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Abstract

The Implicit Monte Carlo technique of Fleck and Cummings [3] is often employed to numer-
ically simulate radiative transfer. This method achieves greater stability than one with a fully
explicit time discretization by estimating the tn+1 value of T 4 from the thermal emission term,
which is proportional to T 4. In the Fleck and Cummings algorithm, this results in decreasing
the absorption by the so-called ”Fleck factor”, and adding a corresponding amount of effective
scattering. We show how to include the effects of the temperature-dependent opacity to the esti-
mated tn+1 value of the thermal emission term. This results in the addition to the ”Fleck factor”
of a term that depends on dσ

dT . We demonstrate that this modification allows for more accurate
solutions with much larger time steps for problems with opacities that have a strong temperature
dependence.

1. Introduction

The time-dependent transport equation for photons in the absence of scattering and external
sources is [1]

1
c
∂I(Ω, ν)
∂t

+ Ω · ∇I(Ω, ν) = −σ(ν,T )I(Ω, ν) + σ(ν,T )B(ν,T ) (1)

where c is the speed of light, σ is the macroscopic absorption cross section in inverse length units
and B(ν,T ) is the Planck function

B(ν,T ) =
2hν3

c2

1
exp( hν

kT ) − 1
(2)

where h is Planck’s constant and k is Boltzmann’s constant. (We are using exp to symbolize the
exponential function to avoid confusion with the symbols em and er, which are used in this work
to represent matter and radiation energy density.)

The thermal emission term, σPB, can be written

σ(ν,T )B(ν,T ) =
1

4π
σ(ν,T )b(ν,T )acT 4 (3)
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where a is the radiation constant, T is the matter temperature, b(ν,T ) is the Planck distribution
normalized over frequency, defined by

b(ν,T ) ≡
15
4π

( hν
kT )3 h

kT

exp( hν
kT ) − 1

, (4)

and σP is the Planck mean opacity

σP(ν,T ) =

∫ ∞

0
σ(ν,T )b(ν,T )dν (5)

The transport equation is coupled to the material energy balance equation [1]

∂em

∂t
= ρcv

∂T
∂t

=

∫
σ(ν,T )I(ν,Ω)dΩdν −

∫
σ(ν,T )B(ν)dΩdν. (6)

Here, em is the matter energy density in units of energy per volume, ρ is the mass density, and cv

is the specific heat capacity in units of energy per mass per temperature.
These equations can be solved by a Monte Carlo method described in [2]. The method dis-

cretizes the problem on a mesh. Each zone has a temperature and an absorption cross section.
Particles representing photons are created in the zones at the beginning of each time step ac-
cording to the emission term in the transport equation. Then the photons are followed through
the zones, heating them according to the absorption term in Eq.(1). The zone temperatures are
updated at the end of the time step, using Eq.(6), and the process is repeated.

This method becomes unstable when time steps of the order of

∆t =
ρcv

aT 3cσa
(7)

are taken [3]. This instability occurs when the matter and radiation fields exchange an amount of
energy comparable to the amount of energy necessary to change the matter temperature a non-
negligible amount in one time step. If the matter is only able to absorb energy during a time step,
but is not able to re-radiate, as in the algorithm in [2], then instabilities may occur. The inability
of the matter to re-radiate the energy it absorbs from the radiation during a time step is caused
by the fact that the temperature in the emission term of the transport equation is calculated using
the temperature at the beginning of the time step.

A method for solving the photon transport equation with improved stability when large time
steps are taken was provided by Fleck and Cummings [3]. The method was dubbed Implicit
Monte Carlo, usually abbreviated IMC. IMC works by using the matter energy balance equation
to estimate the tn+1 value of T 4 in the thermal emission term, Eq.(3). This estimate is substituted
into the thermal source term in the transport equation. This substitution has the effect of reducing
the absorption opacity in the transport equation by a factor of

f =
1

1 + βc∆tσa
(8)

and adding an equal amount of thermally redistributed isotropic scattering. Here β ≡ 4aT 3/ρcv.
This change allows the calculation to be run with much larger time steps before instabilities arise
[4]. The quantity f defined by Eq.(8) is sometimes referred to as the “Fleck factor”.
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The factor f is small when photons are being absorbed and quickly re-emitted by the matter.
Problems in which this occurs are said to exhibit tight coupling between the radiation and matter.
IMC replaces the absorption and rapid reemission occurring in tightly coupled problems with
isotropic scattering. This scattering is usually referred to as the effective scattering, to distinguish
it from physical scattering. The effective scattering cross section σs = (1 − f )σa.

