
Direct Emulation of Control Stru

by a Parallel Micro-Computer

STANFORD LINEAR ACCELERATOR CENTER
Stanford University Stanford, California

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

DIRECT EMULATION OF CONTROL STRUCTURES

BY A PARALLEL MICRO-COMPUTER

VICTOR R. LESSER*

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY

Stanford, California 94305

- -
L E G A L N O T I C E

i
I

This report was prepared as an account of work
I

sponsored by the United States Gnvernment. Neither ,
the Unlted States nor the United States Atomic Energy

1

Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
legal liabllily or responsibility for the accuracy, com-
pleteness or usefulness of any information, a p p ~ a t u s , j
product or process disclosed, or represents that its use
would not infringe privately owned rights. I

I

PREPARED FOR THE U. So ATOMIC ENERGY

COMMISSION UNDER CONTRACT NO. AT(04-3) -515

October 1970

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 2215 1.
Price: Full size copy $3,00; microfiche copy $.65.

The research was carried on while the author was a NSF graduate fellow and
partially supported upder NSF2-FCZ -708-94140, AT(043)326, P. A,23,

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

ascott
Blank Stamp

ABSTRACT

This paper i s a preliminary investigation of the organization of a parallel

micro-computer designed to emulate a wide variety of sequential and parallel

computers. This micro-computer allows tailoring of the control structure of

an emulator so that it directly emulates (mirrors) the control structure of the

computer to be emulated. An emulated control structure is implemented through

a t ree type data structure which is dynamically generated and manipulated by

six primitive (built-in) operators. This data structure for control is used as a

syntactic framework within which particular implementations of control concepts,

such as iteration, recursion, co-routines, parallelism, interrupts, etc., can be

easily expressed. The major features of the control data structure and the

primitive operators are: 1) once the fixed control and data linkages among

processes have been defined, they need not be rebuilt on subsequent executions
1

of the control structure; 2) micro-programs may be written so that they execute

independently of the number of physical processors present and still take advan-

tage of available processors; 3) control structures for 1/0 processes, data-

accessing processes, and computational processes a re expressed in a single

uniform framework. This method of emulating control structures is in sharp

contrast with the usual method of micro-programming control structures which

handles control instructions in the same manner as other types of instructions,

e. g. , subroutines of micro-instructions, and provides a unifying method for the

efficicnt emulation of a wide variety of sequential and parallel computers.

I wish;to expr&s's my sihcer& thanks to,Profi?ssor William: Mill&r:whos&

constant support and encouragement"of my research efforts, have made possible

the successful completion of 'this paper. I' would also. like to thank Professor

Ed Davidson for his detailed reading and criticisms of tfiis paper, and Dr. Harry

~ k l and Professor William McKeeman for their encouragement of my research

efforts and the many fruitful discussions I had with each. Thanks especially to

my-friends and fellow grad&te studentsPLee Erman and Bill Riddle who have had

to suffer through an uncountable number of rewrites and discussion of this paper,

TABLEOFCONTENTS . .

. . . . Page

I . INTRODUCTION . 1

. A . Traditional Micro-Computer Architecture ; 2

B . Variable Control Structure a s the Basis of a

Micro- Computer Architecture 4

II . MICRO-COMPUTER ARCHITECTURE 6

m . MICRO-PROCESSOR SUBSYSTEM 8

. IV STRUCTURE BUILDING LANGUAGE (SBL) 13

. A Control Data Structure 14

. B Use of the Six SBL Macro Types 16

. C Format of SBL Macro Cdling Sequence 17

. D Subsystem~ommandMacros 20

. E StructureBuildingMacros 25

. 1 . Sequential Control Structures 25

. 2 . Nonsequential Control Structures 30

. 3 . Tree Structured Addressing 34

4 . Synchronization. and Control and Data Linkage

Among Processes 35

. V INTEGER FUNCTION LANGUAGE (IFL) 42

. A . Format and Sequencing of IFL Instructions 43

. B . Built-In Arithmetic Operations 48

. C . Side Effects in IFL 50
. D Pseudo-Functional Units 51

. VI . FORMAT OF SBL MACROS 53

. A . Data-Descriptor Macro 54
. . B Selection Macro 55

. C . Iteration Macro 56

. D . Instruction and Hierarchical Macros 5'7

. E . Control . Ma.cro. 59

. VII . SUMMARY COMMENT AND FUTURE RESEARCH 61

REFERENCES . 63

LIST OF FIGURES

r . . Page . . .
. ' ;; ., :2 , 1. Conceptual structure of an emulator. .i

. 2. Micro-Computer subsystems (modules) .5
. 3. Micro-Processor subsystemls :organization . . i ' . 12

4. The control data structure for an emulator'of a. von Neumaw
. . . .

. computer organization with interrupt 1 ;. 32
. . . .

5. Fork-join instruction' ' 9 3 i .

I, INTRODUCTION

In the past few years, both the size and diversity of the class of problems

being submitted'to computers for solution has significantly increased. The

programming of many of these new problems on a computer with a von Neumann

organization can be very complex and, additionally, can result in programs which

execute inefficiently, A significant part of these difficulties can be. attributed to

the "degree of complexity" of the transformation from the representational

framework within which the programmer develops an algorithm (e,g., ALGOL,

LISP, Graph Model, etc .) to the representational framework of a von Neumann

computer within which the algorithm is executed, The complexity of transfor-

mation between these two levels of representation thus makes it difficult to con-

struct an automatic mapping between levels which is both quick and efficient,

The perception of this problem has led to the development of computers whose

organizations a re optimized for either a particular subset of o r a higher level

language for the problem class, Examples of such machine languages should

include those of the B5500 for ALGOL, ILLIAC IV for processiqg of array

structured data, Abram's APL machine, Melbourne and Pugmire's FORTRAN 4

machine, , etc, Since these represent a broader class of languages than what is

I
usually meant by machine language, we will refer to them as intermediate

1. machine languages (IML's) . This tailoring of IML to a specific higher level language

is accomplished by incorporating primitive operators in the IML which directly mirror

operations in the higher level language (e. go , recursion in ALGOL is directly mirrored

through stack operations in B5500). Thus, by the tailoring of amachine's organization

more closely to a particular user representational framework, the mapping be-

tween levels is simpler and results in more efficient program e ~ e c u t i o n . 2 ~

In parallel with the development of problem oriented computers, there. has

been an effort .toward providing a systematic and flexible approach to the hard-

ware design of a specific computer.. This effort has led to the development of
.

. .

micro-computers, e. g o , 360/40, with read-only control memories programmed -

to emulate a specific von Neumann type computer.

Recently, there has been an attempt to integrate both of these new directions

in computer architecture (machine organizations designed for specific applica-

tions and micro-computers) by attaching to the micro-computer writeable

control memories, Thus, it is intended that through the ability to modify

dynaGically the control memory of, a micro-computer, a wide range of machine

languages of different computer organizations (IML) can be efficiently emulated

on a single micro-computer. However, it is the author's contention that this

goal cannot be realized by existing micro-computers,

- 1 -

A. Traditional Micro-Computer Architecture

Existing micro-computer architectures a r e still oriented toward the design

of von ~ e u m a n ~ type computers rather than a systematic approach to the ernu-

lation of a wide variety of different sequential and parallel intermcdiary ,machine

languages.

The program structure of an IML emulator, in a conceptual sense, is seen

in Fig. 1.

FIG. 1--Conceptual structure of an emulator.

'I'he "control process", which represents the control otructure* of the com-

puter to be emulated, activates the "decoding process" with data that identifies

the next instruction(s) of the emulated computer to be executed; the "decoding

process" analyzes the instruction(s) to be executed so as to determine the

semantic routine(s), t6gether with its (lheir) appropriate calling sequcnce(s),

whose activation will perform the semantics of the emulated instruction(s).

After the appropriate . - semantic routine(s) has (have) been executed, the flow of

control returns to the control process which, based on the results of executing

the decoding process and 'the semantic routine(s), selects the next instruction(s)

to bc emulated,

*
The control structure of a computer consists of the set of rules used to define
the sequencing of the instructions of the computer.

.

The organizations of existing micro-computers when applied to the emulation

of unanticipated IML1s do, not reflect this conceptualization of the structure of

an emulator, but rather provide a simple, uniform framework for the coding of

an emulator. In these machines, the semantics of micro-instructions a r e gen-

erally realized by a short parallel sequence of register transfers, and the control

for sequencing among micro-instructions is sequential and based on simple con-

ditional transfer commands. There a r e no features in the language that distin-

guish the coding of the control process from that of the decoding process or the

semantic routines, nor the relationship, for instance, between the control process

and the decoding process. An emulator expressed in this type of micro-computer

language ". . . implenlents machine instructions a s a subroutine of micro-

instructions". Thus, due to the simplicity of micro-computer languages and

their.,paucity of control commands, the structure of the emulated computer i s

not directly observable in the structure of its emulator. The key to efficient

emulation is just this missing ability to directly mirror the control structure,

instruction formats, and primitive data-accessing operations of an IML in the

corresponding control structure, instruction formats and primitive data-accessing

operations of its emulator. In particular, a control action by an instruction in

the IML program being emulated should be directly mirrored in a modification

of the control structure of the emulator.

Thus, the current approach to the design of a micro-computer which stresses

simplicity is not unreasonable if the micro-computer is going to emulate computers

and IML1s. that have a simple sequential control and simple instructions. But,

IML1s that a re tailored for a particular subset of a higher level language for a

.problem class are, in a sense by their very purpose, not simple since the com-

plexity of the higher level language is imbedded in the semantics of the IML's

instructions and control structure. If the current trend in higher level languages

is maintained, these problem or procedure oriented IML1s will have increasingly

more sophisticated control structures employing such control concepts as

recur.sion, co-routines, parallelism, etc. , and, likewise,. their instructions

will directly operate on increasingly more complex data structures, e.g., lists,

trees, arrays, etc . Therefore, the current structure of existing micro-computers

is inadequate for the task of effectively emulating the wide range of such inter- -

mediary languages, just as a von Neumann computer in comparison with the

B5500 does not efficien.tly execute ALGOL.

B. Variable Control Structure as the Basis of a Micro-Computer Architecture

The micro-computer architectural design to be presented in this paper is

based on the idea that the prograin structure of an cmulsttor written in this

micro-computer should reflect the structure of an IML that is being emulated,

It is felt that the key to accomplishing this mirroring process betwecn IML and

its emulator lies in the control structure of the micro-processor. Thus, the

main emphasis in the design to be presented here is to incorporate a very general

control structure in the micro-processor,

The approach conventionally used to design a micro-processor with a

powerful control structure is first to develop a basic machine language having

a well-defined set of instructions and a simple sequential control structure, and

then add instructions and facilities (such as subroutine call instruction, a slack

for parameter passage, a fork- join instruction, etc .) for structuring complex

sequential and parallel prucesses. This is imt tkc npproaoh taken here. Insteud,

the approach is to develop a micro-language specifically designed for the task of

dynamically constructing control structures. This control structure definition

language, called the Structure Building Language (SBL) , is used to dynamically

define a wide range of particularized control structures through the generation

of a data structure for control. The control data structure acts as a syntactic

framework within which dynamic and static control and data environmcnt inter-

relationships among processes can be expressed. The coi~trol structurc of this

micro-computer can then be dynamically tailored (through the SBL) into a form

which is most suitable for the emulation of a particular LML. An emulator

programmed in this micro-computer, as will be seen later, works in a fashion

similar to the process of dynamic compilation or run-time macro expansion.

This method of emulation differs radically from the conventional form of emulation

consisting of a sequence of calls to sub-routines of micro-instructions.

The variable nature of the control structure of this micro-computer dis-

tinguishes its architecture (from the viewpoint of form and complexity) from

existing micro-computer architecture. It is felt that a variable control structure

micro-computer provides a unifying approach to the emulation of an extremely

wide variety of computer organizations and IML's. The goals of this micro-

computer design are to be able to:

1. Emulate efficiently a wide class of both sequential and parallel

IML's (e. g. , array processors, pipeline, stack machines,

LISP machines, computational graph models, etc .) .

2. Program an emulation in a simple and uniform manner, such

that the dynamic program structure of an emulator reflects

the architecture of the computer it emulates.

3. Incorporate easily and efficiently a changing array of hardware

arithmetic k i t s (e. g. , square root, inner product, etc .) I/O

devices and memory units (edg., associative memory, bit

slice memory, etc.).

Micro-Computer

Micro-Processor ~ p / j ~ l l

FIG. 2--Micro-Computer subsystems (modules).

11, MICRO-COMPUTER ARCHITECTURE

The micro-computer architecture, as pictured in Fig. 2, can be character-

ized in terms of three basic hardwa~e subsystems. The first subsystem is

composed of an arbitrary set of functional units, Each of these units can be

independently activated and can have an arbitrary number of inputs and outputs,

where that number need not be fixed but may be data dependent. A functional

unit could be a floating point multiplier o r , more generally, an arbitrary input/

output device. This more general usage of a functional unit is a natural conse-

quence of imposing restrictions neither on the size (or form) of the input and

output data sets of a unit nor on the sequencing between units.

'I'he Second subsystem is a memory. 'I'hiS nlemor'y IS bit-addressable and

can be activated either to store or retrieve an arbitrary length string of bits.

This memory holds the program that is going to be emulated, and additionally,

serves a s a storage buffer for communication between the functional unit sub-

system and the micro-processor subsystem. Other types of memory organiza-

tions, such as word-oriented, bit-slice, associative, etc . , can also be included

in the system's architecture by making them function units.

