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ABSTRACT· 

Regge cuts are discussed from a phenomenological point of view. 

Some atteinpts to derive amplitudes with Regge cuts are reviewed, 

~ncluding those of Amati, Stanghellini, and Fubini, and of Gribov. A 

phenomenological amplitude for the Regge cut from two Reggeon exchange 

is written down in a form that manifestly satisfies s-u crossing. 

The amplitude is formulated in terms of s-channel helicity partial-wave 

amplitudes, so the Reggeization of s-channel helicity amplitudes is 

discussed as a technical simpli1'icat1on. Implications of Regge cuts 

for various duality-breaking schemes (and vice ·versa) are summarized. 

Brief remarks are made on two Reggeon cuts and exotic exchange. These 

include model calculations of the (P' + p) ® (P' + p) cut in rrrr 

scattering, and of the single-meson-exchange "forbidden" reaction 

- +--Kp-+K.::.. 

.-·· 
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I. INTRODUCTION 

.The recent fa$hion of desqribing two body to two body hadronic 

processes in terms of branch cuts (together with the usual Regge poles) 

in the crossed channel complex angular momentum plane seems to hold 

great promise for the accommodation of high-energy scattering data. At 

present Regge cut models are much too flexible to have rea~ predictive 

power, but there is some reason to hope (see Chapter VI) that under-

standing will be gained through a study of the interplay between Regge 

cut corrections and duality-breaking schemes. In this thesis I will 

discuss the formulation of a model amplitude for the Regge box graph, 

which represents the physical picture of beam particle and target 

particle interacting twice, and the use of such an amplitude in two 

cases of experimental interest. The first obtains when normal quantum 

numbers are exchanged in the t-channel but simple Regge pole descriptions 

fail to represent the data adequately. [Normal quantum numbers are those 

which occur in the simple quark model. For bosons these occur in the 

SU(3) product 3 ® 3, whereas for fermions they are contained in 
·~ '"" 

~ ® ~ ® ~. ·All other quantum numbers are "exotic."] In such instances 

it has become common practice to invoke the virtues of the absorptive 

peripheral model (Jackson, 1965.) by considering amplitudes in which 

elastic scattering either precedes or follows the quantum number 

exchange. The second case is that in ·which both Reggeons represent 

quantum ntimber exchange, so the amplitude may represent the exchange 

of exotic quantum numbers in the t-channel. In the latter circumstance 

the box graph presents an alternative to the exchange of a single exotic 

trajectory. 
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The rejection of the idea of meromorphy in the j plane and the 

conc0mitant consideration of Hegge cuts are motivated both by theoretical 

notions and·by phenomenological necessity. All dynamical models of 

scattering amplitudes.extant require the existence of branch cuts in the 

angular momentum plane. None of these models is sufficiently mature 

to permit the calculation of the discontinuity across the cut in 

interesting cases, but the existence and location of the branch points 

can be stated with some certainty. The graphical approach employed here 

suffers from _this ambiguity, but by appeal to the successes of the 

peripheral model with absorption it is possible to formulate a definite 

if arbitrary model. Phenomenologically, the fact that Regge poles 

don't work has been widely documented in the past year, even by 

adherents to the aesthetics of meromorphy (Barger, 1969). I hasten to 

add that the difficulties with Regge poles are quantitative and in no 

way minimize the remarkable fecundity of the Regge pole hypothesis 

(Regge, 1959, 1960; Chew and Frautschi, 1961, 1962), which is exposited 

by Barger and Cline (1969). The case for Regge cuts has.been reviewed 

by Chiu (1969), Fox (1970), Jackson (1970), and Sonderegger (1969). 

While it is important to remember that Regge cuts are not a phenomeno

logical pan~cea (see Fox, 1970), it seems evident that complicated 

j-plane structure is unavoidab+e. 

The plan of the succeeding chapters is as follows. In Chapter 

II, I list some of the terminology and classical results of S-matrix 

theory, to establish a frame of reference for later discussions. The 

history of the Amati-Fubini-Stanghellini branch cut takes up most of 
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Chapter III. Chavter IV·contains a brief.discussion of a particular 

Feynman diagram which produces a prototype Regge cut. It is there that 

I make contact with the recent work of Gribov on a Reggeon calculus. I 

formulate a phenomenological amplitude for two-Reggeon exchange in 

Chapter v. In Chapter VI I discuss some aspects of the relevance of 

Regge cuts to the questions of exchange degeneracy and the existence 

of exotic trajectories. Cha!>ter VII is a summary of the work. 

Conven.tions and such are collected in the appendices. 
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II. SOME NECESSARY RESULTS FROM S-MATRIX THEORY 

I record here results from analytic S-matrix theory which will 

be useful in the succeeding development. All of this material is 

classical, but it will be valuable to have the concepts fresh in mind 

later. The reader is referred to Eden, et al. (1966) and Collins and 

Squires (1968) for more complete expositions. 

To make this rather dull, technical chapter somewhat readable 

I have relegated many definitions and conventions to Appendix A. The 

intent of the present chapter is merely to remind the reader of terminol

ogy to be used later; therefore I ignore the complications of spin here. 

l. The Scattering Amplitude: Analytic Structure 

In this thesis I am concerned almost exclusively with the four 

line connected part of the S-matrix, i.e. the two body to two body 

scattering amplitude. The kinematical quantities for two body scattering 

are given in Chapter A.l. The S-matrix and scattering amplitude for a 

general process are written down in Chapt~;r A.3. Here I write the two

to-two amplitude as A(s,t,u) or, suppressing the redundant variable, 

as A(s, t). 

In each channel there will occur the singularities required by 

unitarity. Thus there are simple poles corresponding to bound states, 

and branch points corresponding to production thresholds (Eden, 1952). 

Traditionally the branch cuts in the relevant energy plane are drawn 

along the positive real axis as shown in Fig. II-1. (The minor compli

cations of complex thresholds which occur for unstable particle scattering 

are ignored here.) With this choice the physicals-channel amplitude 

is the boundary value 



A(s,t) = lim A(s+iE,t), 
E~o+ 
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(II.l.l) 

and is Hermitian analytic. [That is, A and its Hermitian conjugate 

At are boundary values of the same analytic function. See Eden, et al. 

(1966), Section 4.6.] * 

2. Dispersion Relations 

Assume that the singularities shown in Fig. II-1 represent all 

the singularities of A(s,:t) on the physical sheet. Take p as the 

contour of Fig. II-2, inside of which A(s,t) is regular. We define 

the discontinuity functions at fixed s, 

(l/2i)[A(s,t+) - A(s,t_)], 

(II.2.1) 

where t+ = lim (t + iE), the discontinuity being taken across all cuts 
E~ o+ -

in t (or in u) at fixed s. By Hermitian analyticity 

* * A(s,t ) = A (s,t), (IJ.2.2) 

so 

(11.2.3) 

Then, suppressing for brevity any bound state poles, we can apply Cauchy's 

theorem and obtain the result 

* I denote complex conjugation by a star (*) and Hermitian conjugation 

by a dagger ( t) • 
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A(s,t) = (l/2<1) I dt 1 A{szt 1
} (II.2.4) tl - t 

p 
It I ~·oo. Let us assume that A' ( s, t) ~ 0 as Then the contribution to 

the integral from the semicircles at infinity will vanish. This gives 

A(s, t.) . . . ' . . I 00 dt I Dt ( s 't I ) 

= Pole terms + (1/rr) t 1 _ t + 

. to 
[ 

00 du 1 D ( s, u 1 
) 

(l/~) U 1 u- u . 

uo 
(II.2.5) 

This form, which is just a special kind of Hilbert transform, is a 

fixed-s dispersion relation. 

If instead of vanishing at infinity the amplitude is bounded by 

an integral power (of t), we can ensure convergence by making a number 

of subtractions. 

3· The Mandelstam Representation 

An important extension of the single-variable dispersion relation 

is the doub~e dispersion relation conjectured by Mandelstam (1958), for 

which a general proof, even in perturbation theory, is lacking. To 

proceed, we define the discontinuity in s of Dt to be 

and 

so that 

s > b,(t) > 0 

(II.3.l) 

Ptu(t,u) == (l/2i)[Dt(u+,t) - Dt(u_,t)], u > b2(t) > 0 

(II.3.2) 

... 
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::: {
oo ds 11 pst(s 11 ,u) ioo du 11 p. (s,u 11

) 

(1/ 1f) --son----s-- + (1/ 1f) u ~~t~ u . 

b1(t) b2(t) (II.3.3) 

The boundary fUnctions b1 2 have been given in general by Kibble 
' . 

(1959). Likewise we can write 

D (s,u) u . 
::: (1/Jr) su 1 dS II p ( S II ' ll ) 

s - s 

. f dt II Pt ( t II' u) 
+ ( 1/ 1{) t II ~ t • (II.3.4) 

Substituting Eqs. (II.3-3) and (II-3.4) into (II.2.5) we get the 

Mandelstam representation, 

A(s,t) 
1 = Pole terms + 2 
1{ 

d II st . f f dt' p (s",t'). 

s (s 11 
- s)(t' - t) 

f f du' p (s
11

,u') f J du
11 

(t' u
11

) 

+ ~ ds 11 _Tr""_s_ur"T"-:--~ 1 Ptu ' 
2 ( " )( ' ) + .... 2 dt' (t' - t)(u 11 

- u) · J{ S - S u - u H 

(II.3.5) 

Notice that the double spectral functions P·. 1J 
are symmetrically defined. 

Thus 

::: (2
1

.) Disc Dt(s,t) 
1 s . = (2

1 .) Disct D (s,t). 
1 . s 

An understanding of the roles of the three double spectral functions 

Pst' Psu' Ptu is· needed for the work of Chapters III and IV. Let us 

therefore review the connection between signature and double spectral 

functions. 



-0-

4. Signatured Amplitudes and the Mandelstam Representation* 

In the z = cos 9 plane there lie right-hand singularities s s 

of the scattering amplitude corresponding to t-channel singularities, 

and left-hand singularities corresponding to u-channel singularities. 

These are illustrated schematically in Fig. II-3. It is more convenient 

to work with amplitudes which possess only right-hand singularities. 

Therefore I construct amplitudes of definite signature (in the s-channel) 

as follows. Let 

R ) L A(s,t) = A (s,t +A (s,t), (n.4.1) 

where AR contains only right-hand singularities and AL only left hand 

ones. Thereupon we can write dispersion relationo in z s for these 

functions 

R A (s,t) I: -z~(-s-,t~.-)~----z~(-s-,~tT) + ~ z' - z (s,t) = 

t-poles 

gt i ( s ) l co dz ' D t ( s , L' ) 

s 1 s zs(s,to) s . 

with 

* 

t 1 = t(z 1 ,s). 

g (s) u. 
1 

z (s L:-s-u.) - z (s,t) s , 1 s 

1 f co dz I Du ( s' t I ) 

+; z 1 
- z (s,t) 

zo(s,L:-s-uo) s 

(n.4.2) 

Cf. Collins and Squires (1968), Chapter II. 
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Now define amplitudes of definite signature, 

(Ir.4.3) 

each of which has, by definition, only right-hand singularities. 

Neglecting for simplicity any bound state poles we may write dispersion 

relations for A±, 

+ A-(s,t) 
dt 1 Dt(s,t 1

) 1100 

du 1 Du(s,u 1
) 

--,.---- +-t 1 
- t - rc U

1 
- t · 

uo 

In terms of the double dispersion representation, this becomes 

+ A-(s,t) 
P ( s 11 t 1 )+p (s 11 t 1

) st ' - su ' 
H(s 11 

- s)(t 1 
- t) 

. l f ~~~ I Ptu(tl ,u~~) ± Ptu(ull,tl) 
+ 2 du dt (u" - u)(t I - t) • 

T( . 

Equation (II.4.5) may be rewritten more compactly as 

with 

+ Dt-(s,t 1
) l f dS II [ ( II t I ) 

= ; (s" - s) Pst s ' ± 

l f dU II [ ( t I . 11) + - ( II ) Pt 'u T( u - u u 

( s 11 t 1 
)] 

PSll ' . 

± Ptu ( u II' t I ) ] • 

(II.4.4) 

(Ir.4.6) 

(Ir.4. 7) 

It will be convenient later to define also the s-discontinuity function 



D ±(s,t) 
s . 
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* . 5· The Froissart-Gribov Projection 

(rr.4.e) 

Putting back possible poles into (rr.4.6) we have the. dispersion 

relation 

L 
t-poles 

= L 
t-poles 

2 
gt_/(Mt. - t) + 

J. . J. L 
u-poles 

I 
2 

g (M - t) u. u. 
J. J. 

+ . . 
nt-(s,t') 

t I - t 

+ L g (s)/[z (s,~ - s 
ui o 

u.-poles 

whP.rP. 

gt. (s) g (s) u. 
J. J. 

and z' = z (s,t' ). We now define a p~rtial wave projection, 
.S 

* See Froissart (1961), Gribov (1961). 

(II.5.l) 

(11.5.2) 

(II.'5.3) 

I: 
I 
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A(s; .e) = (l/32n) Jl 
. -1. 

dz Pn{z ) A(s,t[s,z ]). s k s s (rr.s.4) 

Inserting (II.5.2) into (II.5.4), we invert the order of integration and 

* ' use Neumann's formula [RTF 1, Section 3.6 (29)] "' ' ' 

Q.e(z) = (-1/2)[,. 

1 

dz' P,(z')/(z'- z) 

-1 

(II.5 ·5) 

to perform the z integral, 

= 

(Ir.s.6) 

Suppressing poles, we are able to write two expressions for the 

partial wave projection.of signatured amplitudes, 

* 

(II.5 · 7) 

References to the Bateman Manuscript are cited as [Name ~' 

Section (Equation)] where name is RTF for Higher Transcendental 

Functions or TIT for Tables of Integral Transforms. See Erdelyi 

'(1953). 
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and 

+ A-(s; .e) = (II.5 .8) 

for integer .e. Now D.e±(s,t) is the t-discontinuity of A±(s,t). 

It therefore exists only for zs ~ zs(s,!0 ). On the other hand, the 

discontinuity of Q.B (z) is 

(-rr/2) P_e(z), -1 < z < 1 

0, lzl > 1, .e integral. 

In consequence we can combine (II.5.7) and (II.5.8) as 

+ A-(s; .e) = 
+ dz' Q_e(z') A-(s,t' ), 

(II.5.9) 

(II.5.10) 

where the contours ~l'~ are shown in Fig. II-4. The partial wave 

series for the signatured amplitudes, corresponding to the inverse of 

(II.5 .10), is 

00 

A±(s,t) = 16rr L· (2£ + 1) A±(s; .e) P.e(zs) •. 

£=0 

(II.) .11) 

Since P_e(z) is even or odd in. z for integer .e according as £ is 

even or odd it follows that 

+ A (s; £), .t even 

A(s; .t) = (II.5.12) 

. I 

I 
! 

., 
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It is also useful to remark here that A±(s,t) contains the (~~~n) 

part of A ( s, t) . 

p. Singularities in s of the Partial Wave Amplitudes 

+ It is evident from (II.5.10) that A-(s; .e) has in the s 

plane the same right-hand singularities as + A-(s,t) except that it will 

not necessarily have all the poles. There will be in addition a set 

of left-hand singularities generated by the pinching of t- or u-channel 

singularities with the branch points of Q.e(z) at z = ±1. For any 

+ singularity of A-(s,t) at 

at 

z (s,t.) s l. 

t = t.' . l. 
will have a branch point 

(n.6.1) 

For nonintegral .e the left-hand singularities are rather more 

complicated, for Q.e(z) has four branch points and is cut between 

z = (-oo, -1), as well as z = (-1,1). Thus Eq. (II.5.10) remains valid 

for noninteger .e but. the contour ;e~l must enclose the real z-axis, 

for 1 > z > -oo. The new contour is represented in Fig. II-5. The 

generalization of (II.5.9) is give~ by HTF ~'Section 3·3 (11, 12): 

-1 < z <.. 1 

(n.6.2) 
-oo < Z < -1. 

This provides us with two expressions for the partial wave projection, 

namely 

+ A-(s; .e) = (Ir.6.3) 



as before, and 

+ A-(s; .e) 

·1 

- . (l/32n) L 
-1 
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+ dz' P.e(z') A-(s,t') 

(n.6.4) 

The utility of these equations can.be enhanced somewhat through elimina-

tion of the extra cut for z < -1. This may be done (see Collins and 

Squires, 1968 ·for the arithmetic) by writing dispersion relations not 

for the f'ull partial wave amplitude A±(s; . .e) but for the "reduced" 

partial wave amplitude 

The results may be summarized as 

rz~(s .• T0 ) 

(l/)2n) j_ dz' 
-1 

uLl th~ left-hand cut. For phyoioal 11 the la:o:t term do~s nJ:~t; r:-ont.ri hnt.P. 

On the right-hand cut, 

II 
IJ 
;j 

:1 
! 

. ·I 
j 

i 
I 

'I 

I 
:I 

I 

I 
I 
I 
I 

• I 
! 

- I 
I 
l 

I i 
' : 
I ' 

l 

i 
0 I 



This is a most useful result, for it states the connection between 

signature and the double spectral functions. We shall find it useful 

in Chapter IV. 

* 7· Sommerfeld-Watson Transforms 

Heretofore we ignored, for the sake of brevity, the subtractions 

which might be necessary to ensure convergence of 

(II.5.7) 

In reality, this equation is likely to be undefined as it stands for . 

many values of s. But if Dt±(s,t') is power-bounded, i.e. 

,N(s)-cr(s) z s 

· N(s) an integer; o·< cr(s) < 1 
' (II. 7 .1) 

then we may subtract Eq. (II.5.2) N(s) times at. the point z = o, s 

whence 

+ A-(s,t) 1 oo · . _d_z ·_n_t ±_c_s_,--:t =· )~ 
( ) '

N(s) · z' - z z 
zs(s,T0 ) s ( 2 ) II.7. 

In (II.7.2)_, PN-1 (s,zs) is a polynomial in z£ of degree N-1, and 

the remaining integral converges. Now applying (II. 5 .. 4) we obtain 

* See Sommerfeld (1949), Watson (1918), Collins and Squires (1968). 
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dz P,e(z)z = 0 

-1 
for 

-16-

M < £, we put 

(z /z')N = [1 + (z - z' )/z']N, expand in powers, and get s s 

(II. 7 ·3) 

(II. 7.4) 

for t ~ N(s). Since [HTF ~'Section 3.9 (21)] Qt(z) ,-.........! z-(ill·l), 
z~ oo 

the integral in (II-7.4) will converge. 

Providing that the Mandelstam representation is power bounded, 

the higher partial-waves are given uniqueJ,.y by the double spectral 

functions, whereas lower partial-waves may depend on arbitrary subtrac-

tion constants. To proceed to the Sommerfeld-Watson transform, we 

+ suppose that the signatured partial-wave amplitude A-(s; £) deflned 

in (II.5.7) is an analytic function of t (in the physicist's sense) 

* in the right half-plane. The import of this assumption is that we can 

continue (II.7.4) below Re(£) = N(s) to interesting physical values 

of .e. Observe that because the only singularities in £ of Q.,e(z) 

are simple poles at the negative integers [HTF ~'Section 3.3 (3)], the 

* Thus, by analytic we mean that only isolated singularities occur. 
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amplitude A±(s; £) is holomorphic (free of any singularities) for 

Re(£J ~ N(s). 

We now replace the partial-wave expansion (II.5.ll) by a contour 

integration in the £-plane, 

-16n: 1' 2i 

.f<Y 

. + 
d£(2£ + 1) A-(s; £) P£(-zs) 

sin n:£ ' (II. 7 ·5) 

which is illustrated in Fig. II-6. The contour includes the nonnegative 

integers, but avoids any singularities of A±(s; £). The integrand has 

a pole at each integer n, for which sin n:£ ~ (-l)n(£ - n)n:. Since 

P ( -z) = ( -l)n P ( z) [HTF ~.., Section 3·3 (10)] the pole residues are 
n n ·-

2i P (z ) A±(s; n)(2n + 1). n s (II. 7. 6) 

With this information it is easy to verify (Cauchy's theorem) that 

(II-7-5) is equivalent to the partial-wave series 

t A (s,t) = 16n: 

positive, 
integral .e 

(II.5 .11) 

We now wish to continue in £, and we assert that A~(s; £) as 

given by (II-7.4) is the unique analytic continuation of the partial-

wave amplitude for integral £. For the proof, we invoke Carlson's 

theorem (Titchmarsh, 1939). [Although we did not remark upon it in 

Section II.5, the point of the Froissart-Gribov projection was to build 

a continuation which satisfies the conditions of Carlson's theorem.] 
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If f(z) is regular and of the form 

O(exlzl), x < rr, for Re(z) >A, and f(z) = 0 

for an infinite sequence of integers z = A,A+l,···, then f(z) = 0. 

