been an area of active research interest for over 60
years [19]. Several subareas of proof methods have emerged since that time, each with their own
strengths and weaknesses in different problem domains. Forexample:

1. Type checkersprove data integrity properties of arbitrary programs during compilation in
order to help ensure safe system execution during runtime [8].

2. Formal specification languagesprovide mathematical descriptions of software or hardware
on which an ultimate design implementation may be based. Unlike programming languages,
specification languages describe what behavior a system should implement, but not how that
behavior should be implemented in a system design. These languages can reveal inconsis-
tencies, ambiguities, and incompleteness that might otherwise go undetected.

3. Formal verification techniquessuch as model checkers can exhaustively analyze a mathe-
matical representation of a system’s state space in order toprovide proofs of correctness
with respect to certain properties. These properties are most often categorized assafety
properties that should never be true (e.g., “there should beno infinite loops in a software
system”) orlivenessproperties that should always be true (e.g., “an alarm sensor should al-
ways be active”). Such assertions can also be disproven witha verification tool identifying a
counterexample to, or violation of, the correctness property.

4. Interactive theorem proverssupport a user’s search for a proof of correctness using tool-
provided tactics. The tool automatically checks the user-generated proof to verify its cor-
rectness.

2The Eddington number: approximately 1080 [4]
3The Association for Computing Machinery’s most prestigious technical award, and sometimes referred to as the

“Nobel Prize” of Computing.

14

(a) Testing and simulation covering a deep but narrow
path within a system’s state space.

(b) Formal verification coverage expands outward,
covering ever-larger portions of a state space.

Figure 2.1. Comparison of testing and simulation versus formal
verification methodologies.

This LDRD project has focused primarily on the verification class of formal methods tech-
niques. Traditional testing and simulation techniques arecapable of deep explorations into a state
space in search of bugs, albeit along the narrow path of a single program execution for each test
(see Figure 2.1(a)). Thus, these techniques are input driven as the selected inputs for each test
case drive the system execution path resulting from that input. In contrast, formal verification
techniques exhaustively explore all areas of the reachablestate space until there is nothing left to
consider (see Figure 2.1(b)). Thus, these techniques are output driven as they seek to explore and
analyze all possible outputs, and all areas of the possible state space, in order to reason about a
program.

One advantage of formal verification tools is that they can befully automated. These tools
search for proofs of correctness with respect to certain properties, or counterexamples to asserted
properties corresponding to design flaws, without the need for user interaction. Formal verifica-
tion tools may be viewed as having a “lower cost of entry” compared to other classes of formal
methods techniques such as theorem provers, in that once a model of a system exists and cor-
rectness properties of interest have been specified to the tool, the analysis tasks themselves are
automatically performed. Finally, because of the automated nature of these techniques, they can
be run on computing clusters, including high-performance computing (HPC) platforms, to support
the verification of ever-larger systems. These advantages are all reasons why formal verification
techniques are of interest to the problem spaces at Sandia, and synergistic with Sandia’s existing
solution capabilities (such as HPC).

However, the primary disadvantage of formal verification techniques stems from one of its
strengths: its exhaustive verification of system state space in order to provide proofs of system
behavior (or lack thereof). Formal verification techniquessuch as model checkers exhaustively
explore state spaces to reason about behavioral propertiesof systems. Non-trivial systems, unfor-
tunately, suffer from exponential explosions in the size oftheir behavioral state spaces, and despite
research advances, the time and space complexity of formal verification techniques scales poorly
with increasing problem size. Thus, this class of formal methods techniques commonly cannot
verify realistic systems, such as microprocessors, software with cyber-security considerations, or
complex problem scenarios such as those involving situational awareness.

15

Another key disadvantage of formal verification techniquesapart from the scalability concerns
is the information on which they operate. These techniques require a model of the system design
under consideration, as well as a specification to the tool concerning the correctness property or
assertion that is to be analyzed. In the case of the models, there are unfortunately very few existing
capabilities for automatically building these models fromthe system design implementation. This
means that these models are often designed separately from the design implementation of a system,
meaning the models may be inaccurate or missing important information relevant to the analysis.

