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PREPARATION OF HIGH-DENSITY, SPHERICAL THORIUM OXIDE 
PARTICLES WITH UP TO 10 ATOM PERCENT URANIUM 

by 

C. E. Crouthamel , W. G. Knapp, S. B. Skladzien 
and J. W. Loeding 

In recen t y e a r s , fair ly extensive investigations of s l u r r i e s for a 
var ie ty of applications have been made. The possible use of aqueous s u s 
pensions of thor ium oxide in a homogeneous reac to r blanket!-I-) has 
rece ived considerable attention. The m a t e r i a l descr ibed here was designed 
for use as a fuel in a boiling water s l u r r y reac tor . (^) Some of the impor 
tant c h a r a c t e r i s t i c s of the individual pa r t i c l e s for this application were the 
shape of the pa r t i c l e s , the s ize, the density, and the homogeneity of d i s t r i 
bution of f issi le a toms in the thor ia ma t r ix . 

A re la t ive ly s imple method has been evolved in which up to about 
10 a tom percen t u ran ium may be homogeneously dis tr ibuted throughout a 
spher ica l pa r t i c l e of thor ium dioxide. The par t ic le size can be var ied from 
about one mic ron to fifty mic rons in d iameter , and the final par t ic le density 
is very close to the theore t ica l max imum of 10 gm/cm^. The fabrication 
p r o c e s s appears to be adaptable to l a r g e - s c a l e production. About 100 lb of 
f i red spher ica l m a t e r i a l have been produced by this method. 

Probably the mos t thoroughly t es ted and used method of fabricating 
thor ia p a r t i c l e s for s l u r r i e s is via a control led thor ium oxalate p rec ip i ta 
tion,'' ' This method can be made to produce cubic plate le ts or pyramidal 
pa r t i c l e s with an average size of one micron, and with only a very smal l 
fraction l a rge r than five micronSo P a r t i c l e s , with sharp-cornered shape, 
l a rge r than approximate ly five mic rons usually erode a lmost any ma te r i a l 
se r ious ly in c i rculat ing the s lu r ry . Erosion,, of course , is also a complex 
function of other va r i ab le s , such as s l u r r y concentrat ion, circulat ion r a t e s , 
and t e m p e r a t u r e . Spherical pa r t i c l e s , in circulat ing through a system, a r e 
expected to cause much less erosion. At re la t ively low circulat ing veloci t ies , 
this would pe rmi t average par t ic le s izes considerably l a rger than five mic rons 
to be used. P a r t i c l e size is expected to be an important var iable in achieving 
clean s team separa t ion frona the s lu r ry , in eliminating caking problems , in 
reducing flocculation, and in reducing non-Newtonian flow cha rac t e r i s t i c s . 

Labora to ry Fabr ica t ion of Spherical P a r t i c l e s of Th02 and Th02-U30g 

The objective of the labora tory exper iments was to p r epa re individual 
spher ica l pa r t i c l e s of ThOa (5-50 mic rons in d iameter) with ten weight p e r 
cent u ran ium homogeneously d is t r ibuted throughout the thor ia ma t r ix as a 
solid solution. This was accompl ished as follows: 



The thor ium, as its n i t ra te , was dissolved in water , and reac ted with 
ammonium hydroxide to give a n i t ra te -s tab i l i zed sol which was adjusted 
near ly to the gel point. Uranium as crystal l ine uranyl ni trate was added to 
and dissolved in the thor ium sol immediately pr ior to spraying. The r e 
sultant solution contains colloidal thor ium uniformly mixed with dissolved 
uranyl n i t ra te . This solution was then sprayed with a suitable spray nozzle 
so that droplets of the liquid can a s sume nea r - sphe r i ca l shape in free fall. 
An ammonia -a i r mixture was used to cause the sol to gel. The uranium 
present in each droplet was simultaneously fixed as an insoluble compound 
uniformly dis tr ibuted throughout the gel par t ic le . The spher ical par t ic les 
so obtained were collected, washed, classified, dried, and fired. Figure 1 
i l lus t ra tes the method in operat ional s teps . A detailed discussion of these 
steps is given below. 

Purified Th(N03)4 Saturated 
Aqueous Solution 

' 
Preparation of a Stabilized Sol 

by Addition of NH3 

' 
Dissolving II02(N03)2 Crystals 

in Ttionum Nitrate Sol 

? 