We notice that 

~ c.e;_~ exp[ (.e + ~) log{z + (z2 - l)~)J 
I.e 1-H>O 

(II. 7 · 7) 

[HTF 1, ·sec:tion 3.9 (1)]. Thus if the integral (II.7.4) converges, it 
~ .. 

is the lowest values of z 1 in the range of integration which dominate 

the high partial-waves. That is to say, the high partial waves are 

controlled by the nearest singularities (in t or u). If the nearest 

singularity is at z0 , then (subject to the assumption that the amplitude 

is power-bounded) 

' 
.e~ 00 

where ¢(s) is a function of s. The asymptotic form (II.7.8) satisfies 

the requirements of Carlson's theorem (which is applied to the 

difference between the "true" amplitude and the Froissart-Gribov 

continuation), so our continuation in .e is unique. 

Next we dis tort the con tour p in to ;C'' , opening it up with 

a semicircle at infinity and a line paraliel to the imaginary axis at 

Re(£} = L. This is shown in Fig. II-7. So long as L > N(s), no 

singularities will be encountered as this displacement is-made. Thus 

~ = J( . Moreover, the contribution from the semicircle vanishes 

~1 p 

. : 

' . 
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* because of (II.7.8) and IP.e(-z )/sin rc.tl ~ 0. We continue to 
. s .8-7 00 

distort the contour by reducing L. For L 5 N(s), we shall encounter 

singularities in the .e plane. These are swallowed by the contour and 

we pick up their contriputions as prescribed by Cauchy. The situation 

is shown schematically in Fig. II~8, for L = -!· The result of moving 

the contour back to Re(.e} = ~ is 

± A (s,t) 

L 
poles 

-16n: 
= ~ 

16n:2 ~o:. (s) + 1~ e·. (s) p ( )(-z )/sin n:O:. (s) 
' ~ ) ~ 0:. s s ~ . ~ . 

(II. 7 • 9) 

The first term, the background integral, vanishes as z -7 co, leaving a 
s 

sum of Regge poles and Regge cuts. 

In order to make the complex angular momentum analysis useful 

for physics, one has to ensure that the Regge poles and Regge cuts 

uncovered in the distortion of the contour dominate for large energy 

over the. co~tribution of the background integral. In (II.7.9), we 

pushed the contour back to Re (.e} For large values of z, 

(II.7.l0) 

* See, e.g., Collins and Squires (1968), Section II.7-9 . 

. . · . :. ·. . '·: 
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if a is not a negative integer [HTF t' Section 3.2 (23)]. Therefore 

the first term in (II.7.9), .the background integral, is least important 

(as z .~ oo). for Re (£) = -~; for example, Regge poles with A(s) > -~ 

will be more important. As Re(.e) is decreased from -~, the asymp

tot~c form (II.7.10) of Pa seems to indicate that the background 

integral wil-l become asymptotically dominant over the singularities in 

the right half .e plane. 

The way out of this difficulty was found by Mandelstam (1962), 

who demonstrated the dominance of the right-hand singularities as 

z ~oo, for Re(£) < -~ in the background contour. We follow the 

summary of Collins and Squires. (1968), Section II.l2. Rewrite the 

partial-wave series (II.5.11) by adding and subtracting a piece: 

+ A-(s,t) = 16ll 

00 

16 

00 

Now using [HTF !' Section 3.3 (3)] 

1 Q.e ( z) 
ll cos lt.e 

we obtain 

= 
1 Q-£-l(z) 
ll ·cos Jt£ 

(II. 7 .11) 

' (II. 7 .12) 

..... . ' --......... 



+ A-(s,t) 16 
2i 
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[

1+ioo 

d£(2£ + l) A±(s; 

1-ioo 

Q-£-1 ( -zs) 
.e) cos rr£ 

+ (Regg~ poles) + (Regge cuts), (II.7.13) 

where -1' is the smallest half-integer greater than 1. Since [RTF 

1, Section 3.2 (41)] 
""' 

-£-1 z 
' 

the first and second terms in (11.7.13) die as 

(II.7.14) 

1 1 z for 1 < -2 , and 
s 

the dominance of the Regge singularities is assured. 

8. Mellin Transforms* 

Mellin transforms provide another technique for calculating 

high-energy behavior by picking out the rightmost singularity in the 

.e plane. The Mellin transfu:r:cn F(a) of a function f(s) is defined 

by 

F(a) 

The inverse transform is 

* 

-a-1 s (II.8.l) 

See Bjorken and Wu (1963); Courant and Hilbert (1953); Eden, et al. 

(1966), p. 151. 



f(s) = i
<Hioo 

(l/2rri) . 
<1-~oo 
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do: F(o:) 0: 
s ' (II.8.2) 

where F(o:) is analytic on the line Re(o:} = cr. These are simply 

the Fourier integral formulae in the variables tn s and -io:. 

An important class of functions f(s) is given by 

0:0 b-1 
s (tn s) ·s > 1 

f(s) = 

0 s <. 1 

for which the Mellin transforms are poles of order b if b is 

integra1:, 

F(o:) = )
-b 

r(b )(o: - o:0 . (II.8.4) 

For noninteger values of b, F(o:) is cut from o: = -~ to o: = o:0 ; 

then the integration contour specified by the parameter <1 must be 

chosen to avoid the cut. 

The application of Mellin transforms is similar to that of 

Sommerfeld-Watson transforms. For example, if F(o:) is regular in a 

region, except for poles, then we may displace the contour p ( <1) to 

the left and obtain a sequence of contributions from the poles encoun-

tered. As in the case of Sommerfeld-Watson transforms, the rightmost 

singularity in o: will dominate the behavior of f(s), as s ~oo. 

.. 
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FIGURE CAPTIONS 

Fig. II-1. Branch cuts in the complex t-plane arising from thresholds 

in the t-channel (on the right) and in the u-channel (on the 

left) for a fixed value of s. Two poles are also shown. 

Fig. II-2. The Cauchy contour of integration in the complex t-plane, 

used in writing a dispersion relation. 

Fig. II-3. The schematic singularity structure of Fig. II-1, mapped 

Fig. II-4. 

Fig. II-5. 

onto the z -plane. s 

Integration contours in the complex z -plane, for the s . 

Froissart-Gribov projection (II.5.10). 

Contours of integration in the z -plane for the Froissarts 

Gribov projection when £ is complex. 

Fig. II-6. Integration contour for the Sommerfeld-Watson transformation. 

Fig. II-7. The opened contour with a semicircle at infinity. 

Fig. II-8. The contour Pushed back to Re(£} = -1/2. Two schematic 

Regge poles an~ one schematic Regge cut are shown. 
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~s 

XBL707-3484 

Fig. II-3· 
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III. THE AMATI-FUBINI-STANGHELLINI BRANCH CUT 

Historically, the possible existence and potential importance 

of Regge cuts were first acknowledged by Amati, Fubini, and Stanghellini 

(1962a, b) [hereafte.r, AFS], in the context of the mul tiperipheral model. 

In this simplestcase the cuts are only illusory, and result from an 

unjustified truncation of the unitarity sum (Mandelstam, 1963; 

Polkinghorne, 1963). I shall review the AFS calculation and discuss 

the cancellation of the apparent cut by many-body contributions to the 

unitarity equation. Then I will specify the conditions under which 

Regge cuts can be generated, and note some consequences of the existence 

of cuts in the j plane. 

1. Generat:i.on of the AFS Cut by Two-Body Uni tari ty 

Amati, Fubini, and Stanghellini considered the effects of 

s-channel unitarity upon their multiperipheral model. In the simplest 

case of a single iteration in the s-channel, one considers the set of 

graphs ~hOW1.1. i11. Fig. III ··1, where each blob {or bubble) repreEentE a 

complete sum of Feynman graphs. That is, M is a full (off-mass

shell) scattering amplitude. To study the two Reggeon cut we specialize 

to the diagram of Fig. III-2 in which the blobs are represented as 

Regge pole exchange amplitudes. Following AFS., let us call T(s,t) a 

Regge pole amplitude and call A1 (s,t) the absorptive part of the once

iterated amplitude. The Regge pole amplitude is given by 

T(s,t) = (III .1.1) 

where ~(t) is the signature factor, ~ + e-i~(t))/sin ~(t). The 

first iteration gives 
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A1 ( s, t) = ( 8rr) - 2 J dn T0 * ( s, t' ) T0 ( s, t ") , (III.l.2) 

where t' is the momentum transfer squared through the first Reggeon, 

n is the c.m. solid angle between the initial and final states, and t" 

is the momentum transfer squared through the second Reggeon. As (III.l.2) 

is a unitarity equation, the intermediate states are on the mass shell. 

This expression can be manipulated into the form 

A1(s,t) = T
0
(s,t") K(t,t' ,t"), 

(III .1.3) 

where 

K(a,b,c) = 
2 2 2 e[-a - b - c + 2ab + 2ac + 2bc] 

2 2 2 - . 
[-a - b. - c + 2ab + 2ac + 2bc] 2 

With the amplitudes (III.l.l) as input, this becomes 

2(8.)-2 io dt' lo dt" c(t') c(t") Ht') S(t") 

X K(t,t' ,t") (s/s
0

)a(t')+a(t")-l. (III.l.4) 

This displays explicitly all the s-dependence in A
1

, and we appear to 

have produced asymptotic behavior corresponding to a continuous super-

position of Regge poles or in other words a Regge cut with branch point 

at 

acut(t) = Max(a(t') + a(t") - 1). (III.l.5) 



Indeed, by taking a Froissart-Gribov or Mellin projection [for which 

see Section II.5-8J it can be shown that a Regge cut occurs with branch 

point at (III.l.5). For more specific results, see Rothe (1967). 

In this, the AFS approximation, the s-channel intermediate 

states are .taken to be on the mass shell, and indeed in the approximation 

of two-body unitarity, Eq. (III.l.4) is exact. However it was soon 

pointed out by Mandelstam (1963) and by Polkinghorne (1963) that 

truncation of the unitarity sum with two-body intermediate states only 

was unwarranted. Specifically, there are contributions to the unitarity 

sum from "higher order" intermediate states which precisely cancel the 

AFS cut on the physical sheet in the s plane. 

To discuss the cancellation we turn to the Feynman integral 

technique used by Rothe (1967). This route is rather clumsier for 

computation than the Sudakov .variable method but provides good insight. 

Th . * 2 ~ e Ro.the Can cella t1.on 

When Mandelstam demonstrated the absence of the AFS cut in Fig. 

III-2, he proposed that there should be an uncancelled cut in the double 

cross diagram shown in Fig. III-3. He further conjectured that cuts 

should exist only in those diagrams of the form of Fig. III-4 in which 
... ~~., 

both blobs contain third double spectrai functions with respect to the 

t-channel (p ~ 0). This conjecture w~s verified for Feynman graphs 
~u ! -

by Wilkin (1964), and emerges easily in Rothe's method. 

* The calculation is nicely summarized by Landshoff (1969), and by 

Risk (1970). 

' 
.I 
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Consider Fig. III-2 as a FeY"nman diagram. The amplitude is 

\ (III.2.1) 

where is the off mass shell amplitude associated 

with the exchange of 

change of variables 

Jacobian 
1 

J = e(n)jn2 

a Regge poie with trajectory a(t.). Now make 
4 1 

d
4
k. ~'fl dk 

2
, which is accompanied by the 

. 1 n=l n 

the 

(III.2.2) 

We assume that the limit s ~oo can·be taken inside the Feynman 

integral, insert the asymptotic form of the Jacobian, and arrive at 

c f 2J 2J 2J·. 2 r ·2 2 A(l'i,t.) ~ 4s nk1 _ dk~ ~ ax4 ll':(-k1 ,-k
3 

,t) 

X . 2 1 2 
-k2 - m + ie 

Consider the -k 2 
2 

( 
2 2 -1 

-k2 - m + ie) 

1 
2 

- m + iE 

2 2 2 2 2 2]· R(a,l~ ; k 2 ,k4 ) R(.s,k
3 

; k2 ,k4 ) • 

(III.2.3) 

integration. · There is a pole from the propagator 

which appears below the integration contour, by 

virtue of the +ie prescription. There may also be branch points from 

the two vertex functions that depend on Drawing upon experience 

in perturbation-theory (for which see Eden, et al., 1966), we assume 

two properties for the yertex functions: 



(i) They have only a right-hand cut in 2 
.-k2 , which also appears 

below the integration contour. 

(ii) They vanish for large values of lk2
2

1 .. 

Property· (ii) permits us to close the contour of integration with an 

infinite semicircle in the upper half plane, and property (i) results in 

the integral vanishing. This is shown pictorially -in Fig. III-5. The 

original contour of Fig. rrr-s(a) is deformed into the contour sketched 

in Fig. III-5 (b) which, enclosing no singularities·, shows that the 

integral vanishes. 

Alternatively we could wrap the contour around the right-hand 

singularities as indicated in Fig. III-S(c). This must of course give 

the same answer as Fig. III-5(b), which means that the pole contribution 

(the on mass shell piece) must be canceled by the integral along the 

cut. The procedure of Amati, ·Fubini, and Stanghellini (1962a,b) amounted 

[Fig. III-S(d)] to picking up only the pole term from the propagator, 

and ignoring the singularities of the vertex function. 

3. Diagrams with Cuts 

Clearly if we wish to write down a diagram with a Regge cut, we 

must arrange to have both right-hand and left-hand singularities in 

-k2
2 • The presence of left-hand singularities prevents the distortion 

of the contour which rcoulto in Fig. III· .. 5 (b) and thereby invalid.atec 

the proof that the Regge cut vanishes. The simplest change is to replace 

the left~hand side of' Fig. III-2 by a cross (this substitution is repre-

sent~d in Fig. III-6). After the replacement, the bubbles representing 

the vertex functions have both left-hand and right-hand singularities in 



-37-

-k2
2 

(which is the total energy-squared flowing vertically through the 

cross). We ignore for the moment variables internal to the cross, and 

note that because the cross has an su double spectral function it has 

both right-hand and left-hand cuts in -k2
2 at fixed t. Thus the 

contour cannot be closed in either the upper or lower half plane,_ but 

as the cross tends to zero faster than l/k2
2 f)r large jk2

2 i we can 

make the deformation of Fig. III-5(c) to obtain 'ln integral· over the 

imaginary part of the cross graph. 

Identical arguments apply to the 
- 2 

-k4 integration. Therefore 

to obtain a diagram with a Regge cut we must mal<e insertions having su 

double spectral functions into both ends of the graph. These insertions 

will then have third double spectral functions in the t-channel sense. 

Finally we see that the simplest graph with a Regge cut is the Mandelstam 

graph shown as Fig. III-3. A summary of the calculation of this double 

cross graph is _given in the next chapter. 

cuts in the j plane weaken the analyticity properties of the 

scattering amplitude which can be proved from the unitarity equation. 

In particular the existence of certain fixed-j poles is related to the 

existence of Regge cuts. Some aspects of the pl·operties of the scattering 

amplitude when Regge cuts are present are discur:sed by Collins and 

Squires (1968) ,Sections V. 4-6. 
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FIGURE CAPTIONS 

. Fig. III-1. The set of graphs representing one iteration of the 

scattering amplitude in the s channel. 

Fig. rrr..:.2. A special case of the s-channel iterations corresponding to 

two-Reggeon exchange. The Reggeons are represented by 

wavy lines. 

Fig. III -3. · 'l'he Ma.ndelsta.m ( duuule cross) di~grrun. · 

Fig. III-4. A general diagram for two Reggeon exchange. 

Fig. III-5. Contours of the 

(a) The original contour, which passes above the on mass 

shell pole contributed by the a-function part of the propa-

gator, and above the right-hand cut in the .vertex functions. 

(b) The con tour closed in the llpper half plane. (c) The 

contour wrapped around the right-hand singularities. (d) 

The AFS approximation, in which the cut contribution is 

neglected •. 

Fig. III-6. Replacing the left-hand portion of Fig. III-2 by a cross. 
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(a) (b) 

·(c) (d) 

X BL 707-3469 

Fig. III-5. 
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Fig. rrr-6. 
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IV. THE DOUBLE CROSS DIAGRAM 

In this chapter I shall investigate the asymptotic behavior of 

the double cross diagram suggested by Mandelstam (1963) as a prototype 

Regge cut diagram. First I will sketch the calculation by Gribov, based 

on Sudakov's technique. Next ·I examine a modification of the Gribov 

work, due to Polkinghorne, which removes some of the arbitrariness in 

the technical assumptions. After showing how Gribov's result is simpli-

fied for use in phenomenology, I state a number of objections to the 

graphical procedure. 

1. Sudakov Variables: A Simple Example 

The Sudakov variables (Sudakov, 1956) are particularly suited. 

for the calculation of asymptotic values of Feynman graphs, for they 

provide a clear separation between negligible and important invariants. 

As an introductory illustration let us consider the simple two body to 

two body graph of Fig. IV-1, which represents the lowest-order scattering 

amplitud~ in a scalar ¢3 theory. Define lightlike four-vectors 

p' 
1 = pl - PP2 , 

P2 = p -
2 ppl, 

where 

p = (1 - s/~) -+'(s/~)(1- 2M2/sr~ 

'l'hen (p! l = 0 
1. 

is negligible, whereas 

""' ~/s. 

p' • p' ,..,_ s 
1 2 is not. 

(TV .l.l) 

(IV .1.2) 

Let k. 
1. 

be Lhe transverse part of qi (in the 3-vector sense) in the c.m. frame: 



k. • p'. = o; 
l . J 

k.
2 > 0 (spacelike). 

l -

The Sudakov variables a.,~.,k. are defined implicitly by 
l l l 

q. . = a. p2' + ~ . pl' + k .. 
l l ~ l 

(IV .1.3) 

(IV .1.~) 

What do they mean? Energy-momentum conservation (q
1 

+ q2 = p
1 

+ p
2

) 

implies that 

0 

or 

As a result we can write 

and the momentum transfer-squared as 

-(p 
1 = -k 2 

1 

2 . 

1 

• p' = 
2 s' . 

2 s (1 - ) . 2 
-k_ + P2 [ -<xl~2· + p(al~l + a.-J~2) - P a2~1] · 
-L . ( 1 + p ) . c. 

(IV .1.5) 

(IV .l.6a) 

(IV .l.6b) 

(IV .1. 7) 

(IV .LO) 

.P 

I 
i 

. l 

,· 
I 

I 
I 
i 



For forward scattering, the Sudakov variables become 

p/(1 
2 a = (32 = - p ), 1 

(IV .1. 9) 

a· 
.2 = (31 1/(1 -

2 
= p ). 

Having studied the Sudakov variables in a very simple example, let us 

move on.to a description of Gribov's evaluation of Mandelstam's graph. 

2. The Two Reggeon Branch Point 

In this section I sketch the evaluation, using the Sudakov 

technique, of a specific diagram which has a Regge cut, the double cross 

diagram which is labeled for kinematics in Fig. IV-2. This calculation 

has been done already by Gribov (1967) and by Winbciw (1969), and I refer 

to their work for details. ·Momentum conservation yields 

pl + p2 = 

·k 
l + k? = 

k 

q 

and as usual s -

. p3 + p4 

k• 
3 + k4 

= kl - k3 

= pl - p3 

2 
-(pl + p2) 

(IV.2.1) 

= 

and The graph is to 

be computed as a function of the asymptotic forms of the bubble ampli-

tudes f(k1 ,k,k2 ) and f'(p
1

- k
1

, q- k, p2 - k2 ) in the limit as 

s ~oo for fixed t. In this limit it is supposed that each bubble 

amplitude is a Regge pole exchange amplitude. It is further assumed 

that the bubble amplitudes vanish if the momentum transfer (through the 
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bubble) or any of the external masses tends to infinity (Mandelstam, 

1963; Rothe, 1967). This assumption,once accepted, motivates some 

otherwise ad hoc assumptions about the significant region of integration. 

For simplicity, assume that all the particles (the solid lines 

in Fig. IV-2) are scalar and have the same mass M. The Sud.akov param-

etrization [compare Eq. (IV.l.l)] is 

(IV.2.2) 

The volume element is 
4 1 2 

d k = 2lsldad.Sd ~· Consider the left-hand part 

of the diagram (Fig. IV-3): it involves the denominators 

+ ps(l + p)-2[1 - (31 (1 - p2 )]- k]j_
2 

- if + iE, 

(IV.2.3h) 

d3 - -.(kl - k)~ - if + i€ :;; (o:l - o:)((31 

(k.Lj_- kJ!2 - J2 +iF', 

. 2 
(3)(1 - p) s 

-(p - k + k - q)2 
- if + iE 

1 1 = 
2 -l 2 1 J [(l - p ) - s1 + t3 + q ;s 

(IV.2.3d) 



.. 
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Now let us assume that the amplitudes f(k1 ,k,k2 ) and 

f' (p1 - k
1

, q - k, p2 - k2 ) are large when their energy variables 

are large, i.e. of order s, at the same time their momentum transfers 

2 -(q - k) and masses 2 2 2 . 2 [ -k . -k -(k - k) -(k + k) ••• ] 
1' 2' I ' 2 

are of order unity 0 (s ) . If any of these last variables becomes large, 

the amplitude becomes small--by assumption--and the corresponding region 

is unimportant in the integral. This is the '11finite mass hypothesis" 

made explicit. Winbow (1969.) gave an elegant summary of the calculation, 

which I shall follow here. The asymptotic form of the denominators 

[~d2d3d4 J-l is proportional to 

(IV.2.5) 

The factor o(a1 ) arises from a pinch between dl and dr), 
c. 

whereas 

the factor o(a - 0]_) is caused by a pinch between d3 and d4 .-

Contributions of parts of the integration region of al and (31 away 

from the·pinches are of lower order in s. Thus the proof of (IV.2.5) 

hinges upon the finite mass assumption, specifically on the finiteness 

of and 

Similarly one obtains from the right hand cross an asymptotic 

~ontribution proportional to 

(IV.2.(,) 
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which arises from pinches which are compatible with those in the left 

hand cross. Consequently, for very large s we find 

a = o = 8, (IV.2.7) 

a result that also may be seen in a more pedestrian analysis of the 

implications of the finite mass hypothesis. 

