
ANL-6697
Mathematics and

Computers
(T I D - 4 5 0 0 , 24th Ed.)
AEC Resea rch and

Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60440

A PRIMER ON THE ACT-III COMPILER
FOR THE

LGP-30 DIGITAL COMPUTER

by

H. C. Thacher , J r . and R. E . Grench

Reactor Physics Division

October 1963

Operated by The Universi ty of Chicago
under

Contract W-3 1-109-eng-38
with the

U. S. Atomic Energy Commission

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

2

TABLE OF CONTENTS

Page

I. INTRODUCTION. 7

II. NUMBERS. 8

A. Integers 8

1. Integer P r o g r a m Constants 8

2. Integer Problem P a r a m e t e r s . 8

B. Real Numbers . 9

1 o Real P r o g r a m Constants 9

2. Real Problem P a r a m e t e r s 10

III. SIMPLE VARIABLES . 12

IV. THE ASSIGNMENT OPERATOR . 13

V. ARITHMETIC OPERATIONS WITH REAL NUMBERS 15

A. Fundamental Operations . 15
B. Precedence of Operations . 16
C. Special Operations . 17

D. Bracke t s . 18

VI. STATEMENTS AND PROGRAMS 20

A. Statements . 20
B. Statement Labels . 21
C. P r o g r a m s . 21

VII. ELEMENTARY INPUT AND OUTPUT 23

A. Input . 23

1. Integers . 23

2. Real Nuinbers . 23

B. Output . 24

1. Fo rma t Integer . 24
2. Real /Float ing-point Output. 24
3. Fixed-point Output of Floating-point Numbers 25
4. Integer Output . 25
5. Right Operand . 26
6. Car r iage Returns and Tabulates 26

TABLE OF CONTENTS

Page

VIII. ELEMENTARY CONTROL OPERATIONS . 28

A. Unconditional Transfe rs 28

B. Conditional Transfe rs . 28

1. Depending on Last Result . . 28

2. Depending on the Sign of an Express ion 29

C. Transfers from Data Input 31

D. Miscellaneous Control Operat ions 32

1. Stop 32
2. Breakpoint Jumps . 33

3. Overflow Skip . 34

IX. ESSENTIALS OF A DEFINITIVE PROGRAM 35

A. Names of Variables . 36

B. Remarks on P r o g r a m Tapes 36

C. Remarks on Data Tapes . 37

D. Sample Prob lems 37

X. COMPUTER OPERATION 38

A. Prepara t ion of P r o g r a m Tapes . 38

B. Translat ion . 39

C. Recompilation . 41

D. Punchout of Object P r o g r a m 41

E. Running the Prograna 42

F . Checking the P r o g r a m . 42

1. E r r o r Indications at Run Time 43
2. Use of Intermediate Output. 43
3. Statement Stopping . 43
4. Tracing 44

4

TABLE OF CONTENTS

Page

XI. USE OF LIBRARY PROCEDURES AND SUBROUTINES 44

A. General Call for P rocedures 45

B. Special Calls for P rocedures 45

1. Functions of One Variable 45
2. Functions as P a r a m e t e r s 46

C. Translat ion of P rocedures 46

XII. ARITHMETIC OPERATIONS WITH INTEGERS 47

A. Basic Integer Operations 47

B. Special Operations 48

C. Conversion between Integer and Floating-point Numbers . 48

D. Scaling Floating-point Numbers . 49

XIII. SUBSCRIPTED VARIABLES. 50

A. Dimension Statements 50

B. Single Subscripts . 50

C. Incremented Indexes . 52

D. Double Subscr ipts . . 52

XIV. ITERATIONS 54

XV. ADVANCED CONTROL OPERATIONS 56

A. Recalling a Subroutine. 57

B. Setting Switches 57

C. Indexed Switches 58

D. Calling P r o c e d u r e s . 59

XVI. SPECIAL OUTPUT AND INPUT . 59

A. P r o g r a m m e d Alphabetic Output. 60

B. Alphabetic Output and Input of Coded Information. 60

5

TABLE OF CONTENTS

Page

C. Repeated Alphabetic Output 61

D. Compatible Output 61

E. Hexidecimal Output and Input 61

F . Read and Float . . 61

XVII. WRITING NEW PROCEDURES 62

A. Basic Requirements . 62

B. References to Arguments . 63

C. Tempora ry Exits from a Procedure . 63

D. Global Variables . 65

E. Checking P rocedures 66

XVIII. MACHINE OPERATIONS 67

XIX. CONCLUSION 68

APPENDICES

A. E r r o r s at Compile-Time 69

B. E r r o r s at Run-Time . 70

C. ACT-III Opera to rs . 71

D. Summary of Operat ions . 75

E. ACT-III Opera tors and Decimal Memory Pr in t 76

F. Codes for "aread" 79

G. Solutions to E x e r c i s e s . 80

6

LIST OF FIGURES

No. Title Page

1. Flexowriter Keyboard 38

2. Computer Control Panel 40

3. Photoreader and High-speed Punch Control Panel 40

7

A P R I M E R ON THE A C T - I I I C O M P I L E R FOR
THE L G P - 3 0 DIGITAL C O M P U T E R

by

H. C. T h a c h e r , J r . and R. E . G r e n c h

I. INTRODUCTION

A u t o m a t i c d ig i t a l c o m p u t e r s offer a m e a n s of r e l i e v i n g s c i e n t i s t s
and e n g i n e e r s of m u c h t e d i o u s c a l c u l a t i o n . Our l a r g e s t e n g i n e e r i n g and
sc ien t i f i c p r o j e c t s depend upon a u t o m a t i c c o m p u t e r s to p r o c e s s and e v a l ­
ua te t h e o r e t i c a l or e x p e r i m e n t a l d a t a . Any c o m p l i c a t e d c a l c u l a t i o n which
m u s t be r e p e a t e d a dozen or m o r e , o r even f e w e r , t i m e s i s a w o r t h w h i l e
app l i ca t i on for the c o m p u t e r . Th i s is p a r t i c u l a r l y t r u e if the c o m p u t e r i s
r e a d i l y a c c e s s i b l e wi thout e x c e s s i v e a d m i n i s t r a t i v e d e t a i l s .

The m a n y ways of us ing a c o m p u t e r v a r y in scope and s p e e d . F o r
s m a l l p r o b l e m s in p a r t i c u l a r , it i s d e s i r a b l e to l ay a s m u c h of the b u r d e n
a s p o s s i b l e upon the c o m p u t e r . The diff icul ty a r i s e s in c o m m u n i c a t i n g
with a p r o g r a m m i n g s p e c i a l i s t . The v e r n a c u l a r of the s c i e n t i s t or e n g i ­
n e e r m u s t be p r o g r a m m e d for t r a n s l a t i o n to the l anguage obeyed by the
c o m p u t e r . The t r a n s l a t i o n i s a c c o m p l i s h e d by a s p e c i a l p r o g r a m c a l l e d
a c o m p i l e r . In m o s t c a s e s , t h e r e f o r e , the s c a l e s weigh h e a v i l y in favor
of the s c i e n t i s t or e n g i n e e r w r i t i n g h i s own p r o g r a m .

The p u r p o s e of t h e s e g e n e r a l n o t e s i s to give an i n t r o d u c t i o n to the
w r i t i n g of p r o g r a m s for the A C T - I I I c o m p i l e r for the G e n e r a l P r e c i s i o n
L G P - 3 0 C o m p u t e r , and to the p r o c e d u r e s for t r a n s l a t i n g and so lv ing p r o b ­
l e m s with t h e m . Th is c o m p i l e r was deve loped by D r . H e n r y J . Bowlden of
Union C a r b i d e , C l e v e l a n d , Oh io . M o r e d e t a i l e d spec i f i c s of the l a n g u a g e
and of the m o d e of a c t i o n of the c o m p i l e r a r e a v a i l a b l e in the m a n u a l s for
A C T - I I I , which he p r e p a r e d . T h e s e m a n u a l s a r e d i s t r i b u t e d t h r o u g h POOL,
the L G P - 3 0 U s e r s O r g a n i z a t i o n .

The r e a d e r m u s t acqua in t h i m s e l f with the l a r g e r p o r t i o n of t h i s
p r i i n e r to w r i t e h i s own p r o g r a m s . Sec t ions XI, XV, XVI, XVII, and XVIII
can be left for r e a d i n g l a s t , a s they con ta in m o r e a d v a n c e d p r o g r a m m i n g
or a r e not n e c e s s a r y for the w r i t i n g of s i m p l e p r o g r a m s . The a u t h o r s
s t r o n g l y r e c o m m e n d an in i t i a l s cann ing of the whole p r i m e r and then a d ­
d i t iona l w o r k on the b a s i c p o r t i o n s and e x a m p l e p r o b l e m s .

8

II. NUMBERS

Operation of the LGP-30 computer is typical of modern, high-speed,
digital computing equipment: calculations a re performed pr imar i ly by com­
bining a se r i e s of numbers through various ar i thmet ic operat ions . Ord ina r ­
ily, we are not concerned about the way numbers a re handled inside the
computer , but we must know how to get them in and how they appear when
printed out.

Therefore, we begin by discussing the way in which numbers are
written for the ACT-III compi ler . F i r s t , we must distinguish between two
kinds of numbers : in tegers , and rea l or floating-point numbers . These a re
represen ted differently in the program, a re combined by different opera­
tions, and a re often used for different purposes . Secondly, numbers which
enter a p rogram can be of two c l a s s e s : (l) p rogram constants , which will
be the same each time the p rogram is used; and (2) problem p a r a m e t e r s ,
which may vary from case to c a se .

The p r o g r a m m e r can p resc r ibe a var ie ty of formats for output,
which will be descr ibed at a la ter stage,

A. Integers

Integers are used p r imar i ly for counting, but they a re also valuable
in other applicat ions. ACT-III allows the use of positi^s/'e and negative in te­
gers between -536,870,911 and +536,870,911- However, a special mult ipl i ­
cation operation must be used if the product exceeds 134,217,727 m
magnitude .

1. Integer P r o g r a m Constants

Integer p rog ram constants a r e r e s t r i c t ed to positive values .
They can be entered in ei ther of two fo rms :

(1) Up to five digits , followed by a stopcode ('): for example,
123', 0' , 12345',

or

(2) A plus (+) sign, followed by one to four digits, a stopcode,
and zero to five digits, and another stopcode; for example,
+ r 2 3 4 5 r , +123'456', +123'.

2. Integer Prob lem P a r a m e t e r s

Integers which are problem p a r a m e t e r s , or data, may be of
ei ther sign, but a re l imited to a maximum of seven digi ts . The format

9

consists of a sign and one to seven digits, followed by a stopcode; for
example,

+ 1234567', -14 ' , +0000563'.

If tabs or other cha rac t e r s a re used to separate data, the full sign and
7-digit representa t ion must be used,

B. Real Numbers

Most calculation is done with rea l , or floating-point number s .* In
ACT-III, real numbers consist of a signed fraction, with magnitude between
0.1 and 1.0, and slightly less than eight decimal-place accuracy, and an ex­
ponent between -32 and 31. The value of the number is the product of the
fraction and ten to the value of the exponent. In addition, zero can represen t
ei ther a real number or an integer . Floating-point ar i thmet ic re l ieves the
p rog rammer from est imating the magnitudes of in termediate r e su l t s , which
is otherwise neces sa ry to avoid exceeding the capacity of the machine. It
i s , however, slower and less accura te .

1. Real P r o g r a m Constants

Real p rogram constants a re l imited to positive values . They
consist of the following components which must be specified in the sequence
cited:

(1

(2

(3

(4

(5

(6

(7

(8

decimal point;

one to four digits (the f irs t digit cannot be zero) ;

stopcode,

zero to five digi ts ;

stopcode J

exponent e (or e- if the exponent is negative);

absolute value of the exponent as a 1- or 2-digit number ;

final stopcode

*We will use the t e r m s " rea l " and "floating-point" interchangeably. The
t e r m "rea l , " as used in the international algori thmic language Algol,
descr ibes a number which can take on any positive or negative value,
or ze ro . The t e r m "floating-point" desc r ibes a par t icular way (in
ACT-III, it is the usual way) of represent ing a rea l number in the com­
puter. The floating-point representa t ion is closely re la ted to ordinary
scientific notation whereby very large and very small numbers a r e
represented with a scaling factor of a power of 10

10

Thus, as a rea l p rogram constant,

100,000.7 = 0.1000007 x 10^

would be expressed in the form

.1000'007'e '6 ' .

Simiilarly, the constant

0.00105 = 0.105 x 10"^

would take the form

.105"e- '2 ' .

When used for p rogram constants , the floating-point zero and
the fixed-point zero a r e both represen ted by zero .

Despite the apparent ability to specify up to nine significant
digits in the ACT-III corapiler, only the f irs t eight digits a re used in the
computer .

2. Real Prob lem P a r a m e t e r s

Real problem p a r a m e t e r s , or data, a re specified and ar ranged
in the following sequence:

(1) plus or minus sign;

(2) one to seven digits (the f irs t digit cannot be zero) ;

(3) stopcode;

(4) plus or minus sign (for the exponent);

(5) one or two digits (the exponent);

(6) final stopcode.

Thus, as a real problem pa rame te r

100,000.7

would be expressed in the form

-1000007'+6'.

11

Similarly, the pa ramete r

would take the form

and zero could be writ ten as

-0.00105

-105 ' -2 ' ,

+0'+0'.

EXERCISES

1. Expres s the following integers as integer p rogram constants and
as integer problem p a r a m e t e r s . If it is impossible to do so, indicate why.

a.) +1 e.) -536,870,911

b.) +321456 f.) 0

c.) -52 g.) +742,125,000

d.) +536,870,911 h.) +3.1416

2. Express the following integer p rogram constants as integer
problera p a r a m e t e r s and as in tegers . If it is impossible to do so, or if the
"program constant" is incor rec t , indicate why.

a.) +0' e.) 1'

b.) - r f.) 102"

c.) +1234" g.) +7000'00000'

d.) + r23456 ' h.) -TOO'OOOO'

3. Express the following numbers as floating-point p rogram con­
stants and as floating-point problem p a r a m e t e r s . If it is impossible to do so,
indicate why, and, if possible , give the nea res t approximation.

a.) 0 e.) 3.14159265

b.) 15.0 f .) 5.3 X 10^1

c.) 6.02x10^3 g.) -0.195 X 10"32

d.) -3.00 X 10^° h.) 0.253 x lO"^^

4. Express the following floating-point p rogram constants as
numbers and as floating-point problem p a r a m e t e r s . If it is impossible to
do so, or if the "program constant" is incor rec t , indicate why.

12

a.) .512'34678'e '5 ' e.) +.512"e'5'

b.) . 5"e - '32 ' f.) .512"e ' -5 '

c.) .7"e '32 ' g.) . 512 ' e - ' 5 '

d.) - . 4 " e ' 0 ' h.) .51234'2678'e'O'

5. Express the following floating-point problem p a r a m e t e r s as
floating-point p rogram constants and as numbers . If it is impossible to
do so for cer ta in c a s e s , or if the "problem pa ra me te r " is incor rec t ,
indicate why.

a.) +0'+0' e.) +1230000'+7'

b.) -1234567 '89 'e ' -5 ' f .) +0000123'+7'

c.) - 1 2 ' - 2 ' g.) +1234567'89'-5'

d.) +123456'+7' h.) . 1234567 ' - r

III. SIMPLE VARIABLES

In most calculat ions, the same set of operations is performed with
severa l different sets of n u m b e r s . These numbers a re substituted for single
l e t t e r s which denote the var iab les in the basic formula or s e r i e s of formulas
being computed.

In s imi lar fashion, ACT-III allows var iables which will be given
values ei ther by reading in problem p a r a m e t e r s or by calculations performed
during the p rogram. However, instead of res t r ic t ing the names of var iables
to single l e t t e r s , ACT-III will accept any combinations of up to five l e t t e r s ,
or l e t t e r s followed by digits or other symbols, and ending with a stopcode.
The program does not distinguish between upper and lower case l e t t e r s ;
hence. A' and a' would represen t the same identifier.

Certain words and combinations of l e t t e r s , digits, and/or symbols
a r e excluded from use as names of var iab les , since they r ep resen t specific
operations in the ACT-III vocabulary (see Appendix C). For example, com­
binations of one to five digits , or a plus sign (+) followed by one to four
digits , a re in terpre ted as p rogram constants . The le t ter x is r e se rved to
denote raultiply. Other combinations beginning with the le t te r s and followed
by one to four digits a re r e se rved for labeling s ta tements .

In identifying va r iab les , it is essent ia l that the names be as d e s c r i p ­
tive as possible to help in understanding the p rogram. The following a re ex­
amples of acceptable names for simple va r i ab les :

e k s ' , ex ' , del ta ' , fO', t j - l ' , fbarl ' , y ' .

13

EXERCISE 6

Which of the following represen t acceptable names for simple va r ia ­
bles? Why a re the others unacceptable?

a.) t empi '

b.) t empora ry '

c.) x '

d.) root '

e.) sin'

sine

aO'
•' (or a 2 ')

s092'

+ 123'

IV. THE ASSIGNMENT OPERATOR

One of the most common types of calculation consis ts of evaluating
a se r i e s of formulas and substituting the resu l t s of the evaluations into other
formulas to calculate the des i red quantity. For example, the density of a
substance d may be expressed by the formula:

Density d - mass /vo lume

The volume of a sphere is given by

Volume = 4 X 3.1415 92 X (radius)2/3

The radius , in turn, is given by

Radius = diameter^ 2

(1)

(2)

(3)

We can calculate the density of a mate r ia l from the mass of a sphere of
given diameter by using Eq. (3) to find the rad ius ; by substituting the radius
in Eq. (2) to find the volume; and. finally, by substituting the volume in
Eq. (1).

Similar calculations may be specified in ACT-III, although the nota­
tion is slightly different. Instead of writ ing the quantity to be de termined at
the beginning of the formula, we write it at the end; and instead of i n t e rpos ­
ing an equality symbol, we use the ass ignment operator : ' . This operator
may be read as "yields," or " rep laces , " and is real ly a more exact e x p r e s ­
sion of what we wish to do than is the equality relat ion. For example, we
may write

y ' + 'de l ta ' : 'y" .

14

indicating that we wish to replace y with y + delta. On the other hand, if
we were to wri te

y + delta = y

we have an impossible equation, except for delta equals ze ro .

The assignment operator :' ass igns the value of the quantity on the
left to the var iable on the right. When a new value is assigned to the v a r i ­
able, the previous value is lost . Obviously, the right operand of the a s s ign ­
ment operator must be a single variable and not, as for most other ope ra to r s ,
a more coraplex express ion.

Assignment opera tors can be used in succession to assign the same
value to severa l va r i ab l e s . For example, the sequence

. r 'e 'r: 'a ' : 'b' : 'c"

will give the floating-point value 1.0 to each of the three var iables a, b, and c.

It is not pe rmiss ib le to use an express ion ending with an ass ignment
operator and variable as the left operand for any other opera tor ; for example,

. r ' e ' r : ' a ' + 'b':'c".

The des i red resu l t of assigning 1 to a and (a + b) to c may be produced by
writing

. l " e ' l ' : ' a "

and

a' + ' b ' : ' c " .

A more efficient p rogram would resul t from replacing the las t line with

p rev ' + ' b ' : ' c " ,

where the special operand prev ' denotes the resul t of whatever operation
was last executed. When used in this manner , p rev ' should be the first
operand encountered in the s ta tement .

EXERCISE 7

What would be the values of a, b, and c after the following sequence
of ass ignments?

15

0 ' : ' a "

l ' : ' b "

2 ' : 'c"

a ' : ' t empi"

b ' : ' a "

c ' : ' b"

t e m p i ' : ' c "

Elementary and tedious as this exerc i se may seem, it does i l lus t ra te
an excellent way of understanding a complicated p rog ram.

V. ARITHMETIC OPERATIONS WITH REAL NUMBERS

ACT-III provides the usual ar i thmet ic opera tors for addition, sub­
t ract ion, multiplication, and division of constants and var iab les , as well as
severa l more complicated types of combinations, such as exponentiation and
the common e lementary functions. These operations a r e provided both for
r ea l (floating-point) operands and for i n t ege r s . Since the rea l operands a r e
more useful, we will d iscuss them f irs t .

A. Fundainental Operations

The basic operat ions of a r i thmet ic combine two quantit ies which a r e
identified as right and left operands , since they appear to the right and left
of the operation symbol. For example, in the a lgebraic express ion (a + b),
_a is the left operand, _b_ is the right operand, and J_ is the operation symbol.

ACT-III provides for addition, subtract ion, mult ipl ication, and
division of floating-point operands . Each of these operations is represen ted
by a distinct operator symbol followed by a stopcode:

Addition ^'

Subtraction - '

Multiplication x '

Division / '

Thus the ACT-III express ion

a' + 'b '

produces the same resul t as (a -r b) in o rd inary a lgebra .

16

There is one important distinction between ACT-III and tradit ional
algebraic notations for multiplication of fac tors . In a lgebra, the factors a re
displayed in juxtaposition, and the multiplication symbol is omitted; for ex­
ample, ab denotes the product of a and b .

By contras t , the multiplication operator must be interposed between
the factors to be multiplied in an ACT-III express ion. Juxtaposition of
factors has a different meaning (see Section XIII: Subscripted Variables) .

B. Precedence of Operat ions

In writing ACT-III express ions , cer ta in ru les and conventions must
be observed. They are designed to avoid ainbiguity with respec t to the com­
bining of t e r ras and/or the sequence in which operations a re to be performed.

Simple algebraic sums pose no problem. For example, the ACT-III
counterpart of the a lgebraic sum

a + b - c + d

would be expressed and evaluated as

a ' + ' b ' - ' c ' + 'd ' .

