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ABSTRACT

This report describes the subassembly compression test
work performed by the FFTF Fuels Department on fuel subassemblies
with 217 wire-wrapped fuel pins. These ductless subassemblies
were compressed over a 4-foot length span by flat plates on six
sides, and the side wall load was measured as a function of
across-the-flats dimensions. The subassemblies were compression
tested to determine the springiness that exists within the sub-
assembly when it is compressed symmetrically from a nominal
duct internal size down to a region where there are no gaps
betwecn wires and fuel cladding and where the fuel pins are
temporarily deformed.due to bending and torsion loads.
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w CCTL MARK I AND MARK II PROTOTYPIC FFTF
SUBASSEMBLY COMPRESSION TEST DEVELOPMENT WORK

R. B. Baker and D. E. Blahnik

1.0 INTRODUCTION

The purpose of this report is to describe the subassembly
compression test work performed by the FFTF Fuels Department
and to summarize the results of compression testing the CCTL
Mark I and Mark II subassemblies. The Mark II test will be
emphasized most because its design conforms closest to the
latest FFTF driver fuel design. '

The object of compression testing a prototypic FFTF driver
fuel subassembly* is to determine the springiness*#* that exists
within the subassembly when it is compressed symmetrically from
a maximum or nominal internal duct size down to beyond a tight

subassembly size.T The spring load on the simulated duct wall

v 4 Subassembly - A (driver fuel) subassembly is defined in
this test procedure as "an assembly of 217 completed fuel
pins banded together by grids at each end." Normally, a
fuel subassembly also includes locking bars and the
straight flow duct section.

**  Subassembly Springiness - When a fuel pin subassembly, such
as Mark II, is in the vertical position, the fuel pins can-
not bow significantly towards the center. Therefore, most
of the outer pins are randomly forced outward by a combi-
nation of their own natural bow and the forces trans-
mitted by the natural bow of internal pins. When a’
subassembly i1s compressed to a tight subassembly size,
all of the natural spring is absorbed. If a subassembly
18 compressed beyond tight subassembly size, the fuel pins
nest together and react as a combination of leaf and
torsion springs.

t Tight Subassembly Size -~ Point at which all fuel pins and
wires are compressed tightly together without any deforma-
tion of the subassembly components. There is no outward
displacement due to natural bow of the fuel pins and no
gaps between wires and fuel pins. When a subassembly is
compressed beyond this point, the load-compression deflec-
tion curve becomes linear. This term was previously
referred to as "hundle theovetical tightness.”
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is measured as a function of various across-the-flats dimen-

sions.

from compression test data.

SIMULATED DUCT WALL LOAD (POUNDS/FT/SIDE)

INCREASING LOAD (FORCE) —

Figure 1.1 shows a typical curve which can be plotted
The data shall be used to:

Characterize the subassembly's tight size and springiness.

Analyze the in-reactor cases both of the fuel pins swell-

ing larger than the duct dimensions and the duct dimen-

sions swelling larger than the fuel pins.

Assist in establishing dimensions and tolerances on the

fuel pin OD, wire OD, and the duct internal dimensions to

assure proper assembly fit for reactor requirements.

(COMPRESSION TEST
/ STARTING POINT)

ZERO OR LOW

" SPRING CONSTANT ™
© ZONE

(~LINEAR) -

NOMINAL DUCT INTERNAL
ACROSS FLATS DIMENSION

FUEL PIN AND WIRE
= . GAP CLOSING —™
TRANSITION ZONE

(NON -LINEAR)

SUBASSEMBLY SPRINGINESS —————————

L

: - TESTLIMIT -

| CURVE BEYOND THIS
| POINT IS UNKNOWN
i

I
TIGHT SUBASSEMBLY SIZE -
NO GAPS BETWEEN FUEL PINS,
. WIRE, AND DUCT; FUEL PINS
STRAIIGHT W/O DEFORMATION

| HIGH SPRING CONSTANT ZONE -

‘ |, FUEL PINS AND SUBASSEMBLY
DEFORMED AND REACT AS
‘ | COMBINATION LEAF AND
TORSION SPRINGS

P s — — — —

' (~LINEAR)

FIGURE 1.1.

INCREASING COMPRESSION ———=
ACROSS THE FLATS COMPRESSION DISTANCE (IN. )

Test Data Curve

1.2

Typical Subassembly Compression

o~
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2.0 SUMMARY

The subassembly compression test apparatus is illustrated
in Figure 2.1. The test equipment is described in detail in
Appendix A. Also, the complete test procedures for subassembly

compression testing are outlined in Appendix A.

The Mark I and Mark II CCTL Subassemblies were both sub-
jected to compression tests. Each subassembly was tested in
the vertical position, as shown in Figure 2.1, to minimize the

efifect of gravity.

During the tests, all six sides of the subassembly were
equally advanced inward by the test apparatus flat pressure
plates (maintaining a regular hexagon geometry) over a 4-ft
span of the subassembly. One side of the test apparatus had a
2-ft center pressure plate which transmitted force to trans-
ducers so that the side load could be measured as a function
of hexagon across-the-flats dimensions during subassembly com-

pression or decompression.

The test apparatus was designed for a 250 1b/ft/side limit.
Mark I was tested to the test apparatus load 1limit. The Mark II
test, however, was limited to 50 1b/ft/side to ensure that no
permanent distortion or surface marking of the subassembly

would occur.

Figure 2.2 illustrates a summary of the Mark II compres-
sion test data curves. Figure 2.3 compares the average Mark II
and Mark I test run curves. All of the test curves were

similar to the typical curve and description shown in Figure 1.1.

The Mark II test results showed that an average load of
less than 4 oz/ft/side was experienced in the first 0.024 in.
of compression. In the next 0.015 in. of compression, the load
rapidly increased to about 14 1b/ft/side at the 4.297 in. point
of "tight subassembly size.'" Beyond '"tight subassembly size"
the curve was linear up to the 50-1b test limit with a spring
constant of about 5.15 1b/ft/side per 0.001 in. compression.
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FIGURE 2.l1. Subassembly Compression Test
Apparatus and Instrumentation




LOAD 1N POUNDS PER LINEAL FOOT (LBS/FT/SIDE)
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FIGURE 2,.,3. Summary Comparison of Mark II and Mark I
Subassembly Compression Test Run Curves

The Mark II and Mark I test curves show a close relation-
ship up to the point of "tight‘subaséembly size." Compression
beyond "tight subassembly size' shows. a steeper Mark Il curve
slope because of the higher spring constant due to Mark II's
higher tube-wire'moment of inertia in bending and torsion.

During decompression on test runs there was a small amount
of hysteresis. There was no residual force indicated when the
last zero force compression point was reached during subassembly

decompression.

.-
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3.0 TEST APPARATUS

The test apparatus is shown and discussed in depth in

Appendix A of this report. Figure A.2.1 illustrates some of

the key equipment -components. The test apparatus was designed

to

inc

A h

meet the following general criteria:
A regular hexagon geometry shall be maintained between
pressure bars at each test setting.
A subassembly shall be kept in the vertical position on
the same centerline at all times.
When compressing or decompressing a subassembly, all
sides (pressure bars) shall be advanced accurately and
equally in increments between 0.0005 to 0.002 in.
Force transducers shall be located so that loads on
pressure bars are transmitted directly towards them to
minimize bending and friction. They shall be centered
so Lhat the cumulative force will be comprised of the
average force generated by nine fuel pins on a side and
immediately opposite the row of wires.
Measure side loads on a subassembly up to 250 1b/ft/side.
Provide heavy pressure bars with rigid structural support
to minimize pressure bar deflection even at the test load
limit. |
Provide a 1-ft pressure bar both above and below the load
measurement transducer pressure bar to remove the "end

effect*" from affecting test results.

These criteria along with other obvious features were

orporated into the equipment described below.

Basically, the test apparatus can be described as follows:

eavy wall steel pipe is supported rigidly in a vertical

End Effect - This term refers to the location on the sub-

assembly where there is a transition from subassembly
restraint by the test apparatus pressure bars to non-
restraint above and below the 4-ft pressure bare cection.
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position by a heavy base with gussets. " Inside the pipe body
‘are located 1 x 2-5/16-in. bars on each of six equally

spaced positions, Five sides contain bars that are 48 in. long
and supported verticaily by four male shafts threaded through
the pipe body with drive handles spaced on 1-ft centers. The
matching female threads are located in the pipe. The drive
handles are turned to move the bars. The pressure bars are

held on the ends of the shafts by spring loaded ball plungers.

