—

UUJLUQUUUUUUUUUUJKJUU_

ﬂﬂf‘]r"“h”“ﬁﬂﬁﬁhﬁﬂﬂqqﬁm

s
=5

STANFORD LINEAR ACCELERATOR CENTER

Stanford University -+ Stanford, California

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

B

B3

SLAC-127
uc-32
(MISC)

DIRECT EMULATION OF CONTROL STRUCTURES
BY A PARALLEL MICRO-COMPUTER

i VICTOR R. LESSER*

STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY
Stanford, California 94305

. LEGAL NOTICE b
. This repart was prepared as an account of work i
! sponsored by the United States Government, Neither
: the United States nor the United ‘States Atomic Energy |
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
| pleteness or usefulness of any information, apparatus,
| product or process disclosed, or represents that its use
| would not infringe privately owned rights.

—

PREPARED FOR THE U. S. ATOMIC ENERGY
COMMISSION UNDER CONTRACT NO., AT(04-3)-515

October 1970

Reproduced in the USA, Avail m A
. ° able f ; :
Service, Springfield, Virginia 2215 11:0 the National Technical Information

Price: Full size copy $3.00; microfiche copy $.65.

*
The research was carried on i
. while the author was a NSF
partially supported under NSF2-FCZ~708-94140, AT(043)§;Zdu1§tile‘§ow and

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

iy

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

ascott
Blank Stamp

ABSTRACT

This paper is a preliminary investigation of the organization of a parallel
micro-computer designed to emulate a wide variety of sequential and parallel
computers. This micro-computer allows tailoring of the control structure of
an emulator so that it directly emulates (mirrors) the control structure of the
computer to be emulated. An emulated control structure is implemented through
a tree type data structure which is dynamically generated and manipulated by
six primitive (built-in) operators. This data structure for control is used as a
syntactic framework within which particular implementations of controli concepts,
such as iteration, recursion, co-routines, parallelism, interrupts, etc., can be
easily expressed. The major features of the control data structure and the
primitive operators are: 1) once the fixed control and data linkages among
processes have been defined, they need not be rebuilt on subsequent executions
of the control structure; 2) micro-programs may f)e written so that they execute
independently of the number of physical processors present and still take advan-
tage of available processors; 3) control structures for 1/0 processes, data-
accessing processes, and computational processes are expressed in a single
uniform framework. This method of emulating control structures is in sharp
contrast with the usual method of micro-programming control structures which
handles control instructions in the same manner as other types of instructions,
€.8., sﬁbroutines of micro-instructions, and provides a unifying method for the

efficient emulation of a wide variety of sequential and parallel computers.

- iii -

ACKNOWLEDGEMENTS

I wish: EoveXbr’éS“s’ my sincere thanks to:Professor William: Miller:whose'

constart support and encouragement of my research efforts have made possible - -

the successful COm'pil"eti’bn‘ of this: paper.. T wb.ul'd‘ alsorlike-to'thank. Professor-

Ed Davidson for his detailed reading and criticisms: of this paper; and Dri:: Harry-
saal and Professor William McKeeman for their:éncouragement of my research
effbrtsré.jhd-the ‘many. fruitful discussions I had with each. Thanks especially to

my- friends and fellow graduate students Lee Erman.and Bill Riddle who have had

to suffer through an uncountable number of rewrites and discussion:-of this paper. .

- iv -

TABLE OF CONTENTS

I. INTRODUCTION.

S H&=

VI.

VII.

A,
B.

Traditional Micro-Computer Architecture
Variable Control Structure as the Basis of a

Micro-Computer Architecture .

MICRO-COMPUTER ARCHITECTURE .
MICRO-PROCESSOR SUBSYSTEM.
STRUCTURE BUILDING LANGUAGE (SBL).

A.

B
C.
D
E

Control Data Structure « . . .
Use of the Six SBL. Macro Types

Format of SBL Macro Calling Sequence
Subsystém Command Macros .
Structure Building Macros
1. Sequential Control Structures
Nonsequential Control Structures

2
3. Tree Structured Addressing. . . .
4

Synchronization, and Control and Data Linkage

Among Processes .