However, when addition and subtraction a re combined with raultiplication
and division, the order in which the operations a re performed becomes i m ­
portant . In a lgebra , this is taken care of by the general convention that,
unless otherwise indicated by brackets or pa ren theses , all multiplications
and divisions a re performed before additions and subtract ions . Accord­
ingly, the express ion

a X b + c X d

is evaluated as

(a X b) + (c X d).

In ACT-III, the des i red sequence of operations is a s s u r e d by a s s ign ­
ing a precedence number to each operator symbol, as follows:

Operator Symbol Precedence No.

Multiplication x ' 2
Division / ' 2
Addition +' 1
Subtraction - ' 1
Assignment :' 0

17

(see Appendix C for l i s t i n g of a l l p r e c e d e n c e n u m b e r s) . In eva lua t ing an
e x p r e s s i o n , o p e r a t i o n s of h i g h e s t p r e c e d e n c e a r e p e r f o r m e d f i r s t , t hen
t h o s e of next h i g h e s t p r e c e d e n c e , and so on. If two o p e r a t i o n s of equa l
p r e c e d e n c e a r e s ide by s i d e , the one on the left i s p e r f o r i n e d f i r s t . Th i s
m a y be i m p o r t a n t s i n c e in c o m p u t i n g with a l i m i t e d n u m b e r of s ign i f i can t
f i g u r e s ,

(a + b) + c

is not n e c e s s a r i l y equa l to

a + (b + c) .

Ano the r e x a m p l e is the e x p r e s s i o n

a X b / c x d.

In conven t iona l a l g e b r a , t h i s migh t be i n t e r p r e t e d e i t h e r a s

(a X b X d) / c

or a s

(a X b)/ (c X d) .

In A C T - I I I , the "equa l p r e c e d e n c e " r u l e would p r e v a i l , and the l a t t e r i n ­
t e r p r e t a t i o n would be e v a l u a t e d a s

a ' x ' b ' / ' c ' x ' d ' .

C. Specia l O p e r a t i o n s

Among the l e s s - c o m m o n o p e r a t i o n s , the A C T - I I I l i b r a r y p r o v i d e s
for exponen t i a t ion , s ign c h a n g e , s q u a r e r o o t , n a t u r a l l o g a r i t h m , c o m m o n
l o g a r i t h m , e x p o n e n t i a l , s i n e , c o s i n e , a r c t a n g e n t , and a b s o l u t e v a l u e . E a c h
o p e r a t i o n is deno ted a s fo l lows :

O p e r a t i o n O p e r a t o r

Exponentiation
Sign change
Square root
Natural logar i thm
Common logar i thm
Exponential
Sine
Cosine
Arctangent
Absolute value

pwr '
0 - '
sq r t '
In '
log '
exp'
s in '
c o s '
a r tan
a b s

18

The operator randm' produces a pseudo-random floating-point number be ­
tween 0 and 1, All of these operations a r e of precedence 3, i .e. , they a r e
performed before multiplications or divisions.

The exponentiation operator pwr' has both a left and a right operand.
For example, the express ion

a 'pwr 'b '

produces the quantity a", where both a^ and b_ a r e floating-point constants
or va r iab les .

The other opera tors l is ted act on a single quantity, i .e. , the var iable
or constant immediately following. Since the operator - ' denotes sub t rac ­
tion, it cannot be used to calculate the negative value of a quantity. Instead,
we must use the operator 0-*, or the equivalent, but somewhat slower op­
e ra to r 0*-', To calculate the express ion

a + ys"

we wri te

a' + ' sqr t 'b" .

Obviously, the opera to rs sqr t ' , In', and log' can be applied only to positive
operands. The angles for sin' and cos ' , and the resul t for ar tan ' a re ex­
p res sed in radians .

D, Brackets

Pa ren theses , b racke t s , and b races a r e used m algebra to enclose
groups of t e r m s whose resu l t is to be t rea ted as a s ingle-number expression.

The same technique is employed in ACT-III; however, only a single
form of bracket pai r , i .e . , [']'^ is used to deliinit the des i red groupings. A
group of constants , va r i ab les , and opera tors enclosed in a pair of these
bracke ts is t rea ted as a single operand for any immediately preceding or
following opera tor . Thus the l a rges t root of the quadrat ic equation

ax^ + bx -r c = 0

would be expressed

['0 - ' b ' + ' s q r t ' [' b ' x ' b ' - ' . 4 " e ' l ' x ' a ' x ' c '] •] ' / ' [' . 2" e ' l ' x ' a '] ' .

19

This express ion is also i l lustrat ive of the following observat ions
on the necess i ty of using bracke ts for grouping t e r m s , and /or a l te rna te
methods of achieving the same re su l t s . F i r s t , all sets of bracke ts a re
considered necessa ry in the mode of express ion cited. The outer pair
(left of the solidus) is required to specify that

-b + 7b2 - 4 ac

is the numera to r . If they were omitted, only the square root would be
divided by 2a. The inner pair of bracke ts del imits the d iscr iminant of
the square root opera tor . If they were omitted, the numera tor would be
in terpre ted as

(-b +b3/2 „ 4 ac) .

The brackets to the right of the solidus define the denominator . If they
were omitted, the root would be

(-b + Vb^ - 4 ac) X a / 2 .

The brackets in the denominator could be el iminated and essent ia l ly
the same resu l t s could be obtained by writing

[' 0 ' - ' b ' + ' s q r t ' [' b ' x ' b ' - ' . 4 " e ' r x ' a ' x ' c '] '] ' / ' . 2 " e ' r / ' a ' .

This would be evaluated as

([(-b + yb2-4ac)] /2) / a .

A second observat ion, with respect to the basic i l lus t ra t ion , is
that bracketed express ions may occur inside other b r acke t s . In ACT-III,
up to seven sets of b racke t s may occur in a nes t . This is sufficient to
meet a lmost all needs . If more bracke ts a r e requi red , they can be wri t ten
to some level l e s s than seven along with instruct ions to ass ign the resu l t
to some t empora ry var iab le . Thus

a ' / ' [' b ' + ' [' c ' x ' [' d ' + ' e '] '] '] ' : ' r "

with a bracket depth of th ree , might be replaced by

d' + ' e ' : ' t empi"

tempi 'x 'c ': ' tempi "

t empl ' + ' b ' : ' t empi"

a ' / ' t emp i ' : ' r "

with no bracke ts at a l l . The reader may adjudge one pair of bracke ts in
this example as unnecessa ry . The inclusion of unnecessa ry bracket pa i r s

20

will have no effect on the operation of the progrann, and the cautious p r o ­
g r a m m e r will inse r t b racke ts wherever there is any possibil i ty of ambiguity.

Every complete express ion should have an equal number of opening
and closing bracke ts . This is a common type of e r r o r and is checked by the
t rans la tor p rogram, A simple manual check consis ts of assigning numbers
(from 1 to 7), in ascending and descending order , respect ively, to opening
and closing bracke ts as they a re encountered in an express ion. Accordingly,
the final closing bracke t should have the number 0, To i l lus t ra te , the follow­
ing express ion has been checked by this method:

1 2 3 2 3 2 10

0- ' [' a ' + i s q r t ' [' b ' p w r ' [' c ' x ' d '] ' + ' e x p ' [' a ' / ' c '] •] '] ' ,

EXERCISE 8

If a = 0.1 X 10°, b = 0.2 X 10°, c = 0.8 x 10°, and d = 0,4 x 10°,
give the values of the following express ions :

a.) a' + ' b ' x ' c '

b.) a ' / ' b ' + ' c 'x 'd '

c) a ' x ' b ' / ' c ' x ' d '

d.) a ' / ' b ' / ' c '

e.) a ' - ' b ' x ' d ' / ' c '

VI. STATEMENTS AND PROGRAMS

A, Statements

We a re now ready to consider the basic segment of an ACT-III p r o ­
gram: the statement. A s ta tement may contain up to 63 words . (A word is
a var iable , a constant, an operation, or a s tatement number.) Every s ta te ­
ment is t e rmina ted by a second stopcode. It is unusual, however, and
inadvisable to wri te the full length of a statement, since in checking the p r o ­
gram, only resu l t s of complete s ta tements a r e access ib le . Therefore, the
difficulty of locating an e r r o r in a faulty s ta tement i nc reases rapidly with
its s ize .

In mos t ca ses , the g r a m m a r of the ACT-III language br ings a logical
end to a s ta tement long before the maximum length is reached. Certain op­
erat ions such as the assignraent operator , the output opera to r s , and a few
o thers , do not have any resul t , in the sense of a numer ica l answer which can

21

be used as a left operand for another opera tor . Two successive va r i ab les ,
or a variable and a constant, have a special meaning (see Section XIII: Sub­
scr ipted Var iables) . Thus it is not possible to follow an operator which
does not have an answer by any operator which requ i res a left operand.
Ordinari ly, therefore , every sequence of ass ignment opera tors with right
operands ends a s ta tement .

B. Statement Labels

Statements may be labeled with s tatement number s . Although
l iberal use of s tatement numbers is good pract ice it is not n e c e s s a r y to
label every s ta tement . When statement labels a r e used, however, the label
must be the f i rs t word of the s ta tement . It consis ts of the le t te r _s_ followed
by an integer between one and 192, and a stopcode. Statement numbers may
be assigned in any order ; for example,

s i '

s l 0 5 '

s003' (equivalent to s3 ') .

Statement labels a r e useful in severa l r e s p e c t s . F i r s t , they a s s i s t
in effecting p rogram checkouts. The s ta tement -by-s ta tement pr int -out of
calculated resu l t s (trace) includes s tatement numbers of all labeled s t a t e ­
men t s . This helps the p r o g r a m m e r to locate himself m the pr in t -out .
Fu r the rmore , stop o rde r s may be compiled so that the number of the s t a t e ­
ment appears in the oscil loscope This is convenient in determining the
reasons for s tops .

Second, s tatement numbers may be used to r e - e n t e r a p rogram
after an interrupt ion. The t r ans la to r for ACT-III produces , among other
outputs, a l is t of the locations of the first ins t ruct ion of every numbered
s ta tement . In the case a calculation is in ter rupted, ei ther because of m a ­
chine malfunction or because of work of higher pr ior i ty , the operator may
easi ly s t a r t at any numbered s ta tement . Since output and input devices a r e
par t icu lar ly prone to fai lure, it is good pract ice to label all input and out­
put s ta tements , or at leas t the f i rs t of each group.

Finally, s tatement numbers may be used to di rect abnormal
changes, jumps, or a l tera t ions in the normal flow of calculation from the
end of one s tatement to the beginning of another . Usage of s ta tement
numbers for these purposes will be d iscussed in a la ter section.

C P r o g r a m s

A program is a s e r i e s of s ta tements which d i rec t s the ca r ry ing out
of the ent i re calculation in the des i r ed manne r . The end of a p r o g r a m is

22

indicated by an additional stopcode, following the stopcode which ends the
las t s ta tement . When this stopcode is recognized by the t r ans la to r , it
signals that the t ransla t ion is completed. The t rans la tor proceeds to output
information on actual locations for the p rog rammer and then stops. It is
not possible to continue t rans la t ion following the end of a p rogram, although
the t r ans la to r may be r e s e t to t rans la te an ent irely new p rog ram.

EXERCISE 9

Write ACT-III s ta tements assigning each of the following values to
the var iable r e s ' :

a.) ([(-0.25 z + 0.33333333)z - 0.5] z + l)z.

This is the fastest and most convenient way of evaluating the polynomial

-zV4 + z y 3 - z y 2 + z,

which is approximately equal to In (l + z) when z is not too large or too
near - 1 .

b.) The following continued fraction is a somewhat bet ter approxi­
mation to ln(l + z):

z

1 + z

2 + z

3 + 0.20000000 z

c.) z 0 .1111111 + 1.8888889 \

I (z + 2 .4313725 - 0.48058439

\ z + 1.5686275) '

d.) 0.11111111 z + 1.8888889 - 4.5925926

z + 2.6290323 - 0.27098508

z + 1.3709677

The express ions in b.) , c) , and d.) a re a lgebraical ly equivalent.
Compare them with respec t to speed and accuracy of computation.

EXERCISE 10

Write s ta tements for converting between the rectangular r e p r e s e n ­
tation of a complex number :

23

z = X + iy

and the polar representa t ion :

z =pe i0

and back. Assume x > 0. Write express ions for the rea l and imaginary
par t s of the sum, difference, product, and quotient of two complex number s .
Choose names for your var iab les which a s s i s t in understanding your
notation.

VII. ELEMENTARY INPUT AND OUTPUT

To be of any value, a p rogram must be able to accept problem p a r a m ­
eter data and to communicate the r e s u l t s . ACT-III provides a considerable
var ie ty of operat ions for this purpose. The most frequently used operat ions
will be descr ibed in this section. A few special ized input and output ope ra ­
tions will be d iscussed in Section XVI.

A. Input

1. In tegers

The input format for integer problem p a r a m e t e r s was descr ibed
in Section 11. Briefly, they a r e represen ted as a sign, e i ther + or -, followed
by up to seven digits and a stopcode. The instruct ion i r ead ' with a right
operand causes a number in integer format to be read by the reader and
assigned to the right operand. Thus with +15 ' in the r eade r , the s ta tement

i r ead 'n"

would cause n to take the integer value +15.

2. Real Numbers

It will be reca l led from Section 11 that the problera p a r a m e t e r
for rea l or floating-point numbers consis ts of two sec t ions . The f i rs t s e c ­
tion consis ts of a sign, followed by from one to seven digits and a stopcode.
The second section includes an integer between -32 and +31, and another
stopcode. The instruct ion r ead ' with a right operand causes a number to be
read in floating-point format and ass igned to the right operand. Thus, with
+5 '+3 ' in the r e a d e r , the s ta tement :

read 'eks "

would cause the var iable e k s ' to be given the value +0.5 x 10^.

24

B. Output

Output operations a re a little more complicated, since it is des i rable
to specify both the numiber and the a r rangement , or format , in which it is to
be printed. The print instruct ions d iscussed in this section require an inte­
ger a s a l e f t operand, to specify the format, and a right operand to specify the
number to be printed.

1. Format Integer

The format integer is the same for the three output operations
descr ibed in this section. It specifies f i rs t , the total width of the column
in which the number is to be printed (including leading spaces) , and, s e c ­
ondly, the number of digits to be printed after the decimal point. If w is
the width of the column, and d. is the number of digits to be printed after
the decimal point, the format number is

f = 100 w + d

For example, the format number 2008 will cause a number with eight digits
after the decimal place to be printed in a column twenty spaces wide.

2. Real /Float ing-point Output

The standard output operation for a floating-point number is

pr in t ' .

The s tatement

f 'p r in t ' a"

causes the floating-point number â to be printed as a fraction and expo­
nent. If the format numiber i s f, the p rogram pr ints leading spaces as
needed, then a space (if the number is positive or minus sign if negative),
decimal point, the fractional par t of a_, space, e (or e- if the exponent is
negative) and a 2-digit exponent.

The sign, decimal point, and exponent requi re seven spaces ;
therefore w must be at l eas t seven before any digits of the fraction can
be printed. If w is l e s s than seven, only the exponent will be printed. If
w is g rea te r than seven, but w - d is not, the number of fraction digits
pr inted will be reduced. Since the number of significant digits c a r r i e d by
ACT-III floating-point a r i thmet ic sys tem is between seven and eight, the
value of d should not exceed eight digi ts . The format number 1608 will
give all the information in a min imum space.

25

3. Fixed-point Output of Floating-point Numbers

Although the s tandard floating-point output is the most general ly
useful, there a re occasions where an unsealed output with a fixed number of
decimals is convenient. The operator

dpr t '

fulfills this need. The statement

f 'dpr t 'a"

causes the floating-point number a_ to be printed as an ordinary decimal
number , with d (from the format number) digits after the decimal point.
If the number is too large to be printed in the space allowed, the number
of decimal places is reduced. Otherwise the number is printed in floating­
point format, and the las t decimal place printed is rounded.

4. Integer Output

Numbers s tored as in tegers may be printed by the operation

ip r t ' .

The statement

f ' ip r t ' i "

will cause the signed integer _i to be printed. The format number i_ is in­
t e rp re ted as follows: the number of hundreds gives the width of the field
in spaces , as for pr in t ' and dpr t ' . However, if the width allowed is insuf­
ficient, the ent i re integer is printed anyway. A decimal point is inser ted
a rb i t r a r i l y _d digits from the right of the integer , unless d is ze ro . The
use of a d_ g rea te r than eight digits gives meaningless r e s u l t s .

To i l lus t ra te these operat ions , the following outputs for a. would
be obtained from the s ta tements cited as columnar heads :

_a I606 'p r in t ' a " I606 'dpr t ' a"

1.234567 .123457e 01 1.234567

-0.001234567 -.123457e-02 -0.001235

With a = 1234567, the s tatement

I606 ' ip r t ' a "

26

would produce

-1.234567.

5. Right Operand

Clear ly , the right operand of an input operator must be a single
var iab le ; it would be meaningless to ass ign the value read from tape to, say,
['a' + ' b '] ' . The right operands of output opera to r s , however, may be as com­
plex an express ion as des i red , provided that the whole express ion is enclosed
in b racke t s . Thus, the s tatement

1608 'p r in t ' [' [' 0 ' - ' b ' + ' s q r t ' [' b ' x ' b ' - ' . 4 " e ' l ' x ' a ' x ' c '] '] ' / ' [' . 2 " e ' l ' x ' a '] '] "

would compute and print the l a rge r root of the quadratic equation

ay^ + by + c = 0

6. Car r iage Returns and Tabulates

Two additional opera to r s a r e provided to a s s i s t in controlling
the format of the computer output. The operator cr ' effects a ca r r i age r e ­
turn and advances the paper one l ine. The operator t ab ' moves the ca r r i age
to the next tab stop specified.

In typing the p rogram tape, it is convenient to know that ca r r i age
re tu rns a r e ignored by the t r a n s l a t o r . On the normal F lexowri te r , tabs a re
t rea ted as a blank cha rac t e r . On the 4-mode Flexowri ter , they a r e ignored.
Thus, c a r r i age r e tu rns always can be used to improve readabil i ty, and tabs
to separa te coraments . Tabs may also be used to set off data tapes only if
the number following compr i se s a sign and seven digi ts . Other uses of the
tab a re to be avoided if the normal Flexowri ter is used. In both Flexo-
w r i t e r s , spaces a re always t rea ted as c h a r a c t e r s ; all other control keys
a r e ignored.

Libera l use of ca r r i age r e tu rns and tabs is suggested for they
great ly improve the printout for reading, duplicating, and repor t writing
purposes .

EXERCISE 11

What output would be produced by the following p rog ram:

cr ' i r ead 'n"

r e a d ' b "

n ' i p r t ' n "

27

n ' p r i n t ' b "

n ' d p r t ' b ' "

with each of the fol lowing s e t s of input :

a.

b.

c.

d.

e.

f •!

g-

) +0'+1234567'-5'

) +l605'+1234567'-5

) +802'+1234567'-5'

) +802'+1234567'+0'

+200'+1234567'+0'

+202'-1234567'+5'

+l608'+1234567'+5

28

VIII, ELEMENTARY CONTROL OPERATIONS

In most p r o g r a m s , the control of computer operations is inflexible:
s ta tements a re executed successively in the o rde r in which they a re
writ ten. This section descr ibes the methods that can be employed in
ACT-III to provide a ve r sa t i l e p rogram. More specifically, the opera tors
which can effect unconditional or conditional t r an s f e r s , or other d ig res ­
sions, fornn the basic o rder of operat ions .

A. Unconditional T rans fe r s

The operator u s e ' , followed by a s tatement number, causes the
statement labeled with that number to be executed. For example, in the
case of the quadrat ic equation

ay^ + by -f c = 0

the equation solver can be made to compute the roots of any number of
equations by writing

s5 ' c r ' r e a d ' a "

r ead 'b"

r e a d ' c "

I 6 0 8 ' p r i n t ' [' [' s q r t ' [' b ' x ' b ' - ' . 4 " e ' r x ' a ' x ' c '] ' - ' b '] ' / ' [' . 2 " e ' l ' x ' a '] "

use ' s5" ' .

This p rogram will r ead a set of values for a, b, and c, print the l a rge r
root of the equation, and re tu rn for another set of pa ramete r values.

B. Conditional T rans fe r s

The p rog ram which we have just wri t ten will work provided that,
in all c a se s , a / 0 and that b^ > 4ac. If a = 0, the computer would be
ins t ructed to divide a number by zero and would stop. If b - 4ac was
negative, the equation has a pair of complex roo t s .

1. Depending on Las t Result

There a r e two opera tors which change the flow of a p rogram
under cer ta in conditions. The operator t r n ' , followed by a s tatement
number, causes the numibered s tatement to be taken next if, and only if,
the resu l t of the las t opera tor is negative. If it is positive or zero , the
following s ta tement is executed. Thus to continue our quadrat ic equation
example, we might rev i se the p rogram as follows:

29

s5 ' c r ' r e a d ' a "

read 'b"

r ead ' c "

b ' x ' b ' - ' . 4 " e ' r x ' a ' x ' c ' : ' d i s c r "

t r n ' s 6 "

c r ' 1 6 0 8 ' p r i n t ' [' [' s q r t ' d i s c r ' - ' b '] ' / ' [' . 2 "e ' l ' x ' a '] '] "

c r ' l 6 0 8 ' p r i n t ' [' 0 ' - ' s q r t ' d i s c r ' - ' b '] ' / ' [' . 2 " e ' l ' x ' a '] '] "

u se ' sS"

s6' c r ' l 6 0 8 ' p r i n t ' [' [' 0 ' - ' b '] • / ' [' . 2 " e ' l ' x ' a '] '] "

I608 'p r in t ' [' sq r t ' [' 0 ' - ' d i sc r '] " / ' [' . 2" e ' l ' x ' a '] '] "

use 'sS" '

This p rogram will print rea l roots on separate l ines . If a root is com­
plex, it will print the rea l par t , followed by the complex part on the same
line.