In the case of correctness properties, it is necessary for a formal verification tool to be in-
structed on what to look for to generate proofs of correctness for a system. For example, in the
case of deadlocks for software systems, a tool must be properly instructed to look for a circular
dependency between execution threads that are waiting on a resource before continuing execution.
Security properties are often more difficult to express and check than a reliability example such as
the foregoing case of deadlocks, because the conditions or vulnerabilities in a system that could
lead to such security violations are often more exotic and difficult to express than traditional re-
liability properties. Also, the models must possess the semantic representativeness to provide the
information needed for a formal analysis, which places a burden on both the language in which the
model is specified and the designer creating that mathematical artifact.

Finally, it is worth drawing parallels between formal verification and other similar capabili-
ties with which Sandia has experience and expertise. In particular, Sandia has been a pioneer in
developing and implementing verification and validation methodologies to ensure the predictive
capability and technical pedigree of conclusions drawn from continuum-physics models of engi-
neered systems (e.g., [14]). Verification is a process to confirm that a continuum physics model
is correctly computing results within the solution codes (i.e., it is implemented correctly, without
errors), while validation is a process to confirm that modeling results are consistent with real world
phenomena (i.e., the model is implementing the correct requirements).

When viewed from this perspective, the analysis performed bya formal methods tool is akin
to the verification task, in that it ensures a system design iscorrect and error free — at least with
respect to the correctness properties analyzed. Validation in this context, on the other hand, is
what designers and analysts must do to ensure the mathematical model being analyzed (verified) is
representative of the actual system design. The model that is actually analyzed by a formal methods
technique is a mathematical model that may abstract many design details of the system. Formal
equivalence checking is one methodology that can help ensure these system representations are
equivalent to each other [9]. Figure 2.2 illustrates where such equivalence checking may fit into
one hypothetical design and analysis workflow.

16

Informal

Spec

VHDL

Tests

Simu-

lation

Silicon

Formal

Model

Formal

Assertions

Formal

Verif.

Equiv.

Check

Figure 2.2. An example of equivalence checking (blue diamond)
in a design and analysis workflow to validate the model created
from a design specification for formal verification.

17

This page intentionally left blank.

Chapter 3

Examples of Formal Verification

One key objective of this project as defined by the Cyber Security LDRD IAT was to survey and
investigate the advantages and disadvantages of applying formal verification to security problems,
and to provide the IA with a deeper understanding of formal methods and how they might map to
cyber security problems. This chapter presents two exampleproblems that were constructed and
investigated to address this objective.

Rudimentary Security Problem: Bit-string Recognition

Design

The first example explored in this work involves a common security problem: bit-string recog-
nition. At its roots, password recognition is a string recognition problem: verifying that a unique
sequence of characters — and only that sequence — will provide access to a certain system re-
source. Since these letters, numbers, and symbols are ultimately represented in digital systems
as sequences of binary bits, this is fundamentally a big-string recognition problem, and therefore
models a rudimentary but fundamental cyber security problem.

It is also noteworthy that this problem also maps to recognition problems in analog domains —
not just digital domains such as those involving password recognition. For example, in Sandia’s
Nuclear Weapons (NW) work, stronglinks are an important safety feature that serve as a sort of
combination lock to prevent the usage of a weapon — in either normal or “abnormal” environments
(e.g., scenarios where the weapon might be exposed to a fire) —unless deliberate action occurs
[15].

Figure 3.1 illustrates how the bit-string problem can be fashioned after this analog domain. In
the case of stronglinks, this domain is mechanical. When a stronglink receives a unique signal, it
interrogates the signal to determine if it is correct, incrementally proceeding along the “tracking
path” on a “pattern wheel” [15]. This tracking path can be thought of as a maze, with the unique
signal providing the instructions to navigate the maze. As the signal is interrogated, if the next
portion of the signal is correct, the stronglink mechanically proceeds along this tracking path.
If at any point the signal is not correct, the component locksinto a trapped state, rendering the
weapon inoperable (top of Figure 3.1) [15]. The unique signal is typically composed of a series of
electrical pulses (middle of Figure 3.1). The incremental up/down/neutral pulses of this signal can

19

Figure 3.1. The bit-string recognition problem mapping to an
analog domain in Sandia’s Nuclear Weapons work.

be digitally represented by bits (bottom of Figure 3.1), allowing this “model” to be analyzed by a
formal verification technique.

