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I n  order to assess the possibility of producing quark-gluon 
plasmas in ultra-relativistic heavy ion collisions, it is iaportant t o  

, ~ ~ d e r s t r r l d  what happens in the very beginning of such collisions. It 
IS usually assumed that the quanta which arc produced in the central 
r a p i d i t y  .. region quickly reach a atate of local thermodynamic 
tquilibriun 111. Such an assumption of thermalization is certainly a 

convcnient one, as it leads for example to a simple dynamical model of 
the colliriocis based on hydrodynaiaics ( 2 1  . Ilowever, its validity 
ie iaai i is  to be checked. In particular, one would like to know how to 
charactctize the quanta trhich have a chance to thermalize, on which 
tlme scale this thermalization takes place, what is the energy density 
ut the system soon af ter thermalization, etc.. . To answer most of 
these questions would. require aolvjiig a kinetic equation, given 
dflpr~~priate iilitial conditions and a detailed knowledge of the 
S I C I O S ~ O ~ I C  processes by which the quanta exchange energy, momentum, 
or possibly their number. Our goal in this paper will be more modest; 
we shall attempt t o  determine the properties of the quanta which turn 
l l l l ( J  free particles during an ultra-relativistic heavy ion collision 
alld which give the dominant contribution to the initial energy 
detlsi t y .  

Our starlinp point is a parton model. We assume that. in the 
c e n t e r  of mass frame, where they are fast moving objects, the 
collidiily nuclei may be viewed as collections of quasi real particles, 
the partons, with lifetime auch larger than the collision time.In the 
spirit of the "sudden approximalion" of quantum mechanics, we assume 
that the nuclear wave functions are essentially unaltered by the 
collision; that is, Just altur tlie collision, the distribution of 
partoils in phase space remains identical to what it was just before 
ihr collisioii. llowavur, duriiiy lhe collision, some of the partons 
receive energy and momentuin which, we assume, is just enough to put. 

the. on their mass shell. They then evolve as free particles, at least 
uver a short  period o t  time. Our purpose is to point out some 
p r o p u r t i e s  o t  this system o t  free partotis at the time i t  is formed, I n  

particular, we shall find that the dominant contribution to the energy 
deiwity cones from partoils tilth Iraltsvc!rse momenta gri iwi i iy  liku 
p : - . ~ ' ' '  . This is in contrast for oxasple with other parton iiiodcls, 

such as the dual parton model 111. which use partons with liaited 
transverse momenta. One may worry that the lack of partonic saturation 
in these models will lead to an overestimate of the soft parton 
contributions in collisions of large nuclei. 

Recently, Ilur rpd Kajantib[4) preienttrd In attempt t o  estimate 
the thermalization time in nuclear collisions. Eventhough we ahall not 
adopt their view on the theraalization problem we would like to 
mention that our discussion in section 2 expands on thoir treatment ot  

the kinematics of the parton distribution. Ue shall show in this 
sectioii that tlie system of free streaming partons exhibits two 

different regimes as a function of time, the first regime being 
dominated by the longitudinal motion of the fast partons. Our 
arguments concerning the characterization of the partons wIiicII get 
freed during the collisions are developped in section 3 .  We shall 
present two fairly different scenarios which lead to  tlie same A 

dependence of the partons transverse momenta. The last section of the 
paper contains numerical estimates of the formation time and the 
initial energy density. 
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We assume that,at least for a short period of time, the phase 
coherence between the partons can be ignored and we deacribe the 
system of partons by a classical distribution function f ( p , x ) ,  where x 
represents the.space;timo ' coordinates, and p the iaoinentuin. We shall 
assume that the distribution is u'niform in the tiansveree direction, 
i.e. f Ip,x)=f (p, ,pl ,z, t) . Loiigi tudinal (p, ,z) 'and transverse (p,) 
variables play different roles in the present discussion, and in order 
to expresa easily tho consequences of longitudinal Lorentz boosts, it 
is convenient to traiisform the longitudinal variables. We define a 
"space-time rapidity" 11 and a propvr time 'I: 

