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ABSTRACT 

This paper i s  a preliminary investigation of the organization of a parallel 

micro-computer designed to emulate a wide variety of sequential and parallel 

computers. This micro-computer allows tailoring of the control structure of 

an emulator so that it directly emulates (mirrors) the control structure of the 

computer to be emulated. An emulated control structure is implemented through 

a t ree  type data structure which is dynamically generated and manipulated by 

six primitive (built-in) operators. This data structure for control is used as a 

syntactic framework within which particular implementations of control concepts, 

such as iteration, recursion, co-routines, parallelism, interrupts, etc., can be 

easily expressed. The major features of the control data structure and the 

primitive operators are: 1) once the fixed control and data linkages among 

processes have been defined, they need not be rebuilt on subsequent executions 
1 

of the control structure; 2) micro-programs may be written so that they execute 

independently of the number of physical processors present and still take advan- 

tage of available processors; 3) control structures for 1/0 processes, data- 

accessing processes, and computational processes a re  expressed in a single 

uniform framework. This method of emulating control structures is in sharp 

contrast with the usual method of micro-programming control structures which 

handles control instructions in the same manner as  other types of instructions, 

e. g. , subroutines of micro-instructions, and provides a unifying method for the 

efficicnt emulation of a wide variety of sequential and parallel computers. 
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I, INTRODUCTION 

In the past few years, both the size and diversity of the class of problems 

being submitted'to computers for solution has significantly increased. The 

programming of many of these new problems on a computer with a von Neumann 

organization can be very complex and, additionally, can result in programs which 

execute inefficiently, A significant part of these difficulties can be. attributed to 

the "degree of complexity" of the transformation from the representational 

framework within which the programmer develops an algorithm (e,g., ALGOL, 

LISP, Graph Model, etc .) to the representational framework of a von Neumann 

computer within which the algorithm is executed, The complexity of transfor- 

mation between these two levels of representation thus makes it difficult to con- 

struct an automatic mapping between levels which is both quick and efficient, 

The perception of this problem has led to the development of computers whose 

organizations a re  optimized for either a particular subset of o r  a higher level 

language for the problem class, Examples of such machine languages should 

include those of the B5500 for ALGOL, ILLIAC IV for processiqg of array 

structured data, Abram's APL machine, Melbourne and Pugmire's FORTRAN 4 

machine, , etc, Since these represent a broader class of languages than what is 

I 
usually meant by machine language, we will refer to them as intermediate 

1. machine languages (IML's) . This tailoring of IML to a specific higher level language 

is accomplished by incorporating primitive operators in the IML which directly mirror  

operations in the higher level language (e. go  , recursion in ALGOL is directly mirrored 

through stack operations in B5500). Thus, by the tailoring of amachine's organization 

more closely to a particular user representational framework, the mapping be- 

tween levels is simpler and results in more efficient program e ~ e c u t i o n . 2 ~  

In parallel with the development of problem oriented computers, there. has 

been an effort .toward providing a systematic and flexible approach to the hard- 

ware design of a specific computer.. This effort has led to the development of 
. 

. . 

micro-computers, e. g o ,  360/40, with read-only control memories programmed - 

to emulate a specific von Neumann type computer. 

Recently, there has been an attempt to integrate both of these new directions 

in computer architecture (machine organizations designed for specific applica- 

tions and micro-computers) by attaching to the micro-computer writeable 

control memories, Thus, it is intended that through the ability to modify 

dynaGically the control memory of, a micro-computer, a wide range of machine 

languages of different computer organizations (IML) can be efficiently emulated 

on a single micro-computer. However, it is the author's contention that this 

goal cannot be realized by existing micro-computers, 

- 1 -  



A. Traditional Micro-Computer Architecture 

Existing micro-computer architectures a r e  still oriented toward the design 

of von ~ e u m a n ~  type computers rather than a systematic approach to the ernu- 

lation of a wide variety of different sequential and parallel intermcdiary ,machine 

languages. 

The program structure of an IML emulator, in a conceptual sense, is seen 

in Fig. 1. 

FIG. 1--Conceptual structure of an emulator. 

'I'he "control process", which represents the control otructure* of the com- 

puter to be emulated, activates the "decoding process" with data that identifies 

the next instruction(s) of the emulated computer to be executed; the "decoding 

process" analyzes the instruction(s) to be executed so as  to determine the 

semantic routine(s), t6gether with its (lheir) appropriate calling sequcnce(s), 

whose activation will perform the semantics of the emulated instruction(s). 

After the appropriate . - semantic routine(s) has (have) been executed, the flow of 

control returns to the control process which, based on the results of executing 

the decoding process and 'the semantic routine(s), selects the next instruction(s) 

to bc emulated, 

* 
The control structure of a computer consists of the set of rules used to define 
the sequencing of the instructions of the computer. 



. . . . . .  

The organizations of existing micro-computers when applied to the emulation 

of unanticipated IML1s do, not reflect this conceptualization of the structure of 

an emulator, but rather provide a simple, uniform framework for the coding of 

an emulator. In these machines, the semantics of micro-instructions a r e  gen- 

erally realized by a short parallel sequence of register transfers, and the control 

for sequencing among micro-instructions is  sequential and based on simple con- 

ditional transfer commands. There a r e  no features in the language that distin- 

guish the coding of the control process from that of the decoding process or  the 

semantic routines, nor the relationship, for instance, between the control process 

and the decoding process. An emulator expressed in this type of micro-computer 

language ". . . implenlents machine instructions a s  a subroutine of micro- 

instructions". Thus, due to the simplicity of micro-computer languages and 

their.,paucity of control commands, the structure of the emulated computer i s  

not directly observable in the structure of its emulator. The key to efficient 

emulation is just this missing ability to directly mirror  the control structure, 

instruction formats, and primitive data-accessing operations of an IML in the 

corresponding control structure, instruction formats and primitive data-accessing 

operations of its emulator. In particular, a control action by an instruction in 

the IML program being emulated should be directly mirrored in a modification 

of the control structure of the emulator. 

Thus, the current approach to the design of a micro-computer which stresses 

simplicity is not unreasonable if the micro-computer is going to emulate computers 

and IML1s. that have a simple sequential control and simple instructions. But, 

IML1s that a re  tailored for a particular subset of a higher level language for a 

.problem class are, in a sense by their very purpose, not simple since the com- 

plexity of the higher level language is imbedded in the semantics of the IML's 

instructions and control structure. If the current trend in higher level languages 

is  maintained, these problem or  procedure oriented IML1s will have increasingly 

more sophisticated control structures employing such control concepts as  

recur.sion, co-routines, parallelism, etc. , and, likewise,. their instructions 

will directly operate on increasingly more complex data structures, e.g., lists, 

trees,  arrays, etc . Therefore, the current structure of existing micro-computers 

is  inadequate for the task of effectively emulating the wide range of such inter- - 

mediary languages, just as  a von Neumann computer in comparison with the 

B5500 does not efficien.tly execute ALGOL. 



B. Variable Control Structure as  the Basis of a Micro-Computer Architecture 

The micro-computer architectural design to be presented in this paper is 

based on the idea that the prograin structure of an cmulsttor written in this 

micro-computer should reflect the structure of an IML that is being emulated, 

It is felt that the key to accomplishing this mirroring process betwecn IML and 

its emulator lies in the control structure of the micro-processor. Thus, the 

main emphasis in the design to be presented here is to incorporate a very general 

control structure in the micro-processor, 

The approach conventionally used to design a micro-processor with a 

powerful control structure is first  to develop a basic machine language having 

a well-defined set of instructions and a simple sequential control structure, and 

then add instructions and facilities (such as subroutine call instruction, a slack 

for parameter passage, a fork- join instruction, etc . ) for structuring complex 

sequential and parallel prucesses. This is imt tkc npproaoh taken here. Insteud, 

the approach is to develop a micro-language specifically designed for the task of 

dynamically constructing control structures. This control structure definition 

language, called the Structure Building Language (SBL) , is used to dynamically 

define a wide range of particularized control structures through the generation 

of a data structure for control. The control data structure acts as a syntactic 

framework within which dynamic and static control and data environmcnt inter- 

relationships among processes can be expressed. The coi~trol structurc of this 

micro-computer can then be dynamically tailored (through the SBL) into a form 

which is most suitable for the emulation of a particular LML. An emulator 

programmed in this micro-computer, as will be seen later, works in a fashion 

similar to the process of dynamic compilation or run-time macro expansion. 

This method of emulation differs radically from the conventional form of emulation 

consisting of a sequence of calls to sub-routines of micro-instructions. 

The variable nature of the control structure of this micro-computer dis- 

tinguishes its architecture (from the viewpoint of form and complexity) from 

existing micro-computer architecture. It is felt that a variable control structure 

micro-computer provides a unifying approach to the emulation of an extremely 

wide variety of computer organizations and IML's. The goals of this micro- 

computer design are  to be able to: 

1. Emulate efficiently a wide class of both sequential and parallel 

IML's (e. g. , array processors, pipeline, stack machines, 

LISP machines, computational graph models, etc .) . 



2. Program an emulation in a simple and uniform manner, such 

that the dynamic program structure of an emulator reflects 

the architecture of the computer it emulates. 

3. Incorporate easily and efficiently a changing array of hardware 

arithmetic k i t s  (e. g. , square root, inner product, etc .) I/O 

devices and memory units (edg., associative memory, bit 

slice memory, etc. ). 

Micro-Computer 

Micro-Processor ~ p / j ~ l l  

FIG. 2--Micro-Computer subsystems (modules). 



11, MICRO-COMPUTER ARCHITECTURE 

The micro-computer architecture, as  pictured in Fig. 2, can be character- 

ized in terms of three basic hardwa~e  subsystems. The first  subsystem is 

composed of an arbitrary set  of functional units, Each of these units can be 

independently activated and can have an arbitrary number of inputs and outputs, 

where that number need not be fixed but may be data dependent. A functional 

unit could be a floating point multiplier o r ,  more generally, an arbitrary input/ 

output device. This more general usage of a functional unit is a natural conse- 

quence of imposing restrictions neither on the size (or form) of the input and 

output data sets of a unit nor on the sequencing between units. 

'I'he Second subsystem is a memory. 'I'hiS nlemor'y IS bit-addressable and 

can be activated either to store or retrieve an arbitrary length string of bits. 

This memory holds the program that is going to be emulated, and additionally, 

serves a s  a storage buffer for communication between the functional unit sub- 

system and the micro-processor subsystem. Other types of memory organiza- 

tions, such as word-oriented, bit-slice, associative, etc . , can also be included 

in the system's architecture by making them function units. 

The third subsystem, which is the major innovation in this micro-computer 

architecture, is  a micro-processor that controls the dynamic interactions 

between the other two subsystems and among functional units. The programmable 

nature of the control unit of the micro-processor subsystem allows the tailoring 

of both the hardware and software of this architecture to various problems. The 

hardware tailoring involves the addition of specialized functional units which 

car ry  out operations commonly used in the problem class (e. g o ,  floating-point 

multiplier bit-slice memory, etc .) to the functional unit subsystem or addition 

of more parallelism in the micro-processor subsystem. The variable nature of 

the control unit of the micro-processor subsystem, as will be discussed later, 

allows these hardware modifications to be incorporated without modification to 

the language of the micro-processor. 

In order to emulate a computer using this system, the program which is  

to be run on the emulated computer is stored bit-wise in the memory subsystem 

in the same order as  it would be stored in the emulated computer's memory. 

The micro-processor must then perform the following tasks: (1) fetch from the 

memory subsystem the instruction(s) of the emulated computer which is  (are) to 



be executed in the next step; (2) analyze this (these) instruction(s) in order to 

generate the appropriate sequence of functional unit activations which will perform 

the computations specified by the instruction(s). In addition, the sequence of 

functional unit activations must be coupled with accesses and stores to the 

memory subsystem so as to provide the input and output data setsfor each unit. 

This sequence of functional activations may result in concurrent operation of 

functional units or  a pipelining of functional units. 

The major focus of the res t  of the paper will be on the organization of the 

control unit of micro-processor subsystem, especially the syntax and semantics 

of the SBL. 



III. MICRO-PROCESSOR SUBSYSTEM 

The main orientation in ,the design of this micro-computer, as stated in the 
2 .  - ,  

introduction, is to incorp6&te a variable control structure definitional facility 

into the hardware of i ts  processor. This design emphasis has led to a micro- 

processor that contains two basic classes of instructions. One class of micro- 

instructions, called the Structure Building Language (SBL), is used to construct 

dynamically the control structure of an kmulator while the other class, called 

the Interger Function Language (IFL), is  used to compute address arithmetic 

functions. 

The SBL dynamically defines m cmulator's control structure through the 

generation of a data structure for cuntr.ul. Tile basis of the syntax nnd acmant ic~ 

of the SBL i s  a fixed set  of definitional templates that define particular types 

(forms) of control structures. An SBL statement (macro) specifies one of the 
* 

fixed set  of templates together with a set  of IFL address arithmetic functions. 

