

RECEIVED BY DIE JUN $1_{8} 1970$

May 7, 1970

THERMODYNAMICS. OF METAL CYANIDE COORDINATION, IX: LOG K ΔH°, AND $\triangle S^{\circ}$ VALUES FOR THE $\mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}-$, AND $\mathrm{Hg}^{2+} \mathrm{-CN}^{-}$SYSTEMS AT 10,25 , AND 40°.
by: R. M. Izatt, H. D. Johnston, D, J. Eatough
J. W. Hansen, and J. J. Christensen

Departments of Chemistry and Chemical Engineering and No. 10 from the Center for Thermochemical Studies, Brigham Young University, Provo, Utah 84601. A. Makes any warranty or represenime information contained in this report, or that the use racy, completeness, or usefulness or wad, or process disclosed in thea report may not tiring privately owned rights; or
B. Assumes any liabsludes with respect io the use of, or for dm mages reed
use of any Information, apparatus, method, or process disclosed in list report. As used in the above, "person actuary on behalf of the commission" the the extent that ployee or contractor of the Commission, or anion, or employee of such contractor prepares. such employee or contractor of the Commission, or empisant to bis employment or contract disseminates, or provides access bo, any inform with such contractor.
with the Commission, or his employment

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

SUMMARY

Log $K, \Delta H^{\circ}$, and ΔS° values valid at zero ionic strength are reported or summarized from previous studies for cyanide ion interaction with bivalent nickel, zinc, cadmium, and mercury at 10,25 , and 40°. From the values of ΔH° as a function of temperature, average $\Delta C p^{\circ}$ values are calculated.

INTRODUCTION

The general chemistry of metal-cyanide complexes has been discussed. ${ }^{1,2}$ In previous papers in this series we reported stepwise, equation (1), or overa11, equation (2), $\log K, \Delta H^{\circ}$ and ΔS°
$\mathrm{M}(\mathrm{CN})_{i-1}^{3-i}+\mathrm{CN}^{-}=\mathrm{M}(\mathrm{CN})_{i}^{2-i} \quad K_{i}, \Delta H_{i}^{0}, \Delta S_{i}^{0}$
$\mathrm{M}^{2+}+i \mathrm{CN}^{-}=\mathrm{M}(\mathrm{CN})_{i}^{2-i} \quad K_{0-i}, \Delta H_{0-i}^{o}, \Delta S_{0-i}^{o}$
values valid at 25° and zero ionic strength, μ, for the interaction of CN^{-}with $\mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}, 4$ and $\mathrm{Hg}^{2+}{ }^{2+}$ Values of $\log K_{i}$ valid at $\mu=0$ for the $\mathrm{Hg}^{2+}-\mathrm{CN}^{-}$system at 10 and 40° were also reported. ${ }^{5}$ Several workers ${ }^{6-9}$ have determined $\log K_{i}$, values for the $\mathrm{Cd}^{2+}-\mathrm{CN}^{-}$system at $\mu>0$. Values of $\log K_{0-4}$ valid at $\mu=.0$ have been reported 10,11 but differ by two $\log K$ units. Gerding ${ }^{12}$ has published ΔH_{i} values valid at 25° and $\mu=1.0$ for $C d^{2+}$. Except for the K values in the case of the $\mathrm{Hg}^{2+}-\mathrm{CN}^{-}$system ${ }^{5}$ no $K, \Delta G, \Delta H^{\circ}$ or ΔS° values have been reported previously at 10 or 40° for any of the systems studied.

In the present study $\log K, \Delta G, \Delta H^{\circ}$ and ΔS° values for reaction (1) or (2) $(M=\mathrm{Ni}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg})$ at 10,25 , and 40° and $\mu=0$ have been determined where these data are not presently available or where an independent check of existing data was desirable, Values of $\Delta C \mathrm{p}^{\circ}{ }_{i}$ are estimated from the temperature dependence of the $\Delta H_{i}{ }_{i}$ values.

EXPERIMENTAL

Materials. Reagent grade NiCO_{3} (Baker Analyzed), Zn (Baker Analyzed), CdO (Matheson, Coleman, and Bell), HgO (Baker and Adamson), $\mathrm{Hg}(\mathrm{CN})_{2}$ (Mallinckrodt), HClO_{4} (Baker and Adàmson), and NaCN (Baker Analyzed) were used to prepare solutions for this study.