2. Depending on the Sign of an Express ion

Provision can be made for three possibil i t ies that the coeffi­
cient _a vanishes by including an if_' s tatement . The i f s tatement con­
sis ts of the operator i f followed by a variable or an expression in
brackets . This, in turn, is followed by neg' and a statement number;
zero ' and a second statement number; and pos ' and a third s tatement num­
ber . One, two, or all three possibil i t ies may be included; however, in the
la t ter case , they must be writ ten in the order given.

Accordingly, the if statement t ransfe rs control to the s ta te ­
ment whose nuraber follows neg' (if the expression is negative), or to the
statement whose number follows zero ' (if the expression is zero), or to
the statement whose number follows pos ' (if the expression is positive).
If none of these conditions is met, the program continues on to the next
statement. Thus, we may write

s i ' i f [•y ' - ' z '] 'neg ' s l0 'pos ' s20"

s2' i f w 'neg ' s30 'zero ' s40"

s3 ' i fy 'pos 'sSO"

s4' y' + ' z ' - ' w ' : ' v " .

Under these conditions the s ta tements will be executed in the following
sequence:

30

Statement s lO ' , if y < z

Statement s20 ' , if z < y

Statement s30 ' , if y = z, and w < 0 .

If y = z and w = 0, s ta tement s40' will be executed next. Statement s50'
will be executed next only if y = z, w > 0, and y > 0.

The p rogram for solving quadratic equations can be improved
further by including an if s ta tement to tes t for the vanishing to the
coefficient a.

s5 ' c r ' r e a d ' a "

read 'b"

r e a d ' c "

i f a ' z e r o ' s 7 "

.2"e ' l ' x ' a ' : ' denom"

b ' x ' b ' - ' . 4 " e ' l ' x ' a ' x ' c ' : ' d i s c r "

t r n ' s 6 "

s q r t ' d i s c r ' : ' d i sc r "

c r ' 1608'print ' [' ['discr ' - ' b '] ' / 'denom']"

c r ' l 6 0 8 ' p r i n t ' [' [' 0 ' - ' d i s c r ' - ' b '] ' / ' d e n o m '] "

u s e ' s 5 "

s6' s q r t ' [' 0 ' - ' d i s c r '] ' : ' d i s c r "

c r ' l 6 0 8 ' p r i n t ' [' [' 0 - ' b '] ' / ' d e n o m '] "

1608'print ' [' d i sc r ' / ' denom']"

u s e ' s 5 "

s7 ' c r ' l 6 0 8 ' p r i n t ' [' [' 0 - ' c '] ' / ' b '] "

use ' s5" ' .

In addition to providing for the possibil i ty that a = 0, this
p r o g r a m has been improved with respec t to the denorainator. In the
original vers ion , the denominator

. 2"e ' l ' x ' a '

would be computed each t ime it appeared in a pr int s tatement , or twice
for each pass through the p r o g r a m . By adding the ex t ra s ta tement

31

. 2"e ' l ' x ' a ' : ' denom"

we mere ly have to save and reca l l the denominator whenever it is needed.

The ACT-III t r ans la to r produces a p rog ram which follows
instruct ions exactly. If shortcuts a r e to be introduced, the p r o g r a m m e r
must supply them. This is not a defect, since on many occasions , what
appears to be a logical shortcut may be completely wrong.

C. Trans fe r s from Data Input

There a r e many t imes when we want to read in a s e r i e s of
numbers , but do not know, in advance, how many there will be. The input
routines for ACT-III a r e a r ranged so that when a data word is read, ei ther
by an i read ' or a read ' operation, and has no sign or digits (for example,
a blank word), the p rog ram t r ans fe r s to a numbered s tatement which has
been set ea r l i e r in the p rog ram.

The instruct ion which effects this t ransfe r is the operator rdxi t ' .
To be effective, it miust be executed by the p rog ram before the input in­
struct ion. Then the t ransfe r will be to the las t s ta tement prefixed with the
operator rdxi t ' . For example, the following p r o g r a m is wri t ten to read a
set of floating-point data from tape and to compute the mean and s tandard
deviation:

slOO' rdxit'sBO"

0': 'n"

p r e v ' : ' s u m "

prev ' : ' sumsq"

s75' read 'da ta"

prev ' + ' sum' : ' sum"

data 'x 'data '+ ' sumsq ' : ' sumsq"

s50'

. l "e ' l ' +

use ' s75

c r ' s u m '

sumsq' /

n ' :

1!

/ ' n

/ 'n '

n"

' : ' sum"

: ' sumsq"

I608 'pr in t ' sum"

1 6 0 8 ' p r i n t ' [' s q r t ' [' s u m s q ' - ' s u m ' x ' s u m '] '] ' '

use'slOO'"

32

This routine uses the mathemat ica l identity

a ' = (x - x)2 = x^ - (x)2 .

where the bar denotes averaging. Observe that we must keep t rack of the
number of data, their sum, and the sum of their squares .

The p rogram down to s tatement s75' is executed once for each set
of data. It i s , however, a n e c e s s a r y section of the p rogram, since it
ini t ial izes the calculation. If the rdxit ' operator was not set, the p rogram
would t ransfe r to whatever place the las t use r of the machine had desig­
nated, with possibly mystifying r e su l t s . Similarly, if the var iables n ' ,
sum' , and sumsq' were not set to zero , they would very probably have
unexpected values. Initialization of his p rogram is an important respon­
sibility of each p r o g r a m m e r .

Also, it may be observed that after all the data have been read
and the divisions performed, there is no reason to keep the sumis. The
same var iables a r e , therefore , used to keep the mean values .

Upon entering this p rogram at s tatement slOO', the p rogram f irs t
ini t ial izes the rdxit ' and the var iab les , and then proceeds to s tatement s75 ' ,
where it calls for data in floating-point format. It adds the data read in to
sum' , and its square to surasq ' , adds one to the count of data which have
been processed , and re tu rns for more data. This continues until the end
of the l is t of values. After the last value, an extra stopcode causes the
p rog ram to proceed to s tatement s50 ' , and compute and print the average
and the s tandard deviation. The p rogram then re turns to t ry another case .

D. Miscellaneous Control Operations

1. Stop

It is frequently convenient to cause the computer to stop,
ei ther because some emergency has a r i sen in the p rog ram or because
some phase of the calculation has been completed. The operator stop'
will bring this about. The next s tatement can be executed by press ing the
START button on ei ther the computer or the F lexowri te r .

If the stop s tatement is numbered and if the statemient was not
t r ans la ted for t rac ing, the s ta tement number will be shown in binary in the
instruct ion reg i s te r of the computer osci l loscope. This may be useful for
determining which of severa l possible stops has been reached. Rather
than worry about reading hexadecimal , it is convenient to use the s ta te ­
ment numbers si ' to produce a single step; s5 ' to produce two steps;

33

s21 ' to produce three s teps; and sB5' to give four s teps . Other numbers
can be substituted for these to give equivalently easily recognized pa t t e rns .

The stop operation is often useful in data input. Suppose that
one section of data is expected to be the sanae for a la rge nuixiber of runs
of the problera. To avoid reproducing these data it would be des i rab le to
be able to use the same tape for these data and mere ly to vary the second
section. It is unsafe to attempt to change tapes when the computer is
calling for input. A bet ter solution i s , after the o rde r s calling for each
section of input, to inser t a stop, to allow for changing to the next tape of
input data.

2. Breakpoint Jumps

Occasionally it is convenient for the operator to be able to
direct the course of the p rogram. On computers equipped with an over­
flow logic board, this can be accomplished through the opera to rs bkp4' ,
bkpS', bkp l6 ' , and bkp32' . Breakpoint 32 is ordinar i ly r e se rved for
pr int delays and should not be used. When one of these opera to rs is en­
countered, the p rogram either proceeds to the next instruct ion, if the
corresponding button on the console is down, or skips to the instruct ion
following, if the button is up. Thus, the instruct ions

bkp8 'use ' s2"

stop"

s2' r ead 'a"

would cause the p rog ram to stop before reading a_, if the breakpoint stop 8
button was up; if it was down, the p r o g r a m would bypass the stop.

On computers with a s tandard logic board, the breakpoint
s tatement is ignored if the button is down; if it is up, the comiputer s tops .
A START COMPUTE will t ransfer to the next s ta tement . If a t r ans fe r is
des i red to the indicated s tatement , the following buttons mus t be pushed:
ONE OPERATION; MANUAL; START COMPUTE; ONE OPERATION;
NORMAL; START COMPUTE.

The ability of the opera tor to make decisions and changes
while the p rogram is running is often convenient. It is wise to use this
ability cautiously. There is no r eco rd on the output of the computer in
which position the breakpoint buttons were set . Since this output is the
principal r ecord of the calculation, it is dangerous to use the breakpoints
to make changes which will not be c lear ly reflected by the r e s u l t s . A
very useful, and safe, use of the breakpoints is to provide for optional
printing of in termediate r e su l t s , which may be des i rable if a calculation
does not turn out as expected. A dangerous use of the technique is for

34

selecting one of two methods of computing. It is too easy to neglect to
note the position of the breakpoint, so that at a la ter t ime it is not possible
to tell which calculation was performed. A m o r e satisfactory way of di­
rect ing the computer to choose one of two or three a l ternate paths is by
inputting a dummy p a r a m e t e r , which is then examined by the p rogram to
determine the course of action.

For example, suppose that at some stage of the p rogram we
would like to be able to select ei ther Course aj_ (starting at slOO'),
Course ^ (start ing at s l25 ') . Course c^ (start ing at s l50 ') , or to continue
as before. The following p rogram will provide this capability.

s i ' bkp4 'use ' s lO"

s65' stop"

i read ' a"

slO' i f ' a ' n e g ' s l 0 0 ' z e r o ' s l 2 5 "

s l50 '

Then, if breakpoint 4 is up, the p rog ram will stop and call for input when­
ever it comes to s tatement s i ' . The inputs l is ted below will cause the
corresponding Courses to be followed by the p rogram:

Input Course Selected

- 1' Course a^

+0' Course b l

+ 1' Course cj.

If the p rog ram is to continue as before, breakpoint 4 is in the down pos i ­
tion, causing the input call to be skipped the next t ime through.

3. Overflow Skip

In floating-point operat ions , overflow is unlikely. If a resul t
with exponent g rea te r than 32 is generated, an e r r o r indication is printed,
and the computer s tops . The same thing happens if capacity is exceeded
by the ix' or i / ' ope ra to r s .

Overflow can occur in integer addition and subtract ion, and
in the machine language operat ions add', subt r ' , and div". Connputers
with the s tandard logic board stop when this happens. Computers with
the overflow logic board continue, but an internal indicator (the sign bit
of the command reg i s t e r) is set . The indicator may be tes ted, and turned
off if it is on, by the opera tor oflow'. This operator causes the following

35

instruction to be skipped if overflow has not occur red , and to be executed
if overflow has taken place since the last execution of this opera tor . For
example, the s tatement

oflow'use 's '7 "

s5 '

will cause s7 ' to be executed in case of overflow, and s5 ' o therwise .

EXERCISE 12

Write a p rogram to compute and pr int a table of secants and c o s e ­
cants of angles expressed in degrees . The table should be a r ranged as
follows:

Numbers of degrees Secant Cosecant

Include a blank line before every fifth degree (e.g., before 0°, 5°, 10°, . . .).

EXERCISE 13

We may approximate the definite integral

[^ f(x)dx
"'a

by the sum

(b - a) /n[(l /2)f(a) + f[a+ (b - a) /n]+ f[a+ 2(b - a) /n] + . . .

+ f [a + (n - l) (b - a) / n] + (l / 2) f (b)] ,

where n is an integer g rea t e r than ze ro . The approximation becomes bet ­
te r the l a r g e r the value of n. Write a p rog ram for integrating a function.
Assume that there is a section at s i 0 0 ' which ass igns the value of f(y) to
the var iable f, s tar t ing with a pa r t i cu la r value ass igned to the var iable y.
After computing f, the p r o g r a m is to r e tu rn to the s ta tement after the
s ta tement use 'slOO". Allow a, b, and n to be inser ted as problem
p a r a m e t e r s .

IX. ESSENTIALS OF A DEFINITIVE PROGRAM

During the course of writ ing a p r o g r a m , the connotations of the
words , abbreviat ions , or acronyms selected for the opera to r s and the
var iab les may appear perfectly obvious to the author. A few months la te r ,
however, they may appear perfectly obscure to the author or, possibly,

36

to another use r of the same p rogram. For this reason, it is essent ia l that
the author provide an adequate explanation of any program, in which a sig­
nificant anaount of effort has been expended.

A. Names of Variables

The ability to use any combination of up to five cha rac t e r s eases
the task of selecting definitive names for var iab les . The inclusion of a
d i rec tory is recommended in cases for which it is nece s sa ry to abbrevi­
ate or to substitute cha rac t e r s which a re not available on the Flexowri ter
keyboard.

B. Remarks on P r o g r a m Tapes

It is most convenient to have this di rectory, as well as other
types of explanatory information, included as a par t of the p rogram and
not filed separa te ly . The ACT-III language provides a means for incor­
porating such information direct ly in the p rogram, from which it is im.-
mediately available. No opera tor or var iable name in ACT-III can contain
more than five l e t t e r s or other c h a r a c t e r s . Strings of c h a r a c t e r s of more
than five l e t t e r s a r e in terpre ted as follows: if the sixth charac te r p reced­
ing the stopcode is one of the sixteen l e t t e r s , t idybrazenchumps, the entire
s t r ing of cha rac t e r s is ignored. If the sixth charac te r is any other cha rac ­
t e r , the s t r ing is t r ea ted as a blank word. Thus, for example, if we head
our p r o g r a m by

Computation of the Zilch Function. John F . Smith Author ' ,

the sixth charac te r before the stopcode is the le t ter _a; therefore the entire
section is ignored. On the other hand, in the p rogram section

si ' i f ' d i sc r ' neg ' sS ' negative discr iminant means complex
roo t s ' .

the sixth cha rac te r before the stopcode is a space; therefore , the stopcode
is recognized. It is in te rpre ted as the normal end-of-s ta tement signal.
If a second stopcode had followed s 5 ' , the commient would have been in ter ­
pre ted as a third stopcode, i .e . , the end of the prograna.

In the f irs t example, the word "Author," although superfluous,
se rved to exclude the p r o g r a m heading from recognition during p rog ram
t rans la t ion . Other words may be employed for the same purpose; for
example, ending descr ipt ions with the word "Remarks . " The words
" P r o g r a m " ' and "P rocedu re" a r e a lso useful.

The extent to which documentation should be ca r r i ed out will vary
with the contents and objectives of each p rog ram. In general , the governing

c r i t e r i a should favor too much, r a the r than too l i t t le , exposition. As a
minimum, each p rog ram tape should include:

(1) Title of p rogram;

(2) Author 's name;

(3) Date;

(4) Input requi red (identification of each quantity, and whether
integer or floating-point, in the o rder it is called for by
the p rogram) ;

(5) Output produced (identification of each quantity);

(6) Breakpoint options;

(7) P rocedu re s used, with dates . (A copy of the procedures
may well be included.)

In addition, it is usually helpful to include a brief descrijation of how the
calculation is done, as well as any l imitat ions on the applicability of the
p rogram.

Remarks should be inser ted in the p rog ram itself whenever the re is
any possibil i ty that another r eader might benefit from an explanation of
either the need for a par t icu la r step or what it accompl i shes .

C. Remarks on Data Tapes

It is also good prac t ice to identify and explain data t apes . In r ead ­
ing either floating-point or fixed-point problem p a r a m e t e r s , only the las t
eight cha rac t e r s (including spaces and, except on the 4-mode F lexowr i te r ,
tabs) before the stopcode a re examined. If the full eight c h a r a c t e r s a r e
used by the data (the f irs t of these must be a sign), any des i red r e m a r k
may be prefixed. Fo r example, the following a r e equivalent:

integer i +0000050' +50'

floating-point E m +1500000' + 1' +15' + ! '

Data tapes should have the u s e r ' s name, the p r o g r a m with which
they a re to be used, the date, and some form of identification. Identifica­
tion of input data is often helpful.

D. Sample P rob l ems

Another very useful i tem in p rog ram documentation is a sample
set of input data, labeled with their significance. Such a sample problem
not only i l lus t ra tes the use of the p rog ra m, but a lso gives a convenient chec
that the p rogram has been proper ly t rans la ted and is functioning in the de ­
s i red manner .

38

X. COMPUTER OPERATION

We have now m a s t e r e d enough of the ACT-III language so that we
can write p rograms to c a r r y out many tedious calculations. It is appro­
pr ia te , before we continue our study of the language, to descr ibe how to
make the computer obey our ins t ruct ions .

A. Prepara t ion of P r o g r a m Tapes

The f i rs t step is to convert the handwritten instruct ions to a form
which can be read by the computer . The LGP-30 computer accepts input
from the attached typewriter (Flexowriter) , or from paper tapes by the
reader of the Flexowri ter or of the Photoelectr ic Reader . When tapes
a re read by the Flexowri ter , a copy of the input is produced by the type­
wr i te r . Ordinari ly, it is faster and more accurate to use tape for all
input.

Tapes a re prepared by typing the desired information on the Flexo­
wr i te r (see Fig. 1). Ei ther the Flexowri ter attached to the com.puter or a
spare may be used. When the PUNCH lever is down, every t ime a key is
pushed, a corresponding row of up to six holes is punched in the tape.

UmUU. INPUT LIGHT

mm I START STOP PUNCH
STW I READ READ ON

TAPE
FEED

I CaKliANU«.l START I
paETEJ INPUT pWFWl|

C»IWCT
H UlLDIIlElCDaillLDlIiaS

ii]a[i][i][aci]!i][iiiii[i]ii]i]°tr
[laciiHCDQQaQQms m.
l a iDQl l iaQQHI I l iT i i i i i go"*

I SPACE

Fig. 1. Flexowri ter Keyboard

When the TAPE FEED lever is pressed , the punch feeds blank tape
until the lever is re leased. Every tape should begin with a leader of
10-20 in. of blank tape. This allows space for identifying the tape and
facilitates loading the tape in the Photoelectr ic Reader . Leaders of blank
tape a re also convenient for separating sections of program or data.

Correct ions can be made by either of two methods, depending upon
the nature of the e r r o r s and the promptness with which they a re detected.
It i s , of course , impossible to e rase a set of holes in the tape. However,

39

both r eade r s will ignore any line wherein all six holes a re punched. Thus,
if detected immediately, an extraneous or an er roneous charac te r may be
precluded from t ransla t ion by simply punching six holes in that par t icu lar
l ine . This is accomplished by rolling the tape back one space, and dep re s s ­
ing the CODE DELETE lever on the F lexowri te r . The same procedure can
be followed if severa l words have been typed incorrec t ly , provided the
e r r o r s a re detected promptly.

For more ser ious e r r o r s , or those discovered too la te , it is m o r e
convenient to util ize the ability of the Flexowri te r to copy tapes . The p r o ­
cedure is as follows:

(1) Inser t the incor rec t tape into the r e a d e r . Depress the PUNCH
and START READ l e v e r s . The Flexowri te r will then read the
tape, and type and punch it, until it comes to a stopcode. When
it reaches a stopcode, the reader will print and punch it, and
stop.

(2) Depress START READ lever to continue on to the next
stopcode.

(3) If it is des i red to continue through stopcodes, without stopping,
depress the COND STOP lever . Upon nearing the place where
cor rec t ions a r e to be made, r a i se the COND STOP lever , and
the reader will stop at the next stopcode. It is also possible to
stop the reader by depress ing the STOP READ lever .

(4) Type in the correc t ion(s) . Then, ei ther roll the incor rec t tape
forward, or r a i se the PUNCH lever and allow the reader to
read through the incor rec t portion of the tape depress ing it
again when you wish to copy.

B. Transla t ion

After the p rog ram tape has been punched and proofread, it must be
t rans la ted . The procedure is as follows:

(1) Turn on the computer , the F lexowri te r , and the Photoreader
(see F igs . 2 and 3). Depress the MANUAL INPUT lever on
the F lexowr i te r . P r e s s the READER STOP button on the
Photoreader . Place the ACT-IIIA(S) tape in the Photoreader
with the printed side down. Turn the INPUT SELECTOR
switch on the Photoreader to READER.

(2) When the warmup cycle of the computer is complete (the
oscil loscope shows a pat tern) , p r e s s the ONE OPERATION
button, the CLEAR COUNTER button, the NORMAL OPERA­
TION button, and the START button.

40

F i g . 2. C o m p u t e r C o n t r o l P a n e l

AND READER
TAPE
FEED

PWKH READER mtKM

mmvm..

iNarr OUTPUT

ROYAL PRECISION L6P-30
SYSTEM

F i g . 3. P h o t o r e a d e r and H i g h - s p e e d Punch Con t ro l P a n e l

(NOTE: Owing to the f r equency with which th i s s equence of o p e r a t i o n s is
p e r f o r m e d , it wi l l h e r e a f t e r be a b b r e v i a t e d to : OCNS.)

All o the r bu t tons excep t O P E R A T E should be up .

(3) The p h o t o r e a d e r wil l now beg in to r e a d the t r a n s l a t o r t ape .
While it is be ing r e a d , the p r o g r a m tape m a y be p l aced (with
the p r i n t e d s ide up) in the r e a d e r on the F l e x o w r i t e r . After
the ACT-IIIA(S) t ape h a s b e e n r e a d , the T - t a p e is p l aced in
the p h o t o r e a d e r . (NOTE: In the c u r r e n t ed i t ion of the comple t e
c o m p i l e r , the T - t a p e i s m a r k e d T-5 .) The ACT-IIIA(S) tape is
rewound, and the START but ton is p r e s s e d . After a s h o r t in­
t e r v a l of compu t ing , the T - t a p e is r e a d and the c o m p u t e r s t ops .