INTEGER FUNCTION LANGUAGE (IFL) .

A,
B.
C.
D.

Format and Sequencing of IFL Instructions .

Built-In Arithmetic Operations = o .
Side Effects inIFL,

Pseudo-Functional Units .

FORMAT OF SBL MACROS

ko Qv

SUMMARY COMMENT AND FUTURE RESEARCH.

Data-Descriptor Macro

Selection MacCro . « « ¢ o « o o o o o o o &

Iteration Macro .
Instruction and Hierarchical Macros.

Contral Macro.

REFERENCES.

13
14
16
17
20
25
25
30
34

35

42
43
48
50
51
53
54
55
56
b7
29
61
63

Y N N N

LIST OF FIGURES

Conceptual structure of an emulator .

Micro-Computer subsystems (modules)

Micro-Processor subsystem's ‘organization

The control data structure for an emulator of 2 von Neumann

computer organization with interrupt .

Fork-join instruction

- vVvi -

o e

12

32
33

I. INTRODUCTION

In the past few years, both the size and diversity of the class of problems
being submitted to computers for solution has significantly increased. The
programming of manylof these new problems on a computer with a von Neumann
organization can be very complex and, additionally, can result in programs which
execute inefficiently. A significant part of these difficulties can be attributed to
the "'degree of complexity' of the transformation from the representational .
framework within which‘ the programmer develops an algerithm (e.g., ALGOL,
LISP, Graph Model, etc.) to the representational framework of a von Neumann
computer within which the algorithm is executed, The complexity of transfor-
mation between these two levels of representation thus makes it difficult to con-
struct an automatic mapping between levels which is both quick and efficient.
The perception of this problem has led to the development of computers whose
organizations are optimized for either a particular subset of or a higher level
language for the problem class., Examples of such machine languages should
include those of the B5500 1 for ALGOL, ILLIAC IV 2 for processing of array
structured data, Abram's APL machine, 3 Melbourne and Pugmire's FORTRAN

machine, etc., Since these represent a broader class of languages than what is

4

, usually meant by machine language, we will refer to them'as ‘intermediate
machine languages (IML's). This tailoring of IML to a specific higher level language
is accomplished by incorporating primitive operators in the IML which directly mirror
operations inthe higher level language (e.g., recursionin ALGOL isdirectly mirrored
through stack operations in B5500). Thus, bythetailoring of amachine's organization
more closely to a particular user representational fram‘ework, the inapping be-~
tween levels is simpler and results in more efficient program ex}ecution..20

In parallel with the development of problem oriented computers, there has
been an effort toward providing a systematic and flexible approach to the hard-
ware design of a specific computer.. This effort has led to the deveiopment of"'
micro-computers, eog,; 360/40,5 with read-only contfol memories programmed)
to emulate a specific von Neumann type computer,

Recently, there has been an attempt to integrate both of these new directions
in computer architecture (machine organizations designed for specific applica-
tions and micro-computers) by attaching to the micro-computer writeable
control memories. Thus, it is intended that through the ability to modify
dynam-ically the control memory of a micro-computer, a wide range of machine
languages of different computer organizations (IML) can be efficiently emulated
on a single micro-computer. However, it is the author's contention that this

goal cannot be realized by existing micro-computers.

-1-

A. Traditional Micro-Computer Architecture

Existing micro-computer architectures are still oriented toward the design
of von Neumann type computers rather than a systematic approach to the emu-

lation of a wide variety of different sequential and parallel intermediary /machiné

languages. ‘
The program structure of an IML emulator, in a conceptual sense, is seen
in Fig. 1.
Control |
Process €
| Decoding
Process

=

Semantic Semantic
‘Routine . e . . | Routine
1 N

v

FIG. 1--Conceptual structure of an emulator.