Standard $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}$ solutions were prepared by refluxing excess
NiCO_{3} in HClO_{4} until the carbonate was removed as $\mathrm{CO}_{2}(\mathrm{~g})$, removing any excess NiCO_{3} by filtration, and adding sufficient HClO_{4} to suppress hydrolysis of the Ni^{2+}, The resulting solutions gave a negative test for carbonate ion. The solutions were standardized for Ni^{2+} by titration with a standard EDTA solution and for H^{+}by pH titration. The $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2}$ solutions were prepared by dissolving a. weighed sample of zinc metal in excess HClO_{4}. The solutions were then standardized for Zn^{2+} with standard EDTA solutions and for H^{+}by pH titration. Solutions of $\left.\mathrm{Cd}(\mathrm{ClO},)_{2}\right)_{2}$ and $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}$ were prepared by dissolving the corresponding metal oxides in a known excess of perchloric acid. In both cases the metal ion concentration was determined by conventional techniques and the acid concentration was determined by taking the difference between the total ClO_{4}^{-}and metal ion concentrations, Solutions of $\mathrm{Hg}(\mathrm{CN})_{2}$ were prepared by dissolving a weighed quantity of solid $\mathrm{Hg}(\mathrm{CN})_{2}$ in water. Sodium cyanide solutions were prepared fresh at least every two to three days and were stored at 4° to minimize decomposition. All NaCN solutions were standardized daily against standard AgNO_{3} solutions in order to insure their reliability.

A11 solutions used in this study were prepared under a pure nitrogen atmosphere using freshly boiled, doubly distilled water of pH 6.5 to 6.8 .

Equilibrium Constant Determinations. The $\log K_{i}$ values $(i=$ $1,2,3,4$) for the $\mathrm{Cd}^{2+}-\mathrm{CN}^{-}$and $\log K_{0-4}$ for the $\mathrm{Ni}^{2+}-\mathrm{CN}^{-}$systems were calculated from pH titration data obtained by titrating dilute metal perchlorate solutions with NaCN at 10,25 , and 40°. Using this method equilibrium was attained rapidly in the $\mathrm{Cd}^{2+}-\mathrm{CN}^{-}$system but \cdot
slowly in the $\mathrm{Ni}^{2+}{ }_{-} \mathrm{CN}^{-}$system in which portions of the NaCN titrant were added every $4-6$ hours and the pH readings taken every 30 minutes to check the attainment of equilibrium. The pH measurements were made using a Model 1019 Beckman Research pH meter or a Model 801 Orion Ionalyzer both fitted with Corning Glass and Beckman saturated calomel electrodes. The pH meters were standardized against National Bureau of Standards pH standard (potassium hydrogen phthalate, borax, and phosphate) buffers.

The $\log K_{0-2}, \log K_{3}$ and $\log K_{4}$ values for the $\mathrm{Zn}^{2+} \mathrm{CN}^{-}$system at 10 and 40° were determined by the same techniques as those previously used to study this system at $25^{\circ} .4$

Heat Determinations. The titration calorimetry procedure $13,14,15$ and the equipment used, ${ }^{16}$ including modifications, have been described.

Heats of dilution were measured by titrating the standard NaCN titrant into boiled, doubly distilled water and into NaCN solutions and measuring the heat change under the same ionic strength conditions as those used to study the metal cyanide systems.

The amount of $H C N$ volatilized during the equilibrium constant and heat determinations was minimized by titrating all solutions in a closed vessel under a standing nitrogen atmosphere. The volume of gas ($<30 \mathrm{ml}$ for pH titrations, $<10 \mathrm{ml}$ for heat determinations) above the solution was kept small to minimize HCN volatilization.

Values of ΔH_{0-4}° for the $\mathrm{Ni}^{2+} \mathrm{CN}^{-}$system at 10 and 40° were determined by titration of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}$ solutions with NaCN solutions.

Values of $\Delta H_{0-2}^{\circ}, \Delta H_{3}^{\circ}$ and ΔH_{4}° for the $\mathrm{Zn}^{2+}-\mathrm{CN}^{-}$system were calculated from calorimetric data obtained at 10,25 and 40° by titrating $0.004 M \mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2}$ solutions with NaCN solutions. The
dilute $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2}$ solutions were used to avoid precipitation of Zn $(\mathrm{CN})_{2}$.

