Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels

2013 Fuel Cell Seminar and Energy Exposition

Keith Wipke (presenter) for Chris Ainscough, Jennifer Kurtz, Michael Peters, Genevieve Saur

October 23, 2013
Columbus, Ohio

NREL/PR-5400-60903

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
Technology Validation at NREL

- Confirmation of component and system technical targets
- Evaluation, optimization, and demonstration in integrated energy systems
- National Fuel Cell Technology Evaluation Center (*NFCTEC*)

Photo by Dennis Schroeder, NREL
Figures and illustrations: NREL
NFCTEC Analysis Approach

Analysis and reporting of real-world operation data

Operational and Performance Data

NREL Data Analysis

NFCTEC

National Fuel Cell Technology Evaluation Center

Results

DDPs

Confidential

Detailed Data Products (DDPs)
- Individual data analyses, shared only with partner supplying data
- Identify individual contribution to CDPs

Composite Data Products (CDPs)
- Aggregated data across multiple systems, sites, and teams
- Publicly available analyses, published without revealing proprietary data

www.nrel.gov/hydrogen/proj_tech_validation.html
Major Ramp-Up of Fuel Cell Stationary System Deployments Began in 2010

Cumulative Deployment Count by Year*

Total = 295 units

Cumulative Capacity by Year*

Total = 121 MW

Majority of deployments and nearly all capacity is electric only

*NREL cdp_stat_01
Created: Sep-25-13 9:08 AM | Data Range: 2001Q2-2013Q2
*Data from the California SGIP.
Contractual Status of Stationary Fuel Cell Systems in Deployment

New projects since 2011 receiving the performance-based incentive

Definitions:
- RRF = Reservation Request Form, is the first step in the SGIP incentive claim process.
- PPM = Proof of Project Milestone; the applicant must prove progress and commitment to the project.
- ICF = Incentive Claim Form is the step where the applicant, after meeting all SGIP requirements requests payment of the incentive.
- PBI = Performance Based Incentive is the way in which the incentive is paid out over time based on performance of the system.

Other Categories:
- ICF Review
- ICF Inspection
- RRF Technical Review
- RRF Reserved
- PPM Technical Review
- ICF Technical Review

*Data from the California SGIP.
Natural gas is the most-used fuel. However, renewable fuels make up one-third of capacity.
Nearly all CHP systems use natural gas.

Site Count by Fuel Type*

- **Digester Gas**: 1%
- **Natural Gas**: 99%

Installed Capacity by Fuel Type

- **Digester Gas**: 18%
- **Natural Gas**: 82%

Total Sites: 71

Total Capacity: 8 MW

Definitions:
- **RRF** = Reservation Request Form, is the first step in the SGIP incentive claim process.
- **PPM** = Proof of Project Milestone; the applicant must prove progress and commitment to the project.
- **ICF** = Incentive Claim Form is the step where the applicant, after meeting all SGIP requirements requests payment of the incentive.
- **PBI** = Performance Based Incentive is the way in which the incentive is paid out over time based on performance of the system.

Data from the California SGIP.
Natural gas systems have a wide range of sizes. Digester systems tend to be the largest.
Natural gas CHP has a few large deployments (large mean, small 25–75 percentiles)
Fuel Cell Stationary Capacity and Average Eligible Costs (All Systems)—Incentive Range $3K–$4K/kW

Eligible costs slightly decrease in larger sizes, yet are far from DOE long-term 2020 targets.
Distribution of Capacity and Eligible Cost (CHP FC Only)

Distribution of Capacity and Average Eligible Cost $2010/kW (CHP Fuel Cell)*

Capacity (kW)

% of systems

$/kW w/o Incentive

$/kW w/ Incentive

2020 DOE Target†

Avg. $/kW

0

2,000

4,000

6,000

8,000

10,000

12,000

0

200

400

600

800

1000

>1000

Economies of scale are better for CHP systems

†for the year 2020, operating on natural gas.

*Data from the California SGIP.
Distribution of Stationary Fuel Cell Install Cost With and Without Incentives

Installed Eligible Cost Per kW*
Adjusted To 2010 Dollars

Average incentives are $3,500/kW historically; fuel cell incentives are now set to decrease 10% per year.
Stationary Fuel Cell Install Cost Over Time With and Without Incentives

Average Eligible Cost $2010/W Trend for Overall Deployments*

Eligible costs are generally **increasing** over time (inflation adjusted), driven by the sub-MW size range

*Data from the California SGIP.
Stationary Fuel Cell Install Cost by Fuel Type With and Without Incentives

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Eligible Costs ($2010/kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>Avg. Without Incentive: 6000, Avg. With Incentive: 7500</td>
</tr>
<tr>
<td>Digester Gas</td>
<td>Avg. Without Incentive: 4000, Avg. With Incentive: 4750</td>
</tr>
<tr>
<td>Landfill Gas</td>
<td>Avg. Without Incentive: 8000, Avg. With Incentive: 9250</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Avg. Without Incentive: 10000, Avg. With Incentive: 11750</td>
</tr>
</tbody>
</table>

Digester systems have the lowest costs in both mean and 25 percentile.

*Data from the California SGIP.
Deployments are continuing to increase in an era of decreasing incentives

Data from the California SGIP.
Average System Size Installed Per Year (kW)

Overall Average Capacity = 471 kW

2013 has seen the third largest average system size

Data from the California SGIP.
Rule change in 2011 requiring directed biogas to be in state, and a lack of its availability (it’s all being used already) has led to dominance of natural gas.
Comparing FC to Other Distributed Generation (DG): Distribution of Capacity by Equipment Type

Distribution of Capacity by Equipment Type*

- Fuel Cell CHP
- Fuel Cell Electric
- Gas Turbine
- Internal Combustion
- Microturbine
- Pressure Reduction Turbine

Fuel cells represent about one-third of installed generation capacity in most size bins in SGIP

*Data from the California SGIP.
Comparing FC to Other DG: Average Eligible Cost by Equipment Type

Average Eligible Cost $2010/W Trend for Overall Deployments*

Without Incentives

With Incentives

Without incentives, fuel cells have a cost disadvantage compared to other technologies

*Data from the California SGIP.
Directed biogas systems tend to cost more than onsite sources.

Mean Time Between Stoppage (For Any Reason)

Overall Mean = 2742 hours

*Data from outside the SGIP.
Mean Unit Lifetime Electrical Efficiency (%HHV)

Overall Mean = 27%

Efficiency includes startup, shutdown, transients, and part load

†Includes startup, shutdown, transient and partial power operation

*Data from outside the SGIP.
Mean Unit Lifetime Availability

Unit Mean Availability*

Overall Mean = 93 %

Availability includes stoppages for all reasons, including customer request

*NData from outside the SGIP.
Conclusions

• Stationary fuel cell deployments are accelerating despite decreasing incentives

• Current SGIP incentives make FC systems more competitive with other distributed generation systems

• Lack of available directed biogas in CA has caused new SGIP installations to be natural gas

• Cost curves need to begin going down (not up) to accommodate decreasing incentives

• NREL will continue to update results as new data are available
Acknowledgements

This project was supported by the Technology Validation subprogram of the U.S. Department of Energy’s Fuel Cell Technologies Office.