I t t z  

a t-2 
II=- 111- ( 2 . 1 )  ' 

in terms of which one has t=,icoshll, Z=I sinhil . Silailarly, one 

ilItt0dll~:fJS a "momentum rapidity" y :  



Po = JK 1 P,'P, 

2 Po-P, 
y-111- 

4 

(2.21 

riich that p;pI coshy, p,=p, iinliy. 
Ye shall ignorc in this section the processes which ady chdnge 

locally the number of partons, and also the collisions which change 

the monenla. Then, the parton distribution obeys the tollowing kinetic 

equation: 

(2.3) 

where we have assumed the partons t o  be massless. The general 

solution of this equation is easily seen to be of the form: 

f(P,,Pl,Z,tl f(P,,W) (2.4) 

where the variables o n  the 1.h.s. are defined in the center mass 

frame, while on the r.h.s. we have set 1 5 ) :  

w P p , ~  sinh(y-rl1 - pXt-poz ( 2 . 5 1  

The Lorentz invariant w may be given the following interpretation: W/T 

is the longitudinal momentum measured in a frame moving with rapidity 
11 with respect to the center of mass frame: o n  the other hand, -w/pl 
is the longitudinal coordinate z in a frame moving with rapidity y. 
Note that f o r  a free partoii emanating from the point z=t=O, w=O. T h e  

parton distribution function may then be calculated in terms of the 

momentum distributioa t o  (p,,pK) at 2-0 and some initial time t o :  

f (PI , w )  = L o  (PI,:) t o  (P, .P,,)'C(P1 ,Pz.z=O,to) (2.6 

This way of defining tlie distribution function may look at firs 
somewhat annoying since it introduces an arbitrary time scale  to. 
Ilowever, we shall set! soon that we call take the limit where t,, goes to 
zero. 

A particular choice for the initial distribution fuiiclion, 

wliicti is motivated b y  the y-indapendence of the momeiitum:distributioii,  

t" 

see eq.(2.12) below, is the following: 

(2.71 
<- 4 

where g(p,l is sone 'trdnsverse roacntum distribution. T h e  foraulr 
12.7) that for a given p,, and in the plane PO, the den;ity 
of partons i r  independent of the loiigitudlnal momentum p,, up to a 

maximum value p:"". The equation. ( 2 . 7 ) ,  together with (2.61, Implies: 

assunei 

where 
numerical constant of order 1. 

we have set c=tOp:'". In fact, we shall argue below that c is a 

Let us examine some of the implications of the ansatz ( 2 . 8 ) .  

First, it is easy to show, using the formulae (2.51, that: 

where we have set: 

(2.10) 

In particular, the initial distribution at t=O has the form: I 

This initial distribution coincides with that advocated by llwa and 

Kajantie. Its structure ia easily understood. 'The partons with 

rapidity y are.spread over a distance . l / T ,  where 1.2c/pI and T w o s h y  
is the usual Lorentz contraction tactor. The distance 1 may be taken 
to be of the order of the quantum spreading of the wave function of 
partons with longitiidinal momentum pl::O. Sincc p, is tho only energy 
scale problem, it is natural to take 1/2~~z~~~l/0p;~l/pI, which 
implies c 4 .  NOH, the fastest partons occupy a longitudinal size 
-~.2c/p'"''' : thus, by a time ~~~t,,=c/p~"' n o  siicli partons remain i n  the 
plane provides an interprctation of the time to introduced 
i i i  (2.6) and S I I O H S  furthermore that, in the very hiqh energy limit, to  

in the 

z=O. This 

/. ' 
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11) much smaller than any time in the probleh. 
Another important feature of the diatributlon ( 2 . 8 )  or (2 .11)  

illustrated by calculating the number of partons p.er unit rapidity i s  

a t  1x0: 

where nil' is the transverse area of the colliding nuclei. This 
distribution is independent of y. as expected from the behaviour of 

itlo structure functions at small x .  In fact, the relation between the 
phase-space distribution function and the structure function is given 
by: 

wliere GA(x,p:) is the parton (gluon) density of the nucleus, see 

sectioii  3 ,  and x is the fraction of the longitudinal momentum per 
nucleoli carried by the parton. 