Each definitional template represents a parameterized model of a basic control 

concept, e, go  , iteration, selection, hierarchy, synchronization, etc . The 

specification of particular values for the parameters of the template defines a 

particular instance of a basic control concept. These values a r e  computed by 

the IFL address arithmetic functions specified in the SBL macro. A call to an 

IFL program results in the generation of either an integer value or a sequence of 

interger values that a r e  then used in the expinsion or execution of a macru, The 

expansion of a definitional t e ip l a t e  results ih the generation of a structure which 

contains'all . . the state information necessary to model the execution of this par- 
. . 

ticular instance of the control concept. More complex control structures a r e  

constructed through the expansion .. .. of a sequence of these definition teinplates . 
The binding of parameters to the SBL macro is  imder the explicit control of other 

' 

SBL statements. Similarly, the expansion of SBL macros and later execution is , 

explicitly programmable in the SBL. This ability of the SBL to define dynamically 
. , 

the sequencing of other SBL statements is the key to the control structure defi- 

nitional facility of the micro,-p~acessor. 

- The SBL consists of si.ktypes of macro bodies (definitional templates): data- 

descriptor (D) , instruction (i , Gelection (S) , iteration (IT), hierarchical (H) , and 

control (C). The first  two types of macro bodies a re  called subsystem command 

macros while the remaining fdur a re  called structure building macros. The 

subsystem command macros specify the interaction between the functional unit 



subsystem and the memory subsystem. Only these two macros actually produce 

computational results through the action of functional units. More complex 

computational processes a re  constructed through the execution of a sequence of 

structure building macros that use as  their basic building block calling sequences 

to'subsystem command macros, When the basic building blocks a r e  just data- 

descriptor macro calling sequences, then the structure building macros defines 

a data-accessing procedure. 

The programming of an emulation on this micro-computer is done by creating 

a dynamic 'mapping between the control structure and instructidns of the emulated 

computer and a set of structure building macros and subsystem command macros. 

This dynamic mapping is  represented in the address arithmetic algorithms that 

a re  used to expand the definitional templates. Thus, an emulator programmed 

in this micro-computer works a s  an iterative two-step process (i. e,  , it generates 

an instance and then executes the instance) similar to the process of dynamic 

compilation o r  run-time macro expansion. This two-step approach to emulation 
.. . . 

differs from the conventional one-step approach to emulation (i. e., calling su6- 

routines of micro-instructions) done on existing micro-processors, and directly 

reflects the conceptualization of an emulator pictured in 1. The binding of 

a parameter list to a SBL macro is the analog of the bontrol process of the 

emulator; the exp&sion of a SBL macro is the analog of the decoding process of 

the emulator, and the execution of SBL macros is  the analog of the semantic 

. r o ~ ~ t i n e s  of the emulator. 

.Example 1 

 consider the emulation of an instruction, FAD 1 20, stored at location 10 

in the emulated cdmputer where FAD specifies a floating add operation, 

I specifies indirect addressing, and the accumulator is the second and 

result operand. The sequence of steps involved in emulation of this in- 

struction on this micro-processor is the following: (1) An SBL instruction 

generates and then stores as  a node in the control data structure a binding 

between a poiriter to the current value of the program counter of the 

emulated computer: 10, and a subsystem comm.and macro A. (2) The 

macro A with a parameter whose value is 10 is  then expanded. This 

expansion results in the generation of a subsystem command in the control 

data structure. ~he'expansion of a subsystem command micro is based on 



a template having the following format: "functional unit", "address of 

input I", "address of input 2", "'address of output I". Macro A fills in 

the slots of the template by calling with parameter 10 two IFL programs 

B and C whose integer value outputs respectively, fill in the "functional 

unit", and "address of input operand 1" fields. The other two fields a re  

always constants specifying the address of the accumulator of the 
8 _ .  

emulated computer. The IFL program B extracts the op-code field of 

the instruction at location 10, and then based on this value', determines 

the functional unit in the, functional unit subsystem that carries out the 

operation specified by the op_code. , The IFL program C do& the addresi 

a r  i-thmetic , in this case indirect addressing, required to locate the 
. . , .. 

address  of the operand speclfied by the inshucl'ion at lvuat io~~ 10. 

(3) ~ h c  inetanoe of a subsy aLem command gencrntcd by otop 2 is  then 
. 8  

executed. The execution of this command results in th i  activation 6f the 

floating point add functional unit with two operands . . and then the storage 
, . . . . .  . . . 

of the result of the floating point operation in the accumulator of emulated 

computer. Thus, the subsystem command carries out the ~ & i a n t i ~ s  of 
. , . . 

the emulated instruction FAD 1.20. This example indicates the three 
' 

. . . ' ,  

phases involved in emulating IML instructions.   ow ever, it should be 

pointed out that for the emulation of additiona.1 JML instructions with the 

s e e  basic format (e.g. , op-code, indirect bit, address) the binding and , 

exqxmsion phases can be eliminated. Thus the ovejrhead involved in Ll~e 

binding and clrpancion phases neod be inciirred nnly once 't.or each differknt 

instruction format of the emulated computer. The control data structure 

for an idealized von Neumann computer is pictured in Fig. 4 on page 32,  

and will be used in the ncxt section as  a basis for discussing the six SBL 

macro types. 

The basic hardware organization of this micro-processor subsystem at the 

functional level is  pictured in Fig. 3.   he micro-prucessur subsysten~ contains 

an arbitrary number of identical micro-processors. The execution of the micro- 

processors are  controlled through data stored in the program and process-space 

memories. These two memories differentiate the static and active parts of the 

control structure of the micro-processor subsystem. The "program me&oryW 
. . 

holds SBL and IFL statements and is  not normally modified during an emulation; 



the program memory is similar to the control memory of a conventional micro- 

processor. The Ifprocess space" memory holds the control data structure con- 

structed by the SBL and is constantly being modified during an  emulation. The 

contents of'the process space memory is in essence the state of the emulator 

which is currently being executed by the micro-processor subsystem. 

The micro-processor subsystem can ca r ry  on parallel activity since the 

number of micro-processors contained in the micro-processor subsystem i s  

arbitrary and these processors can be executed concurrently. The process space 

memory holds the definition of the control structure which coordinates, in a 

virtual sense, the activity among micro-processorso In the case that there a r e  

not enough micro-processors to ca r ry  out the parallel activity specified by the 

control structure in the process space memory, then the available micro-processors 

a r e  scheduled on a f i r s t  come-first serve basis. Th is  transformation from virtual 

processor activity to actual processor activity may lead to indeterminate results 

depending upon the numnber of micro-processors available. However, a s  will be. 

described in Section IV. E. 4 the SBL ,contains control primitives that allow the . 

programmer to construct the apprqpriate synchronization rules (Dykstrafs sema- 

phore, Saltzer's wakeup-waiting switch, lock-step execution, etc.) which preserve 

the inherent parallelisms among processes, while a t  the same time guarantee the 

scheduling of virtual parallel activity will always result in determinate computation 

independent of the number of actual mirco-processors, 



Micro-Computer Hardware Organization 
. . . . 

(+ data  bus) 

(-- +control bus) 

FIG. 3--Micro-Processor subsystem's organization. 
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IV. STRUCTURE BUILDING LANGUAGE (SBL) 

The SBL is used to define control s tructures for  I/O processes,  data- 

accessing processes, and computational processes. The SBL defines each of 

these types of control s tructures in a single uniform framework. This use of a 

single framework fo r  data-accessing and computational processes came from 

the following observation: if a set of instructions are considered to form a data 

structure, then the control s tructure associated with the sequencing of these 

instructions can be considered a s  a data-accessing procedure where the data 

being retrieved a r e  instructions, For  example, consider the following repre-  

sentation of a typical list structure: I 

where pi is the address of the ith word in the list, ai is the data-item stored a t  

the ith word, and linki is data stored at the ith word used in computing p i+l' A 

data-accessing procedure to extract a 
lY O o O  

a from this typical list structure n 
would generate the sequence p 

l Y o o o y  
p from the link information linkl, . . . linkn-l. 
n 

After the generation of each p. (i=l,n) the corresponding ai can then be extracted. 
1 

Similarily, consider a a a s  machine instructions. They can be sequenced 
1"' n 

.by a program counter p which takes on a succession of values ply.. .pn. After 

the generation of each pi, the instruction a .  located at p. is executed, and then 
1 1 

based on pi and a pi+l is calculated. The only difference between instruction 
i' 

sequencing and data-accessing of a l i s t  structure is that in instruction sequencing 

the link information, linki, is always encoded in the instruction, a .  (an instruction 
1 

includes an implicit o r  explicit link). Thus, the general paradigms developed to 

sequence tbough  arbi trary list  s tructure can' also be used to define conventional 

sequential control structures. 

The IFL is specifically designed to efficiently sequence through an arbi trary 

formatted list structure, and generate either the ,address of the final l ist  element 

p o r  the addresses of the intermediate list elements ply.. .P,-~. In the latter 
n 

case,  the SBL uses the addresses of these intermediate list elements to generate 



a ser ies  of macro calling sequences (the binding of a parameter p. to a macro 
I 

body). The execution of the macro with parameter p. then results in the carrying 
1 

out of the semantics associated with a where a .  can be a data-item' b emulated 
i' 1 

instruction, or  the name of a process. These semut ics  involve, respectiirely," 

the retrieval of the data-element from the memory subsystem,' the execution of 

a functional unit with appropriate input and output sets, or the generation atid 

execution of further macro calling sequences. The first two cases are handled 

by subsystem command macros while the latter case by structure building , 

macros. ~ h u s ,  depending on the types of the macros bound to the sequence of 

parameter p lo opn-l* a data-accessing process, an I/O process, or  a compu- 

tational process can be defined. 

A. Control Data Structure 

The SBL deLines a control structure through the dynamic generation ol' a ' 

t ree  type data structure in the process space memory whose nonterminal nodes 

contain calling sequences to either a subsystem command macro or  a structure 

building macro. The process space memory also holds all temporary information 

structures, which will be considered as  terminal nodes of control data structure, 

needed in the expansion and the execution of a macro. The data structure for 

control is in the form of a t ree due to the ease of specifying such control concepts 

as hierarchical structure (functional decomposition), parallelism, co-routines, 

and recursion. The representation of hierarchical structure an'd recursion is . 

possible because additional levels (sibling groups) may be dynmically built in 

the t ree through the expansion of nontermlnal nodes (rrlacro ca l l i~~g  sequel~ces). 

The representation of parallel and co-routine control structures is possible 

because brother nodes in the t ree may be treated as distinct independent processes 

each with its own state information. A tree data structure is  also a conveilient 

syntax framework (father, brother, etc, , relationship between nodes) for defining 

distributed control systems. Namely, the control structure of a complex system 

can sometimes be conveniently represented through hierarchical structure where 

in each sibling set (structural level) of the tree there is embedded a simple 
9 

control process (clocking process) that initially sequences its brother .nodes. 

If additional clocking processes are  contained in the sibling set, control may pass 

to these processes after initialization. Thus, ,instead of one complex control 

process for the entire system, the control can be distributed throughout the 



system. In addition, if these simple control processes can be coded so their 

addressing structure is not based on their absolute locations in the tree, but 

only on their relative position in terms of father and brother addressing in the 

tree,  then relative addressing allows copies of a single process to be used at 

different levels in the tree. The simultaneous execution of many calling sequences 

to the same macro body.is permitted because information local to each macro 

expansion and its subsequent execution is  stored with the activating calling 

sequence. 

Another important feature of the SBL i s  the separation that is made between 

the generation of a macro calling sequence (e.g., the binding of parameters to 

the macro body) from the expansion and execution of that calling sequence. The 

rules for the dynamic sequencing of the nodes of the control data structure can, 

therefore, be different from the rules for building of the control data structure. 

The only built-in sequencing associated with the t ree  is  that a father node must 

be expanded before any of its son's. The form of control data structure i s  thus 

just -->. -.. a convenient syntax framework within which sequencing rules can be 

express.ed . This allows control structures which cannot be conveniently repreL 

sented in a t ree  structure (e.g., fork-join control a s  will be seen in example 9; 

computational graphs, etc.) to still be programmed in .the SBL since the t ree  is. 

the form for generation of the control data structure but not necessarily the form 

for the passage of control during execution. The SBL also separates the expan- 

sion of. a macro calling sequence (which results in the generation of a control 

structure that defines a process) from the subsequent execution of the expanded 

macro (which results in the execution of the process). Through this separation, 

the SBL can control the relative ra te  of execution of the control structure defined 

by the expanded macro, e.g., executing a macro that defines an iteration control 

structure for only one cycle (loop) and then suspending the execution of the macro. 

A t ree  node (macro calling sequence) has seven states of activity: (1) it i s  

unexpanded; (2) it is being expanded; (3) it is expanded; (4) it i s  being executed; 

(5) it i s  being suspended*; (6) it is suspended; and (7) it is terminated. By con- 

trolling the activity rate of a node, namely the rules (conditions) for transition 

between the seven node states, the SBL can produce an arbitrary ' t ime grain". 

The time grain of a process refers to the smallest unit of a process activity that 

.can be controlled. Time grain, as  will be seen later ,  can be employed to repre- 

sent concisely such control concepts a s  co-routines,, interrupts, monitoring, 

lock-step execution, etc. 

* 
The fifth state indicates the node is  currently executing but will be suspended 
a1 llia end of its curreid time grain. 

- 15 - 



The ability to separate the expansion of a macro calling sequence from its 

execution also avoids the unnecessary rebuilding of the control data structure 

when the form of the control data structure (e.g., the number of son nodes at  a 

particular level in the tree) does not vary from execution to execution. The . 

SBL is defined so that only the dynamic parts of the control structure a r e  rebuilt; 

the static parts of the control structures once defined a re  not regenerated. 