Al:ll:l urne Lha L Lhe lJulJlJle wnpll Lutlel:l fat! Lu1· ( al:l Regge vole arnpll-

tudes, to which we shall immediately specialize, do) in the form 

X (IV.2.8) 

where the functions g1 and g2 of external masses and momentum 

transfers are Regge residues. A similar form is assumed for f'. We 

write the function G as a Mellin transform, 

= 

(IV.2.9) 

where ~£ = [T + exp(-irr£1 )]/sin rr£1 is the signature factor, and T 
l 

is the signature. For Regge pole exchange the Mellin transform is 

G£ (k2) = [£1 - ¢(k2)]-l 
1 . 

with ¢(k2
) the Regge trajectory. 

(IV.2.10) 

•'· 



-51-

Because of the c.ondition (IV. 2. ··() the asymptotic form of the 

Feynman integral factorizes and one obtains the result (Gribov, 196'"(; 

Winbow, 1969) 

where 

~£ 
1 

£1 +£2 . ¢ ( 2 -1 ¢ ~ 2) -1 
s . [£1 - 1 kJ. )] [£2 - 2\(qj_- kJ} ] , 

(IV.2.11) 

(IV.2.12) 

and A is the. ¢3 coupling constant. Evidently N£ £ is independent 
1 2 

of s. 

2 
-q ~ o, 

Furthermore (Gribov, 1967; Winbow, 1969) N£ .£ is real for 
1 2 

so the signature factors determine the imaginary part of A 

by the factor 

Y.e £ •. 
1 2 

Finally, using the Mellin projec.tion 

2 a. (q ) 
J --· 

[

00 

..;,j-1 2 
• ·~ ds s . Im A(s,q ), 

.(IV.?.13) 

important cases of which are listed in (II.8.3,4), one exposes the 

branch point in the j plane at 
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2 (. 2) = Max (¢1 (kJ_) + ¢2\(k_L- q) 
[k 2] 
1 

- 1}' (IV.2.14) 

the same location as we found for the AFS cut in Eq. (III.l~5). 

3· Polkinghorne's Modification 

The use of the finite mass h~othesis to pick out the significant 

region of integration is somewhat distasteful, because it makes the 

calculation very qualitative. Thus the corrections to the asymptotic 

form are difficult to estimate. Polkinghorne (1970) has invented an 

appealing alternative which is based on the use of Veneziano (1968) 

amplitudes to represent the Reggeons. While the beta functions do not 

have the rapid decrease with external mass required in the Gribov theory, 

the Feynman integrals may be evaluated by the method o:f ::>tationary phase. 

The result is completely analogous to (IV.2.11). 

4. Application to Physical Processes 

It is convenient to rewrite (IV.2.12) as 

(Iv.4.1) 

where 

is the particle-Reggeon scattering amplitude and 

We distort the contour of integration [shown in Fig. IV-4(a) for Eq. 

(IV .4.1)] to close on the right-hand cut of A.n n (s
1
,k1 ,kr.J in the 

~1.('2 " '"-
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s1 plane. The final configuration, which appears in Fig. IV-4(b), 

leads to 

(rv.4.3) 

where s1 (o) is the right-hand branch point. Gribov and Migdal (1968) 

wrote this form for N and gave a plausibility argument that the 

absorptive part of A£ £ (s1 ,k1 ,k2 ) should satisfy a unitarity condition 
1 2 

analogous to the one for normal scattering amplitudes. The first few 

terms of such a "unitarity" sum are depicted in Fig. IV-5. 

Kaidalov and Karnakov (1969a,b) retained only the first term in 

the sum and assumed that the single particle intermediate states could 

be replaced by a sum of narrow resonances. In this approximation 

[cf. (IV.2.11)] the amplitude for a ~b is given by 

A(s,t) = 
i A}lH-n] (s ,k_j_- q)' 

(IV.4.4) 

· [n+-a] a 
where A = sag1g2 (s/s0 ) is the contribution of the pole a to 

the amplitude for a ~n, and n is the two-particle intermediate state 

corresponding to the poles in N. This procedure is similar in spirit 

to the one advocated by Henyey and Risk, as reported by Risk (1970). 

l''urther restriction of the sum Ln to include only n = (a,b) reduces 

(IV.4.4) to a statement of the absorption model (for which see, e.g. 

Sopkovich, 1962; Jackson, 1965a; Arnold, 1967; Cohen-Tannoudji, Morel, 

and Navelet, 1967). 



5· Objections to the Graphical Approach 

While much has been learned--and is to be learned--from the 

graphical approach it is easy to raise significant objections to the 

results deduced from Feynman diagrams. Even accepting the utility of 

graphs, one is forced to admit that it would be overly optimistic to 

expect that a few graphs contain a credible theory of high energy 

scattering. To be fair I must remark that Gribov's program is to 

obtain Feynman rules for Reggeon diagrams (a Reggeon calculus) which 

would permit the evaluation of arbitrarily complicated graphs. A set 

of Feynman rules was indeed given by Gribov (1967) and checked by 

Winbow (1969) in some more complicated cases. Even in this circumstance 

the interpretation of results remains ambiguous. To pose a few unanswered 

.questions, what is meant by the input Reggeon? What.is the effect of 

t-channel iterations (do they just renormalize the Regge pole)? It may 

be that in the present embryonic stage of the theory of Regge cuts we 

should take a more operational point of view and assign these questions 

only secondary importance. 

But metaphysical objections aside, I am troubled by more practical 

uncertainties. In the Gribov-Migdal-Kaidalov-Karnakov approach or in 

the equivalent Henyey-Risk model it·is necessary to impute internal 

stru.ctu.re to the a-channel interme.diate states. This is certainly 

required in the diagram picture because third double spectral functions 

must be built in to both ends of every graph. It seems to me defensible 

to fabricate specific diagrams which have cuts and then to abstract from 

them a plausible form for the two Reggeon branch cut. Thus I should be 
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willing to tolerate ideas gleaned from the study of individual graphs 

if the imputed structures seemed physically realistic. 

With this in mind·I wish to voice a new objection to the deriva-

tions from Feynman graphs, which is rooted in phenomenology. The point 

is not subtle and surely has occurred to others, although I have never 

seen it stated explicitly. Recall that the diagram which was in the end 

regarded as a useful approximation to the general two Reggeon exchange 

graph is the one shown in Fig. IV-6, where the s-channel intermediate 

states consist of two physical particles, each on its mass shell. 

Recall, too, that cuts are "second-order in the third double spectral 

function" (Matsuda, 1969), i.e. both halves of the box must contain 

nonvanishing p (s,u)' if the diagram is to produce a Regge cut in the 
su 

t channel. As psu is the second double spectral function in the s

channel sense, it is responsible for the signature of the s-channel 

intermediate states. If the.s-channel states are assumed to lie on 

. * exchange degenerate Regge trajectories, signature is unimportant and 

the effects of Psu are negligible. Thus if exchange degeneracy is 

exact, no t-channel Regge cut exists in the graph of Fig. IV-6. From a 

purely theoretical point of view exchange degeneracy is a most attractive 

hypothesis, and it appears to be approximately satisfied in the hadron 

spectrum. Furthermore, only'one of the intermediate particles need be 

unsignatured (i.e. have p = 0) in order for the cut to be absent. 
su 

This argument, which is not based on details of the graphs, but only 

* The reader who is unfamiliar with the idea of exchange degeneracy 

will f.l_r~d an elementaey ni Rcnsston in Section VI.L 



upon the known (or indeed, hoped for) properties of the particles which 

are identified as intermediate states, strongly challenges the deriva

tions of the absorption model from Feynman graphs. (See Gribov and 

Migdal, 1968; Kaidalov and Karnakov, 1969a; Risk, 1970.) Moreover, 

this flaw seems more immediate and damaging than the deeper questions to 

which I alluded above. 

1 close this tlil:lt!Ul:H::luri' uu a hopeful note. Ma.ny of the oa.mo 

issues which appeared in this section have been debated for several years 

in the context of the Glauber theory for hadron-deuteron scattering. 

(See the review by Joachain and Quigg, 1970, for details and original 

references.) In that field, as in this closely allied one, the effect 

of graphical derivations has been rather to disprove the model, than to 

prove it. Thus the Glauber formula contains a Regge cut whereas the 

Feynman graph with which the Glauber formula has been identified does 

not. An instructive potential scattering calculation (Harrington, 1969) 

demonstrates that the Glauber formula corresponds to a sum of Feynman 

graphs, some of which contain higher than double scattering terms (in the 

Feynman graph sense) and that a conspiracy between the various terms 

yields precisely the Glauber formula, in the eikonal limit. The relevance 

of potential scattering to relativistic problems is always questionable, 

b~t H~rrington's example makes it clear that proofs (or disproofs~) of 

the Glauber (or of' the absorption) model based on a small number of 

graphs are probably specious. It may be--this is the attitude I will 

take for the remainder of this thesis--that absorptive models are 

appropriate for hadron physics, quite apart from the detailed derivations 

considered above. 
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FIGURE CAPTIONS 

Fig. IV-1. Kinematical diagram to elucidate the meaning of Sudakov 

variables. 

Fig. IV-2. Kinematics of the double cross diagram. 

Fig. IV-3. The left hand side of the double cross graph. 

Fig. IV-4. (a) The contour of integration in Eq. (Iv.4.1). (b) The 

contour wrapped around the right-hand singularities, for 

Eq • (IV • 4 • 3 ) • 

Fig. IV-5. "Unitarity" sum for Im A£ £ (s1 ,k1 ,k2 ). The lines bearing 
l 2 

crosses represent particles on the mass shell. 

Fig. IV-6. The diagram evaluated as an approximation to the general 

Reggeon box diagram. The lines bearing crosses represent 

particles on the mass shell. 
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Fig. rv-2. 
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Fig. rv-4. 
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Fig. IV-5. 
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V. A PHENOMENOLOGICAL MODEL OF REGGE CUTS 

The desirability of having a plausible model with which to 

confront the high-energy data argues against the pessimism of the 

previous chapter and demands a pragmatic approach. Thus I am led to 

construct an amplitude for two Reggeon exchange by fiat rather than 

orderly derivation. The result is not startling; it is in fact the 

answer one expects from the derivations described before, if indeed the 

derivations could rigorously be concluded. The model amplitude contains 

elements dictated by physical ideas and motivated principally by the 

relative success of the peripheral model with absorption. A novel 

feature is the incorpo!ation in a phenomenologically useful way of 

s-u crossing. 

I begin by reminding the reader of the Sopkovich (1962) prescrip-

tion for absorptive corrections to single particle, or as now seems 

more sensible, single Reggeon exchange. This formula. serve::; ct::> a. p1·oto-

type for the case in which two Reggeons, of which one and only one is a 

Pomeranchuk trajectory, are exchanged. Let RJ(s) be an s-channel 

helicity partial-wave amplitude for the exchange of a Regge pole in the 

reaction ab ~ cd. Then according to the guess of Sopkovich the influence 

of competing channels is included in the full s-channel partial-wave 

helicity amplitude H/s) by means of the prescription 

= (V.l.l) 

where SJ is the partial-wave S-matrix element for elastic scattering 

of the initial or final particles. The elastic scattering amplitudes 



need not be diagonal in the helicities but I suppress any such dependence 

for the moment to make the equations more succinct. The equation 

(V.l.l) is based a.n the distorted-wave Born approximation, which has 

been used by many authors after Sopkovich (1962) with qualitatively 

similar results. (A few of the important references are Gottfried and 

Jackson, 1964; Durand and Chiu, 1964; Ross an~ Shaw, 1964; Jackson, 

1965; Jackson, et al., 1965.) I take the liberty of replacing the 

geometric mean of the elastic S-matrices by the arithmetic mean. Then 

with 

I obtain 

Hcd:ab 
J 

(V.l.2) 

(V.l.3) 

which is represented graphically in Fig. V-1. This recipe has enjoyed 

wide acceptance up to the present day, usually with the additional 

E
ab :lib cd:cd assumption = E . 

An obvious shortcoming of (v.1.3) is that it fails to satisfy 

s-u crossing or what is known in Regge theory as line reversal. Thus 

in general one obtains one result if he absorbs in the s-channel and 

crosses to the u-channel, and another result if he absorbs in the u-

channel directly. If only the Pomeranchuk singularity contributed to 

EJ' and if all elastic scattering amplitudes were equal, there would be 

no difficulty in practice. In principle, however, a contradiction exists 

which should be eliminated before we proceed to the general two Reggeon 

case. It is easy to see that s-u crossing is restored by adding the 
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graphs of Fig. V-2 to those of Fig. V-1. Crossed graphs lack the 

intuitive appeal of the box diagrams that enter (v.1.3), for they involve 

the elastic scatterin~ of an initial-state particle with a final-state 

particle. Such an occurrence is contrary to the strict time ordering 

implicit in the·Sopkovich picture, but apparently intuition must be 

sacrificed for crossing. On the other hand, time-ordering is an 

essentially nonrelativistic concept which should not be expected to be 

a reliable guide for high-energy scattering. (The relevance of this 

point to Glauber theory is explained by Joachain and Quigg, 1970.) 

'l'he Reggeon graphs I have drawn in Figs. V-1,2 are useful as 

mnemonics but the reader will be aware, after the discussion of chapter 

IV, that they are not to be regarded as Feynman graphs. In order to 

specify with care what is meant by the crossed graphs it is useful to 

define a line reversal operator ~ which crosses a graph (and the 

corresponding helicity partial-wave amplitude) from th~ s-channel to 

the u-channel. The action of ol on the single Reggeon exchange graph 

is illustrated in Fig. V-3(a). It amounts to 

Rcd:ab 
J[ab] 

(V.l.4) 

By the notation J[xy] I indicate that the partial-wave projection is 

to be performed in the direct channel implied by the helicity amplitude 

in question. It is of course these full helicity amplitudes which have 

* simple properties under s-u crossing. 

* See Appendix c. 
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The similar action of ;1_ ori a two Reggeon graph is shown in 

Fig. V-3(b). As ~2 = 1, the contribution of the crossed graph in 

Fig. V-3(b) can be written as 

-iHJcd:ab(crossed graph) = -I_· (Rad:cb Ecl:i:cb} 
J J 

= t. (t· [R~d:ab] i. [E~~:cb]}. (V.l.5) 

To summarize, the action of 7f... is to (i) sum the helicity partial-wave 

series, (ii) line-reverse the full helicity amplitude, and (iii) reproject 

the desired partial-wave in the new direct channel. In this context it 

is important to emphasize that the cut generated by Reggeons with 

signatures T1 ,T2 has signature T1T2 . This was deduced in Chapter IV 

from the double cross diagram, and we assume it to be true in general. 

An ambiguity to be faced is whether to add the crossed graphs to the 

usual box graphs, or to average the ·two sets. I will argue below, after 

discussing normalization with more care, that the correct procedure is 

to average them. With this rule, the (explicitly s-u crossing 

symmetric) absorbed amplitude will be 

Then under the extreme assumptions that the elastic amplitudes are 

helicity independent, diagonal in the helicities, and independent of 

the scattering particles, the absorbed amplitude simplifies to 
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cd:ab( )[l 2 ... ( )] RJ s + J. EJ s . (V.l.7) 

This is precisely the result given by the usual absorptive prescription 

in the same simple circumstances. It is necessary to emphasize that 

(v.1.7) refers to a trivial limit of Pomeranchuk-Regge pole cuts, and 

not to an amplitude for pole-pole cuts, to which we now turn. 

At this point I am able to construct, in analogy with the 

absorptive model, the ~eneral model amplitude for two Reggeon exchange. 

It is built of the graphs of Fig. v-4, and I write it as 

= Rcd:ab Rcd:ab i ~ 
lJ + 2J + 2 L 

e,f 

(Ref:ab Rcd:ef 
lJ 2J 

Rcd:ef Ref:ab -1> [Ref:Cb ·Rad:ef Rad:ef Ref:cb]} 
+ lJ 2J + oL lJ 2J + lJ 2J . (V.l.8) 

The factor (1 + o12 ) is inserted to avoid double counting if Reggeons 

1 and 2 are the same. The labels a,b,···,f represent helicities as 

well as particle identities. The amplitude (V.l.8) is implicit in the 

hybrid model work of Chiu and Finkelstein (1969), which in turn is 

related to the formulation of Arnold (1967). The normalization in 

(V.1.8) and in the equations leading to it has been schematic, to make 

it possible for the reader to compare figures and formulae with a 

minimum of confUsion. Having obtained the partial-wave amplitude (V.l.8) 

in this schematic and hopefUlly understandable manner I now state the 

result for the full s-channel helicity amplitude with normalization 

which corresponds precisely to my conventional choices listed in 

Sections A.l-3. The resulting amplitude is 

•· 
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Hcd:ab + Hcd:ab i 
s(l) s(2) + b4; 

00 

[ ( J + ~) d"'IJ-J ( g s ) 

J 

{ 

\ [hef:ab hcd:ef hcd:ef hef:ab 
• L. . J(l) J(2) + ··J(l) J(2) 

e,f · 

+ (V.l.9) 

Here is the contribution of the Regge pole "i" to the s-channel 

helicity amplitude, and hJ(i) is its partial-wave projection which 

is given by 

hcd:ab( ) 
J(i). s 

1 . 

= I d(cos 9s) 
-1 

Notice that because the sum L f runs over all possible two e, 

body on-mass-shell intermediate states, this model includes possible 

"coher.ent inelastic states" in the Reggeized absorption model case that 

one of the Reggeons is a Pomeranchuk trajectory. (See Henyey, et al., 

1969.) 1 do not wish to discuss the magnitude of' these contributions 

in any detail because the dif'fractive production data for reactions such 

. * as pp ~N p and rrp ~A1p seem to me inconclusive. I should be very 

surprised, however if the total contribution of inelastic intermediate 

states turned out to be more than 30% of the elastic scattering component 

(in the amplitude). Thus I disagree with the Michigan group (Henyey, 

et al., 1969), who believe the strength of the absorptive cuts to be 

approximately twice the strength. implied by the elastic scattering 

. amplitudes alone. 



It is instructive to see that the crossed Reggeon graphs are 

already included, at least in principle, in the diagram versions of the 

* theory discussed in Chapter IV. How this comes about may be seen in 

Fig. V-5. The uncrossed ~eggeon box graph is identified with a particu-

lar double cross graph which imputes a specific internal structure to 

the vertices. Similarly the crossed graph is identified with a partie-

ular double cross graph with crossed Reggeons. When the latter diagram 

is untwisted (by pulling on the constituent lines of the right-hand 

vertices) it becomes an ordinary double cross graph, but with the ver~ex 

particles at the initial and final vertices on the right-hand side 

going to different Reggeons. Since in principle ~the various 

possibilitieo are put into the RP.ggeon-particle vertices the general 

set of diagrams would seem to contain the crossed. graphs. Indeed if one 

is willing to be tied to particular vertex structures it is possible to 

argue, by returning to the integration contours of' Fig. IV-4, that it 

is correct to ave.nl.ge the ero!Bed gro.pho with th'= 1.mcrn::::::P.d. ones. TP\l.s 

the integral over the contour in Fig. IV-4(a) is equal to one-half the 

integral along the contour in Fig. IV-4(b) around the right-hand 

singularities plus one-half the integral around the left-hand singu-

larities (contour not shown). The proof is completed by identifying the 

right-hand singularities with vertex structur·es :rrom the uncroosed 

graphs, and the left-hand singularities with vertex structures from the 

crossed graphs. The argument can be made less model dependent: notice 

that in untwisting the Gribov graph in Fig. V-5 we line-reversed one of 

* I owe this observation to Professor Jackson. 

.) 
I 

\ ,. 
I 
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the vertex functions. In Gribov and Migdal's nomenclature, a Reggeon-

particle scattering amplitude was line-reversed. For the narrow 

resonance scheme, this has the effect of replacing p (s,t) su by 

p (u,t), so that by dispersing in the Reggeon-particle subenergy one su 

picks up contributions from states on mass shell in the u-channel. 

A simpler principle (for fixing the normalization) is t~at the 

absorption model recipe should be recovered When enough simplifying 

assumptions are made. We saw this to be the case in Eq. (v.1.7). 