‘The "control process", which represents the control structure* of the com-
puter to be emulated, activatés the "decoding process'’ with data that identifies
‘-che next instruction(s) of the emulated computer to be executed; the '"decoding '
process' analyzes the instruction(s) to be executed so as to determine the
éemantic routine(s), together with its (their) appropriate calling sequence(g),
whose activation will perform the semantics of the emulated instruction(s).
After the appropriate semantic routine(s) haé (have) been executed, the flow of
control returns to the control process which, based on the results of executing
the decoding process and the semantic routine(s), selects the next instruction(s)

to be emulated,

*) .
The control structure of a computer consists of the set of rules used to define
the sequencing of the instructions of the computer.

! ’i‘hé'érganiza'i:ions of existing micro~computers when applied to the emulation
of unanticipated IML's do not reflect this conceptualization of the structure of
an emulator, but rather provide a simple, uniform framework for the codinngf
an emulator. In these machines, the semantics of micro-instructions are gen-
erally realized by a short parallel sequence of register transfers, and the control
for sequencing among micro-instructions is sequential and based on simple con-
ditional transfer commands. There are no features in the language that distin-
guish the coding of the control process from that of the decoding process or the
semantic routines, nor the relationship, for instance, between the control process
and the decoding process. An emulator expressed in this type of micro-computer
language "... implements machine instructions as a subroutine of micro-
instructions".,6 Thus, due to the simplicity of micro-computer languages and "
their paucity of control commands, the structure of the emulated computer is
not directly observable in the structure of its emulator. The key to efficient
emulation is just this missing ability to directly mirror the control structure,
instruction formats, and primitive data-accessing operations of an IML in the
corresponding control structure, instruction formats and primitive data-accessing
operations of its emulator. In particular, a control action by an instruction in
the IML program being emulated should be directly mirrored in a modification
of the control structure of the emulator. .

Thus, the current approach to the design of a micro-computer which stresses
simplicity is not unreasonable if the micro-computer is going to emulate computers
and IML's that have a simple sequential control and simple instrﬁctions. But, |
IML's that are tailored for a particular subset of a higher level language for a
.problem class are, in a sense by their very purpose, not simple since the com-
i)lexity of the higher level language is imbedded in the sema.ﬁtics of the IML's
instructions and control structure. If the current trend in higher level languages
is maintained, these problem or procedure oriented IML's will have increasingly
more sophisticated control structures employing such control concepts as
recursion, co-routines, parallelism, etc., and, likewise,. their instructions
will directly operate on increasingly more complex data structﬁres, €.8., lists,
trees, arrays, etc. Therefore, the current structure of existing micro-computers
is inadequate for the task of effectively emulating the wide range of such inter- -
mediary languages, just as a von Neumann computer in comparison with the
B5500 does not efficiently execute ALGOL.

B. Variable Control Structure as the Basis of a Micro-Computer Architecture

The micro-computer architectural design to be presented in this paper is
based on the idea that the program structure of an emulator written in this
micro—éompﬁter should reflect the structure of an IML that is being emulated, -
1t is felt that the key to accomplishing this mirroring process betwecn IML and -
its emulator lies in the control structure of the micro-processor. Thus, the
main emphasis in the design to be presented here is to incorporate a very general
control structure in the micro-processor. _

" The approach conventionally used to design a micro-processor with a
powerful control structure is first to develop a basic machine language having
a well-defined set of instructions and a simple sequential control structure, and
then add instructions and facilities (such as subroutine call .instr‘uction, a stack
for parameter passage, a fork-join instruction, etc.) for structuring complex -
sequential and parallel processes. This is not the approach taken here. Instesdd,
the approach is to develop a micro-language specifically designed for the task of
dynamically constructing control structures. This control structure definition
language, called the Structure Building Language (SBL), is used to dynamically
define a wide range of particularized control structures through the generation
of a data structure for control. The control data structure acts as a syntactic
framework within which dynamic and static control and data environment inter-
relationships among processes can be expressed. The control structurc of this
micro-computer can then be dynamically tailored (through the SBL) into a form
\;vhich is most suitable for the emulation of a particular IML. An emulator
programmed in this micro-computer, as will be seen later, works in a fashion
similar to the process of dynamic compilation or run-time macro expansion.
This method of emulation differs radically from the conventional form of emulation
consisting of a sequence of calls to sub-routines of micro-instructions.