If the opacity is not a strong function of temperature, then using a tn+1 estimate of T 4 with
the tn value of σ is a good estimate of the tn+1 value of σB. It will be a poor estimate when the
temperature derivative of the opacity is a significant fraction of the temperature derivative for
σB. Since

dσB
dT

=
dσ
dT

aT 4b + σ
d(aT 4b)

dT
, (9)

we expect the estimate used in Fleck and Cummings IMC to be inaccurate when the second term
in Eq.(9 is large compared to the first. This will be true when

T
σ

∣∣∣∣∣dσdT

∣∣∣∣∣ ≥ 4 (10)

When Eq.(10) holds, IMC may produce inaccurate results. A typical failure mode (which will be
demonstrated below) will occur when an initially cold material, with σ ∼ T−5 is subjected to a
thermal radiation source with a radiation temperature Tr large enough to change the temperature
significantly. Since IMC will use the large tn value of the opacity throughout the time step, the
matter temperature can increase to a value higher than the source radiation temperature in the
first time step. This is unphysical, because thermodynamic consistency requires T ≤ Tr. In sub-
sequent time steps, the opacity will be small, because the matter temperature is very large. This
reduces the value of σB in later time steps, so the matter does not radiate, and the unphysically
large temperature persists.

The following sections will describe this problem with IMC further, and develop a modifi-
cation of the IMC algorithm that reduces it for some simulations. In section 2, we describe a
semi-implicit discretization of the source terms in the transport equation and the matter energy
equation, including the temperature dependence of the opacity, and show that it results in a mod-
ification of the Fleck and Cummings algorithm. This modification introduces two new features.
The first is a new term in the ”Fleck factor” that depends on the derivative of the opacity with
respect to temperature. The second is frequency and angle dependence added to the effective
scattering and the thermal emission term. In section 3, we develop an approximation to the new
effective scattering that makes its use in Monte Carlo simulations more tractable. In section 4,
we apply this modified IMC method to two test problems with temperature dependent opacity.
We show that it can produce more accurate answers with much larger time steps than Fleck and
Cummings IMC on problems where the opacity has a strong temperature dependence.

2. Semi-Implicit Discretization Of The Transport And Matter Energy Equations

The system of Eqs.(1) and (6) is well-suited for solution by a Monte Carlo technique because
it is linear in I. The equations are not linear in T , however. This could be dealt with by using some
fixed values over each time step for T , σ, etc. on the right-hand side. The most obvious values
to use are the tn values. However, as mentioned above, [2] and [3] showed that this method
is unstable for large σ at relatively small values of ∆t. Equations which exhibit this behavior
are said to be stiff. A semi-implicit treatment of the source terms in stiff equations can often
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allow numerical solutions with larger time steps (see e. g. [5]). We will apply a semi-implicit
discretization to the source terms of Eqs.(1) and (6).

The semi-implicit discretization is a first order discretization that approximates the tn+1 values
of the sources by tn values plus derivatives of the source with respect to the independent variables
[5]. For example, a semi-implicit discretization of a system of non-linear differential equations
for yi

dyi

dt
= Fi(y) (11)

would be
yn+1

i − yn
i

∆t
= Fi(yn

i ) +
∑

j

∂Fi

∂y j
(yn+1

j − yn
j ), (12)

where the derivatives of Fi with respect to y j are evaluated at tn. We have also approximated the
time derivative of y with a finite difference.

Applying the semi-implicit discretization to the system of equations results in a linear equa-
tion for yn+1

i . The source term now depends on tn+1 values of yi, albeit using a linear approx-
imation involving derivatives at tn. This linear dependence usually makes numerical solutions
of Eq.(12) more stable than explicit numerical solutions of Eq.(11), which use tn values for the
source Fi(y).

We would like to take advantage of the increased stability that the semi-implicit method
provides for the numerical solution of Eqs.(1) and (6). However, since we intend to solve Eq.(1)
by a Monte Carlo method, we will not discretize the time derivative of the radiation intensity to
produce a linear equation for In+1. This is because we can solve the linear differential equation
for I which results from the semi-implicit approximation by a Monte Carlo method. So our
semi-implicit approximation will involve expanding the source terms in Eqs.(1) and (6) in terms
of T n and derivatives with respect to T evaluated at tn, and keeping terms up to first order in the
differences.

For Eq.(1), this procedure results in

1
c
∂I
∂t

+ Ω · ∇I(Ω, ν) = −(σn +
∂σn

∂T
∆T )I

+ (σn +
∂σn

∂T
∆T )(Bn +

∂Bn

∂T
∆T ) (13)

where ∆T = T n+1 − T n. Eq.(13) is to be regarded as a differential equation to be solved over
[tn, tn + ∆t].

Applying the procedure to Eq.(6) results in

∆em

∆t
= ρcv

∆T
∆t

=

∫
(σn +

∂σn

∂T
∆T )IdΩdν

− (σn +
∂σn

∂T
∆T )(Bn +

∂Bn

∂T
∆T )dΩdν. (14)

Henceforth, where I multiplies a derivative with respect to T , we will use the tn value. We
will also use a prime to denote differentiation with respect to T evaluated at time n. For example,
B′ ≡ ∂Bn

∂T .
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Solving Eq.(14) for ∆T results in

∆T =

∫
σnIdΩdν −

∫
σnBndΩdν

(1 + ∆t
ρcv

(
∫
σnB′ − σ′(In − Bn)dΩdν) ρcv

∆t

(15)

Defining g via

g ≡
1

1 + ∆t
ρcv

∫
σnB′ − σ′(In − Bn)dΩdν

, (16)

we can write Eq.(15) as

∆T = (
∫

gσnIdΩdν −
∫

gσnBndΩdν)
∆t
ρcv

. (17)

The quantity g reduces to f defined by Eq.(8) if we ignore σ′ and B′, as the Fleck and
Cummings algorithm does, and will be seen to play a role analogous to that of f in the method
being derived.