- The sixth side, the one on which the load is measured,
contains 1-ft pressure bars at the top and bottom and a 2 ft-bar
in the center which is supported by two transducer shafts
centered and spaced 1 ft apart on the bar. The 1-ft bars are
each supported by two threaded shafts with drive handles which
perform the function of preventing the subassembly "end effect"
from affecting the load measurement bar readings..

~ The transducer shafts are fixed in the transducer recepta-
cle, and the transducers are mounted on Gilman slide assemblies
which drive the 2-ft load measurement bar. The transducers are
connected to amplifier-indicator instruments located on a table

for reading out the transducer loads.

Two dial indicators are also mounted on the Gilman slide
assembly transducer brackets\and are referenced against the pipe
body outer diameter. These dial indicators are.used to properly
locate the load measurement bar by compensatihg for springback

in the transducer spring and the Gilman slide assembly system.

The two force transducers are each Daytronic Model Number
152A-250 and the amplifier-indicators are each Daytroﬁic Model
Number 300D-71." The amplifier-indicators have force scale
ranges calibrated for 0 to 25 1b, 0 to 125 1b, and 0 to 250 1b
(scales 1, 5, and 10, respectively). '
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4.0 TEST PROCEDURE

Appendix A provides a detailed outline of the subassembly
compression test preparation, equipment setup and calibration,
and test procedures. The test procedure in Appendix A was not
followed in every detail in Mark I and Mark II tests because
Appendix A is based upon the techniques and experience gained

in those tests.

Basically, preparation for the Mark II fest consisted of:

e Reading the October 22, 1969 issue of the formal test
procedure.

e Reading the job hazard breakdown, nuclear safety, and
radiation work procedures,

o Reading the test plan requirements. .

e« Preparing the test subassembly and fabricating a suitable
handling fixture for it.

e Recording preliminary data on data sheets and in the log
book.

The equipment setup and calibration work consisted primar-
ily of: _
e Centering and setting all the pressure bars accurately at
a known regular hexagon bore .size.
o Establishing a correction curve to compensate for spring-
back from the transducer springs and Gilman slide assembly
system for properly locating the load measurement pressure

bar.

Instrumentation, dial indicators, and transducers were

calibrated at the Standards Laboratory.

The actual test runs were a series of steps which acvanced
pressure plates to progressiveiy smaller hexagon bore size
settings (usually in 0.00l-in. increments), and recorded the
load force for each transducer. After the test load limit
was reached the procedure was reversed to take force readings
at progressively larger hexagon bore sizes until the original

test size was reachcd.
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5.0 CCTL MARK I SUBASSEMBLY COMPRESSION TESTING

5.1 MARK T SUBASSEMBLY DESCRIPTION

The Mark I subassembly is comprised of 217 wire-wrapped
fuel pins assembled into a hexagonal cross-section bundle. The
assembly and details of the subassembly components are given in
Figures 5.1, 5.2, and 5.3 (BNW Drawings SK-3-13188, Sheets 1 and
2, and Drawing SK-3-13187).

All pins were ~0.250 in. in diameter and were spaced by
0.030-in. Type 304 SS annealed wire wrap with a triangular
pitch. The wire was wrapped on a 12-in., pitch. The Type 304 SS
fuell pin tubing had-a 0.218-in. ID, 7l-in,  length, and the tube
column was loaded above the lower end cap with 33 in. of depleted
UO2 pellets, a 6-in. reflector rod, a plenum spring, and a
23.594-in. long plcnum tube, in that order. The fuel pins were

held together by grids at both ends of the subassembly.

5.2 MARK I HISTORY

The Mark I was first assembled at BNW and shipped to ANL
in February 1968. It was inserted into the CCTL loop in May
1968 and tested intermittently until April 1969; at this time
it was removed from the loop, cleaned, and returned to BNW.
While in the loop, Mark I was subjected to approximately 5067 hr
of sodium testing of which over 3686 hr were with 1060°F sodium

flowing at approximately 400 gal/min and 30 [(L/sec.

In May 1969, the Mark I was disassembled into strip layers
and inspected. Three fuel pins were selected and removed for
destructive testing. The only visual changes that occurred
during the CCTL test were:

e A longitudinal growth of wire which resulted in three to
six mils wire looseness over the entire fuel pin length.

e Surface rub marks on the cladding from the wires.

e A slight flattening (up to 0.002 in.) of wires in the rows
adjacent to the flow duct.
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SK-3-13188
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_ ¢ 4
° '
% ~ COMPRESSION SPRING 5
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FIGURE 5.3.

GENERAL NOTES

AlL PARTS, UNLESS OTHERWISE SPECIFIED, SHALL
CONFORM TO THE FOLLOWING :

TOLERANCES, FRACTIONAL 2‘(; DECIMAL T.005 ANGULAR 03O

4
REMOVE ALL BURRS AND EREAK SHARP EDGES 70 ;g
MIN RADIUS, FXCEPT WELD PREP AREA (TUEE END & UPS)

L ALL MACHINED SURFACES Y (ASA E46.1-1962)
. ALL MATERIAL TO BE AS SPECIFIED, OR APPROVED

FOUAL QUALIITY .

« MATERIAL 304 SST 70 BE ASTM SPEC, r10D/FIED

Aﬁzzs-gs ( CARBON 0.04-0.06)

MAXIMUM ACCEPTHBLE TUEING OVALITY SHAL. B¢ .002"
MEASURED AS THE DIFFERENCE BETWEEN THE MAX
AND MIN SPECIFIED INSIDE DIAMETER,

. MAXIMUM ACCERTAELE TUEING ECCENTRICITY SHALL

BE Q02" MEASURED AS THE DIFFERENCE BETWEEN
THE SPECIFIED MAX AND MIN WALL THICKNESS AT
ANY CROSS-SECTION OF THE TUBES.

TUEES SHALL SHOW A 194X]MUM EOW MOT 70O
EXCEEL .OI0" PER LINEAL FOOT,

END CAP WELD DIAMETEF SHALL NOT EXCEED
MAXIMUM QULOWABLE TUEE DrA BY MORE THAN .00/.

INTERNAL ROD ATMOSPHERE SHALL BE WELDING
GRADE, OR PURER, HELIUM.

SLOTS IN END CAPS SHALL BE PARALLEL TO £ OF
TUBE 7O WITHIN O°15' AFTER WELDING.

& IN END CAPS SHALL BE SYMMmETRICAL 70 THE £
OF THE SLOTS WITHIN A TOLERANCE OF .00/.

SK-3-13187
Sheet 1 of 1

Split Core Fuel Pin
Assembly and Details
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The '"'subassembly tight size'" across-the-flats dimension
remained about 0.020 to 0.030 in. less than the duct internal
dimensions. No significant surface corrosion was observed on

the wire wrap, cladding, or flow duct.

In July 1969, the subassembly was reassembled using
recovered and modified components. Three new pins had to be

inserted.

An interim compressibility test was made in Auguét 1969
at the request of Westinghouse and the Engineering Depart-
ment. The subassembly was placed in the horizontal position
in the Mark I-type open top-duct section, and a load employ-
ing lead bricks was applied to the top side of the bundle.
As the subassembly was compressed flat against the 3 lower
sides of the duct, displacement of the top load plate was

measured.

In October 1969, the subassembly was taken to the 306
Building where the compressibility test apparatus shown in
Figure 2.1 was set up. The subassembly was inverted and sus-
pended from a fixture with locking bars through the lower grid.

The precompression test examination showed that some of
the wires were skewed (kinked and'stretched) during handling
and removal from the storage duct. The skewed wires were
marked. The pitch of the wire varied between 11 to 13 in.
Overall, however, the bundle appeared satisfactory, so the

tests were conducted as scheduled.

At completion of the tests we examined the bundle and
noted that a few more wires had been skewed in the course of
tests (probably due to the previously-described looseness).
However, because the percentage of skewed wires was small and
the data on all runs was close, we assumed that the skewed

wires had only a minor bearing on the test results.

5.5
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5.3 MARK I COMPRESSION TEST RESULTS

5.3.1 " Preliminary Compression Test Results

Eight preliminary runs were made to gain operafing experi-
ence, establish techniques, and to improve performance of the
test apparatus. In the proéess of running the first eight runs,
it was determined that:

e A maximum of 0.002-in. compression steps and 0.004-in.
decompression steps were permissible.
o« There was spring action in the Gilman Slide assembly
system in addition to the transducers.
The best technique of compression steps was to advance all
shaft driven bars first and then the transducer bar,
although it made no noticeable difference.
e The decompression step procedure should be carried out in
opposite order of the compression step procedures.

e The test results were reproducible.