Consider a digital context where a circuit is cut to validate (i.e., recognize) input sequences
such as for password recognition, or the model validation ofa unique signal to be recognized by a
stronglink. To analyze this example problem, an algorithm was developed to generate thousands
of circuits “grown” using hybrid genetic programming. Thisalgorithm was designed to generate
circuits recognizing bit strings of up to 64 bits in length. It was also designed so that the gener-
ated circuits would retain realistic characteristics of human-engineered circuits. In particular, for
relatively simple problems — i.e., those where a very short bit-string is to be recognized — exact
solutions are obtainable, meaning the generated circuits will be perfect: they will properly accept
exactly one bit-string, and reject all others. For relatively hard problems — i.e., those where very
long bit-strings are to be recognized — the generated circuits would have rare design errors of less
than 1%, meaning the circuit would improperly accept some bit-string sequences in addition to
the correct sequence. Two reasons an automated approach wastaken for generating these circuit
models were to:

1. Create models that can automatically be formally analyzable — without human intervention.

2. Avoid potentially subjective translations by humans into a modeling language that would be
suitable for formal verification

20

Results

To validate this model using formal verification, this project considered the use of model check-
ing with the NuSMV open-source model checker [1]. NuSMV usesa modeling language that is
similar to an HDL-level language. The circuits are represented as Boolean networks, thereby pro-
viding a representation approximately at the netlist level. The generated circuits are feed forward,
thereby reminiscent of neural networks, and are therefore limited to low-complexity, rudimentary
problem spaces (such as this one).

The results of using formal verification to validate these circuit models was convincing. For
over 7,000 models, NuSMV had a perfect track record in:

• Proving that every error-free circuit was indeed error-free. The proof provided by NuSMV
was an exhaustive exploration of the behavioral state spaceby the tool, identifying no cases
where an invalid bit string was improperly recognized.

• Proving that every erroneous circuit with an error was indeed flawed. The proof provided
by NuSMV of this flaw is a counter-example emitted by the tool showing the input improp-
erly recognized by the circuit, and the behavioral path undertaken by the circuit during that
erroneous recognition.

Furthermore, for each erroneous circuit, this investigation considered whether traditional test-
ing and simulation would have uncovered the same flaw. This was performed by generating 1,000
random tests for each erroneous 32-bit circuit. In no case did any of these 1,000 tests identify the
design flaws in the circuits. However, as stated above, formal verification via NuSMV identified
the flaws in every case.

Exploring Synergy with Fuzz Testing

One direction explored for this example is possible synergybetween the formal verification
approach described earlier and fuzz testing. It was the assertion of this team that a fuzz-testing
effort that is guided by insights gleaned from formal methods can provide utility to the fuzzer.

As stated earlier, and intuitively, a bit-string recognition program or circuit should recognize
a single string, and reject all others. This string can be termed the “gold string.” Consider the
case where a program or circuit designed to implement a bit-string recognition solution has design
flaws, and other input strings other than the gold string are improperly accepted. One approach that
could assist a designer’s effort to identify the specific flawresponsible for this erroneous behavior
is to use formal methods to prove whether certain bits in an input string are responsible for the
erroneous behavior in terms of the flawed design implementation.

Figure 3.2 illustrates this workflow. For any particular recognition program or circuit, certain
single bits in an input string can be formally proven to be output correctly — that is, correctly set to
that of the gold string — regardless of the rest of the bits. This effectively eliminates the possibility

21

Figure 3.2. Example of using formal methods to guide an al-
ternative methodology such as fuzz testing. In this case, formal
methods could restrict a random fuzz search by eliminating bits
that could be responsible for an observed system design flaw.

that the processing and recognition of those particular bits would be responsible for the erroneous
acceptance of invalid bit strings, leaving a requirement that the rest of the configurations be tested.
This ability to eliminate such bits means that the random search space explored by a fuzz-testing
technique can be reduced to a more profitable space. For example, if it can be formally proven that
10 bits from a 64-bit gold string must be set for the string to be recognized, a fuzzing search can
be improved 210 or 1,000 times.

Rare High-consequence Events Example: Dual-zone Alarm System

Design

The second example explored in this project was also inspired by a similar problem observed
in a real application in Sandia’s mission space. This example concerns a dual-zone alarm sensor
system. The design explored in this example is a simplistic representation of a system containing
two alarm sensors to detect intrusions. When an intrusion is triggered in either zone, the respective
sensor asynchronously updates an intrusion counter (count) in a non-volatile shared memory space.
The system is designed to have controlled access to the memory to ensure that only one sensor at
a time has write access to the counter.