The third subsystem, which is the major innovation in this micro-computer

architecture, is a micro-processor that controls the dynamic interactions

between the other two subsystems and among functional units. The programmable

nature of the control unit of the micro-processor subsystem allows the tailoring

of both the hardware and software of this architecture to various problems. The

hardware tailoring involves the addition of specialized functional units which

car ry out operations commonly used in the problem class (e. g o , floating-point

multiplier bit-slice memory, etc .) to the functional unit subsystem or addition

of more parallelism in the micro-processor subsystem. The variable nature of

the control unit of the micro-processor subsystem, as will be discussed later,

allows these hardware modifications to be incorporated without modification to

the language of the micro-processor.

In order to emulate a computer using this system, the program which is

to be run on the emulated computer is stored bit-wise in the memory subsystem

in the same order as it would be stored in the emulated computer's memory.

The micro-processor must then perform the following tasks: (1) fetch from the

memory subsystem the instruction(s) of the emulated computer which is (are) to

be executed in the next step; (2) analyze this (these) instruction(s) in order to

generate the appropriate sequence of functional unit activations which will perform

the computations specified by the instruction(s). In addition, the sequence of

functional unit activations must be coupled with accesses and stores to the

memory subsystem so as to provide the input and output data setsfor each unit.

This sequence of functional activations may result in concurrent operation of

functional units or a pipelining of functional units.

The major focus of the res t of the paper will be on the organization of the

control unit of micro-processor subsystem, especially the syntax and semantics

of the SBL.

III. MICRO-PROCESSOR SUBSYSTEM

The main orientation in ,the design of this micro-computer, as stated in the
2 . - ,

introduction, is to incorp6&te a variable control structure definitional facility

into the hardware of i ts processor. This design emphasis has led to a micro-

processor that contains two basic classes of instructions. One class of micro-

instructions, called the Structure Building Language (SBL), is used to construct

dynamically the control structure of an kmulator while the other class, called

the Interger Function Language (IFL), is used to compute address arithmetic

functions.

The SBL dynamically defines m cmulator's control structure through the

generation of a data structure for cuntr.ul. Tile basis of the syntax nnd acmant ic~

of the SBL i s a fixed set of definitional templates that define particular types

(forms) of control structures. An SBL statement (macro) specifies one of the
*

fixed set of templates together with a set of IFL address arithmetic functions.

Each definitional template represents a parameterized model of a basic control

concept, e, go , iteration, selection, hierarchy, synchronization, etc . The

specification of particular values for the parameters of the template defines a

particular instance of a basic control concept. These values a r e computed by

the IFL address arithmetic functions specified in the SBL macro. A call to an

IFL program results in the generation of either an integer value or a sequence of

interger values that a r e then used in the expinsion or execution of a macru, The

expansion of a definitional t e ip l a t e results ih the generation of a structure which

contains'all . . the state information necessary to model the execution of this par-
. .

ticular instance of the control concept. More complex control structures a r e

constructed through the expansion of a sequence of these definition teinplates .
The binding of parameters to the SBL macro is imder the explicit control of other

'

SBL statements. Similarly, the expansion of SBL macros and later execution is ,

explicitly programmable in the SBL. This ability of the SBL to define dynamically
. ,

the sequencing of other SBL statements is the key to the control structure defi-

nitional facility of the micro,-p~acessor.

- The SBL consists of si.ktypes of macro bodies (definitional templates): data-

descriptor (D) , instruction (i , Gelection (S) , iteration (IT), hierarchical (H) , and

control (C). The first two types of macro bodies a re called subsystem command

macros while the remaining fdur a re called structure building macros. The

subsystem command macros specify the interaction between the functional unit

subsystem and the memory subsystem. Only these two macros actually produce

computational results through the action of functional units. More complex

computational processes a re constructed through the execution of a sequence of

structure building macros that use as their basic building block calling sequences

to'subsystem command macros, When the basic building blocks a r e just data-

descriptor macro calling sequences, then the structure building macros defines

a data-accessing procedure.

The programming of an emulation on this micro-computer is done by creating

a dynamic 'mapping between the control structure and instructidns of the emulated

computer and a set of structure building macros and subsystem command macros.

This dynamic mapping is represented in the address arithmetic algorithms that

a re used to expand the definitional templates. Thus, an emulator programmed

in this micro-computer works a s an iterative two-step process (i. e, , it generates

an instance and then executes the instance) similar to the process of dynamic

compilation o r run-time macro expansion. This two-step approach to emulation
.. . .

differs from the conventional one-step approach to emulation (i. e., calling su6-

routines of micro-instructions) done on existing micro-processors, and directly

reflects the conceptualization of an emulator pictured in 1. The binding of

a parameter list to a SBL macro is the analog of the bontrol process of the

emulator; the exp&sion of a SBL macro is the analog of the decoding process of

the emulator, and the execution of SBL macros is the analog of the semantic

. r o ~ ~ t i n e s of the emulator.

.Example 1

 consider the emulation of an instruction, FAD 1 20, stored at location 10

in the emulated cdmputer where FAD specifies a floating add operation,

I specifies indirect addressing, and the accumulator is the second and

result operand. The sequence of steps involved in emulation of this in-

struction on this micro-processor is the following: (1) An SBL instruction

generates and then stores as a node in the control data structure a binding

between a poiriter to the current value of the program counter of the

emulated computer: 10, and a subsystem comm.and macro A. (2) The

macro A with a parameter whose value is 10 is then expanded. This

expansion results in the generation of a subsystem command in the control

data structure. ~he'expansion of a subsystem command micro is based on

a template having the following format: "functional unit", "address of

input I", "address of input 2", "'address of output I". Macro A fills in

the slots of the template by calling with parameter 10 two IFL programs

B and C whose integer value outputs respectively, fill in the "functional

unit", and "address of input operand 1" fields. The other two fields a re

always constants specifying the address of the accumulator of the
8 _ .

emulated computer. The IFL program B extracts the op-code field of

the instruction at location 10, and then based on this value', determines

the functional unit in the, functional unit subsystem that carries out the

operation specified by the op_code. , The IFL program C do& the addresi

a r i-thmetic , in this case indirect addressing, required to locate the
. . , ..

address of the operand speclfied by the inshucl'ion at lvuat io~~ 10.

(3) ~ h c inetanoe of a subsy aLem command gencrntcd by otop 2 is then
. 8

executed. The execution of this command results in th i activation 6f the

floating point add functional unit with two operands . . and then the storage
,

of the result of the floating point operation in the accumulator of emulated

computer. Thus, the subsystem command carries out the ~ & i a n t i ~ s of
. , . .

the emulated instruction FAD 1.20. This example indicates the three
'

. . . ' ,

phases involved in emulating IML instructions. ow ever, it should be

pointed out that for the emulation of additiona.1 JML instructions with the

s e e basic format (e.g. , op-code, indirect bit, address) the binding and ,

exqxmsion phases can be eliminated. Thus the ovejrhead involved in Ll~e

binding and clrpancion phases neod be inciirred nnly once 't.or each differknt

instruction format of the emulated computer. The control data structure

for an idealized von Neumann computer is pictured in Fig. 4 on page 32,

and will be used in the ncxt section as a basis for discussing the six SBL

macro types.

The basic hardware organization of this micro-processor subsystem at the

functional level is pictured in Fig. 3. he micro-prucessur subsysten~ contains

an arbitrary number of identical micro-processors. The execution of the micro-

processors are controlled through data stored in the program and process-space

memories. These two memories differentiate the static and active parts of the

control structure of the micro-processor subsystem. The "program me&oryW
. .

holds SBL and IFL statements and is not normally modified during an emulation;

the program memory is similar to the control memory of a conventional micro-

processor. The Ifprocess space" memory holds the control data structure con-

structed by the SBL and is constantly being modified during an emulation. The

contents of'the process space memory is in essence the state of the emulator

which is currently being executed by the micro-processor subsystem.

The micro-processor subsystem can ca r ry on parallel activity since the

number of micro-processors contained in the micro-processor subsystem i s

arbitrary and these processors can be executed concurrently. The process space

memory holds the definition of the control structure which coordinates, in a

virtual sense, the activity among micro-processorso In the case that there a r e

not enough micro-processors to ca r ry out the parallel activity specified by the

control structure in the process space memory, then the available micro-processors

a r e scheduled on a f i r s t come-first serve basis. Th is transformation from virtual

processor activity to actual processor activity may lead to indeterminate results

depending upon the numnber of micro-processors available. However, a s will be.

described in Section IV. E. 4 the SBL ,contains control primitives that allow the .

programmer to construct the apprqpriate synchronization rules (Dykstrafs sema-

phore, Saltzer's wakeup-waiting switch, lock-step execution, etc.) which preserve

the inherent parallelisms among processes, while a t the same time guarantee the

scheduling of virtual parallel activity will always result in determinate computation

independent of the number of actual mirco-processors,

Micro-Computer Hardware Organization
. . . .

(+ data bus)

(-- +control bus)

FIG. 3--Micro-Processor subsystem's organization.

MEMORY
SUBSYSTEM

FUNCTIONAL UNIT
SUBSYSTEM 4 b

4 4

I1
I

I I
I -I I

I I I
I I

I
I

Micro-Proces s o r
Subsystem

I
I
I
I
I
I
I
I
I
I
I
I
I

- - - - - - -
I

- . --. - -- Micro-
Processor 4 I

1 I
I

Process

rn

rn

rn
rn
rn

rn

: I
I
I
I
I
I
I
I
I
I

3

Space
rn Micro-Progr am
rn 1 Memory I rn Memory
rn

rn

rn

.
rn
rn .
rn

L

Micro- +
- - - - - - - - processor - - - - - - - - - -

n 4
*

- -

IV. STRUCTURE BUILDING LANGUAGE (SBL)

The SBL is used to define control s tructures for I/O processes, data-

accessing processes, and computational processes. The SBL defines each of

these types of control s tructures in a single uniform framework. This use of a

single framework fo r data-accessing and computational processes came from

the following observation: if a set of instructions are considered to form a data

structure, then the control s tructure associated with the sequencing of these

instructions can be considered a s a data-accessing procedure where the data

being retrieved a r e instructions, For example, consider the following repre-

sentation of a typical list structure: I

where pi is the address of the ith word in the list, ai is the data-item stored a t

the ith word, and linki is data stored at the ith word used in computing p i+l' A

data-accessing procedure to extract a
lY O o O

a from this typical list structure n
would generate the sequence p

l Y o o o y
p from the link information linkl, . . . linkn-l.
n

After the generation of each p. (i=l,n) the corresponding ai can then be extracted.
1

Similarily, consider a a a s machine instructions. They can be sequenced
1"' n

.by a program counter p which takes on a succession of values ply.. .pn. After

the generation of each pi, the instruction a . located at p. is executed, and then
1 1

based on pi and a pi+l is calculated. The only difference between instruction
i'

sequencing and data-accessing of a l i s t structure is that in instruction sequencing

the link information, linki, is always encoded in the instruction, a . (an instruction
1

includes an implicit o r explicit link). Thus, the general paradigms developed to

sequence tbough arbi trary list s tructure can' also be used to define conventional

sequential control structures.

The IFL is specifically designed to efficiently sequence through an arbi trary

formatted list structure, and generate either the ,address of the final l ist element

p o r the addresses of the intermediate list elements ply.. .P,-~. In the latter
n

case, the SBL uses the addresses of these intermediate list elements to generate

a ser ies of macro calling sequences (the binding of a parameter p. to a macro
I

body). The execution of the macro with parameter p. then results in the carrying
1

out of the semantics associated with a where a . can be a data-item' b emulated
i' 1

instruction, or the name of a process. These semut ics involve, respectiirely,"

the retrieval of the data-element from the memory subsystem,' the execution of

a functional unit with appropriate input and output sets, or the generation atid

execution of further macro calling sequences. The first two cases are handled

by subsystem command macros while the latter case by structure building ,

macros. ~ h u s , depending on the types of the macros bound to the sequence of

parameter p lo opn-l* a data-accessing process, an I/O process, or a compu-

tational process can be defined.

A. Control Data Structure

The SBL deLines a control structure through the dynamic generation ol' a '

t ree type data structure in the process space memory whose nonterminal nodes

contain calling sequences to either a subsystem command macro or a structure

building macro. The process space memory also holds all temporary information

structures, which will be considered as terminal nodes of control data structure,

needed in the expansion and the execution of a macro. The data structure for

control is in the form of a t ree due to the ease of specifying such control concepts

as hierarchical structure (functional decomposition), parallelism, co-routines,

and recursion. The representation of hierarchical structure an'd recursion is .

possible because additional levels (sibling groups) may be dynmically built in

the t ree through the expansion of nontermlnal nodes (rrlacro ca l l i~~g sequel~ces).

The representation of parallel and co-routine control structures is possible

because brother nodes in the t ree may be treated as distinct independent processes

each with its own state information. A tree data structure is also a conveilient

syntax framework (father, brother, etc, , relationship between nodes) for defining

distributed control systems. Namely, the control structure of a complex system

can sometimes be conveniently represented through hierarchical structure where

in each sibling set (structural level) of the tree there is embedded a simple
9

control process (clocking process) that initially sequences its brother .nodes.