Additionally, the parameters used to execute and to rebuild parts of the control 

structure can be different from those used to initially generate the control 
.. .. 

structure, 

B. Use of the Six SBL Macro Types 

<a recent report by D. Fisher, lo the control concepts unilerlying all con- 

t rol  structures were specified a s  the following: "(1) there must be means to 

specify a necessary chronological ordering among processes and ( 2 )  a mems to 

specify that processes can be processed concurrently. There must be (3) a 

conditional for selecting alternatives, (4) a means to monitor (i.e., nonbusy 

waiting) for given conditions, (5) a means for making a process indivisible 

relative to other processes, and (6) a means for making the execution of a process 

continuous relative to other process . . . A process A will be called continuous 

relative to another process B if and only if communication is established between 

A and B in such a way that state changes in B a r e  temporarily delayed while the 

entire action of A is carried to completion. " 
These underlying control concepts a r e  implemented in terms of thc structure 

building macros in the following ways, respectively: (1) Sequential control is 

implemented through the iteration macro. The iteration macro generates a list 

of macro calling sequences where each calling sequence is  executed to completion 

before the next calling sequence in the list is  generated. (2) Parallel control is  

implemented by the hierarchical macro. The hierarchical macro generates a 

list of macro calling sequences as  its son nodes'in the control data structure plus 

specifying a clocking process that controls the initial sequencing of the son nodes. 

The clocking process, in turn, executes control macros that control the execution 

of son nodes. These control macros can activate a node without the control 

macro's completion being delayed until the completion of the activated node, and 

therefore, the clocking process does not have to wait for the completion of a node 

before it activates other nodes, Thus, a clocking process can activate two o r  



more son nodes so that they a re  concurrently executing. (3) Conditional 

sequencing is  implemented by either a selection macro or  a hierarchical macro 

in which case the son nodes a re  possible alternatives and the clocking process 

selects the alternative. (4) Mopitoring and continuous sequencing is implemented 

through the idea of time grain. The control structure of a process that i s  being 

monitored for a specified condition can be constructed so that the process is 

activated so as  to suspend itself after it has performed the smallest unit of work 

which can effect the condition being monitored. Thus, before reactivating the 

suspended process the condition being monitored can be checked, and if necessary, 

an appropriate interrupt process activated. The concept of time grain is realized 

through the use of a clocking process for .a group of son nodes together with the 

ability to execute via a control macro an iteration macro for only one cycle 

(calling sequence) per execution. (5) Indivisibility of processes is realized by not 

allowing a control macro to execute a node which is currently executing or  being 

expanded. 

The subsystem commands macros in conjunction with structure building . 
macro a re  used to define an I/O control structure which, for example, can , 

duplicate the effect of an 1/0 channel on a conventional computer. An I/O control 

structure defined by a subsystem command macro can be considered a macro- 

instruction when the functional unit being controlled in an arithmetic device. 

This use of a subsystem command was exemplified by example 1. The idea of . . 
a generali~~ed I/O control structure to control arithmetic units has been proposed 

8 in a previous paper by the author, and also has been proposed by Lass as basis 

of the design of a high speed computer. 

C. Format of-SBL Macro Calling Sequence 

An SBL macro calling sequence has a fixed format, and consists of an address, 
L. 

q,\and_two integer parameters, p and k. The address, q, specifies the location 

of a macro body in the program memory. The integer values defined by p and k 

a re  the external parameters used in the expansion of the macro body. These 

external parameters a r e  stored in the control data structure' as integer values, 

pointers to p or  k parameters in other macro calling sequences stored in the 

control data structure, or  pointers to fields in the memory subsystem. In the 

latter case, the pointer has two components, the first component is  the beginning 

bit address of the field while the second component is  the length of the field. 



This field in the memory subsystem is interpreted as an integer value where 

the length of the field is smaller than the lenglh of fixed size integer data that 

t h e  IFL operates on. 

This option of storing pointers instead of values for the external parameters 

p and k greatly increases the ability to program emulators that directly mirror 

the control actions of the emulated computer. The first type of pointer allows the 

representation of the static data relationships between p and k parameters 

in the control data structure. In the first  type of pointer 

facilitates the representation.of broadcast type control structures, and allows 

modifications at one level in the control data struclure to be reflected in changes 

at  other levels in the tree which a re  11ut norlllally accessible from the first level, 

The second type of pointer allows the state of emulator to be directly mapped on 

to the state of the emulated compiltetr. '~'Ris rrnlapph~g ib a~coii~plished by otoring 

part of the state of emulator in the memory subsystem histead.of entirely in the 

process space rnemory. Thus, SBL operations on p and k parameters can be 

directly reflected back into changes in the contents of the memory subsystem. 

In particular, this second type of pointer capability is very valuable in the pro- 

gramming of an emulator for a computer whose state vector is not separated 

from its memory (e.g., the P D P - ~ ~ ( ' ~  computer whose program counter is 

stored as register 7 in its memory) since the state of emulator (e,g., the address 

of current instruction being processed, etc.) and the state of the emulated corn- 

puter (e.g. , its program counter, etc .) can be made equivalent. Thus, the . 
emulator does not have to process in a special way instructions of the emulated 

computer that modify memory registers which contain p k t s  of the state vector 

of the emulated computer. Further, the second type of pointer capability allows 

the state vector of an emulated computer to be stored in a single field in the 

memory subsystem and references to it to be distributed throughout the control 

data structure. Thus, by modifying a single field in the memory subsystem, 

the control data structure can be modified to reflect a new state vector for the 

emulated computer. 

The expansion of a SBL macro q, based on p and k, generates the form of 

a control structure and the internal parameters of the control structure definition 

that a re  not modified (constant) from one execution to another. After the expan- 

sion of the macro q, the value of the expansion parameters p and k can be changed 

by a control macro to p and E, and used as execution parameters of the process 



defined by the expanded macro; The internal parameters, which vary from 

execution to execution, a r e  not calculated at  macro expansion time, but instead, 

a r e  recalculated based on the execution parameters 6 and E, upon each new 

execution* of the process defined by the control structure. The :programmer 

can define which of internal parameters vary by setting appropriate fields in the 

macro body. Varying internal parameters a r e  distinguished from constant. in- 

ternal parameters in the control data structure by storing, respectively, the 

name of an IFL program in the parameter field instead of an integer value. Thus, 

only dynamic parts of a control structure need be rebuilt on each execution, and 

only parameters with varying values need be recalculated. 

,A macro call contains only two parameters, p and k, because most sequential 

control rules can be expressed in terms of the modification of, at  most, two 

variables at  each step of the sequencing. Thus, the two parameters p and k 

. represent the variables o r  pointer the variables which a r e  modifled at each 
step of the sequence. The semantics usually associated with these two parameters 

will be the following: the first parameter, p, represents the address of the data 
A- 

(e. g., instruction, parameter list, etc .) to be processed at  the current step of 

the sequence, and the second parameter, k, represents the value of a counter 

that determines the termination of the sequencing. 

Example 2 

Consider the ALGOL statement: "FOR I -  1 step 1 until N DO A(I) -- B(I) 

*C(I), ". The sequencing for this statement can be defined in terms of the 

following list of pairs: (1, N) (2, N-1) . . . (i, N-i+l), . . . (N, 1). The first  

element of the pair defines the value of I. The value of I i s  then used as  a 

parameter to a macro that constructs the subsystem commands to carry 

out A(Q B(I) *C(I). The second element of the pair, whose value is the 

number of iterations that remain before the current iteration i s  initiated, 

i s  used to define the termination condition of the FOR loop. The IFL 

program that generates this list of pairs, as  will be seen later, in example 

17, can be stated in just one IFL instruction. 

* 
It may be advantageous to also have the option of recomputing internal p q a m -  
eters when the process goes from the suspended state to the execute state. ' . 



The 'taddress" of a data item is used in this discussion in a very general sense 

to mean information sufGcient to determine, possibly by a calculation, either 

the location of the data-item in the memory subsystem o r  its explicit value. 

The following notation will be employed in the paper for specifying a macro 

name, a macro type, and a macro calling sequence. A macro name is specified 

in one of three following ways: (1) a s  a symbolic name which i s  optionally sub- 

scripted, e .  g . ,  M, ai, a10 etc. ; (2) a s  an absolute address in the program 

memory enclosed in parentheses, e. g . ,  (0), ( lo),  etc. ; (3) a s  an address arith- 

metic expression involving symbolic names enclosed in parenthesis, e. g.,  (a+10), 

(Mi+i), (Mo+Ai-Bi). The type of macro i s  specified by appending D, I, S, IT, H, 

o r  C, a s  a super'script to the macro name, e. g., MI, (o)', etc. The macro type 

is optional and i s  only added for reading clarification. A macro calling sequence 

is defined by a macro name and optionally its type followed by two parameters 

which a r e  either symbolic names or  integer values enclosed in parenlheses, e .  g., 

~ ~ ( 0 . 5 1 ,  ( 1 0 ) ~ ( 0 , 5 ) ,  (M+51D(p, k), etc. 

D. Subsystem Command Macros 

The data-descriptor macro, when expanded, generates a memory subsystem 

command. The memory subsystem command, when executed, activates the 

memory subsystem to retrieve (or store) a single data-item. This command i s  

defined in terms of three fields: the first field, f ,  specifies the format of the 

data-item (1's complement, floating point, etc.), the second field, 2, specifies 

the address in the memory subsystem of the beginning bit position 05 the string 

of bits which denote the data-item, and the third field, specifies the length in 

terms of the number of bits of the data-item, The execution of the memory sub- 

system command results in the bit string bounded by addresses a and (a+Q-1) 

being retrieved from the memory subsystem and then sent together with format 

field, f ,  to a functional unit. If Q=0, then address a is  used as  an immediate 

operand. The data-descriptor macro ncithcr specifies the particular functional 

unit that receives o r  generates the data-item, nor whether the operation is a 

store o r  fetch, These specifications of functional unit and operation a re  defined 

by the instruction macro that directly or  indirectly activates the data-descriptor 

macro calling sequence. Thus, the same data-descriptor macro can be used with 

many functional units and may be used either for a store o r  fetch operation. The 

use of a format field, f ,  in the specification of both input and output allows the 

functional unit to be very sophisticated in being able to perform, if desired, 

arithmetic operations involving operands and results of different types and lengths. 

This type of functional unit was proposed for ~8502'") computer. 



The data-descriptor macro generates a memory subsystem command by cal- 

culating values for the f ,  a,  and Q fields (internal parameters). It determines i 

the values for  each of these fields by specifying in i ts  body either a constant for 

the value of the field or the name of an IFL program. In the latter case, the 

named IFL program is called with the two garameters in the macro calling, 

sequence, and the value returned by the IFL program becomes the value of the 

field. The IFL program will be executed at  the time of either macro expansion 

o r  macro execution depending upon whether the value of the internal parameter 

calculated by the IFL program is a constant for all executions of the generated 

memory subsystem command. . 

The IFL program can involve an arbitrarily complex computation and, 

additionally, as seen in .Fig. 2, can access the memory subsystem for data. 

Thus, the generation of a memory subsystem command, especially the calcu- 

lation of the address field, a, can be either a simple or  complex calculation, 

depending upon the nature of the IFL program invoked. The data descriptor 

macro calling sequence, when expanded, is  represented by the following figure: 

*a box will represent a terminal node 
I 

Example 3* 

Consider a computer with a 24 bit word in floating point format, and with 

an instruction format in which bits 0-6 a re  the op code, bit 7 is an indirect 

bit, and 8-23 a re  the address of the next word of the indirect chain. A 

data-descriptor macro, OPFT, which generates a.memory subsystem 

command that retrieves the desired data-item can be specified in the fol- 

lowing manner: Let the p parameter of the macro be the virtual address 

of an instruction of the emulated computer; the body of OPFT is defined 

such that the f field is a constant that specifies the floating point data- 

format, the Q field is the constant 24, and the address field, a, is  

* 
Examples 3,  4, 5, 7 and 8 form an integrated sequence that defines the 
control data structure of an idealized von Neumann computer pictured in 
Fig. 4 on page 32 . 



calculated by an IFL program, (INDIRECT) which, using the parameter 

p, generates the bit address of the last element of the indirect chain. 

The expansion of the macro calling sequence OPFT (p, k) is  then repre- 

sented by the following figure: 

I 

MEM ,(floating point, INDLRECT (p, k) , 24) 

The IFL program INDIRECT is not invoked at  macro expansion time but 

rather at macro execution time since the address ficld, a, of the memory 

subsystem oommand will be recalculated for each execution of the macro 

OPFT. 

Thc instruction mauro, when expanded, generates an I,/0 control structure 

that defines the interaction between a functional unit and the memory subsystem. 

The basic form of the I/O control structure generated by the instruction macro 

is very similar to the basic form of the control structure generated by the 

hierarchical macro; that is, a group of son nodes together with a clocking process. , 

The basic difference between these two types of control structures i s  the format 

of the clocking process that is used to sequence the son nodes. The hierarchical 

macro clocking process is an arbitrary process while the instruction macro 

clocking process has a fixed format. 'l'he son nodes of an instruction macro 

specify the data-accessing procedures which fetch (store) the input (output) data 

sets of the functional unit. The built-in clocking process of the instruction macro, 

ICP, is  activated with four internal parameters: - fu, the name of a functional 

unit*; - in, the number of input set generator nodes (the number of output set 

generators a r e  the remaining son nodes); cf, control information sent to the func- 

tional unit; - 3, an addrcoo in thc mcmory oubcyctcm whcrc tho etatue of tho 

functional unit at the termination of i ts  operation is stored. The internal param- 

eters fu, cf, and s can, if desired, be recalculated for each execution of the 

fu can also refer to an IFL program which simulates the action of a functional - 
unit. 'The use of apseudo-functional unit will be discussed in V. D. 



instruction macro. However, the parameter, - in, can be only calculated at . 
macro expansion time since it relates to the form of the I/O control structure. 