1,et us now evaluate the contributions to the energy density 
((Id the particle number density at z=q=O , of the partons with 
transverse momeliturn p , .  Using the tact that dpz=p,coshy dy, one easily 
t i i lds :  

~ l tura  
the two limiting cases of short and long times. 

turniulae lend t'hwuselves tu  a simple ptiysical interpretation in 

At sliorl Lime, the range of iiilegration is large, & d n I l / I ) ,  

and partons w i t h  all rapldlties are found in the plane z=O. The 

lormulae 1 2 . 1 4 )  Qive: 

I 

Thus at very short time the dominant contribution to the energy 
dciisity comee from the partons with a large rapidity. When ?n40, the 
energy per particle 'fs of the order of the maximum longitudinal 
momentum p:.x-,pluA/~: at tliis time, most of the energy is in the 
longi tudiiial mot ion. 

For long time, A is small, &*11/2.1, and onc gets :  

The quanta which remain at z=O after a long time are those which carry 
littlo longitudinal momentuio. In thia regime, the density decreacrco as 
l / ~  , and the energy per particle is simply equal t o  the transverso 
momentum. Note that in both regimes, the particle density, uq.(2.14a), 
decreases as 1/1 (see eq.(Z.lOI). 

The crossing between the two regimes, i . e .  the short and lolig 

time beliaviours, takes place when the rapidity range of the partons 
which populate the region w4 is o €  order unity, i . e .  &1. 111 terms of 
time, this condition is equivalent to zup1-d, that is 1,nAz. Thus the 
time 'cu is, roughly speaking, the time it takes to the tast partons 
to collision zone occupied by the slow ones. We shall slro~ 

in the last section that T,, also turns out , t o  be equal to the 
"formation time". that is to the time at which the partons get freed 

leave the 

because of collisions. 

., . , 

In this section, ~e ale go i i ig  to propose simple criteria f o r  

deciding which qiiarita are  frccd ?urliig a huad-on relativislic heavy 
ion collisioii. l h e s u  are l l i u  partons coiitaiiied ill the distributlon 
(2 .11 )  which s u f f e r  a hard enough lnleraction to allow thcm to convert 
their momentum into pJiyslcal partlcles. We shall make estimates of the 
transverse enerqy released durinq the collision in the central unit of 

. 
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rapidity. He sliall also estimate the energy density at the time the 
partons arc! freed from their initial wave function. As we sliall see, 
the partons which energy density have p, about 1 CeV so 

that the dynamics is marginally in the weak coupling regime, iGl/3. We 
might expect perturbation theory to serve as a reasonable guide 
although we would be hard pressed to certify our estimates reliable 
within i tactor of 2 

dominate the 

To begin, we imagine a head-on heavy ion collision, say in the 
center of mass system, as described above. He take our partons to be 
gluons since these are the quanta which dominate the semi-hard 
colllsions with which we are concerned. Then the inclusive gluon "jet" 
cross section is: 

where cA[x,p:) is the usual gluon density of the nucleus. He shall 
ignore possible correlation effects in the nucleus which could make x 
gteater than 1. Also, in our estimates we shall take 
GA(x.p:)= A C(x,p:) with A the number of nucleons and G(x,p:l the 

qluoii number density of the nucleon, is the gluon-gluon cross 
section given by 161: 

wliere the "'" indicates variables directly related to gluon-gluon 

scattering (G=xIxs, etc) , and C A = 3 .  Because the - integration in 

(3 .11  Is loparitlimic, the dominant contribution comes from small angle ' 

scattering, i.e. the l /?  term in (3.2). Thus we approximate: 

dxl 

Det iniiig 

( 3 . 3 )  

d u 

dpidx 
U(P; *x)=p;- 

one finds: 
! 