If additional clocking processes are contained in the sibling set, control may pass

to these processes after initialization. Thus, ,instead of one complex control

process for the entire system, the control can be distributed throughout the

system. In addition, if these simple control processes can be coded so their

addressing structure is not based on their absolute locations in the tree, but

only on their relative position in terms of father and brother addressing in the

tree, then relative addressing allows copies of a single process to be used at

different levels in the tree. The simultaneous execution of many calling sequences

to the same macro body.is permitted because information local to each macro

expansion and its subsequent execution is stored with the activating calling

sequence.

Another important feature of the SBL i s the separation that is made between

the generation of a macro calling sequence (e.g., the binding of parameters to

the macro body) from the expansion and execution of that calling sequence. The

rules for the dynamic sequencing of the nodes of the control data structure can,

therefore, be different from the rules for building of the control data structure.

The only built-in sequencing associated with the t ree is that a father node must

be expanded before any of its son's. The form of control data structure i s thus

just -->. -.. a convenient syntax framework within which sequencing rules can be

express.ed . This allows control structures which cannot be conveniently repreL

sented in a t ree structure (e.g., fork-join control a s will be seen in example 9;

computational graphs, etc.) to still be programmed in .the SBL since the t ree is.

the form for generation of the control data structure but not necessarily the form

for the passage of control during execution. The SBL also separates the expan-

sion of. a macro calling sequence (which results in the generation of a control

structure that defines a process) from the subsequent execution of the expanded

macro (which results in the execution of the process). Through this separation,

the SBL can control the relative ra te of execution of the control structure defined

by the expanded macro, e.g., executing a macro that defines an iteration control

structure for only one cycle (loop) and then suspending the execution of the macro.

A t ree node (macro calling sequence) has seven states of activity: (1) it i s

unexpanded; (2) it is being expanded; (3) it is expanded; (4) it i s being executed;

(5) it i s being suspended*; (6) it is suspended; and (7) it is terminated. By con-

trolling the activity rate of a node, namely the rules (conditions) for transition

between the seven node states, the SBL can produce an arbitrary ' t ime grain".

The time grain of a process refers to the smallest unit of a process activity that

.can be controlled. Time grain, as will be seen later , can be employed to repre-

sent concisely such control concepts a s co-routines,, interrupts, monitoring,

lock-step execution, etc.

*
The fifth state indicates the node is currently executing but will be suspended
a1 llia end of its curreid time grain.

- 15 -

The ability to separate the expansion of a macro calling sequence from its

execution also avoids the unnecessary rebuilding of the control data structure

when the form of the control data structure (e.g., the number of son nodes at a

particular level in the tree) does not vary from execution to execution. The .

SBL is defined so that only the dynamic parts of the control structure a r e rebuilt;

the static parts of the control structures once defined a re not regenerated.

Additionally, the parameters used to execute and to rebuild parts of the control

structure can be different from those used to initially generate the control
.. ..

structure,

B. Use of the Six SBL Macro Types

<a recent report by D. Fisher, lo the control concepts unilerlying all con-

t rol structures were specified a s the following: "(1) there must be means to

specify a necessary chronological ordering among processes and (2) a mems to

specify that processes can be processed concurrently. There must be (3) a

conditional for selecting alternatives, (4) a means to monitor (i.e., nonbusy

waiting) for given conditions, (5) a means for making a process indivisible

relative to other processes, and (6) a means for making the execution of a process

continuous relative to other process . . . A process A will be called continuous

relative to another process B if and only if communication is established between

A and B in such a way that state changes in B a r e temporarily delayed while the

entire action of A is carried to completion. "
These underlying control concepts a r e implemented in terms of thc structure

building macros in the following ways, respectively: (1) Sequential control is

implemented through the iteration macro. The iteration macro generates a list

of macro calling sequences where each calling sequence is executed to completion

before the next calling sequence in the list is generated. (2) Parallel control is

implemented by the hierarchical macro. The hierarchical macro generates a

list of macro calling sequences as its son nodes'in the control data structure plus

specifying a clocking process that controls the initial sequencing of the son nodes.

The clocking process, in turn, executes control macros that control the execution

of son nodes. These control macros can activate a node without the control

macro's completion being delayed until the completion of the activated node, and

therefore, the clocking process does not have to wait for the completion of a node

before it activates other nodes, Thus, a clocking process can activate two o r

more son nodes so that they a re concurrently executing. (3) Conditional

sequencing is implemented by either a selection macro or a hierarchical macro

in which case the son nodes a re possible alternatives and the clocking process

selects the alternative. (4) Mopitoring and continuous sequencing is implemented

through the idea of time grain. The control structure of a process that i s being

monitored for a specified condition can be constructed so that the process is

activated so as to suspend itself after it has performed the smallest unit of work

which can effect the condition being monitored. Thus, before reactivating the

suspended process the condition being monitored can be checked, and if necessary,

an appropriate interrupt process activated. The concept of time grain is realized

through the use of a clocking process for .a group of son nodes together with the

ability to execute via a control macro an iteration macro for only one cycle

(calling sequence) per execution. (5) Indivisibility of processes is realized by not

allowing a control macro to execute a node which is currently executing or being

expanded.

The subsystem commands macros in conjunction with structure building .
macro a re used to define an I/O control structure which, for example, can ,

duplicate the effect of an 1/0 channel on a conventional computer. An I/O control

structure defined by a subsystem command macro can be considered a macro-

instruction when the functional unit being controlled in an arithmetic device.

This use of a subsystem command was exemplified by example 1. The idea of . .
a generali~~ed I/O control structure to control arithmetic units has been proposed

8 in a previous paper by the author, and also has been proposed by Lass as basis

of the design of a high speed computer.

C. Format of-SBL Macro Calling Sequence

An SBL macro calling sequence has a fixed format, and consists of an address,
L.

q,\and_two integer parameters, p and k. The address, q, specifies the location

of a macro body in the program memory. The integer values defined by p and k

a re the external parameters used in the expansion of the macro body. These

external parameters a r e stored in the control data structure' as integer values,

pointers to p or k parameters in other macro calling sequences stored in the

control data structure, or pointers to fields in the memory subsystem. In the

latter case, the pointer has two components, the first component is the beginning

bit address of the field while the second component is the length of the field.

This field in the memory subsystem is interpreted as an integer value where

the length of the field is smaller than the lenglh of fixed size integer data that

t h e IFL operates on.

This option of storing pointers instead of values for the external parameters

p and k greatly increases the ability to program emulators that directly mirror

the control actions of the emulated computer. The first type of pointer allows the

representation of the static data relationships between p and k parameters

in the control data structure. In the first type of pointer

facilitates the representation.of broadcast type control structures, and allows

modifications at one level in the control data struclure to be reflected in changes

at other levels in the tree which a re 11ut norlllally accessible from the first level,

The second type of pointer allows the state of emulator to be directly mapped on

to the state of the emulated compiltetr. '~'Ris rrnlapph~g ib a~coii~plished by otoring

part of the state of emulator in the memory subsystem histead.of entirely in the

process space rnemory. Thus, SBL operations on p and k parameters can be

directly reflected back into changes in the contents of the memory subsystem.

In particular, this second type of pointer capability is very valuable in the pro-

gramming of an emulator for a computer whose state vector is not separated

from its memory (e.g., the P D P - ~ ~ (' ~ computer whose program counter is

stored as register 7 in its memory) since the state of emulator (e,g., the address

of current instruction being processed, etc.) and the state of the emulated corn-

puter (e.g. , its program counter, etc .) can be made equivalent. Thus, the .
emulator does not have to process in a special way instructions of the emulated

computer that modify memory registers which contain p k t s of the state vector

of the emulated computer. Further, the second type of pointer capability allows

the state vector of an emulated computer to be stored in a single field in the

memory subsystem and references to it to be distributed throughout the control

data structure. Thus, by modifying a single field in the memory subsystem,

the control data structure can be modified to reflect a new state vector for the

emulated computer.

The expansion of a SBL macro q, based on p and k, generates the form of

a control structure and the internal parameters of the control structure definition

that a re not modified (constant) from one execution to another. After the expan-

sion of the macro q, the value of the expansion parameters p and k can be changed

by a control macro to p and E, and used as execution parameters of the process

defined by the expanded macro; The internal parameters, which vary from

execution to execution, a r e not calculated at macro expansion time, but instead,

a r e recalculated based on the execution parameters 6 and E, upon each new

execution* of the process defined by the control structure. The :programmer

can define which of internal parameters vary by setting appropriate fields in the

macro body. Varying internal parameters a r e distinguished from constant. in-

ternal parameters in the control data structure by storing, respectively, the

name of an IFL program in the parameter field instead of an integer value. Thus,

only dynamic parts of a control structure need be rebuilt on each execution, and

only parameters with varying values need be recalculated.

,A macro call contains only two parameters, p and k, because most sequential

control rules can be expressed in terms of the modification of, at most, two

variables at each step of the sequencing. Thus, the two parameters p and k

. represent the variables o r pointer the variables which a r e modifled at each
step of the sequence. The semantics usually associated with these two parameters

will be the following: the first parameter, p, represents the address of the data
A-

(e. g., instruction, parameter list, etc .) to be processed at the current step of

the sequence, and the second parameter, k, represents the value of a counter

that determines the termination of the sequencing.

Example 2

Consider the ALGOL statement: "FOR I - 1 step 1 until N DO A(I) -- B(I)

*C(I), ". The sequencing for this statement can be defined in terms of the

following list of pairs: (1, N) (2, N-1) . . . (i, N-i+l), . . . (N, 1). The first

element of the pair defines the value of I. The value of I i s then used as a

parameter to a macro that constructs the subsystem commands to carry

out A(Q B(I) *C(I). The second element of the pair, whose value is the

number of iterations that remain before the current iteration i s initiated,

i s used to define the termination condition of the FOR loop. The IFL

program that generates this list of pairs, as will be seen later, in example

17, can be stated in just one IFL instruction.

*
It may be advantageous to also have the option of recomputing internal p q a m -
eters when the process goes from the suspended state to the execute state. ' .

The 'taddress" of a data item is used in this discussion in a very general sense

to mean information sufGcient to determine, possibly by a calculation, either

the location of the data-item in the memory subsystem o r its explicit value.

The following notation will be employed in the paper for specifying a macro

name, a macro type, and a macro calling sequence. A macro name is specified

in one of three following ways: (1) a s a symbolic name which i s optionally sub-

scripted, e . g . , M, ai, a10 etc. ; (2) a s an absolute address in the program

memory enclosed in parentheses, e. g . , (0), (lo), etc. ; (3) a s an address arith-

metic expression involving symbolic names enclosed in parenthesis, e. g., (a+10),

(Mi+i), (Mo+Ai-Bi). The type of macro i s specified by appending D, I, S, IT, H,

o r C, a s a super'script to the macro name, e. g., MI, (o)', etc. The macro type

is optional and i s only added for reading clarification. A macro calling sequence

is defined by a macro name and optionally its type followed by two parameters

which a r e either symbolic names or integer values enclosed in parenlheses, e . g.,

~ ~ (0 . 5 1 , (1 0) ~ (0 , 5) , (M+51D(p, k), etc.

D. Subsystem Command Macros

The data-descriptor macro, when expanded, generates a memory subsystem

command. The memory subsystem command, when executed, activates the

memory subsystem to retrieve (or store) a single data-item. This command i s

defined in terms of three fields: the first field, f , specifies the format of the

data-item (1's complement, floating point, etc.), the second field, 2, specifies

the address in the memory subsystem of the beginning bit position 05 the string

of bits which denote the data-item, and the third field, specifies the length in

terms of the number of bits of the data-item, The execution of the memory sub-

system command results in the bit string bounded by addresses a and (a+Q-1)

being retrieved from the memory subsystem and then sent together with format

field, f , to a functional unit. If Q=0, then address a is used as an immediate

operand. The data-descriptor macro ncithcr specifies the particular functional

unit that receives o r generates the data-item, nor whether the operation is a

store o r fetch, These specifications of functional unit and operation a re defined

by the instruction macro that directly or indirectly activates the data-descriptor

macro calling sequence. Thus, the same data-descriptor macro can be used with

many functional units and may be used either for a store o r fetch operation. The

use of a format field, f , in the specification of both input and output allows the

functional unit to be very sophisticated in being able to perform, if desired,

arithmetic operations involving operands and results of different types and lengths.

This type of functional unit was proposed for ~8502'") computer.

The data-descriptor macro generates a memory subsystem command by cal-

culating values for the f , a, and Q fields (internal parameters). It determines i

the values for each of these fields by specifying in i ts body either a constant for

the value of the field or the name of an IFL program. In the latter case, the

named IFL program is called with the two garameters in the macro calling,

sequence, and the value returned by the IFL program becomes the value of the

field. The IFL program will be executed at the time of either macro expansion

o r macro execution depending upon whether the value of the internal parameter

calculated by the IFL program is a constant for all executions of the generated

memory subsystem command. .

The IFL program can involve an arbitrarily complex computation and,

additionally, as seen in .Fig. 2, can access the memory subsystem for data.