In the actual application inspiring this example, a flaw found during the design phase of the
dual-alarm system resulted in a race condition that can cause memory overwrites that would corrupt
the intrusion count and result in an inaccurate number of intrusions being reported. An example of
one of the many sequences of events that would cause this corruption is shown in Figure 3.3. In
these cases, the counter would report a lower number of intrusions than actually took place.

From a verification standpoint, asynchronous, sequence-based events are very difficult to verify
because the particular sequences that can cause problems can be rare, and the observable behavior
fleeting in terms of the duration of time at which an error might be observed. Examples of this
challenge are shown in Figure 3.4.

22

Figure 3.3. An illustration of how a race condition in the dual-
alarm sensor system results in a memory overwrite that corrupts
the intrusion count.

(a) Sequence-based events for two hypothetical alarm
sensorsS0 andS1.

(b) Interference where overlapping sequences may
cause contention for the shared memory space storing
the intrusion counter.

Figure 3.4. Sequences of events between two sensors in a hy-
pothetical intrusion sensors, with possible asynchronous interfer-
ence. In these examples, the upward ticks are intrusions detected
by the sensors.

23

Figure 3.5. The lowest-probability scenario where the race con-
dition in the dual-alarm sensor system results in an event where
count= 2.

Traditional testing- and simulation-based approaches arenot well-suited in verifying such sys-
tems because individual tests and simulations only scratchthe possible behavior space of a system
(recall Figure 2.1(a)), and are therefore unlikely to uncover rare events. It follows that they are es-
pecially unlikely to detected sequences of low-probability events. Formal verification techniques,
on the other hand, are uniquely capable of identifying theseevents through the gradual but exhaus-
tive verification of the entire behavioral state space (including all possible sequences of events), as
illustrated in Figure 2.1(b).

In this project, a comparison was performed regarding the separate abilities of testing and sim-
ulation versus formal verification to detect very low probability but potentially high consequence
events associated with memory corruptions resulting in this race condition. Figure 3.5 illustrates
the scenario corresponding to the “worst-case” sequence ofevents. In this scenario, 10 intrusions
on each sensor, which should result in an intrusioncount= 20, instead results in an intrusion
count= 2.

Results

Formal verification was able to detect the presence of the race condition flaw in this system de-
sign, and the sequence of events leading to the “worst-case”memory space corruption ofcount= 2,
within a few minutes of execution on a desktop workstation using a single processor. In particular,
a Promela model [7] was built based on a version of this system’s requirements and analyzed using

24

(a) 100 random simulations. (b) 1,000 random simulations.

(c) 10,000 random simulations. (d) 10,000,000 random simulations.

Figure 3.6. Four separate studies attempting to use random
testing and simulation to identify the lowest-probability event
(count= 2 on the horizontal axis) in the dual-alarm system.

the SPIN model checker [7] on that single processor.

In contrast, as Figure 3.6 illustrates, testing and simulation, using up to 10,000,000 randomly
generated tests, was not able to identify this same “worst-case” sequence of events. In fact, as Fig-
ure 3.6(d) shows, the 10,000,000 simulations did not even come close to this worst-case scenario,
finding sequences of events leading only tocountbeing as low as 9. These 10,000,000 simulations
took approximately one hour to run on the same workstation.

25

This page intentionally left blank.

Chapter 4

Scalability Concerns Regarding Formal
Verification

As mentioned earlier, within the class of formal methods techniques, formal verification al-
gorithms rigorously verify the absence of specified flaws in hardware and software systems. As
such, despite their use of abstract mathematical representations of a system to verify critical system
properties, these techniques inherently suffer from scalability limitations that restrict their ability
to reason about ever-larger and more complicated systems. The fundamental reason for this is
an explosion in the size of a system’s potential behavioral state space that must be analyzed and
reasoned about. These state spaces most often grow exponentially for non-trivial digital designs.
As a simple example of this type of growth behavior, a microprocessor with 1,000,000 transistors
has 21,000,000 possible states. By increasing the exponent, it is easy to seehow adding transistors
exponentially increases the theoretical state space size.