The crossed graph prescription is, therefore, a way of taking 

into account the complexity of the vertex structures, in phenomenologi-

cal calculations. It has the attractive property of satisfying s-u 

crossing manifestly, which is certainly an important feature to preserve 

in abstracting a phenomenological model from-a theoretical one. In the 

simplifying limit discussed in obtaining (v.1.7), the added complexity 

of my recipe (compared with the usual box graph model) makes no difference 

in the final result. Does it ever make a difference? More to the point, 

does the new formulation reproduce ahy desirable result which would 

have to be imposed by hand on the simpler model? The answer is that it 

does make a difference, that is nicely illustrated in the reaction 

+ -K-p ~ K :::: , which we shall study in detail in Chapter VI. 

and 

to 

A priori, there are contributions from the * K * K ' ** ** K - K , 

* ** K - K Regge cuts. If f'or concision we restrict our attention 

rrOyo intermediate states, the amplitude for the exchange of two 

Reggeons can be represented by the graphs in Fig~ V-6. Upon untwisting· 

the crossed graphs as described above, we find the resulting amplitude 



to be (1 + T1T2 ) times the contribution of the box graphs alone (times 

the factor 1/2 which occurs because we are averaging boxes and 

* ** crosses). Consequently the contribution of the K - K cut vanishes 

* * ** ** and we are left with only the even signature K - K and K - K 

cuts. This is.a correct r~sult, which in the conventional box diagram 

approach would have to be imposed as a symmetry on the vertex functions 

(compare Appendix c). By building in crossing, we have taken care of 

such discrete symmetries explicitly. 

Thus the crossing-symmetric model is expected to have two 

practical, phenomenological advantages over the box graph model. First, 

some cancellations due to discrete symmetries are made explicit. 

Second, by averaging over narrow.resonances in two channels, we mai 

hope to obtain a better approximation to the actual Regge cut amplitude 

than would be the case in either channel separately. 
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FIGURE CAPTIONS 

Fig. V-1. Reggeon exchange graphs for the conventional absorption model. 

Fig. V-2. The graphs which when added to those of Fig. V-1 restore 

crossing symmetry. 

Fig. V-3. (a) Action of the line reversal opera tor ;I__ on the single 

Reggeon exchange diagram which represents a helicity partial-

wave amplitude. (b) Effect of the. line reversal operator 

on ·the two Reggeon cross diagram. If the wavy line represents 

the Pomeranchuk (or specifically, elastic scattering), then 

e = .c and f = b. 

Fig. V-4. Graphical representation of the model for two Reggeon exchange. 

Fig. V-5· Identification of some Reggeon graphs considered in this 

Fig. v-6. 

chapter with some Gribov graphs, to elucidate the role of 

the crossed Reggeon graphs. 

The set of graphs relevant for the reaction 

* ** whioh proceed.! by (K , K ) exchange. 

K p K
+_

~ -
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Fig. V-2. 
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VI. REGGE CUTS AND EXCHANGE DEGENERACY 

In this chapter I consider some applications of the Regge cut 

model formulated above. These are very much in the nature of model 

calculations which serve to answer some questions about the effects of 

absorptive cuts on high-energy amplitudes. Thus I shall fit no data, 

but try to make semiquantitative observations that will shed some light 

on possible connections between exchange degeneracy breaking and Regge 

cuts. The model calculations form part of a larger program which will 

be reported elsewhere (Fox and Quigg, 1970). 

1. Regge Cuts and Duality 

I mentioned in Chapter IV a possible conflict between exact 

exchange degeneracy and the popular formulations of Regge cuts, n·amely 

the requirement that third double spectral functions be nonzero if cuts 

are to exist, whereas exchange degeneracy implies the absence of third 

double spectral functions. Accordingly the simple Rcggeon box diagram 

interpreted as a Feynman graph gives no Regge cut if the world is 

exchange degenerate. However, I swept such difficulties under the rug 

by arguing in analogy with potential scattering off deuterons that 

conclusions based on a small number of Feynman graphs could well be 

misleading. 

Another obvious question to pose is whether Regge cuts in general 

and specifically those generated by the absorptive prescription I employ 

are compatible with finite energy sum rules (FESR) or equivalently with 

. * 
"global duality" (Dolen, Horn, and Schmid, 1967, 1968). Certainly with 

* For a synopsis of work on FESR's, see Jackson (1Y70). 
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data of infinite precision over a wide range of energies it might be · 

possible to distinguish poles from cuts on the basis of their different 

energy dependences, but this is notoriously difficult. What can be 

shown is that FESR's cannot distinguish between different classes of 

models, given the present state of the low-energy data. An explicit 

demonstration of this was given for charged pion photoproduction by 

Jackson and Quigg (1969) who~:constructed a number of models with evasive 

rr and A2 exchange and "conspiring" absorptive cuts to fit the high

energy data and the sum rules. 

On the operational level, cuts may be duality-preserving or 

duality-breaking with respect to the prediction of exchange degeneracy 

(if it is legitimate to ignore possible conflicts between exchange 

degeneracy and the existence of cuts). Indeed it has been proposed 

(e.g. Michael, 1969b; Lovelace, 1969) that exchange degeneracy might 

be broken only by the effects of Regge cuts. This is one of the ideas 

I wish to elucidate here. Already in Chapter IV I gave a rather formal 

statement of what exchange degeneracy means, to wit p (s,t) = 0. su 
An 

explanation of the connection between the absence of exchange forces and 

exchange degeneracy may be found in Section V-3(b) of Jackson (1970), 

or in Arnold (1965). 

As an example let us consider as the u-channel + 0 ++ 
Kp~K.6. ,a 

quark model exotic channel in which no strong resonances have been 

observed. I label the other channels as shown in Fig. VI-1, so the. 

s-channel contains resonances on the p,A2 trajectories and the 
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* t-channel contains resonances on the ~a'~r trajectories. As there 

are no u-channel forces, we conclude that the p and A2 Reggeons are 

exchange degenerate, that is they are described by a single trajectory 

function a(t) and by one residue function for each p6 helicity state. 

The example of p,A2 exchange degeneracy is classical; see Mathews 

(1969) for a detailed phenomenological study. Tests of exchange degen-

eracy for the trajectory functions recently have been made by Cline, 

Matos, and Reeder (1969) and by Lai and Louie (l970)o By relabeling 

the channels we may repeat the argument for the ~a'~r trajectories and 

prove them exchange degenerate. This pair has been studied by Schmid 

(1969). The fragmentary evidence from the resonance spectrum for p,A2 

and ~a'~r degeneracy is collected in Fig. VI-2. The spectrum itself 

only provides plausibility; more concrete evidence that the exchange 

degeneracy is at least approximately satisfied is given in the references 

cited. The conclusion is that scattering in an exotic channel io 

governed by exchange degenerate trajectories in the crossed channels. 

The duality diagrams of Harari (1969) and Rosner (1969) are neat 

mnemonics for the predictions of SU(3), exchange degeneracy, and 

factorization. Each particle is represented by its quark constituents, 

whic~ rearrange themselves during the collision. If the initial quarks 

can be connected to the final quarks so that no quark lines cross, the 

duality diagram is said to be planar and the corresponding amplitude 

* There are four classes of baryon trajectories, distinguished by the 

quantum numbers (T,P): a=(+,+); t3 = (+,-); r = (-,-); 

5 = (-,+). 
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has a t-dependent phase. If not, the graph is nonplanar, and the 

amplitude must be purely real. For illustration, consider the forward 

charge-exchange reaction 

K+n 0 ~K p, (VI.l.l) 

for which the s-t duality diagram is drawn in Fig. VI-3(a). The 

graph is nonplanar so the amplitude for p,A2 exchange is predicted 

to be real. The line-: reversed reaction 

(VI.1.2) 

has a planar diagram which is obtained simply by untwisting,the graph 

for reaction (VI.l.l). Shown in Fig. VI-3(b), it implies an amplitude 

proportional to exp [-ina(t)]. Whereas the derivations of duality 

graphs can only be taken seriously for forward (0°) scattering, I will 

assume that their predictions hold for all values of t < 0. For easy 

reference I list in Table VI~l·the quark composition of some common 

hadrons. 

2. Systematics of Exchange Degeneracy Breaking 

In fact, exchange degeneracy is not an exact symmetry, or at 

least does not appear to be in the intermediate energy regime 

(5 GeV/c ~ plab :: 10 GeV/c) in which quasi-two body reactions have so 

far received careful experimental attention. As the references cited in 

the previous ~e~Llon testify, it is approximately satisfied and therefore 

a useful phenomenological tool. One could of course stop at this point 

and accept exchange degeneracy as an approximate truth, but it is 

appealing to view exchange degeneracy instead as a broken symmetry, i .A. 
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a symmetry broken in a particular (simple~) way. The motivation for 

this viewpoint may be more visceral than rational. Yet I can cite a few 

reasons why such an approach may be sensible. For example there is 

considerable evidence that SU(3) predictions, when modified by physical 

mass kinematics (phase space corrections) are satisfied rather well. 

Here is evidence for an exact symmetry, broken in a simple way. The 

elegance of the Veneziano (1968) representation, to which exact exchange 

degeneracy is built in, suggests a perturbative approach in. which the 

final amplitude satisfies exchange degeneracy in an approximate way. It 

is tempting (Lovelace, 1969) to suppose that the exchange degeneracy 

breaking, which presumably is the outcome of unitarization of the 

Veneziano formula (Kikkawa, Sakita, and Virasoro, 1969), might be 

adequately described by the absorptive corrections given by Regge cuts. 

With unbridled optimism one might thereby hope to elucidate the nature 

of exchange degeneracy breaking and the role of Regge cuts at one swoop. 

Such optimism ,is at least partially sustained by the discovery of the 

systematics described below. 

[My understru1ding of the ideas discussed here has evolved in 

the collaboration with G. C. Fox cited above, in the course of the past 

year. However, an I hope to make clear through references·'· these 

notions are not ours alone; many of them have indeed been published 

already by others.] 

A k~y observation is that for a pair of reactions related by 

line reversal, the one with amplitudes predicted to be real by duality 

diagrams seems in all cases to have a larger cross section than the one 
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with amplitudes proportional to exp(-ina:). This behavior is predicted. 

by the scheme of SU(3) for Regge pole residues plus exchange degeneracy--

broken by-the use of physical trajectories. The same scheme also accounts 

for the observed failures of exchange degeneracy in pairs of reactions 

for which, because of G-parity restrictions, one trajectory of the 

possibly degenerate pair is exchanged in each of the reactions. That 

exotic (in the sense of duality graphs) channels always have larger 

inelastic cross sections suggests that thel·e is more absorption in the 

* nonexotic channels. The greater absorption in turn suggests that 

nonexotic channels have larger total cross sections, as is observed. 

Let us consider these regUlarities in more detail 

For notational convenience I will abbreviate exchange degeneracy 

(equal trajectories and equal residues) as EXD. Equal trajectories but 

unequal residues corresponds to "weak" exchange degeneracy, or WEXD. 

Finally I define residue exchange degeneracy, REXD, to mean equal 

residues but unequal trajectories. 

The amplitude A 
'f 

for exchange of a trajectory with signature 

-r is 

* This seems contradictory at first sight, for absorption is actually 

the inelasticity caused by competing reaction channels. It may be 

that there exist more reaction channels with smaller individual 

cross sections which communicate with the nonexotic channel. 



-86-

-ina cot naj2 i + -
A+ 

l + e 
<X! 2 sin na:+ = 2 

(vr. 2.1) 

-ina i + tan na_/2 -+l - e A <X! 2 sin na = 2 -
Thereby in the EXD limit 

A +A 
+ -

<X! esc na(t) (VI.2.2) 

is purely real, whereas 

A -A + -
a: e -ina(t) esc na(t) (VI.2.3) 

has a rotating phase. An amplitude whichl should on the basis of' duality 

diagrams be purely real will be called DDRe; the amplitude related by 

line-reversal, which should have a rotating phase will be called DDPh. 

Consider now the case of' REXD, with a+ = a; a = a + o. · Then 

l 
= 2[cot Tra/2 + tan n(a + 5)/2] 

(VI.2 .4) 

esc na 
l - tan na/2 tan rrn/2 

* is still purely real. This implies a cross section proportional to 

* Obviously this cannot be exactly true over an inf'inite range of' 

energies, but in the intermediate energy regime it is accurate to 

the extent that 
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2 
esc rra 

2 
(1 - tan rra/2 tan rro/2) 

which is larger than the one predicted by EXD if tan rra/2 tan rro/2 > 0. 

For o . small and for all the trajectories which enter into near-forward 

scattering, an equivalent condition is ao > 0. 

The DDPh combination is only slightly more complicated: 

A . -A 
+ 

= 

-i + cot rra -

1 2 2 tan rro/2 sec rra/2 

1 - tan rra/2 tan no/2 

1 2 
-irra 2 tan rro/2 sec rra/2 

e esc rra - 1 - tan rra/2 tan rro/2 

(VI.2.6) 

The implied cross section is decreased from the EXD value if cot rra 

and tan rro/2 have the same sign, or increased if the signs are differ-

ent. Again I ignore the effect of 0 (sjs
0 ) upon the imaginary part. 

In the peripheral region, a > 0 for the vector and tensor 

trajectories. Thus if a vector trajectory lies above its tensor 

* partner, ao > 0 and cr(DDRe) > cr(DDPh). To be specific, let us 

consider the charge-exchange reaction~ (VI.l.l,2), which proceed by 

p,A2 exchange. It appears (see for example Mathews, 1969) that 

5 $U 0.1 and aA (0) RJ 0.45. The REXD scheme predicts, therefore, 
2 

Here a may be taken to mean d.ojdt, near tpe forward direcLion. 
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+ 0 - :-::() 
a(K n ~ K p) > a(K p ~ K n), (VI.2.7) 

in apparent agreement with the rather low-energy data (plab S 5.5 GeV/c) 

considered by Cline, Matos, and Reeder (1969). The effect does not, 

however, appear to persist experimentally at higher energies. Thus the 

differential cross section for K+n ~K0p at 12 GeV/c recently reported 

by Firestone, et al. (1970) is equal to the 12.3 G€V/c 

section of Astbury, et al. (1966). 

cross 

* In proposing a REXD model, Auvil, et al. (1970) have noted that 

in the comparison implied by Eqs. (VI.2.s,6) the difference between 

cross sections should change sign at aA = 0, i.e. near -t = 0.5. 
2 

In fact this is far from the case, at least at low energies, where the 

ratio 

da 
dt 
da 
dt 

+ 0 (K n -4 K p) 

- .::-:()) (K p ~ K n 
(VI.2.8) 

is maximal at around -t = 0.5. The remedy proposed by Auvil, et al. 

is to include a pair of lower trajectories (p ' A') which account for 
' 2 

the observed t-dependence. Such a complication just pushes the implica-

tions of the straightforward REXD model to higher energies. 

* There is a minor error in this paper. In Table 1 a comparison 

should correctly be made of K-p ~~0A with ~x the cross section 

for - 0 
~ p ~ K A. 
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Similar considerations may be brought t·o bear on the hypercharge-

* ** exchange reactions mediated by K ,K exchange. Assuming aK* > aK** 

we again predict the DDRe cross sections to be systematically higher 

than the DDPh cross sections. The results of Birnbaum, et al. (1970) 

indicate that, up to 16 GeV/c, 

~ 2, 

* in qualitative agreement with the REXD prediction. 

(vr. 2. 9) 

Predictions based. upon the REXD idea can also be made for 

reactions that proceed by TP- exchange, e.g. for n and B exchange. 

For the latter example we expect on esthetic grounds that aB <an <. 0, 

which would. again imply that DDRe cross sections should be larger than 

DDPh cross $ections. A typical prediction is that 

dcr(K+ K*OA++) Pon o.t . P ~ u 

dcr( - -*0 -) 
Poo dt K n ~ K 6. 

> 1, (VI.2.10) 

in the peripheral region. In a world where Regge cuts may be important 

it is of course very difficult to separate the contributions of individual 

Regge poles, even when one considers particular moments of decay angular 

distributions. Thus it may be hard to perform tests like (VI.2.10) in 

convincing fashion, particularly when the lower-lying -rP- trajectories 

are involved. 

* See also Kirz (1970). 
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The three competing hypothesis of EXD, .WEXD, and REXD are all 

quite splendid theoretical ideas which lead to distinct and definite, 

if only qualitative predictions. Each has a simplicity or elegance that 

makes its potential value for increasing our understanding enormous. 

Thus it is ·essential to answer experimentally, and at high energies 

(for the study of quasi-two body inelastic reactions, this means 

10 GeV/c <..: p1 b <.: 30 GeVjc) questions of the t"ol.l.owing kinds: 
""' a ""' 

(i) Are line reversal tests satisfied? An affirmative answer 

confirms WEXD, without making any statement about the residues. 

(ii) Do violations of line reversal tests, and thereby of WEXD, 

occur systematically? If so, does the particular pattern 

cr(DDRe) > cr(DDPh) persist to higher energies? An affirmative answer 

will lend support to REXD schemes and may suggest ways of refining them. 

(iii) Is EXD satisfied? In particular, are DDRe amplitudes actually 

real? Such tests (e.g. the absence of polarization in DDRe reactions) 

are especially delicate~ ~nd hard to assess quantitatively; it is 

difficult to know how to assign errors if an amplitude is "almost" real. 

It is appropriate to inject here a bit of theoretical bias, which 

diminishes the appeal of the REXD scheme. In the absence of a "higher" 

symmetry imposed on hadron dynamics from without, it is hard to see how 

REXD could be les$ ba.c;Uy·broken than WEXD. Thus the trajer:tori .. eR, which 

are determined dynamically by a large number of channels, are observed to 

be approximately, but not exactly, degenerate. It seems plausible that 

for some processes the residues must be very badly broken from REXD. 

Consequently unless there is a dynamical miracle, WEXD is probably closer 

to the truth than REXD. 
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As we have no complete theory for high-energy collisions, it is 

hard to overestimate the importance of sorting out regularities such as 

those bearing on EXD, REXD, and WEXD. Some lists of useful line-reversal 

tests may be found. in the papers of Gilman (1969), Q,Uigg (1970), and 

Auvil, et al. (1970). Other suggestive hints of systematic behavior are 

to be found in the review by Rosner (1970). There is no paucity of 

simple ideas; what we need is large amounts of good data. 

3· Regge Cuts and the Breaking of Exchange Degeneracy 

If exchange degeneracy is broken in some systematic manner, it 

will be useful to understand how the breaking occurs. For example in 

the REXD model described in the preceding section the burden is placed 

on the observed mass splittings of the hadrons, which one may regard 

either as God-given or as needing explanation on a deeper level. 

Alternatively, it may be appealing to suppose that Regge cut corrections, 

applied to EXD input Regge poles, might produce scattering amplitudes 

which violate the predictions of EXD and agree with the data. As I 

stressed above, systematic experimental tests are only beginning to 

emerge., so it is difficult to know which direction to take. Apparently 

present Regge cut models are sufficiently flexible that many reactions 

must be studied simultaneously and in detail before success ceases to be 

guaranteed by a surfeitof parameters. What I am considering here is 

whether a simple pattern exists, that is instantly explicable in terms 

of Regge cuts. 

To clarify the possible effects of Regge cuts upon EXD input 

poles, I have done the simplest calculation imaginable. Starting ·;vi th 

a-channel nonflip and flip amplitudc3 appropriate for DDne and DDPh 
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reactions, I have computed the absorptive corrections corresponding to 

an elastic scattering amplitude given by a fixed-pole Pomeranchuk (i.e. 

a positive imaginary elastic amplitude). For simplicity I took 

H+:+ . 
s,elastic 

. (s ) l.a -total s . 0 

at/2 
e ' 

(VI. 3 .1) 

-. + H • 0, 
s,elast.ic 

* and used the familiar Fourier-Bessel representation for Eq. (V.l.8), 

which yields 

H+:+ ( t) 
s,Regge s, 

- ac 10 dt' ~a(t+t' )/2 I [a(tt' )~] 
2 0 

-oo 

X H+:+ ( t') 
s,Regge 3

' 

= 
-·+ 

H ' ( t) s,Regge s, 

0 . 

- ~[ dt' ea(t+t' )/2 I [a(tt' )~l 
2 1 

-oo 

Y H-:+ ( t') 
./' s,Regge s, · (VI.3 .2) 

Here is a modified Bessel function of the first kind, of order 

a= 8(GeV/c)-2 is the slope of the forward diffraction peale, and C 

is a dimensionless parameter, given in principle by 

n. 
' 

(VI.3.3) 

See, for example, Jackson (1970), Section IV.4. 
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For the input Regge pole amplitudes I followed the recipe developed in 

Appendix C, so that the DDRe amplitudes are 

+·+ H • ( t) s,Regge s, = 

(VI.3.4) 

H-:+ ( t) 
s,Regge s, 

The DDPh amplitudes are the same, times an extra factor of -ina:( t) e • 

In the example I will discuss I chose a:(t) = ~ + t, s0 = l(GeV/c) 2, 

and (sjs 0 ) = 10. 

In Fig. VI-4 I have plotted the results for the nonflip amplitude. 

The absolute square of the input pole amplitude is the solid line; it is 

the same for both the DDRe and the DDPh cases. The contribution of the 

Regge cut (for C = 1, which corresponds roughly to total absorption of 

the s-wave) in the DDRe case is plotted with long dashes. It is smaller 

than the pole contribution at t = 0, but is less peripheral. The 

absolu,te·sQuA.rP nf the output, "!!ult' minus cut," amplitude is plotted 

with short dashes, for the DDRe case. It is more peripheral than the 

input waf'1, f'or the effect of Llle a,bsorptive corrections is to subtract 

out low partiA..l waves. There is a zero in the amplitude caused by com-

plete destructiv~ interference between pole and cut, at 2 
-t ~ 0.37 (GeV/c) . 