Thus, the generation of a memory subsystem command, especially the calcu-

lation of the address field, a, can be either a simple or complex calculation,

depending upon the nature of the IFL program invoked. The data descriptor

macro calling sequence, when expanded, is represented by the following figure:

*a box will represent a terminal node
I

Example 3*

Consider a computer with a 24 bit word in floating point format, and with

an instruction format in which bits 0-6 a re the op code, bit 7 is an indirect

bit, and 8-23 a re the address of the next word of the indirect chain. A

data-descriptor macro, OPFT, which generates a.memory subsystem

command that retrieves the desired data-item can be specified in the fol-

lowing manner: Let the p parameter of the macro be the virtual address

of an instruction of the emulated computer; the body of OPFT is defined

such that the f field is a constant that specifies the floating point data-

format, the Q field is the constant 24, and the address field, a, is

*
Examples 3, 4, 5, 7 and 8 form an integrated sequence that defines the
control data structure of an idealized von Neumann computer pictured in
Fig. 4 on page 32 .

calculated by an IFL program, (INDIRECT) which, using the parameter

p, generates the bit address of the last element of the indirect chain.

The expansion of the macro calling sequence OPFT (p, k) is then repre-

sented by the following figure:

I

MEM ,(floating point, INDLRECT (p, k) , 24)

The IFL program INDIRECT is not invoked at macro expansion time but

rather at macro execution time since the address ficld, a, of the memory

subsystem oommand will be recalculated for each execution of the macro

OPFT.

Thc instruction mauro, when expanded, generates an I,/0 control structure

that defines the interaction between a functional unit and the memory subsystem.

The basic form of the I/O control structure generated by the instruction macro

is very similar to the basic form of the control structure generated by the

hierarchical macro; that is, a group of son nodes together with a clocking process. ,

The basic difference between these two types of control structures i s the format

of the clocking process that is used to sequence the son nodes. The hierarchical

macro clocking process is an arbitrary process while the instruction macro

clocking process has a fixed format. 'l'he son nodes of an instruction macro

specify the data-accessing procedures which fetch (store) the input (output) data

sets of the functional unit. The built-in clocking process of the instruction macro,

ICP, is activated with four internal parameters: - fu, the name of a functional

unit*; - in, the number of input set generator nodes (the number of output set

generators a r e the remaining son nodes); cf, control information sent to the func-

tional unit; - 3, an addrcoo in thc mcmory oubcyctcm whcrc tho etatue of tho

functional unit at the termination of i ts operation is stored. The internal param-

eters fu, cf, and s can, if desired, be recalculated for each execution of the

fu can also refer to an IFL program which simulates the action of a functional -
unit. 'The use of apseudo-functional unit will be discussed in V. D.

instruction macro. However, the parameter, - in, can be only calculated at .
macro expansion time since it relates to the form of the I/O control structure.

The instruction macro calling sequence, when expanded, i s represented by the

following figure:

The clocking process ICP when executed, activates the functional unit - fu with

control informatioqcf, and then waits for a request by the functional unit for input

o r output data. When input data is requested, the calling sequence ql(pl,kl) i s

activated to generate a single input value. Upon further requests for input '

ql(pl,kl) is executed again until it produces no more data (e.g., it is terminated)

and then q2(p2,k2) is activated. The same process is then repeated with q2(p2, k&.

If an output is requested, qin+l(pin+l, kin+l) is activated to store a value. Upon

further requests for output, an analogous process to the input case just described

is carried out. A functional unit can also operate in the mode where it requests

all its input data simultaneously, in which case all the input generators I1.. 'Iin

are s i n ~ u l t ~ ~ e o u s l y activated to generate inputs. At the termination of operation

of the functional unit, the status of the unit is stored starting at address s in the

memory subsystem.
I

Example 4

Consider the computer detailed in the previous example. An instruction
I - macro INSTFORMAT (p, k) which generates a functional unit subsystem

command that emulates instructions of this computer can be defined in the

following manner, Let the p parameter of the instruction macro be the

virtual address of the instruction to be emulated, and assume that the

implicit second operand and result operand of the instruction is the accu-

mulator, The body of INSTFORMAT is defined such that the following

control s tructure is generated.

where fu is calculated by an IFL program, defined in the macro body
I INSTFORMAT , that extracts bits PO-P6 from the memory subsystem, . .

D . ..
and ACC .(p, k). generates .a fixed data-descriptor which represents the . . .

m e n in thc mcmory ~ u b s y ~ t e m 'set aside as the .acciirnt~lator. . .

The instruction macro can also be used to construct I/O control s tructures

that represent a pipeline of functional units. The pipelining of functional units

makes unnecessary the use of the memory subsystem a s a temporary storage

buffer for data that passes directly from one functional unit to another. An

example of a control structure for a two level pipeline (inp-- + - out)

is the following:

The semantics associated with execution of this control structure is the following.
I ' D The execution of q activates functional unit, fu,, with input, generated by INP -

I I The output of ful is then stored by ql. But, ql is an instruction macro.. In that

case , the output directed to q; is sent as an input value to fu2 after all the input
I data generators of 'q a r e exhausted, In this particular example, there a r e no
1

input generators so that output of ful is immediately gated into fuy Thus,

creating a two-level pipeline. Trees of functional units can also be created by

thi's same mechanism'; except in this c a s e of a tree'of functional units, the control

'structure is' s e t up so that the instruction macro is requested to produee an input

hsteakl of storing'.an output. The output generated by the instruction macro is

then.outpktted when all the output se t generators of the functional unit a r e

exhausted.
. ,

The semantics 'of the data-descriptor macro and-the instruction macro have

.been chosen 'so a s to' clear ly divorce the function of data-accessing f rom the

computational algorithm (functional unit) . T.his separation then facilitates 1) the

definition of 1/0 control s tructures which directly emulate different types of IML

instruction formats and 2) the incorporation of functional units into the functional

unit subsystem that have complex input and output requirements (e. g., a matr ix

nlultiply unit, etc .) .
,

E . s t ruc ture Building Macros
' . .

1. Sequential Control Structures . .*
The selection macro se rves the same purpose in the SBL a s does the Case

statement in ALGOL, the Computed Go To statement in FORTRAN, o r the data-

dependent jump instruction in machine language. The selection macro provides

a mechanism which allows the conditional expansion of a node in the control data

stru&ture. In ess'ence, the s'election macro defines a one-level decoding t r ee

which resul t s in the generation of an arbi t rary macro calling sequence. The
S expansion of a selection macro, q (p, k), resul t s in the generation of another

- - -
macro cl(p,k) where the values of q,p, and a r e either constants specified in the

macro body o r a r e computed by an IFL program using p and k a s parameters.

The selection macro, 'when expanded, produces the follolving structure in the

process space memory:

where SEL is

ates and then

a built-in control process with five 'internal parameters that gener-
- - . -

executes the nlacro calling sequence q(p, k) a s its brother node. The

internal parameter q is an address in the program, memory, and is added ,to the
0

integer value, INC, so a s to generate the address of macro 4. The parameter

q can be thought of as the base address of a vector of alternative processes 0
while INC. is an index into the vector that determines the desired a1;ternative.
The internal parameter q relates to the form of the selection control. structure,

0
and thus cannot be computed after each new .execution. The internal parameter

- - -
c is control information that defines how the. macro calling sequence q@, k) will

S be activated when q is executed? , . f

\

Exai11ple.5, ... _ a _ i l .
, - =.-... , , .

. Consider a computer with sever a1 different instruction formats. 'l'he

emulation of instructions of this computer could be progran~ined by ..

having a separate instruction macr? INSTFORMAT' for each instruc-
S J'

tion format J. A select'ion macro INSTDECODE could then be used to . . _ '

select the correct instruction macro for each emulated instruction. . -. .-
. . , .

. , .
The iteration macro serves the same purpose in the SBL as does the

. .

FOR-LOOP 3 in ALGOL, . . the DO-LOOP . . in FORTRAN, o r the MAPCAR function
. .

in LISP. The iteration macro provides a mechanism for building sequential . '
processes. An iteration macro, 2T(p, k) , defines a sequential process by

I . . .

generating and executing a list of macro calling sequences:
. .

The iteration macro defines only a sequential process because each macro calling

sequence q.(p ki) is completely executed before the generation of the next calling
1 is

sequence ki+l). The iteration macro, qlT, when expanded produces

the following structure in the process space memory;

where SCP (Sequential Clocking Process) is a built-in clocking process that

generates and then executes successive elements of the list of macro calling

sequences. The SCP, after the generation of each calling sequence qi(pi, ki) ,
then executes this calling sequence a s its brother node. The iteration macro

may be activated by a control macro so that only a single macro calling

sequence q.(p., ki) is executed, and then after the termination or suspension of
1 1

this calling sequence the iteration macro is suspended. Upon reactivation of the

suspended iteration macro, depending upon whether qi(pi, ki) is terminated o r

suspended, respectively, either the next calling sequence qi+l(pi+l, ki+l) will be

generated sind then executed or else q.(p ki) will be reactivated.
1 i'

The clocking process SCP is activated with five internal parameters : the

f i r s t two parameters, M and V, a r e the addresses of IFL programs; the third

parameter, c , specifies control information; the remaining parameters p k
0' 0

, a r e used to construct the initial calling sequence in the list. The M program

called with parameters (p k.) computes q the location of a macro. he V
i' 1 i+l '

program, also called with parameters (p k .) , computes (p k.) , which a re
i' 1 i+l ' i+1 . .

the.corresponding parameters for q i+lo The M and V internal parameters relate

to the form of the iteration control structure and thus cannot be varied from

execution to execution, The clocking process SCP terminates the generation of

calling sequences when kn+l = 0.

Example 6

Consider the Algol Procedure :

PROCEDURE FORLOOP (A, B, C, N) ;

ARRAY A [l:N], B [l:N], C [l:N];

INTEGER I;

FOR I -- 1 step 1 until N

DO A [I]-- B [I] * C [I];

END

. .

This procedure can be represented in terms of the following control data

structure :

SC P(STAT , INDEX, 1, O , n+l)

l[CP(*, 2,cf, s)

where parlist i s a pointer to the parameter list (A, B, C, N) ; INDEX is an
I

IFL program that generates the sequence of pairs (1, N) (2, N-1) . . . (N, 1);

and ARRAY is a data-descriptor macro that retrieves (stores) the ith word

of an array. 1t i s assumed the data elements of the array a re 24 bits in

width. This control structure, once expanded, need not be reconstructed

for further calls, only the value of. parameters A, B, C, arid N

need be recomputed on each execution.

The control information c is used to define how the macro calling sequence will

be activated; namely, if q. is itself an iteration macro, whether it will be activated
1

either for a single cycle and then suspended, o r whether it will be activated for

the entire list of macro calling sequences and then terminated. Thus, the time

grain (smallest unit of work which can be controlled) of a conW61 swucture that

is constructed out of a ser ies of successive functional decomposition of a sequen-

tial process can be set at any desired level in the decomposition.

Consider the iteration macro, A''''(~, k) , which when executed generdtes
IT and executes the following list of macro calling sequences B (ply kl), . . .,

IT IT B (pn, kn). Likewise, consider B (pi, ki) which when executed generates

D -
and executes the following list of macro calling sequences C (ply El), ,

D - - C (pm, km) . If the iteration macro AIT i s executed for a single cycle,

and the c parameter associated with SCP node of A is set for a single

cycle execute, then AIT will be suspended after the completion of each
D - data-descriptor macro C Thus, in this above case, the time

grain of AIT is the complete execution of macro cD. While if the c

parameter i s se t for execution until termination, then A'* when executed

for a single cycle will be suspended after the termination of iteration
IT -

-

macro B (pi,ki). Thus, in this latter case, the time grain of AIT i s
. Trn

the complete execution of B" .
. ,

Another important property of the iterated macro is that generation of the

macro calling sequence qi+l(pi+l, ki+l) may be affected by the results of executing

the macro calling sequences ql(pl, ki) . . qi(pi, kJ . The execution of a macro

may produce side effects by modifying the contents of the memory subsystem o r
4

the control data structure which in turn may effect the execution of the M and V

programs. This ability to alter the generation pattern of iteration macro via

side effects is crucial to defining the sequencing of machine language instructions.

Example 7
. . . .IT Consider an iteration macro INSTEXEC (p, k) which generates the follow-

s s ing sequence: INSTDECODE (pl,kl), . .'. INSTDECODE (p i k ... where

p. is interpreted a s the address of an instruction of an emulated'computer,
1

and ki is the state vector of the emulated computer. The selection macro
S I INSTDECODE in turn an instructor macro INSTFORMATJ(piYk&

where J refers to the format of the instruction stored at pi. INSTFORMAT:
. . . .

when executed carries out the semantics of the instruction at location pi.

Therefore, the iterated macro can be thought of a s the sequencing unit of

a computer, the selection macro as the decode unit, and the instruction

. macro as the arith~netic and logic unit. This control structure in this ex-
; ample can be very easily extended to' include an interrupt structure: All

that is required is to set up a clocking process that activates INSTEXEC
IT

for one cycle at a time, and then checks whether an interrupt requires

.. . processing. In this case, the time grain is .se t as the execution of a single

emulated instruction. .f

The iteration macro can also be used to construct data-accessing procedures

when qi(pi, ki) is a data-descriptor macro calling sequence. The iteration' macro

in this case can be considered an operand name generator and the data-descriptor

macro a value generator. An additional use of the iteration macro is the building

up of a . co-routine . structure since the iterated macro holds its statk. when sus-

pended. By combining these two uses of the iterated macro (as a data-accessing

procedure and a co-routine), a stack data-accessing structure can be constructed.

2. Nonsequential Control Structures

The hierarchical macro provides a mechanism for defining control structures
. .

that contain more than one clocking process (path of control), l2 especially con-

trol structures that distribute control through a hierarchy of control levels, A

distributed control structurc, constructed by a sequence of hierarchical macros,

can be used to define, depending upon the number of clocking processes that a re

simultaneously executed, either quasi-paralle113 or parallel control structures.