Which formal verification techniques should be focused on to deliver meaningful analyses for
digital systems despite these challenges? Perhaps the mostwidespread formal verification tech-
nique is model checking, which explicitly and exhaustivelyexplores state spaces to reason about
behavior properties of finite-state systems. Because non-trivial systems suffer from an exponen-
tial state-space explosion, rigorous simplifications suchas symmetry and partial-order reductions
are used by the algorithms to collapse state spaces to manageable sizes. Application of increased
computational capabilities has also made it feasible to usemodel checking to analyze increasingly
large problems.

However, the time and space complexity of model checking still scales poorly with increasing
problem size. This commonly puts realistic systems, especially those with complex design ar-
chitectures or complicated correctness properties to verify — e.g., systems with important cyber-
security considerations such as scenarios involving situational awareness — out of the reach of
model checkers. In fact, such scalability considerations are the primary reason model checking has
not been more widely adopted for the verification of both software and hardware systems.

For this reason, the research community has sought to improve the scalability of model check-
ing techniques since their inception. Ideally, model checking techniques would be capable of
distributed state space exploration using parallel operations on computing clusters with very large
numbers of processors. (Of course, other meaningful improvements can be imagined, but the abil-
ity to run on thousands of processors as a high-performance computing code, cannot be dismissed.)
However, in the formal methods research literature, parallel and distributed model checking is a

27

generally unsolved problem, whose difficulty derives from contention for the shared representation
of the state space. Although parallel and distributed programming frameworks have been proposed
for some model checking techniques (e.g., [17, 12]), to datethere remains no technique capable of
scaling to large computing clusters with thousands of processors, and the research community has
not seen a meaningful improvement in this area in years.

If capabilities for fully parallel and distributed formal verification existed, they might be viewed
as a top-down approach to verification in that the analysis would take place at the full system
design level and explore the resulting state spaces at the entry points to system execution. An
alternative strategy for addressing scalability is what might be viewed as a bottom-up approach,
where verification takes place for individual components orsubsystems. The results from these
separate analyses would then be composed into increasinglylarge assessments until the entire
system can be reasoned about in a mathematically sound fashion given the individual verifications
performed at lower levels of the design. This is a research need called out by the White House
National Science and Technology Council as follows: “The research challenges of this theme
include. . . (m)athematically sound techniques to support combinationof models and composition
of results from separate components” [18].

Figure 4.1 illustrates how this approach may work in practice when developed by supporting re-
search. Intel uses formal methods as their principal verification strategy for their microprocessors,
including the i7 Core Processor. While the authors of this report do not have detailed knowledge
about how formal verification is specifically integrated into Intel’s design and analysis workflows,
it is safe to surmise that Intel cannot analyze the entire microprocessor at once, as it is known that
microprocessors are generally far too large to analyze withformal verification due to their large
state spaces — particularly for general-purpose commodityprocessors. Therefore, Intel and simi-
lar entities must verify individual components and subsystems, thereby presenting the opportunity
stated above to compose those results into an analysis of thesystem. In short, composing results
would be highly synergistic with the current workflows already utilized by designers and analysts,
who already have to verify components or subsystems individually due to scalability restrictions,
but would like to reason about the full system if that were possible.

Other than these approaches, the current state-of-the-artincludes some model checking tech-
niques that can operate in parallel on a small scale. For example, SPIN is one model checker
that has been extended to support multi-core processor architectures [7]. The “portfolio” method
is an alternative strategy that attempts many different configuration options for formal method
techniques — not just model checkers — in an embarrassingly parallel attempt to determine the
optimal configuration for any particular problem [3].

These methods, while important advances in the research literature, fall short of a fully parallel
and distributed approach that scales to thousands of processors, which would allow model checking
techniques to be brought to bear on increasingly complex problems, such as those pertaining to
cyber-security. They also do not attempt to address the challenge of composing formal analyses
from small portions of a system into a rigorous analysis for the system as a whole. However, a
project seeking to address this latter challenge has been funded by the Cyber Security Investment
Area in FY13 within Sandia’s LDRD program.

28

(a) High-level layout of the Intel i7 Core Processor. (b) Hypothetical individual verification analyses of
microprocessor components (orange boxes).

(c) Verification of subsystems by composition from
the individual analyses (dashed orange boxes).

(d) A full-system verification by composition from in-
dividual analyses.

Figure 4.1. Composing formal analyses from one hypothetical
verification workflow for Intel’s i7 Core processor. The orange
boxes denote verified areas of the design — in the latter stages via
composition from previous results (dashed orange boxes).