(4) T u r n the INPUT S E L E C T O R swi tch to T Y P E W R I T E R , D e p r e s s
the 6-BIT but ton. If a t r a c e is d e s i r e d , d e p r e s s the TRANSFER
CONTROL but ton . DO NOT OCNS. R a i s e the MANUAL INPUT
l e v e r . D e p r e s s the START but ton on the c o m p u t e r o r , on the
F l e x o w r i t e r , p r e s s the START C O M P U T E l e v e r .

41

The p rogram tape will now be read and t rans la ted , and the t r a n s ­
lated p rogram stored in the computer s tar t ing at location 0300.

The t rans la to r p rogram includes tes t s for cer ta in common e r r o r s
in the program, i .e. , incor rec t opera to rs , unmatched b racke t s , or exceed­
ing the s torage capacity. (A more comprehensive l i s t of e r r o r s , as well
as the remedy for each, is included in Appendix A.) Whenever an e r r o r is
detected, the typewri ter will print a notification, and the computer will
stop. For example, if the program and the data exceed available s torage ,
the Flexowri ter will ca r r i age r e tu rn and print sOOO 0000. In this case ,
the p rogram will have to be rewri t ten. If a stateixtent number is r e f e r r ed
to in the p rogram, but is never used as a label, so that it is not defined,
the Flexowri ter will execute a ca r r i age re tu rn and print the undefined
statement number. It will also print the location of the machine in s t ruc ­
tion refer r ing to that s ta tement . This will be repeated for each place
where an undefined s tatement number is used.

When these e r r o r indications have been given, or if no e r r o r s
have been given, the Flexowri te r will execute a c a r r i a g e re tu rn , print f,
and the machine location of the last instruct ion of the p rog ram. It will
then print each s tatement number used, and the machine addres s of the
first instruction in this s tatement and, finally, the var ious var iab les used,
with their machine a d d r e s s e s .

C. Re compilation

Although it is possible to co r rec t e r r o r s in the course of the
t ransla t ion phase, it is be t te r prac t ice to c o r r e c t the p rog ram tape and
recompi le . In recompil ing, or in compiling a second p rog ram after a
f i rs t p rogram has been t rans la ted and output, it is not n e c e s s a r y to r e ­
load the whole t r ans la to r and T- tape . Instead, a short tape labeled with
T* and the same number as the T-tape being used may be loaded. This
r e se t s the p rogram to begin a new t rans la t ion . Before attempting to load
the T*-tape, r a i se the 6-BIT button, and the TRANSFER CONTROL button.
After it is reloaded, r e tu rn to Step (4) as descr ibed above.

D. Punchout of Object P r o g r a m

After completing the t rans la t ion successfully, it is advisable to
punch out the t rans la ted p rogram. To do this , r a i se the 6-BIT and the
TRANSFER CONTROL buttons, turn on the photoreader , turn the INPUT
SELECTOR switch to READER, then p r e s s the READER STOP button.
Place the ACT-III(B) tape in the r eade r and OCNS. When the tape has
been read completely, turn on the PUNCH on the F lexowr i te r , feed tape
to give an adequate l eader , type an identification of the p rog ra m, and
p r e s s the START COMPUTE lever on the F lexowr i t e r . The ent i re p r o ­
gram will be punched and printed by the Flexowri te r in a form which is
not easily readable by the p rog rammer , but is easi ly reloaded into the
computer .

42

The nuraber of tape-loading operations can be minimized by p r e ­
paring a single tape which compr i ses the ACT-IIIA(S), the T-4B, and the
ACT-IIIB and C tapes . In this event, the p rogram punch-out procedure is
as follows. After t rans la t ion is corapleted, depress the MANUAL INPUT
lever on the Flexowri ter , r a i se the 6-BIT and the TRANSFER CONTROL
buttons, and OCNS. The light on the Flexowri ter will i l luminate. Type
in doat2900', and p r e s s the START COMPUTE lever . When the computer
s tops, turn on the PUNCH, type the p rogram identification, and p r e s s the
START COMPUTE lever on the F lexowri te r .

E . Running the P r o g r a m

To run the p rog ram, a set of routines to c a r r y out the various
operat ions must be loaded. These routines a re contained in a la rge tape
labeled P-4B or P - 5 B . To load them, turn on the photoreader , r a i se the
6-BIT and TRANSFER CONTROL buttons and all BREAKPOINTS, and
p r e s s the READER STOP button. Then place the P- tape in the reader ,
turn the INPUT SELECTOR switch to READER, and OCNS. If the t r a n s ­
lated p rogram is still in the m e m o r y when the reader s tops, turn the
INPUT SELECTOR switch to TYPEWRITER, place the data tape in the
typewri ter r eader , depress the MANUAL INPUT lever on the typewri ter ,
and OCNS. When the typewri ter light i l luminates , type in doat0300', p r e s s
the START COMPUTE lever twice, and r a i s e the MANUAL INPUT lever .
The p rog ram will now be executed.

If it is des i red to s t a r t the p rog ram at some other numbered
s tatement , this can be done by finding the t rue address TTSS (4 digits)
from the statement d i rec tory printed after t rans la t ion . Depress the
MANUAL INPUT lever , and OCNS. When the light comes on, type
doatTTSS' and p r e s s the START COMPUTE lever .

If it is n e c e s s a r y to reload the t rans la ted p rogram, place it in the
photoreader after the P- tape has been read, and p r e s s the START button.
Then continue by turning the INPUT SELECTOR switch to TYPEWRITER,
and so on. However, in this case , OCNS and doat0300' a re not neces sa ry
after the p rogram is read in.

F . Checking the P r o g r a m

The coraplete checking of a p rog ram is difficult and a task requ i r ­
ing skil l . The degree of checking will vary with the importance and com­
plexity of the p rogram, and the patience and ingenuity of the p r o g r a m m e r .
Ideally, every al ternat ive path through the p rog ram should be tes ted to
verify that it produces c o r r e c t r e su l t s . This can often be done by running
the p r o g r a m on severa l sets of input data with known r e s u l t s .

43

1. E r r o r Indications at Run Time

Theoret ical ly, a carefully checked p r o g r a m should run with­
out interruption and should produce the des i red r e s u l t s . This is r a r e l y
the case . To the contrary , past experience has shown that many e r r o r s
in computer fundamentals may be detected painfully rapidly. The ma jo r ­
ity of these e r r o r s can be re la ted to inadvertent inst ruct ions to per form
illegal operat ions . Fo r example, dividing by ze ro , or comiputing the
logari thm or the square root of a negative number .

Whenever an illegal operation is detected, the typewri ter will
immediately execute a ca r r i age r e tu rn and type the let ter e, followed by
a number, and the operator symbol in question. It will then perform a
second ca r r i age re tu rn and type the number of the last labeled s tatement
executed, the location of the er roneous instruct ion, and the right operand
of the opera tor . The la t te r will be in terpre ted as an integer and as a
floating-point number . The types of e r r o r s assoc ia ted with the var ious
opera tors and the corresponding remedia l actions a r e descr ibed in
Appendix B.

Even if no illegal operat ions a r e detected, the p r o g r a m may
still fail to produce the co r r ec t resu l t . This , too, indicates an e r r o r which
must be located and cor rec ted .

2. Use of Intermediate Output

In locating e r r o r s , it is often possible to get an idea of what
may be wrong by studying the output. If the breakpoint options have been
used ingeniously to provide ext ra output of in termedia te values , they may
be helpful in finding where the p r o g r a m s ta r ted to go wrong, and what s e c ­
tions a re apparently co r rec t . If this device and a careful study of the
original p rogram a re unsuccessful , t rac ing may be employed.

3. Statement Stopping

It will be reca l led that in t rans la t ing the p rogram, the TRANS­
FER CONTROL button determined whether the p r o g r a m was to be t r a c e -
compiled or not. At run- t ime when the TRANSFER CONTROL button is
up, a t r ace -compi led p r o g r a m runs the same way as one which is not
t r ace -compi led . If the TRANSFER CONTROL button is down when en te r ­
ing the p rogram, an opportunity is offered for instruct ing the p r o g r a m to
stop at a selected s ta tement number . The operating procedure is as
follows: Immediately after entering the p rog ram, with the MANUAL IN­
PUT lever down on the Flexowri te r and the TRANSFER CONTROL button
down, the computer will stop with the Flexowri te r light l i t . If a + followed
by a s tatement number (without the s) is typed in, the TRANSFER CON­
TROL button is ra i sed , and the START COMPUTE lever is p r e s sed , the

44

prog ram will run at full speed and stop just before executing the s ta te ­
ment specified. P r e s s i n g the START COMPUTE lever with the MANUAL
INPUT lever down will call for a new statement number. To run without
stopping, type in "run." This feature of the ACT-III subroutine sys tem is
useful if it is known that the p rogram is all r ight as far as a cer ta in s ta te ­
ment and that only the section after this s tatement requ i res examination.

4. Tracing

Tracing is a t ime-consuming task. Moreover , it produces an
inordinate amount of output, only a small amount of which is significant.
However, t rac ing does allow the p r o g r a m m e r to follow in detail the course
of the calculation, to verify each step by hand calculations and thus to lo ­
cate his e r r o r s .

If the p rogram has been t race-conapiled and the TRANSFER
CONTROL button is depressed after entering the p rogram, the following
pr int -out will occur for each s tatement:

Car r i age r e tu rn

Statement number (000, if s ta tement is unnumbered)

Machine address of the f irs t instruct ion of the s tatement

Result of stateraent (interpreted as an integer and as a
floating-point number) .

XI. USE OF LIBRARY PROCEDURES AND SUBROUTINES

Procedures and subroutines a r e blocks of p rogramming which a r e
used repeatedly to per form complicated sets of operat ions , for example,
to evaluate a complex function, to compute the root of an equation, or to
invert a m a t r i x at severa l places in a prograna. These operat ions a r e
not provided for di rect ly in the ACT-III language; however, a mechanism
is provided whereby procedures from other sources may be incorporated
in a par t icu lar p rog ram. The p r o g r a m m e r s at m.ost LGP-30 instal lat ions
maintain a l i b ra ry of p rocedures for calculations common to their r e s p e c ­
tive organizat ions, and a number of mul t ip le-use procedures a r e available
through POOL. (The justification of such a l i b r a ry at each LGP-30 ins ta l ­
lation cannot be overemphasized.)

This section will d iscuss the method of using procedures which
a r e available. (The ru les for writing new procedures a r e discussed in
Section XVII.)

A procedure obtained from a l ib ra ry will, ordinar i ly , contain
special instruct ions for i ts use . Among o thers , these instruct ions may

45

include call statem.ents to be wri t ten in the main p rogram; what the a rgu­
ments stand for, whether they a r e in tegers , floating-point numbers , or
sets of numbers ; and nature of the r e s u l t s . The discussion here is not
intended to supersede these special ins t ruct ions , but to give a more gen­
era l descript ion of p rocedures and their u s e s .

Multiple-use sections of programming may be classif ied by the
nature of the information which they take in and the information which
they produce. The s implest type, for example, is a routine to compute the
hyperbolic tangent of y; the input requi red is l imited to the value of y. A
more complicated procedure might take a block of data, or severa l b locks ,
and produce one or m o r e blocks of data, for example, a procedure which
computes the sum of two m a t r i c e s . Another c lass of p rocedures r equ i r e s
a function for one or more inputs. The output might be a single number , or
one or more blocks of numbers . Examples a r e p rocedures to find a root of
an a rb i t r a ry function, to integrate a function, or to solve a set of differential
equations.

A. General Call for P rocedures

In the ACT-III language, the general call for a procedure consis ts
of a s tatement , for example,

c a l l ' b e e r ' a r g ' b l a t z ' a r g ' s l i t z ' a r g ' b u d " ,

where bee r ' is the name of the procedure ; b la tz ' , s l i t z ' , and bud' a r e the
a rguments , which may be single nuinbers or a r r a y s . One or m o r e of the
arguments may be assigned for output or may be changed to a new form
by the procedure . The meaning of the arguments and the order in which
they a r e l is ted will be specified in the descr ipt ion of the procedure ,

B. Special Calls for P rocedu re s

1. Functions of One Variable

Fo r p rocedures in which a single number is requ i red or which
produce a single number , a special call can be used to acce le ra te the com­
putation. This consis ts of calling the procedure without any a rgument s ,
immediately after a s ta tement which leaves the argument in the accumula­
tor . Any express ion with a resul t or an ass ignment s ta tement will accom­
plish this .

Subroutines which produce a single number may leave with
this number in the accumula tor . To ass ign this resu l t to a var iab le or to
use it in another way, the operator prev ' may be used. Fo r example, the
sequence of programming

y '+ 'z"

cal l 'z i lch"

prev ' : 'u"

will ass ign the value of the Zilch function of y + z to the var iable u.

2. Functions as P a r a m e t e r s

When a procedure , such as an integrat ion routine, r equ i res a
function as input, it is ordinar i ly writ ten to include a subroutine to ca l ­
culate the function, or to call for such a subroutine to calculate the func­
tion, or to call for such a subroutine immediately following the procedure
call . In o rder to r e tu rn to the basic procedure , the initial calling sequence
must include a p r o c e d u r e - r e c a l l s ta tement . The reca l l statennent consis ts
of the procedure name and the suffix 2'; the arguments a r e omitted.

As an i l lus t ra t ion, suppose we have a procedure (root) which
requ i res as input a to lerance (tol), an initial guess (y) of the value of the
root, and a function (fct). The procedure is to r e tu rn with the accumula­
tor containing the value of the function fct(y) for the value of y originally
in the accumulator . The calling sequence for this procedure might be

y0 ' : 'y"

c a l l ' r oo t ' a rg ' t o l ' a rg ' y "

call ' fct"

c a i r r o o t ' 2 " .

C. Transla t ion of P rocedu re s

It is essent ia l that a procedure be t rans la ted before any call of
that p rocedure . Fa i lu re to mee t this requi rement is not detected by the
t rans la to r and is the responsibi l i ty of the u s e r . A safe rule is to t r a n s ­
late all p rocedures before the main p rog ram.

After loading the ACT-IIIA(S) tape and the T- tape , and changing to
typewri ter input, 6-BIT mode, the f i rs t procedure tape is placed in the
F lexowri te r r eade r ; t r ans l a t ed procedures obtained from a l ib ra ry a r e
generally provided on separa te lengths of tape, the las t operator of which
is wai t ' . When the tape reaches the wait' ins t ruct ion, the t rans la to r stops
to allow the tape to be changed. Unless special steps a re taken, p roce ­
dures a r e not t raced , nor a r e their s ta tement numbers and var iables
printed in the d i rec to r ies produced at the end of t ransla t ion.

A final note of caution regarding identification of l i b r a ry p roce ­
dures , par t icu la r ly from instal lat ions where new procedures a r e under

47

development. In some ins tances , a procedure with a given name may
exist in severa l different vers ions which a re not ent irely equivalent.
Therefore , a prograna which uses l ib ra ry procedures should include copies
of all procedures which it r equ i re s or, at leas t , a reference to the specific
procedures that a re used.

XIL ARITHMETIC OPERATIONS WITH INTEGERS

Although ar i thmet ic operations a re performed more frequently
with real numbers , the ACT-III language provides facil i t ies for pe r fo rm­
ing the corresponding operations with in tegers . We have a l ready naet
integers as p rogram constants and as problem p a r a m e t e r s , and have
learned how to read and wri te them. It is now appropria te to descr ibe
the basic and the special integer operations that a r e available.

The p r i m a r y application of integers is for such housekeeping
operations as counting, subscr ip t s , and switching. However, their funda-
iTiental cha rac te r i s t i c , that they a r e r ep resen ted exactly in the computer ,
without e r r o r due to roundoff, or conversion to binary fract ions, means
that they can be used to avoid accumulating this e r r o r .

A. Basic Integer Operations

The basic integer opera tors a re distinguished by the prefix let­
ter i, followed by the symbol used for the floating-point opera tor . Thus,

i+', i - ' , ix' , and i / '

a re the opera tors for adding, subtracting, multiplying, and dividing in tegers .

In division, the s tatement

d ivd ' i / divr ' : 'quot"

produces a quotient and a remainder of the same sign as the divisor . The
remainder is s tored as a special var iab le , r e m d r ' . It can be used la te r in
the p rogram until it is replaced by the remainder from a subsequent divi­
sion operation.

For the multiplication of small in tegers (with product less than
134,217,727 in magnitude), a special operator nx' is provided. This is
faster than the operator ix' and does not r equ i re a special subroutine.

48

EXERCISE 14

Any common factor of two integers is also a factor of the r ema in ­
der when the l a rge r of the two is divided by the sma l l e r . With this knowl­
edge, construct a p rog ram to print the grea tes t comimon denominator of
two integers input from the keyboard.

B. Special Operations

Two special integer operations a r e also available. The operator
j abs ' , with only a right operand, produces the integer which is the abso­
lute value of the integer right operand. The operator ipwr ' , with integer
right and left operands , produces the integer which is the left operand
ra i sed to the right operand power. If the right operand is negative, left
operand zero gives an e r r o r stop; left operand one gives one; and left
operand grea te r than one gives ze ro .

EXERCISE 15

Write a programi which will read a set of positive and negative
in tegers from the keyboard, and select the one which is l a rges t in mag­
nitude and the one which is smal les t in magnitude. Upon exiting froin the
read phase, the p rog ram is to pr int max for the integer with l a rges t mag­
nitude, min for the integer with smal les t magnitude, and (max)"^^"-.

C. Conversion between Integer and Floating-point Numbers

There a r e severa l operat ions which involve both integers and
floating-point number s . Three opera tors a re available to effect conver­
s ions. The opera tor flo' , with integer left and right operands, produces
a floating-point number which is equal to 0.1 ra i sed to the left operand
power multiplied by the integer right operand. Thus,

0'flo'123' would yield .123"e '3 '

l ' f lo '123 ' would yield .123"e '2 '

[' 0 ' i - ' r] ' f l o ' 1 2 3 ' would yield .123"e'4 '

Conversion of floating-point numbers to in tegers may be accom­
plished by ei ther of two ope ra to r s , unflo' or fix'. Both opera tors requi re
an integer left operand and a floating-point right operand. If the left
operand is denoted as n, it converts the right operand, multiplied by 10^,
to an integer^ In the case of unflo' , the number to be converted to an
integer is rounded after scal ing. In the case of fix', the next smal le r
integer is taken (the next l a rge r in magnitude, if the number is negative).
To i l lus t ra te , the following resu l t s would be obtained with the right
operands and opera to rs indicated.

49

y

15 734

1.826

2947.301

-1 .3275

-1 .5275

0' unf lo 'y '

16

2

2947

-1

-2

E X E R C I S E

O'fix'y'

15

1

2947

- 2

- 2

16

2' un f lo ' y '

1573

183

294730

-133

- 1 5 3

Give the r e s u l t s of

O'unflo 'y ' , O'f ix 'y ' , 3 'unf lo 'y ' , 3 ' f ix ' y ' , [' O ' i - ' 2 '] ' u n f l o ' y ' , ['O' i- ' 2 '] ' f i x ' y '

on each of the fol lowing n u m b e r s , c a r r i e d in r e a l (f loating-jsoint) f o r m :

a.) 0.51635 e.) 51.6354

b.) 0.051635 f.) 51.0000

c. j 0 .00051635 g.j - 0 . 5 1 6 3 5 4 2 x 1 0 " ^

d.) -51 .6354 h.) 516 ,354 ,200 .0

D. Sca l ing F l o a t i n g - p o i n t N u m b e r s

The f inal o j j e ra t ion wh ich h a s a f i xed -po in t o p e r a n d i s t he o p e r a t o r
x l O p ' . It c o n s i s t s of a f loa t ing-po in t left o p e r a n d , a f i xed -po in t r i g h t o p e r ­
and, and p r o d u c e s a f l oa t ing -po in t r e s u l t . T h i s o p e r a t o r m u l t i p l i e s the
left o p e r a n d by the power of t en given by the r i g h t ofjerand. It c a n be u s e d
for s ca l i ng if n u m b e r s b e c o m e l a r g e r in i nagn i tude t h a n 10^^ o r s m a l l e r
t han 10-^^

E X E R C I S E 17

(A) W r i t e a p r o g r a m u s i n g f l oa t i ng -po in t a r i t h m e t i c to c a l c u l a t e
and p r i n t the f l oa t i ng -po in t r e p r e s e n t a t i o n of the n u m b e r s f r o m 0 to 100.
P r i n t the n u m b e r s wi th f o r m a t n u m b e r 1709 ' , five numibers to the l i n e .

(B) Wr i t e a s e c o n d p r o g r a m to c o m p u t e t h e s e n u m b e r s by i n t e g e r
a r i t h m e t i c and f loat ing the i n t e g e r j u s t b e f o r e p r i n t i n g .

If p o s s i b l e , t r a n s l a t e and r u n bo th p r o g r a m s .

50

XIII. SUBSCRIPTED VARIABLES

In many problems , we a r e in teres ted , not in single numbers , but
in a r r a y s or o rdered groups of numbers . For example, a complex num­
ber is usually charac te r ized by two rea l numbers , its r ea l and its com­
plex p a r t s ; a vector in n-dimensional space may be charac te r i zed by its
n components; a polynomial of degree n in one var iable may be specified
by i ts n + 1 coefficients; a sys tem of m homogeneous l inear equations
in n unknowns may be summar ized by the m X n ma t r i x of coefficients.
In all these ca se s , it would be m o r e convenient to refer to the whole
a r r a y of numbers by a single name and to use some device to select indi­
vidual e lements . ACT-III provides such a device: subscr ipted var iab les .

A. Dimension Statements

In handling an arrays the t rans la to r must be informed how much
s torage to set aside for the elements of the arrays. This is done by the
dimension s tatement , which has the form: dim' , followed by- the names
and the maximum number of elements in the respect ive a r r a y s . An exana-
ple of a dimension stateraent is

d im'polyl '25 'poly2 '10 'mtr ix '26" .