The instruction macro calling sequence, when expanded, i s  represented by the 

following figure: 

The clocking process ICP when executed, activates the functional unit - fu with 

control informatioqcf, and then waits for a request by the functional unit for input 

o r  output data. When input data is  requested, the calling sequence ql(pl,kl) i s  

activated to generate a single input value. Upon further requests for input ' 

ql(pl,kl) is executed again until it  produces no more data (e.g., it is terminated) 

and then q2(p2,k2) is activated. The same process is  then repeated with q2(p2, k&. 

If an output is requested, qin+l(pin+l, kin+l) is activated to store a value. Upon 

further requests for output, an analogous process to the input case just described 

is carried out. A functional unit can also operate in the mode where it requests 

all its input data simultaneously, in which case all the input generators I1.. 'Iin 

are s i n ~ u l t ~ ~ e o u s l y  activated to generate inputs. At the termination of operation 

of the functional unit, the status of the unit is stored starting at address s in the 

memory subsystem. 
I 

Example 4 

Consider the computer detailed in the previous example. An instruction 
I - macro INSTFORMAT (p, k) which generates a functional unit subsystem 

command that emulates instructions of this computer can be defined in the 

following manner, Let the p parameter of the instruction macro be the 

virtual address of the instruction to be emulated, and assume that the 

implicit second operand and result operand of the instruction is  the accu- 

mulator, The body of INSTFORMAT is  defined such that the following 



control s tructure is generated. 

where fu is calculated by an IFL program, defined in the macro body 
I INSTFORMAT , that extracts bits PO-P6 from the memory subsystem, . . 

D . .. 
and ACC .(p, k). generates .a fixed data-descriptor which represents the . . . 

m e n  in thc mcmory ~ u b s y ~ t e m  'set aside as the .acciirnt~lator. . .  

The instruction macro can also be used to construct I/O control s tructures 

that represent  a pipeline of functional units. The pipelining of functional units 

makes unnecessary the use  of the memory subsystem a s  a temporary storage 

buffer for data that passes directly from one functional unit to another. An 

example of a control structure for  a two level pipeline (inp-- + - out) 

is the following: 

The semantics associated with execution of this control structure is the following. 
I ' D  The execution of q activates functional unit, fu,, with input, generated by INP - 

I I The output of ful is then stored by ql. But, ql is an instruction macro.. In that 

case ,  the  output directed to q; is sent as  an input value to fu2 after all the input 
I data generators of 'q a r e  exhausted, In this particular example, there a r e  no 
1 

input generators so that output of ful is immediately gated into fuy Thus, 



creating a two-level pipeline. Trees  of functional units can also be created by 

thi's same mechanism'; except in this c a s e  of a tree'of functional units, the control 

'structure is' s e t  up so  that the instruction macro is requested to produee an input 

hsteakl of storing'.an output. The output generated by the instruction macro is 

then.outpktted when all  the output se t  generators  of the functional unit a r e  

exhausted. 
. , 

The semantics 'of the  data-descriptor macro and-the instruction macro  have 

.been chosen 'so a s  to' clear ly  divorce the function of data-accessing f rom the 

computational algorithm (functional unit) . T.his separation then facilitates 1) the 

definition of 1/0 control s tructures which directly emulate different types of IML 

instruction formats and 2) the incorporation of functional units into the functional 

unit subsystem that have complex input and output requirements (e. g., a matr ix 

nlultiply unit, etc .) . 
, 

E . s t ruc ture  Building Macros 
' . .  

1. Sequential Control Structures . .* 
The selection macro  se rves  the same purpose in the SBL a s  does the Case 

statement in ALGOL, the Computed Go To statement in FORTRAN, o r  the data- 

dependent jump instruction in machine language. The selection macro provides 

a mechanism which allows the conditional expansion of a node in the control data 

stru&ture. In ess'ence, the s'election macro defines a one-level decoding t r ee  

which resul t s  in the generation of an arbi t rary  macro calling sequence. The 
S expansion of a selection macro,  q (p, k), resul t s  in the generation of another 

- -  - 
macro cl(p,k) where the values of q,p, and a r e  either constants specified in the 

macro body o r  a r e  computed by an IFL program using p and k a s  parameters.  

The selection macro, 'when expanded, produces the follolving structure in the 

process space memory: 

where SEL is  

ates  and then 

a built-in control process with five 'internal parameters that gener- 
- - . -  

executes the nlacro calling sequence q(p, k) a s  its brother node. The 



internal parameter q is an address in the program, memory, and is added ,to the 
0 

integer value, INC, so a s  to generate the address of macro 4. The parameter 

q can be thought of as the base address of a vector of alternative processes 0 
while INC. is an index into the vector that determines the desired a1;ternative. ... . 
The internal parameter q relates to the form of the selection control. structure, 

0 
and thus cannot be computed after each new .execution. The internal parameter 

- -  - 
c is control information that defines how the. macro calling sequence q@, k) will 

S be activated when q is executed? , . f 

\ 

Exai11ple.5 . . . . .  . . ., ... _ .. . . a _ i l  . 
, - =.-... , , . 

. Consider a computer with sever a1 different instruction formats. 'l'he 

emulation of instructions of this computer could be progran~ined by .. 

having a separate instruction macr? INSTFORMAT' for each instruc- 
S J' 

tion format J. A select'ion macro INSTDECODE could then be used to . . _ '  

select the correct  instruction macro for each emulated instruction. . -. .- 
. . , .  

. , . 
The iteration macro serves the same purpose in the SBL as does the 

. . 

FOR-LOOP 3 in ALGOL, . .  the DO-LOOP . . in FORTRAN, o r  the MAPCAR function 
. . 

in LISP. The iteration macro provides a mechanism for building sequential . '  
processes. An iteration macro, 2T(p,  k) , defines a sequential process by 

I . . .  

generating and executing a list of macro calling sequences: 
. . 

The iteration macro defines only a sequential process because each macro calling 

sequence q.(p ki) is completely executed before the generation of the next calling 
1 is  

sequence ki+l). The iteration macro, qlT, when expanded produces 

the following structure in the process space memory; 



where SCP (Sequential Clocking Process) is a built-in clocking process that 

generates and then executes successive elements of the list of macro calling 

sequences. The SCP, after the generation of each calling sequence qi(pi, ki) , 
then executes this calling sequence a s  its brother node. The iteration macro 

may be activated by a control macro so that only a single macro calling 

sequence q.(p., ki) is executed, and then after the termination or suspension of 
1 1  

this calling sequence the iteration macro is  suspended. Upon reactivation of the 

suspended iteration macro, depending upon whether qi(pi, ki) is terminated o r  

suspended, respectively, either the next calling sequence qi+l(pi+l, ki+l) will be 

generated sind then executed or else q.(p ki) will be reactivated. 
1 i' 

The clocking process SCP is activated with five internal parameters : the 

f i r s t  two parameters, M and V, a r e  the addresses of IFL programs; the third 

parameter, c ,  specifies control information; the remaining parameters p k 
0' 0 

, a r e  used to construct the initial calling sequence in the list. The M program 

called with parameters (p k.) computes q the location of a macro.   he V 
i' 1 i+l '  

program, also called with parameters (p k .) , computes (p k. ) , which a re  
i' 1 i+l '  i+1 . . 

the.corresponding parameters for q i+lo The M and V internal parameters relate 

to the form of the iteration control structure and thus cannot be varied from 

execution to execution, The clocking process SCP terminates the generation of 

calling sequences when kn+l = 0. 

Example 6 

Consider the Algol Procedure : 

PROCEDURE FORLOOP (A, B, C, N) ; 

ARRAY A [l:N], B [l:N], C [l:N]; 

INTEGER I; 

FOR I -- 1 step 1 until N 

DO A [I]-- B [ I ]  * C [I]; 

END 



. . 

This procedure can be represented in terms of the following control data 

structure : 

SC P(STAT , INDEX, 1, O , n+l) 

l[CP(*, 2,cf, s) 

where parlist i s  a pointer to the parameter list (A, B, C, N) ; INDEX is  an 
I 

IFL program that generates the sequence of pairs (1, N) (2, N-1) . . . (N, 1); 

and ARRAY is a data-descriptor macro that retrieves (stores) the ith word 

of an array. 1t i s  assumed the data elements of the array a re  24 bits in 

width. This control structure, once expanded, need not be reconstructed 

for further calls, only the value of. parameters A, B, C, arid N 

need be recomputed on each execution. 

The control information c is  used to define how the macro calling sequence will 

be activated; namely, if q. is  itself an iteration macro, whether it will be activated 
1 

either for a single cycle and then suspended, o r  whether it will be activated for 

the entire list of macro calling sequences and then terminated. Thus, the time 

grain (smallest unit of work which can be controlled) of a conW61 swucture that 

is constructed out of a ser ies  of successive functional decomposition of a sequen- 

tial process can be set  at any desired level in the decomposition. 

Consider the iteration macro, A''''(~, k) , which when executed generdtes 
IT and executes the following list of macro calling sequences B (ply kl), . . ., 

IT IT B (pn, kn). Likewise, consider B (pi, ki) which when executed generates 



D - 
and executes the following list of macro calling sequences C (ply El), , 

D -  - C (pm, km) . If the iteration macro AIT i s  executed for a single cycle, 

and the c parameter associated with SCP node of A is set  for a single 

cycle execute, then AIT will be suspended after the completion of each 
D - data-descriptor macro C Thus, in this above case, the time 

grain of AIT is the complete execution of macro cD. While if the c 

parameter i s  se t  for execution until termination, then A'* when executed 

for a single cycle will be suspended after the termination of iteration 
IT - 

- 

macro B (pi,ki). Thus, in this latter case, the time grain of AIT i s  
. Trn 

the complete execution of B" . 
. , 

Another important property of the iterated macro is that generation of the 

macro calling sequence qi+l(pi+l, ki+l) may  be affected by the results of executing 

the macro calling sequences ql(pl, ki) . . qi(pi, kJ . The execution of a macro 

may produce side effects by modifying the contents of the memory subsystem o r  
4 

the control data structure which in turn may effect the execution of the M and V 

programs. This ability to alter the generation pattern of iteration macro via 

side effects is crucial to defining the sequencing of machine language instructions. 

Example 7 
. .  . .IT Consider an iteration macro INSTEXEC (p, k) which generates the follow- 

s s ing sequence: INSTDECODE (pl,kl), . .'. INSTDECODE ( p i k  ... where 

p. is interpreted a s  the address of an instruction of an emulated'computer, 
1 

and ki is the state vector of the emulated computer. The selection macro 
S I INSTDECODE in turn an instructor macro INSTFORMATJ(piYk& 

where J refers to the format of the instruction stored at pi. INSTFORMAT: 
. .  . . 

when executed carries out the semantics of the instruction at  location pi. 

Therefore, the iterated macro can be thought of a s  the sequencing unit of 

a computer, the selection macro as the decode unit, and the instruction 

. macro as  the arith~netic and logic unit. This control structure in this ex- 
; ample can be very easily extended to' include an interrupt structure: All 

that is  required is to set up a clocking process that activates INSTEXEC 
IT 

for one cycle at  a time, and then checks whether an interrupt requires 

.. . processing. In this case, the time grain is .se t  as  the execution of a single 

emulated instruction. .f 



The iteration macro can also be used to construct data-accessing procedures 

when qi(pi, ki) is a data-descriptor macro calling sequence. The iteration' macro 

in this case can be considered an operand name generator and the data-descriptor 

macro a value generator. An additional use of the iteration macro is the building 

up of a . co-routine . structure since the iterated macro holds its statk. when sus- 

pended. By combining these two uses of the iterated macro (as a data-accessing 

procedure and a co-routine), a stack data-accessing structure can be constructed. 

2. Nonsequential Control Structures 

The hierarchical macro provides a mechanism for defining control structures 
. . 

that contain more than one clocking process (path of control), l2 especially con- 

trol  structures that distribute control through a hierarchy of control levels, A 

distributed control structurc, constructed by a sequence of hierarchical macros, 

can be used to define, depending upon the number of clocking processes that a re  

simultaneously executed, either quasi-paralle113 or  parallel control structures. 