In addition, many sequential control structures can also be easily defined in terms

of a distributed (quasi-parallel) control structure, e.g., a subroutine call

mechanism: the execution of the subroutine call suspends the clocking process
. -

of the caller, and activates the clocking processof the subroutine; the return

from the subroutine then terminates the clocking process of the subroutine and'

reactivates the clocking process of the caller. The block structure and procedure

calls of ALGOL and co-routines are other examples of sequential distributed

control, structures. ,In essence, the hierarchical macro allows the s t r u h r e of

a c,omplex process to be functionally decomposed into a set of executions of less

complex processes. Thus, the hierarchical macro, in order to represent this

functional decomposition, must define (1) the set' of less complex processes, and

.(2) the sequencing algorithm (clocking process) for this set of processes,
H The hierarchical macro, q (p, k) , when expanded, generates a list of macro

calling sequences :

ql(~l 'kl) ' q2(p2.k2) ,

and then expands a macro calling sequence (q+l) (p, k) . The macro (q+l). is a

clocking process that controls through the execution of control macros the initial

sequencing of the list of macro calling sequences. The list of macro calling

sequences is generated using the same mechanism, SCP(M, V , c , pO, ko) , employed

by the iterated macro to generate a list. Except, in this case, the generation

pattern of the l ist cannot' be altered through side effects since a macro calling

sequence in the list is not executed until the entire list is generated. The

control field c in SCP in the case of hierarchical macro is used to define a

default value for control information associated with the execution of each

qi(pi, ki) The list of macro calling sequences after i ts generation is stored as

son nodes of the hierarchical macro in the control data structure. The expansion

of a hierarchical macro results in the generation of the following structure in

t h e process space memory:

The macro calling sequence (q+l)(p, k) is enclosed in a dotted box to indicate

that the results of expanding the calling sequence (q+l) (p, k) is placed in the process

space memory rather than the actual calling sequence (q+l) (p, k) . Thus, if (q+l)
H

is an iteration macro, then the expansion of q (p, k) would result in the following

control data structure:

H The execution of q (p, k) in this above case results in the execution of the built-in
- - - -

clocking process SCP(M, V, c , Po, to) which sequentially generates and executes a - - - - - -
list of macros calling sequences q (p ,I;) . . . qi(Pi,Ei) The results of

1 1 1
executing this l is t of macro calling sequences, in turn, define the initial sequencing

of ql(pl, kl) . . q (p , kn) . The clocking process call sequence (q+ 1) (p, k) does n n
not have any characteristics which distinguish it from other processes defined by

the SBL. Thus, a clocking process can be of arbitrary complexity and only the

p'arts of its structure which a r e changed on cach cxccution need be modified. A

t r e e of arbi t rary width and depth can then be dynamically generated . . since t h e ,

macro q. may itself be a hierarchical macro.
1 * , , , . . .

Example 8

Consider the emulation of a conventional von Neumann computer organiza- , .

tion with an interrupt structure. The basic form of the control . . structur'e

for an emulator for this type of computer can be constructed by combining

together the control s tructures discussed in examples 3, 4, 5, and 7, and
. .

then adding a hierarchical macro that specifies the interrupt structure.

Figure 4 represents this control structure, where SEQUNIT is a clocking

FIG. &-The control data structure for an emula.br of a von Neumann . . :
computer organization with interrupt.

I .

process that activates IN ST EXEC'^ for one cycle (instructio~~) a t a time,

and then checks whether m iiiterrupt reyuires servicing; if it does, then

INTHANDLER is executed, else IN ST EXEC'^ is reactivated and the basic

sequencing cycle is repeated.

The hierarchical macro can also be used to construct distributed control

s tructures which a r e not conventionally represented in t e rms of a t r ee structure.

Nontree like control structures can be represented, because, a s previously

discussed, the dynamic sequencing of the t r e e (which is defined by clocking

processes of arbitrary complexity) is separated from the generation of the t ree +

structure. The sequencing of sibling nodes is, therefore, not restricted to a

predefined se t of built-in sequencing patterns since the clocking process is an

arbitrary program. In addition, the time grain of a process defined by a

hierarchical macro also can be arbitrary since the time grain of the clocking

\ process is programmable.

Example 9

Consider the parallel control s tructure defined by a fork-join instruction. 14

The hrk-join control structure is normally represented in terms of the

directed graph in Fig. 5a. However, if the correct clocking processes a r e

attached to a t ree of processes, then the fork-join control structure can be

, represented in terms of a t r ee , a s viewed in Fig. 5b: the clocking process

Control-1 sequentially executes the proqess specified by macros "PARL AB."

and C. Control-:! clocking process executes processes A and B in p,&allel,

and is not terminated until both processes A i d B a r e terminated.

3. Tree Struchred Addressing

The controlmacro and IFL refer to (address) proctisses (macrb calling

sequences) in the process space memory either through. their 'absolute location
. . .

in the process space memory dr their relative location in the hontrcil data struc-

ture t ree with respect to the addr6ss of either the Control micro calling sequence

o r the macrd calling sequence'that invokes the IFL program', ' In general, a node

in an arbitrary t ree structure requires k .to specify' its address

uniquely, where k is the depth of the node in the tree. However, by employing

relative addressing for node .Bpecification and restricting the part of the trek

that can be addressed from any node, the address of a process can be specified

in terms of two paranleters, The reslriction on accessing only part of the t ree

corresponds very closely to the restriction placed on accessing variables in a

rreslecl Lluck slructure in ALGOL and 1s not a serious practical limitation,

Further, this relative addressing mode, if necessary, can be overridden by using

absolute addressing nodc.

The relative addressing schema is a two step process, each step using one

of the paramete'rs. The first step, using a parameter to indicate the number of

times applies the father (antecedent) relation recursively to the relative base

node. The second stcp, using a parameter to specify the iluniber uk the brother,

locates a particular brother of the node which results from the first step. The

address schema, where (n, 1) a re the two parameters, can then be specified by
1 n the following formula: (brother .father . base-node) . Iu t11e case uf 111e absulute

address node, the addressing schema is (brother1 .n) where the parameter N is

the abso1ute.address of a node.

Consider the following tree:

then using E(1,2,2,2,2) a s a relative base node

2 - 1 addresses A (1, 2, 1)

(2,2) addresses B (1,2,4)

(0 a d d r e s s e s c (1,2,2,2)

(0 -1 a.dd.ressc?s D (1,2,2, 2, 1)

In general, if a base node address is (aly a2, ., . a) then relative address n
(i, j) refers to node (a a . . . a 1' 2' (n-i-1) ' (Tn-i) +j)) a

This relative address capability can be used very advantageously in the definition

of recursive distributed control structures since a clocking process does not have

to know the exact level of the t r ee it is controlling. Thus, the copies of a single

clocking process can bc uscd to control different levels of the t ree ,

Synchronization, and Cont~ol. a.nd na.t.a. T,inkage Among Processes

The previous sections in this chapter have described the form, the method

for constructing and the addressing structure of the control data structure, This

section will now detail how the control macro, which is the basic building block

of. clocking processes, uses the control data structure a s a syntactic framework . ..

within which to define nonsequential control. structures.

The control macro combines the control functions- of process acthation

(including parameter passage) and process synchronization, The control macro

performk these control functions through operations on the data stored at a node

in the process space memory. This data can be considered the state vector of

a process, where the process is defined by the control structure generated by

the macro calling sequence stored at the node, This process state vector con-

tains seven components (q; p, k, s, c , r , d) where q, p, and k is a macro calling

sequence, s is the current s tate of the process, c is control information associated

with the activation of the process, and r and d a r e pointers to nodes that, respec-

tively, define the immediate global control and data environment of the process.

The control information, c , specifics thc timc grain of the process, the conditions

for the process signalling its external clocking process, an3 the conditions for

rebuilding the process' control structure; the time grain of a process can be

defined to be the execution of the process' internal clocking process for either a

single cycle o r until it is terminated; the time grain of a process defines at what

points a process ' activity can be suspended. A process can signal its external

clocking process when the process1 state is expanded, suspended, terminated,

or either suspended o r terminated. The immediate global control environment

pointer, r , conventionally called a return link specifies the address . of , this

external clocking process that will be signalled. The c component also specifies

whether a process' control structure will be partially rebuilt after each execution

of the process, o r either partially o r completely rebuilt after the process is

terminated. The immediate data environment pointer, d, is used by the t r ee

address mechanism to locate nodes in the_process space memory. 'Phe values

of r and d when a node is initially generated are , respectively, the addresses of

node's clocking process and father. However, these default options for r. and d

can be overridden by the control macro so as to crea te a conlirol .data s,tructure

for the passage of control which is not a t r ee structure, . , .

Example 11
15

. Consider the following ALGOL program, discussed in a repor t by Shaw :

A: begin rea l al , ...; a . - n'
procedure r;

begin rea l rl, o:, r - - m'

end r; -
Al: r;

end A

P i3 callcd at A l ; aftor r is called r ~ c i ~ r s i v e l y for the first time a t R, the

control data s tructure has the following form:

In this example, the immediate global data environment is the same for

both instantiations of R. This example points up the distinction between

the control and data environment of a process, and the necessity for being

able to construct each of these environments independent of one another

and to override the normal t r e e structure discipline for representing

control and data relationships among processes.

A node contains, in addition to process state vector, the address of the

node's f i r s t son. The locations of a node's siblings a r e implicitly defined .since
. .

sibling nodes are stored in consecutive locations in the process space memory.

The control macro, qc(p,k), when expanded, generates the following control

s tructure:

where CM is a built-in clocking process with four internal parameters. The

f i r s t two parameters, n and 1 specify the relative address of a node in the control

data structure. The third parameter , svt, is a template for a process state

vector where for each of the component of vector there is stored in the template

either a value o r null symbol. The fourth parameter, syn, is used. to synchronize

the activity of the control macro with the activity of the process located at (n, 1) .
The execution of the built-in clocking process CM results in the modification

of the s ta te vector of the process located a t relative address (n,l) in the process

space memory. This process ' state vector is modified by replacing the value of

each of its components by the corresponding svt component whenever this corre-

sponding svt component is not null. Thus, only the components of the state vector

of the activated process which vary from execution to execution of the process

need be recalculated and then replaced by the control macro. The static compo-

nents of a process state vector (the fixed control and data linkages of a process)

a r e defined either by default options when the process' state vector is initially

generated o r by the control macro which initially expands the macro calling

sequence that defines control s tructure of the process. Thereafter, the control

macro that activates the process has a template state vector whose components

a r e null whenever the corresponding components.of the process' state vector a r e

static. At the same time as the modification of the process' state vector is

completed, the s component of the state vector of the C M clocking process is

modified, depending upon the syn parameter, to be either the suspended o r the

terminated state. Through this mechanism of simultaneous modifying of two

s ta te vectors, the activity of one process can be s,ynchronized with activity of

another process.

Example 12

consider two A and B, where process A calls process B a s
. .

a subroutine. Process A performs the subroutine call by executing and

then waiting for termination of a CM clocking process. In turn, the

CM clocking process activates the process B and modifies B's state

vector s o that process B will signal a re turn when it is terminated, and

this re turn will be to the CM clocking process. At the 'same time, the

syn parameter of CM is se t up so that after process B's s tate vector is

modified the CM clocking process i s suspendcd. When process B is

terminated, CM will then be re-awoken and will go to the terminated

state. This action in turn will allow process A to continue processing

since process A has been waiting on the completion 'of the CM clocking

process. If prdcess A was.not synchronized with the activity of process

B then sgn parameter of CM would be set up so that after process B is

activated the CM process is terminated. Thus, process A after process

B is activated will immediately continuk processing. Process A while '
,

waiting fo r CM process to terminate is not suspended because the action ,

'of suspending process A may be significant to A's external clocking
. . %

process since the suspending of A ineans that process A has completed

a time grain. Thus, this implementation of subrouthe cal l .permits A's

external clocking process to view A as'executing while process B is

executing, but at the same t h e A"s internal clo'cking process is waiting

on B's completion.

 he CM clocking can only' activate a' process for execution (e. g. ,
change the s component of the process ' s ta te vector to executing) when the process '

current s tate is unexpanded, expanded, suspended o r terminated. In the case
., .

that CM clocking process &tempts to execute an already executing process, the

CM clocking process either is suspend6d o r goes into a busy wait until the process

to be execute4 is no lbnger executing. The tifile grain of the node that generates

the CM determines which 'one of these options is taken: if the time grain i s a

single cycle the CM is suspended, otherwise it busy waits. Thus, if two processes

simultaneouslyissue CM1s which activate the same node (shared process), only one

CM will be allowed to execute the shared process. The other CM will then either

wait till the shared process is complet.ed, or possibly at some later time t ry to

execute the shared process. This paradigm for sequentializing the. execution of

a shared process ca.p then be. us,e3 as basis for constructing synchronizing prim-
. . . ' .)

itives for cooperating processes.. , ,

. , . ,

Example 14 . ,

Consider the. implementation of ~ ~ k s t r a ' s P apd V semaphores in terms of

the CM clocking proc.ess. Let PV be a shared process where the p compo-

nent of its state vector is t h e name of se&aphore'variable to be operated

on, the k component of its 'state vector indicates whether a.P o r V operation
. .

is lo be performed, and the r component. . i.s : . the address of the process that

activated P.V. A process Li performs P or V semaphore operation by

generating a CM clocking process whose .. . time grain is' termination, &
. .

parameter in the case of P operation ~pec i f i es suspended . . while for a V

op,eration specifies terminated, (n, 1) . par&neters . ,specify the relative address . .
of thc PV process, and the s& contains the, correct calling sequence for

. .
either a P or V operatipn. . . The PV when executed by for . a . P

operation checks whether the ?emaphore . . variable specified in the calling
. .

sequence can be decremented, if jt can, then the operati& is completed

and the PV process is suspended. This suspension of PV results in ter-

mination of CM which then permits process ii to continue. ln the case that

semaphore can not be decremented, the P V process modifies its own state

vector component so. that it dbes not return to ClU when ~t 1s sl.tspen.deA,
It then. extracts, the address of the C'M process from its state vector, places

this address in queue associated with the semaphore name, and suspends

itself. Thus, the CM clocking process still remains . . in the suspended

state, and therefore process E. can not continue. The PV' process. when
.