A test-was performed to see if it made -any difference to
let the subassembly rést on the upper grid rather than to sus-
pend it from a hoist. The test results were practically identi-
‘cal for both methods.

A test was also performed with the subassembly row of wires
raised 3 in. above the transducer line of center. Although the
two transducers readings differed substantially from each other,
when they were added together and divided by two, the load-
displacement curve was nearly the same as in the other prelimi-

nary test runs.

5.3.2 Final Compression Test Results

Ten final test runs were made. Three test runs were made
on side "U", and one run was made on-each of the other sides.
Also, on side U, one special Ttun was made with the subassembly
sitting on the support base, and anofher spécial run was made

with the subassembly wire row 3 in. above the transducer centers.

5.6
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Test curves for both special test runs were within the range

shown in Figures 5.4 and 5.5. Figures 5.4 and 5.5 are based

upon an average of the final six test runs (one run on each

side).

5.4

MARK I TEST CONCLUSIONS

Mark I test conclusions were as follows:

The spring constant for Mark I at the low loads between 0
and about 15 1b/ft/side (Figure 5.4) is not linear.
Figure 5.5 shows that the spring constant between 15 to
75 1b/ft/side is approximately 4 1b/0.001 in. and from

75 to 250 1b/ft/side about 7.3 1b/0.001 in.

After the tests were concluded, the 7.3-1b/0.001-in.
spring constant was found to be in error (too high) due
to over-correction in advancing the load measurement
pressure bars. The correct spring constant value could
be determined only by retesting Mark I.

The Mark I subassembly is resilient. There was no resid-

.ual forces or permanent deformation during testing.

Hysteresis was very low, and it disappeared when the sub-
assembly was removed from the test apparatus.

The subassembly does not become hard after being compressed
to a tight subassembly size, but instead has spring com-
pression greater than 250 1b/ft/side.

The subassembly compressibility test results are practi-
cally the same whether the inverted subassembly is

- suspended by its lower grid with locking bars or resting

on the upper grid.

Forces are transmitted from the subassembly to the test
apparatus sides through the wires adjacent to the sides.
This is indicated by the fairly well-balanced load measured
by the two transducers when wires were lined up on them

and is indicated by the difference in individual loads

when the wires were offset 3 in. from the transducers.

[Fa]
~J
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LOAD IN POUNDS PER LINEAL FOOT (LBS/FT/SIDE)

ACROSS THE FLATS DIMEHSIOH, THCHES

4,223 4,216 4,208 4,200 4.]92' 4,184 4,176 4,162 4,160
T T T I U T T T T T T T 1( ] T
240 — : ; 4
i (HIGH) /
220 —
200
180
160 [~
-
140 “"
120 —
100 I—
80 |~
60 F’
40 —
20 =
0 - .
l 1 ;l A l i l bl | ¥4L 1 1 1 l 1 l 1 L
0.002 ° 0.010 0.018_ 0.026 0.034 0.042 0.050 0.058 0.066

COMPRESSION ACROSS THE FLATS, INCHES

FIGURE 5.4. Summary of Mark I Compression Test Runs
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30

LOAD IN POUNDS PER LINEAL FOOT (LBS/FT1/SINDL)

10 I~

] 1 1 1 | |
0.000 0.008 0.016 0.024 0.032 0.040

ACROSS THE FLATS COMPRESSION, INCHES

FIGURE 5.5. -Summary of Mark I Compression Test Runs

Although some of its wires were loose and kinked, the
Mark I subassembly still represents its original configu-
ration, and it gave representative results.

The "tight subassembly size'" was approximately 4 194 in.

across the flats.

5.9
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6.0 CCTL MARK IT SUBASSEMBLY COMPRESSION TESTING

6.1 MARK II SUBASSEMBLY DESCRIPTION

The Mark II subassembly is similar to the Mark I subassem-
bly. It consists of 217 wire-wrapped fuel pins and is assembled
into a hexagonal cross-section bundle. The subassembly and
details of the unit are shown in Figures 6.1 through 6.3
(BNW Drawings SK-3-15242, SK-3-15243, and SK-3-15244).

The subassembly was made up of 92-in. long x ~0.230-in.
diameter pins spaced by 0.056-in. OD, 20% coldwork wire wrap
with a triangular pitch. The wirc was wrapped on a 12-in. pitch
with 8-1/2 1b of tension. The fuel pin was made up of Type 316
SS tubing with a 0.200 in., ID. This was loaded with (starting
aththe bottom) six l=in."reflectors, 37 in.. of depleted UO2
pellets (0.197-in., OD), six l-in.-reflector rods, a plenum
spring, and a 34.5-in. long plenum tube. The fuel pins were

held together by grids at both ends of the subassembly.
6.2 MARK IT HISTORY

The CCTL Mark II fuel assembly was fabricated for a flow
test to evaluate potential long-term failure modes for a semi-
prototypic EFTFdriver fuel assembly. The test will be per-
formed at the Argonne National Laboratory in the Core Components
Test Loop,  The test will censist of circulating 525 gal/min of
1100°F sodium through the 217 pin assembly for a period of
approximately 9000 hr.

After assembling the 217 pins into upper and lower grids,
and prior to assembling them into a flow duct, the Mark II sub-
assembly was compression tested in Room 138 of the 308 Building.
The compression testing work commenced on February 13, 1970.

The subassembly was always kept vertically oriented (right side
up) throughout the test period and experienced no more than
hand pressure on the sides outside of the compression test

apparatus.
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i B DESERIPTION - & e IMATIL
| | ASSEMBLY
=[[3]enp cap-ToP H-3-29540 316SST
=[ 1 |5/ END CAP-BOTTOM 316 SST
== 1 | 6] SPRING _
BE=AR] 7| INSULATOR PELLET war. 0o,
=1 [io [ PLUG e e N T
=]2 0D -0.19 <. G *o. " [3lessT
== 1 |13 | TuBE -0.230 £00T0D x 0,200 20011 Dx 90000551 1316 SST
&=lAR[ 14 | WIRE -0.056 %0005 pla 316 SST
/A AR[[15| FUEL PELLET SIMULATED
IyYP PIECE MARK
GENERAL NOTES
ALL PARTS, UNLESS OTHERWISE SPECIFIED, SHALL CONFORM TO THE
FOLLOWING :
1~ TOLERANCES , FRACTIONAL * e"4 , DECIMAL 005, ANGULAR £ 0 30’
2:REMOVE ALL BURRS ANN ARFAK SHARP EDGES TO & MIN RADIUS,
EXCEPT WELD PREP AREA (TUBE ENDS & LIPS)
32
3-ALL MACHINED SURFACES \/SURFACE ROUGHNESS SHALL BE IN
ACCORDANCE WITH US A S | B 46.1 (LATEST REV)
A-DIMENSIONS & TOI FRANCES IN ACCORDANCE WITH USASI Y-145-1966

5-MATERIAL 316 SS T SPECIFICATION HWS- 100l

6:-FUEL PIN SHALL SHCW A MAXIMUM BCW NOT TO EXCEED 010 PER
LINEAL FOOT. TOTAL FOR PIN NOT TO EXCEED 025.

7-END CAP WELD DIAMETER SHALL NOT PROJECT MORE THAN .003 BEYOND
THE TUBE DIA .

8-PELLET LENGTH TO DIAMETER RATIO SHALL BE .75éL/D <20

9 REFERENCE POINTS FOR WIRE TWIST START & STOP

10-END CAP PLUGS SHALL BE MACHINED TO FIT TUBE. PLU6 DIAMETER SHALL
BE 0.0007 TO 0.0013 LESS THAN TUBE INNER DIAMETER.

AII. 308 SST FILLER MATERIAL SHALL BE USED IN WIREWRAP TO
END CAP FILLET WELDING

SK—-3-15243
Sheet 1 of 1

CCTL Drivex Fuel
Pin Assembly and Details
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CCTL Driver Fuel Locking

and Spacer Grid Details
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The subassembly was positioned by a handling fixture which
was basically a sling that supported the subassembly through
dummy locking bars at the lower grid. During compression tests,
the handling fixture was removed and the subassembly rested on

the test apparatus support base.