Several a r r a y s naay be defined bŷ a single dimension s ta tement , and a
XDrogram may contain severa l dimension s ta tements ; however, each a r r a y
naust be defined bŷ a dimension statement before it is r e f e r r ed to. If an
a r r a y or index is given the same name as a previously named var iable ,
the previous definition is e rased from the syiaibol d i rec tory . However,
all par t s of the p rogram which have a l ready been t rans la ted will refer to
the old var iab le .

B. Single Subscripts

Elements of a one-dimensional a r r a y , such as a vector or the co­
efficients of a polynomial, a r e r e fe r red to by the a r r a y name, followed bŷ
a stopcode. This , in turn, is followed by either a constant integer or a
non-negative integer var iab le , which is the subscript , or index. If the
subscr ip t is a var iable , a s ta tement is requi red to the effect that it is
to be used as an index. This s tatement is of the form

index ' i ' j 'k" .

The f i rs t element of an arrays is r e fe r red to by the a r r a y nanae
and the index 0, the second by the a r r a y naiaie with index 1, and so on.
Thus the express ion a'O' r e fe r s to the f i rs t elenaent of the a r r a y named a.
If the dimension of a is 26 or m o r e , a '25 ' r e fe r s to the 26th eleiaient. The
e lements of a a r e actually s tored in r e v e r s e o rde r . If the a r r a y a is s tored

51

in locations 3000 to 3026, the element a'O' is in location 3026, and a '26 ' in
location 3000. If an index is used grea te r than the dinaension of the a r r a y ,
an element is selected from the next-named a r r a y or simple var iab le . On
the other hand, if a var iable index has not been assigned a value before it
is used as a subscript , what Bowlden descr ibes as "myster ious r e su l t s "
may occur .

As an example of the use of subscr ip t s , let us evaluate a polynomial
of degree n^SO, the coefficients of which a re to be read into the a r r a y poly.
The coefficient a ' i ' is the coefficient of y-*-. The following p rogram will
accomplish this :

rdx i t ' s7"

d im 'po ly ' 5 r '

index' j"

s i r 0 ' : ' j "

i read 'n"

n ' i + ' l ' : ' l i m "

s i ' r ead 'po ly ' j "

j ' i + ' l ' : ' j "

s4' i f [• j ' i - ' l im '] 'neg ' s l"

s7 ' r ead 'y"

r i + ' n ' : ' j "

poly ' j ' : 'va lue"

s2' j ' i - ' r : ' j "

t r n ' s 3 "

value 'x 'y ' + 'poly ' j ' : 'va lue"

s5 ' u s e ' s 2 "

s3 ' c r ' l 608 'p r in t ' va lue"

u s e ' s 11'"

EXERCISE 18

Assume that a r r a y a, of n e lements , contains the elenaents aj ,
0^ j<n- l , of an n-dimensional vector a; also that a r r a y b contains the cor ­
responding elements of a vector b . Write a p rog ram to conapute and print
the sca lar product (sp) of a and b:

n - i

sp = Y ĵ̂ j '
3=0

52

EXERCISE 19

Construct a prograna to s tore the coefficients of the polynomial
prod, which is the product of the polynomials poly 1 and poly 2. Assume
that poly 1 and poly 2 a r e of degrees nl and n2, and that the coefficients
a r e s tored in positions corresponding to the exponent.

C. Incremented Indexes

It is often des i rable to refer to sets of elements of an a r r a y which
a r e in some fixed relat ion to each other. In the ACT-III language, if an
a r r a y nanae is followed by an index nanae and an integer p rogram constant,
in either o rder , the sum of the index and the constant is taken as the index.
For example, if i = 1,

a r r a y ' i ' 2 5 ' = a r r a y ' 2 5 ' i ' = a r r a y ' 2 6 '

provided, of course , that a r r a y has a dimension of 27 or m o r e .

Any two var iab les , or two var iables and a constant, or single
var iable and an integer constant, which a r e not separa ted by an operator
a re in terpre ted as a subscript ing of the f i r s t -named var iable . If the
second var iable has not been declared as an index, an e8 e r r o r stop will
occur . If the second var iable has been defined as an index, the p rog ram
will be in terpre ted as writ ten, even if it was not so intended.

EXERCISE 20

The Besse l function J„(y) obeys the r ecu r r ence formula

Jn-i(y) = (2n/y)J^(y) - Jn+i(y) .

Assume that values of Jn(y) and Jn+i (y) a r e given. Then write a p rog ram
to compute the values of Jo(y)> Ji(y).°--Jn+i(y) ^^'^ s tore thena in the a r ­
ray J, with J'O' = Jo(y), etc .

D. Double Subscripts

Two-dimensional a r r a y s , such as m a t r i c e s , a re defined by the
same dimension s tatement as is used for one-dimensional a r r a y s . How­
ever , the elements of such a r r a y s a r e defined by a double-index statement
of the form

dbind ' i j" .

This s tatement defines a two-element a r r a y i j , with elements ij'O' and
i j ' l . Now, after the (integer) number of columns has been placed in

5 3

ar ray 'O ' , the value i has been placed in ij 'O', and the value j in ij^l', the
s tatement a r r a y ' i j ' will refer to the element in row i and column j of the
a r r a y .

EXERCISE 21

Write a p rog ram for finding the product of an (n X n) ma t r ix by an
n vector . Include dimension statenaents, permit t ing n to be as la rge as 10.
and the neces sa ry index and double-index s ta tements .

54

XIV. ITERATIONS

In using subscr ipted var iab les , as well as in a number of other ap­
plications, we frequently find outselves performing an operation for sonie
value of an integer, which we will cal l the controlled var iable , then chang­
ing the integer by a given amount, and repeating the operation until the in­
teger reaches some linait. We did this twice in our polynomial evaluator
in Section XIII: the f i r s t loop was used to read in the values of the coeffi­
cients (statem.ents s i ' through s4'); the second loop evaluated the polynomiial
(s ta tements sZ' through s5 ') .

Since this type of calculation occurs so frequently, ACT-III provides
a special way to c a r r y it out. In the latest vers ion (T-5) of the compiler , a
loop of this kind is c rea ted by labeling the f i rs t s ta tement of the loop (after
initializing the controlled var iable and any other var iables needed) and p lac­
ing at the end of the loop the s tatement

for 'control led va r i ab le ' s t ep ' inc rement 'un t i l ' l imi t ' rpea t ' sX".

In this s tatement, the nanie of the controlled var iable is inse r t ed between
for ' and s tep ' : the amount by which it is to be changed is inser ted between
step ' and unti l ' ; the l imit which is to be passed to leave the loop is inser ted
between until ' ; and rpea t ' ; and sX' denotes the s ta tement number of the s t a r t
of the loop.

The control led var iable mus t be an integer . It naay be ei ther a
simple integer var iable , or a subscr ipted var iable such as one component
of a double index. The increment and linait may be integer p rogram con­
stants , s imple var iab les , subscr ip ted var iab les , or ar i thmet ic express ions .
The i tera t ion t e rmina tes when the value of (l imi t -control led variable)
X increment becomes negative. There a re no r e s t r i c t ions on sign of the
increnient or of the l imit .

The for' s ta tement

f or ' cvar ' s tep 'de l ta 'unt i l ' l in- i i t ' r peat ' sX"

produces essent ia l ly the same object p rogram as would

de l ta ' : ' t emp"

p rev ' i+ ' cva r ' : ' cvar"

i f ' [' [' p r ev ' i - ' l im i t ' i - ' t em p '] ' i x ' t e mp '] ' n e g ' s X" .

This object p rog ram insures that a zero increment will not cause a pe r ­
petual loop.

55

There is no special instruct ion in the ACT-III language for i te ra t ing
with a floating-point controlled var iable . On the few occasions when this is
desired, two al ternat ives a re possible. The f i r s t is to produce the des i red
floating-point controlled variable by floating an integer with the proper
scaling and using a for' s ta tement to increment the integer representa t ion .
The second is to wr i te a section of programming equivalent to that produced
by the for' statem.ent5 but using floating-point arithnaetic. Fo r exaniple, sup­
pose that it is r equ i r ed to evaluate some function fct at in tervals of 0.01 in the
independent var iables y. Two ways of acconaplishing this would be

0 ' : 'y"

s i ' 2'flo'y"

call ' fct"

p rev ' : ' t emp"

c r ' I602'iprt 'y'"

1608'print ' temp"

fo r ' y ' s t ep ' I 'until ' lOO'rpeat 's 1",

or

0 ' : 'y"

s i ' y ' : ' temp"

call ' fct"

p rev ' : 'temp'"

c r ' l 6 0 2 ' d p r t ' y "

I608 'pr int 'y"

y' + '. l " e - ' r "y"

p r e v ' - ' . 1 0 0 5 " e ' 3 "

t r n ' s l "

The f i rs t form is preferable for severa l r ea sons . F i r s t , it avoids the in­
accurac ies due to buildup of roundoff e r r o r in repea ted addition of 0.01.
Secondly, floating-point a r i thmet ic is slower than integer ari thii iet ic.
Finally, the last loop would make no provision for the possible vanishing of
the increment if it were allowed to vary. A loop with a ze ro inc rement is
not an uncommon form of prograniming blunder.

Loops may be used within loops to any des i red depth. If a loop is
entered by a use ' s tatenient to some s ta tement inside the loop, the con­
t rol led variable may not have been proper ly initialized. Caution is indicated

56

EXERCISE Z2

Write a p rogram for reading the elements of a ma t r i x with m rows
and n columns into an a r r a y A. The m a t r i x will always obey the condition
m Xn ^ 225.

EXERCISE 23

If A is an (m X n) m.atrix and B is an (n X q) mat r ix , then the prod­
uct C is an (m X q) mat r ix , the (i5j)th element of which is given by

n

k=i

Write a p r o g r a m for finding the product of two m a t r i c e s .

EXERCISE 24

The binoniial coefficients 1 obey the law
\ m /

whe r e

0 if k > n or if k CO

and

S) - il) - '•
Use this information to wr i te a p rog ram for computing the binomial coef­
ficients of o rder nu

EXERCISE 25

Write a p r o g r a m for computing n! = 1 X 2 X 3 X ...X n.

XV. ADVANCED CONTROL OPERATIONS

In Section VIII (Elementary Control Operations) we l ea rn to use the
f low-directing operat ions u se ' , t r n ' , if", andbkpX' . With these opera tors in
mind (a review might be necessa ry) we will now proceed to more advanced
control operat ions .

57

A. Recalling a Subroutine

In lieu of a procedure , the same section of p rogramming or sub­
routine can be reca l led at severa l places in the p rogram. To do this , the
last instruct ion in the subroutine must be labeled accordingly. For ex­
ample, the s ta tement

r e t ' s E ' u s e ' s B "

may accomplish this purpose, provided sE ' is the label of the last s t a t e ­
ment of the subroutine and is of the form

sE'go to'sO",

and sB' is the label of the f i r s t s ta tement of the subroutine. After the
s tatement ^

r e t ' s E ' u s e ' s B "

is executed, the s ta tement sE ' is changed to use ' the s ta tement following
u s e ' s B " .

B. Setting Switches

Switches can be set to enable decisions to be made on the flow of a
p rogram at a place other than the place where the flow is to be changed.
For example, it may be des i red to change the course of a loop depending
upon some variable which does not change during the loop. It would then
be wasteful to tes t this variable each time the choice had to be made in the
loop. The s ta tement

s e t ' s E ' t o ' s X " ,

where sE is sE'go to'sO", rep laces sE by use ' sX" and goes on to the
s ta tement following the set ' s tatement.

A go to ' s tatement mus t be p r e s e t before it is encountered in
executing the p rogram. The operator go to' is not equivalent to the opera tor
u se ' . Both a re t r ans la ted into an unconditional t ransfer (u) ins t ruct ion in
the object p rogram. However, in the s ta tement

use ' sO'

sO' will be in te rpre ted as the nanie of a var iable and will be assigned a
location in the var iable s torage a rea . In the s ta tement

go to' sO'

58

sO' will be in te rpre ted as the name of the s tatement itself, and the object
p rog ram will contain an unconditional t ransfer to the instruct ion itself. If
this instruct ion is executed before the instruction has been modified by
either a set ' or r e t ' s tatement, the computer will enter a one-word loop.
The COMPUTE light will remain on, but none of the r e g i s t e r s on the osc i l ­
loscope will show any change. This behavior guards against the undeter ­
mined actions which might take place if a switch were entered before it had
been set.

EXERCISE 26

A program to compute the Zilch function of the resu l t of the las t
operation is located between s ta tements slO' and s l 2 ' . A program to com­
pute the Nussbaum function is located between s ta tements s20' and s l 2 ' .
In computing the function u(y), the initial value of y is destroyed. If the
initial value of y is positive, it is des i red to compute the product
Z(w) X N(u); if the init ial value of y is negative, the product Z(u) X N(w);
or if the initial value of y is zero , the product N(u) X N(w) is to be com­
puted. Use switches to accomplish these r e su l t s , remeinber ing that the
value of y will have been changed before the functions N and Z can be
computed.

C. Indexed Switches

A final device for changing the course of the p rog ram depends upon
the subscript ing. If i has been defined to be an index and if the s ta tement
before sT ' has the form

u s e ' s E ' u s e ' s D ' u s e ' s C ' u s e ' s B ' u s e ' s A " ,

the s ta tement

u s e ' s T ' i "

will t ransfer to sT ' if i = 0; to sA' if i = 1; to sB' if i :::: 2; to s C if i = 3; to
sD' if i = 4; and to s E ' if i = 5. If i is outside the l imits 0 ^ i ^ 5 , unex­
pected resu l t s may occur .

Only variable subscr ip ts may be used in this way. The statement

u s e ' s T ' 2 '

will t r ans fe r , not to s B ' , but to s ta tement (T - 2). Similar ly, the s ta tement

u s e ' s T ' i ' 2 '

will t r ans fe r to the i t h -o rde r preceding s ta tement (T - 2).

59

S u b s c r i p t e d s t a t e m e n t s canno t be u s e d a f te r go to ' or a f te r u s e ' in a
r e t ' s X ' u s e ' s Y " s t a t e m e n t , or af ter z e r o ' in an if' s t a t e m e n t .

E X E R C I S E 27

On c e r t a i n o c c a s i o n s , the c o m p u t e r m a y be i n s t r u c t e d to c o m p u t e
s e v e r a l p r o b l e m s wi thout i n t e r r u p t i o n . Acco rd ing ly , the da ta t ape m u s t c o n ­
t a in not only the da ta for the f i r s t p r o b l e m , but tha t for s e v e r a l p r o b l e m s ,
not n e c e s s a r i l y of the s a m e type . In our e x e r c i s e , we m a y w i s h to t r e a t
s e t s of da ta on tape in any of four d i f fe ren t w a y s I n s t r u c t i o n s for the f i r s t
p r o c e s s s t a r t a t s l O ' , t hose for the s e c o n d a t s 2 0 ' , t hose for the t h i r d a t
s 3 0 ' , and t hose for the fou r th at s 4 0 ' . Upon c o m p l e t i o n of e a c h p r o c e s s ,
the p r o g r a m t r a n s f e r s to s 100.

W r i t e a s e c t i o n of p r o g r a m m i n g s t a r t i n g at slOO' Give a s a m p l e
input for the p r o c e s s i n g of five s e t s of da ta , the f i r s t by p r o c e s s 1; the
s e c o n d by p r o c e s s 3; the t h i r d by p r o c e s s 2; the fou r th by p r o c e s s 4, and
the fifth by p r o c e s s 2. Also , i n s t r u c t the c o m p u t e r to s top a f te r the fifth
s e t h a s b e e n p r o c e s s e d .

D. Cal l ing P r o c e d u r e s

The c a l l ' o p e r a t o r u s e d for ca l l ing p r o c e d u r e s h a s the s a m e effect
as the s t a t e m e n t

r e t ' s P ' u s e ' s (P + 1)",

w h e r e s P ' i s the f i r s t i n s t r u c t i o n of the p r o c e d u r e and s (P + l) i s the s e c o n d
Unlike the r e f u s e ' s t a t e m e n t , c a l l ' p r o c ' c a n have the a d d r e s s modi f ied by a
c o n s t a n t s u b s c r i p t . T h u s , the s t a t e m e n t

c a l l ' p r o c ' 2 "

wi l l p l ace the r e t u r n a d d r e s s in the s e c o n d ins t rx ic t ion be fo re the beg inn ing
of p r o c ' , and wi l l t r a n s f e r to the f i r s t i n s t r u c t i o n b e f o r e i t . T h i s t e chn ique
i s useful when i t i s n e c e s s a r y to l eave and r e e n t e r a p r o c e d u r e .

XVI. S P E C I A L O U T P U T AND INPUT

The e s s e n t i a l s of a def in i t ive p r o g r a m (see Sec t ion IX) e m p h a s i z e
the l i b e r a l u s e of e x p l a n a t o r y c o m m e n t s in the p r o g r a m i t se l f and, p a r t i c u ­
l a r l y , the a s s i g n m e n t of d e s c r i p t i v e l a b e l s to the inpu t p a r a m e t e r s . The
s a m e a p p l i e s to output . Output i s m o r e l i ke ly to be r e f e r r e d to long a f te r
the de t a i l s of the p r o g r a m which p r o d u c e d i t have b e e n f o r g o t t e n .

Al though p r o p e r p lann ing of f o r m a t can do a g r e a t dea l t o w a r d
c la r i fy ing output , a l p h a b e t i c t ex t i s by fa r the m o s t ef fect ive way of

60

explaining the output layout. ACT-III provides two opera tors for producing
output of all the cha rac t e r s and functions of the Flexowri te r keyboard.

A. P r o g r a m m e d Alphabetic Output

A s ta tement consisting of the operator daprt ' followed by a sequence
of cha rac t e r s and spaces , each separa ted by stopcodes, will cause the char ­
ac t e r s appearing after the operator to be printed. If it is des i red to produce
the typewriter control functions, the following mnemonic codes must be used:

lower case
upper case
color shift
c a r r i age re tu rn
backspace
conditional stop
apostrophe
tab

Icl'
uc2'
color '
c r4 '
bs5 '
stop'
ap '
tab 6'

Fo r example, the statenient:

daprf c r 4 ' t a b 6 ' u c 2 ' E ' l c r x ' a ' m ' p ' r e ' ' o ' f ' u c 2 ' D ' l c l ' i ' r ' e ' c ' t ' 'uc2'

A ' Ic l ' I ' p ' h ' a ' b ' e ' t ' i ' c ' ' u c Z ' P ' l c l ' r ' i ' n ' t ' i ' n ' g "

when executed would produce the output

Example of Direct Alphabetic Pr int ing.

The daprt ' operator produces two instruct ions for each charac te r
and thus can consume a large amount of object p rog ram space; however,
daprt ' is fast and simple if the space can be afforded.

B. Alphabetic Output and Input of Coded Information

A second alphabetic output opera tor , apr t ' , r equ i res less p rogram
space and pr ints coded a lpha-numer ic information which is s tored as a
var iable . Up to five cha rac t e r s or typeiwriter control functions can be
s to red as single var iable . The variable may be subscr ipted. For example,
the s ta tement

apr t ' a lpha"

will cause the a lpha-numer ic contents of alpha to be printed. If, by e r r o r ,
alpha does not contain coded a lpha-numer ic information, it will be in te r ­
pre ted as a lpha-numer ic data, r e g a r d l e s s . If some of the cha rac t e r s a re
not acceptable to the F lexowri te r , a pr int stop may occur. If the variable
is a negative number, nothing will be printed.

61

The a lpha-numeric information in the variable may be inse r ted by
the operator a read ' , followed by the name of the variable in which the alpha­
numeric information is to be stored. When this s tatement is executed, a
single word is read from the tape, containing up to four cha rac t e r s of alpha­
numeric information in the special code given in Appendix F .

C. Repeated Alphabetic Output

The operator r ep r t ' can be used to pr int a consecutive string of
identical cha rac t e r s - for example, a line of per iods to separa te cases of a
problem - or to ca r r i age re tu rn to the next page. The opera tor has an in­
teger left operand, giving the number of t imes the charac te r is to be printed,
and a right operand which is the charac te r , or the operation to be repeated.
If the left operand is negative, nothing will be printed. Fo r example, the
statement

5 ' r e p r t ' c r 4 "

would produce five ca r r i age r e tu rn s . The r e p r t ' operator with its operands
must form a separate s tatement .

D. Compatible Output

It is occasionally helpful to punch output on tape in a form which can
be accepted later as input to the computer . If it is des i rable that the output
be legible to the p r o g r a m m e r , the opera tors punch' and ipch' cause the
right operands to be pr inted (and punched if the punch is on) m the form used
for floating-point and integer problem p a r a m e t e r s , respect ively . The num­
bers being output must obey the res t r i c t ions on problem p a r a m e t e r s . In
par t icu lar , if the right operand for ipch' has more than seven digits, an e3
e r r o r stop will occur .

E. Hexadecimal Output and Input

If it is unnecessary for the p r o g r a m m e r to unders tand the in te r ­
mediate data, as , for example, if the output from one p r o g r a m is to be
p rocessed by another, hexadecimal output may be used. The opera to rs a re
hxpch' and rdhex ' . The former causes the r ight operand to be punched out
in hexadecimal format; the la t ter causes a hexadecimal word to be r ead and
assigned to the r ight operand. Hexadecimal input and output a r e fas ter and
more accurate than decimal input and output, since there is no need for
binary-decimal conversion, which is slow and inexact.

F . Read and Float

Occasionally only floating-point operat ions may be r equ i red on a
number which is given in integer form on the data tape. This may be a c ­
complished by the two s ta tements :

62

i r ead ' t emp"

j ' f lo ' temp ' : ' f loa t" .