The $\Delta H_{i}{ }^{\circ}(i=1,2,3,4)$ values for the $\mathrm{Cd}^{2+}-\mathrm{CN}^{-}$and $\mathrm{Hg}^{2+}{ }_{-\mathrm{CN}^{-}}$ systems were obtained in each case from two sets of heat determinations at 10,25 , and 40°. Firṣt, a $\mathrm{M}\left(\mathrm{ClO}_{4}\right)_{2}$ solution was titrated with a NaCN solution to a $\mathrm{CN}^{-}: \mathrm{M}^{2+}$ ratio of $2: 1$. Then a second solution with an initial $\mathrm{CN}^{-}: \mathrm{M}^{2+}$ ratio of $2: 1$ was titrated with a NaCN solution to a $\mathrm{CN}^{-}: \mathrm{M}^{2+}$ ratio greater than $4: 2$.

In all cases sufficient HClO_{4} was added to the $\mathrm{M}\left(\mathrm{ClO}_{4}\right)_{2}$ solutions. to prevent hydrolysis of the M^{2+} species.

Calculations. Values for $K(M=N i, \mathrm{Zn}, \mathrm{Cd})$ were calculated by procedures which have been described. ${ }^{17,18}$

A Debye-Hückel expression of the form

$$
\begin{equation*}
\log \gamma=\frac{-\mathrm{Az}^{2}{ }^{1 / 2}}{1+\mathrm{Ba}^{\circ} 1 / 2}+\mathrm{C} z^{2}{ }^{2} \tag{3}
\end{equation*}
$$

was used to convert the ion product of water, ${ }^{19}$ the dissociation constant of $\mathrm{HCN}^{20,21}$ and pH to corresponding concentration quotients valid at a given μ value, Equation (3) was also used to calculate' the activity coefficients necessary to correct equilibrium constants to thermodynamic constants valid at $\mu=0$. In the calculation of all activity coefficients the values $4.0 \AA$ and 0.3 for ${ }^{\circ}$ and C, respectively, were used since these values gave thermodynamic constants independent of μ.

The method used to calculate ΔH values from the calorimetric titration data has been described. ${ }^{22}$ For calculation purposes a typical run was divided into eighteen one-minute intervals. The
measured heat was then corrected for nonchemical heat effects and heats of dilution. Literature values were used to make corrections for the heat of ionization of HCN^{21} at 10,25 and 40° and water ${ }^{23}$ at 25°. Values for the heat of ionization of water at 10 and 40° and $\mu=0$ were determined ${ }^{24}$ to be 14.21 and $12.61 \mathrm{kcal} . / \mathrm{mole}$, respectively.

In the case of the $\mathrm{Cd}^{2+}-\mathrm{CN}^{-}$and $\mathrm{Hg}^{2+}-\mathrm{CN}^{-}$systems values of ΔH_{3} and ΔH_{4} were first approximated from the second set of runs and . used to calculate ΔH_{1} and ΔH_{2} values from the first set of runs (see Heat Determinations). These ΔH_{1} and ΔH_{2} values were then used to calculate new ΔH_{3} and ΔH_{4} values from the second set of runs. The process was repeated until successively calculated values for the consecutive heats, ΔH_{1} through ΔH_{4}, were obtained which agreed to within $\pm 0.005 \mathrm{kcal} . / \mathrm{mole}$.

The μ values of the solutions were low ($\mu<0.02$)in all cases. Previous experience ${ }^{3}$ with bivalent metal cyanide systems has shown that the dependence of ΔH on μ. in dilute aqueous solutions is small compared to the error in measurement of the ΔH values, therefore the measured ΔH values were taken to be ΔH° values valid at $\mu=0$. The calculations were aided by IBM 7040 and 360 computers.

RESULTS

Thermodynamic quantities for the $\mathrm{M}^{2+}-\mathrm{CN}^{-}$systems studied are summarized in Table I together with literature data. Values of $\Delta C \mathrm{p}_{i}{ }_{i}$ were obtained by fitting the $\Delta H_{i}{ }^{\circ}$ values for each system by a least squares process to a quadratic function in T. The function was then differentiated and the derivative evaluated at 25° to give a $\Delta C \mathrm{p}_{i}^{0}$ value. The uncertainty in each $\Delta C \mathrm{p}_{i}^{0}$ value is expressed as twice the standard deviation reflecting the greater uncertainty of this value compared to the ΔH_{i}^{o} value from which it is derived.

