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Theory

In the activation method for the determination of neutron flux spectra,
c&rtcin integral responses which are obtained from a set of detectors are
:.:easu.:.-d. If G±CE) is the cross section of the i-th detector at energy E
and 0(S) is the neutron flux, then the activities a^ are given by the

«i ° / <Ji(E)0(E)dE , i - 1, 2, ... n. (1)
o

The equations (1) represent a system of linear transforms which may be used
to obtain information about the unknown spectrum 0(E). Considered as a
system of linear equations (1) is highly underdetermined since there are
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only n equations for infinitely many values of 0(E), and thus there are
infinitely many solutions of (1). It is even impossible to obtain valid
bounds for Che differential flux values 0(E).

Instead, we may consider the information given by a linaar combination I c
of the cci's; i.e.,

Ic - I cioi • ' (2)

with suitable coefficients CJ.. The combinations (2) also represent inte-
gral responses

Ic - Jwc(E)0(E)dE (3)
o

with

WC(E) - I CiOtCE) . (4)
i-1

By choosing the coefficients C£ carefully, we may be able to obtain good
approximations to those integral responses which reveal significant features
of the neutron spectrum; for instance, the total flux energy in a certain
range

KEx.Ej,) - / 0(E)dE (5)
. Ei

cr the total damage computed according to a known damage response function
D(S)

I D - / D(E)0(E)dE . (6)
o

In general, let T(E) be the desired test response and the corresponding
integral I T

IT - / T(E)0(E)dE (7)
o

may be called a test integral. We are able to obtain bounds for these test
integrals from activity measurements if we choose a set of coefficients c^
in (4) so that WC(E) is either consistently larger or consistently smaller
that the test function T(3). This leads to a linear programming problem
which has already been described in 1965 by S. K, Mehta [1], A more exten-
sive mathematical discussion can be found in the book by B. W. Rust and
W. S.. 3urrus [2],
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This'problem is theoretically infinitely dimensional, but since the cross
section data are given only for a finite number of energy points, a finite
dimensional version is sufficient. Furthermore, since the cross sections
and activity measurements are of limited accuracy, upper and lower bounds
CFi(E), Gi(E) and a±t a±, respectively, ara used for the computations.
Specifically, let Tv be" the value of the test response T(E) in the interval
(E V_ 1 >S V), c± the values of those coefficients which are positive and c±
the ones which are negative; otherwise, these values are set to zero. Using
these definitions, the conditions for the coefficient set ci of the upper
bound WC(S) _>T(E) is formalized in the set of inequalities

I I [ci°i<E) + cioi(E)]0(E)dE / / 0(E)dE >, TV, v - 1, ... k. (8)
Vi i=1 "~ Vi ;

The values 0(E> are a priori guesses of the true spectrum 0(E) and are used
here to counteract effects of the finite subdivision of the energy range.
Any set of coefficients c± which satisfies (8) leads to an upper bound Ix
obtained from the coefficients according to the formula (2). With only
upper and lower bounds for the activities a^, we have

5 +

IT - I (cjq + ciai) . (9)

The linear programming procedure determines the set of coefficients c^, c^
which minimizes Lj in (9) giving the smallest upper bound for the test
integral. An analogous procedure leads to the largest lower bound for the
test integral.

Results

Meaningful results could be obtained so far only in the high energy range
(above 1 MeV). The main reason for this is that all detectors have sizable
integral responses <7i(E)dE in the high energy range masking contributions
from low energy neutrons. Detectors which have responses in the low energy
range (primarily fission type activities) provide very little resolution in
this part of the spectrum, which, in addition, makes it impossible to
decide what particular part of the spectrum generated the observed response.
Fortunately, the high energy part of the spectrum is also the most inter-
esting one since it accounts for most of the structural damage. We have
investigated in detail the following test integrals:

1. The total number of displacements [3]

I - /D(E)0(E)dE

where the test response is the damage cross sections given by
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D(E) - /as(E)K(E,T)v(T)dT .

2. The Integral spectrum

l"(E) - J 0<E)dE , 0.1 <. E < 10 M«V.
E ~

3. Ideal detectors

E2
KEj.Ea) - / 0(E)dE , for EX - 10, E 2 - 20 MeV

Ei and E : - 3, E2 - 10 MeV.

The approximations are based on a set of 13 reactions by R. Dierckx [4];
and 14 reactions by W. N. McElroy [5]. No significant differences in the
goodness of approximation between these two sets were found. In each
case not more than 10 and frequently fewer cross sections were actually
used to obtain the bounds. This point will be investigated further in
order to make recommendations for optimal detector sets.

In all cases the investigated spectrum must have at least 90% of its total
energy in the 1-20 MeV range. If this condition was satisfied, the upper
bound was computed and came within 10-30% of the true value of the test
integral. If 30% seems to be too large a deviation, then it should be
remembered that this is an absolutely safe bound taking into account a
±5% error in the cross section measurements and also- possible 3-10% errors
in the activities. Furthermore, no a priori assumptions need to be made
about the flux spectrum.*

Lower bounds were also computed and gave approximations of similar
accuracy. These bounds may be used as an indication of how close the
upper bound is likely to be to the real value of the test integral. If
upper and lower bounds differ by more than a factor of 2, then these bounds
are probably useless. Of course, the upper bound could also be compared
with an estimation of the test integral obtained by one of the conven-
tional unfolding methods.

One may safely assume that damage cross sections other than Liahard's model
would lead to essentially the same results (see, for instance, Reference
[6]). As for the ideal detectors, the energy ranges given above were the
only ones for which meaningful approximations could be obtained. This
seems to indicate that the foil detector method has practically no
resolution below 3 MeV. A look at the graph of the window functions WC(E)
is instructive (see Figures 1 and 2). WC(E) gives a fairly decent approxi-
mation of the test response down to about 0.1 MeV where it reaches a minimum.
This point of the spectrum has the poorest coverage by any set of detectors.
Below this point, WC(E) assumas a typical fi»&iort M»pow»« With pe«»ibly *
few resonance peaks. The low energy portior. the window function may be
quite large in value but has little influx. _ ... the bound unless the inte-
gral flux 0(2)dE is very large at low energies. If this is the case, the
integral bounds become useless.

*This accuracy is also consistent with, the uncertainties of neutron
induced material changes (see H. N. McElroy and R. E. Dahl [5]).
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