Using Eq.(17) in Eq.(13) and disregarding the term that is quadratic in ∆T results in

1
c
∂I
∂t

+ Ω · ∇I(Ω, ν) = −σnI + σnBn

−
∆t
ρcv

[
σnB′ − σ′(In − Bn)

] [∫
gσnIdΩdν −

∫
gσnBndΩdν

]
. (18)

First we will examine the term on the right-hand side of Eq.(18) involving an integral over
the instantaneous value of the intensity, I. This term can be interpreted as a scattering term. We
would like to cast it in a form that involves a probability distribution function Ps(Ω, ν) times
a magnitude independent of these variables. To get the probability distribution function, we
normalize the function of Ω and ν. Making use of the fact that

∆t
ρcv

∫ [
σnB′ − σ′(In − Bn)

]
dΩdν =

1 − g
g

, (19)

we can write the term as
Ps(Ω, ν)

∆t
ρcv

∫
(1 − g)σnIdΩdν (20)

where
Ps(Ω, ν) ≡

σnB′ − σ′(In − Bn)∫
σnB′ − σ′(In − Bn)dΩdν

(21)

satisfies ∫
Ps(Ω, ν)dΩdν = 1. (22)

This allows us to identify (1 − g)σ as the effective scattering opacity, and Ps as the probability
distribution function for the scattered angle and frequency.

The remaining terms on the right-hand side of Eq.(18) represent thermal emission. As we did
with the scattering term, we would like to separate this expression into a probability distribution
function multiplied by a magnitude.
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The thermal source term is

σnBn −
∆t
ρcv

[
σnB′ − σ′(In − Bn)

] ∫
gσnBndΩdν. (23)

We again normalize this function by integrating over Ω and ν. Using the fact that∫
σnBndΩdν −

∆t
ρcv

[∫
σnB′ − σ′(In − Bn))dΩdν

] ∫
gσnBndΩdν = g

∫
σnBndΩdν (24)

we obtain the following expression for the thermal emission source:

Pt(Ω, ν)
∫

gσnBndΩdν. (25)

where

Pt(Ω, ν) ≡
σnBn − ∆t

ρcv
(σnB′ − σ′(In − Bn)∫
gσnBndΩdν

(26)

Using the definition of the Planck opacity, Eq.(5), and Eq.(4), we can write the total emission as
gcσPa(T n)4.

Combining these expressions, we can write Eq.(18), the semi-implicit version of the transport
equation, as

1
c
∂I(Ω, ν)
∂t

+ Ω · ∇I(σ, ν) = σnIn+1

+ Pt(Ω, ν)gσPca(T n)4

+ Ps(Ω, ν)
∫

(1 − g)σnIdΩ′dν′ (27)

This equation may be compared to Eqs.(3.5) and (4.1a) in [3]. From this comparison, we see that
the quantity g acts in the same way as f in the Fleck and Cummings IMC algorithm: it multiplies
the absorption opacity and introduces an effective scattering.

The matter energy density can be updated by enforcing total energy conservation with Eq.(27).
This results in

∂em

∂t
=

∫
gσ(ν,T )I(ν,Ω)dΩdν −

∫
gσ(ν,T )B(ν)dΩdν (28)

This equation can also be derived by substituting the expression for ∆T , Eq.(17), into Eq.(14).

3. Approximations to g, Ps, and Pt useful for numerical work.

Eqs.(27) and (28) can be solved by the same numerical techniques used to solve the cor-
responding equations in [3]. However, the modified equations present two complications with
respect to the original equations.

First, the emission and scattering probability distribution functions defined in Eq.(21) and
Eq.(26) are functions of angle as well as frequency. In Fleck and Cummings IMC, probability
distribution functions for both effective scattering and thermal emission are angle-independent
and Planckian. That is, both are represented by the Planck function, Eq.(4).
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The second complication is that we cannot ensure that g, defined by Eq.(16), satisfies g > 0,
while the ”Fleck factor”, defined by Eq.(8), is manifestly positive.

We will now discuss approximations for Eq.(21), Eq.(26) and Eq.(16) that mitigate these
problems.

The angle dependence of Eqs.(21) and (26) results from the time n value of the radiation
intensity, because quantities such as B and σ are independent of angle. We could use tallies of
the radiation intensity in the previous time step to give us a value for I(Ω, ν) at time n. However,
this would result in either values for the radiation intensity in a finite number of angle and energy
bins, or some kind of functional representation of I in Ω and ν. Either would be subject to
statistical noise.