1 .

executed for V operation increments the semaphore variable, and then
9 '

checks. whether there is a queued CM process on that semaphore variable
. .

that can now be executed. If there is,. this CM process address is stored

in the r component of PV state vector, and PV process then suspends-itself

which results in the queued C'M process to be re-awoken. The CM
clocking process that executed the PV process for a V operation termin-

, .
ates immediately after the PV proc.ess, state vector has been,'modified,

and thus L. can continue processing while V operation is bei,ng dbne. If
1

the PV process is busy, when CM attempts to execute it, then CM goes

into a busy wait, however, this busy wait is not on a semaphore variable

I but only on the process which updates the semaphore.

The CM can also be used to create a new copy of a process (node) instead of

.calling a shared.process. This creation of new node occurs when the (n,l)

. . parameter a r e (0,O). The new node is the 'root node of a separate tree, and only

the C M clocking process can access this tree. It may be also advisable, for

efficiency reasons, for a CM clocking process to be able to simultaneously acti-

vate all the sibling nodes at level, in t ree , and then be able to wait for all of them

to signal a.return.

V. INTEGER FUNCTION LANGUAGE (IFL)

The IFL is a highly specialized micro-code language designed specially for

the task of address arithmetic computations. The output of the address arithmetic

computations performed bythe IFL a r e then used in the expansion'and execution

of SBL macros. The format of IFL instructions and SBL macros .are very similar;

each is called-with. two parameters; and each has an expansion and execution phase.

In fact, the execution of SBL* and IFL statements. can be intermixed, and the same

syntax will be us'ed to define an IFL instruction calling sequence as is used to de-
F

fine an SBL macro calling sequence (e.g., q (p, k), (10)(p, 5) , etc., where F is

for the convenience of the reader to differentiate an IFL call'ing .sequence). The

basic difference in a conceptual sense between the IFL and SBL is that the execu-

tion of an IFL instruction results in the execution of a function which .returns an

integer value whereas the execution of SBL macros results in the execution uf a

process. Thus, the IFL instruction can be considered a f'functional macro".

Thc basic reason for not defining address arithmetic algorithms interms of anSBL

.contr6l-structure stems from the use of a different control structure for address

arithmetic functions than that for processes,. In particular, the control structure

for defining address arithmetic functions can be much less complex and variable

than that required for processes. Thus, the sequencing schema for IFL instruc-

tions is built-in rather than explicitly defined, as in the case of the sequencing

for SBL macros. Address arithmetic algorithms can, therefore, be executed

without .the overhead of a variable control structure used for defining a process

control structure.

Before formally defining the syntax and semantics of the IFL, it i s worth-

while to note the following characteristics of the IFL which differentiate it from

conventional micro-code instruction sets:

1. Parallelism: the IFL can execute, wherever appropriate, parallel

(concurrent) activity in an address arithmetic computation.

2. Modularity: complex IFL program can be easily constructed out of

calls to other IFL programs (the concept of a recursive function is

an integral part of the control structure of the IFL); each IFL instruc-

tion is called with two parameters and then returns an integer value,

*
The execution of an SBL macro in the context of an IFL program results in the
expansion and then complete execution of the macro. After its termination, the
next statement in the program memory is executed, and the control data structure
in process space memory resulting from its execution is garbage collected.

3. Reentrancy: the IFL interpreter does not have a fixed se t of registers

but, instead, regis ters a r e dynamically created through the passage

of parameters , ' .

4. Simplicity: the syntax (format) and semantics of an IFL instruction

are uniform (regular) and simple,

A. Format and sequencing of IFL Instructions

The format of an IFL instruction qF, which is stored in a word in the pro-

g ram memory, consists of five identically formatted fields, f A , Bq, Kq, Qp.
q' cl

The format of a field consists of an m bit interger*, c , plus a 2-bit descriptor

field, d, that defines the method for calculating the value associated with the

field; a field is represented by the following notation: (d,c) .. The value associated

with a field is calculated, depending upon d, in one of the four following ways:

1. c ;
. . 2 . p+c;

3. k+c;

4 0 (q + ~) ~ (p, k) 0 .
F

where p and k a r e the parameters used to call an IFL instruction q:q (p, k). .

These three parameters , q, p and k, of an IFL instruction calling sequence, can

be considered in t e rms of a conventional micro-computer organization a s the

current values, respectively, of the program coynter, accumulator, and index -

register . . .

The expansion phase of the instruction calling sequence q(p, k) is the parallel

evaluation of the five fields, f , A , B ,K ,Q based on the above rules. These
q q q q q '

five fields have the following semantics associated with their. values : f (the
q

name of dyadic integer function which is .the op-code of the IFL instruction q) ;

A and B (parameters for the function f), K (a counter used to define termina-
, . , q . q cl
tion of sequencing), and Q (an increment used to indicate the relative address

with respect to q of the next IFL instruction).

*
The maximum size of c which is dependent on m does not have to have an rela-
tionship to the'maximum size of addressing space in the program memory o r
the memory subsystem. The choice of a value for m will be based on consider-
ations of code density.and speed of execution.

Example 14 . .

Consider the IFL instruction FACT which has the following . . five field

formats : .(I, "*'.')., (2,O) , (3,O) ,: (3, -I), (1; 0). .The expansion phase of.

FACT(p, k) then resul ts in the five fields having,. the, following. values :

=k, K f FACT=*(mul t i~ l~) AFACT=p; BFACT, FACT . - 1 . and QFACT=O;
. .

. .
, . . .

These five values generated by . . the . . expansion phase a r e the! usid . in . the

execution phase of q(p, k) to define the execution semantics and sequencing of
. I .

IFL instructions 'in the' following manner:
. . , .

. . . .

q(p, k)F- if k=0 then p else (q+Q)F (f (A , B) , K) . '

c(q q R q
. .

This paradigm for execution of IFL instructions results in the generation of a

sequence of triplets: (qo,p0,.kd (q l J ~ l , k l) ... (qn,pnJkn) (qn+l,~n+l,O)p

where %=q, pO=p, ko=k, and fo r i 2 0, = f (A , B), ki+l =K apd
qi qi qi 9 i

'it-1 =qi+Q The value pn+l is then returned to the process that called qo.
q i . .

Example 15
/

Consider the IE'L instruction, FACT, discussed in Example 14. The exe-

cution of the calling sequence FACT(p, k) then results in the following cal- '

cula.tion:
. ,

FACT(p, k) .- i£.k=O then p e lse (FACT+O). . . (p*k, k-1)

If p and k have the following initial values of,' respectively, 1 .and N,' then

FACT(1, N) when executed cdcula tes N! in the following iterative manner: '
% .

FACT(1, N) + ii N=O . . then 1 else (J!Ac'~'+O) (N A l , N-I) FACT(N, N-1)
. ,

I

FACT(N! , i) , if i = O then N! / i l e lse FACT(N:/(~-1) I , i-1)

. .
This calculation generates a sequence of triplets: (FACT, 1 , N)'

(FACT, N,N-1) . b . (FACT, ~ ! / i : , i) . . .~ (FACT, N! , 0)

The sequencing pa r t of the execution paradigm fo r IFL instructions is very

general, and allows a s special cases, iterative, straight-line, and conditional

sequencing of IFL instructions, plus a value re turn mechanism.

1. iterative sequencing, a s seen in example 15, occurs when Q = 0,
. . q -

then q(p, k)- if k=O then p e lse q(pl, kl)

2. straight line sequencing occurs when Q = 1, then q(p, k) , if k=O then
q

p e lse (q+l) (pl, kl) ; in addition, if k is always not zero when q is called,

then q(p,Y.- ! q + l) (~ ~ , k ~) '

3, conditional sequencing occurs when the field Q is an expression ra ther
q

than a constant.

4. a value re turn occurs when K =0, then q(p, k) .- if k=O then p e lse (q+Q)
q q

(pl, 0) , but (q+Qq) (pl, 0) = pl, and thus q(p, k)- if k=O then p e lse p 1;
in addition, if k is always not zero when q is called, then q(p, k) ,p

1'
In addition, parallel and recursive sequencing of IFL instructions may be

programmed. Paral lel and recursive sequences of IFL instructions a r i s e because

the values associated with five fields can be calculated in parallel and may resul t

(when the descriptor, d , of a field is equal to 4) in the calling of an other IFL

instruction.

Example 16

Consider the following two IFL instructions, X and Y, which have the

following field values :

X ={f =*, A =Y(p,k), B =k, K =0, Q =o} x X X X X

Y ={f =+, A =p, B =0, K =k-1, Q =-I)
Y Y Y . Y Y

where Y = (X+l)

The execution of the calling sequence X(p, k) then results in the following

calculation:

X(p, k) - if k=O then p e lse (X+O) (Y(p, k) *k, 0) which is equivalent to

X(p, k) + if k=O then p e lse Y(p, k) +k, where
. .

Y(p,k)- if k=O then p e lse (Y-l)(p,k-1). however

X(p, k) only cal ls Y(p, k) when k#O, and also (Y-1) =X.

Thus Y(p, k) .- X(p, k-1) ; and then

X(p, k) .- if k=O then p e lse X(p, k-1) *k

If p and k a r e initially, respectively, 1 and N, .then X(l , N)

calculates N1 in a recursive manner since:

X(1, N) .- iC N=O then 1 else X(1,N-1) *No

The SBL and IFL interact through the generation by the SBL of'an IFL
F

calling sequence, q (p, k) . The resul t of executing this calling sequence is the

re turn of either a single value pn+l, o r each pair in the sequence (p k) . . . 1' 1
(p , k) . This latter type of return is used to define the execution of the iteration n n
macro and results in a co-routine type interaction between the SBL and IFL since

the IFL program is suspended after each pair (pi, ki) is generated.

Example 17

-' consider the sequence of pai rs (1, N) (2, N-1) . . . (I, N-I+l) . . . (N, 1) used

in defining the iteration macro that represents the ALGOL' statement for

I, 1 step 1 until N do A [I j .- B[I J * C[I J . This sequence of pairs call be

generated by the IFL instruction, INDEX, which has the following field

vnfilc.a, f - 1 1 , 1 1
INDEX *INDEX*, B ~ ~ ~ ~ ~ - l ' ~ N D E X 4-1, and Q INDEX='O

The IFL instruction calling sequence INDEX(0, N+1) when executed then

generates the following sequence of pairs : (1, N) . (i, N+l-i) , (i+l, N-i)
(N, 1) in the following manner:

INDEX(i, N+1-i)--if (N+l-i)=O then i e lse INDEX(i+l, N-i)

In order to clarify the discussion of IFL programs presented in later sections,

the assembler notation specified in Table 1 will be used for describing IFL instruc-

tions and programs. This symbolic notation for IFL instructions can be mapped

directly (one-one) into actual Ih'L instructions. The major purpose of the assem-

b le r notation is to represent the special IFL sequencing cases, previously

described, with a symbolic notation that indicates each of the special cases.

Table 2 indicates these relationships between assembler syntax and special cases

of IF L sequencing,

Example 17A

Consider the IFL instructions FACT,)(, Y discussed previously. These TFJ,

instructions can be symbolic represented a s follows:

FACT :ITERATE(p:=P*k, k:=k- 1) ;

X: if k=O then p e lse [Y J *k;

TABLE 1: Syntax of IFL Assembler

<IFL-PROGRAM>- <IFL.-STATEMENT >; /<IFL-STATEMENT >; <IFL-PROGRAM>

<IFL-STATEMENT >-- <STATEMENT-LABEL > : <STATEMENT >
<STATEMENT >-- if k=O then p else <IFL-INSTRUCTION>/<IFL-INSTRUCTION>

<IFL-INSTRUCTION>- <P-OP >, <K-OP >, <Q-OP> / ITERATE (<P-OP >, <K-OP>) / <PEXP>

<P-OP>- p: = <PEXP>

<K-OP>- k: = <EXP-FIELD>

<Q-OP > - go to <STATEMENT-LABEL>/~O to <EXP-FIELD> (<LIST-STAT >)

<LIST-STAT > - <STATEMENT-LABEL >/<STATEMENT-LABEL >, <LIST-STAT >

<PEXP>- <EXP-F[ELD> <INFIX> <EXP-FIELD> / <PREFIX> (<ED-FIELD>, <EXP-FIELD>)

<ED-FIELD>-<C>/- <C> / p / p + <C> / p - < ~ > / k / + < ~ > / k - < c > / <STATEMENT-LABEL>

<PREFIX > -- M/SHIFT/IA/IB/<EXP-FIELD >/. . .
<C >-- "intergers less than 2m-1"

Special Case

TABLE 2

Syntax of Special Case

<STATEMENT > - <IFL-INSTRUCTION>

<IFL-INSTRUCTION> -- ITERATE (<P-OP >, <K-OP >)

<IFL-INSTRUCTION> -- <P-OP >, <K-OP >

<IFL-INSTRUCTION> -- <PEXP >

B. Built-In Arithmetic Operations

The types of functions which f field can represent fall into three classes:
q

interger arithmetic operations, conditional and selection operations, and memory

access operations. The interger arithmetic operations contain theconventional

arithmetic and logical operations, concatenation, and shifting. Therefore, if

f =+ then f (A , B) equals A +B The concatenation and shifting operators
q 4 9 9 q q"

allows building a larger size constant from two smaller size constants o r the

combining of disjoint me'mory fields. The conditional operations test a condition

between the twb operands and, depending upon the .satisfaction of the condition,

produces either 0 o r 1:

if f ">" thon'f (A B) -- if A > B then !, else 0
. (2.. q q' q q

The selection .operation, iA and IB, which are, respeclively clefined by f ie ld value

for f of 1 o r 0 have the following definition:
a q . .