Spraying Sol into Dilute 
NH3 Vapor 

' ' 
Elution of (\1H4NO3 from Spherical 

Gel Particles with NH4OH 

1 f 

Particle Classification by 
Elutriation 

' 
Drying at 300 C 

1 t 

High-temperature Firing 
to 1500 C 

Figure 1 

FABRICATION PROCESS FOR INDIVIDUAL 
SPHERICAL THORIA-URANIA PARTICLES 

FOR A SLURRY REACTOR 

Thorium ni t ra te was dissolved in water to give approxinaately a 
2.75 molar solution, of which a portion was retained for later use. The 
prepara t ion of the n i t ra te - s tab i l i zed sol was accomplished by adding am
monium hydroxide with vigorous s t i r r ing in a large Waring Blender. Loss 
of water by evaporation due to the heat generated was prevented by using a 
closed container. Aminonium hydroxide was added until the solution sud
denly gelled, at which t ime the addition was immediately discontinued. 
While the gel was sti l l warm, fresh thorium nitrate solution was added and 
manually worked into the gelled m a s s , causing it to reliquefy. It has been 
the experience in this study that an addition of only 0.2% (of the volume of 
gel) of the 2.75 molar thorium ni t ra te solution will usually completely 
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liquefy the gelled m a s s . An additional 0.5% (of the volunae of sol) of thor ium 
ni t ra te solution was added to adjust the sol to a naore stable condition. Since 
the sol will tend to prec ip i ta te at concentrat ions g rea te r than about 2,7 molar , 
it was n e c e s s a r y to analyze the thor ium concentration of the sol and to adjust 
the concentrat ion with water before s tor ing. The sol so p repa red can then be 
s to red for prolonged lengths of t ime in s toppered glass conta iners . 

Immediate ly p r io r to spraying, a weighed amount of uranyl n i t ra te 
was dissolved with vigorous s t i r r ing in the p repa red sol. If the mixed solu
tion was allowed to stand seve ra l hours , a yellow precipi ta te began to form. 

The so l -u ran ium solution mix ture was fed through an atomizing 
nozzle into a la rge chamber with a dilute ammonia -a i r a tmosphere . The 
c o r r e c t a m m o n i a - a i r concentra t ion ra t io was maintained by bleeding anhydrous 
ammonia gas into the p r o c e s s chanaber. The sol droplets falling through the 
a m m o n i a - a i r a tmosphere quickly a s s u m e a near ly spher ica l shape, and a l 
most immedia te ly gel to soft, spher ica l pa r t i c l e s . These were allowed to 
collect in the bottom of the chamber and were drawn off periodical ly through 
a valve. The d iameter of the chamber used was one foot, with 5 feet s t ra ight 
height cons t ruc ted of Lucite and a conical s ta in less s teel bottom. The coni
cal bottom was provided with an angled entry which was connected through a 
glass wool filter to the a r e a venti lat ion ductwork. 

Occasional fouling of the a tomizer by accumulated fines collected 
about the nozzle could be readi ly detected and cor rec ted . Two types of a tom
i z e r s have been used - two-fluid and single-fluid. The solution orifice diam
eter of the a tomizer used can be va r i ed to give different ranges of par t ic le 
s ize . P r e s s u r e feeding of the solution was used with both a tomizer types. A 
40-mi l ID orifice was the l a rges t used with the two-fluid style, and a 25-mil 
ID orifice was used with the single-fluid style. Variat ion of a i r p r e s s u r e in 
the two-fluid a tomizer a lso va r i ed par t i c le s izes obtained. 

The soft, spher ica l pa r t i c l e s were washed with severa l volumes of 
7 molar ammonium hydroxide to renaove ammonium ni t ra te . Concurrently 
with the washing, the ammonium hydroxide can also be used to classify the 
pa r t i c l e s by e lut r ia t ion as an optional operat ion. Gravity flow through a 
s in te red s ta in less s tee l fi l ter device was used in most ca ses . After the 
final wash, the m a t e r i a l was allowed to drain until it appeared to have formed 
a re la t ively dry cake. One or two washings with ethyl alcohol se rved to 
hasten drying. 