The frequency dependence of the thermal source term is σnBn plus a correction factor involv-
ing σ′ multiplied by In − Bn. This term approximates the change in the emitted frequency due
to the change in opacity over the time step. In the Fleck and Cummings algorithm, changes in
the frequency of thermal emission over the time step are ignored. This approximation occurs in
Eqs(3.4a-b) in [3], when the change in thermal emission over a time step is approximated by the
change in radiation temperature over the time step. In effect, the following assumption is being
made:

dB
dT

=
d(aT 4b)

dT

≈
d(aT 4)

dT
b

= 4aT 3b; (29)

or, equivalently, db
dT ≈ 0.

Since we do not want to calculate the angular dependence in Pt(Ω, ν) as defined in Eq.(26)
because of its susceptibility to statistical noise, and since the Fleck and Cummings algorithm is
successful while employing the approximation in Eq.(29), we will use

Pt(Ω, ν) ≈
σnB(ν,T n)∫
σnB(ν,T n)

, (30)

which is the same probability distribution function used in Fleck and Cummings.
Now we will turn to the probability distribution function for scattering, Ps(Ω, ν) as defined in

Eq.(21). The first term in the numerator of Eq.(21) is σnB′. Using Eq.(29), we can approximate
this as σn4aT 3b(ν,T ). Ignoring the angular dependence and normalizing this expression gives

Ps(Ω, ν) ≈
σnB(ν,T n)

4π
∫
σnB(ν,T n)

, (31)

which is the same probability distribution function used in Fleck and Cummings, and the same
one we are employing for thermal emission.

Finally, we will turn to the expression for g, Eq.(16). This quantity reduces the thermal
emission and replaces it with effective scattering, just as the quantity f does in [3]. The integral
term in the denominator of the definition of g,

∆t
ρcv

∫
σnB′ − σ′(In − Bn)dΩdν, (32)
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will contains two terms, one in B′ and one in σ′. Using Eq.(29), we can approximate the B′ term,
which lets us write

∆t
ρcv

∫
σnB′dΩdν ≈

∆t
ρcv

4aT 3c
∫

σnbdν

≈
4aT 3

ρcv
σP∆t. (33)

Defining

β ≡
4aT 3

ρcv
(34)

as in [3], we see we can approximate the first term in the denominator as βcσP∆t, which is the
same quantity that appears in the denominator of the ”Fleck factor” f of Eq.(8). If we assume
that σ′ = 0, then g = f

The σ′ term in Eq.(16) has the effect of increasing the effective scattering when the opacity
decreases as a function of time and the material is going to absorb energy from the radiation and
increase in temperature. If σ′ < 0, which is usually the case, and In > Bn, then −σ′(In − Bn) > 0,
and g < f . This decreases the absorption and increases the effective scattering relative to the
Fleck and Cummings method. If the material is going to heat up during the time step, and its
opacity decreases with T , it should not absorb as much energy as if the opacity is constant. Thus,
this behavior is physically reasonable and we can conjecture that problems in which a material
with variable opacity is heated by radiation will show less unphysical overheating than we find
with Fleck and Cummings IMC. In the next section, we will see that that is indeed the case.

The term ∫
σ′(In − Bn)dΩdν (35)

is a weighted approximation to σ′. Rather than use a tally over In to calculate it, we are going to
make the approximation

In ≈
caT 4

r b(ν,T n)
4π

(36)

where the radiation temperature is defined via

Tr ≡
1
c

∫
IndΩdν. (37)

Note that we are using Eq.(36) only in the calculation of g. This value for In allows us to make
the following approximation:∫

σ′(In − Bn)dΩdν ≈ cσ′P(aT 4
r − aT 4). (38)

Here we have also assumed db
dT ≈ 0 in the derivative of the Planck opacity, as in Eq.(29).

These (admittedly severe) approximations allow us to use the following definition for the
modified ”Fleck factor” g:

g =
1

1 + βcσP∆t − cσ′P(aT 4
r − aT 4) ∆t

ρcv

(39)
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As noted, we can have g < 0 if σ′P(aT 4
r − aT 4) is sufficiently large and positive, resulting

in a negative absorption opacity. While difficult to simulate, this is not actually unphysical.
If we had σ′P < 0 and T > Tr, then energy should be transferred from the material to the
radiation field. A negative absorption would do this by having photons increase in energy as
they propagated, taking the energy from the material and lowering its temperature. In effect, the
photons deposit a negative energy into the material. This is the physically correct direction for
energy flow. However, the absorption opacity appears in an exponential when calculating energy
deposition. Using a negative absorption opacity causes a large risk of an overflow or a negative
matter temperature. So in practice, we have used the following expression for g:

g =
1

1 + βcσP∆t − min(σ′P(aT 4
r − aT 4), 0)

(40)

Eqs.(27) and (28), with g defined by Eq.(40), Ps defined by Eq.(21) and Pt defined by Eq.(26),
are a set of equations that can be solved by the same techniques as those employed to solve the
equations of [3]. If we assume σ′ = 0, g = f and we recover the results of [3].