6.3 MARK TI COMPRESSION TEST RESULTS

6.3.1 Preliminary Compression Tcst Results

Eight preliminary test runs were made on various sides of
the subassembly. These were used to establish techniques for
the new bundle and pressure bars. The tests established that:

e The techniques for the tests were basically the same as .
those used for the Mark I subassembly.

e The runs were reproducible for the subassembly in the‘same
position both for compression and decompression.

e Test data curves were similar in shape to those found for
the Mark I subassembly tests,

e The new set of pressure bars had a slight interference on

Side 1.

o. The correction curve used was slightly incorrect.
The pressure bars were modified and the correction curve

was replotted after another setup calibration run.

6.3.2 Final Compression Test Results

Three final test runs were made, each with a side 60° apart
from the one previously tested. The test run results are shown
in Figures 6.4 through 6.6 and are summarized in Figure 2.2

The compression test summary curve indicates a changing
spring constant from 0 to 15 1lb/ft/side. From approkimately 15
to 50 1b/ft/side, the curve shows a spring constant of about
5.15 1b/ft/side per 0,001 in.
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LOAD IN POUNDS PER LINEAL FOOT (LBS/FT/SIDE)

ECROSS THE FLATS DIMENSION, INCHES

4.355 4,347 4.339 4,331 4.323 4,315 4,307 4,299 4.291
60 T | i | | 1 | |
RUN NUMBER: OJHE (1)
TIME: 2/18/70 @ 11:0n0 AN :
50 b SUBASSEMBLY ORIENTATION: SUBASSEMBLY SIDE #1 ON
- i APPARATUS SIDE #3, LOWER
WIRE WELD 20" FROM BOTTOM
. , OF PLATE #3
NOTE: (X)'s DENOTE DECOMPRESSION VALUES
40 | .
30
20
10 -
0 O : A .
] 1 | | | ] | | ] ] 1
0.000 0.008 0.016 0.024 0.032 0.040 0.048

ACRDSS THE FLATS COMPRESSION, INCHES

FIGURE 6.4. Mark II Compression Test, Run One
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FOOT (LBS/FT/SIDE)

LOAD IN POUNDS PER LINEAL

ACROSS THE FLATS DIMENSION, INCHES

4.355 4.347 4,339 4,331 4.323 4.315 4.307 4.299 4.291
60 | ! | I | | I
RUN NUMBER: TWO (2)
TIME: 2/18/70 @ 1:30 PH
) |-  SUBASSEMBLY ORIENTATION: SUBASSEMBLY SIDE #1 ON
APPARATUS SIDE #2, LOWER
WIRE WELD 10" FROM BOTTOM
OF PLATE #2
40 |-
30 [
20 |-
10
0 o SR, SR o WY  S— {
] J | | ] ] I | ] | ] ] |
0.000 0.008 0.016 0.024 0.032 0.040 0.048

ACROSS THE FLATS COMPRESSION, INCMES

FIGURE 6.5. Mark II Compressior. Test, Run Two
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LOAD IN POUNDS PER LINEAL FOOT (LBS/FT/SIDE)

ACROSS THE FLATS DIMENSION, INCHES

4.355 4,347 4.339 4,331 4,223 4.315 4.3C7 4.299 4.291
60 LI T T — 1 T T T T
RUN NUMBER: THREE ¢3)
TIME: 2/18/70 @ 3:40 PH
SUBASSEMBLY ORIENTATION: SUBASSEMBLY SIDE #1 ON
50 [— o o APPAFATUS SIDE #1, LOWER
WIRE WELD 12" FROM BOTTOM
OF PLATE #1 :
40 [—
30 -
20
10—
o
| N

0.000 0.¢08 0.016 0.024 0.032 0.040 0.048
ACROSS THE FLATS COMPRESSIdN,‘INCHES

FIGURE 6.6. Mark II Compression Test, Run Three
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The hysteresis curve shown in Figure 6.4, Run F—l; was
characteristic of all the runs made, based on preliminary run
test results. The graphs of the compression and decompression
run curves matched at zero force on all runs, thus indicating
complete relaxation of the fuel pins.

6.4 'MARK IT SUBASSEMBLY TEST CONCLUSIONS

The Mark II fuel pin subassembly is resilient. There was

no residual forces and no measurable or visible damage during
testing. There was little hysteresis shown between the com-
pression and decompression curves. The bundle acts as a spring

even beyond the 4.297-in. '"tight subassembly size' point.

The test compression curves show a low and upward wvarying
slope until the region just beyond the 'tight subassembly size'
point. Beyond this region, the curve slope is constant .
(reflecting the spring constant of the bundle) up to the limit
of the test (50/1b/ft/side). The slope in this region is
0.001 in. per 5.15 1b for a 1-ft portion of the bundle side.
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7.0 CALCULATIONS

7.1 TIGHT SUBASSEMBLY SIZE

The form of calculation and the calculations used to find

the '"tight subassembly size' are given in Appendix B.

Calculations for a Mark I '"tight subassembly size' could
be made only with pre-CCTL test dimens}ons. The Mark I sub-
assembly would have to be completely disassembled, and selected

fuel pins and wires would have to be destroyed to get an accu-
rate post-CCTL measurement. Using the best figure availablé,
the pre-CCTL test dimensions result in a ”tighf subassembly
size'" of 4.1898 in. (compared to a 4.194 in. actual test value).

The Mark II subassembly had a calculated ''tight subaésembly
size" of 4.3036 in. (compared to a 4.297 in. test value). This
subassembly used measurements which were taken before assembly

on the 30 characterized fuel pins.

7.2 COMPRESSION SIDE LOAD (1b/ft/SIDE)

To determine the load on a subassembly side, the loads
measured on the two transducers were added together and divided

by two for determining the average load in 1b/ft/side.

The initial top and bottom transducer force readings are
recorded on the Data Run Sheet and the instrument readings are
converted to force in 1lb/ft/side and plotted on the Test Run

Graph. The calculation is made as follows:

% ( Top . Bottom
of scale ‘Reading Reading’ Full Scale Value. 1b
’
2 x 100 ° ’

= Average 1b/ft/Side

e

g x 25 1b scale = 1 1b/ft/side

[ (%2
Of o

i.e., 0

+
X
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7.3 ACCURACY

The uncertainty of the distance and force measurements

made with the compression fixture are as follows:

e The value and absolute uncertainty for the across-flats
distance to which all across-flats measurements were
referenced was 4.210 * 0.0036 in. for the Mark I subassem-

bly and 4.336 ;%—%%%% in. for the Mark II subassembly

(relative uncertainty was thus = 0.09% and —%—%%;
respectlvely)

e The absolute uncertainty in the amount of compression
from the reference across the flats dimension to another
size was * 0.001 in.

e« The uncertainty in the force readings was * 1%.

The absolute uncertainty in the calculated value of tight
subassembly size for each subassembly was faifly large because
of the limited measurement accuracy ,of the diameter of the
wire and tubing used in the subassemblies. The tight subassem-
bly size calculation given in Appendix B magnifies these uncer-

tainties much greater because there are 17 rows of pins.

A random sample of outside diameter measurements was taken
for the tubes and wires used in each subassembly (Table 7.3).
The average of these measurements for each part was used to
calculate the tight subassembly size given previously for each
subassembly. The dverages were considered as having the
"measurement uncertainty' of + 0.0003 in. which in turn
resulted in an absolute uncertainty for the calculated tight
subassembly size of each subassembly of * 0.009 in.

7.2
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TABLE 7.3. Random Sample of Outside Diameter
Measurements Taken for the Tubes
and Wires Used in Each Subassembly

Number of ‘ Average Uncertainty
Items In Measurements Diam,* of Range,
Subassembly Part Sample Per Item in. OD Measurements in. OD
Mark I Tube 15 1 ‘ 0.2502 0.0003 0.2510
‘ 0.2498
Mark 1 Wire 218 1 0.0298 0.0003 0.0293
0.0300
Mark II Tube 41 10 0.2298 0.0003 0.2296
0.2302
Mark II Wire 40 10 0.0561 0.0003 0.0559
0.0564

* All sizes were taken before exposure to sodium.

7.3
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8.0 CONCLUSIONS

Both the Mark I and Mark II fuel pin subassemblies
responded resiliently to the forces applied during compression
testing. The Mark I displayed this characteristic up to
250 1b/ft/side. No pefceptible or measurableldamage or resid-
ual forces were experienced by the Mark II subassembly. Mark I
damage was difficult to assess because of the subassemblies'

_poor precompression test condition.