The m a t e r i a l was t r a n s f e r r e d to shallow containers and dr ied by hea t 
ing slowly to about 250C. The dry s l u r r y was finally t r a n s f e r r e d to a furnace 
and f ired by ra i s ing the t e m p e r a t u r e slowly to 1500C. All firing was done in 
an a i r a tmosphe re . An optional operat ion was to pref i re to a minimum of 
900C for stable s torage of the pa r t i c l e s , and t ransfe r was made la ter to a 
Mgh- t empera tu re furnace for firing at 1400-1500C. Fir ing tinae should be at 
l eas t one hour at the max imum t e m p e r a t u r e . 



Discussion 

It has been recognized for many ye a r s that thor ium hydroxide can be 
readi ly suspended in aqueous solution as a positively charged colloid. Thor
ium hydroxide boiled with thor ium nitrate,l '* '^/ uranyl n i t ra te , and many 
other sa l ts or acidsC^) will s tabil ize a colloid of thoriuna hydroxide to r e l 
atively high concentra t ions . Both the prepara t ion and the stability of thor ium 
and mixed tho r ium-uran ium sols have been studied recent ly at Ionics, Inc . , ! ' / 
with the object of using the sol itself in an aqueous homogeneous reac to r . 

Several p rope r t i e s of the sol were important in achieving a successful 
spray operat ion. Ei ther of two undesi rable situations was possible . F i r s t , 
there was the failure of the sol to gel into a soft, but solid, sphere before 
impingement on a container surface, and second, there was the possibi l i ty of 
an ex t remely rapid gel formation resul t ing in rounded but nonspherical shapes . 

The f i rs t situation is the r e su l t of too smal l a free flight path of the 
sol droplets after spraying. Improper sol p repara t ion can easily requ i re d rop
let flight paths for solidification that exceed the dimensions of any ordinary 
equipment. It was poss ib le , however, to obtain spher ica l pa r t i c les in equip
ment which was re la t ive ly smal l , e,g,, 12 in, frona the spray nozzle to the 
n e a r e s t container surface . 

The gel r a t e on spraying can be made so fast that a large fraction of 
the m a t e r i a l solified in nonspher ica l shapes as shown in the very fast gel 
r a t e of F igure 2 and a somewhat slower r a t e in F igure 3. Optimum opera t 
ing conditions yielded vir tual ly al l spher ica l pa r t i c l e s , as shown in Figure 4. 
The gel r a t e was a d i rec t function of the thor ium concentrat ion of the sol, 
pH of the sol, and ammonia gas concentrat ion. 

The v iscos i ty of a sol i n c r e a s e s with higher thro ium concentration, 
and also as the gel point is approached in adding anamonium hydroxide. The 
m o r e viscous sol could be sprayed into higher concentrat ions of ammonia in 
a i r ( i .e . , to give fas ter gel r a t e s ) , yet it st i l l produced spher ica l pa r t i c l e s . 

The effects of var ious types of spray nozzles available were not in
ves t iga ted sys temat ica l ly . Both single-fluid and pneumatic atomiizing 
nozzles of the siphon type were used. 

One impor tan t feature of this approach to fabricating thor ia miicro-
spheres is that it is poss ible to dissolve a wide var ie ty of meta l sal ts in the 
thor ium sol p r io r to spraying. This ensu res a vir tual ly homogeneous d i s 
tr ibution of the additive in the final thor ia ma t r ix . This would undoubtedly be 
an impor tant var iab le in optimizing the cha rac t e r i s t i c s of the naicrospheres 
for a pa r t i cu la r application. Other methods have been (1) the autoclaving of 
oxides or sa l t s onto porous low-f i red thor ia pa r t i c l e s in aqueous medium, or, 
for l a rge r pe l le t s , (2) inechanical ly mixing the oxides before firing. 



Figure 2 

THORIUM OXIDE SOL SPRAYED UNDER VERY RAPID GEL 
RATE CONDITIONS 

(High Sol Thorium Concentration 2, 7 Molar, pH 3. 8, 1:1 
by Volume Ammonia Gas-Air Atmosphere) 

Figure 3 

THORIUM OXIDE SOL SPRAYED UNDER MODERATELY 
RAPID GEL RATE CONDITIONS 

(Sol Concentration 2. 7 Molar Thorium, p H 2 . 7, 1:10 
by Volume Ammonia Gas-Air Atmosphere) 
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Figure 4 