4. Numerical Results

In this section, we will show numerical results for two test problems using both the original
Fleck and Cummings algorithm, and the modified IMC algorithm where f is replaced by g.
These simulations were performed using the IMC package in the Kull code [9].

The first test is an infinite medium problem, similar to that described in [8], but with a
temperature-dependent opacity. The matter has an absorption opacity of the form σ(T ) = σ0T−5

and a constant heat capacity. We use the valuesσ0 = 10−3cm−1keV−5 and cv = 5×1014erg/g keV.
We take the initial values T = 0.01 keV, and Tr = 1.46512 keV. These values will lead to a final
equilibrium temperature of T = 1.0 keV after about 2 × 10−8 sec. The density is constant at
1.0g/cm−3 This problem, like the one presented in [8], has a semi-analytic solution. The test
problem and its solution are described in more detail in the appendix.

The test problem begins with Tr > T . The opacity has an initial value of 107cm−1. This
very large value will cause a large amount of energy to be absorbed, unless the time step is very
small. The heat capacity is low, relative to aT 3, so the matter temperature will increase by a large
amount compared to the radiation temperature when energy is absorbed. Because σ is large and
cv is small, we would expect IMC simulations of this problem to demonstrate overheating unless
the time step used is very small compared to the equilibration time.

We will present results for this test problem using both the standard Fleck and Cummings
IMC algorithm and the modified IMC algorithm. The Fleck and Cummings IMC algorithm will
be seen to overshoot unless very small time steps are taken, while the modified IMC algorithm
will not, even when very large values of ∆t are used.

Fleck and Cummings IMC results are displayed in Figure 1. For ∆t = 10−19 sec, T is larger
than the semi-analytic answer, but remains lower than Tr. This large T causes the absorption
opacity to be small, so T remains constant after the first time step, until it eventually approaches
the semi-analytic answer after t = 10−16 sec. For ∆t = 10−18 sec, T increases by a larger amount,
reaching a value of 0.34 keV, and remaining constant after that. This is still less than the value
of Tr, which is 1.36 keV. For ∆t = 10−17 sec, T reaches a value of 1.21 keV, greater than the
value of Tr, which is 0.69 keV. As in the other cases, the large value of T leads to a small opacity,
which makes the absorption negligible. Thus the large T remains constant for a long time. For
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larger values of ∆t, essentially all the radiation energy is absorbed by the material. The matter
temperature jumps to a value of 1.21 keV after 1 cycle, and the radiation temperature drops to
essentially zero. The runs were terminated at 10,000 time steps, which is why the lines for the
∆t = 10−18 sec and 10−17 sec cases end abruptly.

(For the run with ∆t = 10−17 sec, Tr has a value of 1.1 keV after the first time step. Tr then
drops to the value of 0.69 keV. The reason for this is due to the method of calculating Tr. Tr

is calculated from an average of er over every path, rather than summing the energy of every
photon that reaches census. This has the effect of time centering Tr in the middle of the time
step, rather than the end. So in the first time step, Tr takes a value, 1.1 keV, intermediate between
the initial value of 1.46512 keV and the final value of 0.69 keV. The sum of the energy density
of the census photons after 1 time step has a value which satisfies (er(∆t)/a)0.25 = 0.69 keV. So
the value of 1.1 keV after 1 time step is a transient artifact, rather than a physical effect.)

Figure 1: Fleck and Cummings IMC results for several different values of ∆t for the σ ∼ T−5 test problem described in
the appendix. Matter and radiation temperature is plotted vs. time. Matter temperature is denoted by Tm and radiation
temperature by Tr .

Results using the Modified IMC algorithm are displayed in Figure 2. The results are similar
for all values of ∆t. In all cases, T remains below both Tr and the semi-analytic value. The mod-
ified IMC algorithm does not overshoot, even for values of ∆t more than 10 orders of magnitude
larger than the value of ∆t for which Fleck and Cummings IMC overshoots. Even for ∆t = 10−7,
which is a significant fraction of the equilibration time of ∼ 2×10−8, the modified IMC algorithm
keeps T < Tr, and reaches the correct asymptotic value (T = Tr = 1.0 keV) at approximately the
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correct time.

Figure 2: Modified IMC results for several different values of ∆t for the σ ∼ T−5 test problem described in the appendix.
Matter and radiation temperature is plotted vs. time. Matter temperature is denoted by Tm and radiation temperature by
Tr .

The reason for the difference in behavior of the two methods is shown in Table 1. The
“Fleck factor” f ≈ 1 even for the smallest value of ∆t used, so the amount of effective scattering
introduced by the IMC algorithm is insignificant. The absorption opacity f × σ(T0) ≈ σ(T0) =

107cm−1. Since the absorption opacity is very large, a significant fraction of the radiation energy
is absorbed by the matter, and the temperature increases. For ∆t > 10−17 sec, almost all the
radiation energy is absorbed by the matter in one time step, which causes Tr to drop to a very
low value. Since the opacity is very low for large T , the hot matter radiates very little energy,
and T remains large.