The calorimetric and potentiometric titration data for these systems are given elsewhere. 13,14

DISCUSSION

The K values valid at μ values other than zero reported by earlier workers ${ }^{6-9}$ are in qualitative agreement with those reported here, The ΔH_{i} values reported by Gerding 12 for the Cd^{2+} -CN system are valid in $1 M \mathrm{NaClO}_{4}$ and, hence, are not comparable with those given here.

A general discussion of the $\mathrm{Ni}^{2+}-, \mathrm{Zn}^{2+}-$ and $\mathrm{Hg}^{2+}-\mathrm{CN}^{-}$systems has appeared in previous papers in this series ${ }^{3-5}$ and is not repeated here. The $\mathrm{M}^{2+}{ }_{-} \mathrm{CN}^{-}$systems studied here are characterized by the variety of species formed in aqueous solution. The data in Table I show that only the $\mathrm{Cd}^{2+}-\mathrm{CN}^{-}$system shows the behavior usually observed in the consecutive addition of ligands to metal ion, i.e., for the interaction of four CN^{-}with M^{2+} the four $\log K$ values decrease in a regular manner only in the case of Cd^{2+}. In contrast, the $2 \mathrm{nCN}^{+}$species is missing, $\mathrm{NiCN}^{+}, \mathrm{Ni}(\mathrm{CN})_{2}(\mathrm{aq})$ and $\mathrm{Ni}(\mathrm{CN})_{3}^{-}$are missing and there is a very large difference between the $\log K$ values for the consecutive formation of $\mathrm{Hg}^{\prime}(\mathrm{CN})_{2}(\mathrm{aq})$ and $\mathrm{Hg}(\mathrm{CN})_{3}$, respectively. These aspects of $\mathrm{M}^{2+}-\mathrm{CN}^{-}$behavior have been discussed with respect to the Individual systems in previous papers. ${ }^{3-5}$ The $\Delta C p^{\circ}$ values calculated in the present study allow us to examine this behavior in greater detail and to propose reasons for it.

The effect of ΔC p on the free energy change of a reaction is nonlinear. For example, assume that equation 4 accurately describes the variation of $\Delta C p$ with temperature. Equations 5 and 6 then follow from basic thermodynamics.

$$
\begin{align*}
& \Delta C \mathrm{p}=\mathrm{a}+\mathrm{bT} \tag{4}\\
& \Delta H=\mathrm{aT}+\frac{\mathrm{bT}^{2}}{2}+\mathrm{c} \tag{5}\\
& \mathrm{~T} \Delta S=\mathrm{aT} \operatorname{lnT}+\mathrm{bT}^{2}+\mathrm{d} \tag{6}
\end{align*}
$$

Depending on the magnitude of the coefficients of T in equation (6), the effect of ΔC p on $T \Delta S$ may be larger than on ΔH. Therefore, ΔG may increase or decrease with temperature depending upon the relative magnitudes of the coefficients in equations (4)-(6).

The $\Delta C p_{i}^{\circ}$ values given in Table I vary both in sign and magnitude for the various metal cyanide complexes, Such variations in the ΔC_{i}^{o} values point out a possible pitfall in comparing the thermodynamic quantities for metal ion-ligand reactions at a single temperature. Species which are stable at room temperature may not form if the temperature is raised or lowered significantly and, furthermore, species absent at room temperature may be stable at other temperatures.