These s ta tements would r ead an integer from the Flexowri te r or r eade r ,
s tore it in t emp ' , then convert it to a floating-point number equal to temp'
multiplied by (O.l)J, and s tore the resu l t s in float ' . The same resu l t can be
obtained by the single instruct ion

j ' rdf lo ' f loat" .

EXERCISE 28

Write a p r o g r a m and include any input data necessa ry to produce
the following output format :

The f i r s t line of each page of output is to be labeled with the p r o ­
g r a m m e r ' s name and the date. (This information is to be read in coded
form from tape.) The second line is to contain the run number and the page
number, (Initial values a re to be read from tape; subsequent values a re to
be assigned consecutively.) The resu l t s for each run a re to be displayed in
se t s , each set consisting of three lines of data followed by a blank line. The
number of sets is var iab le . Each run is to s t a r t on a new page. The printed
page size should m e a s u r e 84 spaces wide and 66 lines long.

XVII. WRITING NEW PROCEDURES

Eventually many p r o g r a m m e r s will want to wri te their own p r o ­
cedures , ei ther because they need a special ized set of programming which
requ i res more complicated input and resu l t s than can be provided by the
r e t ' u s e ' s ta tement , or because they wish to contribute to the l ib ra ry .

A. Basic Requi rements

Each procedure r equ i re s an enter ' s ta tement , at leas t one exit '
s tatement , and an end" s tatement . The t rans la to r includes tes ts to de te r ­
mine that each end" s ta tement has been preceded by an enter ' s ta tement ,
that an exit ' s ta tement occurs between each en te r ' and end" pair , and that
a new e n t e r ' s t a t e m e n t is not made before any previous procedure has been
ended. Fa i lu re to observe these conditions will cause an e4 e r r o r printout.

Ordinar i ly , a procedure communicates with the remainder of the
p r o g r a m through the r e su l t s of the las t operat ion before entering and leav­
ing it, and by i ts a rguments . Statement nunibers may be duplicated between
a procedure and the main p rogram. Names of var iables also may be du­
plicated, except for var iab les named before the operator local ' , if i t appears
(see Section D, Global Var iables) .

63

Each procedure is prefaced by the operator en te r ' , followed by the
name of the procedure , and then by the names to be used for the a rguments .
When the procedure is called, these names will be replaced by the names in
the procedure call . The enter ' s tatement may be preceded by a s tatement
consisting of stop' opera tors , and of use'O' ph ra se s .

The operator exit ' is used to re tu rn from the procedure to the main
program. It may be used at any place within the procedure .

The operator end" designates the las t s ta tement of a procedure .
When this s tatement is read, all s ta tement numbers and var iables local to
the procedure a re e r a sed from the directory, and can no longer be r e f e r r e d
to.

B. References to Arguments

The arguments specified in the procedure call may be a r r a y s . With­
in the procedure body, all the arguments must be r e f e r r e d to as a r r a y s .
Even an argument which is actually a simple variable must be r e f e r r ed to
as an a r r a y of dimension 1, with the subscr ipt 0 stated explicitly. For ex­
ample, in the Zilch procedure with entry s tatement

e n t e r ' z i l c h ' s v a r ' a r r a y "

the argument svar ' is a simple var iable . Within the procedure , svar ' mus t
be r e fe r red to as svar 'O' .

The procedure body must include all necessa ry definitions of a r r a y s ,
single indexes, and double indexes for the quantities which are used inside
the procedure .

C. Temporary Exits from a Procedure

If a procedure , such as a quadrature routine or a differential equa­
tion routine, r equ i res a function as an argument, the s tatement before the
enter ' s ta tement may be used. The cal l ' operator places a r e tu rn t ransfer
to the s tatement following the cal l ' s ta tement in the f i r s t order of the p r o ­
cedure being called and t r ans fe r s to the second order . Since SX'i ' is the
ith location before SX", the s tatement

ca l l ' s ub ' 1 "

occurring somewhere inside the procedure sub' will place the address of
the next s tatement in the location one preceding the beginning of the p r o ­
cedure, and will t ransfer to the f i rs t instruct ion of the procedure , which
re turns control to the s ta tement following the subroutine call . To r e tu rn
to the procedure where it was left, the s ta tement ca l l ' sub '2" will place
the re tu rn address in the second location before sub ' , and will t ransfer

64

to the f i rs t instruct ion before the procedure . The c a l l ' s u b ' l " s tatement
inside the procedure has a l ready placed the re tu rn address in that loca­
tion. For the r e tu rn addresses to be useful, they must be inser ted into
t ransfer ins t ruct ions . These may be produced by insert ing one use'O'
phrase in the s ta tement preceding the enter ' s tatement for every t ransfer
to be made.

The exit ' s ta tement is ineffective if the procedure has been left p r e ­
viously by the technique descr ibed above. Instead, the final exit is made by
the statement use ' sub 'n" , where n is the subscript used for the las t cal l '
sub'n" instruction to re tu rn to the subroutine from the main p rogram.

If an address was not set in location sub'n+1' by a ca l l ' sub 'n+1" ,
or a se t ' sub 'n+1" , before the s tatement cal l ' sub 'n" or use ' sub 'n" , the
p rogram will usually stop in t r ack 62.

The s ta tement before the enter ' s tatement can also be used to s tore
p a r a m e t e r s needed by both the procedure and the main program. In this
case , a stop' in the s ta tement before the enter ' s ta tement will r e s e r v e one
s torage location.

To i l lus t ra te , let us suppose that the procedure Zilch r equ i re s one
intermediate exit to provide a function value, and one temporary s torage to
be available to both procedure and main program. The beginning of the
procedure might be

stop'use 'O'use 'O"

en ter ' z i lch" .

The in termediate exit would be made from within Zilch by the
s ta tement

ca l l ' z i l ch '1" ,

the re tu rn to Zilch by

ca i r z i l ch '2" ,

and the final exit by

use ' z i l ch '2" .

The variable would be r e f e r r e d to as z i lch '3 ' by ei ther the main p rogram
or the procedure .

65

D. Global Variables

The latest vers ion of ACT-III allows an exception to the ru les that
all var iables introduced in a procedure a re local to that p rocedure , and
cannot be r e f e r r ed to from outside the procedure , and that a procedure can­
not refer to any var iables defined outside the procedure . If the operator
local ' appears in a procedure after the enter ' s tatement, all var iables named
between the enter ' operator and the local ' operator a re made nonlocal or
"global," i .e . , they have the same significance inside and outside the p r o ­
cedure . If the local ' operator is followed by other names in the same s t a t e ­
ment, they are in terpre ted as a continuation of the pa rame te r l ist from the
enter ' statemient. In this case , only a dim' s ta tement can appear between
the enter ' s ta tement and the local ' opera tor .

Once a variable name has been identified as global, it r ema ins glo­
bal for all p rocedures t rans la ted thereaf ter . (Any other s tatement t r a n s ­
lated before a procedure would requi re a jump to the main p rog ram and
will r esu l t in an e r r o r stop when the end" s ta tement following the procedure
is t ranslated.) For example, in the following sequence of p rogramming:

enter 'z i lch"

d i m ' a ' I ' b ' l ' c ' l " a, b, and c a re global va r i ab les '

local 'u 'v 'w" u, v, and w are the formal p a r a m e t e r s '

s i ' a ' : ' r " r is local to zilch p rocedure '

s 2 '

s 3 '

s 4 '

exit"

end"

en te r ' bee r "

d i m ' r ' l ' s ' l "

local 'bud 'blatz"

bud '0 ' : ' a"

b ' : ' c "

r ' : ' b l a t z ' 0 "

r , s are global va r iab les '

bud, blatz a re formal p a r a m e t e r s '

this a is a global var iab le '

exit"

end"

O'.'r"

r:'a"

2 ' : ' b "

66

3'f c"

4': 'r '"

5 ' : ' s "

c a i r z i l c h ' a r g ' 6 ' a r g ' 7 ' a r g ' 8 "

ca l l ' bee r ' a rg - lO 'a rg '20"

Global names are useful in allowing simple communication of
p a r a m e t e r s which will always have the same name between procedure and
main program. However, they are not recommended for l ibrary p roce ­
dures or for other procedures which may be used severa l t imes in differ­
ent contexts. It is recommended that any global var iables used be l is ted
explicitly in the operating instruct ions for the procedure , and that wher ­
ever possible they be given names distinctive to the procedure . One con­
vention is to use the f i rs t three or four le t te rs of the procedure name,
followed by a number , le t ter , or other charac te r . For example nonlocal
var iables used in the Zilch procedure might be named: zi lcl ' , zilcZ',
z i lca ' , and so on. The likelihood of unintentional duplication of names of
this type is minimal .

E. Checking P rocedu re s

Checking procedures requ i res some special consideration. Since
ordinar i ly procedures which are used have already been checked, complete
procedures with en te r ' and end' opera tors a re not normally t race-compi led ,
r ega rd l e s s of the position of the TRANSFER CONTROL button. It i s , of
course , helpful to be able to bypass this rule when e r r o r s are detected in­
side a procedure . To t race-compi le a procedure the following rules must
be obeyed:

(1) The procedure to be checked must have the s tatement t r a c e "
included immediately after the enter ' s tatement. To avoid
remaking the tape, it naay be typed in from the keyboard. This
is done by depressing the MANUAL INPUT lever on the F l ex -
owri ter as soon as the second stopcode of the enter ' s ta tement
has been read.

(2) The TRANSFER CONTROL button must be down. The t race
will not include statement numbers within the procedure which
are e r a s e d when the end" statement is read.

To p r e s e r v e these s tatement numbers , the following additional ru les
must be followed:

67

(3) The statement before the enter ' s ta tement must begin with
u s e ' s S ' , where sS' is the f i rs t s ta tement of the main p rogram.

(4) All other procedures necessa ry must have been t rans la ted
previously.

(5) There must be no duplication of s ta tement numbers or of
local variable names between the procedure being checked and
the main program.

(6) The end" statement must be omitted from the procedure being
checked.

The conditions which must be observed in checking out a procedure
make it advisable to check out each procedure separate ly from the p rogram
in which it is to be used. The effort requi red to wri te a smal l p rogram to
provide input, the procedure call , and output to drive the procedure being
checked is well spent.

In checking procedures , it is necessa ry to concentrate attention on
one at a t ime. For complicated p rog rams , this pract ice is advisable even
when it is not enforced by the language. Most experienced p r o g r a m m e r s
find a sys temat ic approach of this sor t the bes t approach to p rogram
checkout.

XVIII. MACHINE OPERATIONS

The opera tors descr ibed in this p r imer r ep re sen t combinations of
sixteen basic machine operations designed to perform any operat ion of which
the computer is capable. ACT-III provides for the incorporat ion of machine
operat ions. The opera tors a r e :

b r i n g '
add '
s u b t r '
m u l t '
n m u l t '
div '
e x t r t '

(b)
(a)
(s)
(m)

(n)
(d)

(e)

hold '
c l e a r '
s t add '
r e t '
u s e '
s top '
t r n '

(h)
(c)

(y)
(r)
(u)

(z)
(t)

They have right operands, which are the addresses of the machine o r d e r s ,
and leave their resu l t s in the accumulator . Their use r equ i res a knowledge
of machine language programming, which is beyond the scope of this p r imer
Fur the r information can be obtained by writing POOL, the LGP-30 u s e r s '
organization.

XIX. CONCLUSION

Our introduction to the language of the ACT-III compiler is now
completed. It is a powerful aid to programming algebraic and scientific
p roblems , and produces object p rograms which are more efficient than
iTiost in terpre t ive routines or unoptimized machine codes. Its scope i s ,
indeed, wider than scientific p r o g r a m s . The inclusion of basic machine
opera tors pe rmi t s it to be used as a convenient and effective symbolic
assembly p rogram, and to express any p rogram which can be p rogramme
for the LGP-30 by any means . Such problems as symbol manipulation,
data reduction, and many others fall within the range of the p rog rammer
skilled in its use. Fur the r skill in the language must be obtained p r i m a r ­
ily by pract ice and experimentation; this is left to the r eade r .

69

APPENDIX A

E r r o r s at Compile-Time

E r r o r
Printout Meaning

e 1 Symbol table full
(max. 126)

e l Too many constants

(max. 63)

e3 Incor rec t constants

e4 Improper use of "end,"

"enter ," or "exit"

e5 Invalid bracket count

e6 Statement too large

e7 Statement number too
large (inax. 191)

e8 6-bit button up

e8 Invalid subscr ipt

eS Invalid operator

e8 Stop code miss ing from
previous "dim," "index,"
"dbind," "enter ," or
"local" s tatement

e9 Invalid or miss ing operand

sOOO 0000 Storage exceeded

sxxx xxxx Undefined s tatement

Remedy

Put some var iables into
regions

Read in some as data

Cor rec t tape and r e s t a r t at
beginning of s ta tement

Segment s ta tement and r e s t a r t
at beginning of s ta tement

Cor r ec t tape and r e s t a r t at
beginning of s ta tement

Res t a r t at beginning of
s ta tement

Cor rec t tape and r e s t a r t at
beginning of s ta tement

Rewrite p r o g r a m

Cor rec t p r o g r a m and recompile

70

APPENDIX B

E r r o r s at Run-Time

NOTE: Continuing the p rog ram after an e r r o r display will produce
invalid r e su l t s .

Meaning

Floating-point overflow

Floating-point overflow

Division by zero

Left operand negative;
or left operand zero and
right operand negative

Operand zero or negative

Operand g rea te r than 10®

Operand negative

Integer overflow

Left operand zero and
right operand negative

Operator

+, - , X, /

exp, flo, xlOp, pwr

/

pwr

E r r o r Type

e l

e l

e2

e2

In, log

sin, cos

sqr t

ix, i / , unflo,

ipwr

fix

e2

e2

e2

e3

e3

71

A P P E N D I X C

Page Code Example

18 [

13 a ' ; ' b '

15

15

17

15

15

47

47

47

47

47

+

-

0-

X

/

i+

i-

ix

K'
nx

a'+'b'

a'-'b'

O-'aa'

a'x'b'

nu'/'den

n'i+'k'

n'i-'k'

j'ix'k'

j'i/'k'

j'nx'k'

17 ab s ab s' av'

48 labs iabs 'kk '

48 flo n ' f lo 'b '

48 unflo j ' un f lo 'b '

48 fix j ' f i x ' b '

48 ipwr a ' i pwr 'n '

49 xIOp a 'x lOp'n '

ACT- I I I O p e r a t o r s

Meaning P r e c e d e n c e

Left b racke t (maximum of 7)

Right b racke t (brackets o v e r - r u l e
p recedence)

Substitute value â into _b 0

(a unchanged)

F loa t ing-poin t addition 1

F loa t ing-poin t subt rac t ion 1

F loa t ing-poin t negation of aa 3

F loa t ing-po in t mul t ip l icat ion 2

F loa t ing-poin t division 2

In teger addition 1

Integer subt rac t ion 1

In teger mult ipl icat ion 2

Integer division 2

F a s t in teger mult ipl icat ion for p r o d - Z

Lict 134,217.728

Absolute value of f loat ing-point av 3

. \bsolute value of in teger kk 3
Genera te f loat ing-point equivalent of 3
integer _b with l a s t n. digits f ract ional
(b unchanged)

Genera te rounded in teger equivalent of 3
f loat ing-point b with dec imal moved
j p laces r ight

Unfloat but drop f rac t ional digits 3

Integer a^ to in teger ii ' th power 3

Move dec imal point of f loat ing-point 3
-i;' IL p laces r ight

72

P a g e Code E x a m p l e M e a n i n g P r e c e d e n c e

I N P U T - O U T P U T

23 r e a d r e a d ' a "

61 p u n c h p u n c h ' a "

24 p r i n t n ' p r i n t ' a "

25 d p r t i ' d p r t ' a "

23 i r e a d i r e a d ' a "

61 r d f l o n ' r d f l o ' a "

61 i p c h i p c h ' n "

25 i p r t n ' i p r t ' i "

61 a r e a d a r e a d ' b "

60 a p r t a p r t ' b "

60 d a p r t d a p r t ' n ' e ' g "

61 r e p r t n ' r e p r t ' c r 4 "

61 h x p c h h x p c h ' a "

61 r d h e x r d h e x ' a "

31 r d x i t r d x i t ' s l 3 "

26 c r c r '

26 t a b t a b '

* P r e c e d e n c e d o e s

R e a d f l o a t i n g - p o i n t n u m b e r and s t o r e 0
in a.

P u n c h f l o a t i n g - p o i n t a w i t h c o n d i - 0
t i o n a l s t o p s fo r inpu t

(n = 100c_ + s) p r i n t a a s a f l o a t i n g - 0
p o i n t n u m b e r in c_ c o l u m n s , r o u n d e d
to s s i g n i f i c a n t d i g i t s

{i = 1 0 0 £ + ^) p r i n t f l o a t i n g - p o i n t a 0
a s d e c i m a l n u m b e r in c c o l u m n s
w i t h ^ f r a c t i o n a l d i g i t s

R e a d an i n t e g e r n u m b e r and s t o r e in a 0

R e a d i n t e g e r , c o n v e r t i t to a f l o a t i n g - 0
p o i n t v a l u e w i t h l a s t n d i g i t s f r a c t i o n a l ,
s t o r e in a

P u n c h i n t e g e r n v/i th c o n d i t i o n a l s top 0
f o r i npu t

(n = 100c + f) p r i n t i n t e g e r _i in m i n - 0
i m u m of c c o l u m n s w i t h f f r a c t i o n a l
d i g i t s (f no t e x c e e d i n g 8)

R e a d one w o r d in a l p h a b e t i c code 0
in to b

P r i n t b a s a l p h a b e t i c i n f o r m a t i o n

P r i n t s p e c i f i c c h a r a c t e r s ; e x a m p l e ,
n e g

P r i n t i n d i v i d u a l c h a r a c t e r o r c o n - *
t r o l n t i m e s

P u n c h a a s a h e x a d e c i m a l w o r d w i t h 0
c o n d i t i o n a l s top for inpu t by r d h e x

R e a d a h e x a d e c i m a l w o r d a n d s t o r e 0
in a

D a t a inpu t t e r m i n a t e s w h e n a b l a n k 0
w o r d i s r e a d ; c o n t r o l i s t r a n s f e r r e d
to s l 3 '

E x e c u t e t y p e w r i t e r c a r r i a g e r e t u r n 0

E x e c u t e t y p e w r i t e r t a b 0

n o t app ly

0

*

73

Page Code

CONTROL

29

29

32

57

57

33

34

54

29

t r n

u s e

stop

r e t
go to

s e t
to

bkp4
bkp8
bkp 16
bkp32

oflow

fo r
step
unti l
rpea t

if
n e g
z e r o
p e s

Examf

t r n ' s 7 "

u s e ' s S "

s top"

r e t ' s 2 '
u s e ' s i"

se t ' sZ '
t o ' s 7 2 "

bkp4'
u s e ' s 2 "

oflow'
u s e ' s 2 "

f o r ' m '
s tep 'd '
un t i l ' j '
rpea t ' s3

i f ' a 'neg '
i f ' a 'neg '
i f ' a 'neg '
i f ' a 'neg '

)le

II

s i '
s i '
s i '
s i '

14 p r e v p r e v ' - ' c v '

50 index index 'k 'n"

52 dbind db ind ' i ' j "

50 dim d im'coef ' lO '

bn '44"

Meaning

Trans fe r cont ro l to s7 ' if a ccumula ­
tor neg.

T r a n s f e r cont ro l to s 8 ' , r e g a r d l e s s

STOP! Continue if "START" p r e s s e d
on console

T rans f e r to s i ' after s tor ing r e t u r n
a d d r e s s at s 2 ' , wr i t t en s2 'go to'sO"

S2 ' , of the fo rm sZ'go to ' sO" , is made
to r e a d sZ 'use ' s72"

F o r mach ines with overflow logic
mod. only; t r an s f e r control to s2 ' if
the bkpt. switch is down (on) o therwise
to the next sequent ia l s t a t ement

T rans f e r to s2 ' if overflow o c c u r r e d
during p reced ing rf or i- (overflow
logic mod. only)

I n c r e a s e in teger m by in teger d_,
t r an s f e r to s3 ' if the new value of rn
is not g r e a t e r than j , o therwise to
next s t a t ement

If f loat ing-point or in-
•o's2" teger a is neg, t r ans fe r
>'s3" cont ro l to sV if z e ro to
•o ' sZ 'pos ' s3" s2_J, if pes to s 3 ' , or

next s t a t ement if t e s t s
fail

L a s t r e s u l t to be the operand (must
be f i r s t opera t ion executed in the
s ta tement)

Set up k and n for u s e as subsc r i p t s
(maximum of 30)

Set up i^, _j for use as double
subsc r ip t s

R e s e r v e 10 sequent ia l locat ions for
coef region, 44 for bn region

P. ' fCedence

0

0

*Precedence does not apply

74

Page Code

FUNCTIONS

17 sq r t

17 In

17 log

17 exp

Example

s q r t ' a '

In ' a '

log 'a '

exp 'a '

17

17

17

17

s in

c o s

a r t an

r a n d m

s in 'a '

co s ' a '

a r t a n ' b

r andm'

Meaning P r e c e d e n c e

Square root of f loat ing-point a 3

Natura l l oga r i thm of f loating-point a 3

Common loga r i thm of floating-point a 3

E r a i s e d to the f loating-point a ' th 3
power

17 pwr a ' p w r ' b ' F loa t ing-poin t a r a i s e d to floating- 3

point b ' th power

Sine of (floating-point a in radians) 3

Cosine of (floating-point a in rad ians) 3

F loa t ing-poin t angle in rad ians whose 3
tangent = b
Genera te p s e u d o - r a n d o m floating- 3
point value between 0 and 1

SUBROUTINE OPERATIONS

62 enter e n t e r ' c a l c ' Denotes s t a r t of source language sub- *
b l 2 " rout ine named calc bl_2 is a dummy

symbol which r e f e r s to a sequential
block of data specified in the main
p r o g r a m - c a l l i n g sequence

59 cal l c a l l ' c a l c ' Main p r o g r a m - c a l l i n g sequence which 0
a rg a r g ' a " t r a n s f e r s to the subroutine named

calc and makes dummy symbol b l 2
mean and re fer to actual region a

Denotes that va r iab le names p r e c e d - *
i^g local in the subroutine a re global

Return control f rom subroutine to *
main p r o g r a m

Denotes end of source language *
subrout ine

Subroutine will be t r a c e compiled if *
TRANSFER CONTROL button is down

Suspends compilat ion *

(Special symbol) r e m a i n d e r of p rev ious
i / opera t ion

*Precedence does not apply

65

62

62

66

46

47

local

exit

e n d

t r a c e

wait

r e m d r

loca l"

exit '

end"

t r a c e "

wait '

r e m d r

75

APPENDIX D

Summary of Operations

Listed belo-w are the most general ly used "button pushing" opera­
tions for ACT-III. The steps marked with an as t e r i sk (*) per ta in to
console buttons and those unmarked either to the F lexowr i te r or to the
reader-punch (for use with the ACT-III composite sys tem tape).