In contrast, the modified “Fleck factor” g has a small value, even for very large ∆t. The
amount of effective scattering is very large, and the effective absorption opacity is very small.
So the amount of energy absorbed from the radiation by the matter is much smaller than that
absorbed in and Cummings IMC. The matter temperature remains low, the opacity remains high,
and T slowly increases to the value obtained from the semi-analytic solution.

Since the effective scattering is very large in the modified IMC algorithm, particles will have
a very small mean free path, and simulations can take a long time. In these calculations, we have
used the “random walk” algorithm described in [6]. This speeds up the calculation significantly
by using a solution of the diffusion equation to move particles to positions that represent the
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Table 1: Values of opacity, f and g with T = 0.01 keV and Tr = 1.46512 keV for values of ∆t used in the first test problem.
∆t (sec) f (T ) g(T,Tr)
10−19 1.000000000000 1
10−18 1.000000000000 0.999998
10−17 1.000000000000 0.999981
10−16 1.000000000000 0.999811
10−13 0.999999999671 0.840671
10−11 0.999999967095 0.0501186
10−9 0.999996709468 0.000527352

effects of many scatters. As a result of employing the “random walk” algorithm in simulations
using the modified IMC algorithm, all simulation of the first test problem described here took on
the order of a few minutes using one Intel processor running the Linux operating system.

This test problem can also be simulated with diffusion. Since the problem has no spatial vari-
ation, the differences in the spatial discretization of diffusion and Monte Carlo will not affect the
answer. This allows us to use the diffusion simulation to examine the behavior of a different tem-
poral discretization than the one used in either Monte Carlo algorithm. The diffusion simulation
used the flux-limited diffusion package of the Kull code [9]. This package iterates on the matter
temperature used in the thermal emission source term of the transport equation, but uses a value
of the opacity at the beginning of the time step. In effect, the diffusion temporal discretization
uses the tn+1 value of the matter temperature but the tn value of the opacity.

The results of simulations using the diffusion algorithm are displayed in Figure 3. Various
values of ∆t from 10−19 to 10−13 seconds were used. For ∆t = 10−19, T jumps from the initial
value of 0.01 keV to 0.05 keV. This reduces the opacity to a smaller value, reducing absorption
by the matter, and the solution remains constant, until it begins to approach the analytic answer
at around t = 5 × 10−15 sec. When ∆t is increased to 10−18 sec, T jumps to the higher value of
∼ 0.3keV. For ∆t = 10−16 sec, the solution jumps to value of T slightly lower than 1.0 keV, and
a Tr slightly less. For ∆t = 10−15, the solution jumps to the equilibrium value, T = Tr = 1.0 keV,
remaining constant thereafter. (The number of time steps was limited to 5000, which is why the
lines in Figure 3 end.)

The behavior of the diffusion simulation is similar to the behavior of the Fleck and Cummings
IMC solution. Unless a very small time step is used, the simulation results in matter temperature
that is too large and a radiation temperature that is too small. Unless ∆t is less than about 10−16

sec, the diffusion simulation jumps immediately to the equilibrium temperature. The behavior
of the diffusion algorithm is better than that of IMC for large time steps, because the diffusion
solution remains thermodynamically consistent, while IMC produces results with T > Tr. The
Modified IMC algorithm produces more accurate answers for this test problem than diffusion,
even with much larger ∆t. For this test problem, with an opacity that has a strong temperature
dependence, a more accurate answer is obtained by an algorithm that is semi-implicit in both T
and σ than by an algorithm that is fully implicit in T but explicit in σ.

The second test problem is a coupled radiation-hydrodynamics test problem with multigroup
opacities and tabular equations of state. The problem consists of a slab of silicon dioxide with
a density of 0.01 g cm−3 and a slab of plastic doped with bromine with a density of 0.5 g cm−3.
Both materials have a temperature of 0.025 keV. The plastic occupies x = [0, 5cm] and the
silicon dioxide occupies x = [5, 10cm]. A radiation source characterized by temperature of 1
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Figure 3: Diffusion results for 5 different values of ∆t for the σ ∼ T−5 test problem described in the appendix. Matter
and radiation temperature is plotted vs. time. Matter temperature is denoted by Tm and radiation temperature by Tr .

keV is applied to the face at x = 10 cm.
The mesh for the problem uses 200 equal zones. The opacities of both materials were mod-

eled with 14 groups with boundary values of [0.0001, 0.01, 0.05, 0.25, 0.5, 0.75, 1.0, 1.25, 2.0,
5.0, 10.0, 15.0, 20.0, 25.0, 30.0] keV.

The temperature source applied to the silicon dioxide drives a Marshak wave through it and
into the plastic. As with the infinite medium test problem described above, we can get overheat-
ing in the material when Tr > T . Because the problem uses multigroup opacities, high frequency
photons, which see a lower opacity, can penetrate into the material ahead of the Marshak wave.
Since g can be lower than f when Tr > T because of the last term in the denominator in Eq.(40),
we expect that problems with overheating might be reduced by the modified IMC algorithm.
This proves to be the case.