The effect of temperature on the ΔG_{i}^{o} values for the $\mathrm{Cd}^{2+}-\mathrm{CN}^{-}$ system is shown in Figure 1 which was constructed by first assuming that equation 4 correctly describes the variation of ΔC p with temperature and then calculating values for a and b from the experimental ΔH values. Values for ΔH and ΔS as a function of temperature were calculated from equations 5 and 6 using the experimental data at 25° to evaluate the integration constants. Free energy changes were then calculated from the relationship: $\quad \Delta G=\Delta H-T \Delta S$. Figure 1 is admittedly hypothetical and may be a gross simplification of the actual temperature variance of ΔG, but it does indicate that the stable species in solution may vary significantly with temperature. For example, at temperatures below -75°, only the $\mathrm{Cd}(\mathrm{CN})_{2}$ and $\mathrm{Cd}(\mathrm{CN})_{4}{ }^{2-}$ species would be predicted to exist in solution. This is similar to the behavior actually observed ${ }^{4}$
for the $\mathrm{Zn}^{2+}-\mathrm{CN}^{-}$system at 25°. Although $\Delta G, \Delta H$, and ΔS values are not known for the formation of the ZnCN^{+}species at or near room temperature, the ZnCN^{+}species could be present in the system at higher or lower temperatures. At $200^{\circ} \mathrm{C}$ the trend is reversed and only the CdCN^{+}and Cd (CN) ${ }_{3}^{-}$species would be expected. These observations suggest that the apparent differences in the behavior of the $\mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}$ and $\mathrm{Hg}^{2+}-\mathrm{CN}^{-}$ systems are a consequence of the fact that these systems have been studied over a very limited temperature range. Obviously, the extrapolation of ΔC p data measured over a 30° temperature range to a wide temperature range could lead to gross uncertainties in the plotted data. However, it is consistent with the data reported in this study to say that stepwise behavior appears to be strongly temperature dependent in these systems. It would be desirable to extend the data over a wider temperature range so that the ΔC p values could be more accurately described and these ideas be more rigorously tested.

The effect of temperature on the $\Delta H^{\circ}{ }_{0-4}$ values for the several $\mathrm{M}^{2+} \mathrm{CN}^{-}$systems is shown in Figure ${ }^{2}$. The temperature variation is comparable for all four metal ions and particularly so for Ni^{2+}, Zn^{2+}, and Cd^{2+}. This similarity in the several $\mathrm{M}^{2+}-\mathrm{CN}^{-}$systems suggests there are no unusual solvent interactions in these systems, which is expected since the three d^{10} metal ions should be similar in this respect. Furthermore, the energy due to the ligand field stabilization present in the $\mathrm{Ni}^{2+}-\mathrm{CN}^{-}$system should be largely independent of temperature. These results suggest that the unusually high stability of $\mathrm{Hg}(\mathrm{CN})_{4}^{2-}$ relative to the remaining $\mathrm{M}(\mathrm{CN})_{4}^{2-}$ species largely disappears at very high and very low temperatures.

It thus appears that whether a particular species is stable in any one of these $\mathrm{M}^{2+}-\mathrm{CN}^{-}$systems, and perhaps in other systems as well,
is a result of the balance of the relative magnitudes of the energies involved in complex formation rather than an inherent property of the element itself.

ACKNOWLEDGEMENTS

Appreciation is expressed for financial support to the Atomic Energy Commission [Contract No. AT (11-1)-1782, formerly Contract No. AT(04-3-299)] and to the Public Health Service for Research Career Development Awards to Reed M. Izatt (No. 1-K3-GM-35250-03) and James J. Christensen (No, 1-K3-GM-24361-03).

is a result of the balance of the relative magnitudes of the energies involved in complex formation rather than an inherent property of the element itself.

ACKNOWLEDGEMENTS
Appreciation is expressed for financial support to the Atomic Energy Commission [(Contract No. AT (11-1)-1782, formerly Contract No. AT (04-3-299)] and to the Public Health Service for Research Career Development Awards to Reed M. Izatt (No, 1-K3-GM-35250-03) and James J. Christensen (No, 1-K3-GM-24361-03).