READ COMPILER
Compiler tape in photoreader
Source in flex
I Sel rd r . Oflex
*0 C.N.S.

COMPILE SOURCE PROGRAM
I, O Sel flex
* 6-Bit, T.C. down
Start

PUNCH HEX TAPE
(H.S. launch)
I Sel flex
Flex manual down
*O.C.N S. doat2900'
Start O Sel punch
*Bkp 32 down Start
(Flex)
I, O Sel flex
F lex manu.al down
*O.C.N S.
doat2900' Start
F lex punch on - identify
Start

READ RUNNING TAPE P5B
P5B in photoreader
I Sel rd r . O flex
Data in flex O.C.N.S.*

PROGRAM IN MEMORY
I, O Sel flex
F lex manual down
*O.C.N.S. doat0300'
Start F lex manual up
Start

PROGRAM NOT IN MEMORY
I Sel r eade r , O flex
Read PSBand Hex tajDcs
I Sel flex
Flex manual down O.N.S.*
Flex manual up

RESET COMPILER
T-Tape in flex
I, O Sel flex
*O.C.N.S.

LEGEND

I, O
Sel
rd r
flex
T.C
Bkp
doat2900'/0300'
O.C N.S

O.N.S,

Input, Output
Selector switch
photoreader
typewri ter or F lexowri te r
Transfer control button
Breakpoint button
typed from keyboard
One operation, c lear counter, no rma l , s ta r t compute

buttons
One operation, no rma l , s ta r t compute buttons

76

APPENDIX E

ACT-III Opera tors and Decimal Memory P r in t

The f i r s t two codes (underlined) belo^v are a jumip to the statement
stop routine, and a jump to the f i rs t executed instruction of the p rogram.
They are found on every ACT-III object p rogram.

0300 u6048 u0302

si' a';'b"

s2' a'+'b';'c"

s3' a'+'.3141'59'e'l';'c'

s4' a'-'b';'c"

s5' a'x'b';'c"

s6' a'/'b';'c"

s7' a'print'b"

s8' a'dprt'b"

s9' read'a"

slO' a'i+'b';'c"

sU' a'i+' l';'c"

sl2' a'i-'b';'c"

sl3' a'ix'b';'c"

sl4' a'i/'b';'c"

sl5' a'nx'b';'c"

si 6' a'ipwr'b';'c"

sl7' a'xlOp'b';'c"

sl8' use'sl"

si9' for'a'step'1'until'b'
rpeat' si"

0302

0304

0310

0316

0322

0328

0334

0339

0344

0347

0350

0353

0356

0362

0404

0408

0414

0420

0421

,00111qwj

,0021Iqwj

,0031 Iqwj

,0041 Iqwj

.0051 Iqwj

,0061Iqwj

,0071 Iqwj

,0081 Iqwj

,00933034

,00fllqwj

.OOgllqwj

.OOjUqwj

.OOkllqwj

,00qllqwj

, 0 0 w 11 qw j

,01011qwj

,0111 Iqwj

,012f0308

,01313q04

h3062

h5336

h5336

h5336

h5336

h5336

h5336

h5336

u4900

a3062

a6201

s3062

h5336

h5336

n3062

h5336

h5336

h5739
m5739

b3062

b6200

b3062

b3062

b3062

b3062

b3062

h3063

h306l

h306l

h306l

b3062

b3062

m5952

b3062

b3062

a3063
t0302

r4813 u4600 h306l

r4813 u4600 h306l

r4813 u4835 h306l

r4813 u4807 h306l

r4813 u4707 h306l

r5506 u5130

r5506 u5201

r4813 u4200 h306l

r4813 u4300 h306l

h306l

r5506 u4500 h306l

r4813 u4510 h306l

h3063 s3062 s5739

s20' wait'

The next six s ta tements

s21 ' i r ead ' a"

s22' i ' i p r t ' a "

0429 ,02933f0j

a re t raced '

0429 ,02933f0j

0434 ,0l633f0j

u5821

u5821
u5552

r5506

b3060

u5500

h5336

h3063

b3063 r5506

s23' abs'a';'b" 0441 ,01733f0j u5821 b3063 r5506 t5l6l h3062

77

s24

s25

s26

End

s27

s28

s29

s30

s31

s32

s33

s34

s35

s36

s37

s38

s39

s40

s41

s42

s43

s44

s45

s46

s47

s48

s49

i a b s ' a ' ; ' b "

p u n c h ' a "

w a i f

of t r a c e '

i p c h ' a "

a r e a d ' a "

a p r t ' a "

i f ' a "

i f ' a ' n e g ' s l "

i f ' a ' n e g ' s i ' z e r o ' s i "

i f ' a ' n e g ' s l ' z e r o ' s l '
p e s ' s i "

i f ' a ' z e r o ' s l ' p o s ' s l "

c r "

t ab"

a ' f l o ' b ' ; ' c "

p r e v ' + ' a ' ; ' b "

a ' r d f l o ' b ' ; ' c "

a ' u n f l o ' b ' ; ' c "

a ' f i x ' b ' ; ' c "

d i m ' a ' 1 0 "

index ' jk"

d b i n d ' i j "

d a p r t ' d ' a ' p ' r ' t "

a ' r e p r t ' c r 4 "

s top "

r d x i t ' s l "

r e t ' s l ' u s e ' s2 "

0447

0453

0458

0458

0461

0500

0503

0504

0506

0511

0518

0524

0526

0528

0534

0539

0547

0553

0559

0559

0600

0605

0615

0625

0626

0629

,01833fOj

,01933f0j

,0351 Iqwj

,0351Iqwj

,01j33718

•Olk l lqwj

jOlql Iqwj

j O l w l l q w j

,02011qwj

,02 11 Iqwj

,0221Iqwj

,02381000

,02481800

,0251 Iqwj

,026j3590

,0271 Iqwj

,0281 Iqwj

,0291Iqwj

.055f0600

,055f0600

,02jf06l4

,02k81500

, 0 2 q l l q q j

,02w00000

,03033620

,03130308

u5821

u5821

r5506

u 5 8 6 l

r5506

t0302

t0302

t0302
t0302

t0522

zOOOO

zOOOO

h5336

b3063

h5336
h3062

h5336

h5336

u 0 5 6 l

r 5 6 l 9

zOOOl
p l 3 0 0

m5662
a5809

u0629

u0304

b3063

b3063

u6000

h3063

u5759

t0511

t 0 5 l 6

s 6 l 0 9

b3062

r 4 8 1 3

r5506
h 3 0 6 l

b3062

b3062

r 5 6 3 5

u5607

p5700
zOOOl

t0620
t 0 6 l 9

u0302

s6l09 t0302

s6l09 t0302 m5662

t0302 m5662 t0302

r4813 u4528 h30bl

u4600 h3062

u5500 r4813 u4528

r5506 u4414 h3061

r5506 u4207 h306l

u5600 -r5602

z4600 -r5609

zOOOl p3300 zOOOl
p4500 zOOOl

u0624 z3200 pi600
h6309 z3200

78

s50

s51

s52

s53

s54

s55

s56

s57

s58

s59

s60

s6l

s62

s63

s64

s65

s66

goto'sO" 0631 ,032f067j

trn'sl" 0632 ,033g0308

sqrt'a';'b" 0633 ,03411qqj r4813 u3100 h3062

ln'a';'b" 0637 ,03511qqj r4813 u3700 h3062

log'a';'b" 0641 ,036llqqj r5506 u3807 h3062

exp'a';'b" 0645 ,03711qqj r4813 u3900 h3062

a'pwr'b';'c" 0649 ,03811qqj h5336 b3062 r5506 u3800 h306l

sin'a';'b" 0655 ,03911qqj r4813 u3400 h3062

cos'a';'b" 0659 ,03fllqqj r4813 u3500 h3062

artan'a';'b" 0663 ,03gllqqj r4813 u3200 h3062

randm';'a" 0703 ,03jl2q94 h4801 b5254 n4947 m5629 e4834

h5254 r4813 u5003 h3059

set'sl'to's2" 0713 ,03k30308 u07l6 u0304

bkp4" 0716 ,83q00400 u0719

bkp8" 0718 ,83w00800 u0721

rdhex'a" 0720 ,040k3590 pOOOO iOOOO h3059

call'sub'arg'a" 0724 ,04131qj4 u3050 z3059

hxpch'a'" 0727 ,0421 Iqqj r5506 u6037 zOOOO

Note: The 0-' operator consists of a r5506 u5l6l.

APPENDIX F

Codes for "aread"

Syi

)o
LI

*2

"3

A4

%5

$6

7T7

28

(9

Space

- "

=+

• 9

? /

] .

[.
T a b

nbol

Lower Case

Upper

Color

Car r .

Back

1

Case

Shift

Return

Space

Code

04

Oj

14

Ij

24

2j

34

3j

44

4j

06

Oa

16

l a

26

2a

36

30

08

10

18

20

28

40

Symbol

Aa

Bb

Cc

Dd

E e

Ff

Gg

Hh

l i

J j

Kk

LI

M m

Nn

Go

P p

Qq

R r

Ss

Tt

Uu

Vv

Ww

Xx

Yy

Zz

Cod

72

Of

6f

2f

4f

54

5j

62

22

64

6j

Oj

3f

32

46

42

74

If

7f

5f

52

3a

7j

4a

12

02

80

APPENDIX G

Solutions to Exerc i ses

P rog ramming problems seldom have a unique solution. The solu­
tions may vary in d i rec tness , in accuracy, and in efficiency, as measu red
by speed and storage requ i rement s . If your solutions differ from the ones
given he re , compare them in these r e spec t s ; it may well be that your solu­
tions a re bet ter . The rea l test of a programi is whether it computes without
e r r o r indication and produces the des i red r e su l t s .

Carr iage re tu rns and tabs a re used between statements throughout
the p rog ram portion of these solutions.

EXERCISE 1

Data or
Integer Value P r o g r a m Constant P rob lem P a r a m e t e r

a.) 1 1' or +1" +1 '

b.) 321456 +3214'56' +321456'

c.) -52 Negative -52'

d.) 536,870,911 +5368'70911' Too large

e.) -536,870,911 Negative Too large

f.) 0 0' or +0" +0'

g.) 742,125,000 Too large Too large

h.) 3.1416 Not an integer Not an integer

EXERCISE 2

Data or
Programi Constant P rob lem P a r a m e t e r Integer Value

a.) No sign allowed

b.) Negative

c.) +1234"

d.) +1'23456'

e.) 1'

f.) Sign needed

g.) Too large

h.) Negative

+0'

- 1 '

+1234'

+123456

+ 1'

+ 102'

Too large

-7000000'

0

-1

1,234

123,456

1

102

700,000,000

-7,000,000

81

N u m b e r

a.) 0

b.) 15.0

c.) 6.02 X 10^2

d.) -3 .00 X 10^°

e.) 3.14159265

f.) 5.3 X 10^^

g.) - .195 X 10"^^

h.) .253 X 10"22

P r o g r a m Cons tan t

a.) . 5 1 2 ' 3 4 6 7 8 ' e ' 5 '

b.) . 5 " e - ' 3 2 '

c.) Exponen t too l a r g e

d.) Nega t ive

e.) F r a c t i o n h a s s ign

f.) E x p o n e n t s ign
should follow e

g.) Only t h r e e w o r d s

h.) Six c h a r a c t e r s in
f i r s t w o r d

E X E R C I S E 3

P r o g r a m Cons tan t

0'

. 1 5 " e ' 2 '

. 6 0 2 " e ' 2 4 '

Nega t ive

. 3 1 4 1 ' 5 9 2 6 5 ' e ' l '

Too l a r g e

Nega t ive

. 2 5 3 " e - ' 3 2 '

E X E R C I S E 4

N u m b e r

51 ,234 .678

.5 X 10"^^

.7 X 10^^

- .4

.512 X 10^

.512 X 10"^

.512 X 10~5

.512342678

Da ta o r
P r o b l e m P a r a m e t e r

0'

+ 15 '+2 '

+602 '+24 '

- 3 0 0 ' + l l '

+ 3 1 4 1 5 9 3 ' + 1 '

Too l a r g e

- 1 9 5 ' - 3 2 '

+ 2 5 3 ' - 3 2

Data o r
P r o b l e m P a r a m e t e r

+5123468 '+5 '

+ 5 ' - 3 2 '

Too l a r g e

- 4 ' + 0 '

+ 5 1 2 ' + 5 '

+ 5 1 2 ' - 5 '

+ 5 1 2 ' - 5 '

+5123427 '+0 '

82

Data or
Prob lem P a r a m e t e r

a.) +0'+0'

b.) More than seven
digits

c.) - 1 2 ' - 2 '

d.) +123456'+7'

e.) +1230000' + 7'

f.) Leading ze ros

g.) More than seven
digits

h.) Decimal point

EXERCISE 5

Number

0

-.123456789 x 10"^

-.12 X 10'2

.123456 X lO''

.1230000 X 10"̂

,123 X 10^

.123456789 x 10"^

.1234567 X 10"^

EXERCISE 6

P r o g r a m Constant

0

Negative

Negative

.1234'56 'e '7 '

.123"e '7 '

.123"e '3 '

.1234 '56789 'e- '5 '

. 1234 '567 ' e - ' l '

Examples a.), d.), f.), g.), and h.) r ep resen t acceptable names for
simple va r iab les .

The other examples a r e unacceptable: b.) has more than five char­
a c t e r s ; c.) is a multiplication opera tor ; e.) is a sine opera tor ; i.) is a state­
ment label; and j .) is a constant.

EXERCISE 7

The values of the var iables after each of the s ta tements a re ;

0 ' : ' a"

l ' : ' b "

2 ' : ' c "

a ' : ' t e m p i "

b ' : ' a "

c ' : ' b "

t e m p i ' : ' c "

a

0

0

0

0

1

1

1

b

-

1

1

1

1

2

2

c

-

-

2

2

2

2

0

t e m

-

-

-

0

0

0

0

83

E X E R C I S E 8

a.) .1 + (.2 X .8) = .26

b.) (. l / . 2) + (.8 X .4) = .82

c.) (.1 X .2) (1 / .8) (.4) = .01

d.) (.1 / .2) / .8 - .625

e.) .1 - .2 X .8 / .4 = - .3

EXERCISE 9

a.) [' [' [' 0 - ' z ' x ' . 2 5 " e ' 0 ' + ' . 3 3 3 3 ' 3 3 3 3 ' e ' O ' j ' x ' z ' - ' . 5 0 0 0 " e ' O ' j ' x ' z '
+ ' . 9 9 9 9 ' 9 9 9 9 9 ' e ' O ' j ' x ' z ' : ' r e s "

b.) z ' / ' [' . 9 9 9 9 ' 9 9 9 9 9 ' e ' 0 t + ' z ' / ' [' . 2 " e ' l ' + ' z ' / ' [' . 3 "e"+. 2000 "e 'O '
x ' z ' j ' j ' j ' : ' r e s "

c.) z ' x ' [' . l l l l ' l l l l l ' e ' 0 ' + ' . 1 8 8 8 ' 8 8 8 9 ' e ' l ' / ' [' z ' + ' . 2 4 3 1 ' 3 7 2 5 ' e ' l ' - '
. 4 8 0 5 ' 8 4 3 9 ' e ' 0 ' / ' [' z ' + ' . 1 5 6 8 ' 6 2 7 5 ' e ' l ' J ' : ' r e s "

d.) z ' x ' . l l l l ' l l l l l ' e ' 0 ' + ' . 1 8 8 8 ' 8 8 8 9 ' e ' l ' - ' . 4 5 9 2 ' 5 9 2 6 ' e ' l ' / ' [' z ' + '
. 2 6 2 9 ' 0 3 2 3 ' e ' l ' - ' . 2 7 0 9 ' 8 5 0 8 ' e ' 0 ' / ' [' z ' + ' . 1 3 7 0 ' 9 6 7 7 ' e ' l ' J ' J ' : ' r e s "

The c o m p a r i s o n of the e x p r e s s i o n s is shown in the following t ab l e :

R e m a r k s

a.)

b.)

c.)

d.)

3

3

4

5

x . /

4

4

3

3

C Dnstants

4

4

5

6

P o o r a p p r o x i m a t i o n

B e s t

Dif ference of two r e l a t i v e l y l a r g e n u m b e r s .

EXERCISE 10

s q r t ' [' e x ' x ' e x ' + ' y ' x ' y '] ' : ' r h o "

a r t a n ' [' y ' / ' e x '] ' : ' p h i "

r h o ' x ' c o s ' ph i ' : 'ex"

r h o ' x ' s i n ' p h i ' : ' y "

e x l ' + ' e x 2 ' : ' s u m r l "

yl '+ ' y 2 ' ; ' sumixn"

e x l ' - ' e x 2 ' : ' d i f r l "

y l ' - ' y 2 ' : ' d i f i m "

e x l ' x ' e x 2 ' - ' y l ' x ' y 2 ' : ' p r d r l "

84

e x l ' x ' y 2 ' + ' e x 2 ' x ' y l ' : ' p r d i m "

e x r x ' e x 2 '+ ' y l ' x ' y2 ': ' a r g "

[' e x l ' x ' e x 2 ' + ' y l ' x ' y 2 '] ' / ' a r g ' : ' q o t r l "

['ex2 ' x ' y l ' - ' e x l ' x ' y 2 ' j ' / ' a r g ' : 'qo t im"

EXERCISE 11

n b

a.) +0000000 '+1234567 ' -5 '

b.) + 0 0 0 l 6 0 5 ' + 1 2 3 4 5 6 7 ' - 5 '

c.) +0000802 '+1234567 ' -5 '

d.) +0000802 '+1234567 ' + 0'

e.) +0000200' + 1234567 '+0 '

f.) +0000202 ' -1234567 ' + 5 '

g.) +000 l608 '+1234567 '+5 ' 0.00001608

In the i n t e r e s t of c l a r i t y , the output above h a s been a r r a n g e d in
co lu inns . Below is the output a s the p r o g r a m has been w r i t t e n .

Ex . 11

a. +0000000'+1234567'-5

b. +000l605'+1234567'-5

c. +0000802'+1234567'-5

d. +0000802'+1234567'+0

e. +0000200'+1234567'+0

f. +0000202'-1234567'+5

g. +000l608'+1234567'+5

n ' i p r t ' n '

0

0.01605

8.02

8.02

200

2 . 0 2 -

0.00001608

n ' p r i n t ' b '

. e -05

.12346 e -05

.1 e -05

.1 e 00

. e 00

. e 05

.12345672 e 05

n ' d p r t ' b '

.00000

.00

.12

-12346.

12345.67211940

0 . e -05 .

0.01605 .12346 e -05 .00000

8. 02 . 1 e -05

8 .02 . 1 e 00

200 . e 00 .

2 . 0 2 - . e 05-12346.