Figure 4 shows results for this test problem using both Fleck and Cummings IMC and the
Modified IMC method at a simulation time of 1.0 × 10−7 sec. Both simulations used the same
value of ∆t = 1.0 × 10−11 sec. At the plotted time, the Marshak wave has proceeded through the
silicon dioxide and is entering the plastic. Multigroup effects cause the radiation temperature in
the plastic to be higher than the material temperature in the plastic.

The Fleck and Cummings IMC simulation clearly shows unphysical overheating near the
temperature source at x = 10 cm. The material near the source should be at a temperature slightly
lower than the source temperature, 1 keV, but has reached a temperature of almost 10 keV. Some
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regions of material further from the source have T > 1 keV as well.
In contrast, the modified IMC method has T < 1 keV everywhere; there is no sign of over-

heating. In the silicon dioxide, T is smooth, and everywhere is slightly lower than Tr, which has
a value approximately the same as the source temperature, 1 keV.

Figure 4: Fleck and Cummings IMC and modified IMC results for the radiation-hydrodynamics test problem. Matter
and radiation temperature is plotted vs. space at t = 1.0 × 10−7 sec. Both simulations used ∆t = 10−11 sec. Te denotes
electron temperature and Tr denotes radiation temperature.

Lowering the value of ∆t used in the Fleck and Cummings IMC simulation eliminates the
overheating observed in Figure 4. Experimentation shows that the spike in the temperature of
the silicon dioxide near the source is eliminated when ∆t = 1.25 × 10−12 sec is used. With this
value of ∆t, Fleck and Cummings IMC gets results similar to those obtained by the modified
IMC method with ∆t = 10−11 sec. Figure 5 compares the Fleck and Cummings IMC simulation
using ∆t = 1.25× 10−12 sec to the modified IMC simulation using ∆t = 10−11 sec. The enhanced
stability of the modified IMC method on this test problem is demonstrated by the fact that it
produces results with no overheating with a value of ∆t that is 8 times larger than that needed by
Fleck and Cummings IMC.

The reason that the anomalous high matter temperatures seen by the Fleck and Cummings
IMC simulations in Figure 4 persist is shown in Figure 6. This plot depicts the Planck opacity for
the two simulations depicted in Figure 4. The unphysically hot regions of silicon dioxide have
a very low σP, reducing the rate of thermal emission. The unphysically hot material does not
cool as a result. This behavior is similar to that observed in simulations in Figure 1 when larger
values of ∆t are used.

Figure 7 shows the values of f and g for the Fleck and Cummings IMC and modified IMC
simulations of the radiation hydrodynamics test problem. Both simulations used ∆t = 10−11 sec.
The higher radiation temperature in front of the Marshak wave causes g < f . The value of g
reaches a low of 0.1 at the front of the Marshak wave in the plastic, while the lowest value of f is
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Figure 5: Fleck and Cummings IMC and Modified IMC results for the radiation-hydrodynamics test problem. Matter
and radiation temperature is plotted vs. space at t = 1.0×10−7 sec. Fleck and Cummings IMC used ∆t = 1.25×10−12 sec.
The modified IMC method used ∆t = 10−11 sec. Te denotes electron temperature and Tr denotes radiation temperature.

0.5. The absorption opacity is proportional to f in Fleck and Cummings IMC and g in modified
IMC. So the particles in the modified IMC simulation are losing energy to the matter at a rate
that is 5 times lower than that of the Fleck and Cummings IMC simulation. This lowered rate
of coupling between the matter and radiation reduces the production of unphysically high matter
temperatures.

5. Conclusions

We develop a modification of the ”Fleck factor” in the IMC radiation transport method. This
modification is developed by a semi-implicit temporal discretization of the thermal emission term
in the transport equation. It takes into account the change in the opacity with temperature during
a time step, and is sensitive to the difference between radiation and matter temperature. It has
the effect of increasing the amount of effective scattering, and thus decreasing the absorption,
for simulations with temperature-dependent opacities where the radiation temperature is greater
than the matter temperature. The lower amount of absorption reduces the tendency for IMC
simulations to produce unphysically large matter temperatures in some simulations.
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Figure 6: Opacity vs. space at t = 1.0 × 10−7 sec. for Fleck and Cummings IMC and modified IMC simulations of the
radiation-hydrodynamics test problem. Both simulations used ∆t = 10−11 sec.

6. Appendix: semi-analytic solution of infinite medium test problem with temperature-
dependent gray opacity.

Here we present a semi-analytic solution of an infinite medium test problem with temperature-
dependent gray opacity. This test problem is very similar to the constant opacity test problem
presented in [8], and the solution technique is essentially the same as the one described there.

The test problem has a constant density ρ, a constant heat capacity cv, and an absorption
opacity σ(T ) = σ0T−n, with n a non-negative integer. The test problem has no radiation source.
The solution of the test problem is obtained by solving Eqs.(1) and (6) with these assumptions.

