ELECTROLYSIS AND EXTRACTION OF SOME LANTHANIDES FROM AQUEOUS ELECTROLYTES

WITH LITHIUM ANALOG

By

E. I. Ostott, W. H. Smyrl and R. F. Macander

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

LEGAL NOTICE

This report was prepared as an account of government-sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights.
B. Assumes any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, in the event that such employee or contractor of the Commission, or employee of such contractor, promulgates, or provides access to, any information pertinent to his employment or contract with the Commission, or his employment with such contractor.

Available from the
Office of Technical Services
Department of Commerce
Washington 25, D. C.

Facsimile Price $ 1.15
Microfilm Price $ 0.80

*M. Work was done under the auspices of the Atomic Energy Commission.

**Present address, Department of Chemistry, University of California, Berkeley, California.

***Present address, Department of Chemistry, Ohio State University, Columbus, Ohio
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ABSTRACT

Phase transfer of Pr by electrolysis at a lithium amalgam cathode was found to be linear with time for fixed electrolysis conditions. The rate of electrolysis of Pr decreased with increasing lithium citrate concentration. Extraction of Pr from Pr-Gd mixtures with saturated lithium amalgam was found to vary with virtually any change in electrolyte composition. The Pr extraction was first order with respect to Pr concentration, but the extraction rate decreased with increasing excess citrate concentration. The presence of Gd did not affect the extraction of Pr very much at Gd concentrations less than 0.1M, but at higher concentrations of Gd the amount of Pr extracted was diminished. The results indicate that the exchange reactions are very fast and it may be possible to interpret rate data in terms of equilibria in the electrolyte phase.
INTRODUCTION

When steady-state transfer of a lanthanon takes place across the boundary of an electrolyte phase to a juxta-positioned liquid metal phase, supposedly all of the non-metallic species and solvent associated with the lanthanon ion are stripped from the lanthanon prior to entry into the metallic phase. If all exchange reactions in the electrolyte are sufficiently rapid, and if the lanthanon is electrolyzed or extracted sufficiently slowly, then the electrolyte composition should not vary enough even at the electrolyte-liquid metal phase boundary, to cause a significant change in the rate of electrolysis or extraction for short periods of time. Thus the condition of chemical equilibrium in the electrolyte can be approached experimentally, and steady-state electrolysis or extraction should have a specific dependence on the chemical potential of the electrolyte as defined by one or more equilibrium constants.

In contrast to homogeneous exchange reactions in the bulk of the electrolyte, the reactions to be considered here must be defined in terms of heterogeneity, since the stripping reactions and charge transfer reactions to produce metallic lanthanons take place very close to the metallic surface. The mathematics of the heterogeneous kinetics is expressible simply in two dimensional flow vectors or fluxes, and the functions become linear if the mass transfer is linear with time in all experiments. Interpretation of rate parameters is facilitated by log-log plotting.

Recently the linearity of steady-state electrolysis of Th in methanol electrolytes was demonstrated (1), but interpretation of the rate data in terms of equilibrium thermodynamics was not possible because of multiple...
electrode reactions and irreversible electroosolvolytic effects.

In this study some experiments on Pr electrolysis were done to verify linearity of rate data. Pr was chosen for amalgam extraction experiments because of the ease of following the mass transfer by radio-chemical procedures and the ability to work at low concentrations.

Revived interest in amalgam extractions of lanthanons is shown by a series of recent papers by Barrett, Sweany and Topp (2,3,4) in England. A review of prior work in this field is given in the first paper of this series (2).

EXPERIMENTAL

Details of apparatus, chemicals and procedures used in electrolysis experiments are given in previous papers (5,6,7).

Amalgam extractions of Pr were done with saturated Li amalgam which was prepared by electrolysis of a saturated solution of LiOH at a current density of about .08 amp/cm². Extractions were done on the laboratory bench with the air temperature controlled at 22 ± .2°C. Twenty-five ml of saturated Li amalgam were placed in a tall beaker with a cross sectional area of 14.5 cm². Fifty ml of electrolyte were added and the extraction was allowed to proceed for two minutes without stirring except by the gas generated by reaction of Li with the electrolyte. After quickly separating the phases the amalgam phase was washed with distilled water and the Pr was then extracted with HCl on a steam plate. Pr was determined by scintillation counting as described previously (7). During the extractions the temperature of the electrolyte was observed to increase one to two degrees from heat generated by reaction of the amalgam with the electrolyte.
RESULTS

Data on Pr electrolyses are plotted in Figure 1. For controlled electrolysis conditions the mass transport of Pr to the mercury phase was reasonably linear with time, even with high Joule heating in the electrolysis cell. At the highest current density of 0.06 amp/cm² the electrical power input to the cell was about forty watts.

The effect of excess citrate ion concentration on electrolysis rates is shown in Figure 2. Different symbols are used in the plot to show that some other parameters were not rigorously controlled and thus were not invariant in these experiments. There is considerable scatter of the data, but the mean slope of the plot is definitely negative.

Experiments on extraction of Pm were done with the Pm concentration kept very low; that is, within one or two orders of magnitude of one micromolar. An excess of citrate was used and Gd was added as the second lanthanon.

The dependence of Pm extraction on the concentration of Pm was investigated. Data in Table 1 show that the percentage of Pm extracted is independent of the Pm concentration in the particular concentration range of the experiments.