THORIUM OXIDE SOL SPRAYED UNDER SLOW GEL RATE CONDITIONS 
(Sol Concentration 2.7 Molar Thorium, pH 2.0, 1:25 

by Volume Ammonia Gas-Air Atmosphere) 
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Microspheres of pure , h igh - su r face -a rea thoria were p repared by 
spraying the sol and firing to 650C. Uranium trioxide to 7.5 atom percent 
was then autoclaved onto the thor ia mic rosphe re s in aqueous medium at 
250-300C for twenty-four hours . The result ing mate r ia l was fired for one 
hour in smal l batches to lOOOC, llOOC, and 1200C. Sintering occurred at 
llOOC and 1200C, making the m a t e r i a l use less for s lu r ry applications. 
When naaterial with the sanae atom content, however, was p repa red by d is 
solving uranium ni t ra te in the sol p r io r to spraying, no appreciable s in te r 
ing was observed up to 1750C. This was apparently a resul t of the 
homogeneous distr ibution of uranium in the thoria matr ix , achieved in using 
the lat ter fabrication method, compared to a u ran ium-r ich surface obtained 
by the autoclaving method. 

Mater ia l in the size range of 5-25 microns fired at 1500C for 
one hour in a i r showed an individual par t ic le density (pycnometric: organic 
and aqueous) which was approxinaately equal to the theoret ical density of 
thorium oxide, 10 g /cc . The m e a s u r e d roona- temperature emanation ra t e s of 



Rn^^° f r o m the m a t e r i a l did not r e a c h a m i n i m u m va lue unt i l a f te r a p p r o x i 
naately 2 - h r p e r i o d s of f i r ing a t 1500C in a i r . X - r a y di f f ract ion p a t t e r n s 
showed an i n c r e a s i n g c r y s t a l l i n i t y wi th i n c r e a s i n g f i r ing t e n a p e r a t u r e . 

F i r i n g at t e m p e r a t u r e s above 1500C for one hour in a i r , h o w e v e r , 
p r o d u c e d a m a r k e d i n c r e a s e in the e m a n a t i o n r a t e s of the m a t e r i a l o b s e r v e d 

af ter cool ing to r o o m t e m p e r a t u r e , 
F i g u r e 5 

S U R F A C E A R E A CHANGE AS A FUNC
TION O F FIRING T E M P E R A T U R E 

F O R T h 0 2 - U 0 2 SYSTEM 
( F i r i n g Tinae: 1 h r ) 

100 
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as shown in F i g u r e 5. C h e m i c a l 
a n a l y s i s of th i s m a t e r i a l a l s o 
showed i n c r e a s i n g l o s s e s of u r a 
n i u m oxide wi th the f i r ing t e m p e r 
a t u r e s above 1500C. S a m p l e s , for 
e x a m p l e , f i r e d at 1750C in a i r for 
one hour showed a l o s s of about 
38 p e r c e n t of the u r a n i u m 
(7.30 we igh t p e r c e n t u r a n i u m to 
4.50 weigh t p e r c e n t ) . G. T a m -
naann(8) p r e d i c t e d for m e t a l ox
ides tha t a l a t t i c e loosen ing should 
occu r at about one -ha l f the a b s o 
lute m e l t i n g point . At the l a t t i c e -
loosen ing t e m p e r a t u r e , l a t t i c e 
p o s i t i o n s a r e e x p e c t e d to be f a i r ly 
r a p i d l y exchanged , and so l id s t a t e 
r e a c t i o n s b e c o m e o p e r a t i v e . Th i s 
would a l so be expec t ed to f ac i l i t a t e 
e v a p o r a t i o n of vo la t i l e m a t e r i a l 
out of the t h o r i u m oxide m a t r i x . 
The s h a r p i n c r e a s e in e m a n a t i o n 
power o b s e r v e d in th i s n a a t e r i a l 
beg ins at a f i r ing t e m p e r a t u r e of 
0.55 t i m e s the a b s o l u t e me l t i ng 
point of t h o r i u m oxide . The 

l a t t i c e - l o o s e n i n g effect and the e v a p o r a t i o n of U3O8 out of the p a r t i c l e s 
p r o b a b l y combine to p r o d u c e the i n c r e a s e d e m a n a t i o n r a t e s in the m a t e r i a l 
wh ich a r e o b s e r v e d at r o o m t e m p e r a t u r e af ter a o n e - h o u r f i r ing at h igh 
t e m p e r a t u r e . 