. .
. . IA(A B) = A and IB(A B) = B

q ' q 4 q' q
The conditional and selection operators can then be combined to construct

if-then-else arithmetic statements.

Example 18

Consider the function X(I) which has the following definition: if I > 5 then

I else 5. The function X can be programmed in terms of two IFL instru1.c-

tions C and D, where

Let C be called with parameter (I, 1) then C(1,l) -- [D(I, I)] (I, 5), and

D(1, 1) - if I > 5 then 1 else 0.

Since [1] (I, 5) = I (I, 5) = I and [O] (I, 5) I (I, 5) = 5 then A B
C(I,1) -- if I> 5 then I else 5.

There a r e two types of memory access operators: one to access the memory

subsystem and the other to access the process space memory. The memory

subsystem operator M(A B) extracts from the memory subsystem starting at
q' q

bit A a string of length B This string of bits i s interpreted as an integer
q q '

value. The process space memory operations Pl(A B), P2(A B) . . . P6(A B),
q' SL q' q q' q

retr ieve, respectively, one of the six components of the process state vector

located at relative address (A B) in the process space memory.
q' q

Example 19

Consider the addressing structure of the PDP-6. ~ a c h PDP-6 word is

36 bits long and is divided-into three fields for addressing: an indirect

field, I, (Bit 13), an index field, By (Bits 14-17), and an address field,

A, (Bits 18-35). The index regis ters in the PDP-6 a r e the f i rs t 16 words

in memory. The addressing structure of PDP-6 is indirect addressing

with indexing at each level of the (arbitrarily long) indirect chain. The

f i rs t problem is how to represent the 36-bit wide word memory in the

memory subsystem. Let us lay out PDP-6 memory starting a t bit 0

in the memory subsystem s o that word K of the PDP-6 begins at address

M[K*36] and ends at M[K*36+35] . The following IFL program deter-

mines the address of the last word in the indirect chain giving the address

of the first word of the chain:

Comments

PDGADD: if k=O then p e lse p:=p*36, go to Converts virtual address

[k] (CHAIN, EXTRACT-A) ; to physical address and

then gets value ass6ciated

with physical address

CHAIN:p:= [EXTRACT-A] + [EXTRACT-B] , Basic sequencing of

k:= [EXTRACT-I], go to PD6ADD; indirect addressing

EXTRACT-A: M(pt18, 18) ; Extracts address field

EXTRACT-B: p:=M(p+l4, 4), k:=2, Extracts index field and

then calls procedure to

get value of index
--

EXTRACT-I: M(pt13, 1); Extracts indirect field

The IFL program PDGADD is called with parameters (al, 1) where al, is the

address of the first word of the chain.

Large size address constants can be generated by IFL instructions either

through the concatenation of smaller s ize address constants o r by storing

beforehand the constant in the memory subsystem and then, when the constant

is required, extracting it from the memory subsystem. Though the above is a

conceptually adequate solution, for reasons of execution efficiency and code

density, an additional instruction format has been added lu the IFL to handle

large size address constants. This added type of instruction format, L, has the

following format:

word q L I d Ic I
2 5M+8

. .

where has the same semantics as it has in the basic instruction format of IFL

instruction, and .Q is an address constant which fills the res t of the program
C L

memory word, Thus, the value of q (p, k) depending upon d is computed in one

of the four possible ways : PC, p+Qc, k+Qc, or (q+Pc) (p, k) .
C. Side Effects in IFL

'I'he IFL, as so far presented, is very similar in two significant ways to

"pure LISP"; each creates temporary storage solely through parameter passages

and each has no side effects other than the return of a value. These character-

istics of the IFL, though theoretically interesting since they guarantee the' deter-

mininacy of parallel IFL computations, severely limited the ability of this micro-

computer to emulate existing computers. In particular, the programming of

address arithmetic computations for emulator niay involve more 111~1 jiisl; the

return of a value; e.g., an effective address calculation may also involve checking

for an address alignment e r ror , and, if necessary, then updating the state vector

of the emulated computer to indicate the addressing error . Thus, the IFL contains

provisions for the programming of side effects.

The IYL contains memory operalio~ls which can modify the contents of either

the memory subsystem or the process space memory. These memory operations

SM, SP1, . . . SP6, a r e the store counterparts, respectively, of the memory

access operation M; PI, . . . P6. The rrlerllury store operation storcs; lhe IJ

parameter of an IFL calling sequence in the designated place in the memory sub-

system or process space memory. In addition, an IFL can be executed in a call

by value or call by name mode. In the call by value case,' the values of f (A , B)
q q q

and K a re stored in, respectively, new temporary storage locations p and k
q 1 1'

while in the cal l by name case , * the values of the parameters p and k are,

respectively, r ep lacedbyf (A , B) a n d K T h e c a l l b y n a m e c a s e i s u s e d
9 9 9 q"

when the p and k parameters a r e pointers either to fields in the memory sub-

system o r to p o r k components in the process space memory. Thus, side

effects in IFL can be programmed in two ways : directly through memory s tore

operations o r indirectly through the call by name mode.
, The cal l by name mode is distinguished from the call by value mode through

two control bits attached to the IFL instruction format previously discussed.

There a r e also three other .control bits, attached to each IPL instruction. These

three other control bits a r e used to sequence the evaluations of the five fields in

.t1:1e IFL instruction and, thus, override the normal parallel evaluation. 7 These

field sequence control bits allow the programmer to specify the order of evalua-

tion of fields so a s to avoid indeterminancy in IFL computations when one o r

more of fiold evaluations result i ~ i side effecls. In addition the Ih'L, contains

three other memory operations, PM, PP2, and PP3, whose execution resul t s in

the generation of a pointer to, respectively, a field in the memory subsystem o r

to a p o r to a k component in the process space memory.

Do Pseudo-Functional Units

An IFL program can be used to simulate the actions of a functional unit in

the functional unit subsystem. This use of an IFL program occurs when the

value of the - fu parameter of an instruction macro is grea ter than the number of

functional units in the functional unit subsystem. In this case, the - fu parameter

is interpreted a s the starting address in the program memory of an IPL program.

The IFL program activated by the instruction macro then interacts with the

input data and output data generators of the instruction macro through the following

operations: FI, FIF, FIA, FIL, FO, FOF, FOA, FOL, FC, FSandFIN. 'l'he

FI operation activates an input generator of the instruction macro and the bit

*
The notation used hi lhe assembler to distinguish a cal l by name from that of a
call by value is the following: p- <PEXP> is a cal l by name while p:=iPEXP>
is a call by value.

 he eight possible strategies for evaluation of the five fields have not yet been
fixed .

string produced by the input generator ;is the .output of .the FI operation. The . :

FIF, FIA, and FIL .operations, retrieve from the input generator, respectively,

the 'format, address, and length of tthe next 'hput da ta item 20 be generated. The

FO, FOF, :FOA, and .FOL operations :activate an output generator;and are the

output 'an$czgs ,of FI, FIF., FLA and FIL operations. The F C and 'FS operations

retrieve, respectively, the :c - ,and . - s ,parameters .o'f the 'instruction m,acro. The

:FIN operations,, is used to determine whether .there is :any more input data to be
processed. These operations Pn conjunction .with '.the other IFL operations .

,previously , . discussed allow IFL .programs, to simulate .an :arb.itrarily complex

functional unit., . :

. .
I . I .

. ,
1 .

. .

- 1 . I . . 3 .
I .

- *

. ! .. .

s .
. .

, . , , . . .

VI. FORMAT OF SBL MACROS

An SBL program, like an IFL program, is stored in the program memory.

The format of a word in the program memory that defines an SBL macro body is

identical to the format of a word that defines an IFL instruction. Further, the

definition of a macro body, stored at address q, is specified in terms of the

values of the fields f Aq, Bq, Kq, and Q These fields a r e computed for an
q' q"

SBL macro definition in the same manner a s they a r e computed for an IFL in-

struction, where the two parameters p and k that a r e used in computing the values

of the five fields a r e derived from the macro-calling sequence q(p, k) . Thus, the

only difference between the definition of an SBL macro body is the definitional

semantics associated with the values of the five fields. The different types of

macro bodies a r e specified in terms of a fixed set of definitional templates

(skeletons). The values of the five fields a r e then used in the expansion of a

template (to fill in the blank spaces in a skeleton) where the usage of the five

fields is fixed according to the particular template being expanded. This method ~

for specifying the body of a macro is simple and uniform but at the same time

very powerful since the value of each of the five fields can be the result of an

arbitrarily complex address arithmetic computation.

The possible formats of a word q in the program memory a r e the following:

where t specifies either the type of (template for) the macro body o r the type of
q

IFL instruction stored at word q, 'and s is control information used in the evalua-
q

tion of the five fields, The type field, t is 3 bits long and specifies either one
q'

of the six possible macro bodies o r one of two possible IFL instruction types.

The control field, s is five bits long, and in the case of an IFL instruction s
q' cl'

specifies whether the instruction is called by name o r by value and the order of

evaluation of the five ficldo, while in the case of an SBL rIlacro s specifies
q

whether each of five fields will be evaluated at the time of either macro expansion

o r macro execution.
\ .

A . Data-Descriptor Macro

The data-descriptor macro, qD, when. expanded, ?eshlts in the generation . .

of a terminal node MEM(f, a, Q), where - f specifies the format of a data. item, - . a ,.

i ts address, and l its length. The values.of these three parameters a r e computed,

based on the values of the five fields stored at location q, in the following manner:

f = Q
q

These three parameter values a re computed. at either macro expansion or' macro

execi~~ion tirne depending upon the value of s Base relative addressing can be
q'

programmed by setting f = '+', A the value of a base register, and B the
q q q

address displacement relative to the base: a=A +U
q q"

The lollowing symbolic notation will be used to represent the data-descriptor

macro body:

The underlining of a parameter of MEM indicates the parameter is computed at . .
macro execution tirue rather thal at thc time of macro expansion. 'I'his conventfurl

of underlining will be used for all symbolic representation of SBL macro bodies.

Example 20
. .

Consider the data-desnri.ptor ~nacso, OPl"l', dl€cUfi~ed 111 exa~llplt! 3 011

paie 21. The body of the macro OPFT can be specified in th& following

manner :

O P F T ~ : MEM(1, [INDIRECT] -.. *A, 24)

 INDIRECT^: if k=O then p else p:=p*24;

p:=M(p+7, .!.B),, . k:= p-BIT], go to INDIRECT;
* .

I- BIT : M(p+6,1) ;

The 24 bit length words of the emulated computer are 1ai.d out in consecu-

tive bit locations starting at 0 in the memory subsystem. The macro

OPFT is invoked with a calling sequence whose f i rs t parameter , p, is

the virtual address of the first word of the indirect chain. IFL program

INDIRECT, invoked with the same calling sequence parameters a s

OPFT, computes the virtual address of the l a s t element of the indirect

chain. Thus, the execution of OPFT(p, k) results in the execution of the

memory subsystem command MEM(f, a, I) where

f = 1, specifying floating point format;

a = INDIRECT(p,k) *24, the absolute address of the las t word

o1 the indirect chain;

Q = 24, the length of data word.