In addition, many sequential control structures can also be easily defined in terms 

of a distributed (quasi-parallel) control structure, e.g., a subroutine call 

mechanism: the execution of the subroutine call suspends the clocking process 
. - 

of the caller, and activates the clocking processof the subroutine; the return 

from the subroutine then terminates the clocking process of the subroutine and' 

reactivates the clocking process of the caller. The block structure and procedure 

calls of ALGOL and co-routines are  other examples of sequential distributed 

control, structures. ,In essence, the hierarchical macro allows the s t r u h r e  of 

a c,omplex process to be functionally decomposed into a set of executions of less 

complex processes. Thus, the hierarchical macro, in order to represent this 

functional decomposition, must define (1) the set' of less complex processes, and 

.(2) the sequencing algorithm (clocking process) for this set  of processes, 
H The hierarchical macro, q (p, k) , when expanded, generates a list of macro 

calling sequences : 

ql(~l 'kl) '  q2(p2.k2) , 

and then expands a macro calling sequence (q+l) (p, k) . The macro (q+l). is a 

clocking process that controls through the execution of control macros the initial 

sequencing of the list of macro calling sequences. The list of macro calling 

sequences is generated using the same mechanism, SCP(M, V , c , pO, ko) , employed 

by the iterated macro to generate a list. Except, in this case, the generation 



pattern of the l ist  cannot' be altered through side effects since a macro calling 

sequence in the list is not executed until the entire list is generated. The 

control field c in SCP in the case  of hierarchical macro is used to define a 

default value for control information associated with the execution of each 

qi(pi, ki) The list of macro calling sequences after i ts  generation is stored as  

son nodes of the hierarchical macro in the control data structure. The expansion 

of a hierarchical macro results in the generation of the following structure in 

t h e  process space memory: 

The macro calling sequence (q+l)(p, k) is enclosed in a dotted box to indicate 

that the results of expanding the calling sequence (q+l) (p, k) is placed in the process 

space memory rather than the actual calling sequence (q+l) (p, k) . Thus, if (q+l) 
H 

is an iteration macro, then the expansion of q (p, k) would result in the following 

control data structure: 

H The execution of q (p, k) in this above case results in the execution of the built-in 
- - - -  

clocking process SCP(M, V, c ,  Po, to) which sequentially generates and executes a - - - - - - 
list of macros calling sequences q (p ,I; ) . . . qi(Pi,Ei) . . . . The results of 

1 1 1  
executing this l is t  of macro calling sequences, in turn, define the initial sequencing 

of ql(pl, kl) . . q (p , kn) . The clocking process call sequence (q+ 1) (p, k) does n n 
not have any characteristics which distinguish it from other processes defined by 

the SBL. Thus, a clocking process can be of arbitrary complexity and only the 

p'arts of its structure which a r e  changed on cach cxccution need be modified. A 



t r e e  of arbi t rary  width and depth can then be dynamically generated . . since t h e ,  

macro q. may itself be a hierarchical macro. 
1 . . . .. * , , . . . . . , . . . 

Example 8 

Consider the emulation of a conventional von Neumann computer organiza- , .  

tion with an interrupt structure. The basic form of the control . . structur'e 

for  an emulator for this type of computer can be constructed by combining 

together the control s tructures discussed in examples 3, 4, 5, and 7, and 
. . 

then adding a hierarchical macro that specifies the interrupt structure. 

Figure 4 represents this control structure, where SEQUNIT is a clocking 

FIG. &-The control data structure for an emula.br of a von Neumann . . : 
computer organization with interrupt. 

I .  

process that activates IN ST EXEC'^ for one cycle ( instructio~~) a t  a time, 

and then checks whether m iiiterrupt reyuires servicing; if it does, then 

INTHANDLER is executed, else IN ST EXEC'^ is reactivated and the basic 

sequencing cycle is repeated. 



The hierarchical macro can also be used to construct distributed control 

s tructures which a r e  not conventionally represented in t e rms  of a t r ee  structure. 

Nontree like control structures can be represented, because, a s  previously 

discussed, the dynamic sequencing of the t r e e  (which is defined by clocking 

processes of arbitrary complexity) is separated from the generation of the t ree  + 

structure. The sequencing of sibling nodes is, therefore, not restricted to a 

predefined se t  of built-in sequencing patterns since the clocking process is an 

arbitrary program. In addition, the time grain of a process defined by a 

hierarchical macro also can be arbitrary since the time grain of the clocking 

\ process is programmable. 

Example 9 

Consider the parallel control s tructure defined by a fork-join instruction. 14 

The hrk-join control structure is normally represented in terms of the 

directed graph in Fig. 5a. However, if the correct  clocking processes a r e  

attached to a t ree  of processes, then the fork-join control structure can be 

, represented in terms of a t r ee ,  a s  viewed in Fig. 5b: the clocking process 

Control-1 sequentially executes the proqess specified by macros "PARL AB." 

and C. Control-:! clocking process executes processes A and B in p,&allel, 

and is not terminated until both processes A i d  B a r e  terminated. 



3. Tree Struchred Addressing 

The controlmacro and IFL refer to (address) proctisses (macrb calling 

sequences) in the process space memory either through. their 'absolute location 
. . .  

in the process space memory dr their relative location in the hontrcil data struc- 

ture  t ree with respect to the addr6ss of either the Control micro calling sequence 

o r  the macrd calling sequence'that invokes the IFL program', ' In general, a node 

in an arbitrary t ree  structure requires k .to specify' its address 

uniquely, where k is the depth of the node in the tree. However, by employing 

relative addressing for node .Bpecification and restricting the part  of the trek 

that can be  addressed from any node, the address of a process can be specified 

in terms of two paranleters, The reslriction on accessing only part of the t ree 

corresponds very closely to the restriction placed on accessing variables in a 

rreslecl Lluck slructure in ALGOL and 1s not a serious practical limitation, 

Further, this relative addressing mode, if necessary, can be overridden by using 

absolute addressing nodc. 

The relative addressing schema is a two step process, each step using one 

of the paramete'rs. The first step, using a parameter to indicate the number of 

times applies the father (antecedent) relation recursively to the relative base 

node. The second stcp, using a parameter to specify the iluniber uk the brother, 

locates a particular brother of the node which results from the first step. The 

address schema, where (n, 1) a re  the two parameters, can then be specified by 
1 n the following formula: (brother .father . base-node) . Iu t11e case uf 111e absulute 

address node, the addressing schema is (brother1 .n) where the parameter N is 

the abso1ute.address of a node. 



Consider the following tree: 

then using E(1,2,2,2,2) a s  a relative base node 

2 - 1  addresses A (1, 2, 1) 

(2,2) addresses B (1,2,4) 

( 0  a d d r e s s e s c  (1,2,2,2)  

( 0  -1 a.dd.ressc?s D (1,2,2,  2, 1) 

In general, if a base node address is (aly a2, ., . a ) then relative address n 
(i, j) refers  to node (a  a . . . a 1' 2' (n-i-1) ' (Tn-i) +j)) a 

This relative address capability can be used very advantageously in the definition 

of recursive distributed control structures since a clocking process does not have 

to know the exact level of the t r ee  it is controlling. Thus, the copies of a single 

clocking process can bc uscd to control different levels of the t ree ,  

Synchronization, and Cont~ol. a.nd na.t.a. T,inkage Among Processes 

The previous sections in this chapter have described the form, the method 

for constructing and the addressing structure of the control data structure, This 

section will now detail how the control macro, which is the basic building block 



of. clocking processes,  uses  the control data structure a s  a syntactic framework . .. 

within which to define nonsequential control. structures. 

The control macro combines the control functions- of process acthation 

(including parameter  passage) and process synchronization, The control macro 

performk these control functions through operations on the data stored at a node 

in the process  space memory. This data can be considered the state vector of 

a process,  where the process is defined by the control structure generated by 

the macro  calling sequence stored at the node, This process state vector con- 

tains seven components (q; p, k, s, c ,  r ,  d) where q,  p, and k is a macro calling 

sequence, s is the current  s tate of the process, c is control information associated 

with the activation of the process,  and r and d a r e  pointers to nodes that, respec- 

tively, define the immediate global control and data environment of the process. 

The control information, c ,  specifics thc timc grain of the process, the conditions 

for  the process signalling its external clocking process, an3 the conditions for 

rebuilding the process'  control structure; the time grain of a process can be 

defined to be the execution of the process'  internal clocking process for  either a 

single cycle o r  until it is terminated; the time grain of a process defines at what 

points a process ' activity can be suspended. A process can signal its external 

clocking process when the process1 state is expanded, suspended, terminated, 

or either suspended o r  terminated. The immediate global control environment 

pointer, r ,  conventionally called a return link specifies the address . of , this 

external clocking process that will be signalled. The c component also specifies 

whether a process'  control structure will be partially rebuilt after each execution 

of the process,  o r  either partially o r  completely rebuilt after the process is 

terminated. The immediate data environment pointer, d, is used by the t r ee  

address mechanism to locate nodes in the_process space memory. 'Phe values 

of r and d when a node is initially generated are ,  respectively, the addresses of 

node's clocking process and father. However, these default options for r. and d 

can be overridden by the control macro so as to crea te  a conlirol .data s,tructure 

for the passage of control which is not a t r ee  structure, . , . 



Example 11 
15 

. Consider the following ALGOL program, discussed in a repor t  by Shaw : 

A: begin rea l  al ,  ...; a . - n' 
procedure r; 

begin rea l  rl, o:, r - - m' 

end r; - 
Al: r; 

end A 

P i3 callcd at A l ;  aftor r is called r ~ c i ~ r s i v e l y  for the first time a t  R, the 

control data s tructure has the following form: 

In this example, the immediate global data environment is the same for 

both instantiations of R. This example points up the distinction between 

the control and data environment of a process,  and the necessity for  being 

able to construct each of these environments independent of one another 

and to override the normal t r e e  structure discipline for representing 

control and data relationships among processes. 



A node contains, in addition to process state vector, the address of the 

node's f i r s t  son. The locations of a node's siblings a r e  implicitly defined .since 
. . 

sibling nodes are stored in consecutive locations in the process space memory. 

The control macro, qc(p,k), when expanded, generates the following control 

s tructure:  

where CM is a built-in clocking process with four internal parameters. The 

f i r s t  two parameters,  n and 1 specify the relative address of a node in the control 

data structure. The third parameter ,  svt,  is a template for a process state 

vector where for each of the component of vector there is stored in the template 

either a value o r  null symbol. The fourth parameter, syn, is used. to synchronize 

the activity of the control macro  with the activity of the process located at (n, 1) . 
The execution of the built-in clocking process CM results  in the modification 

of the s ta te  vector of the process located a t  relative address (n,l) in the process 

space memory. This process '  state vector is modified by replacing the value of 

each of its components by the corresponding svt  component whenever this corre-  

sponding svt  component is not null. Thus, only the components of the state vector 

of the activated process which vary from execution to execution of the process 

need be recalculated and then replaced by the control macro. The static compo- 

nents of a process state vector (the fixed control and data linkages of a process) 

a r e  defined either by default options when the process'  state vector is initially 

generated o r  by the control macro which initially expands the macro calling 

sequence that defines control s tructure of the process. Thereafter,  the control 

macro that activates the process has a template state vector whose components 

a r e  null whenever the corresponding components.of the process'  state vector a r e  

static. At the same time as the modification of the process'  state vector is 

completed, the s component of the state vector of the C M  clocking process is 

modified, depending upon the syn parameter, to be either the suspended o r  the 

terminated state. Through this mechanism of simultaneous modifying of two 

s ta te  vectors, the activity of one process can be s,ynchronized with activity of 

another process. 



Example 12 

consider  two A and B, where process A calls process B a s  
. . 

a subroutine. Process  A performs the subroutine call  by executing and 

then waiting for termination of a CM clocking process. In turn, the 

CM clocking process activates the process B and modifies B's state 

vector s o  that process B will signal a re turn  when it is terminated, and 

this re turn  will be to the CM clocking process. At the 'same time, the 

syn parameter  of CM is se t  up so  that after process B's  s tate  vector is 

modified the CM clocking process i s  suspendcd. When process B is 

terminated, CM will then be  re-awoken and will go to the terminated 

state. This  action in turn will allow process A to continue processing 

since process A has  been waiting on the completion 'of the CM clocking 

process. If prdcess A was.not synchronized with the activity of process 

B then sgn parameter of CM would be set up so  that after process B is 

activated the CM process is terminated. Thus, process A after process 

B is activated will immediately continuk processing. Process  A while ' 
, 

waiting fo r  CM process to terminate is not suspended because the action , 

'of suspending process A may be  significant to A's external clocking 
. .  % 

process since the suspending of A ineans that process A has completed 

a time grain. Thus, this implementation of subrouthe  cal l  .permits A's 

external clocking process to view A as'executing while process B is 

executing, but at the same t h e  A"s internal clo'cking process is waiting 

on B's completion. 

  he CM clocking can only' activate a' process for execution (e. g. , 
change the s component of the process '  s ta te  vector to executing) when the process '  

current  s tate  is unexpanded, expanded, suspended o r  terminated. In the case  
., . 

that CM clocking process &tempts to execute an already executing process, the 

CM clocking process either is suspend6d o r  goes into a busy wait until the process 

to be  execute4 is no lbnger executing. The tifile grain of the node that generates 

the CM determines which 'one of these options is taken: if the time grain i s  a 

single cycle the CM is suspended, otherwise it  busy waits. Thus, if two processes 

simultaneouslyissue CM1s which activate the same node (shared process),  only one 

CM will be allowed to execute the shared process. The other CM will then either 

wait till the shared process is complet.ed, or possibly at some later  time t ry  to 



execute the shared process. This paradigm for sequentializing the. execution of 

a shared process ca.p then be. us,e3 as basis for constructing synchronizing prim- 
. .  . ' . ) . .  . . . 

itives for  cooperating processes..  , . . . . . . . , . . . . .  

. , .  , 

Example 14 . , . .  . . .  