The compressidn test curves of both subassemblies were
very similar. The curves confirm that the subassemblies do
not become solid at the "tight subassembly size' but continue
to react like a spring. The compression beyond the '"tight
subassembly size" point results in combined beam and torsional
bending of the fuel pins. The bending before this point is a
beam (leaf spring)-type action, because some of the fuel pins
have a natural outward bow which is being straightened. The
spring constants found for Mark I were:

Simulated Duct Load Compression Spring Constant

1b/ft/side 1b/0.001 in.
0 to 15 Varying Upward
15 to 75 4.0/0.001
75 to 250 7.3/0.001%

* This value is incorrect and the correct
value is lower but unknown.

The spring constants tor Mark II were:

'~ Simulated Duct Load Compression Spring Constant

1b/ft/side 1b/0.001 in.
0 to 15 Varying Upward
15 to 50 5.15/0.001

The steeper slope of Mark II in the 15 to 50 1lb range can
be partially attributed to: 1) Mark II's higher tube-wire

8.1
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moment of inertia in bending and torsion, and 2) the fact that
- Mark II fuel pins contained cladding and wires with 20% cold
work while Mark I contained fully annealed cladding and wire.
Another contributing factor for the steeper slope could have
been the oversized OD of Mark II fuel pelleté.

See the individual subassembly test conclusion sections of
this report (Paragraphs 5.4 and 6.4) for conclusions drawn
solely from that test.

The actual "tight subassemb1y size” for the two subassem-
blies were determined during compressibn testing as follows:
' Subassembly Tight Subassembly Size
Mark I 4.194 in. across-the-flats
Mark II . 4.297 in. across-the-flats

The compre551on test result data and curves cannot be used
d1rect1y to analyze the in-reactor case of both of the fuel pins
swelling larger than the duct dimensions and vice versa. The
reactor conditions were mot simulated in the compression test
because in the reactor:

e The fuel pin-duct interaction- 1ength will not be 4 feet long

.« The real growth of the fuel pins subassembly and duct will
not have a linear profile. '

e In-reactor forces and stresses will be different, because
instead of the duct shrinking to compress the subassembly,
the'subassembly‘will be growing to interact with a growing
duct* (growth of 1nd1v1dua1 fuel pins and ducts will depend
upon their position in a subassembly  and the reactor core) ..

« The tests were performed at room temperature, in common air, .
and during a short period of time (no more than 2 hr for a
full test run). B

* Component growth - sweZZzng rate of components is theoretical
“at this point in time; whether the duct-subassembly gap
decreases or increases is not factually known. This is the
latest thinking.

8.2
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Thus,it would require a complex solution and work to correct
compression test data for such factors as sodium environment,
pressure, temperature, end-of-life conditions, radiation-induced

and thermal-induced expansion, swelling and creep.
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9.0 RECOMMENDATIONS

The Mark II subassembly should be re-tested when it is
returned from Argonne National Laboratory. This will help to
determine the effect of long-term, hot-sodium flow on the
subassembly resilience, the tight subassembly size, and the
overall subassembly springiness characteristics for comparison

to the pre-CCTL compression test results.

One or two special subassemblies should be built for
compression tests only. It should be FFTF prototypic but
versatile enough so that tests can be made with various size
and shape wire-wrap (that is, wire tapered to match contour of
fuel swelling profile). This type of data would not only be
helpful in establishing design parameters on cladding, wire,
and duct dimensions, but most important, it wbuld'help establish
the tolerances necessary to meet in-reactor requirements.
Development tests could also be performed to determine sub-
assembly creep measurements, damage assessment, etc. When
swelling profiles can be predicted atcurately, the swelling

contour could be ground onto the pressure bars.
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TEST PROCEDURE FOR COMPRESSION
OF PROTOTYPIC FFTF FUEL SUBASSEMBLIES

R. B. Baker and D. E. Blahnik

1.0 SUBASSEMBLY COMPRESSION TEST PURPOSE

The purpose of compression testing a prototypic FFTF
driver fuel subassembly* is to determine the springiness*¥*
that exists within the subassembly when it is compressed sym-
metrically from a maximum or nominal internal duct size down
to beYond a tight subassembly size.l The'spring load on the
simulated duct wall is to be measured as a function of various
across-the-flat dimensions. Figure A.1l.1 shows a typical curve

which can be plotted from subassembly compression test data.

* Subassembly - A (driver fuel) subassembly is defined in this
test procedure as being "an assembly of 217 completed fuel
pins banded together by grids at each end.'" Normally, a
fuel subassembly also includes locking bars and the straight
flow duct section.

** Subassembly Springiness - When a fuel pin subassembly, such
as Mark II, is in the vertical position, the fuel pins can-
not bow significantly towards the center. Therefore, most
of the outer pins are randomly forced outward by a combina-
tion of their own natural bow and the forces transmitted by
the natural bow of internal pins. When,a subassembly is
compressed to a tight subassembly size, all of the natural
spring is absorbed. If a subassembly is compressed beyond
tight subassembly size, the fuel pins react as a combination
of leaf and torsion springs. ’

t  Tight Subassembly Size - Point at which all fuel pins and
wires are compressed tightly together without any deforma-
tion of the subassembly components. There is no outward
displacement due to natural bow of the fuel pins and no gaps
between wires and fuel pins. When a subassembly is com-
pressed beyond this point the load-compression deflection

curve becomes linear. This term was previously referred to
as "bundle theoretical tightness."”



WHAN-FR-18

The data shall be used to:

~ SIMULATED DUCT WALL LOAD (POUNDS/FT/SIDE)

INCREAS ING LOAD (FORCE) —=

Characterize the subassembly's tight size and springiness.
Analyze the in—reacfdr cases both of the fuel pins swell-
ing larger than the duct dimensions and vice versa.
Assist in establishing dimensions and tolerances on the
fuel pin OD, wire OD, and the duct internal dimensions to

assure proper fit for reactor requirements.

SUBASSEMBLY SPRINGINESS _ﬁ

CURVE BEYOND THIS

NOMINAL DUCT INTERNAL
POINT IS UNKNOWN

ACROSS FLATS DIMENSION
(COMPRESSION TEST '
/ STARTING POINT)

[
: U TESTLIMIT-
|
I
|

l

. , ‘ |

ZEROOR LOW - FUEL PIN AND WIRE :
|

|

" GPRING CONSTANT ~™T*—— GAP CLOSING —*
ZONE - TRANSITION ZONE \
" (~LINEAR) (NON L INEAR) .

TIGHT SUBASSEMBLY SIZE -
NO GAPS BETWEEN FUEL P INS,
WIRE, AND DUCT; FUEL PINS
STRAllGHT WIO DEFORMATION

| HIGH SPRING CONSTANT ZONE -

|, FUEL PINS AND SUBASSEMBLY
DEFORMED AND REACT AS
L | COMBINATION LEAF AND
. - TORSION SPRINGS

' (~L INEAR)

INCREASING COMPRESSION
ACROSS THE FLATS COMPRESSION DISTANCE (INCHES)

FIGURE A.1.1. Typical Subassembly Compression
Test Data Curve

A.1.2
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2.0 COMPRESSION TEST APPARATUS DESCRIPTION

Figure A.2.1 shows the complete subassembly compression
test apparatus and related system components. Drawing
H-3-29508, sheets 1 through 4, (Figure A.2.2) describe the
design of the test apparatus in detail. Closeup pictures of
the lower end of the apparatus and the load transducer section
are shown in Figures A.2.3 and A.2.4. A closeup view of the
transducer amplifier-indicator instruments is illustrated in

Figure A,2.5.
2.1 GENERAL DESCRIPTION

Basically the test apparatus consists of a heavy walled
steel pipe supported rigidly in a vertical position by a heavy
base with gussets. Inside.the pipe body are located
1 x 2-5/16+in. bars on each of six equally spaced positions.
Five sides contain bars that are 48-in, long, and they are
supported vertically by four male shafts threaded through the
pipe body with drive handles spaced on one foot centers. The
matching female threads are located inside the pipe. The drive
handles are turned to move the bars. The pressure bars are
held on the ends of the shafts by spring-loaded ball plungers.

The sixth-side, the one on which the load is measured,
contains 1-ft pressure bars at the top and bottom and a 2-ft
bar in the center which is supported by two transducer shafts
centered and spaced 1-ft apart on the bar. The 1-ft bars are
each supported by two threaded shafts with drive handles; they
perform the function of preventing the subassembly "end effect®

from affecting the load measurement bar readings.