I, 
Now, at small x the hltarelli-Parisi equation is: 

so that 
'4 

9 

( 3 . 4 1  

(3.5) 

(3.6 

r3 . ' I  ) 

where xo=4p:/xs. 
is independent of x, see(2.121, SO that: 

In the central unit of rapidity, we suppose that xC 

Now what should wa take for pi ? That is, which parton 
transverse momenta are going to dominate the cross section u and hence 
the produced transverse energy distributions? 'f pi is takun very 

large, ii(p:,x)d/p: and thu resulting crosa seclioii is very small. 
Such high transverse momuntiim qluons are simply virtual fluctuations 
which are not freed during the collision. According to . ( 3 . 8 ) ,  we 
should choose,p, very small to increase u. Ilowever, (3.81 ceases to be 

valid when p: i s  too small since gluon saturalion effects become 
import.nnt. Parliarps i t  is worlh reiniiiditiq the reader of the physical 
Idea beliliid gliion snturntioii 1 '1  I and wliy sucli effects are ospecially 
iiiiportaiil iri larye ions. 

./ ' * 

I 

I 

I 
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To tha t  end, consider a l a rge  nucleus h a v i n g  longi tudina l  

, ~ . ~ i l t ~ ~ r  p per nucleon. We suppose tha t  p i s  auch g rea t e r  than the  

n ~ c l e o n  mass, m.  Then, according t o  (2 .111,  the valence quarks i n  the 

aucleus, belonging t o  tho i n d i v i d u a l  nucleons, a r e  within a 

l o n g i t u d i n a l  regioii of s i z e  proportional t o  2 R m l p  with R the rad ius  of 
the iiucleus. Itowever, the gluoiis and sea quarks, having a par t i cu la r  

value of X ,  catiiiot be confined t o  a longi tudina l  s i z e  smaller than 

I lpx  so that  l o r  x,S.l/2Km these  quanta over lap  i n  longi tudina l  

coordinate apace. The t ransverse  s i z e  of the gluons is IAx, I 4 / p ,  so 

t h a t  i f  p,  is very l a rge  such s m a l l  quanta w i l l  not overlap i n  the 

l u l l  three dimensional coordinate space. However, a s  one considers 

qluoiis with smaller p, overlapping conf igura t ions  become more common. 

U t ~ e i i  x C A I x , p ~ ) r p ~ R ’  d i t f c r e n t  gluons m u s t  begin t o  occupy the same 

rpctlrl region. Since xCA(x,p~) . - lAxC(x ,p~)  one sees  tha t  t h i s  dense 

cuiiligiirstion is uiihanced In l a rge  nuc le i  with s t rong  in te rac t io i i s  

expected between the quanta when p:asttA/R’. (The f ac to r  of u, to  be 

d e r i v e d  below, r e f l e c t s  the f a c t  tha t  the overlapping gluons i n t e r a c t  

(recoinbinel with s t r eng th  u.) T h u s ,  the ac tua l  t r a n s i t i o n  from a low 

d u i i s i l y  to  a h i g h  d w a i t y  gluoiiic system occurs a t  xGA(x,p:)2,p~Ra/u 

t o  make these  ideas  a l i t t l e  more prec ise .  The 

usual A l t a r e l l i - P a r i s i  equation ( 3 . 6 )  is appropr ia te  f o r  a low dens i ty  

system aiid expresses the f ac t  tha t  a s  one looks t o  smaller t ransverse  

sizes, gluon dens i ty  increases  because a gluon may 

actually be composed of two gluons of smaller tratisverse s i z e .  T h i s  

a s p e c t  ut the A-P eqliatioii i s  t r a d i t i o n a l l y  ca l l ed  gluon s p l i t t i n g  or 

qlur in  emnission. Ilowever, a s  t h o  gluon number dens i ty  becomes la rye ,  
we m a y  expect the  oppos i te  process,  gluon recoinbination, t o  become 

important. Gluon recombittation, where two gluons combine t o  fori a 

rlnyle gluon lowers thu number dens i ty .  This is torinally expressed a s  

I hiqhcr twis t  moditication of the u s u a l  A-P equations.  At small 

vtlues of x t h i s  modified equation takes the form: 

Now l e t ’ s  t r y  

la rgcr  p , ’ s  , the  

I 

( 1 . 9 )  

where C:” i s  the two gluon d i s t r i b u t i o n  of the  nucleus. For a 

spher ica l  nucleus of independent nucleons ( 8  1 

. (xG,,(x,p:l)’ A ’ ( x C ~ x . p ~ l ) ’  

h’G:”(x,p:) = -- (J.10) 
8 1 9  nn’ 8 / 9  KR’ 

with R the 

nucleon. 