When the input is the DDPh amplitude one expects (Michael, l9l)9b) a 

smaller cut for a given value of C, since the rotating phase of the 

input pole enhances the possibility of cancellations in the convolution 

integral. Also the de~tructive interference between pole and cut will 

not be total, for the pole and cut will in general have different phases. 

Both these featun:s a,re shown by the DDPh output, !Pole minus cut! 2 , 
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which appears as a dotted line in Fig. VI-4. It lies above the DDRe 

output, reflecting a smaller cut subtraction, and has only a shoulder at 

-t ~ 0.35, rather than a zero. What is somewhat surprising is that the 

ratio 

IH+:+ 1
2/IH+:+ 1

2 ~ 1.5 
s,DDPh s:DDRe (VI.3.5) 

is so large~ (As expected it is >1, whereas the RI!:XJJ rn.tiernonic 

predicts <l.) 

The same effects are seen in the calculation for the fllp.ampli-

tude, the results of which are plotted in Fig. VI-5. Again the DDRe 

output has a zero [at 2 -t > l.O(GeV/c) ] but the DDPh output has only 

a shallow dip; again the ratio 

is rather large. Some calculations similar to these were published 

recently by Meyers and Salin (1970), which agree qualitatively with my 

conclusions. 

As expected Regge cuts even when generated by a flat Pomeranchuk 

invalidate the predictions of WEXD (although not in a manner consistent 

with experiment). While this theory is wrong--and therefore unrealistic--

it m3.y be worthwhile to remark that it prP.::::erves the prediction of no 

polarization in the DDRe reaction (both flip and nonflip amplitudes 

remain purely real) but breaks the EXD prediction of no polarization in 

the DDPh reaction. This is because the phases of the flip and nonflip 

amplitudes are altered in different ways. In my examples, the flip-

,, 
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nonflip phase difference is small for -t ~ 0.3(GeV/c) 2 in the DDPh 

reaction and also for ~+ and ~- exchange separately. 

From the perspective of duality graphs, the REXD predictions 

have a natural explanation in terms of absorptive cuts generated by 

full (not just Pomeranchuk) elastic amplitudes, In the computation 

reported above I assumed that the elastic scattering amplitudes were 

equal in the initial and final states and were equal in the DDRe and 

DDPh channels. Now in fact this is not so. The "exotic" channels which 

give rise to nonplanar quark graphs for inelastic processes have smaller 

total cross sections (thus smaller forward elastic amplitudes) than the 

channels to which they are related by line reversal. Thus the DDRe 

amplitudes should be absorbed less than the DDPh amplitudes. If 

elastic scattering amplitudes are represented in terms of Regge poles 

(or poles and cuts) this means that the difference between DDRe and 

DDPh cross sections should be explained by two-Reggeon cuts, in which 

neither Heggeon 1s a .P6meranchu.k.. traJectory. 'l'hus the .H.KXD recipe might 

serve to take account of the effects of two-Reggeon cuts. However 

REXD, in the simple form stated above, treats flip and nonflip amplitudes 

in the same way, so does not account :t'or polarization, whereas two 

Reggeon cuts may well do so. The importance of two Reggeon cuts, with 

neither 

(1969b). 

Reggeon a Pomeranchuk trajectory, was· suggested by Michael 

Recent work along the same lines has been reported by 

O'Donovan (1970). Some relevant model calculations are discussed below. 

A final comment derived from the model calculation discussed 

here bears on the vaunted dip systematics of the Michigan strong cut 

model (see Ross, et al., 1970). In Fig. VI-6 I have shown the values of 
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t for which dips are generated in the flip and nonflip amplitudes, as 

functions of the strength of the Regge cut. Although my input poles, 

in having conventional nonsense zeroes, differ from the input of the 

Michigan model, the dips appear at the expected positions for a cut of 

Michigan strength (C ~ 1.5). In the DDRe case the dips are quite 

dramatic, representing excursions through two or more decades in 

IH+:+I 2 , even when the obs.erved real part of the elastic amplitude is 
s 

tacked on by the substitution 

C ~ C[l - i(Real part/Imaginary part)]. · (VI.3.7) 

In contrast the structure in the DDPh case is a break or a shallow dip. 

Some care is therefore required, precisely to state the predictions of 

the Michigan model in specific reactions. The strong cut systematics 

may be every bit as fuzzy as those of the classical Regge pole model. 

Obviously this remark applies equally to proponents and detractors of 

Krzywicki and Tran Thanh Van (1969) [see also Krzywicki, 1970] 

investigated the effects on polarization predictions of cuts generated 

by a nonflat Pomeranchuk trajectory. Their discussion utilizes a very 

simplified parametrization which cannot be taken seriously for quantita-

tive features (such as the magnitude of polarizations), but two natural 

predictions of the model stand out. First, near the forward direction, 

the polarization P is of the same sign in the DDRe and DDPh reactions 

related by line reversal. Second, P(DDRe) has a constant sign over a 

substantial range in t, whereas P(DDPh) changes sign at some small 

.,. 
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value of -t. Despite these attractive features, which appear to be 

present in the data, it is unlikely that this scheme can accommodate 

all the experimental features. The cut corrections to DDRe amplitudes 

will exceed those to DDPh amplitudes and thereby disagree with what is 

observed. 

4. Reggeon-Reggeon Cuts and Line-Reversal Violations 

The model calculation described in the preceding section 

illustrated the conclusion that the recipe of exchange degenerate Regge 

poles plus pole-Pomeranchuk cuts does not account for the experimental 

fact that cr(DDRe) > cr(DDPh), at intermediate energies. It is therefore 

of obvious interest to assess the effects of two-Reggeon cuts, when 

neither Reggeon is the Pomeranchuk trajectory. To accomplish this, I 

have calculated the non-Pomeranchuk contributions to the reactions 

DDPh: + - + -
1( 1( --+ 1( 1( , (VI. 4 .la) 

DDRe: 1'( .rr ) .rr JC , (vr.4 .lb) 

i.e. the P' + p poles and the (P' + p) ® (P' + p) cut. The 

restriction to a spinless reaction is made for technical simplicity, 

to avoid becoming bogged down in details of flip to nonflip ratios, 

etc. 

For the Regge pole amplitude::; I d1u::;~ 

H [rc_:n:_ --+n_n_J 
s 

. (vr. 4. 2a) 

(VI. 4. ?.b) 
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corresponding to amplitudes for P' and p exchange 

H(p) = -grQ - o:(t)_)&(s)_)cx(t)Q- - -irro:( t )) e , 

(vr.4.3) 

H(p') = -grQ- - o:(ti)&(sUcx(t)Q + -irrcx(t 0 e . 

The trajectory function cx(x) = 0.48 + 0.9x, and the coupling constant 

g = 16:rr were taken from the paper by Shapiro (1969). The prescription 

( V .1. 9) gives 

00 

(vr.4.4) 

where 

In practice I truncated the partial-wave expansion at J <30, and 

performed the partial-wave projection by 96-point Gaussian quadrature 

on the CDC 6600. Numerous checks were· made to verif'y the orthonormality 

J of my d00 functions, and the ability of the projecting and resumming 

rout:i,ne.s ; to reproduce various input functions. Each. of the examples 

discussed below required about 3 seconds of computer time. 

Figure VI-7 shows the contributions of the various components 

in (vr.4.4) for the parameters chosen, at 2 s = 10 GeV . Broken down 

in this way, the pieces are the same--in magnitude--in the two reactions. 
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The weakness of the p-p cut is due to the vanishing of the p Regge 

pole amplitude at -t ~ 0.58. The integrated cross section contributed 

by the poles is cre£ ~2mb., a not unreasonable value. In Fig. VI-8 

I have plotted the contributions of the cuts as they occur in the two 

reactions of interest. The DDRe cut, for n 1t --7 1t n is the result of 

convoluting the real amplitude (vr.4.2b) with itself. As expected, it 

is somewhat larger than the DDPh_ cut, which is the convolution of the 

rotating phase amplitude . (VI. 4. 2a) with itself. In the DDRe case, the 

cut contribution is a real number times the explicit factor of i 

that appears in (VI .4 .• 4). Consequently the cut 1md pole contributions 

add incoherently, for the reaction n n -?n n Near the forward 

direction, the effect of the (P' + p) QO(P' + p) cut is insignigicant 

(in n n -?n-n-), as evidenced by the near equality of the DDRe and 

Input (= poles only) curves in Fig. VI-8. 

The situation is completely different in the·DDPh case. The 

phase of the cut piece at any value of t is approximately twice the 

phase of (VI.4.2a) at t/4, plus n/2 (from the explicit factor of i). 

At t = o, the input amplitude (vr.4.2a) is cc + i. Thus at t = o, the 

cut is roughly negative imaginary; it interferes destructively with the 

pole amplitude, as stated by Michael (1969b). For my choice of the 

coupling constant, the cross section is diminished by about 20%, for 

s = 10 Gev2, in the forward direction. The effect is larger at larger 

values of -t, because the cut amplitude is less peripheral than the 

pole amplitude. Amusingly, indeed encouragingly, the violations of 

line reversal in KN charge exchange are bigger at moderate values of 

-t than at t = 0. 
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To give a feeling for the energy dependence of the pole-pole 

cuts I have plotted the same quantities at s = 5 and 2 20 GeV in 

Figs. VI-9,10. Alternatively, these can be interpreted as reflecting 

the sensitivity of the results to the coupling constant g. These very 

simplified calculations show that the pole-pole cuts do contribute with 

the right phases to make a(DDRe) > a(DDPh), and may be substantial in 

magnitude at low energies. (It is worth remarking that if the DDPh 

input had been oc - i, the poles and cuts would have interfered 

constructively.) In addition, the cut corrections become more important 

at nonforward angles. Rather remarkably (at first sight) the cuts have 

an energy dependence characterized by aeff(o) ~.2a(O) - 1, at these low 

energies. (See Figs. VI-8,9,10.) Thus the argument of Cline, et al. 

(1970) that the energy dependence of pole-pole cuts is too gentle to 

account for the probable diminut~on with increasing energy of the line 

:reversal violation in KNCEX is too naive, and therefore misleading. 

0' Donovan (1970) points out that his estimates o:f -pole-polP. r:llt. r.nrrPrt.i r.m<J 

to KNCEX fade away faster with increasing energy than a t(O) = 2a(O) - 1 cu 

would lead one to expect. He ascribes this rapid energy variation to 

complicated pole-cut interferences. This misses thP. point. As shown 

by Figs. VI-8,9,10 the cut pieces alone behave as aeff(O) < 2a(o) - 1. 

This merely refleGts thE) fact that the cnt ampli.t1.1dr. i:. not proportional 
a a 

to ~(s)) cut, but to 0CsV cutj[.en&CsD - in:/2]t3. For small values 

of a( s), the logarithm varies rapidly, and the net ene:r.·gy dependence 

will resemble that characterized by a power somewhat lower than acut· 

(For a more explicit demonstration, see Fig. 18 of Jackson, 1970.). Thus 
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describing the energy dependence of the cut as 
0: cut s at small values 

of s is dangerous and m~y lead to wrong conclusions. The question of 

energy dependence recurs in the discussion of exotic exchanges, which 

follows. 

5· Exotic Quantum Number Exchange 

It has been recognized for some time that two-Reggeon exchange 

graphs provide a mechanism for the exchange of exotic quantum numbers, 

without the necessity of exotic trajectories (e.g. Chiu and Finkelstein, 

1969). The formalism constructed in Chapter V needs only the existence 

of reliable amplitudes for the individual rungs of the box diagrams to 

* ** be quantitatively useful. Our work in progress on (K ,K ) exchange 

soon will yield amplitudes which should permit reliable statements to 

be made about production angular distributions, absolute normalizations, 

and so on. As an example of the kind of results which will be the 

outcome of this program, I present here a calculation of the near-forward 

differential cross section for the reaction 

Kp (VI.5.l) 

assumed to proceed (as discussed in Section V.2) by double * K or by 

** double K exchange. Although such calculations have been talked. 

about before (Chiu and Finkelstein, 1969; Rivers, 1968), this seems to 

be the first one actually carried through. I hasten to add that for the 

reaction (VI.5.1) the dominant mechanism is assumed to be baryon 

(Y = 0, I = 0,1) exchange. The present calculation is thus an attempt 

to estimate the magnitude and shape of the contribution at small t 
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generated by two successive nonexotic mesonic excpanges, and not an 

attempt to fit the observed cross section over the whole angular range. 

For simplicity, and to facilitate the discussion of qualitative 

features, we take the amplitudes for the allowed associated production 

reactions from an EXD Regge pole fit to the available high-

energy data. The amplitudes for rr0Y0 ~K+~- are obtained by SU(3) 

rotations. We neglect intermediate states in which T] replaces 

for lack of useful data on - 0 K p ~ T]Y , although these states in 

principle contribute. We then have 

+ 

i 
= 32rr 

J,l-l 

0 
rr ' 

(VI."5,2) 

where the individual reactions are denoted by 

0 + -
111: rr A ~ K :::: 

IV: 

To parametrize the single meson exchange allowed reactions we 

make the usual decomposition into invariant amplitudes 
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(VI.5-3) 

where q1 (q2 ) is the c.m~ four momentum of the incoming (outgoing) 

meson. The s-channel helicity amplitudes are then 

+·+ 1 (ml + m2) 
H • = {A l1 + B[TJ (s)2 - 2 l)_] } cos g /2, s + s 

- ·+ 1 (~ + ~) 
H • = (AT]++ B[l1_(s)2 - 2 l)+] }sin 9sf2, s (VI. 5 · 5) 

where ~ (m2 ) is the mass of the incoming (outgoing) baryon, and we 

define 

l)± = 
1 

[El + ml] .2[E2 +mF l+ r .. ,vr., .. . l_ { plp" ) ( r= (,) 

2 . . - (E1 + ~ )(E2 + m2 ) J 

in which p and E are respectively the baryon mom~ntum and energy in 

the center of mass system. We define the quantities TA' :~. which are 

related to the t-channel helicity amplitudes by factors that remove the 

kinematical singularities: 

with 

+·+ T . 

v = (s 

X ;::: 

- u)/2, A' = A + xB, and 

("1 + m2) [ (ml 
2 v + 

(m + m, ) - t l 2 

- m2) (IJ.l 
2 -

2(m1 + m) 
1-!2

2 )1 

., 
•\. 

\. 

J 

(VI.5.7) 

(VI.'). 9) 
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For each reaction, the amplitudes T- are characterized by 

four parameters. Thus 

at e 

is the contribution of the Regge pole with signature T. We require the 

* ** K and K to be EXD, and fix the slope of the trajectory a:' = 0.9 

Gev-2 and the scale factor 2 
v0 = 1 GeV • There remain as parameters 

the intercept o:(o), the vertex exponential a, and two coupling 

constants C+ d an As the intercept must be the same for all 

reactions we have a total of seven free parameters to fit the reactions 

rrN· -7 KA 

rrN --? !a: 

KN -7 nA 

KN --? nl: 

when the constraints o±' factorization and isospin conservation are 

imposed. The fits to associated production will be discussed in detail 

elsewhere (see Fox and Quigg, 1970). It suffices, for present purposes, 

to know that the EXD fit yields a fair overall fit (x2 = 891/220 

differential cross section points; x2 = 234/48 polarization data which 

are irrelevant for the fit since P = 0 in the model). The data 

considered are summarized in Table VI-2; for details and references, 

consult our paper. The best fit parameters are given in Table VI-3, 

together with the coupling constants for Tt
0Y0 

-7 K+:::- obtained from 

them by SU(3) rotations. We chose the vertex exponentials for Y?. 



I . 

-105-

equal to the one for p~, which was much better determined than.the one 

for pi\. 

The differentialcross sections computed (from EXD poles alone) 

from these parameters at 5 GeV/c are plotted in Fig. VI-11. [The 

reaction is plotted rather than 

section nearly coincides with the one for 0 +_-
1(i\-7K.::. .] Details, such 

as the forward dip for should not be taken too seriously, 

as the couplings for - 0 
K p -7 1r A are quite uncertain. However the 

magnitude of the cross sections is probably reliably estimated by our 

simple model. The spin content of the cross sections, expressed through 

the useful parameter 

A (VI.5 .11) 

is conveyed by F'ig. VI-12. As one would guess from the previous figure, 

all the reactions but K
+_-

-7 .::. are dominated by nonflip amplitudes 

for small values of -t. Since we are assuming EXD, Fig. VI-12 applies 

* ** separately to the K and K contributions, as well. Each cross 

section is an incoherent sum of the K* and K** components, which 

are shown in Figs. VI~l3 and VI-14, respectively. The presence of the 

nonsense, wrong-signature zero in the K* contribution suggests--

compare the p ® p cut computed in Section 4--that double K* exchange 

will be unimportant compared with double K** exchange. We will see 

below that. this is indeed the case. 

In Fig. VI-15 I have displayed the results of the calculation 

of K-p -7K+:= with the pole-pole cut. The thick, solid line marked 
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"All" is the full cross section implied by (VI.5.2). The contribution 

from graphs with a ~O intermediate state (L) is negligible. This 

suppression is a consequence of the forward dip in 0 0 +_-
nL -7K.=.. The 

graphs with A
0 

intermediate state (A) contribute nearly the entire 

** ** cross section. Similarly, the K - K graphs ( ** K ) are responsible 

* * * for most of the cross section, and the. K - K graphs (K ) are of little 

importance. To summarize the content of Fig. VI-15, we may remark that 

(VI.5.2) ** . ** 
for the model based on K - K ·exchange in the two-step 

- 0 + - is the dominant mechanism a peripheral process Kp-7nA-7K:::: for 

(small t) - + - ** peak in Kp_.K::::. The K dominance is an expected, 

qualitative feature, whereas the unimportance of the L0 intermediate 

state is model-dependent. The A parameter for - +--K p __, K ..=. , plotted 

in Fig. VI-16, shows that the calculated cross section is dominated by 

the nonflip amplitude. 

1be calculated near-forward cross section for pl~b = 2,3, and 5 

GeV/c is shown in Fig. VI-1?. The cross section is quite small: 

dcr/dt (t = 0) = 605, 166, 32 nb/GeV
2 

at plab = 2, 3, 5 GeV/c. These 

2 are rather less than the value of 2~b/GeV at 3.5 GeV/c estimated by 

Rivers (1968) or the estimate of 2.6 ~b/Gev2 at 3.4 GeV/c deduced in 

a rescattering quark model by Dean (1968). Measured production angular 

distributions for the incident momentum range 1.2 to 3·5 GeV/c are 

collected in Fig. VI-18. The prominent feature of these distributions 

is a backward peak suggestive of baryon exchange. At the lower momenta, 

(particularly at 1.8 GeV/c) there is some evidence for forward peaking 

as well, but this is probably a result of s-channel resonance formation. 
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At the higher momenta there is no hint of a (forward) periphe~al peak. 

The ''high-energy" data of Fig. VI-18g,h,i are shown in Figs. VI-19,20,21 

respectively. [Some of the .data evidently were revised after the compila-

* tion of Lyons (1966), from which Fig. VI-18 was taken, was made.] The 

cross sections in the forward bins are tabulated in Table VI-4. The 

apparent absence of peripheral peaks agrees with our prediction of 

rather small forward cross sections, but the number of events in the 

forward· bins is greater than we expect. Possibly the tail of the baryon 

exchange production angular distribution can account for 'these events. 

We may also compare the total peripheral cross section predicted by 

the model with the observed peripheral u-channel cross sections. From 

the curves shown in Fig. VI-17 we find u t - 180, 44, 7 nb. cu -. 
at 

Plab = 2, 3, 5 GeV/c, .whereas the experimental cross sections are 

175 ± 16 ~b· at 1.70 GeV/c, 58 ± 6 ~b at 2.64 GeV/c (Dauber, et al., 

1969); and.21 ± 3·5 ~b at 3.0 GeV/c (Badier, et al., 1966). 

It ~as been hoped (Michael, 1969a) that exotic trajectory 

exchange might be identified by some characteristic energy dependence, 

such as 

-10 
s ' 

which is easily distinguished from the behavior expected of Regge cuts, 

2[~(0)~2(0)-1]-2 
s 

* See also Fig. 2 of Dauber, et al. (1969), in which their statistically 

superior results are summarized. 
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near t = 0, if a(O) corresponds to an established, high-lying 

trajectory. In the preceding Section I noticed that the logarithmic 

energy dependence of the Regge cut can confound such simple estimates. 

In j-plane language, the cut discontinuity is large below tne branch 

point, thus a f . <a t" ef ect~ve cu The present calculation gives another 

illustration of this effect. Determining aeff(t = 0) from the 2, 3, 

and 5 GeV/c predictions, we obtain aeff(t = 0) ~ -0.55, whereas 

a t(t = 0) ~ -0.31. It is worth remarking that for baryon (i\,2::) cu ' 

exchange, aeff ~ -1 and hence the pole-pole cut. contribution may 

eventually dominate. However the energy at which it dominates will be 

extremely large, because of the factor of 103 in magnitude that must 

be overcome. 