Consider the. implementation of ~ ~ k s t r a ' s  P apd V semaphores in terms of 

the CM clocking proc.ess. Let PV be a shared process where the p compo- 

nent of its state vector is t h e  name of se&aphore'variable to  be operated 

on, the k component of its 'state vector indicates whether a.P o r  V operation 
. . 

is lo be performed, and the r component. . i.s : .  the address of the process that 

activated P.V. A process  Li performs P or V semaphore operation by 

generating a CM clocking process whose .. . time grain is' termination, & 
. . 

parameter in the case  of P operation ~pec i f i es  suspended . . while for a V 

op,eration specifies terminated, (n, 1) . par&neters . ,specify the relative address . . 
of thc PV process, and the s& contains the, correct  calling sequence for 

. . 
either a P or  V operatipn. . . The PV when executed by  for . a . P 

operation checks whether the ?emaphore . . variable specified in the calling 
. . 

sequence can be decremented, if jt  can, then the operati& is completed 

and the PV process is suspended. This  suspension of PV results in ter- 

mination of CM which then permits  process ii to continue. ln the case that 

semaphore can not be decremented, the P V  process modifies its own state 

vector component so. that it dbes not return to ClU when ~t 1s sl.tspen.deA, 
It then. extracts, the address of the C'M process from its state vector, places 

this address in queue associated with the semaphore name, and suspends 

itself. Thus, the CM clocking process still remains . . in the suspended 

state, and therefore process E.  can not continue. The PV' process. when 
. 

1 .  

executed for V operation increments the semaphore variable, and then 
9 ' 

checks. whether there is a queued CM process on that semaphore variable 
. . 

that can now be executed. If there is,. this CM process address is stored 

in the r component of PV state vector, and PV process then suspends-itself 

which results in the queued C'M process to be re-awoken. The CM . . . . 
clocking process that executed the PV process for a V operation termin- 

, . 
ates immediately after the PV proc.ess, state vector has been,'modified, 

and thus L. can continue processing while V operation is bei,ng dbne. If 
1 

the  PV process is busy, when CM attempts to execute it, then CM goes 



into a busy wait, however, this busy wait is not on a semaphore variable 

I but only on the process which updates the semaphore. 

The CM can also be used to create a new copy of a process (node) instead of 

.calling a shared.process. This creation of new node occurs when the (n,l) 

. . parameter a r e  (0,O). The new node is the 'root node of a separate tree, and only 

the C M  clocking process can access this tree. It may be also advisable, for 

efficiency reasons, for a CM clocking process to be able to simultaneously acti- 

vate all the sibling nodes at level, in t ree ,  and then be able to wait for all of them 

to signal a.return. 



V. INTEGER FUNCTION LANGUAGE (IFL) 

The IFL is a highly specialized micro-code language designed specially for 

the task of address arithmetic computations. The output of the address arithmetic 

computations performed bythe  IFL a r e  then used in the expansion'and execution 

of SBL macros. The format of IFL instructions and SBL macros .are very similar; 

each is called-with. two parameters; and each has an expansion and execution phase. 

In fact, the execution of SBL* and IFL statements. can be intermixed, and the same 

syntax will be us'ed to define an IFL instruction calling sequence as is  used to de- 
F 

fine an SBL macro calling sequence (e.g., q (p, k), (10)(p, 5) ,  etc., where F is 

for the convenience of the reader to differentiate an IFL call'ing .sequence). The 

basic difference in a conceptual sense between the IFL and SBL is that the execu- 

tion of an IFL instruction results in the execution of a function which .returns an 

integer value whereas the execution of SBL macros results in the execution uf a 

process. Thus, the IFL instruction can be considered a f'functional macro". 

Thc basic reason for not defining address arithmetic algorithms interms of anSBL 

.contr6l-structure stems from the use of a different control structure for address 

arithmetic functions than that for processes,. In particular, the control structure 

for defining address arithmetic functions can be much less complex and variable 

than that required for processes. Thus, the sequencing schema for IFL instruc- 

tions is built-in rather than explicitly defined, as in the case of the sequencing 

for SBL macros. Address arithmetic algorithms can, therefore, be executed 

without .the overhead of a variable control structure used for defining a process 

control structure. 

Before formally defining the syntax and semantics of the IFL, it i s  worth- 

while to note the following characteristics of the IFL which differentiate it from 

conventional micro-code instruction sets: 

1. Parallelism: the IFL can execute, wherever appropriate, parallel 

(concurrent) activity in an address arithmetic computation. 

2. Modularity: complex IFL program can be easily constructed out of 

calls to other IFL programs (the concept of a recursive function is  

an integral part of the control structure of the IFL); each IFL instruc- 

tion is  called with two parameters and then returns an integer value, 

* 
The execution of an SBL macro in the context of an IFL program results in the 
expansion and then complete execution of the macro. After its termination, the 
next statement in the program memory is executed, and the control data structure 
in process space memory resulting from its execution is garbage collected. 



3.  Reentrancy: the IFL  interpreter  does not have a fixed se t  of registers  

but, instead, regis ters  a r e  dynamically created through the passage 

of parameters ,  ' . 

4. Simplicity: the syntax (format) and semantics of an IFL instruction 

are uniform (regular) and simple, 

A. Format and sequencing of IFL Instructions 

The format of an IFL instruction qF, which is stored in a word in the pro- 

g ram memory, consists of five identically formatted fields, f A , Bq, Kq, Qp. 
q' cl 

The format of a field consists of an m bit interger*, c ,  plus a 2-bit descriptor 

field, d, that defines the method for  calculating the value associated with the 

field; a field is represented by the following notation: (d,c) .. The value associated 

with a field is calculated, depending upon d, in one of the four following ways: 

1. c ;  
. . 2 .  p+c; 

3.  k+c; 

4 0 ( q + ~ ) ~  (p, k) 0 . 
F 

where p and k a r e  the parameters  used to call  an IFL instruction q:q (p, k). . 

These three parameters ,  q, p and k,  of an IFL instruction calling sequence, can 

be considered in t e rms  of a conventional micro-computer organization a s  the 

current  values, respectively, of the  program coynter, accumulator, and index - 

register .  . . 

The expansion phase of the instruction calling sequence q(p, k) is the parallel 

evaluation of the five fields, f , A , B ,K ,Q based on the above rules. These 
q q q q q '  

five fields have the following semantics associated with their. values : f ( the 
q 

name of dyadic integer function which is .the op-code of the IFL instruction q) ; 

A and B (parameters for the function f ), K (a counter used to define termina- 
, . , q  . q  cl 
tion of sequencing), and Q (an increment used to indicate the relative address 

with respect to q of the next IFL instruction). 

* 
The maximum size of c which is dependent on m does not have to have an rela-  
tionship to the'maximum size of addressing space in the program memory o r  
the memory subsystem. The choice of a value for m will be based on consider- 
ations of code density.and speed of execution. 



Example 14 . . 

Consider the IFL instruction FACT which has the following . . five field 

formats  : .(I, "*'.')., (2,O) , (3,O) ,: (3, -I), (1; 0). .The expansion phase of. 

FACT(p, k) then resul ts  in the five fields having,. the, following. values : 

=k, K f FACT=*(mul t i~ l~)  AFACT=p; BFACT, FACT . - 1  . and QFACT=O; 
. . 

. . 
, . . .  

These five values generated by . . the . . expansion phase a r e  the! usid . in . the 

execution phase of q(p, k) to define the execution semantics and sequencing of 
. .  . . . . . I .  

IFL instructions 'in the' following manner: 
. . , . 

. . . .  

q(p, k)F- if k=0 then p else  (q+Q )F (f (A , B  ) , K ) . ' 

c( q q R  q 
. . 

This paradigm for execution of IFL instructions results  in the generation of a 

sequence of triplets: (qo,p0,.kd ( q l J ~ l , k l )  ... (qn,pnJkn) (qn+l,~n+l,O)p 

where %=q, pO=p, ko=k, and fo r  i 2 0, = f  (A , B  ), ki+l =K apd 
qi qi qi 9 i 

'it-1 =qi+Q The value pn+l is then returned to the process that called qo. 
q i  . . 

Example 15 
/ 

Consider the IE'L instruction, FACT, discussed in Example 14. The exe- 

cution of the calling sequence FACT(p, k) then results  in the following cal- ' 

cula.tion: 
. . . .  . , . . . .  

FACT(p, k) .- i£.k=O then p e lse  (FACT+O). . . (p*k, k-1) 

If p and k have the following initial values of,' respectively, 1 .and N,' then 

FACT(1, N) when executed cdcula tes  N! in the following iterative manner:  ' 
% .  

FACT(1, N) + ii N=O . . then 1 else  (J!Ac'~'+O) ( N A l ,  N-I) FACT(N, N-1) 
. , 

I . . .  . . 

FACT(N! , i) , if i = O  then N! / i l  e lse FACT(N:/(~-1) I , i-1) 

. . 
This calculation generates a sequence of triplets: (FACT, 1 ,  N)' 

(FACT, N,N-1) . b . (FACT, ~ ! / i : ,  i) . . .~ (FACT, N! , 0) 



The sequencing pa r t  of the execution paradigm fo r  IFL instructions is very 

general, and allows a s  special cases,  iterative, straight-line, and conditional 

sequencing of IFL instructions, plus a value re turn  mechanism. 

1. iterative sequencing, a s  seen in example 15, occurs when Q = 0, 
. . q - 

then q(p, k)- if k=O then p e lse  q(pl, kl) 

2. straight line sequencing occurs when Q = 1, then q(p, k) , if k=O then 
q 

p e lse  (q+l) (pl, kl) ; in addition, if k is always not zero  when q is called, 

then q(p,Y.- ! q + l ) ( ~ ~ , k ~ ) '  

3, conditional sequencing occurs when the field Q is an expression ra ther  
q 

than a constant. 

4. a value re turn  occurs when K =0, then q(p, k) .- if k=O then p e lse  (q+Q ) 
q q 

(pl, 0) , but (q+Qq) (pl, 0) = pl, and thus q(p, k)- if k=O then p e lse  p 1; 
in addition, if k is always not zero  when q is called, then q(p, k) ,p 

1' 
In addition, parallel and recursive sequencing of IFL  instructions may be  

programmed. Paral lel  and recursive sequences of IFL instructions a r i s e  because 

the values associated with five fields can be calculated in parallel and may resul t  

(when the descriptor,  d ,  of a field is equal to 4) in the calling of an other IFL 

instruction. 

Example 16 

Consider the following two IFL instructions, X and Y, which have the 

following field values : 

X ={f =*, A =Y(p,k), B =k, K =0, Q =o} x X X X X 

Y ={f =+, A =p, B =0, K =k-1, Q =-I) 
Y Y Y .  Y Y 

where Y = (X+l) 

The execution of the calling sequence X(p, k) then results  in the following 

calculation: 

X(p, k) - if k=O then p e lse  (X+O) (Y(p, k) *k, 0) which is equivalent to 

X(p, k) + if k=O then p e lse  Y(p, k) +k, where 
. .  

Y(p,k)- if k=O then p e lse  (Y-l)(p,k-1). however 

X(p, k) only cal ls  Y(p, k) when k#O, and also (Y-1) =X. 

Thus Y(p, k) .- X(p, k-1) ; and then 

X(p, k) .- if k=O then p e lse  X(p, k-1) *k 

If p and k a r e  initially, respectively, 1 and N, .then X(l ,  N) 

calculates N1 in a recursive manner since: 

X(1, N) .- iC N=O then 1 else  X(1,N-1) *No 



The SBL and IFL interact through the generation by the SBL of'an IFL 
F 

calling sequence, q (p, k) . The resul t  of executing this calling sequence is the 

re turn  of either a single value pn+l, o r  each pair  in the sequence (p k ) . . . 1' 1 
(p  , k ) . This latter type of return is used to define the execution of the iteration n n 
macro  and results  in a co-routine type interaction between the SBL and IFL since 

the IFL program is suspended after each pair (pi, ki) is generated. 

Example 17 

-' consider the sequence of pai rs  (1, N) (2, N-1) . . . (I, N-I+l) . . . (N, 1) used 

in defining the iteration macro that represents  the ALGOL' statement for  

I, 1 step 1 until N do A [ I  j .- B[ I J * C[ I J . This sequence of pairs  call be 

generated by the IFL instruction, INDEX, which has the following field 

vnfilc.a, f - 1 1 ,  1 1  
INDEX *INDEX*, B ~ ~ ~ ~ ~ - l '  ~ N D E X  4-1, and Q INDEX='O 

The IFL instruction calling sequence INDEX(0, N+1) when executed then 

generates the following sequence of pairs  : (1, N) . (i, N+l-i) , (i+l,  N-i) . . . . . 
(N, 1) in the following manner: 

INDEX(i, N+1-i)--if (N+l-i)=O then i e lse  INDEX(i+l, N-i) 

In order  to clarify the discussion of IFL programs presented in later sections, 

the assembler  notation specified in Table 1 will be used for  describing IFL instruc- 

tions and programs. This symbolic notation for  IFL instructions can be mapped 

directly (one-one) into actual Ih'L instructions. The major purpose of the assem- 

b le r  notation is to represent  the special IFL sequencing cases,  previously 

described, with a symbolic notation that indicates each of the special cases. 