B. Selection Macro

The selection macro, qS, when expanded, results in the generation of a

terminal node SEL(qO, INC, c , 5, i) . This terminal node, when executed, gener-
- - -

ates and then executes the macro calling sequence q(p, k), where q is equal to

Y o
+INC, and c indicates the type of activation. 'I'he value of the five parameters

of SEL a r e computed based on the value of the five fields stored at location q in

the following manner.

qo = q+fq

INC = A
q

The following symbolic notation will be used to represent the selection macro

body:

<SELECTION> :=<STATEMENT-LABEL > : SEL (<QO >, <INC >, <C >, <%, <E>)
<QO > :=<STATEMENT-LABEL>

<lNC >:=<EX&'-FIELO>

<C >:=<EXP-FIELD>

<IS >:=<ExP-FIELD>

<K > := <EXP-FIE LD >

Example 2 1

Consider the selection macro , INSTDECODE, discussed in example 5

on page 26, and suppose that the computer to be emulated has a 24 bit

length word where the ' f i r s t 2 bits of the word specify one of four pos-

sible instruction formats. The body of' the macro INSTDECODE can be

specified in the following manner:

INSTDECODE': SEL (INSTFORMAT, [DEC], - 1, p, k);
D E C ~ : p:=p*24; M(p, 2) ;

where the macro INSTDECODE is invoked with a calling sequence whose

f i r s t parameter , p, is the virtual address of the instruction to be emu-

lated. The IFL program DEC, when executed, returns the va.l.ue of the

firs(two bits of the instruction word. This valire is then used to choose

one of four possible macros: INSTFORMAT, (INSTFORMAT+l),

(lNS'l'k'uftR,IfITP+25 ur (IN3TPORMAT la), T h i ~ maors is then ~XPP.III.H(I

with the same pargrnet;ers a s used to call INSTDECODE:

q = INSTFORMAT + DEC(p, k)

P'P
E = k

C. Iteration Macro

Thc itoration macro, dT, when expanded, results in the generation of a

terminal node SCP(M, V, c , po, k d . The SCP node, when executed, sequentially

generates and executes a list of macro c a l l i ~ g sequences; q (p I<) , 1 1' 1
qn(pn,kn). This list is generated by invoking the IFL program, V, with the

initial parameters p and ko; V(p k), executed like a co-routine a s previously
0 0' 0

described on page , generates a sequence of pairs (p , k) (p , k) . . . 1 1 2 2
p i , (p ,) The f i rs t n pai rs a r e used to define the parameters pairs in
the list of macro calling sequence. The corresponding macro q . associated with

1

each pair (p ki) is computed in the following manner :
i'

qi = 4 + M(piql. kimsl)
I If the s bit associated with M parameter is se t to evaluation at the time of macro expan-

q
sion ra ther than macro execution, then M is a constant and thus q. y+M i s aconstant.

1

The c parameter of SCPdefines whether a macro calling sequence qi(pi, ki) will be eval-

uated for a single cycle o r to completion, and in the case that qi is a constant whether

the macro qi will be reexpanded for kach cycle of the interation macro, reexpanded only

for each sequence of parameters (p , k) , (pn, kn) , o r never reexpanded. 1 1 "' ,

The following symbolic notation will be used to represent the iteration macro

body:

The parameter M is a <STATEMENT-LABEL> when M is evaluated at macro- . /
.- --

expansion time.

Example 22

Consider the iteration macro, FOR LOOP'^, described in example 6 on

page . The body of the macro FORLOOP can be specified in the

following manner :

FOR LOOP'^: SCP(STAT, [INDEX], 1, -24, [GET]) ;

 INDEX^: ITERATE (p- p 2 4 , k- k-1);

The macro i s called with parameter pair (parlist, I), where parlist is a

virtual address of the parameter list (A, B, C, N) . It is assumed that

memory subsystem represents a 24 bit wide computer memory. Thus, -.
in order to get absolute address of the parameter list, parlist must be

multiplied by 24. Further, i t is assumed that parameters (A, B, C, N)

a re stored in the last 15 bits of the 24 bit word. The IFL program GET

retrieves the value of parameter N and increases its value by 1. The

IFL program INDEX generates the sequence of pairs (0, N), (24, N-1) . . .
((N-1) x 24,l) , where the first clcmcnt of each represent the absolute

bit offset from the base of 'the array of the elements A[I], B[I] and C[I].

Example 23 will define the instruction macro STAT. '

D. Instruction and Hierarchical Macros
I The instruction macro, q , when expanded results in the generation of a list

of macro calling sequences ql(pl, kl) . . . q (p , k) , and a terminal node n n n I
ICP(Iu, in, cf, s) . The body of the instruction macro, q , is specified in terms of

two words q and q+l. The f i r s t word, q, specifies the parameters used to

generate the l is t of macro calling sequence while the second word, q+l, specifies

the parameters of the ICP node. The l is t of macro calling sequences, is generated

by the same process as used by the SCP node of an iteration macro to generate a

list of calling sequences. Thus, the five fields of q have the same semantics. a s

the five fields of an iteration macro body. The fields of q+l correspond to

parameters of the ICP node, e. g o , f u 3 , in=A , cf=B s=K
q 'I q7 q'

The symbolic notation that will be used to define the body of the instruction

macro is the following:

ICP (<FU>, <IN>, <CF>, <S>);

Example 23
I Consider the instruction macro, STAT , discussed in example 6 on page 2 7 ,

The body of the macro STAT can,be specified in the'following manner:

STAT': SCP (ARRAY, [GEN] , 1, [POINT], 41, ~~P(" func t i ona l unit, 2, ,) ;

BASE% p:=p2(2,0); Extract virtual address of

dope vector .

p:=p+k-1; Compute desired element of

dope vector, e.g., A , R , o r C

p:=p*24; Convert virtual address to

absolute address

Cct virtual uddrcct; of bogin-

ning of a r ray A, B, o r C

p*24; Convert virtual address of

a r ray to absolute address, md

then return absolute address

I .

F
. . . ,

GEN : ITERATE (k:=k-1)
. .

Generates sequence of pairs

(17 3) , (17 2) 7 (1 9 1)

Generate pointer to p compo-

- nent of the STAT calling

. sequence which is I

The macro STAT is called with parameters ((i-1)*24, N-i+l) for i=l, N,
. . '

where the first parameter is the absolute bit offset from the base of array.

The f i rs t word of STAT generates the following list of macro calls:

ARRAY(J, 3), AR.RAY(J, 2), ARRA.Y(J, 1) where J is a pointer to the f i rs t
D

parameter of STAT: (i-1) *24. The data-descriptor macro, ARRAY ,
when expanded, computes, using the IFL program BASE, the absolute

address of the base of the a r r a y A, B o r C, depending upon its second

parameter which is i, 2 o r 3, The ARRAY macro, when executed, computes

the effective address of the element of a r r a y AII 1, BII 1, and C[I], by adding

the base of the a r ray computed a t macro expansion time to the value pointed

The format of the hierarchical macro, qH, is very similar to the format of

the instruction macro. The difference between the formats is that the second . . , . , (-.

word q+l of hierarchical macro can be an arbitrary SBL macro whereas the

second word of the instruction macro defines the parameters of the ICP node.

The symbolic notation that will bc used to define the body of the hierarchical

macro is the following:

<HIERARCHICAL> :=<STATEMENT-LABEL> : SCP (<M>, <V >, < C >, <PO>, <KO>),

<SBL-MACRO >

<SBL-'MACRO > := <DATA-DESCRIPTOR >/<INSTRUCTION>/<ITERATION >/

<SET,ECTION>/<HIERARC~CAL >/<CONTROL >

E . Control Macro
C

The control macro, q , when expanded results in the generation of a CM clocking
. process which has four internal parameters n, 1, svt, and syn. These four parameters

a r e specified in t e rms of two words q and q + 1. The five fields of the f i rs t word q

have the following meaning: n = f Q = A syn = B null = K r = Q and the fields
cl' q' cl' q' q'

of the second word a r e respectively the q, p, k, c , and d components of the svt

template. The parameter, - null, indicates which one of components of the svt a r e

template, a r e null. In addition, the syn parameter also indicates the new s com-

ponent of svt template. If the null parameter indicates that the components q, p,

k, c , and d a r e null then the qC can be specified in terms of only one word q.

The symbolic notation that will be used to define the body of the control macro

is the following:

< SPN> :'= ,SUSPEND/TERMINATE . , . .

<SVT> : = (< Q > , <P>; <K>, <S>, <C>, <R>, <D>) ..

<Q> : = < EXP - ylELU> /< NULL*' . . .

' <P> : = < EXP - FIELD> /<NULL > -
<K> : = < EXP - FUELD>/< NULL> , ,

* <L> : = EXPAND/EXECUTE/TERMINATE~SUSPEND/<-N.ULL>

<C> : = <EXP - FIELD > /< NULL>

'<R> : =<EXP - FIELD> / <NUEL>

VII. SUMMARY COMMENT AND FUTURE RESEARCH
. .

, This paper is a preliminary investigation of the organization of a parallel

micro-computer designed to emulate a wide variety of sequential and parallel'

computers. This micro-computer allows tailoring of the control structure of

an emulator s o that it directly emulates (mirrors) the .control structure of the

computer to be emulated. An emulated control structure is implemented through

a t ree type data structure which is dynamically generated and manipulated by

six primitive (built-in) operators. This data structure for control is used a s a

syntactic framework within which particular implementations of control concepts,

such a s iteration, recursion, co-routines, parallelism, interrupts, etc., can be

easily expressed. The major features of the control data structure and the

primitive operators are : 1) once the fixed control and data linkages among

processes have been defined, they need not be rebuilt on subsequent executions

of the control structure; 2) micro-programs may be written so that they execute

independently of the number of physical processors present and still take advan- i :

tage of available processors; 3) control structures for I/O processes, data-

accessing processes, and computational processes a r e expressed in a single

uniform framework. This method of emulating control structures is in sharp

contrast with the usual method of micro-programming control structures which

handles control instructions in the same manner as other types of instructions,

e. g. , subroutines of micro-instructions, and provides a unifying method for

efficient crnulation of a wide variety of sequential and parallel comnputers.

Future research on this micro-computer organization will attempt to develop

more rigorous arguments for the merits of this proposed method for emulating

control structures. In particular, a simulator for this micro-computer organi-

zation and emulators for complex sequential and parallel IML's will be programmed.

These emulators will then be run on the simulator to gather performance statistics.

In addition, it i s planned to develop a higher level language, which can be easily

compiled into SBL and IFL statements, for representing control structures of
/

machines.

There a r e two other research areas which will be investigated. The f i rs t

research a rea involves the addition to the SBL of primitive operators (macros)

whjch control, access t.o nodes in the process space memory, fields in the memory

subsystem, and functional units in the functional unit subsystem. Thus, it is

proposed to-integrate the*concept' of protection (capabilities, access path, etc.)

into the defi'nition of the control structure of'a process which i s where the definition

of protection naturally* belbngs. In. hep preliminary investigation of this idea,' it

appears that the concepts of. protect~on~di'scussed by Dennis and Van Horn, 17 -

Lampson, l8 etc.. can be easily specified, with the addition of two or three primi-

tives to SBL, in the framework. of the proposed data structure for control. ~ h u s , '

emulators for operating systems IML! s; will be more easily implemented, and' it

will be possible to: protect. a mi'cro-coderfcr.om. by. other micro -
programs.

The sccond se~earofi area: to:. be: i'nvestijjated involves .applyi,ng the concept

of control structure-. definiti'on.. language? to:, the: organization. of .a. cornput-er rather

than just a micro-computer.. T.hea investigation of 'thi8. research area'has been

prompted by the work of. ~ i t c h e ~ l ? ' on. tlis.organization of: an interpreter for LC
2

language.

REFERENCES

Burroughs Corporation [1963]. The Operational Characteristics of the

Processors for the Burroughs B5000, Burroughs Corporation, Detroit,

Michigan.

Illiac-IV System Study. Final Report [19 661. Burroughs Corporation,

University of Illinois No, 09852-B.

Abrams; Po S. [1970], An APL Machine.. Report No. SLAC-114, Stanford

Linea.r Accelerator Center, Stanford 'University , Stanford, California.

Melbourne, A. J. and-Pugmire, J. M. [1965]. A Small Computer for the

Direct Processing ,of FORTRAN Statements. The Computer' Journal,

Vol. 8 (April).

"~ystem/360 Model 40,2040 processing unit. " [1966J. IBM Field Engineering

Disgr~ .ms Ma.nila.l, .Docu.ment No. 0223-2842,

Cook, R. W. and Flynn M. J. [1970J. System Design of a Dynamic Micro-

processor. IEEE Transactior~s on Computers, Vol. C-19, No. 3.

Lesser , V. R. [I968 1. A Multi-Level Computer Organization Designed

to Separate Data-Accessing from the Computation. Tech. Rep. CS90,

Computer Science Department, Stanford University.

Lass, S. [19681. A Fourth Generation Computer Organization. AFIPS Con-

ference Proceedings, Vol. 32.

Horning, J, J. and Randell, B. [1969]. Structuring Complex Processes.

Report RC-2459, IBM Watson Research Center, Yorktown Heights, New York.

Fisher, Do A. [1970]. Control Structures for Programming Languages,

Computer Science Department, Carnegie-Mellon University, Pittsburg,

Pennsylvania, Yh. U. thesis.

Private communications with Burroughs Corporation on B8502 Organization.

1 19691 .
Bingham, H. W. and Reigel, E. W. [1969]. Parallelism Exposure and

Exploitation in Digital Computing Systems, Final technical report ,

Burroughs Corp, Paoli, Pa.

Dahl, O., and Yngaarcl, K, [1966j. SIMULA - an Algol-Based Sinlulatioil

Language. Comm ACM 9.

Conway, M. E. [1963]. A Multiprocessor System Design. Proc. FJCC 24,

139-146,

15. Shaw, A. C. [1966]. Lecture ~ o t e s o n a Course insystems Programming,

Technical Report No. 52, Computer Science Department, Stanford University,

Stanford, California.

16. PDP-11 Reference Manual. [19691 . Digital Equipment Corporation.

17. Dennis, J. B. and van Horn, E. C. [I9661 . Programming Semantics for

Multiprogrammed Computation. Comm ACM 8 , 3 .

18. Lampson, B. W. [I9691 . Dynamic Protection Structures. AFIPS Conference

Proceedings (FJCC 69).

19. Mitchell, J. [I9701 . LecGre at Stanford University.

20. McKeeman, W. [1967]. Language Directed Computer De,sign. AIFIPS

Conference Proceedings (FJCC67).