Let me further caution that such energy dependence arguments 

are not rigorous, for Reggeon box graphs can in fact generate contribu-

tions that vanish rapidly with increasing s. A specific example was 

given 

has an 

ladder 

by Wilkin 

amplitude 

model for 

dcr dt(£ s 

(1964) 

which 

Regge 

-8 
' 

who showed that a diagram with p (s,t) - 0 
u: (-oo)-tU (-60)-l su ' 
1 2 for t = 0. In a goes as s 

' 
poles, a( -co) = -1, so that 

(VI.5 .12) 

which io uncomfortably oloEe to 
-10 

i: It. wnnl il i nil PAn hA c'li R&;llRt.i n~ if 

nonleading contributions from two-Reggeon exchange diagrams played an 

important role in any reaction. On the oth~r hand this (admittedly 

far-fetched) example wea~ens any arguments in favor of exotics based on 

anomalously low effective Regge pole intercepts. There are no doubt 

assorted weird objects lurking in the lef"t-half j plane. Thus we shall 
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have evidence for exotics either when an exotic resonance is established 

or when quantitative two-Reggeon-exchange calculatio~s fail. 

The present calculation, which gives an unobservably small 

cross section; is somewhat academic (as befits a thesis~), but it is 

sufficiently simple that it can be explained concisely. It was intended 

to illustrate an approach to Regge cut calculations, and to demonstrate 

some features of my s-u crossing symmetric prescription. Other, more 

experimentally interesting reactions come to mind. Many of these are 

more complicated calculations, in terms of the number of Regge poles 

and diagrams involved, than the simple example treated here, but are 

still of finite difficulty. I intend to consider some of these more 

interesting examples in the near future. 
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Table VI-1. Quark compositions of some hadrons. 

Hadron Constituents 

I· 
7( pn 

0 (pp + nn)/\[2 1( 

1( pn 

K . PA. 

p ppn 

n pnn 

A pnA. 

+ 
I: PPA: 

I:o pnA. 

I: nnA. 

_o 
PA.A. --

- nA.A. =-

6++ PPP 

6+ ppn 

"o u. pnn 

6 nnn 

-n A.A. f... 
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Table VI-2. Associated production data. 

Reaction Minimum plab do/dt points Polarization points 

- 0 :rrp-+K'A 2.95 GeV/c 7 9 

:rrp -+ KL: 5. 54 30 

- 0( 0) :rrp-+K A+L: 6 .72 

KN -+ :rrA 3·7 43 9 

KN -+ irL: 3·7 44 0 
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Table VI-). Parameters. for K*(890) exchange. 

Reaction a(Gev-2) c+ c 

- 0 0 
Kp~rr.L: 2.64 45.6 -73·5 
- 0 0 
Kp~rrA 0.254 -47.3 -59.49 

0 AO K+-~ 
1t ~ .::: 2.64 -"57.0 42.4 

OL:O K+_-
1( ~ .::. 2.64 -6.7 -73.1 

d(O) = 0.35 

•. 
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Table VI-4. Forward cross sections for 

plab' GeV/c 
. 2 

-t -t da/dt(nb./GeV ) 1 2 

2.24 0.02 0.27 ---4000 ± 3000 

3.0 0.007 0.391 2291 ± 1599 

3·5 0.005 0.481 0 ± 1979 
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FIGURE CAPTIONS 

Fig. VI-1. Labeling of the s,t, and u channels for the proofs of 

Fig. VI-2. 

Fig. VI-3. 

·p,A2 and of L:a,L:y exchange degeneracy. No strong reson-· 

ances occur in the u-channel, which has exotic quantum 

numbers. 

Evidence from the hadron spectrum for 

exchange degeneracy. 

(a) Nonplanar duality graph for the reaction 

- ~ (b) Planar graph for K p ~ K n. 

and 

+ 0 K n ~ K p; 

Fig. VI-4. Absolute squares of various components of the s-channel 

nonflip amplitude, as functions of t. Solid line--pole 

term; long dashes--cut contribution in the DDRe case; short 

dashes--full amplitude in the DDRe case; dots--full amplitude 

in the DDPh case. See the text for explanation. 

Fig. VI-5. Same as Fig. VI-4, for the s-channel flip amplitude. 

Fig. VI-6. Location of the dips arising from cut-polf' interference, 

as a function of the cut strength. Solid line--nonflip 

amplitude; broken line--flip amplitude. 

Fig. VI-7· Contributions of the P' and p poles, and of the 

P' ® P', P' ® p, and p ® p cuts to rrrr scattering at 

2 
o .. 10 GcV • 

Fig. VI-8. Contributions of the P'' and p poles, and of the 

(P' + p) ~ (P' + p) cuts to the reactions + - + -
1( 1( ---7 1( 1( 

(DDPh) and rr rr ~ rr rr (DDRe) at 
2 

s = 10 GeV . The pole 

contribution is marked Input. The curves marked DDRe, 

DDPh represent the (coherent) sum of poles and cuts. 
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Fig. VI-9~ Same as .Fig. vr-8, for s = 5 Gev'2. 

Fig. VI-10. Same as Fig. VI-9, for s = 20 GeV2 . 

Fig. VI-11. Differential cross sections for the. (K*,K**) exchange 

reactions discussed in the text, computed from the EXD 

fit to high-energy associated production, at 5 GeV/c 

incident momentum. 

Fig. VI-12. The spin rotation parameter A for the reactions exhibited 

in Fig. VI-11, which are labeled by their baryon vertices. 

* Fig. VI-13. Contribution of K exchange to the reactions of.interest. 

Note the nonsense, wrong-signature zero near -t = 0.4 

I 2 (GeV c) • 

Fig. VI-14. Contribution of K** exchange to the reactions under 

discussion. 

Fig. VI-15. Predicted cross section for K-p -?K+:::- at 5 GeV/c. The 

full calculation is represented by the thick, solid line. 

The t!Ulll.IJUU!duL::; f.rum K*-K* g.ta.~:-11~.!>, IC**-IC** graphs, HOAO 

intermediate states, and rrOr.O. intermediate states are 

also shown separately. 

Fig. VI-16. The A parameter predicted for K-p -.K+:::- at ~ GeV/c. 

Fig. VI-17. Predicted differential cross sections for K-p -.K~- at 

2,3, and 5 GeV/c incident momentum. 

Fig. VI-18. Production angular distributions for the reaction 

K~p -?K+:::- for the incident momentum range 1.2 to 3.) 

GeV/c (from Lyons, 1966). The data up to 1.6 GeV/c are 

from Alvar·ez, et al. (1962). (a) 1.2 GeV/c, 33 events; 
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J 
(b) 1.3 GeV/c, 56 events; (c) 1.11 GeV/c, 47 events; 

(d) 1.5 GeV/c~ 207 events; (e) 1.6 GeV/c, 41 events; 

(f) 1.8 ·GeV/c, 96 events, Ticho (1962); (g) _2.24 GeV/c, 

38 events, Bertanza, et al. (1962); (h) 3.0 GeV/c, 28 

events, Badier, et._ al. (1964); ( i) 3. 5 GeV / c, 17 events, 

B-G-L-0-R Collaboration (1965). 

Production angular distribution for K-p ~K+~- at 2.24 

GeV/c, from London, et al. (1966). 

Production angular distribution~for K-p ~K~- at 3.0 

GeV/c, from Badier, et al. (1966). 

Fig. VI-21. Production angular distribution for K-p ~K+~- at 3·5 

GeV/c, fro~ B-G-I.-0-R (1966). 

\ 

.f 



I 
[
'

r-l 
r-l I 

• • • .. ~·
 

.. 

+
-

0 ~ 
v 

.rt'>
 

~
 

0 ~ 
....J 
CD 
X

 

. r-l 
I 

H
 

>
 . bll 

·r-i 
JZ.. 



J 

4 

2 3 4 

(Mass) 2,( G eV/c2) 2 

-118-

J 

Fig. VI-2. 
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Fig. VI-5· 
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VII. SUMMARY AND CONCLUSION 

The cause of rigorous derivations of Regge cut amplitudes 

certainly has not been advanced by this work. I have, however, tried 

to clarify some of the pitfalls one encounters in attempting to go from 

Feynman diagram calculations to realistic amplitudes for hadron-hadron 

scattering. Having gained some appreciation for the diagram approach, 

I formulatea a phenomenological ampiitude for the Regge cut arising from 

two-Reggeon exchange, which manifestly satisfies s-u crossing. Some 

simple calculations were made more accessible by the recipe given for the 

Reggeization of s-channel helicity amplitudes. The model was formulated in 

terms of s-channel helicity partial-wave amplitudes, in order that 

detailed predictions for exotic exchange reactions might easily be made 

in the near future. 

In the preceding chapter I reviewed the present state of affairs 

of Regge cuts vis a vis duality-breaking schemes. The various alternative 

schemes reflect an obviO\l.S need for more data. A mnriPl ~"'~'~lt:'l.\l~t.ion 

exhibited some of the shortcomings of a theory in which exchange degen

eracy is broken by Reggeon-Pomeranchuk cuts. The next step to be taken 

should be a quantitative study of the possibility that exchange degeneracy 

is broken by Reggeon-Reggeon cuts. This will require both theoretical 

effort to· understand how to calculate cuts reliably and the accumulation 

of experimental data on line-reversed pairs of reactions as well. 

Obviously trajectories other than D and A2 should be the objects of 

study. 
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As an example of the exotic exchange reactions now becoming 

calculable, I presented predictions for the double hypercharge exchange 

reaction K p K
+_-

~ -
~ - . The near-forward cross section was evaluated on· 

the basis of a simple exchange degenerate Regge pole fit to the high-. 

energy associated production data. There are a large number of analogous 

· reactions which are amenable to analysis in terms of two Reggeon 

exchange graphs. If Regge cuts are dominant in exotic reactions, we 

should be able to confront cut models with experiments d.irectly, and 

thereby learn about the nature of Regge cut amplitudes. 



-140-

ACKNOWLEDGMENTS 

I am grateful to Professor Robert Beringer, Professor Itzhak 

Kelson, and Professor Henry Margenau, who exhorted me as a callow under

graduate at Yale to pursue theoretical physics. My early discoveries of 

the fascination of physics were made in the company of Mssrs. George W. 

Cole and John G. Zornig, to whom· I am indebted for comradeship and 

comic relief. 

Professor Arthur H. Rosenfeld supplied helpful advice during my 

first year as a graduate student. In addition I thank him and Professor 

Gerson Goldhaber for their interest and for many discussions about 

experimental results. 

My friends and colla bora tors, Dr. Edmond L. Berger·' Dr. Geoffrey 

C. Fox, Professor Alfred S. Goldhaber, and Dr. Frank von Rippel, kindly 

shared with me their inestimable wisdom, enthusiasm, and perspective. 

I express deep appreciation to Professor J. David Jackson for 

his patience and generosity during countless hours I spent learning by 

his side, and for incisive criticism and sound advice. 

My wife, Elizabeth, has provided faith, hope, and love in 

abundant measure. 

I am grateful to my parents for their encouragement. 

I tha.n:k. Pr-ofcsoor Geoffrey F. Chew for his support at the 

Lawrence Radiation Laboratory, and for maintaining there a stimulating 

research environment. 

I am indebted to the Woodrow Wilson National Fellowship 

Foundation for a Fellowship, to the University of California for a 

Science Fellowship, and to the United States Atomic Energy Commission 



-141-

for a Research Assistantship which supported the work reported herein. 

Miss Georgella Perry and Mrs. Christina Graham, secretaries to the LRL 

Theoretical Group, contributed valuable support of a different nature. 

Finally I thank the many others: teachers, fellow students, 

and colleagues, who have so often enlightened me. 



-142-

APPENDIX A. DEFINITIONS AND CONVENTIONS 

1. Kinematical Quantities 

For two body .to two body collisions, I order the particles as in 

Fig. A-1. The direct (s-) channel reaction is 12 ~34; the crossed 

(t-) channel reaction is 13 ~24. The Mandelstam invariants are 

2 2 
s = . -(pl + p2) = -(p3 + p4) 

-(p 
2 

-(p2 
2 

(A.l.l) t = - p ) = - p4) l 3 

2 2 
u c -(p - p4) = -(p - p ) l . 2 3 

where I specify a four-vector by v = (~,v0 ), and v·w = ~·~ - v0w0 . 

The Mandelstam variables satisfy 

4 

s+t+u = L 2 m. 
l. 

L: • (A.l.2) 

It is convenient to define threshold and pseudothreshold factors 

= [ ( )2]~ x - m. + m. 
l. J 

(A.l.3) 

= 

where (ij) specifies the incoming or outgoing pair of particles in the 

x-channel. For my choice of particle labels x,(ij) occur in the 

combinations x(ij) = s(l2), s(34), t(l3), t(24), u(l4), u(23). Now let 

'X ¢~~] *~~] 
ij = l.J l.J 

A c;:J' ,; ·.:; 
be a generic symbol for _p·,.' .. , .. , :>: ..• 

. l.J l.J l.J 
The 

energy of particle "i" in the x-channel center of mass (c.m.) system 

is 



2 2 1. 
w. = (x + m. - m. )/2x2

• 
1 . 1 J 

The magnitude of the corresponding three-momentum is 

= CV . . /2xf2. 
/1 1J 

(A.l.4) 

(A.l.5) 

The Kibble function (Kibble, 1959) ~(s,t,u) is positive within 

the physical region, and vanishes on the boundary of the physical region. 

It is also related to the x-channel c.m. scattering angle by 

. 2 1"\ 

s1n. "x 

The c.m. scattering angle is given more compactly by 

000 g 
s .. o(t 2 2 2 2 

u) 1 (II]_ - ~ )(~ - m4 ) , 

. 2 2 2 2 = t(s - u) + (~ - ~ )(m2 - m4 ). 

(A.l.6) 

(A.l.7) 

(A.l.8) 

For the reaction ab ~cd I. choose the positive z-axis along £a' and 

the positive y-axis along . ~X~ (in conformity with the Basel 

convention). Thus the reaction, takes place in the x-z plane. The 

coordinate system is illustrated in Fig. A-2. 
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2. Single Particle States 

Following Jacob and Wick (1959) and Wick (1962) let jp0 ;~) be 

0 an invariantly normed state .with four-momentum p = (~,m) and spin 

component ~ along th~ z-direction.* (I suppress a label for the total 

spin, s.) These rest states are assumed to transform in the usual wayt 

under rotations r: 

= 

Now define 

L IJ 1-L~ s ( r )jp 0; 1-L ) • 

1-L 

(A.2.1) 

(A. 2. 2) 

* By invariant normalization I mean (p'; ~' jp; ~) = (2n)3 5~·~ B(p' ,p) 

""' 2 2 1 (3) where 5~,~ is a Kronecker delta and o(p,p') = 2(£ + m )2 5 (£ £') 

is the invariant a-function on the mass shell. This corresponds to 

using the invariant volume element on the mass shell, 

""' 2 2 .1. -1 3 + 2 2 4 
dp = [2(£ + m ) 2 ] d £ = 5 (p +m) d p, in place of the normal 

volume element. 

t I specif'y a rotation 
-ia.J -it:)J 

R = e z c Y 
aBY 

and Satchler (1968), 

by the Euler· angles (af3Y); thus 
-iYJ . z 

e This follows the convention of Brink 

Rose (1957), and Messiah (1960) that ~(a~Y) 

rotates the system through Euler angles (apT). Others (e.g. \-Tigner, 

1959, and Edmonds, 1957) use the opposite convention, that ./)- (af3Y) 

rotates the sy·stem through angles (-a, -(3, -Y). Explicit representa-

tions of rotation matri·ces are given in Appendix. B. 

"I 



for (0 < 9.< rr; -rr < ¢ < rr}, where Z is a "boost" in the z-direction, 

which imparts to the particle the desired momentum. The rotation R 

takes care of the direction. The helicity ;,.. is the projection of spin·· 

on the direction of motion. 

Let us now use h(p) to denote the Lorentz transformation 

(A.2.2) and H(p) to indicate the corresponding operator, 

(A.2.3) 

which generates the state of four-momentum p. The particular form 

(A.2.3) is the Jacob-Wick helicity convention, but I will note some 

other possibilities below. Now apply £[L], an arbitrary Lorentz 

transformation such that £p = p'. The resulting state will be 

0 IP'; ;,..) = H(p') IP ; ;,..). Furthermore, £p = . 0 0 
£h(p)p = p' = h(p')p' 

so that h-1 (p') £h(p)p0 = p0• In other words, the transformation 

h-1 (p') £h(p) is an element of the little group (isotropy group) of 

p 0 , an(1 is therefore a rotation I'. Thu::; 

= 

(A.2.4) 

where u(.e,p) = JJ s(r) = J7sQ>.-1 (p' ).eh(PD· (This shows that U is 

unitary.) Consequently the transformation law for helicity states is 

Lip; A.) = 
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Among the other kinds of single particle states which can be 

defined by their transfQrmation properties I mention in particular Wigner 

spin states (Wigner, 1939, 1957; Blatt and Biedenharn, 1952), for which 

the projection of spin on the z-axis is specified: 

Llp,m) = . L Jj :'m~ -l(£p) £b(p)) ltp; m' ), (A.2.6) 

m' 

where b(p) is a pure· boost along the direction £· I also define 

transversity states (Kotanski, l966a,b), for which the projection of 

spin on the negative normal to the reaction plane is specified: 

Figure A~3 shows the axes of quantization for these three kinds of 

states. 

Lastly I mention spinQr ~t~t~s (Joos, 1~62), which are defined. 

by extending the operator ~ to be a representation of the homogeneous 

Lorentz group, instead of the rotation group as before. Spinor states 

transform as 

. L I p ; . a) = L . olJ bas [ £ ] l£p ; b ) • 

b 

(A.2.8) 
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3· Scattering ~litudes* 

The S-matrix element connecting an initial state a of total 

four-momentum p~ with a final state b of total four-momentum pb is 

related to the scattering amplitude Tba by 

sb = ob + i(2:rr)4 o(4)(:Pb.- P ) Tb . a . a . · a a 

The transition probability per unit time is gj_ven by 

It is straightforward to derive the following useful relations between 

the scattering amplitude and observables. 

(i) . General decay process a -7 (1,2, • • • ,n) - B· The decay rate 

is 

dW~ = (A.-3-3) 

(ii) Two body decay a -7 (1,2) = B· 

dW~ 

(iii) General two bo~ collision cross section 

a= (1,2) -7 (3,4,···,n) = B 
· 4 · n dp 

drr = (2:rr)":_ o(4)(p - P- )IT 12ti1' i 

------~-12 B 0: ~ t=~ (2rr)
3 

(A.3.5) 

* See Collins and Squires (1968), and Taylor (1965). 
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(iv) Two body to two body cross section a - (1,2) ~ (3,4) - B 

Since 

do 
dQ 

c.m. 

dQ 
c .m. 

do 
dt 

= 

= 

~21,. 2 
2 JtJf 12 

ITeal . 
64rr s 

2sdt d¢, 
o:J' 12 ;!34 

1 I 2 :J 2 Tf3al • 
16n: 12 

The unitarity of the s-matrix implies 

(sst)ba = \ s st - 5 
~ be ca - ba' 

c 

Substituting (A.3.1) we find 

i [T - T* ] 
ba ba 

-(2rr)4 \ 5(4)(p - p ) T T* L a c be ac' 
c 

(A.3.7) 

(A.3.9) 

(A.3.10) 

where the channels a and b now satisfy the four-momentum conservation 

relation, pb = Pa' and Lc means integration over dp/(2n) 3 for each 

particle in channel c and summation over all channels c. If channels 

a and b are the same, Eqs. (A.3.5) and (A.3.10) give the opLical 

theorem relation between total cross section and imaginary part of the 

forward scattering amplitude, 



t 
i 
I 

j· 
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ototal (a ~all) 
1 . 

= -:r- Im[ T . ( s , t=O) ] . 
A!J 12 aa 

(A.3.11) 

1 

With Taa = 8ns2 f (0°), Eq. ·(A.3.11). takes a more familiar form c .m. 

4:rr .. Im[f (0°)] c .m. = a . 
total'. (A-3.12) p :. c.m. 

J/ 

where p is the intial c.m. momentum and f (0°) is the forward c.m. c.m. 

spin nonflip scattering amplitude. [Thus f . c .m. corresponds to the 

normalization adopted by Jacob and Wick (1959) in which 

dojdn = jf(9)1
2 .J c .m. . 

Different kinds of amplitudes may be obtained by taking matrix 

elements of T between the several kinds of states described in Sec. 

A.2. The most useful amplitudes are helicity amplitudes. For these it 
. . s0+s4 -(f~.r.,+A.4) 

is customary to insert an additional phase factor (-1) ~ ~ 

so that, for examplP., 

defines the s-channel helicity amplitude. With the normalization 

exhibited in Eq. (A.3.6), the differential cross section averaged over 

initial helicities and summed over final helicities is given by 

do 
dU = 

c.m. 