A n a l y s i s of the o x y g e n / u r a n i u m a t o m i c r a t i o s on m a t e r i a l f i r ed at 
1500C i n d i c a t e d tha t the u r a n i u m oxide w a s a p p r o x i m a t e l y the naixed oxide 
c o m p o s i t i o n of 2U03* UO2, wi th the UO2 fac to r g e n e r a l l y s l igh t ly g r e a t e r 
than uni ty . 

1200 
FIRING TEMPERATURE, C 

1800 

In the f a b r i c a t i o n of s p h e r i c a l t h o r i a and t h o r i a - u r a n i a m i c r o s p h e r e s 
two p h e n o m e n a w e r e o b s e r v e d . F i r s t , t he m i c r o s p h e r e s , when p a r t i a l l y 
d r i e d b e t w e e n lOOC and approx inaa t e ly 200C and s t o r e d , m a y l o s e t h e i r 
s p h e r i c a l s h a p e . The s p h e r e s , a s o b s e r v e d in s e v e r a l b a t c h e s unde r a 



naicroscope, acquired i r r e g u l a r p ro t rus ions which could be d iscerned as 
the sharp c o r n e r s of c rys t a l s growing in the spheres . Finally, the spheres 
sha t t e red in to c rys ta l l ine f ragments . Several a t tempts to repeat this 
phenomenon were unsuccessful . Secondly, when mic rosphe re s were fired 
at 650C and cooled, seve ra l ba tches , upon reaching room tempera tu re , were 
observed to explode or pop into fragments slowly and spontaneously. This 
effect could be seen on a naicroscope sl ide. In one case , a slide was viewed 
per iodical ly for 36 hours until, in a field of severa l thousand spheres 
originally, a lmos t all were shat tered . Additional samples of the total batch 
of s eve ra l hundred g r a m s of thor ium oxide viewed under the microscope 
verif ied the fact that m o r e than ninety percent of the spheres had shat te red 
within 36 hours after cooling. 

The f i rs t effect, the re fore , is the r e su l t of the growth of a c r y s t a l 
line compound of thor ium, and may possibly have been the resu l t of incom
plete elution of the n i t ra te out of the pa r t i c l e s . The second effect is probably 
the r e s u l t of physical s t r a ins left in the glassy thor ia m i c r o s p h e r e s . Both 
difficulties were avoided by drying at 300C, then immediately prefir ing to 
9OOC before s tor ing. 
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Appendix: Semi-works Production of Spherical Pa r t i c l e s of ThOa-UgOg 

For a study of the boiling s lu r ry concept in a reac tor test loop (one-
half full scale), a p r o g r a m was undertaken to produce approximately 500 lb 
of the thor ium oxide-uranium oxide spheres . Because of the urgency of the 
requirenaents , the production was undertaken in existing equipment, which, 
in most ins tances , was not par t i cu la r ly well suited to the specific operation 
performed. A scheiaaatic d iagram of the equipment used is shown in 
Figure 6. 

F igure 6 

PILOT PLANT EQUIPMENT FOR THE FABRICATION OF 
INDIVIDUAL SPHERICAL THORIA-URANIA PARTICLES 

FOR A SLURRY REACTOR 

UNH 
uoaCNOsJa'SHjO 

|-Th(N03)4-4H20/ 
3-Th(N03)4 Soln 

1 Th(N03)4 DISSOLUTION IN HgO 
2 AMMONIA ADDITION TO SELLING POINT 
3 ADDITION OF SATURATED Th ( N03)4 SOLUTION 
4 ADDITION OF UOzCNOslg-SHgO TO SOL 
5 PRESSURIZED FEED TANK 
6 SPRAYING CHAMBER 
7 NH4OH WASHING 
8 CH3OH-HOT NITROGEN DRYING 
9 IGNITING 
10 PRODUCT T h O g - U s O a 

ThOa-uaOg 
NH40H-

CH30H 

A step-wise procedura l account follows: 

1, Dissolution of Thorium Nitrate in Water 

Thorium ni t ra te was dissolved in water to form a nearly sa t 
urated solution. At room tempera tu re the limit of solubility proved to be 
about 630 g Th / l i t e r (2.71 M). Frona a consideration of the size of the 
available equipment (a covered s ta inless steel tank, 18 in. in dia and 24 in. 
high), the dissolution was c a r r i e d out in only 30-l i ter batches. Because of 
the highly endothermic nature of the dissolution, 1500-watt tubular hea te rs 
were employed in conjunction with a T -hp agitator in order to effect 
dissolution. 