The variable nature of the control structure of this micro-computer dis- -
tinguishes its architecture (from the viewpoint of form and complexity) from
existing micro~computer architecture. It is felt that a variable control structure
micro-computer provides a unifying approach to-the emulation of an extremely
wide variety of computer organizations and IML's. The goals of this micro-
computer design are to be able to:

1. Emulate efficiently a wide class of both sequential and parallel

IML's (e.g., array processors, pipeline, stack machiﬁes,

LISP machines, computational graph models, etc.).

-4 -

Program an emulation in a simple and uniform manner, such
that the dynamic program structure of an emulator reflects
the architecture of the computer it emulates.

Incorporate easiiy and efficiently a changing array of hardware
arithmetic units (e.g., square root, inner product, etc.) I/O
devices and memory units (e.g., associative memory, bit

slice memory, etc.).

Micro-Computer

f1

; ‘/v Micro-Processor [€—p| Memory
3

I 11 [}

FIG. 2--Micro-Computer subsystems (modules).

II. MICRO-COMPUTER ARCHITECTURE

The micro-computer architecture, as pictured in Fig. 2, can be character-
ized in terms of three basic hardware subsystems. The first subsystem is
composed of an arbitrary set of functional units. Each of these units can be
independently activated and can have an arbitrary number of inputs and outputs,
where that number need not be fixed but may be data dependent. A functional
unit could be a floating point multiplier or, more generally, an arbitrary input/
output device. This more general usage of a functional unit is a natural conse-
quence of imposing restrictions neither on the size (or form) of the input and
output data sets of a unit nor on the sequencingAbetween units.

‘1'he secohd subsystem is a memory., 'l'hi§ meémory 1§ bit-addressable and
can be activated either to store or retrieve an arbitrary length string of bits.
This memory holds the program that is going to be emulafed, and additionally,
serves as a storage buffer for communication between the functional unit sub-
system and the micro-processor subsystem. Other types of memory organiza-
tions, such as word-oriented, bit-slice, associative, etec., can also be included
in the system's architecture by making them function units.

The third subsystem, which is the major innovation in this micro-computer
architecture, is a micro-processor that controls the dynamic interactions
between the other two subsystems and among functional units. The programmable
nature of the control unit of the micro-processor subsystem allows the tailoring
of both the hardware and software of this architecture to various problems. The
hardware tailoring involves the addition of specialized functional units which
carry out operations commonly used in the problem class (e.g., floating-point

multiplier bit-slice memory, etc.) to the functional unit subsystem or addition

of more parallelism in the micro-processor subsystem. The variable nature of
the control unit of the micro-processor subsystem, as will be discussed later,
allows these hardware modifications to be incorporated without modification to
the language of the micro-processor.,

‘In order to emulate a computer using this system, the program which is
to be run on the emulated computer is stored bit-wise in the memory subsystem
in the same order as it would be stored in the emulated computer's memory.
The micro-processor must then perform the following tasks: (1) fetch from the

memory subsystem the instruction(s) of the emulated computer which is (are) to

be executed in the next step; (2) analyze this (these) instruction(s) in order to
generate the appropriate sequence of functiorial unit activations which will perform
the cdmputations specified by the instruction(s). In addition, the sequence of
fuﬁctional unit activations must -be coupled with accesses and stores to the
memofy subsystem so as to provide the input and output data set-for each umit.
This sequence of functional activations may result in concurrent operation of
functional units or a pipelining of functional units.

The major focus of the rest of the paper will bé on the organization of the
control unit of micro-processor subsystem, especially the syntax and semantics
of the SBL.

III. MICRO—PROC ESSOR SUBSYSTEM

The main orientation 1n the des1gn of this micro-computer, as stated in the
introduction, is to mcorporate a variable control structure definitional fa0111ty
into the hardware of its processor. This design emphasis has led to a micro-
processor that contains two basic clasées of instructions. One class of micro-
instructions called the Structure Building Language (SBL), is used to constfuct
dynamically the control structure of an emulator while the other class, called
the Interger Functlon Language . (IFL) s 1s used to compute address arithmetic
functions.