29

This page intentionally left blank.

Chapter 5

Conclusions

The purpose and goals of this one-year LDRD project were to survey and investigate the advan-
tages and disadvantages of applying formal methods to problem space of relevance to the Cyber
Security Investment Area. It was also desired to provide theCyber Security IAT with a deeper
understanding of formal methods more generally, particularly with respect to the scalability of the
techniques and their applicability to security problems.

Cyber Security at Sandia has broad reach across the laboratory, impacting work in Homeland
Security, Energy Infrastructure, Nuclear Weapons, and work for others. As such, this project team
examined two hypothetical security problems that were designed to provide broad insights into the
applicability of formal verification techniques into theseproblem spaces. The selected problems
were inspired by real problem instances observed by team members in the aforementioned mission
areas. The results provided by these example problems are quantitative, technically sound, and
convincing — supporting growing acknowledgment of the applicability of formal methods both
internally within Sandia and externally, including Sandiacustomers.

This project also explored possible synergy between formalmethods and fuzz testing to clarify
future research paths in this direction. Finally, this project identified opportunities for advancing
the scalability of formal verification techniques. Many of these research opportunities are syner-
gistic with Sandia’s strengths and targeted to the needs of both the larger research community and
the national security interests of the country.

Several efforts within this laboratory have momentum as a result of this project. First, a San-
dia team with expertise in formal verification is well-positioned to deliver state-of-the-art research
results in composing formal analyses in a new three-year LDRDproject that is starting in FY13.
As discussed in Section 4, this research direction has synergy with the design and analysis work-
flows already being utilized to employ formal methods given the existing scalability concerns of
those techniques. Second, this team and others at Sandia areprepared to build additional research
programs in other formal methods areas, especially concerning the scalability of the techniques. In
fact, this team in particular has several research ideas that will be developed and proposed in the
months to come.

Third, we have broadened our connections with industry and academic institutions working on
research and development areas in formal methods. This has occurred through separate outreach
efforts as well as connections made at research conferences. We are actively considering collabo-
rating with some of these parties in our formal methods research projects beginning in FY13.

31

Fourth, members of our team have used the knowledge and expertise they have acquired
through their involvement in this project to provide positive and immediate impact to other projects
in Sandia’s mission areas. In particular, some of this project’s team members were approached to
separately contribute to the analysis and verification of the in-progress design on an NW subsys-
tem. These researchers have developed and conducted novel analyses that have resulted in key
improvements to that NW subsystem. These design improvements will increase the reliability of
the NW subsystem under both normal and abnormal conditions,and illustrate the clear impact
of capabilities fostered by LDRD to improve design and verification processes in Sandia’s NW
mission area. The capabilities developed to conduct this analysis are rooted in both new research
directions that drive the state-of-the-art with respect toverification of high-consequence systems,
and effective methodologies and frameworks to seamlessly integrate new verification practices into
NW design efforts. Although this LDRD project did not supportthe development and application
of these capabilities to this NW subsystem, the support of the Cyber Security LDRD IA should
be credited with investing in developing the knowledge baseand expertise in formal methods that
allowed these capabilities to be developed. Without these capabilities supported by LDRD and
the close collaborative partnership between those researchers with NW designers, identifying the
design opportunities for improvement in this NW subsystem would not have been possible.

Finally, this project has positioned Sandia to continue identifying and implementing formal
methods for security properties and complex cyber securityscenarios, given the unique and chal-
lenging problem spaces in Sandia’s mission areas. There is active interest at present in the ability
of formal methods to improve the security and reliability ofengineered digital systems — hard-
ware and software — and Sandia is no exception to this trend. Given this lab’s unique areas of
expertise, Sandia is well positioned to advance the state ofthe art in formal methods in the years
to come.

32

References

[1] NuSMV: A new symbolic model checker. http://nusmv.fbk.eu (Last Accessed: 13
Sept. 2012).

[2] S. Baase.A Gift of Fire. Pearson Prentice Hall, 2008.

[3] M.B. Dwyer, S. Elbaum, S. Person, and R. Purandare. Parallel randomized state-space search.
In Proceedings of the29th International Conference on Software Engineering, pages 3–12,
Minneapolis, MN, U.S.A., May 2007.