Table 2 indicates these relationships between assembler syntax and special cases  

of IF  L sequencing, 

Example 17A 

Consider the IFL instructions FACT,)(, Y discussed previously. These TFJ, 

instructions can be symbolic represented a s  follows: 

FACT :ITERATE(p:=P*k, k:=k- 1) ; 

X: if k=O then p e lse  [ Y J *k; 



TABLE 1: Syntax of IFL Assembler 

<IFL-PROGRAM>- <IFL.-STATEMENT >; /<IFL-STATEMENT >; <IFL-PROGRAM> 

<IFL-STATEMENT >-- <STATEMENT-LABEL > : <STATEMENT > 
<STATEMENT >-- if k=O then p else <IFL-INSTRUCTION>/<IFL-INSTRUCTION> 

<IFL-INSTRUCTION>- <P-OP >, <K-OP >, <Q-OP> / ITERATE ( <P-OP >, <K-OP>) / <PEXP> 

<P-OP>- p: = <PEXP> 

<K-OP>- k: = <EXP-FIELD> 

<Q-OP > - go to <STATEMENT-LABEL>/~O to <EXP-FIELD> (<LIST-STAT >) 

<LIST-STAT > - <STATEMENT-LABEL >/<STATEMENT-LABEL >, <LIST-STAT > 

<PEXP>- <EXP-F[ELD> <INFIX> <EXP-FIELD> / <PREFIX> (<ED-FIELD>,  <EXP-FIELD>) 

<ED-FIELD>-<C>/- <C> / p / p + <C> / p - < ~ > / k / + < ~ > / k - < c > /  <STATEMENT-LABEL> 

<PREFIX > -- M/SHIFT/IA/IB/<EXP-FIELD >/. . . 
<C >-- "intergers less  than 2m-1" 

Special Case 

TABLE 2 

Syntax of Special Case 

<STATEMENT > - <IFL-INSTRUCTION> 

<IFL-INSTRUCTION> -- ITERATE ( <P-OP >, <K-OP >) 

<IFL-INSTRUCTION> -- <P-OP >, <K-OP > 

<IFL-INSTRUCTION> -- <PEXP > 



B. Built-In Arithmetic Operations 

The types of functions which f field can represent fall into three classes: 
q 

interger arithmetic operations, conditional and selection operations, and memory 

access operations. The interger arithmetic operations contain theconventional 

arithmetic and logical operations, concatenation, and shifting. Therefore, if 

f =+ then f (A , B ) equals A +B The concatenation and shifting operators 
q 4 9 9  q q" 

allows building a larger size constant from two smaller size constants o r  the 

combining of disjoint me'mory fields. The conditional operations test a condition 

between the twb operands and, depending upon the .satisfaction of the condition, 

produces either 0 o r  1: 

if f ">" thon'f (A B ) -- if A > B then !, else 0 
. (2.. q q' q q 

The selection .operation, iA and IB, which are, respeclively clefined by f ie ld  value 

for  f of 1 o r  0 have the following definition: 
a q . . 

. . 
. . IA(A B ) = A and IB(A B ) = B 

q '  q 4 q' q 
The conditional and selection operators can then be combined to construct 

if-then-else arithmetic statements. 

Example 18 

Consider the function X(I) which has the following definition: if I >  5 then 

I else 5. The function X can be programmed in terms of two IFL instru1.c- 

tions C and D, where 

Let C be called with parameter (I, 1) then C(1,l) -- [D(I, I)] (I, 5), and 

D(1, 1) - if I >  5 then 1 else 0. 

Since [ 1] (I, 5) = I (I, 5) = I and [O] (I, 5) I (I, 5) = 5 then A B 
C(I,1) -- if I> 5 then I else 5. 

There a r e  two types of memory access operators: one to access the memory 

subsystem and the other to access the process space memory. The memory 

subsystem operator M(A B ) extracts from the memory subsystem starting at 
q' q 

bit A a string of length B This string of bits i s  interpreted as  an integer 
q q ' 

value. The process space memory operations Pl(A B ), P2(A B ) . . . P6(A B ), 
q' SL q' q q' q 



retr ieve,  respectively, one of the six components of the process state vector 

located at  relative address (A B ) in the process space memory. 
q' q 

Example 19 

Consider the addressing structure of the PDP-6. ~ a c h  PDP-6 word is 

36 bits long and is divided-into three fields for  addressing: an indirect 

field, I, (Bit 13), an index field, By (Bits 14-17), and an address field, 

A, (Bits 18-35). The index regis ters  in the PDP-6 a r e  the f i rs t  16 words 

in memory. The addressing structure of PDP-6 is indirect addressing 

with indexing at  each level of the (arbitrarily long) indirect chain. The 

f i rs t  problem is how to represent the 36-bit wide word memory in the 

memory subsystem. Let us  lay out PDP-6 memory starting a t  bit 0 

in the memory subsystem s o  that word K of the PDP-6 begins at address 

M[ K*36] and ends at M[ K*36+35] . The following IFL program deter- 

mines the address of the last word in the indirect chain giving the address 

of the first word of the chain: 

Comments 

PDGADD: if k=O then p e lse  p:=p*36, go to Converts virtual address 

[ k] (CHAIN, EXTRACT-A) ; to physical address and 

then gets value ass6ciated 

with physical address 

CHAIN:p:= [EXTRACT-A] + [EXTRACT-B] , Basic sequencing of 

k:= [EXTRACT-I], go to PD6ADD; indirect addressing 

EXTRACT-A: M(pt18, 18) ; Extracts address field 

EXTRACT-B: p:=M(p+l4, 4), k:=2, Extracts index field and 

then calls procedure to 

get value of index 
-- 

EXTRACT-I: M(pt13, 1); Extracts indirect field 

The IFL program PDGADD is called with parameters (al, 1) where al, is the 

address of the first word of the chain. 

Large size address constants can be generated by IFL instructions either 

through the concatenation of smaller  s ize address constants o r  by storing 



beforehand the constant in the memory subsystem and then, when the constant 

is required, extracting it from the memory subsystem. Though the above is a 

conceptually adequate solution, for reasons of execution efficiency and code 

density, an additional instruction format has been added lu the IFL to handle 

large size address constants. This added type of instruction format, L, has the 

following format: 

word q L I d Ic I 
2 5M+8 

. . 

where has the same semantics as  it has in the basic instruction format of IFL 

instruction, and .Q is an address constant which fills the res t  of the program 
C L 

memory word, Thus, the value of q (p, k) depending upon d is  computed in one 

of the four possible ways : PC, p+Qc, k+Qc, or  (q+Pc) (p, k) . 
C. Side Effects in IFL 

'I'he IFL, as so far  presented, is very similar in two significant ways to 

"pure LISP"; each creates temporary storage solely through parameter passages 

and each has no side effects other than the return of a value. These character- 

istics of the IFL, though theoretically interesting since they guarantee the' deter- 

mininacy of parallel IFL computations, severely limited the ability of this micro- 

computer to emulate existing computers. In particular, the programming of 

address arithmetic computations for emulator niay involve more 111~1 jiisl; the 

return of a value; e.g., an effective address calculation may also involve checking 

for an address alignment e r ror ,  and, if necessary, then updating the state vector 

of the emulated computer to indicate the addressing error .  Thus, the IFL contains 

provisions for the programming of side effects. 

The IYL contains memory operalio~ls which can modify the contents of either 

the memory subsystem or  the process space memory. These memory operations 

SM, SP1, . . . SP6, a r e  the store counterparts, respectively, of the memory 

access operation M; PI, . . . P6. The rrlerllury store operation storcs; lhe IJ 

parameter of an IFL calling sequence in the designated place in the memory sub- 

system or  process space memory. In addition, an IFL can be executed in a call 

by value or  call by name mode. In the call by value case,' the values of f (A , B ) 
q q q  

and K a re  stored in, respectively, new temporary storage locations p and k 
q 1 1' 



while in the cal l  by name case ,  * the values of the parameters  p and k are, 

respectively, r ep lacedbyf  (A , B )  a n d K  T h e c a l l b y n a m e c a s e i s u s e d  
9 9 9  q" 

when the p and k parameters  a r e  pointers either to fields in the memory sub- 

system o r  to p o r  k components in the process space memory. Thus, side 

effects in IFL can be programmed in two ways : directly through memory s tore  

operations o r  indirectly through the call  by name mode. 
, The cal l  by name mode is distinguished from the call  by value mode through 

two control bits attached to the IFL instruction format previously discussed. 

There a r e  also three other .control bits, attached to each IPL instruction. These 

three other control bits a r e  used to sequence the evaluations of the five fields in 

.t1:1e IFL instruction and, thus, override the normal parallel evaluation. 7 These 

field sequence control bits allow the programmer to specify the order  of evalua- 

tion of fields so a s  to avoid indeterminancy in IFL  computations when one o r  

more of fiold evaluations result i ~ i  side effecls. In addition the Ih'L, contains 

three other memory operations, PM, PP2, and PP3,  whose execution resul t s  in 

the generation of a pointer to, respectively, a field in the memory subsystem o r  

to a p o r  to a k component in the process space memory. 

Do Pseudo-Functional Units 

An IFL program can be used to simulate the actions of a functional unit in 

the functional unit subsystem. This use of an IFL program occurs when the 

value of the - fu parameter of an instruction macro is grea ter  than the number of 

functional units in the functional unit subsystem. In this case,  the - fu parameter 

is interpreted a s  the starting address in the program memory of an IPL  program. 

The IFL program activated by the instruction macro then interacts with the 

input data and output data generators of the instruction macro through the following 

operations: FI, FIF, FIA, FIL, FO, FOF, FOA, FOL, FC, FSandFIN.  'l'he 

FI operation activates an input generator of the instruction macro and the bit 

* 
The notation used hi lhe assembler to distinguish a cal l  by name from that of a 
call  by value is the following: p- <PEXP> is a cal l  by name while p:=iPEXP> 
is a call  by value. 

 he eight possible strategies for  evaluation of the five fields have not yet been 
fixed . 



string produced by the input generator ;is the .output of .the FI operation. The . : 

FIF, FIA, and FIL .operations, retrieve from the input generator, respectively, 

the 'format, address, and length of tthe next 'hput da ta  item 20 be generated. The 

FO, FOF, :FOA, and .FOL operations :activate an output generator;and are the 

output 'an$czgs ,of FI, FIF., FLA and FIL operations. The F C  and 'FS operations 

retrieve, respectively, the :c - ,and . - s ,parameters .o'f the 'instruction m,acro. The 

:FIN operations,, is used to determine whether .there is :any more input data to be . . . .  . 
processed. These operations Pn conjunction .with '.the other IFL operations . 

,previously , . discussed allow IFL .programs, to simulate .an :arb.itrarily complex 

functional unit. . . . . . . . ., . : 

. . 
I .  I . 
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VI. FORMAT OF SBL MACROS 

An SBL program, like an IFL program, is stored in the program memory. 

The format of a word in the program memory that defines an SBL macro body is 

identical to the format of a word that defines an IFL instruction. Further, the 

definition of a macro body, stored at  address q, is specified in terms of the 

values of the fields f Aq, Bq, Kq, and Q These fields a r e  computed for an 
q' q"  

SBL macro definition in the same manner a s  they a r e  computed for an IFL in- 

struction, where the two parameters p and k that a r e  used in computing the values 

of the five fields a r e  derived from the macro-calling sequence q(p, k) . Thus, the 

only difference between the definition of an SBL macro body is the definitional 

semantics associated with the values of the five fields. The different types of 

macro bodies a r e  specified in terms of a fixed set  of definitional templates 

(skeletons). The values of the five fields a r e  then used in the expansion of a 

template (to fill in the blank spaces in a skeleton) where the usage of the five 

fields is fixed according to the particular template being expanded. This method ~ 

for specifying the body of a macro is simple and uniform but at  the same time 

very powerful since the value of each of the five fields can be the result  of an 

arbitrarily complex address arithmetic computation. 

The possible formats of a word q in the program memory a r e  the following: 

where t specifies either the type of (template for) the macro body o r  the type of 
q 

IFL instruction stored at  word q, 'and s is control information used in the evalua- 
q 

tion of the five fields, The type field, t is 3 bits long and specifies either one 
q' 

of the six possible macro bodies o r  one of two possible IFL instruction types. 

The control field, s is five bits long, and in the case  of an IFL instruction s 
q' cl' 

specifies whether the instruction is called by name o r  by value and the order of 

evaluation of the five ficldo, while in the case of an SBL rIlacro s specifies 
q 

whether each of five fields will be evaluated at  the time of either macro expansion 

o r  macro execution. 
\ .  



A .  Data-Descriptor Macro 

The data-descriptor macro, qD, when. expanded, ?eshlts in the generation . . 

of a terminal node MEM(f, a,  Q), where - f specifies the format of a data. item, - .  a ,. 

i ts  address, and l its length. The values.of these three parameters a r e  computed, 

based on the values of the five fields stored at  location q, in the following manner: 

f = Q  
q 

These three parameter values a re  computed. at either macro expansion or' macro 

execi~~ion tirne depending upon the value of s Base relative addressing can be  
q' 

programmed by setting f = '+', A the value of a base register, and B the 
q q q 

address displacement relative to the base: a=A +U 
q q"  

The lollowing symbolic notation will be used to represent the data-descriptor 

macro body: 

The underlining of a parameter of MEM indicates the parameter is computed at . . 
macro execution tirue rather thal  at thc time of macro expansion. 'I'his conventfurl 

of underlining will be used for all symbolic representation of SBL macro bodies. 

Example 20 
. . 

Consider the data-desnri.ptor ~nacso,  OPl"l', dl€cUfi~ed 111 exa~llplt! 3 011 

paie  21. The body of the macro OPFT can be specified in th& following 

manner : 

O P F T ~ :  MEM(1, [INDIRECT] -.. *A,  24) 

 INDIRECT^: if k=O then p else p:=p*24; 

p:=M(p+7, .!.B),, . k:= p-BIT], go to INDIRECT; 
* .  