. The SBL dynamically defines an emulator's control structure through the
generation of a data structure for conlrul. The basis of the syntax and scmantics
of the SBL is a fixed set of definitional templates that define particular types
(forms) of control structures,, An SBL statetnent (macro) specifies one of the
fiXed set of templates together with a set of IFL 'a;idress arithmetic functions.
Each definitional template represents a paraineterized model of a basic control
concept, e.g., iteration, selection, hierarchy, isynchronization, etc. The
speciﬁcation of particular vé.l:;ues for the pa:;'e.meters of the template defines a
particular instance of a basic control concept. These values are computed by
the IFL address arithmetic functions specified in the SBL macro. A call to an
IFL program results in the gehefation of either an integer value or a sequence of
mterger values that are then used in the expans1on or execution of a macrv, The
expansion of a definitional template results in the generation of a structure which
contams all the state information necessary to model the execution of this par-
t1cu1ar instance of the control concept More complex control structures are
constructed through the expansion of a sequence of these definition templates.
The binding of parameters to the SBL rnaci‘o_ is under the explicit control of other
SBL statements. Similarly, the expansion of SBL macros and later execution is
explicitly programmable in the SBL° This ability of the SBL to define dynamically
the sequencing of other $BL statements is the key to the control structure defi-
mt1onal facility of the mlcro—processor.

The SBL consists of six types of macro bod1es (definitional templates): data-
descriptor (D), instruction (l), selection (S), iteration (IT), hierarchical (H), and
control (C). The first two types of macro bodies are called subsystem command
macros while the remaining four are called structure building macros. The

subsystem command macros specify the interaction between the functional unit

- 8-

’

subsystem and the merﬁory subsystem. Only these two macros actually produce
computational results through the action of functional units. More complex
computational processeé are constructed thrdugh the execution of a sequence of
structure building macros that use as their basic building block calling sequences
to subsystem command macros. When the basic building blocks are just data-
descriptor macro calling sequences, then the structure building macros defines
a data-accessing procedure. A

The programming of an emulation on this micro-computer is done by creating
a dynamic Zmapping between tﬁe control structure and instructions of the emulated
computer and a set of structure building macros and subsystem command macros.
This dynamic mapping is represented in the address arithmetic algorithms that
~are used to expand the definitional templates. Thus, an emulator programmed
in this micro-computer works as an iterative two-step process (i.e., it generates
an instance and then executes the instance) similar to the process of dynamic
compilation or run-time macro expansion. This two-step approach to émulati_on
differs from the conventional one-step approach to emulation (i.e., calling sub—
routin-es of micro-instructions) done ori éxisting micro—processors; and directly
reflects the conceptualization of an emulator pictured in F'ig° 1. The binding of
a paraimefer list to a SBL macro is the analog of the control process of the
emulator; thé expahsion of a SBL macro is the analog of the decoding process of
the’ einulator, and fhe execution of SBL macros is the analog of the semantic

routines of the emulator.

.Example 1

‘Consider the emulatibn of an instructioh, FAD I 20, stored at location 10

~ in the emulated cdmputer where FAD 'speciﬁes a floating add operation,
I specifies indirect addressing, and the accumulator is the second and
result operand. The sequence of steps involved in emulation of this in-
strixction on this micro-processor is the following: (1) An SBL instruction
generates and then stores as a node in the control data structure a bindigg'
between a pointer to the current value of the program couhter of the
em{;léted combuter: 10, and a subsystem command macro A. (2) The

' maérb -A with a parameter whose value is 10 is then éxpanded., This
expansio‘nb results in the generafion of a subsystem command in the control

data structure. The expansion of a silbsystem command macro is based on

a template havmg the following format: 'functional unit", "address of
input 1", “address of input 2", "address of output 1'. Macro A fills in .
the slots of the template by calhng with parameter 10 two IFL progra.ms

B and C whose integer value outputs respectlvely, fill in the "functmnal A
unit", and "address of 1nput operand 1" fields. The other two fields are .
“always constants specifying the address of the accumulator of the _
emulated computer. The IFL program B extracts the op -code field of o
the instruction at location 10, and then based on th1s value, determmes
the functional unit in the functional un1t subsystem that carrles out the
operation specified by the op-code. The IFL program C does the address
arithmetic, in this case indirect addressing, requircd to locate the
address of the operand specified by the ins'trubtior1 al location 10,