* [End Effect - This term refers to the location on the sub-
assembly where there is a transition from subassembly
restraint by the test apparatus pressure bars to non-
restraint above and below the 4-ft pressure bars section.
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HOIST CABLE

SUBASSEMBLY
HANDLING FIXTURE

CCTL MARK I

DRIVE SUBASSEMBLY

HANDLE 6-A
DRIVE HANDLE AND DIAL

DIAL INDICATOR INDICATOR 1-A

6=A
DRIVE TOP TRANSDUCER (SIDE #1)
HANDLE 5=B SLIDE ASSEMBLY W/DIAL
INDICATOR REMOVED

DIAL INDICATOR

S8 BOTTOM TRANSDUCER (SIDE #1)
SLIDE ASSEMBLY W/DIAL
INDICATOR REMOVED
TOP TRANSDUCER BOTTOM TRANSDUCER
AMPLIFIER AMPLIFIER
INDICATOR INDICATOR
INSTRUMENT INSTRUMENT
PRESSURE

BAR (SIDE #6)

SUBASSEMBLY
SUPPORT BASL ™

NEG. 0694656-1

FIGURE A.2.1. Subassembly Compression
Test Apparatus
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FIGURE A.2.4. Subassembly Compression Test Apparatus,
Load Transducer Section
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The transducer shafts are fixed in the transducer recep-
tacle, and the transducers are mounted on Gilman slide assem-
blies which drive the 2-ft load measurement bar. The
transducers are connected to amplifier-indicator instruments

located on a table for reading out the transducer loads.

Two dial indicators are also mounted on the Gilman slide
assembly transducer brackets and are referenced against the
pipe body outer diameter. These dial indicators are used to
properly locate the load measurement bar by compensating for
springback in the transducer spring and the Gilman slide

assembly system.

Each of the two force transducers are Daytronic Model
Number 152A-250 and each of the two amplifier-indicators are
Daytronic Model Number 300D-71. The amplifier-indicators have
force scale ranges calibrated for 0 to 25 1b, 0 to 125 1b, and
0 to 250 1b (scales 1, 5, and 10, respectively).

A cross-section of the test apparatus is shown in
Figure A.2.2, sheet 1.

2.2 TEST APPARATUS COMPONENT IDENTIFICATION

2.2.1 Side Identification

Side No. 1 is the side equipped with transducers, as shown

in Figure A.2.1. The other sides are numbered 2 through 6
counterclockwise as viewed from the top.

2.2.2 Dial Indicators and Drive Handles

The dial indicators are lettered A, B, C and D on each of
Sides No. 2 through No. 6. On Side No. 1, they are lettered A,
B, C, D, E and F. The designation for a particular dial is the
side number accompanied by the dial letter (for example, 2A,
5C, etc.) Such a designation is located close to each dial on
the fixture pipe body (Figure A.2.4). The dial indicators on
the slide assemblies are referred to as '"top'" and '"bottom"

slide dial indicators according to their position.

A.2.10
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The pressure bar drive handles are also lettered top to
bottom A, B, C and D on each side. They coincide in designation
with the dial indicators except for the bottom two handles on
Side No. 1. A designation for each handle is affixed to the
fixture pipe body.

2.2.3 Load Measurement Section

The transducers, dial indicators, and slide assembly
systems are identified as shown in Figure A.2.4. They are

referred to as '"top" and '"bottom'" based upon their position.

2.2.4 Remaining Apparatus Components Identification

The remainder of the major components are identified as

shown in Figure A.2.1.

2.2.5 Test Subassembly Designations

Each of the subassembly's six sides has a row of nine tubes
along its face. Each tube is wrapped with a wire, and the wires
on the nine tubes are all oriented so that every 12 in. along a
side, there is a row of wire wraps extending beyond the cladding
and towards the duct. The side with the row of wires facing
the duct closest to the upper grid is side '"U'", and the remain-
ing sides are lettered V, W, X, Y and Z counterclockwise looking
from the top. The series of letters will be temporarily or
permanently marked on the proper side of the lower and/or upper
grid for identification.

2.2.6 Setup Standard

The setup standard is shown in Part 18 of Figure A.2.2,
sheet 4 and Figure A.2.6. This standard will be used to accu-
ralely align the pressure bars on all six sides, zero the dial
indicator gages, calibrate the spring in the transducer/slide
assembly system, and check to ensure that there is no drift in

alignment or gage readings during and after the test.

A.2u1F
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FIGURE A.2.6. Top View of Compression Test Apparatus
With Setup Standard in Place

A,2,12
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3.0 TEST APPARATUS SET UP AND CALIBRATION PROCEDURES

3.1 J0B HAZARD BREAKDOWN

Prior to starting test associated work, read and understand
the Job Hazard Breakdown in Figure A.3.1. Also, read the

appropriate hoist operating procedures and Job Hazard Breakdowns.

3.2 TEST PROCEDURE'KNOWLEDGE

Prior to starting set up and calibration work, read and
understand the "Test Procedure for Compression of Prototypic
FFTF Fuel Subassemblies."

3.3 PRE-SET UP CALIBRATION

Both the force transducers and their respective amplifier-
indicator instrumentation shall be calibrated at the Standards
Laboratory before mounting them on the test apparatus.

A1l dial indicators shall be calibrated as deemed necessary
by the responsible engineer and between tests if a new setup

standard is to be used for zeroing the dial indicators.

Each time the compression test apparatus is physically
relocated or structurally changed,. the complete apparatus must
be releveled and setup steps per Section 3.5 must be redone.

, Each setup standard shall be thoroughly characterized at
the Standards Laboratory. ’ ‘ |

3.4 TEST PLAN

An approved Test Plan must be written for each compression

test. Read and understand the Test Plan.
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] JOB HAZARD

JOB DESCRIPTION

JHB NUMBER

Subassembly Compression Testing ‘
BREAKDOWN COMPONENT - SUILDING
FFTF Fuel Subassembly Development Section 308
REVIEWED BY PREPARED BY DATE
INDUSTRIAL SAFETY R. B. Baker/D. E. Blahnik 4-30-70

DATE INITIALS

REVIEW DATES

L

L. |

SAFETY EQUIPMENT REQUIRED

.TOOLS & EQUIPMENT REQUIRED

JOB PREPARATION

Hardhat when handling
subassembly with .crane

‘Safety glasses

Hoist

Compressibility Apparatus
Ladder -

Platforms,

Handling Device

1.

2.

Assure that the ladder and plat-

forms are set up safely

Work area must be free 0f slipping
or tripping hazards.

. Read and understand the compressi-

bility test procedure.

HAZARDOUS MATERIALS

RELATED REQUIREMENTS

Pu02 and UO2

NUCLEAR SAFETY SPEC.

RADIATION WORK PROCEDURE Yesm NO D

vssm ~o []

Jos STEP

HAZARD

SAFETY RULES AND SAFE PRACTICES

1. Loéding subassembly
with handling device.

2. Loading test appara-
tus. .

3. Adjusting clamp screws
and reading dials
while stepping up,
down, and around the
platform.

4. Need for applying
hand force to face
of pressure bars or
reaching under
unloaded compression
fixture.

1. Incompletely assembled
_ subassembly.

2. Pinchpoint where sub-

assembly enters appara-
tus.

Fall from ladder.

Hazards associated with
use of crane.

w

. Falling or sprains.

4, Falling of a pressure
* plate off shaft and
out bottom of pipe

fixture body.

Make sure all parts are fully
'assembled and tight.

. Guide lower part of subassembly or

setup bar into apparatus with a
hand at least 8 inches above the
lTower end. Subassembly or setup
bar must be lowered slowly with
short "jogs." Make sure your
balance on the ladder is good.

Follow safety rules and procedures
as outlined for use with crane.

. Step slowly and carefully.

. Handles should not be adjusted when
“any part of a person is directly

under the unloaded compression
fixture. Check position of pressure
bars from the top of the fixture
before doing such work. Block

- pressure bars in place, if possible,

when working under the fixture.

54=3000=220 - (1—70) aUC-RL PICHLAND, WASH.

FIGURE A.3.1

. Subassembly Compression Testing

Job Hazard Breakdown

A.3.2
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3.5 SET-UP PROCEDURE

3.5.1 Pre-alignment of Pressure Bars

Adjust the pressﬁré bars so their faces are approximately
the same distance from the center of the pipe. This can be
done by moving all the bars back against the pipe ID.*

| CAUTION
Do not back the handles out
of the pressure bars when
the bars are against the pipe
body. Also, ensure that all
dial indicators have adequate
travel allowance to prevent
jamming.

Set the dial indicator scales at zero and move the bars in
equally to about a 4.375-in. across-the-flats dimension. Level
Side No. 4 so it is plumb.