rad ius  of the nucleus and G th! gluon d i a t r i b u t i o n  of the 

Clear ly ,  as  p: becomes smaller: recombination becomes more 

important. We expect the gluon number dens i ty  t o  s t a b i l i z e  when x C 4 , ( x , p ~ ) ~ ~ ~ p ~ R Z / u  

which corresponds t o  

(1.11) 

The l a rges t  p: a t  which ( 3 . 1 1 )  holds should determine the p i  t o  be 

uaod i n  ( 3 . 8 )  t o  give the freed t ransverso  energy I n  the c o l l i s i o n .  

tIowever,(3.11) i a  a l i t t l e  hard t o  use with (3.9) because the 

x- in tegra t ion  i n  t ha t  equation i s  not l imi ted  t o  very sinall x .  I t  i s  
eas i e r  ins tead  t o  use the weaker equation 

3 a  
x-P;-xG&(X,p:) = 0 

a p t  
( 3 . 1 2 1  

as  a c r i t e r i o n  f o r  the sa tu ra t ion  region. E q . ( 3 . 1 2 )  follows from the 

expectation tha t  xGA(x,p:) become 
region. Eqs.O.12) a n d  ( 3 . 9 )  give 

or 

,:i 

ndependent of x i n  the sa tu ra t ion  
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T h l s  qives p: as 

(3.15) 

and an energy density: . 
Differentiation of ( 1 . 1 4 1  with respect to pi and using ( 3 . 8 1  ylolds: 

o(p:,x) m - 16 n R' A XC 

9 

Eq. (3.16) gives tlie number o t  prodiiced gluons per unit rapidity 
head-on collision of two spherical nuclei as: 

and the tranrverre enetvy a r t  

16)  

n a  

(3.17) 

(3.181 

The tactor 8 / 9  in e q . O . 1 7 1  comes from an averaging over impact 

parameter. Eqs.(3.17) and (3.18) are rather remarkable i n  that our 
deterrinalian o[ p i  by the equality of emission and recombination 
leads to a prodiiced number of gluons per unit rapidity exactly twice 
the number in the wave function. This factor of 2 is tlie factor 
explicitely exliihited in (3.1). In a frame where the meaiured gluon 
ha# inrll rapidity we interpret thir factor of two an correiponding to 
the gluon coning from either the two different colliding nuclei. In 
any cane, it ir remarkable that the recombination calculation carried 
out in Ref.8 and the calculation dona here using (3.3) exactly 

conpenlate leaving the #inplr expression# (3.171 and (3.181. 
In order to obtain trom eqs.O.17-18) number and enerqy 

densities, we asstime that the newly freed partons obey the s a w  free 
slreaming kinematics as described in tlie previous section. Thus 
partons momenluin p, occupy a volume Vm2cnR '/p,, sec 

(2.111. We shall turthermore assume, and will justify in the next 
section, that all lhc partons within a rapidity range &,I conlt ibiilc 
to the densities in the plane z=O. We obtain thus a number density: 

with transverse 

I 

13 

(3 .191 

(1.201 
aa dE, 9 

e 2 - -i_ - 
V dy 8 

Ulille the explicit numbers which may be extracted trom (J .19 -20 )  

shoiild only be taken as rough cstlmatos (sce section 41, HI! bi!licve 
the R and A dependences exhibited in (3.15)-(3.20) are correct 
predictions of QCD, at least tor large ellough A .  

Before we go and discuss the time at which this uncrgy is 

freed, we would like to make a somenhat different estimate ot  whicli 
gluons are freed in a head-on ultra-relatividtic hcavy ion collision. 