[4] A. Eddington. The Philosophy of Physical Science. Cambridge University Press, London,
1939.

[5] J.E. Forrester and B.P. Miller. An empirical study of the robustness of Windows NT applica-
tions using random testing. InProceedings of the4th USENIX Windows Systems Symposium,
pages 59–68, Seattle, WA, U.S.A., 2000.

[6] S. Guggenheimer. Computex 2012 keynote address. Microsoft Corporation, June 2012.
http://www.microsoft.com/en-us/news/Speeches/2012/06-06Computex2012.aspx (Last Ac-
cessed: 13 Sept. 2012).

[7] G.J. Holzmann and D. Bonacki. The design of a multi-core extension of the SPIN model
checker.IEEE Transactions on Software Engineering, 33(10):659–674, October 2007.

[8] J. Hurd. Formal methods overview. InIndustrial Formal Methods Course. Galois, Inc., 2012.

[9] A. Koelbl, Y. Lu, and A. Mathur. Formal equivalence checking between system-level models
and RTL. InProceedings of the 2005 IEEE/ACM International Conference onComputer-
aided Design, pages 965–971, San Jose, CA, U.S.A., November 2005.

[10] J.L. Lions. ARIANE 5: Flight 501 failure. Report by the Inquiry Board, July 1996.
http://www.di.unito.it/ damiani/ariane5rep.html (LastAccessed: 13 Sept. 2012).

[11] J. Markoff. Flaw undermines accuracy of Pentium chips.In The New York Times. November
24 1994.

[12] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R.M. Kirby, and G. Gopalakrishnan. Parallel and
distributed model checking in Eddy.International Journal on Software Tools for Technology
Transfer, 11(1):13–25, January 2009.

[13] B.P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX utilities.
Communications of the ACM, 33(12), December 1990.

33

[14] W.L. Oberkampf, T.G. Trucano, and C. Hirsch. Verification, validation, and predictive capa-
bility in computational engineering and physics. Technical Report SAND2003-3769, Sandia
National Laboratories, Albuquerque, NM, U.S.A., February2003.

[15] D.W. Plummer and W.H. Greenwood. A primer on unique signal stronglinks. Technical
Report SAND93-0951, Sandia National Laboratories, Albuquerque, NM, U.S.A., August
1993.

[16] FDIV Replacement Program. Statistical analysis of floating point flaw: In-
tel white paper. Technical Report CS-013005, Intel Corporation, July 2004.
http://www.intel.com/support/processors/pentium/sb/cs-013005.htm (Last Accessed: 13
Sept. 2012).

[17] Robby, M.B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular software
model checking framework. InProceedings of the 9th European Software Engineering Con-
ference held jointly with 11th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 267–276, Helsinki, Finlind, September 2003.

[18] National Science and Technology Council.Trustworthy Cyberspace: Strategic Plan for the
Federal Cybersecurity Research and Development Program. Executive Office of the Presi-
den, Washington, D.C., U.S.A., December 2011.

[19] A.M Turing. Checking a large routine. InReport of a Conference on High Speed Auto-
matic Calculating Machines, pages 67–69. University Mathematical Laboratory, Cambridge,
England, June 1949.

[20] N. Wingfield. Chip firms no longer ignore even the least offensive bugs. InThe Wall Street
Journal Interactive Edition. http://online.wsj.com/article/SB879552760162274000.html
(Last Accessed: 13 Sept. 2012).

34

DISTRIBUTION:

1 MS 1327 William Hart, 1464
1 MS 0621 Dallas Wiener, 5632
1 MS 9110 Ratish Punnoose, 8229
1 MS 9110 Paul Yoon, 8229
1 MS 9158 James Costa, 8950
1 MS 9152 Robert Clay, 8953
1 MS 9159 Jackson Mayo, 8953
1 MS 9159 Jerry McNeish, 8954
1 MS 9155 Joseph Ruthruff, 8954
1 MS 9151 Robert Hutchinson, 8960
1 MS 9158 Robert Armstrong, 8961
1 MS 9158 Keith Vanderveen, 8961
1 MS 9011 Benjamin Davis, 8965
1 MS 9011 Navid Jam, 8965
1 MS 0899 Technical Library, 8944 (electronic copy)
1 MS 0359 D. Chavez, LDRD Office, 1911

35

This page intentionally left blank.

v1.38