3.5.2 Pressure Bar Alignment

Clean the 4.335-in. setup bar and carefully lower it into
the apparatus. Position the bar so that its bottom edge is
flush with the bottom edge of the pressure bars. Leave the
setup bar hooked to the hoist. ‘

CAUTION

Ensure that the load measure-
ment bar is at least 0.030 1in,.
further out from the pipe cen-
terline than the top and bot-
tom pressure bars on Side No. 1.

Bring in Side No. 1 top and bottom bars until the setup
bar is snug** between Side No. 1 and Side No. 4. Bring in
Sides Nos. 2, 5, 3 and 6, respectively, one at a time, and

* Side No. 1 pressure plates have beveled corners. Therefore,
keep them about 1/8 in. from the pipe.

**  Snug - lightly tightened by hand.



WHAN-FR-18

position: snug to the setup bar. At this point, all pressure
bars should be positioned snug but not overly tight on the
setup bar. Check this on each handle (especially handles 1-B
and 1-C). Place a small level on top of the setup bar and move .
it all the way around to ensure that the setup bar is plumb.

Next, bring in the transducer pressure bar and tighten
the slides until the transducers are almost registering a
force. Zero all dial indicators, and record the slide microm-
eter readings on the data sheet as shown in Figure A.3.2.
Record in the log the gross readings from each dial indicator

and the direct reading from the slides at this zeroed position.

3.5.3  Correction Calibration Curve Determination

When a load is applied to the load measurement bar, the
transducer and slide assembly systems deflect'(spring exists
primarily in the transducer spring and slide assembly drive
system). The amount of spring as a.function of force must then
be determined so that_a'correctiohAcan be made to assure proper
positioning of the load measurement bar during test runs. Plot
a correction calibration curve from spring defléction distance
versus load data.

Obtain the data by starting with the setup established in
Paragraph 3.5.2 and moving the slides inward in 0.00l1-in. steps
according to readings of the '"top'" and '"bottom" slide dial
indicators. After each step, record the force readout for
each transducer, the slide micrometer readings, and the dial
indicator readings. - Advance the slides in these steps until
you obtain (as shown in Figure A.3.2 example) approximately a
150-1b maximum force readout (60% on 10 scale) on each trans-
ducer. If the maximum specified test plén force exceeds 150 1b
advance in steps to 250 1b.

A.3.4
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SLIDE DIAL INDICATOR
CORRECTION CALIBRATION CURVE

DATA SHEET
Run No.: Final Run Date: 2/12/70
Standard Size: 4.336" By: D. E. Blahnik
Temperature: __ 80°F and R. B. Baker
TOP SLIDE BOTTOM SLIDE
Slide Dial Percent Slide Dial Percent
Micrometer Indicator Full Load Micrometer Indicator Full Load
Reading Reading Scale Reading Reading Scale
8 0 0 2 0 0
9 .6 10.1 3 .5 7.4
10 1.1 44 .8 4 1.0 52.0
11 1.7 97.0 5 1.4 91.2
12 2.2 15.8 x 10 6 1.8 14.1 x 10
13 2.5 21.8 x 10 7 2.1 20.0 x 10
14 2.9 "27.1 x 10 8 2.2 26.0 x .10
15 3.1 33.2 x 10 9 2.7 32.0 x 10
16 3.5 39.0 x 10 10 3.1 38.4 x 10
17 4.1 45.1 x 10 11 3.5 45.0 x 10
18 4.3 51.0 x 10 12 3.9 51.6 x 10
19 4.8 58.2 x 10 13 4.4 59.0 x 10
20 5.2 65.0 x 10 14 5.0 65.8 x 10
21 5.7 72.0 x 10 15 5.3 73.0 x 10
22 6.1 79.0 x 10 16 6.0 80.5 x 10
23 6.5 87.4 x 10 17 6.4 88.0 x 10
24 7.0 94.0 x 10 18 6.9 95.0 x 10
22 6.1 78.0 x 10 16 5.9 80.1 x 10
20 5.2 63.3 x 10 14 4.9 66.1 x 10
18 4.3 49.8 x 10 12 3.9 52.0 x 10
16 3.7 38.0 x 10 10 3.1 37.9 x 10
14 2.8 26.9 x 10 8 2.4 26.0 x 10
12 2.1 15.5 x 10 6 1.7 14.0 x 10
10 1.2 5.8 x 10 4 .8 3.1 x 10
8 0 .3 x 10 2 0 0

FIGURE A.3.2. Slide Dial Indicator Correction

Calibration Curve Data Sheet (Example)

A.3.5
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Reverse the procedure and record readings in the same size
steps until the instruments record zero force. If the microm-
‘eter, dial indicator,.and load readings are not the same both
when applying pressure and dépressurizing the setup bar, another
calibration run should be made. If after the second run the
readings do not match, analyze the problem before advancing to
-further test work. |

.Piot the dial indicator and corresponding force readings
from the calibration test on the type form shown in Figure A.3.3
for both pressurization and depressurization. Use the resulting
set of correction curves  to correct the slide adjustments dur-
ing compression of the sﬁbassembly. After compléting a series
0f~compressioh tests repeat this procedure to ensure that no
gross changes have taken place. If deemed necessary by the
responsible engineer, this can be peformed after each compres-

sion run.

‘Back off each bar 0.010 to 0.015 in. Back off the load
measurement bar at least 0.030 in. Bring one side out at a
time. Note that the nonslide dial indicators move negatively
as the pressure bars compress and move positively during decom-

pression.

Carefully remove the setup bar from the test apparatus and

store 1t 1n a proper container.
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4.0 TEST PREPARATION AND SUBASSEMBLY SETUP PROCEDURES

4.1 TEST PLAN CONFORMANCE

A Test Plan shall be written for each test. The Test
Plan shall include any requested deviations from the standard
procedures outlined in this document. It shall also include
the test load limits, subasscmbly orientation and description,
a list of other tests to be made with the same subassembly and

shall include all the special instructions required.

4.2 LOG BOOK REQUIREMENTS

A log book record shall be maintained of daily progress
and history. All data sheets pertaining to calibration, test-
ing, and the fuel pin subassembly must be kept for all tests
and runs. As-fabricated dimensions for the subassembly
(especially OD of cladding and wire wrap) should be determined
to the highest level of accuracy and detail possible. The
Test Procedures and Job Hazard Breakdown must also be kept in
the log.

4.3 AMPLIFIER-INDICATOR READOUT AND ADJUSTMENTS

Refer to the logbook for instructions on calibration,
adjustments, and readout of this instrumentation. The Stan-
dards Laboratory must perform the calibration work.

4.4 APPARATUS SUBASSEMBLY LOADING

Load the subassembly into a handling device similar to
the ones shown in Figures A.2.1 and A.4.1. The handling device
must be fabricated to operate with complete safety to person-

nel, equipment, and subassembly.

Check the pressure bars in the test apparatus to ensure
they are set up according to the last part of step 3.5.3 and
to ensure that the load measurement bar is further from the

pipe centerline than the other two bars on its side.
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FIGURE A.4.1. Mark II Subassembly
Handling Device




WHAN-FR-18

Hook the subassembly handling device to the hoist. Care-
fully 1ift the subassembly and transfer it to the compressibil-
ity test apparatus.

Lower the subassembly until it is about 1/4 in. above the
top of the apparatus. Before lowering it further, ensure it
is lined up in the X and Y axis. After the subassembly is
properly aligned, carefully guide it by hand into the fixture.
(Hands should be at least 8 in. above the bottom of the sub-
assembly). Then lower the subassembly to its final position
per the Test Plan. While the subassembly is lowered, keep
hands in an envclope around the subassembly to keep friction
with pressure bars at a minimum. Remove the handling device

if it is not required for the compression test.

The subassembly final position should be with the most
extreme projection of the nine outer fuel pins wire facing the

centers of the two transducers on Side No. 1.

Check to ensure that the maximum wire projection is 6 in.

above the top plate on Side No. 1.

CAUTION =

To prevent damage to the grids,
wire, and cladding during ori-
entation of the subassembly, en-
sure that both tops and bottoms
of pressure bars are no closer
than 6 in. from top and bottom
grids.

The Test Plan must take this caution into consideration. If
the subassembly design is changed substantially from that of
CCTL Mark II this whole tesl procedure must be re-evaluated.

The test can be made with either the bundle hanging or
setting on the apparatus subassembly support base. If the
support base is used, it must be releveled each time it is

adjusted prior to starting a test run.
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5.0 COMPRESSION TEST PROCEDURE

5.1 DATA SHEET PREPARATION

Prepare the Data Run Sheet and Test Run Graphs (Examples
are 'shown in Figures A.5.1, A.5.2. and A.5.3) by filling in all
pretest -data prior to starting the test run. These two sheets

are to be used for every test run made in the overall. test.