The mechanism which ne are about Lo discuss is sublcadinq, by a power 
of R. in the amount of energy freed and we are not able to give a 
systematic account of this order u correction. Nevertheless, because 

of its intuitive appeal and because the resulting estimates arc not 

too much smaller than those contained in (1 .19 -20 ) ,  we should like to 

outline this simple mean tree path argument. We emphasize that lhis is 
not an alternate version of our previous estimates b u t  a discussion of 

a separate physical mechanism. 
Consider a gluon, say in the right moving nuclcus, jitst before 

tho collision. We suppose tlint this  gluon can have Hido angle 

scatterings with those gluons lelt moving wit11 rospecl to i t .  atid 
occupying the one unit of rapidity bordering it. (Beyond this one unit 
of rapidity,the scatterings are predominantly small angle and are 
exactly those scatterings covered by (3.81.) Let us tocuss on the mean 

free path A of our right moving gluon. We havo: 

(1.211 

WIIPIF 1.9 is the cross scc:l i o i i  for  nidc anctlu qluon-qlunn scatteriiiq el111 

Llz is the Longitudinal width occupied by thc ctluons through which our 
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riglit .moviiiy gluon passes.  T h i s  gluon should be freed i f  i t  h a s  one 

wide angle scattering as  I t  passes through the  d i s t ance  Az. T h u s  ACAz 

i s  f o r  converting the gluon troa v i r t u a l  t o  r ea l .  T h i s  

requires 

the c r l t e r i o n  

( 3 . 2 2 1  

n 

We es t lmale  o by taking 

( 3 . 2 3 )  

Subs t i tu t ing  ( 3 . 2 4 1  i n t o  ( 3 . 2 2 )  and taking :=-pi one f i n d s  

27 hxC 
p; 4 (“C,,)? - - 

32  Rz 

0 . 2 4 )  

0 . 2 5 )  

iii coiitrast  to our previous r e s u l t  ( 3 . 1 5 )  . 
The p: given by ( 3 . 2 5 1  is higher order in u compared t o  tha t  

qiven by (1.15) , however in p rac t i ce  there  is only a fac tor  of two 

d i f te rence  between the  two es t imates .  Since both gluons involved i n  
the sca t t e r ing  described by ( 3 . 2 4 )  remain in about the same u n i t  of 

rapidity we a r r i v e  a t  a t ransverse  energy per un i t  r ap id i ty  

::: 2 p, A xG 
d E l  

d y  1 

-- ( 3 . 2 6 1  

artd, uslug the same volume a i d  r a p i d i t y  railye a s  before,  o n  anergy 

deesl t y 

2p:hxC 2-, 
e 2 - E - (lxc,)’ - 

KA‘ 1bK e:)= 
about a f ac to r  two l e s s  than that obtaincd in (1 .20 ) .  

4 1 p.! scuss !ON ?. 

1 5  

( 3 . 2 1 )  

He turn now t o  the question o l  the  formation time io, i .e.  the  

time at  which the partons a re  t reed .  In f a c t ,  i t  i s  eaay t o  nee t ha t  

t h i s  time is of order  l / p l  i n  e i l h c r  of our dynamical es t imates  given 
i n  the previous sec t ion .  T h i s  follows from the f a c t  t ha t  a gluon which 
gets  freed i n  the  c e n t r a l  un i t  of r a p i d i t y  must have undergone a 

s c a t t e r i n g  of momenttim t r ans fe r  p, w i t h  partons i n  the neighbouriiig 

r ap id i ty  io is the time during which the partons i n  the 
c e n t r a l  r ap id i ty  uni t  ovurlap with those partona with which they may 

i n t e r a c t .  Referring t o  the d iscuss ion  a t  the  end of sec t ion  2 we see 

t ha t  io is a l s o  the  time bordering betiteen the long and shor t  time 

behavioiirs i n  the f ree  streaming. regime. Viewing the c o l l i s i o n  i n  a 

a l i g h t l y  more general  frame, suppose the uni t  of r ap id i ty  which ne are 

considering is centered about y - y o .  Then using ( 2 . 5 )  and ( 2 . 8 )  we nce 
tha t  a t  time t the  partons i n  t h i s  r ap id i ty  un i t  a r e  located within 

s l i c e s .  T h u s  

where the  f i r s t  f in ( 4 . 1 )  coines from t h e  un i t  r ap id i ty  spread and the 

second t comes from the o r ig ina l  spread ,  duo t ?  the uncer ta in ty  

r e l a t i o n ,  a t  t=O. At t,v coshyO/p, we st?e tha t  

1 1 

P I  plcoshyn 
z t  - s l i l h Y o  t - * ( 4 . 2 )  