1 

'4 2 b 1( s 

X L \H/~4''-1~\2' 
"-1"-2"-3"-4 

(A.3.14) 
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where si is the spin of particle i. A minor subtlety arises here, 

namely that the number of helicity states of a massless particle is 

only 2, not 2s + 1. For a massless particle incident an obvious 

modification of the statistical factor is therefore required. 

The helicity partial wave expansion can be written in the form 

00 

= L (J + t)(A3A.41hs':r(s)IA.lA.2)d~'\gs) ei(A.-~-L)¢, 
J=m (A.3.l5) 

where A= Al- "-2' 1-L = A
3

- A4, and m = Max(IAI,I~I). The properties 

of the rotation matrix dJ are reviewed in Appendix B. Hereafter I 

choose ¢ = 6; this reflects my convention for the reaction plane. The 

orthogonality property of dJ [cf. Eq. (B.l.8)] permits the inversion 

of (A.3.15) for J ~ m: 

A3A4:AlA2 J 
d( 9 ) H (s,cos 9 ) d. ' (9 ) . . cos s s s A~ s 

Relations among the helicity amplitudes may be obta{ned from the discrete 

symmetries. From parity we, find 

1) = g 

(A.3.17) 

with T)i the intrinsic parity of the ~th particle. Translated into a 

condition on the helicity amplitudes themselves, this is 

··,;.-

.......... _. -~ ... __ 



.... 
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(A.3.18) 

From time reversal we obtain 

whence 

To close this section I briefly note the relations between 

helicity amplitudes and some other amplitudes. 

(i) Wigner amplitudes. With particle 1 (2) along the plus (minus) 

z-axis, the relation to helicity amplitudes is 

. (A.~.21) 

The Wigner (spin) amplitudes are usually expanded in terms of angular 

momentum states (Blatt and Biedenharn, 1952) as 

= ~ (sl82~1~2!si~i)(s3s4~3~41sf~f) 
si,sf 

(~l'~f) 

)C 
£ 

T[.J,£
1 
.. ,s

1
.,£f,sf] d f (9 ). (A.3.22) 

~i-~f,o s 
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The versatility of the helici ty amplitudes invented by J'acob and Wick 

(1959) has rendered these amplitudes somewhat archaic. 

(ii) Transversity asPlitudes. These amplitudes, introduced by 

Kotanski (1966a,b) are occasionally useful in the study of kinematic 

constraints at thresholds and pseudothresholds. They are related to 

the helicity amplitudes by 

This corresponds to taking the negative normal to the reaction plane as 

the axis of quantization for the transversities T. The utility of these 

amplitudes at thresholds results from the fact that the crossing matrix 

becomes diagona.l in the transversity basis. 

Being unconcerned in this thesis with rigorous analyticity 

properties of scattering amplitudes, I forego listing the properties 

of spinor amplitudes (Joos, 1962) and M-functions (Williams, 19G3). 

4. * Crossing Relations for Helicity Amplitudes. 

Trueman and Wick (1964)--hereafter TW--have given an elegant 

geometrical derivation of the crossing matrix for helicity amplitudes. 

Fox (1967) determined the overall phase in the TW relation and it is 

his result which I quote here. 

* See Trueman and Wick (1964), Muzinich (1964), Fox (1967), Cohen

Tannoudji, Morel, and Navelet,(l968). 



= 

The crossing angles 

.e112 ~13 cos X . 
.1 

~12~4 cos x2 

.J34 ~3 cos x3 

.J34 ~4 cos X 4 

where 6.=m 
2 2 +m . 3 2 

j are both fermions 

= 

= 

= 

-~ 
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(A.4.1) 

all satisfy 0 ~ x. ~ n; they are defined by 
1. 

. 2 2 2 . 2 
(s + ~ - rn2 )(t +IDJ. - ~ ) + 

2 
2m1 6., 

-(s 
2 ~2)(t 2 2 2 + m· +·m m4 ) + 2m2 6., 2 2 

-(s 
2 2 2 2 . 2 

+ m3 m4 )(t+m
3 ~ ) + 2m3 6., 

(s 
2 . 2 2 2 2 

+ m4 - m
3 

)(t + m4 - m ) + 2m4 6., 2 

(A.4.2) 

2 2 ·The phase is +1 unless i and - m4 .• E •• 
l.J 

in which case E •• = -1. 'l'he crossing phase A 
l.J a 

corresponds to the relative phase between the particle annihilation 

operator. aa and the antiparticle creation operator aat in the field 

theory approach of Weinberg (1964a,b) and of Carruthers and Krisch 

(1965). ·For· example they define the spinor 

(A.4.3) 

The crossing phase is included to make contact with the isospin crossing 

phase of Carruther~ and Krisch. lf ~' T)c' T)T are the phase facturs 

which appear in the transformations of the single particle states under 

the discrete operators parity, charge conjugation, and ti~e reversal, 

then 
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\> T}c T1.r' for bosons, 

A = A- = (A.4.4) a a 

+i \> Tlc T}T' for fermions. 

See also the general discussion of Feinberg and Weinberg (1959). 

A velocity space diagram as popularized by Wick (1962) is helpful 

for visualizing the meaning of the crossing angles .. Indeed one can 

actually. calculate the angles from such a picture by means of non-

* Euclidean geometry. · The rules are given by Wick (1962). In Fig. A-4 

is shown the velocity space diagram for the final (s-channel) configura-

tion. The lines leaving a vertex represent the directions of the 

corresponding particles as seen from the rest frame associated with that 

vertex. Thus x
1 

is the angle between the direction of particle 3 

and the direction of particle 2, measured in the rest frame 01 of 

particle 1. Likewise 9
0 

is the angle between particle 1 and 

particle 3, measured in the s-channel c.m. frame, 0 . s 

5. Perturbation Theory Conventions 

Spinor notation. The r-matrices are Hermitian, and 

diagonal. Explicitly, 

r = ( o -i~) 
icr 0 
~ 

' 

The Pauli matrices cr are as usual 
'"" 

* For an elementary discussion see Sommerfeld (1952). 

is 

(A.5.1) 

,, 

I 
!, 
! 

I ,, 

I 
I 

I 
' i 
I. 
' 

I 
I, 
~ 
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The spin tensor .is 

a = (l/2i)[T ,T] = (l/2i)(T Y ~ Y Y ). 
~v ~ v ~ v v ~ 

(A.5.3) 

Spinors are normalized according to uu = -vv = 2m, and satisfy the 

free-particle Dirac equations 

( m + i Y: p ) u.( p) = 0, . ( m - i y • p) v ( p ) = 0 • (A.s.4) 

For an antiparticle of momentum ;e and helici ty :>.. it is sometimes 

useful to replace 

(A.5.5) 

'J:'hP Di.rl.'l.~ conj\.lgate cpinor io u (p) - [u (p)]t 1·4• 
A. "' A. "' . 

Explicit representation in the helicity basis. The positive 

energy e:pinor with momentum .12. = l.~lz and helldLy A. l~:; 

(A.).6) 

where m is the particle maos, 2 0 1 
E - (p + m'-r', and 

( 10) X.l = 
.2 

, (A.5.7) 



The spinor corresponding to a particle with momentum ~,' such that 

"' "' p' .z = cos 9 is obtained by a rotation about they-axis. Thus 

o: cos ~ - (1 - o:) sin ~ 

. g 
0: Sl.Il - + 

1 ·2 (1 - o:) 
Q 

cos 2 
= (E + m)2 

[o: cos Q (1 - o:) . Q] 2;>...p'/(E + m) 2 - s1.n 2 

[ 
• Q o: s1.n i';' + 

c. 

Q 
(1 - o:) cos 2J 2;>...p'/(E + m) 

where o: 1 = 2 + ;>.... I do not incorporate the Jacob and Wick (1959) 

particle 2 phase into my spinor. This is instead explicit in (A.).l3) 

which defines helicity amplitudes. 



,. 
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FIGURE CAPTIONS 

Fig. A-1. Labeling of particles for a two body to two body collision. 

T,he momenta are labeled p., masses m., particle spins 
l. l. 

and intrinsic parities of the particles ~-· 
l. 

Fig. A-2. Coordinate system for two body scattering. The scattering 

angle is 9. The azimuthal angle ¢ is equal to zero for 

.scattering in the x~z plane. 

Fig. A-3~ Coordinate systems for the definition of single particle 

·states. The axes x-y-z are fixed in space. The particle 

momentum is p; the quantization axis is in each case along 

zo. 

Fig. A-4. Velocity space diagram for the s-channel configuration. The 

meaning of the angles is explained in the text. 
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(a} helicity 

(b) 
I 

sp1n 

· (c) tra nsversity 

XBL 707-3480 

Fig. A-3· 
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• 

XBL707-3479 

Fig. A-4. 



APPENDIX B. PROPERTIES OF ROTATION MATRICES 

1. Definition and Properties 

In an irreducible representation of the rotation group of 

dimension (2J + 1) corresponding to an angular momentum J the • 
rotation (~r) is represented by the matrix 

(B.l.l) 

As the operator Rt is the adjoint of R, its matrix elements are 

related to those of R . by 

= (JM'IRIJM)* = (B.l.2) 

The operator R is unitary: 

R ; -r, -f3, -a 

hence 

IPI J ,\ * ~ J' ~ MW Co:srv = cJJ M' Me-r, -f3' -a)· (B.l.3) 

Furthermore, the property RRt = RtR = 1 implies 

L (JJ~'N(r~* Jr~'M(r) = (B.l.4) 

M' 

(B.l.5) 

. ' 

* See Brink and Satchler (1968), Andrews and Gunson (1964), Collins 

and Squires (1968). 



• 

,. 

Because the basis states of the representation are chosen as 

eigenfunctions of J , and R has the form specified in the footnote z 

to Eq. (A.2.1), the matrices simplify to 

= 
~iaJ ~iSJ -iYJ 

(JMje ze ye zjJN) 

. -it3J 
= .exp[-i(aM + m)](JMje YIJN) (B.l.6) 

The phases of the rotation matrices depend upon the convention adopted 

for the Euler angles and upon the choice of phases of the matrix 

elements of ~· With the Condon and Shortley (1935) choice of phases, 

1 

(jm IJz jjm) = m; (jm ±liJ ± i.Jm) = [ (j ± m + 1) (j + m) ]2, the reduced . 

rotation matrices dj are real. They satisfy the symmetry properties 

= dj .(9) = 
-p, -), 

(B.l.7) 

The orthoe;orv'~J i t.y rP.la.tions are 

f d j(9) dj
1 

(9) sin 9 d9 bjj 1 

2 (B.1.8) = 2j + 1 ' A.ll All 

L d j(~) d~, (9) = 0 llll I J . 
(B.l.9) 

A.ll 
A. 

1 z= (2j + 1) d j(9) d j(9 1
) o(cos 9 -cos 9' ). (B.l.lO) 2 = A.ll A.ll 

j 
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2. Expansions in Terms of Other Functions 

It is fruitfUl to obtain expansions for the reduced matrices in 

terms of well-studied functions, for this allows the deduction of 

analytic properties. First note the expansion in terms of Jacobi 

polynomials 

= 

p ab (z), 
n 

(B.2.1) 

where m =Max(~,~), n =Min(~,~); and the expansion only holds for 

m ~ 0. For (j - m) a nonnegative integer, the function. P~~m(z) is a 

polynomial in z. As a consequence the expansion (B.2.1) is useful for 

establishing analytic properties of dj in z. 

To exhibit the analytic structure of dj in the j plane it is 

convenient to express the reduced matrices in terms of the h~~£geometric 

function, by 

+m .• j"+m+l, m -n +l; ::d.n
2 (8/2)). 

(B.2.2) 

The hypergeometric function is analytic in j, so all the j-plane 

singularities are explicit in the square root factor. The singularities 

occur at integral values of (j - m) for which either 

• 

'1. 



I 
! . 

·"' 

or 

-m ( j < n. (B.2.3b) 

Taking the asymptotic form of FG-,b,c; (1 - z)/2) for large 

z = cos e, one obtains the asymptotic expression 

dN-tj(e) 
(-l)n-1-l im-n 

2j + 1. 

again for m ~ 0. 

_ (-2j - l~~fz/2)-j-l 
( -j - 1 + m ~ -j - 1 - n) ~ 

' 
(B.2.4) 

Next consider the functions eN-tj(e), the relation of which to 

the d j(e) is analogous to the relation of the Q0 (z) [Legendre 
A,J.l k 

functions of the second kind] to the Pp,(z) [Legendre functions of the 

first kind]. These functions were introduced by Andrews and Gunson (1964), 

who also provided a valuable discussion of the properties of the . ej 

* for nonintegral j. The expansion of the reduced rotation functions of 

the second kind in terms of Jacobi Polynomials is 

-!<· 
Note that the functions of Andrews and Gunson (1964) are 
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1 

eA!lj(Q) = H)n-A [B : :l;B : ~lT [sin(9/2)] IA-~I[cos(Q/2)]""'-' 

(B.2.5) 

for m ~ 0. The e-f'unction have the symmetry properties 

(B.2.6) 

The Jacobi functions of the second kind are related to those of the 

first kind by 

dz' 
z - z' 

for n a nonnegative integer. 

A uoeful relation between the dj and the ej is 

rrd j(9) 

sin ~j - A.) = 

j ( ) e-j-1 (~"~) 
eAg g - -A. -~ ~ 

cos rr(j - A.) cos ~tj - A.) • (B.2.8) 

j Finally, the asymptotic behavior of e for large z is given by 

n-~· 1 t -l) [ ( ' ) I ( ' ) I ( • ) I ( • ) 1 ]

2 
= 2 2j + 1): J + A. • J - f... • J + ll • J - ~ • 

where the > 
+ occurs as Im z < 0. 

\,, 
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Let us also mention two special cases for which the h-functions 

are particularly simple: 

.fj mO j (~y) = Qj+~ [Y.m((3,a)J* 4rr J 
(B.2.10) 

and 

(-1)m w 1 

d j ( ) = mr]2 m m > 0. : mO f3 :m~ Pj(f3), (B.2.11) 

Here Y.m is a spherical harmonic and P.m is an associated Legendre 
J J 

function. In Table B-1 I have listed some explicit forms of the d-

functions for low spins. 

3· Computational Details 

The d-functions required in the calculations described in 

Chapter VI were evaluated numerically by forward recursion of the 

Legendre functions, using the formulae (Jacob and Wick, 1959) 

j-ti 

= p. (cos 9)' 
J 

d (~) = 
1 1 
?.J?. 

(j + 1)-l cos(9/2)(P~ 1 - P~), 
J+ J 

(j + 1)-1 sin(9/2)(P~ 1 + P~), 
J+ J 

(B.3.1) 

(D.:J.2) 

(B.3.3) 

where P'. 
J 

means dPj(cos 9)/d cos 9. The Legendre functions were 

computed from ~he recurrence relations 

(v + 1)-P _ 1 (z) 
v+ 

(2v + 1) zp (z) - vP 1(z), v v-
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d.P (z) 
( Z2 - 1) v p ( ) p ( ) dz = vz v z - v v-1 z ' (B.3.5) 

stated by Abramowitz and Stegun (1964). 

',! 
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Table B-1. Explicit forms of the reduced rotation matrices for low 

spins. 

do·o oU~) = 1 

1 1 
2 2 

(9) . d (9) = d = cos(9/2) 
11 1 1 
22 -2,-2 . 

1 l 
2 2 

d (9) - -d (9) = sin(9/2) 
l 1 1 1 

-2,2 2~-2 

1 
= 2(1 + cos 9) 

1 
= -dOl (9) 

1 
= -do, -1 ( 9) = sin 9/\{2 

1 d00 (9) = cos 9 

= ~(1 - cos 9) 
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APPENDIX C. REGGEIZATION OF S-CHANNEL HELICITY AMPLITUDES 

The model formulated in Chapter V is rather cumbersome, requiring 

several applications of the helicity crossing matrix to complete a 

calculation. For detailed fits this would present little obstacle to 

the computer but for the illustrative calculations we wish to examine 

in this thesis these complications merely obscure the physics. For 

these model calculations it suffices to Reggeize the s-channel helicity 

amplitudes, to leading order in s. 

a) The General Result, Following from Crossing 

The formulation of high-energy exchange models in terms of 

direct-channel amplitudes has been .studied by Fox (1967) and by Cohen-

Tannoudji, Salin, and Morel (1968). To leading order in s, Regge 

theory is as easily expressed in the s-channel as in the t-channel. A 

simple solution to the problem is possible because the helicity crossing 

matrix factorizes (to leading order in s), as noticed by Fox and Leader 

(1967). The leading order contribution of a boson Hegge pole at 

j = a(t) may be written as 

-e 
-irr ( "-1 -A.3-A.~A.4) /2 

, y~-A. 
3 l 

..G. + e -ha(t)) 
2 sin :'\a:(t) 

(C.l.l) 

where the Regge pole has signature T and sc~le factor s0 . The 

Trueman and Wick (1964) helicity crossing matrix is given in Appendix 

A.4, so we only restate the basic formula here 
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. (A,'4.1) 

Applied to (C.l.l), the ~elicity crossing matrix gives an 

expression for Hs which I rewrite in a more symmetrical form as 

0 -f1l a4 -1-14 
0 ( -1) 2 2 ( -1) p p T)2 T)4 TP' (c .1..2) 

where the Regge pole has parity P and the (s-channel): external 

p p 
particles ·2 and 4 have·intrinsic parities TJ

2
, 114 . The s-channel 

Regge residue functions are 

L iT( ( f..A. + "-h ) a +A. 

gi-la~ = e ( -1. ) A. A. y·~a "-b 
A. a' "-b 

a a: 
~ d a (-X. oo) d b ( 00) 

A.al-la a "-b~ ~~ ' (C.l.3) 

where 

(t + m 2 2 
-~) 00 a 

cos X 
~ ab a 

,. (C.l.4) 

(t 2 2) ' 
+~ - m 

00 a . 
cos ~ = ~ab 
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are Trueman-Wick crossing angles in the limit s ~ oo, [The "extra 

phases" in (C.l.2), not present in (A.4.l) are the result of a parity 

operation at the 2-4 vertex the purpose of which was to define the 

functions g and g in the same way. This is accomplished by 
~3~1 ~4~2 

undoing the asymmetry in the definitions of x
1 

compared with x
3
· and 

of x2 compared with x4 in (A.4.2).] The practical advantages of 

attention to the crossing phases become apparent only when comparing 

several reactions and indeed such care is superfluous for some of the 

more basic features I wish to study below. 

b) Effects of Discrete Symmetries on the Residue Functions 

Parity conservation at each vertex for the exchange of a particle 

of spin J and parity P implies a relation among the t-channel 

helicity partial-wave amplitudes, 

HA.2A.4:A.1A.3 = 
t,J 

F R h th t ·t (-l)J 1."s replaced by ~. or eggeon exc ange, e quan 1. y , 

(C.l.5) 

This may 

be translated into a condition on the t-channel residue functions, 

(C.l.6) 

thence into a condition on the s-channel residue functions, 

= (C.l.7) 

. If particle 2 equals particle 4, then 

(c.Ld) 
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but if a state of definite t-channel isospin (I) has been formed there 
2I4-I 

is in addition an isospin swapping phase (-1) The condition is 

equally simple irr the s-channel, namely 

(C.l.9) 

Similarly if particle 2 equals particle 4, then we· may form 

states of d.efini te G-pari ty in the t-channe1, for which 

= (C.l.lO) 

where G is the G-parity of the exchanged Reggeon and en is the 

charge conjugation eigenvalue for the neutral member of the Reggeon 

isomultiplet. Again the condition is equally simple in the s-channel, 

(C .1.11) 

Evidently it is possible to form combinations of s-channel 

amplitudes which have definite t-channel properties, e.g. s-channel 

combinations with definite t-channel parity. 

c) Consequences of Factorization 

Asymptotically the physical region boundary lies at t = 0. 

Thus the half-angle factors that ensure angular momentum conservation 
1 

[compare Eq. (A.3.15)] appear as powers of t2 in the residue functions. 

In particular amplitudes must ·vanish at t = 0 at least as rapidly as 

the half-angle !'actors prescribe. For example, the s-channel residues 

* must have !:;he minimal behavior 

* In this context, t is to be understood a..s t/s0 • 
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(c .1.12) 

as t --+0 However g g is related by parity [and with no 
l 1·''3111 J.l4J.l2 

powers of ( -t) 2] to g ·g through (C.l.?), so the residues 
J.l3J.ll -J,l4,-J.l 2 

must also satisf'y 

.!.jJ.ll+J.l2-JJ.3-J.l41 
( -t) 2 . . 

' (C.l.l3) 

as t --+ 0 , which contradicts· (C.l.l2) unless (J.l
1 

- J.l
3

) = 0, or 

(JJ.2 - J.l4 ) = 0, or both are equal to zero. The only way 

and 

and 

(C.l.l3) consistent with each other is to make both 
J.l3'-J.l4:J.ll'-J.l2 

H vanish at the faster rate by taking 
s 

(c .1.11.1.) 

In order to satisfY factorization and parity we must therefore have 

(C.Ll5) 

Apart from this behavior at is free of all kinematical 

singularities. 