I- BIT : M(p+6,1) ; 

The 24 bit length words of the emulated computer are 1ai.d out in consecu- 

tive bit locations starting at  0 in the memory subsystem. The macro 



OPFT is invoked with a calling sequence whose f i rs t  parameter ,  p, is 

the virtual address of the first word of the indirect chain. IFL program 

INDIRECT, invoked with the same calling sequence parameters a s  

OPFT, computes the virtual address of the l a s t  element of the indirect 

chain. Thus, the execution of OPFT(p, k) results  in the execution of the 

memory subsystem command MEM(f, a,  I )  where 

f = 1, specifying floating point format; 

a = INDIRECT(p,k) *24, the absolute address of the las t  word 

o1 the indirect chain; 

Q = 24, the length of data word. 

B. Selection Macro 

The selection macro, qS, when expanded, results  in the generation of a 

terminal node SEL(qO, INC, c ,  5, i) . This terminal node, when executed, gener- 
- -  - 

ates and then executes the macro calling sequence q(p, k), where q is equal to 

Y o  
+INC, and c indicates the type of activation. 'I'he value of the five parameters 

of SEL a r e  computed based on the value of the five fields stored at  location q in 

the following manner. 

qo = q+fq  

INC = A 
q 

The following symbolic notation will be used to represent the selection macro 

body: 

<SELECTION> :=<STATEMENT-LABEL > : SEL (<QO >, <INC >, <C >, <%, <E>) 
<QO > :=<STATEMENT-LABEL> 

<lNC >:=<EX&'-FIELO> 

<C >:=<EXP-FIELD> 

<IS >:=<ExP-FIELD> 

<K > := <EXP-FIE LD > 



Example 2 1 

Consider the selection macro ,  INSTDECODE, discussed in example 5 

on page 26, and suppose that the computer to be emulated has a 24 bit 

length word where the ' f i r s t  2 bits of the word specify one of four pos- 

sible instruction formats. The body of' the macro INSTDECODE can be 

specified in the following manner: 

INSTDECODE': SEL (INSTFORMAT, [DEC], - 1, p, k); 
D E C ~ :  p:=p*24; M(p, 2) ; 

where the macro INSTDECODE is invoked with a calling sequence whose 

f i r s t  parameter ,  p, is the virtual address of the instruction to be emu- 

lated. The IFL program DEC, when executed, returns the va.l.ue of the 

firs( two bits of the instruction word. This valire is then used to choose 

one of four possible macros:  INSTFORMAT, (INSTFORMAT+l), 

(lNS'l'k'uftR,IfITP+25 ur (IN3TPORMAT la), T h i ~  maors  is then  ~XPP.III.H(I 

with the same pargrnet;ers a s  used to call INSTDECODE: 

q = INSTFORMAT + DEC(p, k) 

P'P 
E = k  

C. Iteration Macro 

Thc itoration macro,  dT, when expanded, results  in the generation of a 

terminal  node SCP(M, V, c ,  po, k d  . The SCP node, when executed, sequentially 

generates and executes a list of macro c a l l i ~ g  sequences; q (p I< ) , 1 1' 1 
qn(pn,kn). This list is generated by invoking the IFL program, V, with the 

initial parameters p and ko; V(p k ), executed like a co-routine a s  previously 
0 0' 0 

described on page , generates a sequence of pairs  (p , k ) (p , k ) . . . 1 1  2 2  
p i ,  ( p  , )  The f i rs t  n pai rs  a r e  used to define the parameters pairs  in 
the list of macro calling sequence. The corresponding macro q .  associated with 

1 

each pair  (p ki) is computed in the following manner : 
i' 

qi = 4 + M(piql. kimsl) 
I If the s bit associated with M parameter is se t  to evaluation at  the time of macro expan- 

q 
sion ra ther  than macro execution, then M is a constant and thus q.  y+M i s  aconstant. 

1 

The c parameter of SCPdefines whether a macro calling sequence qi(pi, ki) will be eval- 

uated for a single cycle o r  to completion, and in the case  that qi is a constant whether 

the macro qi will be reexpanded for kach cycle of the interation macro, reexpanded only 

for  each sequence of parameters (p , k ) , (pn, kn) , o r  never reexpanded. 1 1 "' , 



The following symbolic notation will be used to represent the iteration macro 

body: 

The parameter M is a <STATEMENT-LABEL> when M is evaluated at  macro- . / 
.- -- 

expansion time. 

Example 22 

Consider the iteration macro, FOR LOOP'^, described in example 6 on 

page . The body of the macro FORLOOP can be specified in the 

following manner : 

FOR LOOP'^: SCP(STAT, [INDEX], 1, -24, [GET]) ; 

 INDEX^: ITERATE (p- p 2 4 ,  k- k-1); 

The macro i s  called with parameter pair (parlist, I), where parlist is  a 

virtual address of the parameter list (A, B, C, N) . It is assumed that 

memory subsystem represents a 24 bit wide computer memory. Thus, -. 
in order to get absolute address of the parameter list,  parlist must be 

multiplied by 24. Further, i t  is assumed that parameters (A, B, C, N) 

a re  stored in the last 15 bits of the 24 bit word. The IFL program GET 

retrieves the value of parameter N and increases its value by 1. The 

IFL program INDEX generates the sequence of pairs (0, N), (24, N-1) . . . 
((N-1) x 24,l)  , where the first  clcmcnt of each represent the absolute 

bit offset from the base of 'the array of the elements A[I], B[I] and C[I]. 

Example 23 will define the instruction macro STAT. ' 

D. Instruction and Hierarchical Macros 
I The instruction macro, q , when expanded results in the generation of a list 

of macro calling sequences ql(pl, kl) . . . q (p , k ) , and a terminal node n n n  I 
ICP(Iu, in, cf, s) . The body of the instruction macro, q , is specified in terms of 



two words q and q+l. The f i r s t  word, q,  specifies the parameters used to 

generate the l is t  of macro calling sequence while the second word, q+l,  specifies 

the parameters of the ICP node. The l is t  of macro calling sequences, is generated 

by the same process as used by the SCP node of an iteration macro to generate a 

list of calling sequences. Thus, the five fields of q have the same semantics. a s  

the five fields of an iteration macro body. The fields of q+l correspond to 

parameters of the ICP node, e. g o  , f u 3  , in=A , cf=B s=K 
q 'I q7  q' 

The symbolic notation that will be used to define the body of the instruction 

macro is the following: 

ICP (<FU>, <IN>, <CF>, <S>); 

Example 23 
I Consider the instruction macro, STAT , discussed in example 6 on page 2 7 ,  

The body of the macro STAT can,be specified in the'following manner: 

STAT': SCP (ARRAY, [GEN] , 1, [POINT], 41, ~~P(" func t i ona l  unit, 2, ,) ; 

BASE% p:=p2(2,0); Extract virtual address of 

dope vector . 

p:=p+k-1; Compute desired element of 

dope vector, e.g., A , R ,  o r  C 

p:=p*24; Convert virtual address to 

absolute address 

Cct virtual uddrcct; of bogin- 

ning of a r ray  A, B, o r  C 

p*24; Convert virtual address of 

a r ray  to absolute address, md 

then return absolute address 

I .  



F 
. . . , 

GEN : ITERATE (k:=k-1) 
. . 

Generates sequence of pairs  

(17 3) , (17 2) 7 ( 1 9 1 )  

Generate pointer to p compo- 

- nent of the STAT calling 

. . .  . . sequence which is I 

The macro STAT is called with parameters ((i-1)*24, N-i+l) for i=l, N, 
. . ' 

where the first parameter is the absolute bit offset from the base of array.  

The f i rs t  word of STAT generates the following list of macro calls: 

ARRAY(J, 3), AR.RAY(J, 2), ARRA.Y(J, 1) where J is a pointer to the f i rs t  
D 

parameter of STAT: (i-1) *24. The data-descriptor macro, ARRAY , 
when expanded, computes, using the IFL program BASE, the absolute 

address of the base of the a r r a y  A, B o r  C, depending upon its second 

parameter which is i, 2 o r  3, The ARRAY macro, when executed, computes 

the effective address of the element of a r r a y  AII 1, BII 1, and C[I], by adding 

the base of the a r ray  computed a t  macro expansion time to the value pointed 

The format of the hierarchical macro, qH, is very similar to the format of 

the instruction macro. The difference between the formats is that the second . . , . ,  (-. 

word q+l of hierarchical macro can be an arbitrary SBL macro whereas the 

second word of the instruction macro defines the parameters of the ICP node. 

The symbolic notation that will bc used to define the body of the hierarchical 

macro is the following: 

<HIERARCHICAL> :=<STATEMENT-LABEL> : SCP (<M>, <V >, < C >, <PO>, <KO>), 

<SBL-MACRO > 

<SBL-'MACRO > := <DATA-DESCRIPTOR >/<INSTRUCTION>/<ITERATION >/ 

<SET,ECTION>/<HIERARC~CAL >/<CONTROL > 

E .  Control Macro 
C 

The control macro, q , when expanded results in the generation of a CM clocking 
. process which has four internal parameters n, 1, svt, and syn. These four parameters 

a r e  specified in t e rms  of two words q and q + 1. The five fields of the f i rs t  word q 

have the following meaning: n = f Q = A syn = B null = K r = Q and the fields 
cl' q' cl' q' q' 

of the second word a r e  respectively the q, p, k, c ,  and d components of the svt 



template. The parameter, - null, indicates which one of components of the svt a r e  

template, a r e  null. In addition, the syn parameter also indicates the new s com- 

ponent of svt template. If the null parameter indicates that the components q, p, 

k, c ,  and d a r e  null then the qC can be specified in terms of only one word q. 

The symbolic notation that will be used to define the body of the control macro 

is the following: 

< SPN> :'= ,SUSPEND/TERMINATE . , . . 

<SVT> : = ( < Q > ,  <P>; <K>, <S>, <C>, <R>, <D>) .. 

<Q> : = < EXP - ylELU> /< NULL*' . . . 

' <P> : = < EXP - FIELD> /<NULL > - 
<K> : = < EXP - FUELD>/< NULL> , , 

* <L> : = EXPAND/EXECUTE/TERMINATE~SUSPEND/<-N.ULL> 

<C> : = <EXP - FIELD > /< NULL> 

'<R> : =<EXP - FIELD> / <NUEL> 



VII. SUMMARY COMMENT AND FUTURE RESEARCH 
. . 

, This paper is a preliminary investigation of the organization of a parallel 

micro-computer designed to emulate a wide variety of sequential and parallel' 

computers. This micro-computer allows tailoring of the control structure of 

an emulator s o  that it  directly emulates (mirrors)  the .control structure of the 

computer to be emulated. An emulated control structure is implemented through 

a t ree  type data structure which is dynamically generated and manipulated by 

six primitive (built-in) operators. This data structure for control is used a s  a 

syntactic framework within which particular implementations of control concepts, 

such a s  iteration, recursion, co-routines, parallelism, interrupts, etc., can be 

easily expressed. The major features of the control data structure and the 

primitive operators are :  1) once the fixed control and data linkages among 

processes have been defined, they need not be rebuilt on subsequent executions 

of the control structure; 2) micro-programs may be written so  that they execute 

independently of the number of physical processors present and still  take advan- i : 

tage of available processors; 3) control structures for I/O processes, data- 

accessing processes, and computational processes a r e  expressed in a single 

uniform framework. This method of emulating control structures is in sharp 

contrast with the usual method of micro-programming control structures which 

handles control instructions in the same manner as other types of instructions, 

e. g. ,  subroutines of micro-instructions, and provides a unifying method for  

efficient crnulation of a wide variety of sequential and parallel comnputers. 

Future research on this micro-computer organization will attempt to develop 

more rigorous arguments for the merits of this proposed method for emulating 

control structures. In particular, a simulator for this micro-computer organi- 

zation and emulators for complex sequential and parallel IML's will be programmed. 

These emulators will then be run on the simulator to gather performance statistics. 

In addition, it i s  planned to develop a higher level language, which can be easily 

compiled into SBL and IFL statements, for representing control structures of 
/ 

machines. 

There a r e  two other research areas  which will be investigated. The f i rs t  

research a rea  involves the addition to the SBL of primitive operators (macros) 

whjch control, access t.o nodes in the process space memory, fields in the memory 

subsystem, and functional units in the functional unit subsystem. Thus, it is 



proposed to-integrate the*concept' of protection (capabilities, access path, etc. ) 

into the defi'nition of the control structure of'a process which i s  where the definition 

of protection naturally* belbngs. In.  hep preliminary investigation of this idea,' it 

appears that the concepts of. protect~on~di'scussed by Dennis and Van Horn, 17 - 

Lampson, l8 etc.. can be easily specified, with the addition of two or three primi- 

tives to  SBL, in the framework. of the proposed data structure for control. ~ h u s , '  

emulators for operating systems IML! s; will be more easily implemented, and' it 

will be possible to: protect. a mi'cro-coderfcr.om. by. other micro - 
programs. 

The sccond se~earofi area: to:. be: i'nvestijjated involves .applyi,ng the concept 

of control structure-. definiti'on.. language? to:, the: organization. of .a. cornput-er rather 

than just a micro-computer.. T.hea investigation of 'thi8. research area'has been 

prompted by the work of. ~ i t c h e ~ l ? '  on. tlis.organization of: an interpreter for  LC 
2 

language. 
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