with the spread in Az due t o  the d i f fe rences  i n  r ap id i ty  bai i ig  

coinparahlc t o  the or ig i i ia l  uncertaii i ty spread. Partons with r ap id i ty  

grca tor  than y n t 1 / 2  or  l e s s  t l i a n  y 0 - 1 / 2  have separated from those 

centered about yo a t  the time tw coshy,,/p,. T h u s  iwr physical p i c tu re  

holds toyc ther .  B y  tliu time the co l l i s io r l s  necessary t o  f r e e  the 
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partons occupying a unit of rapidity have occiired. these partons have 

physically separated, in the longitudinal direction, from the partons 

corrsponding to different rapidity intervals. 
In order to get nimerical estimates, let’s take A”“-6 ,  

R=1.2h”Jfn, xC=l and ~.x=l/l, i.e. cxC,=l (the value x C - I  is reasonable, 
even traditional. but at this time it i s  not a well determined 

qriantity, experimentally). Then (1 .15 1 gives plX0.94CeV , i.e. 
I -0.2fmlc. and one finds: 

(4.3a) 

14.3b) 

Our second estimate qives plc:0.65CeV. eq. (3.251, and hence ~ ~ n . O . l f m ,  

n::25/fma ,and e::17GeV/[n3. These large numbers reflect the large value 

of the optimum p, in larqe nuclei. They correspond for A = 1 ,  that is 
for  proton-proton or proton-nucleus collisions, to p1-d80HeV and 

t-elCeV/fmJ which look like reasonable values. The A dependence that we 

have found fo r  the energy density is quite similar to that obtained in 
other models ( 9 1  , but fo r  quite different physical reasons. In our 
approach a non trivial A dependence is contained in the parton 
transverse momenta. 

Finally, wff  have said nothing about the thermalization of the 
partons set free during a heavy ion collision. In fact we have little 
to say o n  this subject. Nevertheless, there is one amusing calculation 
which can be done at this stage to perhaps get an indication o l  how 

f a r  trom equilibrlun our initial distribution is. For a free boson gas 
in equilibrium one has 

,a I 4  f (111 

-si :: 1.7 
2 5 0 )  30”‘ 

while from 11.19) oiie has t:”’4/n:sl.J and from ( 1 . 2 4 1  . 0 . 2 5 )  and 
0 . 2 6 )  one has e”‘ /n: :I . l .  )lira and Kajant i e  1 4 1  fuse a rcfirlcd version 
of this type ot comparison to argue about the ;thermalization time. 

Ilowever. eventhough the moments of the distribiilion may not be too fa1  

from those of an equilibrium distribution, as the numbers we just aave 
seem to indicate, it is clear that the thermalization time must depend 

on a collislon rato and can’t bo dotornliied froin kinomatical 
consideration alone. 111 fact, we would like to arciue difterently and 

assume that the distribution function of the newly formed partons is 

much like the free streaming distribution ( 2 . 8 1  in the long time ’ 

regime where the space-time rapidity 11 arid the momentum space rapidity 
y are strongly correlated, i.e. ipy. The way such a distribution 
approaches eqriilibriiim has been studied by Daym 1 9 1 ,  usinq a simple 
collision time approximation. Ile finds that after a tiine ~ 4 ! 1 1 ,  with II 

the collision time, the energy density is within 20% of 11s local 
equilibrium value. As an order of magnitude, we may take our mean free 

path estimate, eq. ( 3 . 2 1 1 ,  which gives I)-d,~,l/pl , ~ i t h  p, qiveo by  ’ 

(3.25). (Note that I) becomes infinite in the limit of vanishing 
coupling strength, as i t  should.) With the number given above, one 

thus finds 0nj . I tm , and a thermalization time ~ 1 ~ ~ & ? 1 l ~ ~ 4 . C f m .  Let 11s 
emphasize again that this is meant to aerve only as a rough estimate 
and not as a substitute to a decent treatment of the thermalization 
problem. In any case, energy densiti s such as those given above are 

sufficiently high that heavy ion collisions involve new and 
interesting aspects of QCD independen ly or not a true equilibrium is 
reached. 
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