5.2 TEST RUN DESCRIPTION

5.2.1 Bring the'préssure bars into approximately the nbminal
across-the-flat duct inner dimension (that is, 4.335-in. dimen-
" sion for Mark II). Set all dial indicators at zero for the
setup bar readings. Because of the fabrication tolerances and
bow of the pressure bars it will not usually be possible to

get all dial indicators on one bar to read the exact same
number at the low force readings. The pressﬁre bars should
therefore be.adjusted until at least the center two dial indi-
cators on Sides No. 2 through No. 6 are at the desired reading
and the others as close as possibie. Ensure that all bars are

_tight against the drive handles.

5.2.2 Record the initial top and bottom transducer force read-
ings on the Data Run. Sheet. Convert the instrument readings
to force of 1b/ft/side and plot them on the Test Run Graph.

% ( Top , Bottom .
of scale ‘Reading ~Reading’ | 5 11 Scale Value 1b
’
2 x 100

= AverageAIB/ft/Side

% + 5%

> 1oo <25 1b scale = 1 1b/ft/side

that is,

5.2.3 Compress the subassembly in across-the-flats steps of
0.002 in. (0.001 in. inward on each pressure bar per the dial

indicator readings).
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DATA RUN SHEET
Run Number: Date: 2/18/70
Temperature: 80°F By: D. E. Blahnik and R. B. Baker
Subassembly Orientation:_1 on 3 Subassembly No: CCTL Mark II
Starting Across-the- -
Flats Dimension: 4.336 .in Subassembly Dwg. No.: SK-3-15242 Rev. 4
COMPRESSION DECOMPRESSION
Across-The- Top Bottom Top Slide Bottom Pressure Top Bottom
Flats Transducer Transducer Dial Slide Dial Bar Dial Transducer Transducer
Compression, Force, Force, Indicator Indicator Indicator Force, Force,
in. % of Scale % of Scale Read., in.| Read., in. Read., in. % of Scale $ of Scale
0.000 0.5 1. 0 0 0
0.004 0.5 1. 2 2 48,
0.008 0.5 1. 4 4 46.
0.012 0.5 1. 6 6 44.
0.016 0.5 1. 8 8 42,
0.020 0.5 1. 10 10 40.
0.024 1.0 1.5 12. 12, 38.
0.026 1.5 2.0 13. 13. 37.
0.028 3.0 4.0 14. 14, 36.
0.030 4.5 5.0 15. 15. 35. 2.
0.032 9.0 8.0 (16.2) (6.2) 34, 4. 5.
0.034 16.0 13.5 a7.3 Q7.5 33. 8. 9.
0.036 24.5 24.5 18.5 18.5 32. 15. 15.
0.038 38.5 32.5 Q9.7 9.7 31.
0.040 63.0 60.0 (1) @1) 30. 48.0 42.0
0.042 11.5 x 10 11.0 x 10 23. 23, 29. 97.5 86.5
0.043 13.0 x 10 12.5 x 10 23.5 23.5 28.5
0.044 15.5 x 10 15.0 x 10 (24.3) (4.3 28. 14.5 x 10 13.0 x 10
0.045 19.0 x 10 17.0 x 10 (25.0) (5.0) 27.5
0-.046 21.0 x 10 19.0 x 10 (25.7) (25.7) 27.0

FIGURE A.5.1.

A.5.2

Data Run Sheet

I
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First advance the top and bottom pressure bars on Side
No. 1 and the bar on Side No. 4. Advance the bars on Sides
No. 6 and 3. Then advance the bars on Sides No. 2 and 5.
Finally, advance the load measurement section and make any
required corrections in the slide dial indicator readings.
Record the readings on the Data Run Sheet and Test Run Graph

after each step.

5.2.4 Corrections must be made to the slide dial indicator
readings to ensure that the load measurement bar is properly
located. The correction, taken from the Correction Calibration
Curve (Figure A.3.3) must be made to compensate for spring in
the transducer and slide assembly systems. (An average force
reading of 20% of the 10 scale, 50 1b would require advancement
of an extra 0.0024 in. on the slide dials. to compensate for

the load, based upon the example in Figure A.3.3) A circle
should be placed around the slide dial indicator readings on

the Data Run Sheets for each correction.

5.2.5 After the load 1limit specified in the Test Plan has
been reached, reverse the procedure and take readings for each
0.002 in. decompression step back to the test starting across-
the-flats dimension. The Test Run Graph should be plotted for
at least the first decompression cycle. Thereafter, decompres-
sion on a particular subassembly side can be made in 0.004 in.

across-the-flat steps or can be eliminated.

CAUTION

Never exceed the 250-1b

load 1imit because of design
-limitations of the drive
handle threads, transducers
and the slide drive systems.

5.2.6 With the subassembly in the same orientation, rerun the
test at least two more times to be certain of results and

reproducibility. If necessary, remove the subassembly from
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the teét'apparatus between test runs to ensure complete relaxa-
tion of the pins. 1In such cases, replace the subassembly in

its previous orientation.

During the first run the Test Run Graph should indicate
the point of '"tight subassembly size.'" In the following two
runs reduce the compression steps to 0.001-in. increments within
about 0.002-in. of the tight subassembly size so that the point
can be more accurately determined.

Prior to removing the subassembly from the test apparatus,
back off all bars 0.010 to 0.015 in. from the setup dimension.
Back off the load measurement bar at least 0.030 in. -

"5.2.7 Next remove the subassembly from the fixture, rotate it

60° clockwise (top view), and reload it. Repeat the procedures
described in 5.2.1 through 5.2.6. The subassembly will be 2 in.

higher than at the previous orientation.

At least one test run, but preferably two, must be made.
The number of test runs required will depend upon how closely
test results compare with the first subassembly orientation

results.

5.2.8 Repeaf step 5.2.7. Thus, three different sides of the
subassembly, each 60° apart, will have been tested agaiﬁst the
load measurement section (Side No. 1) at the end of this step.
A minimum of five’test‘runs, and preferably seven, will have
been performed to complete a full compressibility test of a
subassembly. If the minimum specified number of test runs are
made and the test results are close, perform (wifh concurrence
by the responsible engineer) additional test runs with compres-
sion steps of up to 0.004 in. in the low spring constant zone.

A.5.6
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If the test curves on the three sides tested show a spread
of greater than 0.004 in. at a 20 1b/ft/side load, it is
recommended that all six sides be tested at least once. If
the spreadis greater than 0.006 in., further analysis of the

subassembly and test equipment should be performed.

5.2.9 Recheck the Correction Calibration Curve per
Section 3.5.3. The curve should be within #0.0005 in. of

the original curve. Record and plot the data for comparisons.
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6.0 SUMMARY OF TEST RESULTS

Compare the results of individual test runs. Draw up a
summary graph showing the average test curve and the range of
curves. Determine discrepancies and take necessary corrective

action.

Complete and update logbook and data sheets. Summarize
the logbook data into a report which is detailed sufficiently

to meet. the Test Plan objectives.

A.6.1
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APPENDIX B

CALCULATIONS OF
"TIGHT SUBASSEMBLY SIZE"
MARK I AND IT SUBASSEMBLIES
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Typ 16 Plcs
Typ 2 Plcs —.rl-*

NDw = Wire diameter
Dc = Cladding outside diameter
D, = Dw + 9 A = Dc + Dw

D, = A cos 30° = (Dc + Dw) Cos 30°

L* = Tight subassembly size across flats_dimension
=16 D, + 2 Dy
= 16 (Dc + Dw) Cos 30° + 2 (Dw + 2°)

*Point at which. there are no gaps between wires
and fuel pins in the subassembly.

FIGURE B.l. Tight Subassembly Size Calculation
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TIGHT SUBASSEMBLY SIZE CALCULATIONS .

CCTL Mark II
Dw = 0.05606 -
Dc = 0.22984
D, = 0.5606 + 0.11492 = 0.17098
D, = (0.05606 + 0.22984) Cos 30° = 0.24760,
L = 16 (0.24760). + 2 (0.17098) = 4.3036 in.
CCTL Mark II
Dw = 0.0298 o
Dc = 0.2502 _
D, = 0.0298 + 0.1251 = 0.1549
D, = (0.0298 + 0.2502) (Cos 30°) = 0.24248
L = |

16 (0.2425) + 2 (0.1549) = 4,1898 in.

Al
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