The assumption of constant cv allows us to replace em with temperature, via the equation of
state em = ρcvT . The fact that there are no sources in the problem means that the total energy
et ≡ er + em is a constant, determined by the initial radiation and matter temperatures. This
allows us to eliminate the radiation energy density er in terms of et and T via er(t) = et −ρcvT (t).
Eqs.(1) and (6) can then be combined into the single equation

dT
dt

=
cσ0T−n

ρcv

[
aT 4 + ρcvT − et

]
. (41)

This equation can be cast into an integral equation for t(T ):

caσ0

ρcv
(t − t0) =

∫ T

T0

T ndT
T 4 + pT − q

, (42)
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Figure 7: Values of f and g vs space for the Fleck and Cummings IMC and modified IMC simulations of the radiation
hydrodynamics test problem. Both simulations used ∆t = 10−11 sec.

where T0 ≡ T (t0), p ≡ (ρcv)/a and q ≡ et/a.
As shown in [8], the roots of the denominator of Eq.(42) can be obtained. The denominator

is a quartic, and so there will be 4 roots. Since n is a non-negative integer, knowing the roots of
the denominator allows us to decompose the integrand by partial fractions [7]. This will let us
express the integrand as a sum of a polynomial in T and four terms of the form ci

T−Ti
, where ci

is a constant and Ti are the four roots of the denominator. The form of the polynomial and the
values of the ci will depend on the initial temperatures and the values of the constants, such as cv

and σ0.
We will examine the specific case where n = 5, so that the opacity has a particularly strong

temperature dependence: σ(t) = σ0T−5. We will take σ0 = 10−3cm−1keV−5. We will set
cv = 5×1014erg/g keV. The density ρwill set equal to 1.0g/cm−3. In cgs units, c = 2.9979×1010

cm/s and the radiation constant a = 1.37202 × 1014erg(cm3 keV4). The initial temperature will
be T0 = 0.01 keV, and the initial radiation temperature will be 1.46512 keV. These values will
lead to a final equilibrium temperature of T = 1.0 keV. We will take t0 = 0.

With n = 5 and the values for cv, etc. given above, the integrand of Eq.(42) becomes, via
partial fractions,

T 5

T 4 + pT − q
=
−pT 2 + qT
T 4 + pT − q

= T +

4∑
i=1

ci

T − Ti
, (43)
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Table 2: Roots and coefficients for Eq.(43)
root value (keV) coefficient value (keV2)
T1 0.417340 + 1.535317 i c1 -0.558980 + 0.487657 i
T2 0.417340 - 1.535317 i c2 -0.558980 - 0.487657 i
T3 1.0 c3 0.130817
T4 -1.834681 c4 0.987142

Table 3: Roots and coefficients for Eq.(46)
coefficient expression value
A c1 + c∗1 -1.117960
B −(c1T1 + c∗1T ∗i ) -1.963987
C −(T1 + T ∗1 ) -0.834681
D T1T ∗1 2.531373
Q 4D −C2 9.428800

where

ci =
pT 2

i + qTi

4T 3
i + p

(44)

as shown in [7]. The values of Ti and ci are given in Table 2. The roots T1 and T2 are complex
conjugates, as are the constants c1 and c2. This holds because the integral must give a real value
for the temperature. T3 is the equilibrium temperature, 1.0 keV.

Since the first 2 roots are complex conjugates, we can combine them into a manifestly real
expression:

c1

T − T1
+

c∗1
T − T ∗1

=
(c1 + c∗1)T − (c1T1 + c∗1T ∗1 )

T 2 − (T1 + T ∗1 ) + T1T ∗1
. (45)

Using Eqs.(43) and (45), the integral in Eq.(42) is reduced to a sum of integrals of simple ex-
pressions for which analytic expressions can be found (see, for example [7]). These are the
same forms found for the integrals in [8] with different constant coefficients. The result of the
integration is

t(T ) =
ρcv

caσ0

[
2B − AC
√

Q
arctan(

2T + C
√

Q
)

+
A
2

log(T 2 + CT + D)

+c3 log(T − T3) + c4 log(T − T4)
]T

T0

. (46)

The values of the constants A, B, etc. can be found in Table 3. This expression for t(T ) can
be inverted by any of the standard root-finding techniques (see, e.g., [5]) to calculate values
of T given the time t. The specific values of the constants in Eq.(46) are given in Table 2.
Once the value of T (t) is obtained, the value of radiation temperature can be found from energy
conservation.

The solution, T (t) is plotted in Figure 8. This figure shows that the temperature rises very
rapidly are early times, because the opacity at the initial temperature is very large. Because
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the opacity is such a strong function of temperature, it decreases as the matter is heated by the
ambient radiation, so the rate of change of the temperature declines as the temperature increases.

Figure 8: Semi-analytic answer for the σ ∼ T−5 test problem, calculated by inverting Eq.(46). Matter and radiation
temperature is plotted vs. time. The temperature is in units of keV.
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