2. P r e p a r a t i o n of Gel 

Following the dissolution, anhydrous ammonia gas was in t ro 
duced through a sparge line at the bottom of the tank. (As additional equip
ment became available, this step was pe r fo rmed in a covered 55-l i ter tank 
fitted with an agi tator , in o rder to pe rmi t use of the f i rs t tank solely for 
dissolution.) Extrenaely vigorous agitation was neces sa ry to prevent the 
local ized formation of the ex t remely hard, white, opaque hydroxide which 
was not susceptible to ready dissolution. The exothermic nature of the r e 
action r equ i r ed that the reac t ion vesse l be covered during this operation to 
reduce the loss of water as s team. 

The ammonia addition was continued until such t ime as the en
t i r e tank contents suddenly gelled. This point was determined visually. 
Curso ry exper iments conducted to de te rmine this gelling point by ins t ru -
naentation were not successful . Product ion requ i rements precluded any 
extended t es t s which would develop the r equ i red degree of sensit ivity to 
es tab l i sh autoinatic control . 

3. P r e p a r a t i o n of the Sol 

After the gel s ta te had been reached and the amnaonia in t roduc
tion halted, thoriuna n i t ra te solution was added to the gelled mass (prefer 
ably while s t i l l wariaa) and manually worked into the gel with a rod. 
Reliquefication was in genera l accompl ished with surpr is ingly little work. 
The amount of thor ium ni t ra te solution that was added in this step was 
approximately 2 m l / l i t e r of gel. Because of a tendency of the sol to p r e 
cipi tate, about the same amount of additional thor ium ni t ra te solution was 
added to s tabi l ize the sol for extended s torage . Sols p r epa red in this fashion 
were kept in covered tanks for g r ea t e r than two-week per iods with no p r e 
cipitation occur r ing . The ul t imate s torage life under these conditions was 
not de termined. Analyses of the sol showed a pH of the o rder of 3.8 and a 
thor ium concentrat ion of about 2.7 M_. 

4. P r e p a r a t i o n of the Thor ium Sol-Uranyl Ni t ra te Feed 

Immedia te ly p r i o r to use , a m e a s u r e d quantity of uranyl n i t ra te 
hexahydrate was added to the thor ium sol and dissolved by vigorous s t i r r ing 
with a mechanica l agi ta tor . The amount of uranyl n i t ra te hexahydrate added 
was , of cour se , dependent upon the des i r ed weight percent of uraniuiaa in the 
final product . Upon standing at room t empera tu re for severa l hours , a 
ye l low-orange prec ip i ta te fo rms . This behavior dictated that (in the existing 
equipment) the subsequent t r e a tmen t of the feed be batchwise and be l imited 
to a p r o c e s s durat ion of about 1— hours . 



5. Feed P r o c e s s i n g (Spherical P a r t i c l e Production) 

Feed p r e p a r e d as above was next t r a n s f e r r e d to a 20-l i ter 
elevated feed tank. Air at a p r e s s u r e of 80 psig was applied to the tank and 
the feed was thereby p r e s s u r e d through an atomizing nozzle of the s ingle-
fluid p r e s s u r e type (Spraying System Co. j LN-3). The feed was maintained 
at a constant flow ra te by means of a Moore Flow Controller at 250 ml /min . 
The spraying was done into the top of a closed tank, 3 ft in diameter and 
4 ft high, with a conical bottom and containing an anamonia a tmosphere . The 
ammonia a tmosphere was provided by charging the vesse l with ^^45 l i t e r s of 
1 2 M_ amnaoniumi hydroxide solution. Operat ions were viewed through a 
Lucite window in the side of the vesse l . 