REFERENCES

1. B. M. Chadwick and A. G. Sharpe, "Adv. Inorg. Chem. and Radiochem." Vol. 8, ed. by H. J. Emeleus and A. G. Sharpe, Academic Press, New York, 1966, p. 83.
2. M. H. Ford-Smith, .'The Chemistry of Complex Cyanides", Her Majesty's Stationery Office, London, 1964.
3. J. J. Christensen, R. M. Izatt, J. D. Hale, R. T. Pack, and G. D. Watt, Inorg. Chem., 2, 337 (1963).
4. R. M. Izatt, J. J. Christensen, J. W. Hansen and G. D. Watt, Inorg. Chem., 4, 718 (1965).
5. J. J. Christensen, R. M. Izatt and D. Eatough, Inorg. Chem., 4, 1278 (1965).
6. I. Leden, Svensk. Kem. Tid., 56, 31 (1944).
7. J. Brigando and P. Job, Compt. Rend., 222, 1297 (1946).
8. F. J. C. Rossotti and H. S. Rossotti, Acta Chem. Scand, 9, 1166 (1955).
9. S. N. Flengas, Trans. Faraday Soc., 51, 62 (1955).
10. T. Hirata, Repts. Research Sci. Dept. Kyushu Univ., 1, 199 (1950), cf. L. G. Sillen and A. E. Martell, Chem. Soc. Spec. Pub1., 17 (1964).
11. S. Suzuki, Science Repts. Research Insts. Tohuku Univ., A, 5, 311 (1953), cf. L. G. Sillen and A. E. Martell, "Stability Constants", Chem. Soc. Spec. Publ., 17 (1964).
12. P. Gerding, Acta. Chem. Scand., 20, 2771 (1966).
13. H. D. Johnston, Ph.D.Dissertation, Brigham Young University, 1968; ef. Dissertation Abstr., B, 29, 4128 (1969).
14. D. J. Eatough,Ph;D. Dissertation, Brigham Young University, 1967; cf. Dissertation Abstr., B, 28, 2788 (1968).
15. J. J. Christensen, R. M. Izatt, L. D. Hansen and J. A. Partridge, J. Phys. Chem., 70, 2003 (1966).
16. J. J. Christensen, R. M. Izatt, and L. D. Hansen, Rev. Sci. Instr., 36, 779 (1965).
17. F. J. C. Rossotti and H. Rossotti, 'The Determination of Stability Constants," McGraw-Hill Book Co.; New York, 1961, Chapter 5.
18. L. D. Hansen, J. A. Partridge, R. M. Izatt and J. J. Christensen, Inorg. Chem., 5, 569 (1966).
19. H. S. Harned and B. B. Owen, "The Physical Chemistry of Electrolytic Solutions," 3rd ed., Reinhold Publishing Corp., New York, 1958, p 754.
20. R. M. Izatt, J. J. Christensen, R. T. Pack and R. Bench, Inorg. Chem., 1,828 (1962).
21. J. J. Christensen, H. D. Johnston and R. M. Izatt, J. Chem. Soc., A, 454 (1970).
22. R. M. Izatt, D. Eatough, R. L. Snow and J. J. Christensen, J. Phys. Chem., 72, 1208 (1968).
23. J. D. Hale, R. M. Izatt and J. J. Christensen, J. Phys. Chem., 67, 2605 (1963).
24. Unpublished data, This Laboratory.

TABLE I
THERMODYNAMIC QUANTITIES ${ }^{a}$ FOR THE $\mathrm{Ni}^{2+}-, \mathrm{Zn}^{2+}-, \mathrm{Cd}^{2+}-\mathrm{AND} \mathrm{Hg}^{2+}-\mathrm{CN}^{-}$SYSTEMS

Reaction	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	μ	$\log K$	$\begin{gathered} -\Delta G^{\circ} \\ \text { (kcal/mole) } \end{gathered}$	$\begin{gathered} -\Delta H^{\circ} \\ (\mathrm{kcal} / \mathrm{mole}) \end{gathered}$	$\begin{gathered} \Delta S^{\circ} \\ \text { (cal/deg-mole) } \end{gathered}$	$\begin{gathered} \Delta C \mathrm{p}^{o^{b}} \\ (\mathrm{cal} / \mathrm{deg}-\mathrm{mole}) \end{gathered}$
$\mathrm{Ni}^{2+}+4 \mathrm{CN}^{-}=\mathrm{Ni}(\mathrm{CN})_{4}^{2-}$	10	0	32.2 ± 0.2	43.0	$45.2+0.3$	-7.8+0.9	
	25	0	$30.22+0.05$	41.22		-6.6 ± 0.6	36 ± 10
		0	$(30.1){ }^{\text {c }}$		$(43.2)^{\text {c }}$	$(-7)^{c}$	
		0	$(30.3)^{d}$. ..	
	40	0	$27.43+0.09$	39.30	43.9+0.2	-14.7 ± 0.8	
$\mathrm{Zn}^{2+}+2 \mathrm{CN}^{-}=\mathrm{Zn}(\mathrm{CN})_{2}$	10	0	11.47 ± 0.04	14.86	11.6+0.2	11.5 ± 0.2	
	25	0	$(11.07){ }^{e}$		11.0 ± 0.1	13.7 ± 0.2	36 ± 8
			.		$(10.8){ }^{e}$	$(14.4)^{e}$	
	40	0	10.70 ± 0.02	15.33	10.5+0.1	$15.4+0.2$	
$\mathrm{Zn}(\mathrm{CN})_{2}+\mathrm{CN}^{-}=\mathrm{Zn}(\mathrm{CN})_{3}$	10	0	5.17 ± 0.02	6.70	9.5 ± 0.2	$-9.9+0.2$	
	25	0	$(4.98){ }^{e}$		9.2 ± 0.2	$-8.0+0.3$	$5+10$
				-	$(8.4)^{e}$	$(-5.3)^{e}$	
	40	0	4.50 ± 0.02	6.45	$9.3+0.1$	$-9.1+0.2$	