The stringent constraints implied by (.C.l.l5) are responsible 

r!',·r· .snme q1.li t•C d.efini te predictions whi. ch are in fact in conflict with 

experiment. In charged pion photoproduction the s-channel nonflip 
A "-N I : A.h 

amplitude (written as Hs~ · ) 

0 L. -1 _1. 
H '2' ' 2 

s 

,., 

-· 

,J 
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may be finite at t = 0 and satisfy angular momentum conservation. 

If, however 
0 1 1 

H ,2:-l,-2 receives contributions from a single Regge 
s 

pole the factorization argument given above implies that 

Ho,t: -1, -t 
s 

oc 
t~o 

"" t. (c .1.16) 

This prediction is dramatically contradicted by the data (Boyarski et 

al., 1968a,b) on YN ~rriN' which display sharp forward peaks. The 

argument leading to (C.l.l6) first was stated by Drell and Sullivan (1967) • 

. Another classic example occurs in np ~pn, i.e. neutron-proton 

charge exchange for which the amplitude 

_l.. _l...l.. l.. 
H 21 2·2'2 

s 

~ constant, by angular momentum conservation, 

(C.l.l7) 

oc t, in a one-pole model. 

The latter prediction is again contradicted by data (Manning et al., 

1966) which display a sharp forward peak. Further references for 

photoproduction may be found in Jackson and Quigg (1969., 1970). An 

enligh~ening discussion of the behavior at t = 0 is given in Appendix 

B(e) of Jackson (1970). 

d) Conspiracy 

The result (C.l.l5) which followed from factorization and 

parity indicates that no matter how many different Regge poles 

· t d H rr> c-t)tc lj.ll-j.l3l+lj.l2-j.l41 J contribute to the scatter~ng ampli u e, ~ s 

( -t' ) ~I !J.1 -iJ.2 -j.l3 +iJ.41 
:ra.the:r· than as expected from rotational 

invariance. Such a prediction is not however inevitable anQ. in 

view of the experimental situation one may try to thwart the 

factorization argument by considering two poles which differ only in 
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their values of -rP and which collide in the j plane for t = 0. 

Before giving the result I note that such a conspiracy of poles is not 

the only way around the argument. All that is required is to add a 

contribution which does not factorize, for example the absorptive 

corrections discussed in Sec. V.l. Factorization holds for pole residues, 

so Regge cuts are exempt from its restrictions. An understandable and 

didactic treatment of conspiracy in~~.!:.!!l.s_ of po~~s. is given by Leader 

(1969), and a more detailed discussion than the one I give here appears 

in Cohen-Tannoudji, Salin, and Morel (1968). I reproduce the crude 

results of Fox (1967) which are sufficient for practical purposes. 

Thus the s-channel residue functions g corresponding to the 

original Regge pole and h corresponding to the conspirator Regge pole 

must satisf'y 

- h h 
.l./l-ll-j..l2-j..l3+j..l4/ 

(C .1.18) g g cc (-t)2 ' 
j..l3j..ll l-l41-l2 j..l3j..ll l-l41-l2 

and by parity 

+ h h 
.l./1-ll +j..l2-j..l3-j..l4/ 

(C.l.l9) g g cc (-t)2 • 
j..l3j..ll l-l41-l2 j..l3j..ll l-l41-l2 

A consistent solution is to take 

f cc 
1../1-la -pb /-.:!. 

(-t)2 <, for /11a -l.tb I f 0 
h ,g 

1 
(c .1.20) 

1-Laf-1·, . 1-lR~ 1 . p· for I fla -p.b I 0 cc \-t ' 

and 

gi-la~ = + ihl-la~ 0- + l9ftD for 1-La-~ > 0 (C.l.21) 

,; 

.--.. 
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1 

whereas the coefficients of (-t)2 for 1-la-1-lb = 0 ·are arbitrary. This 

is the prescription of Fox (1967). 

It is worthwhile to illustrate it with a simple example~ Consider 

the s-channel nonflip amplitude for photoproduction mentioned above • 

Before conspiracy we have 

but after conspiracy, 

cc ih0 _1 [1 + ~t)Jih_1_ _i[l + 6"(t)J 
' 2J 2 

cc 1 + 8tt) 

is finite at t = o. The amplitude related by parity to 

(C .1.21) 

( c .1.22) 

0 _1_. -1 __ !. 
H '2· ' 2 
~ ' ,_ 

which is a double-flip amplitude in the s-channel, continues to vanish 

as t, as required by rotational invariance. Thus 

t. (C.l.23) 
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e) Putting ih the Physical Region Boundary 

Nonasymptotically 

I adopt the same prescription as was used by Fox (1967) and 

by Cohen-Tannoudji, Salin, and Morel (1968), which is to multiply Eq. 

(C.l.2) by the factor 

= 

9 
sin 

2 
s 

(C .1.24) 

Two objections may be raised against this form. The first is that upon 

crossing to the t-channel we should find in addition to the Regge pole 

at a(t) a sequence of parallel trajectories, integrally spaced for 

all t. This reflects the fact that our recipe is not a proper one for 

moderate values of s. The second flaw, noticed by Fox, is the lack of 

proper analyticity in. s. 'l'hus if' the Regge pole makes a particle of 

spin j at t = ~ our recipe does not force the pole residue in Ht 

to have an s -dependence ·.a: dj ( 9t). One expects this shortcoming to be 

more important, the nearer the particle is to the physical reg)on~ 

For the pion Regge pole Fox (1967) reports 50% nonasymptotic corrections 

at 2 
s = 5(GeVjc) . This reinforces my claim, made at the beginning of 

this section that the Reggeized s-channel amplitudes are more useful 

for model calculations than for detailed fits. 

·-· 

oj 
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Finally let us state our phenomenological prescription in 

detail. 

{ 

· l 9}lll1-ll2~ll3+Jl4l { 9 }'lll-l-l2+J-t3-l-l41( -ina(th 
( 

s)2 . s . . · s _-r + e ..2 • - t nn 2 cos 2 ~2 _s......,i...;;n-no:-(r:t"""')--'-
. . 

. . o:(t) 
• gi-l ll (t) gil ll (t) (i-) , (C.l.2S) 

3 l . 4 2 . 0 

where gil u. ( t) = g ( t) (~t0) ll ~a -llt I , and g is regular in t. 
a· o llallb 



-180-

REFERENCES 

Abramowitz,.M., and I. Stegun, 1964, Handbook of Mathematical Functions 

(National Bureau of Standards, Washington, D.C.). 

Alvarez, L. W., et al._, 1962, Proceedings XI International Conference on 

High Energy Physics, CERN, p. 433· 

Amati, D., S. Fubini, and A. Stanghellini, 1962a, Phys. Letters ~' 29. 

Amati, D., s. Fubini, and A. Stanghellini, 1962b, Nuovo Cimento 26, 896. 
"'"' 

Andrews, M., and J. Gunson, 1964, J. Math. Phys. ~' 1391. 

Arnold, R. c.' 1965, Phys. Rev. Letters ~' 657· 

Arnold, R. c.' 1967, Phys. Rev. ~' 1523. 

Astbury, P., et al., 1966, Phys. Letters ~' 396. 

Auvil, P. R., F. Halzen, C. Michael, and J. Weyers, 1970, Phys. Letters 

31B, 303. 
~ 

Badier, J., et al., 1964, XII International Conference on High Energy 

Physics, Dubna. 

Badier, J., et al., 1966, Preprint CEA-R )037 (unpnhli~=:hPn), 

Barger, v., 1969, Proceedings Regge Pole Conference, University of 

California, Irvine. 

Barger, v., and D. B. Cline, 1969, Phenomenological Theories of High 

Energy Scattering (W. A. Benjamin, Inc., New York). 

Bertanza, L., et al., 1962~ ProcHAdin~R ,YT In~0rnRtional Conference on 

High ~nergy Physics, CERN, p •. 284. 

Birmingham-Glasgow-London (I.C.)-Oxford-Rutherford Laboratory Collabora-

tion, 1965, Oxford Conference. 

Birmingham-Glasgow-London (I. C.) -Oxford-Rutherford La bora tory Colla bora-

tion, 1966, Phys. Rev. 152, 1148. 
~ 

.. , 

~. 
\ 



• 

....... 

\,.1 

-181-

Birnbaum, D., et al., 1970, Phys. Letters ~~~' 484. 

Bjorkcn, J. D., and T. T. Wu, 1963, Phys. nev. 130, 25(,6. 
~~ 

t d L C B. d h 19 2 d h '">L ') 8 Blat , J. M., an • • 1.e en arn, 5 , Rev. Mo . P ys. :;:.~' (.~·.> • 

Boyarski, A. M., et al., 1968a, Phys. Rev. Letters ~£, 300 • 

Boyarski, A. M., et al., 1968b, Phys. Rev. Letters~' 17G7. 

Brink, D. M., and G. R. Satchler, 1968, Angular Momentum (Oxford Univer-

sity Press, Oxford), second edition. 

Carruthers, P.' and J. P. Krisch, 1965, Ann. Phys. (N.y. ) ~~' 1. 

Chew, G. F.' arid s. c. Frautschi, 1961, Phys. Rev. Letters z, 394. 

Chew, Q. F.' and s. c. Frautschi, 1962, Phys. Rev. Letters ~' 41. 

Chiu, c. B.' 1969, Rev. Mod. Phys. ~' 640. 

Chiu, c. B.' and J. Finkelstein, 1969, Nuovo Cimento :2.2~' 92. 

Cline, D.' J. Matos, and D. D. Reeder, 19(~9' Phys. Rev. Letters .23, 1318. 
-v-v 

Cohen-Tannoudji, G.' A. Morel, and H. Navelet, 1967, Nuovo Cimento ~!2_~, 

107)· 

Cohen-Tannoudji, G., A. Morel, and H. Navelet_, 1968, Ann. Phys. (N.Y.) 

46, 239· 
"""" 

Cohen -Tannoudj i, G. , Ph. Salin, and A. Morel, 1968 .• Nuovo C imen to 60A, 

412. 

Collins, P .. D. B., and E. J. Squires, 1968, Regge Poles in Particle 

Physics, Springer Tracts in Modern Physics No. 45 (Springer-Verlag, 

Berlin). 

Condon, E. U., and G. H. Shortley, 1935, Theory of Atomic Spectra 

(Cambridge University Press, Cambridge). 

Courant, R., and D. Hilbert, 1953, Methods of Mathematical Physics 

(Inte:rscience Publtshel·s, New York), vol. I. 



-H32-

Dauber, P.M., et al., 1969, Phys. Rev. 179, l2G2·. 
~~ 

Dean, N. w., 1968, Nucl. Phys. B7, 311. 
""" 

Dolen, R.' D. Horn, and c. Schmid, 1967, Phys. Rev. Letters ~' 402. 

Dolen, R.' D. Horn, and c. Schmid, 1968, Phys. Rev. ~~, 1678. 

Drell, s. D .• ' and J. D. Sullivan, 1967, Phys. Rev. Letters ~' 268. 

Durand, L., III, andY. T. Chiu, 1964, Phys. Rev. Letters ~g, 399; ~' 

I15(E). 

Edmonds, A.· R., 1957, Angular Momentum in Q.uantum Mechanics (Princeton 

University Press, Princeton). 

Eden, R. J., 1952, Proc. Roy. Soc. A, 210, 388. 
~ 

Eden, R. J., P. V. Land.shoff, D. I. Olive, and J. C. Polkinghorne, 1966, 

The Analytic S-Matrix (Cambridge University Press, Cambridge). 

Erdelyi, A. (ed.), 1953, The Bateman Manuscript Project, Higher 

Transcendental Functions, 3 volumes; Tables of Integral Transforms, 

2 volumes (McGraw-Hill, New York). 

Feinberg, G., and S. Weinberg, 1959, Nuovo Cimento i~' 571. 

Firestone, A., et al., l970,K+n Charge Exchange at 12 GeV/c, Lawrence 

Radiation Laboratory Report UCRL-19880. 

Fox, G. C., 1967, University of Cambridge Thesis, unpublished. 

Fox, G. C., 1970, in High Energy Collisions, ed. c. N. Yang, et al. 

( Gor<ion and Breach, Science Publishers .• Inc .. • New york), p. )67. 

Fox,. G. c., and E. Leader, 1967, Phys. Rev. Letters 18, 628. 
"'"" 

I._J 

Fox, G. C., and C. Quigg, 1970, in preparation. 
1'·, 

Froissart, M., 1961, Report to the LaJolla Conference (unpublished). 

Gilman, F. J., 1969, Phys. Letters 29B, 673. 
~ 

Gottfried, K., and J. C. Jackson, 1964, Nuovo Cimento 34, 735· 
.-.... -v 



' ('· 

-183-

Gribov, V. N., 1961, Zh. Eksp. Tear. Fiz. 41, 1962 [Eng. trans., Sov. 
"""" 

Phys.-JETP ~' 1395 (1962)]. 

Gribov, V. N·., 1967, Zh. Eksp. Tear. Fiz. 53, 654 [Eng. trans., Sov. 
rvrv 

Phys.-JETP 26, 414 (l968)]. 
~ 

Gribov, V. N., and A. A. Migdal, 1968, Yad. Fiz. ~' 1002, 1213 [Eng. 

trans., Sov. Phys.-sJNP ~' 583, 703 (1969)]. 

Harari, H., 1969, Phys. Rev. Letters 22, 562. 
""""' 

Harrington, D. R., 1969, Phys. Rev. ~~' 1745. 

Henyey, F., G. L. Kane, J. Pumplin, and M. Ross, 1969, Phys. Rev. ~~' 

1579· 

Jackson, J. D., 1965, Rev. Mod. Phys. ~' 484. 

Jackson, J. D., 1970, Rev. Mod. Phys. ~g, 12. 

Jackson, J. D., J. T. Donohue, K. Gottf.ried, R. Keyser, and B. E. Y. 

Svensson, 1965, Phys. Rev. ~' B428. 

Jackson, J. D., and C. Quigg, 1969, Phys. Letters 29B, 236. 
~ 

Jackson; J. D., and C. Quigg, 1970, Remarks on Pion Photoproduction, 

Lawrence Radiation Laboratory Report UCRL-19410, and Nucl. Phys. 

~' (to be publi8hed). 

Jacob, M., and G. c. Wick, 1959, Ann. Phys. (N.Y.) z, 404. 

Joachain, c. J., and C. Quigg, 1970, High-Energy Hadron-Deuteron Scattering, 

Lawrence Radiation Laboratory Report UCRL-19851 (unpublished). 

Joos, H.' 1962, Fortschritte der Physik ~' 65. 

Kaidalov, A. B.' and B. M. Karnakov, 1969a, Phys. Letters g~, 372. 

Kaidalov, A. R.' and B. M. Karnakov, 1969b' Phys. Letters ~' 376. 

Kibble, T. w. B.' 1959, Phys. Rev. ill' 1159· 

Kikkawa, K., B. Sa.kita, and M. Virasoro, 1969, Phys. Rev. 184, l701. 
""""""' 



-184-

Kirz, J., 1970, in High Energy Collisions, ed. C. N. Yang, et al. 

(Gordon and Breach, Science Publishers, Inc., New York), p. '59· 

Kotanski, A., l966a, Acta Phys. Polon. 29, 699. 
-v-v 

Kotanski, A.' l966b, Acta Phys. Polon. 30, 
'""" 

629. 

Krzywicki, A.' 1970, Orsay preprint LPTHE 70/18. 

Krzywicki, A.' and J. Tran Thanh Van, 1969, Phys. Letters :<_2]2, _185. 

Lai, K. W.; and J. Louie, 1970, Nucl Phys. Bl9, 205. 
"''""""' 

Landshoff, P. V., 1969, "Regge Cuts: A Review of the Theory," DAMTP 

69/30. 

Leader, E., 1969, "Daughters, Conspiracies, Toller Poles: Some Problems 

in the Reggeization of Relativistic Processes," Lectures given at 

the Boulder Summer Institute for Theoretical Physics, and Caltech 

preprint. 

London, G. W., et al., 1966, Phys. Rev. ~~' 1034. 

Lovelace, C., 1969, Nucl. Phys. Bl2, 253· 
"'""" 

Lyons, L., 1966, Nuovo Cimento 43A, 888. 
D n •. 

Mandelstam, s., 1958, Phys. Rev. 112, 1344. 
""""""' 

Mandelstam, S., 1962, Ann. Phys. (N.Y.) ~' 2511. 

Mandelstam, s., 1963, Nuovo Cimento ~£, 1127, 1148. 

Manning, G., et al., 1966, Nuovo Cimento ~~' 167. 

Mathews, R. D., 1969, Nucl. Phys. ~~' 339. 

Matsuda, s., 1969, Nucl. Phys. ~2' 113. 

Messiah, A., 196G, Quantum Mechanics (John Wiley and Sons, Inc., New 

York, fifth printing, 1966), Chap. XIII. 

Meyers, c.; and Ph. Salin, 1970, Nucl. Phys. ~~' 237· 

Michael·, C., 1969a, Phys. Letters 2913, 2)0. 
~ 

v 



• 

.. 

. {' 

-185-

Michael, C., 1969b, Nucl. Phys. ~' 644. 

Muzinich, I., 1964, J, Math. Phys. ~' 1481. 

O'Donovan, ·p, J., 1970,Arizona State Preprint ASU-HEP-13 • 

Polkinghorne, J. C., 1963, J. Math. Ph¥s· ~' 1396 . 

Polkinghorne, J. c., 1970, Nucl. Phys. Bl6, 321. 
~ 

Quigg, C., 1970, DecayDistrib,utions in * -* K2P --? (K ,K )p as Tests of 

Exchange Degeneracy, Lawrence Radiation Laboratory Informal Note 

UCID-3418 (unpublished). 

Regge, T., 1959, Nuovo Cimento ~' 951. 

Regge, T., 1960, Nuovo Cimento 18, 947. 
"-/V 

Risk, C., 1970, The Derivation of the Absorptive Model from Feynman 

Diagrams, Lawrence Radiation Laboratory Report UCRL-19453 

(unpublished). 

Rivers, R. J., 1968, Nuovo Cimento 57A, 174. 
~ 

Rose, M. E., 1957, Elementary Theory of Angular Momentum (John Hiley and 

Sons, Inc., New York). 

Rosner, J, L., 1969, Phys. Rev. Letters gg, G89. 

Rooncr, J, L., 1970, Caltech Preprint 68-2)4. 

Ross, M. H., and G. L. Shaw, 1964, Phys. Rev. Letters 12, 627. 
rvv 

Ross, M., F. S. Henyey, and G. L. Kane, 1970, Michigan preprint HE-70-5. 

Rothe, H. J., 1967, Phys. Rev. 159, 1471. 
""'-"" 

Schmid, C., 1969, Lettere al Nuovo Cimento ~' 165. 

Sommerfeld, A., 1949, Partial Differenti~l Equations in Physics 

(Acade~ic Press, New York). 

Sommerfeld, A., 1952, Lectures in Theoretical Physics, vol. III, 

"Electrodynamic:;" (Academic Press, New York), pp. 229-235· 



-186-

Sondereggcr, P., 1970, in High Energy Collision:.;, ed. C. N. Yang, et al 

(Gordon and Breach, Science Publishers, Inc. New York) p. 259. 

Sopko:vich, N. J., 1962, Nuovo Cimento 26, 186. 
""'-' 

Sudakov, V. V., 1956, Zh. Eksp. Tear. Fiz. ~' 87 (English trans., 

Sov. Phys.-JETP ~' 65). 

Taylor, J. R., 1965, J. Math. Phys. 7, 181. 

Ticho, H., 1962, Proceedings XI International Conference on High Energy 

Physics, CERN, p. 436. 

Titchmarsh, E. C., .1939, Theory of Functions (Oxford University Press, 

Oxford; seconded.). 

Trueman, T. L., and G. C. Wick, 1964, Ann. Phys. (N.Y.) 26, 322. 
"""' 

Veneziano, G., 1968, Nuovo Cimento '?._7f:., 190. 

Watson, G. N.' 1918, Proc. Roy. Soc. ~' 83. 

Weinberg, s.' 1964a, Phys. Rev. ill' Bl318. 

Weinberg, s.' 1964b, Phys. Rev. 134, .B882. 
""'"'"' 

Wl~.::k.., G. c.' 1962, Ann. Phys. (1~. Y. ) ~' 6). 

Wigner, E. p.' 1939, Ann. Math. ~2, 194. 

Wigner, E. P., 1957, Rev. Mod. Phys. ~' 255. 

Wigner, E. P., 1959, Group Theory and Its Application to the Quantum 

Mechanics of Atomic Spectra (Academic Press, New York). 

Wilkin, C.,· 1964, Nuovo Cimento 31, 377· 
. . "'-'"""' 

Williams, D., 1963, Construction of Invariant Scalar Amplitudes Without 

Kinematical Singularities for Arbitrary-Spin Nonzero-Mass Two-Body 

Scattering Processes, Lawrence Radiation Laboratory Report UCRL-

11113 (unpublished). 

Winbow, G. A., 1969, Phys. Rev. ~7, 2533· 

• 

,, .. 



• 

'-

LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 



. ,. 
TECHNICAl, INl·'ORMATION DIVISIO~

LAWRENCE RADIATION LABORATOK.'{ 
UNIVERSITY OF CAI.IFORN.TA 

BERKELEY, C..ltLIFORNfA 94'120 




