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MASTER

he aCtiVa»lOﬂ method for the determination of neutron flux spectra,

Theo

cartcin integral responses which are obtained from a set of detectors are
measuved. If ¢1(E) is the cross section of the i-th detector at energy E
and 3(:) is the neutron flux, then the activities aj are given by the
integrais

a = f ai(E)g(E)dE » 1= 1. 2’ see TN, (1)

]

The ecuatioas (1) represent a system of linear transforms which may be used
to cbtain ¢nfoxmation about the unknown spectrum P(E), Considered as a

system of linear equations (1) is highly underdetermined since there are
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only n equations for infinitely many values of P(E), and thus there are
infinitely many solutiors of (1), It is even impossible to obtain valid
bounds for the differential flux values @(E).

Instead, we may consider the information given by 2 linear combination Ic
of the ai's; i.e.,
n
Io = Z cjaq . °(2)
i=1

with suitable coefficients ci. The combinations (2) also represent inte-
gral responses

(=]

Io = [ Wo(E)P(E)AE &)
Q
with
o
We(E) = § cy03(B) . (4)
1=1

By choosing the coeificients cj carefully, we may be able to obtain good
epproximations to those integral responses which reveal significant features
of the neutron specirum; for instance, the total flux energy in a certain

range

I{E;,E3) = [ G(E)GE (5)
E;

cr the total damage computed according to a known damage response function
D(E) .
(-]
Ip = j D(E)J(E)dE . (6)
o
In general, let T(E) be the desired test response and the corresponding
integral Ip

Ip = ZT(E)ﬁ(E)dE )

may be called a test integral. We are able to obtain bounds for these test
integrals from activity measurements if we choose a set of coefficlents ¢y
ia (4) so that W,(E) is either consistently larger or comsistently smaller
that the test function T(E). This leads to a linear programming problem
waich has already been described in 1965 by S. K. Mehta [1]. A more exten-~
sive mathematical discussion can be found in the book by B. W. Rust and

W. R. Durzus [2]. :
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This  problem is theoretically infinitely dimensional, but since the cross
section data are given only for a finite number of energy points, a finite
dimensiznal version is sufficient. Furthermore, since the cross sections
and activity measurements are of limited accuracy, upper and lower bounds
Gi(E), 0i(E) and i, ai, respectively, are used for the computations.
Specifically, let T, be the value of the test response T(E) in the 1nterval
(Ey~1,Ev), cl the values of those coefficients which are positive and cj

the ones which are negative; otherwise, these-values are set to zerd. Using
these definitions, the conditions for the coefficient set ¢4 of the upper
bound We(E) > T(E) is formalized in the set of inequalities

E,
/ 2 [clol(E) + o153 (E) IB(CE)dE / f $EEE > T, v=1, ... ke ®)
Ev~1 i=1 Ev- ;

The values %(E) are a priori guesses of the true spectrum B(E) and are used
here to counteract effects of the finite subdivision of the energy range.
Any set of coefficients cj which satisfies (8) leads to an upper bound IT
obtained from the coefficients according to the formula (2). With only
upper and lower bounds for the activities ai, we have

Iir = § (CIEE + ciai) . {9)
i=1 -

The linear programming procedure determines the set of coefficients cI, c-
which minimizes LT in (9) giving the smallest upper bound for the test
integral. An analogous procedure leads to the largest lower bound for the
test integral.,

Results

Meaningful results could be obtained so far only in the high energy range
(above 1 MeV). The main reason for this is that all detectors have sizable
integral responses ¢4 (E)dE in the high energy range masking contributions
from low energy neutrons. Detectors which have responses in the low energy
range (primarily fission type activities) provide very little resclution in
this part of the spectrum, which, in addition, makes it impossible to
decide what particular part of the spectrum generated the observed response.
Fortunately, the high energy part of the spectrum is also the most inter=-
esting one since it accounts for mosi of the structural damage. We have
investigated in detail the following test integrals:

1. The total number of displacements [3]

JD(EYI(E)AE

where the test response is the damage cross seciions given by
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D(E) = [og(E)K(E,T)v(T)dT .

2, The integral spectrum

I"(E) = | #(E)AE , 0.1 < E < 10 MaV.
E

3. Ideal detectors

Eg
I(E;,E;) = [ @(E)dE ,  for E; = 10, E; = 20 MeV
Ey and E} = 3, Ez = 10 MeV,

The approximations are based on a set of 13 reactions by R. Dierckx [4];
and 14 reactions by W. N. McElroy [5]. No significant differences in the
goodness of approximation between these two sets were found., 1In each
case not more than 10 and frequently fewer cross sections were actually
usad to obtain the bounds. This point will be investigated further in
order to make recommendations for optimal detector sets.

In all cases the investigated spectrum must have at least 90%Z of its total
energy in the 1-20 MeV range. If this condition was satisfied, the upper
bound was computed and came within 10-30%Z of the true value of the test
integral. If 30% seems to be tco large a deviation, then it should be
remembered that this is an absolutely safe bound taking into account a
+5% error in the cross section measurements and also possible 3-10% errors
in the activities. Furthermore, no a priori assumptions need to be made
about the flux spectrum,¥

Lower bounds were also computed and gave approximations of similar
accuracy. These bounds may be used as an indication of how close the
upper bound is likely to be to the real value of the test integral. If
upper and lower bounds differ by more than a factor of 2, then these bounds
are probably useless, Of course, the upper bound could also be compared
with an estimation of the test integral obtained by one of the conven-
tional unfolding methods.

One may safely assume that damage cross sections other than Liuhard's model
would lead to essentially the same results (see, for instance, Reference
[6]). As for the ideal detectors, the energy ranges given above were the
only ones for which meaningful approximations could be obtained. This
seems to indicate that the foil detector method has practically no
resolution below 3 MeV. A look at the graph of the window functions W.(E)
is instructive (see Figures 1 and 2), Wc(E) gives a fairly decent approxi=

mation of the test response down to about 0.1 MeV where it reaches a minimum.
This point of the spectrum has the poorest coverage by any set of detectors.

Below this point, W.(E) assumas a typical £imsion respones with possibly a
few resonance peaks. The low energy portion ~ the window function may be
quite large in value but has little influe.... ... the bound unless the inte=-
gral flux @(E)JE is very large at low energies. If this is the case, the
integral bouands become useless.

%This accuracy 1s also consistent with the uncertainties of neutron
induced material changes (see W. N. McElroy and R. E. Dahl [5]).
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