(TABLE I, con't)

Reaction	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	μ	Log K	$\begin{gathered} -\Delta G^{\circ} \\ \text { (kcal/mole) } \end{gathered}$	$\begin{gathered} -\Delta H^{\circ} \\ \text { (kcal/mole) } \end{gathered}$		$\begin{gathered} \Delta S^{\circ} \\ (\mathrm{cal} / \mathrm{deg}-\mathrm{mole}) \end{gathered}$	$\begin{gathered} \Delta C \mathrm{p}^{\mathrm{ob}} \\ (\mathrm{cal} / \mathrm{deg}-\mathrm{mole}) \end{gathered}$
$\mathrm{Zn}(\mathrm{CN})_{3}^{-}+\mathrm{CN}^{-}=\mathrm{Zn}(\mathrm{CN})_{4}^{2-}$	- 10	0	$3.79+0.02$	4.91	$7.4+0.3$		-8.8 ± 0.2	
	25.	0	$(3.57)^{e}$		7.7 ± 0.1		-9.5+0.3	-17 ± 12
					$(8.6){ }^{e}$		$(-12)^{e}$	
$\mathrm{Zn}^{2+}+4 \mathrm{CN}^{-}=\mathrm{Zn}(\mathrm{CN})_{4}^{2-}$	40	0	$3.10+0.03$	4.44	7.9 ± 0.1		$-14.2+0.2$	
	10	0	20.43	26.47	28.5		-7.2	
	25	0	$(19.62)^{e}$		27.9		-3.8	24
					(27.8)		$(-3.4)^{e}$	
$\mathrm{Cd}^{2+}+\mathrm{CN}^{-}=\mathrm{CdCN}^{+}$	40	0 ,	18.30	26.22	27.7	1	-4.7	
	2	-	$(5.39){ }^{9}$.				
	10	0	6.22 ± 0.02	8.06	7.9 ± 0.2		0.6 ± 0.2	
	25	0	6.01 ± 0.01	8.20	$7.3+0.1$		3.0 ± 0.1	42+5
		1.0		$(7.47)^{i}$	$(7.39)^{i}$		$(0.3)^{i}$	
		3.0	$(5.48){ }^{f}$					
		-	$(5.18)^{h}$					
$\mathrm{CdCN}^{+}+\mathrm{CN}^{-}=\mathrm{Cd}(\mathrm{CN})_{2}$	40	0	$5.73+0.02$	8.21	$6.65+0.08$		5.0 ± 0.1	
	2	-	(4.73$)^{9}$		--		- - - -	

(TABLE I, con't)

(TABLE I, con't)

Reaction	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	μ	Log K	$\begin{gathered} -\Delta G^{\circ} \\ (\mathrm{kcal} / \mathrm{mole}) \end{gathered}$	$\begin{gathered} -\Delta H^{\circ} \\ (\mathrm{kcal} / \mathrm{mole}) \end{gathered}$	$\begin{gathered} \Delta S^{\circ} \\ \text { (cal/deg-mole) } \end{gathered}$	$\begin{gathered} \Delta C \mathrm{p}^{\circ b} \\ \text { (cal/deg-mole) } \end{gathered}$
$\mathrm{Cd}^{2+}+4 \mathrm{CN}^{-}=\mathrm{Cd}(\mathrm{CN})_{4}{ }^{2-}$		3.0	$(3.55){ }^{f}$				
		-	$(3.19)^{h}$				
	40	0	2.12 ± 0.08	3.04	5.42 ± 0.09	-7.6+0.1	
	10	0	18.89	24.47	28.37	-13.8	
	25	0	17.92	24.44	26.76	-8.0	84
		0	$(18.24)^{j}$,			
		0	$(16.04)^{k}$				
$\mathrm{Hg}^{2+}+\mathrm{CN}^{-}=\mathrm{HgCN}^{+}$	40	0	16.87	24.17	25.77	-5.1	
	10	0	$(17.97)^{2}$		23.92 ± 0.04	$-2.3+0.1$	
	25	0	$(17.00)^{2}$		23.2 ± 0.2	0.0 ± 0.3	43+8
			.		$(23.0)^{2}$	$(0.7)^{2}$	
$\mathrm{HgCN}^{+}+\mathrm{CN}^{-}=\mathrm{Hg}(\mathrm{CN})_{2}$	40	0	$(16.26)^{2}$		22.6 ± 0.1	2.2 ± 0.1	
	10	0	$(16.74)^{2}$		$24.04+0.05$	$-8.3+0.1$	
	25	0	${ }^{(15.75)}{ }^{2}$:	23.4 ± 0.2	-6.4+0.5	37 ± 11
					$(25.5)^{2}$	$(-13.4)^{2}$	