0.00001608 .12345672 e 05 12345.67211940

.12346 e -05

.00

.12

85

EXERCISE 12

. 45"e ' l ' : ' t emp" 0' : 'deg"

s i ' deg 'x ' .1745 '32925 'e - ' l ' : ' r ad" convert degrees to radians '

cr 'lOOO'dprt 'deg" cos ' r ad ' : ' t emp"

i f ' t emp 'ze ro ' s95" skip division by ze ro '

I605 'dpr t ' [' . 9999 '99999 'e '0 ' / ' t emp ' j " print secant '

s5 ' s in ' r ad ' : ' t emp"

i f ' t emp 'zero ' s96" skip division by z e r o '

I605 'dpr t ' [' . 9999 '99999 'e '0 ' / ' t emp ' j " print cosecant '

s6 ' deg'+' . 9999'99999'e '0 ' : 'deg"

t r n ' s l " c r ' d e g ' + ' . 4 5 " e ' l ' : ' t e s t "

s95' daprt ' ' ' ' ' ' u ' n 'b 'o 'u 'n 'd ' e 'd ' ' ' '

s96' daprt ' < ' < < ' u ' n 'b 'o 'u 'n 'd ' e ' d ' ' ' '

EXERCISE 13

prev ' - ' t es t ' : ' temp"

u s e ' s l "

u s e ' s 5 "

use ' s6" '

The routine at s i00 has been assumed to be f(y) = y**p. Input
for p has been added.'

s i ' r ead 'p"

read 'b"

s2' use'slOO"

s3 ' i f ' y ' - ' a ' z e ro ' s lO"

s4' y '+ ' inc r ' : ' y "

i f ' b ' - ' y ' neg ' s lS"

read 'a"

read 'n"

prev ' : ' y "

[' b ' - ' a '] ' / ' n ' : ' i n c r "

jump for f i rs t point. '

test after incrementing because a tes t for
equality might fail due to round off

sum'+ 'f': ' sum"

s lO ' Q- ' f ' x ' .5"e '0 ' : ' sum"

use ' s2"

u se ' s4"

s i 5' I608 'p r in t ' [' [' sum '+ ' f ' x ' . 5"e '0 ' j ' x ' i nc r '] "

u s e ' s l " re tu rn for new integral '

slOO' y 'pwr 'p ' : ' f" u se ' s3 ' "

86

p
b

P
b

T e s t Da ta

+1000010 '+1 ' a •
+1000000 '+1 ' n

+1000000 '+2 ' a
+1000000 '+2 ' n •

+ 0000000'+0'
+1000000'+2'

+0000000'+0'
+1000000'+3'

Output

.49999720 e 00

.90991443 e 00

EXERCISE 14

Grea tes t Common Divisor '

s i '

s2 '

s 3 '

s4 '

i r e ad ' sml i"

p r e v ' i / ' s m l i'"

r e m d r ' ; ' sml i"

c r ' 1000 ' i p r t ' sml i"

s top 'use ' s l ' "

i r ead ' l rg i"

i f ' r e m d r ' z e r o ' s 3 "

br ing ' tempi"

u s e ' s l "

EXERCISE 15

sml i ' ; ' tempi"

u se ' s2"

New numbers a re tested and assigned until a blankword is read
then the pr int -out is made . '

s i r

s i '

s5 '

s6 '

rdxi t ' s lO"

i re ad 'max"

i read 'new"

i f ' abmax ' i - 'abnew'neg'sS"

new': 'max"

slO' c r ' 1000 ' ip r t 'max"

iabs 'max ' : 'abmiax': 'abmin"

iab s' new': ' abnew "

i f ' abnew' i - ' abmin 'neg ' s6"

abnew': 'abmax"

abnew': ' abmin"

lOOO'iprt'min"

u s e ' s l "

u s e ' s l "

u s e ' s l "

1000 ' i p r t ' ['max ' i pwr 'min ' j " u s e ' s l l "'

EXERCISE 16

s i ' r e a d ' y " c r '1200 ' ip r t ' ['O 'unf lo 'y '] "

1200 ' ip r t ' [' 0 ' f ix 'y '] " 1200 ' ipr t ' ['3 'unf lo 'y ']"

1200 ' ip r t ' [' 3 ' f ix 'y ' j " 1200' ipr t ' [' ['O ' i - '2 ' j 'unflo 'y ' j "

1200 ' ipr t ' [' [' 0 ' i - ' 2 ' j ' f i x ' y '] " u s e ' s l '"

87

a.)

b .)

c.)

d.)

e.)

f.)

g.)

h.)

I

.51635

.051635

.00051635

-51 .6354

51.6354

51.0000

- .0005163542

516354200

0'unflo

1

0

0

-52

52

51

0

E r r o r I

O'fix

0

0

0

-51

51

50

0

3 unflo sto

3 'unflo

516

52

1

-51635

51635

51000

-1

p - N u m b e r

3'fix

516

51

0

-51635

51635

50999

0

too l a r g e

['O' i-

unflo

0

0

0

-1

1

1

0

•2 ' j

fix

0

0

0

0

0

0

0

EXERCISE 17(A)

Note e r r o r be tween 0 and 100'

0 ' ; ' n"

s i ' c r ' 5 ' ; ' c r t n "

s 2 ' 1 7 0 9 ' p r i n t ' n " n ' + ' . 9 9 9 9 ' 9 9 9 9 9 ' e ' 0 ' ; ' n " . 1 0 5 ' 0 0 0 0 0 ' e ' 3 ' - ' n ' ; ' n t e s t "

t r n ' s 3 " c r t n ' i - ' 1 ' ; ' c r t n " i f ' c r t n ' z e r o ' s l ' p e s ' s 2 "

s3' stop' '

.000000004

.499999885

.999999706

.149999921

.199999873

.249999825

.299999778

.349999730

.399999682

.449999635

.499999587

.549999539

.599999492

.649999444

.699999396

.749999349

.799999301

.849999253

.899999205

.949999158

.999999110

e 00
e 01
e 01
e 02
e 02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

.999999945

.599999849

.109999959

.159999911

.209999863

.259999816

.309999768

.359999720

.409999673
,459999625
.509999577
.559999530
.609999482
.659999434
.709999387
.759999339
.809999291
.859999244
,909999196
.959999148

00
01
02
02
02
02
02
02

e 02
e 02
e 02
e 02
e 02
e 02
e 02
e 02
e 02
e 02
e 02
e 02

Output

.199999992

.699999813

.119999949

.169999902

.219999854

.2699908O6

.319999759

.369999711

.419999663

.469999616

.519999568

.569999520

.619999472

.669999425

.719999377

.769999329

.819999282

.869999234

.919999186
,969999139

e 01
e 01
02
02
02
02
02
02
02

e 02
e 02
e 02
e 02
e 02
02
02
02
02
02
02

_29Q99'g956
,799999778
.129999940
.179999892
,229999844
,2799'39797
,329999749
,379999701
,429999654
.479999606
.529999558
.579999511
.629999463
.679999415
.729999368
.779999320
.829999272
.879999225
.929999177
.979999129

e 01
e 01
e 02
e 02
02
02

e 02
02
02
02
02

e 02
e 02
e 02
e 02
e 02
e 02
e 02
e 02
e 02

.399999921

.899999742

.139999930

.189999883

.239999835

.289999787

.339999740

.389999692

.439999644

.489999596

.539999549

.589999501

.639999453

.689999406

.739999358

.789999310

.839999263

.889999215
,939999167
.989999120

01
01
02
02

e 02
e 02
e 02
e 02
e 02
e 02
e 02
e 02
c 02
e 02
e 02
e 02
e 02
e 02
e 02
e 02

88

EXERCISE 17(B)

Note e r r o r between 0 and 100,'

s4 '

s5 '

0 ' ; 'n"

c r ' 5 ' ; ' c r t n "

O'flo'n';'nflo"

100 ' i - 'n ' ; ' n tes t "

i f c r tn ' ze ro ' s4 'pos 's5 "

stop'"

.000000004

.500000004

.999999945

.149999980

.1^9999992
,250000004
,300000016
,350000028
,399999980
.449999992
,500000004
.550000016
.600000028
.649999980
.699999992
.750000004
.800000016
.850000028
,899999980
,949999992
.099999945

e 00
e 01
e 01
e 02
e 02
e 02
e 02
e 02
02
02
02
02
02
02
02
02
02
02
02
02
02

.999999945
,600000028
,110000018
.160000030
,209999983
,259999995
.310000007
,360000018
,410000030
,459999983
,509999995
,560000007
,610000018
.659999971
,709999983
,759999995
,810000007
,860000018
,910000030
,959999983

00
01
02
02
02
02
02
02
02

e 02
e 02
e 02
e 02
e 02
02
02
02
02
02
02

1709'print 'nflo" n ' i + ' r ; ' n "

t r n ' s 6 " c r t n ' i - ' r ; ' c r t n "

Output

,199999992
,699999992
.120000009
,170000021
.219999973
,269999985
,319999997
.370000009
.420000021
.469999973
.519999985
.569999997
.620000009
.670000021
.719999973
.769999985
.819999997
,870000009
,920000021
,970000033

e 01
e 01
e 02
e 02
e 02
e 02
e 02
e 02
02
02
02
02
02
02
02

e 02
e 02
e 02
e 02
e 02

.300000016
,800000016
.129999999
.180000011
,230000023
.279999976
.329999987
.379999999
.430000011
.480000023
.529999976
.579999987
.629999999
.680000011
.730000023
.779999976

.829999'587
,879999999
.930000011
,980000023

01
01
02
02
02
02
02
02

e 02
e 02
e 02
02
02
02
02
02
02
02
02
02

,399999980
,899999980
.139999990
.190000002
,240000014
,290000026
,339999<578
,389999990
,440000002
,490000014
,540000026
.589999978
.639999990
.690000002
.740000014
.790000026
.83Q999978
.88^999990
.940000002
.990000014

e 01
e 01
e 02
e 02

02
02
02
02
02
02
02
02
02

e 02
e 02
e 02
e 02
e 02
e 02
e 02

EXERCISE 18

s i '

s2 '

s3 '

s4'

Scalar Product '

d im 'a '51 'b '51"

i read 'n"

r e a d ' a ' j "

0 ' : ' j "

r ead 'b ' j "

0 ' : ' s p ' : ' j "

sp '+ ' a ' j ' x ' b ' j ' : ' s p "

i f ' p rev ' i - ' n ' neg ' s4"

index'j"

0 ' : ' j "

j ' i + ' l ' : ' j "

j ' i + ' l ' : ' j "

j ' i + ' l ' : ' j "

I608 'pr in t ' sp"

i f 'p rev ' i - 'n 'neg 's2"

i f 'p rev ' i - 'n 'neg 's3"

u s e ' s l '"

89

EXERCISE 19

The coefficient prod, i, is the sum of products pi, j x p2, i - j ,
where j runs between the g rea t e r of i - n2 and 0, and the l e s s e r of i and
n l . (For s tatement used.) '

d im'polyr64 'poly2 '64 'prod '128" i ndex ' i ' j ' i - j "

s 3 ' rdx i t ' s2" To read in the coefficients of

poly2. '

0 ' ; ' i ' ; ' j " Initialize indexes '

s i ' read 'poly l ' i " Read coefficient'

fo r ' i ' s t ep '1 ' un t i l ' 63 ' rpea t ' s l "

s top 'u se ' s3" Too many coefficients'
i was incremented before discovery that
there is not another coefficient'

fo r ' j ' s t ep '1 'un t i l ' 63 ' rpea t ' sS"

Too many coefficients'

p r e v ' i + ' n l ' ; ' l i m i" 0 ' ; ' i "

i ' i - ' n 2 ' ; ' j "

0 ' ; ' j "

i f ' p r e v ' i - ' n l ' n e g ' s 9 " n l ' ; ' l i m j "

sum'+ 'polyl'j 'x 'poly2 ' i - j '; 'sumi"

for ' j ' s tep ' l 'unt i l ' l imi j ' r p e a t ' s 9 " s u m ' ; ' p r o d ' i "

fo r ' i ' s t ep '1 'un t i l ' l im i ' r p e a t ' s 7 " 0 ' ; ' i "

slO' c r ' l 6 0 8 ' p r i n t ' p r o d ' i " fo r ' i ' s t ep ' l ' un t i l ' l im i ' r pea t ' s lO"

c r ' c r ' u s e ' s 3 "'

s 2 '

s 4 '

s 5 '

s6'

s 7 '

s 8 '

s 9 '

i ' i - ' l ' ; ' n l "

rdx i t ' s6"

read 'poly2 ' j "

s top 'use ' s3"

j ' i - ' l ' ; ' n 2 "

0 ' ; ' sum"

i f ' j ' pos ' s8"

i ' ; ' l im j "

i ' i - ' j ' ; ' i - j "

90

EXERCISE 20

("For" statement used) '

d i m ' J ' 5 0 " index'n"'

i read 'n" O ' i - ' l ' ; ' - ! "'

s3 ' r e a d ' J ' n ' l " ' read ' J 'n" ' read'y"'

cr '2308'print 'y"- c r ' 300 ' i p r t ' [' n ' i+ ' l ' j " ' 2008 'pr in t ' J 'n ' l "

cr '300' iprt 'n"- 2008'print 'J 'n" ' n ' i - ' l ' ; ' n " '

s2 ' 0 ' f l o ' [' 2 ' nx ' n ' i+ ' 2 '] ' / ' y ' x ' J ' n ' l ' - ' J ' n ' 2 ' ; ' J ' n " - cr '300' iprt 'n"-

2008'print 'J 'n" ' fo r 'n ' s t ep ' -1 •unt i l '0 ' rpeat ' s2"

rdxi t ' s4" ' u s e ' s 3 "

s4 ' stop"'

EXERCISE 21

Matrix - Vector Product
n = number of rows in the vector and columns in the matr ix , m = number of
rows in the ma t r i x '

i read 'n" ' i r ead 'm" d im 'vc t r ' 10 'mt rx ' lO l"

index'k"^'' dbind'ij"' m ' ; ' m t r x ' 0 "

l ' ; ' i j ' 0 " 0';'k"-

s i ' k ' i+ ' l ' ; ' k" ' i f k ' i - ' [' n ' i+ ' l ' j ' z e ro ' s2 " -

read 'vc t r 'k" u s e ' s l "

s2 ' l ' ; ' i j ' l " -

s 3 ' i f i j ' l ' i - ' [' n ' i + ' r] ' z e r o ' s 4 " r ead 'mt rx ' i j "

i j ' l ' i + ' l ' ; ' i j ' l " u se ' s3"

s4 ' i f i j ' 0 ' i - ' m ' z e r o ' s 5 " i j 'O'i+' l ' ; ' i j '0"- use ' s2"

s5 ' l ' ; ' i j '0"-

s6 ' O'j'sum" l ' ; ' i j ' l ' ; ' k "

s7 ' mt rx ' i j ' x ' vc t r ' k '+ ' sum ' ; ' sum" ' k ' i+ ' l ' ; ' k" '

i fk ' i - ' ['n ' i+! l '] ' ze ro ' s8 ' ' f i j '1 ' i+ ' l •;'ij'in- use ' s7" '

s8 ' c r ' l 608 'p r in t ' sum" if i j ' 0 ' i - 'm ' ze ro ' s9" '

i j 'O ' i+ ' l ' ; ' i j ' 0" u s e ' s 6 "

s9 ' stop"'

91

s i

s 3 '

s4 '

slO'

s U '

s i '

s2 '

s 3 '

s4 '

s5 '

s6 '

s7 '

EXERCISE 22

i r e a d ' m s i z e " i read ' rows" '

i f 225 ' i - 'ms ize ' neg ' s l0 ' " d i m ' m t r x ' 2 2 6 "

dbind' i j" rows ' ; 'mt rx 'O"

l ' ; ' i j ' l "

r ead 'mt rx ' i j "

fo r ' i j ' l ' s t ep ' l 'unt i l ' colmis ' rpeat ' s4"

for ' i j 'O'step ' l 'until ' r ows ' rpea t ' s3 "

computation

c r ' d a p r t ' u c 2 ' M ' l c r a ' t ' r ' i ' x ' ' t ' o ' ' I ' a ' r ' g ' e "

stop'"

EXERCISE 23

i r ead ' co lms "

l ' ; ' i j ' 0 "

s 8 '

Matrix Product '

i r e a d ' m "

i read 'n"

iread'k""

d im 'mtrxa '401 •mtrxb'401 "

n ' ; ' m t r x a ' 0 "

l ' ; ' i j ' 0 "

l ' ; ' i j ' l "

read 'mi t rxa ' i j "

f o r ' i j ' O ' s t e p ' l ' u n t i l ' m ' r p e a t ' s l "

l ' ; ' j k ' l "

r ead 'mt rxb ' jk"

fo r ' j k 'O ' s t ep ' l ' un t i l ' n ' r pea t ' s3 "

l ' ; ' j k ' l " '

l ' ; ' i j ' l ' ; ' j k ' 0 " '

mt rxa ' i j 'x 'mtrxb ' jk '+ ' sum' ; ' sum"

fo r ' i j ' l ' s t ep ' l ' un t i l ' n ' r pea t ' s7"

t rn ' s8" '

I608 'pr in t ' sum" '

fo r ' i j 'O ' s t ep ' l ' un t i l 'm ' rpea t ' s5"

rows in A'

columns in A and rows in B'

columns in B'

dbind'i j ' jk"

k ' ; ' m t r x b ' 0 "

f o r ' i j ' l ' s t e p ' l ' u n t i l ' n ' r p e a t ' s 2 " '

l ' ; ' jk '0"-

f o r ' j k ' l ' s t e p ' l ' u n t i l ' k ' r p e a t ' s 4 "

l ' ; ' i j ' 0 "

c r ' 0 ' i - ' 7 ' ; ' c r t n "

0 ' ; ' sum"

jk 'OH+' l ' ; ' j k '0"

c r t n ' i + ' l ' ; ' c r t n "

c r ' 0 ' i - ' 7 ' ; ' c r t n " '

f o r ' j k ' l ' s t ep ' l ' un t i l ' k ' r pea t ' s6^ ' '

stop"'''

Ill

EXERCISE 24

Binomial Coefficients'

d im'coef '64" index 'm" i read 'nu"

p r e v ' i - ' l ' ; ' l i m i t " ' 0 ' ; ' n - l " .9999'99999'e 'O'; 'coef 0"

s i ' 0 ' ; ' t empi ' ; 'm" '

s2 ' t empi ' ; ' t emp2" coef m ' ; ' t e m p i " p rev '+ ' t emp2 ' ; ' coe f m "

for 'm's tep ' l 'unti l 'n-1 ' rpea t ' s2" '

.9999'99999'e '0 ' ; 'coef m " m is now n-1 + 1 r e m a r k '

f or 'n-1 ' s tep ' 1 'unt i l ' l imit ' rpeat ' s 1" 0'; 'm "

s 3 ' c r '3000 ' ip r t ' [' 0 'unf lo ' coef 'm ']" f o r ' m ' s t e p ' l •unti l 'nu 'rpeat 's3

EXERCISE 25

Fac tor ia l n'

rdx i t ' s4"

s i ' i r ead 'n" t r n ' s 3 "

i f n ' i - ' l ' n e g ' s 3 ' z e r o ' s 3 " ,9999'99999'e '0 ' ; ' factn" l ' ; ' k"

s2 ' factn 'x '0 ' f lo 'k ' ; ' factn" f o r ' k ' s t e p ' l ' u n t i l ' n ' r p e a t ' s 2 "

cr '2008 'pr int ' fac tn" u s e ' s l "

s 3 ' c r ' d a p r t ' c o l o r ' u c 2 ' I ' M ' P ' R ' 0 ' P ' E ' R ' 'N ' l c l ' co lo r "

s4 ' s t op 'u se ' s l " '

EXERCISE 26

s 1' compute w, u, and y

i f y ' neg ' s3 ' pos ' s2" r e t ' s 2 0 ' u s e ' s l 2 "

conapute N(u) x N(w) u s e ' s l

s2 ' s e t ' s 4 ' t o ' s 5 "

s 3 ' r e t ' s 2 0 ' u s e ' s l 0 "

s4 ' go to'sO"

compute Z(u) x N(W) u s e ' s l "

s 5 ' compute Z(w) x N(U) u s e ' s l "

slO' Z of u and w computed and s tored

s l 2 ' N of u and w computed and s tored

s20' go to'sO "

93

EXERCISE 27

E a c h s e t of da ta is p r e c e d e d by an i n t e g e r for the i r e a d j va lue ,
t h e r e b y ind ica t ing the s t a t e m e n t to be used . In the f i r s t c a s e 1 is i r e a d
and c o n t r o l goes to s lO, s econd c a s e , 2, and c o n t r o l goes to s30 and so on.
In the fifth c a s e w h e r e s20 is r e u s e d j is s e t aga in equa l to 3. If j is s e t
equa l to 5 con t ro l is t r a n s f e r r e d to s i 01 and the p r o g r a m s t o p s . '

slOO'

s lO '

s 3 0 '

s40 '

index ' j •'

i r e a d ' j "

r e a d da ta , c o m p u t e ,
p r i n t

r e a d da ta , compu te ,
p r i n t

u s e ' s l 0 1 ' u s e ' s 4 0 ' u s e ' s 2 0 ' u s e ' s 3 0 ' u s e ' s i 0"

u s e ' s l O O ' j "

u s e ' s l O O "

u s e ' s l O O "

If a v a r i a b l e a m o u n t of da ta is n e c e s s a r y in any of t h e s e s u b s e c t i o n s
a rdx i t m a y be se t , a s in

r d x i t ' s 4 5 "

r e a d da ta - da ta wi l l be r e a d in unt i l a b l a n k w o r d is r e a d , con t ro l
is then t r a n s f e r r e d to s45 .

s 4 5 '

s l O l '

compu te , p r i n t

s top ' "

u s e ' s l O O "

EXERCISE 28

l imn : n u m b e r of w o r d s in n a m e code , l imd : n u m b e r of w o r d s in date
code , r u n : run n u m b e r , sp l : space on f i r s t l i ne , sp2 : space on
second l i n e '

i read ' l imn' i read ' l imd"

dim' name' 5' date ' 6 "

a read 'name ' j "

aread 'date"

s33' page ' i+ ' l ' ; 'page"

s3 ' l ' ; ' j "

apr t ' name ' j "

sp l ' r epr t ' "

apr t 'da te ' j "

lOOO'iprt'run"

lOOO'iprt'page"

s i

s2

s4

s5

i r ead ' run ' i read ' sp l " iread'spZ"

index'j" 1'; ' j ' ; 'page'

for ' j 'step' 1 'until ' l imn ' rpea t ' s i " 1';'j "

for ' j ' s tep ' l 'unt i l ' l imd'rpeat ' s2" use 's3 "

for ' j ' s tep ' l 'unt i l ' l imn'rpeat ' s4"

l ' ; ' j "

for 'j 'step' 1 'unti l ' I imd'rpeat 'sS "

spZ'reprt ' " dapr t 'p ' . "

64 ' ; 'cr tn"

Computation, and after c r ' for blank line,

c r tn ' i - ' 4 ' ; 'crtn" i f cr tn 'zero 's33 'pos ' s6"

94

At end of computation,

s7' i f 64 ' i - ' c r tn ' ze ro ' s9" 4 ' r ep r t ' c r4"

c r tn ' i - ' 4 ' ; ' c r tn" use ' s?"

s9 ' run ' i+ ' l ' ; ' run" 0'; 'page" use's33'"

Name and date data to print, John Doe 4-July-62 Run No. +3'+6'+l'+71'+68'

uc J l c o h nspuc Die o e 4 -uc J Ic u 1 y - 6 2cr uc Rlc u nspuc N l c o . sp
10640846'623206l0'2f 08464f'240al 064'08520j 12'0a341420'101 f 0852'32061032'08462a06'