With sol made as desc r ibed above, this a r rangment provided 
in the 28-cu ft (free volume) tank sufficient anamonia vapor to complete the 
gelling of the individually produced a tomized par t i c les and sufficient f r ee 
board to insure their continued spher ic i ty after contact with the vesse l wall. 
It should be mientioned that too much anaiaaonia vapor in the tank invariably 
caused nozzle plugging; too l i t t le amnaonia vapor was insufficient to cause 
gelling of pa r t i c l e s individually, and a coalesced conglomeration resul ted . 
The p roper ly gelled pa r t i c l e s collected in the conical bottom, falling through 
the ammonium hydroxide in the p r o c e s s . This se rved to par t ia l ly wash 
excess aaaamonium n i t ra te f rom the pa r t i c l e s and also to exclude air from 
them. (It was found that upon exposure to a i r , the par t i c les would undergo 
d ra s t i c degradation.) The col lected pa r t i c l e s in the bottom of the p r o c e s s 
tank were withdrawn per iodica l ly by opening a 1 —-in, plug valve in the d i s 
charge line f rom the tank. 

If t e m p o r a r y s torage was r equ i r ed before further process ing , 
the pa r t i c l e s were s to red in polyethylene bags under a dilute amtmonium 
hydroxide solution. P a r t i c l e s so s to red maintained their integri ty and 
spher ic i ty for as long as two weeks although, in genera l , further process ing 
was pe r fo rmed within a day or two of the init ial production. 

6. Washing and Drying P r o c e d u r e 

The pa r t i c l e s were next t r a n s f e r r e d to a four-s ided container 
(1 ft sq) which se rved as a washing and drying facility. A s in te red meta l 
section was welded inside the unit to s e rve as a support plate for the 
p a r t i c l e s . This plate was about 18 in, f rom the top and above a t apered 
pyramida l sect ion at the bottom. A pipe nipple welded through a wall at a 
point about 2 in. fromi the top acted as a liquid overflow pipe. A covering 
top was fabr icated incorpora t ing a s in te red meta l section about ten inches 
squa re . Two 1000-watt band h e a t e r s w e r e fastened around the v e s s e l 
above the support plate to supply heat for drying. 

Dilute ammonium hydroxide solution was introduced slowly 
through the bottona of the v e s s e l to wash the solids by upflow. Approximately 



8 volumes of dilute hydroxide solution were used in backwashing the spher 
ical pa r t i c l e s . Because the spheres were st i l l extrem.ely delicate during 
this operat ion, gentle hand manipulation was used to agitate the solution and 
suspend the pa r t i c l e s naomentari ly during the backwashing, thereby insu r 
ing excellent washing of the individual pa r t i c l e s . In addition, by careful con
t rol of the hydroxide flow, minute pa r t i c l e s were e lutr ia ted from the product 
before fur ther p rocess ing . 

Following the backwashing step, the supernatant hydroxide was 
siphoned from the container and the r e s idua l hydroxide renaoved by gravity. 
During this step, the pa r t i c l e s becanae quite tightly packed, and it was 
found expedient to force a i r a l te rna te ly through the bed from the bottom and 
then allow hydroxide to flow out. Vacuum removal of the hydroxide from the 
bottona was found to d i s to r t the pa r t i c l e s and was not used. 

Methanol, added from the top, was used as a r inse for the am
monium hydroxide. Approximately four volumes were used, the f i rs t of 
which was d i sca rded after use - the o the rs being recyc led in order in suc
ceeding runs . The final r i n s e was thus with fresh laiethanol in each run. 

The overflow outlet was next capped and the cover placed on the 
vesse l . As a safety precaut ion, flexible ventilation ductwork was extended 
over the v e s s e l p r io r to the next s tep. Heat was then applied to the v e s s e l 
by naeans of the bond h e a t e r s and p rehea ted nitrogen (to preclude explosive 
mix tu res of a i r and alcohol) was forced through the bed from the bottom at 
~110C. This phase of the drying operat ion took about seven hours per batch 
(~6 kg). 

7. Igniting 

As soon as poss ib le , the sphe res were renaoved from the tank and 
t r a n s f e r r e d to an a tmosphe r i c furnace where the spheres were placed in 
shallow t r ays and slowly fired* to 1500C, 

8. Sizing 

A F i s h e r Sub-Sieve Sizer was used to determine the diameter of 
the f ired sphe re s . The average d iameter was de termined in a s e r i e s of 
t e s t s to lie between 14 and 23 m i c r o n s . The spheres before firing average 
about 60 m i c r o n s . Optical observa t ions of the fired spheres showed that the 
bulk of the pa r t i c l e s re ta ined their spher ica l shape. 

Work pe r fo rmed under J. H. Handwerk of Metallurgy Division, ANL. 