(TABLE I, con't)

Reaction	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	μ	Log K	$\begin{gathered} -\Delta G^{\circ} \\ (\mathrm{kcal} / \mathrm{mole}) \end{gathered}$	$\begin{gathered} -\Delta H^{\circ} \\ (\mathrm{kcal} / \mathrm{mole}) \end{gathered}$	$\frac{\Delta S^{\circ}}{\text { (cal/deg-mole) }}$	$\begin{gathered} \Delta C \mathrm{p} o b \\ \text { (cal/deg-mole) } \end{gathered}$	
$\mathrm{Hg}(\mathrm{CN})_{2}+\mathrm{CN}^{-}=\mathrm{Hg}(\mathrm{CN})_{3}{ }^{-}$	40	0	(15.02) ${ }^{2}$		22.9 ± 0.2	-4.4 ± 0.2		
		0	$(3.81)^{2}$		7.36 ± 0.06	-8.5+0.1		
	25	0	$(3.56)^{2}$		6.84 ± 0.08	-6.6+0.1	21 ± 6	
					$(7.6 \pm 0.2)^{2}$	$(-9.0)^{2}$		
$\mathrm{Hg}(\mathrm{CN})_{3}^{-}+\mathrm{CN}^{-}=\mathrm{Hg}(\mathrm{CN})_{4}^{2}$	40	0	$(3.37)^{2}$		6.71 ± 0.03	-6.0+0.1		
	2-10	0	$(2.81)^{2}$		5.26 ± 0.08	-5.7 ± 0.1	,	
	25	0	$(2.66)^{2}$		$6.3+0.2$	-9.0+0.2	$-61+10$	$\stackrel{1}{\infty}$
					$(7.2)^{2}$	$(-12.1)^{2}$		
$\mathrm{Hg}^{2+}+4 \mathrm{CN}^{-}=\mathrm{Hg}(\mathrm{CN})_{4}{ }^{2-}$	40	0	$(2.46){ }^{2}$		7.10 ± 0.03	-11.4 ± 0.1		
		0	$(41.33)^{2}$.	53.54	60.59	-24.9		
	25	0	$(38.97)^{2}$	53:16	59.8	-22.0	41	
\cdots. ${ }^{\circ}$	40	0	$(37.11)^{2}$	53.17	59.3	-19.6		

 deviations among runs. ${ }^{\text {Ref. 3. }} d_{\text {H. Freund and C. R. Schneider, J. Amer. Chem. Soc., 81, 4780 (1959). e Ref. 4. }}$ $f_{\text {Ref. 6. }} g_{\text {Ref. }} 7, \mu$ unspecified. $h_{\text {Ref. }} 9, \mu$ variable. $i_{\text {Ref. 12, }} j_{\text {Ref. }} 10 . k_{\text {Ref. }} 11 . i_{\text {Ref. }} 5$.

FIGURE CAPTIONS

Figure 1. Plot of ΔG° values for the consecutive formation of the indicated species $v s$. temperature for the $\mathrm{Cd}^{2+}-\mathrm{CN}^{-}$system.

Figure 2. Plot of ΔH° values for the reaction $\mathrm{M}^{2+}+4 \mathrm{CN}^{-}=$ $M(\mathrm{CN})_{4}{ }^{2-}$ vs. temperature for $\mathrm{M}=\mathrm{Ni}, \mathrm{Zn}, \mathrm{Cd}$; Hg .

FIGURE 1

FIGURE 2