In Figure 3 are plotted data on the effect of excess citrate concentration on the extraction of Pm from electrolytes containing various concentrations of Pm. These data show the same trend as the data in Figure 2 for electrolysis of Pr, but there is less scatter.

The presence of Gd at concentrations of less than 0.1M does not affect the Pm extraction very much (Figure 4), but at higher concentrations of Gd a definite reciprocal relationship is demonstrated.

INTERPRETATION OF RESULTS

Scatter of the data in Figure 2 cannot be attributed to chronological changes in electrolysis conditions or lack of temperature control during any
one experiment, since the plots in Figure 1 are reasonably linear. The most likely reason for the variation in rates is a variation in the electrolyte composition apart from the excess citrate concentration. The data in Figure 3 are better than those in Figure 2, but still are not precise enough to define the slopes properly. Two or more types of behavior may be shown by the results in Figure 3. These results indicate the need for data from experiments in which the ionic strength is kept constant.

The negative slopes shown by Figure 2 and Figure 3 are expected since an increase in excess citrate ion concentration should diminish the free lanthanum ion concentrations and thus make the extractions more difficult and less rapid. If one citrate group affects the equilibrium, then the slope should be minus one; if two citrate groups take part, then the slope should be minus two.

Data in Table 1 show that the amount of Ra extracted is simply proportional to that present in the electrolyte. Thus the reaction is first order with respect to Ra concentration.

At high concentrations of Gd the extraction of Ra is diminished by an amount proportional to the increase in Gd concentration. The minus one slope of the lines in Figure 4 is indicative that Gd interferes with the Ra extraction in an inverse first order mode. This effect of Gd is not unexpected since previous results on separation of rare earths showed that the separation factors changed as the concentration of one lanthanum of the mixtures was made large (5,6,7).

In Figure 5 are plotted data which depict changes in the extraction of Ra as the average separation of Gd ions in the electrolyte is decreased. We guess that the distance of about 25 Å is significant and that the reactions that immediately precede phase transfer may take place predominantly in an electrolyte layer of this approximate thickness at the amalgam surface.
REFERENCES

Table 1

Extraction of Pa from electrolytes containing 0.1M Gd and 0.1M excess citrate

<table>
<thead>
<tr>
<th>Approx. Pa conc. - μ-molarity</th>
<th>Pa extracted in 2 min. - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>1.26</td>
</tr>
<tr>
<td>2.0</td>
<td>1.25</td>
</tr>
<tr>
<td>4.0</td>
<td>1.22</td>
</tr>
<tr>
<td>20</td>
<td>1.32</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Figure 1 - ELECTROLYSIS OF 0.5M PrCl₃ IN 1.25M TRILITHIUM CITRATE AT pH 5.6 ± 0.2; TEMP. 25 ± 2°C.

Figure 2 - ELECTROLYSIS OF Pr AT 0.05 AMP/CM² AND AT 25 ± 1°C. WITH VARIATION IN EXCESS CITRATE CONCENTRATION PLUS VARIATION IN SOME OTHER PARAMETERS. THE LINE IS DRAWN WITH A SLOPE OF MINUS ONE.

Figure 3 - EXTRACTION OF Pr AS A FUNCTION OF EXCESS CITRATE CONCENTRATION WITH CONTROLLED Ga CONCENTRATION. THE UPPER LINE IS DRAWN WITH A SLOPE OF MINUS TWO AND THE LOWER LINE IS DRAWN WITH A SLOPE OF MINUS ONE.

Figure 4 - EXTRACTION OF Pr AS A FUNCTION OF Ga CONCENTRATION WITH CONTROLLED EXCESS CITRATES. THE HORIZONTAL LINES ARE DRAWN WITH A SLOPE OF ZERO AND THE SLANTED LINES ARE DRAWN WITH A SLOPE OF MINUS ONE.

Figure 5 - PLOT OF COMPUTED Ga ION spacing IN THE ELECTROLYTE VERSUS Pr EXTRACTION RATE CONSTANT.
FIG. 1. ELECTROLYSIS OF 0.5M PrCl₃ IN 1.25M TRILITHIUM CITRATE
AT pH 5.6±0.2; TEMP. 25±2°C.
FIG. 2. ELECTROLYSIS OF Pr AT 0.05 AMP/CM2 AND AT 25 ± 1°C. WITH VARIATION IN EXCESS CITRATE CONCENTRATION PLUS VARIATION IN SOME OTHER PARAMETERS. THE LINE IS DRAWN WITH A SLOPE OF MINUS ONE.
FIG. 3 EXTRACTION OF Pm AS A FUNCTION OF EXCESS CITRATE CONCENTRATION WITH CONTROLLED Gd CONCENTRATION. THE UPPER LINE IS DRAWN WITH A SLOPE OF MINUS TWO AND THE LOWER LINE IS DRAWN WITH A SLOPE OF MINUS ONE.
FIG. 4. EXTRACTION OF Pm AS A FUNCTION OF Gd CONCENTRATION WITH CONTROLLED EXCESS CITRATE. THE HORIZONTAL LINES ARE DRAWN WITH A SLOPE OF ZERO AND THE SLANTED LINES ARE DRAWN WITH A SLOPE OF MINUS ONE.
FIG. 5. PLOT OF COMPUTED Gd ION SPACING IN THE ELECTROLYTE VERSUS Pm EXTRACTION RATE CONSTANT.