(3) The instance of a subsyslem command genoratcd by stop 2 is then
executed. The execution of this command results 1n the actlvatlon of the
floating point add functional unit with two operands and then the storage

of the result of the floating point operation in the accumulator of emulated
computer. Thus, the subsystem command carries out the semantlcs of
the emulated instruction FAD I 20 Th1s example mdmates the three
phases involved in emulating IML mstructlonso However, it should be
pointed out that for the emulation of additional IML 1nstruct1ons with the
same basic format (e.g., op-code, mdlrect b1t address) the bmdmg and "
expansion phases can be ehmmated Thus the overhead mvolved in the
binding and cxpancion phases need he incurred nnly once tor each dlfferent
instruction format of the emulated computer. The control data structure
for an idealized von Neumann computer is pictured in Fig. 4 on page 32,
and will be used in the ncxt section as a basis for discussing the six SBL

macro types.

The basic hardware organization of this micro-processor subsystem at the
functional level is pictured in Fig. 3. The micro—processor subsystem e_onta.ins
an arbitrary number of identical micro-processors. The execution of the micro-
processors are controlled through data stored in the program and process—space
memories. These two memories differentiate the static and active partsof the
control structure of the micro-processor subsystem. The "program memory"

holds SBL and IFL statements and is not normally modified during an emulation;

- 10 -

the program memory is similar to the control memory of a conventional micro-
processor. The "process space'" memory holds the control data structure con-
structed by the SBL and is constantly being modified during an emulation. The
contents of the process space memory is in essence the state of the emulator
which is currently being executed by the micro-processor subsystem.

Thé micro-processor .subsystem can carry on parallel activity since the
number of micro-processors contained in the micro-processor subsystem is
arbitrary and these processors can be executed concurrently. The process space
memory holds the definition of the control structure which coordinates, in a
virtual sense, the activity among micro-processors. In the case that there are
not enough micro-processors to carry out the parallel activity specified by the
control structure in the process space memory, then the available micro-processors
are scheduled on a first come-first serve basis. This transformation from virtual
processor activity to actual processor abtivity may lead to indeterminate results
depending upon the number of micro-processors available. However, as will be
described in Section IV.E.4 the SBL contains control primitives that allow the -

programmer to construct the appropriate synchronization rules (Dykstra's sema-

phore, Saltzer's wakeup-waiting switch, lock-step execution, etc.) which preserve
the inherent parallelisms among processes, while at the same time guarantee the
scheduling of virtual parallel activity will always result in determinate computation

independent of the number of actual mirco-processors.

- 11 -

Micro-Computer Hardware Organization

MEMORY

A

] FUNCTIONAL UNIT ¢ 'S]
SUBSYSTEM | SUBSYSTEM
X A
| , I
| L a I
| I
| Micro=Processor |
| Subsystem |
I o I
l‘____ v, e Micros ""—_———_——'_N o
| Processor |[€— g
| — P 1 < I
| — |
| : |
| Process § . l
| Space ¢ . ¢ MJ.cfv([)-HI::ogram I
| Memory . e ~ory ~ l
| : ' |
| : |
: |
| : |
I : |
I _’ Micro- ‘d | I
—I Processor [~ — — — — — — — T T "J
‘¢-————— n — >
o
(—data bus)
(-- —control bus) 172141

FIG. 3--Micro-Processor subsystem's organization.

-12 -

IV. STRUCTURE BUILDING LANGUAGE (SBL)

The SBL is uéed to define control structures for I/O processes, data-
accessing processes, and computational processes. The SBL defines each of
these types of control structurés ina singlé uniform framework. This use of a
single framework for data-accessing and computational processes came from
the following observation: if a set of instructions are considered to form a data
structure, then the control structure associated with the sequencing of these
instructions can be considered as a data-accessing procedure where the data
being retrieved are instructions., For example, consider the following repre-

sentation of a typical list structure:

where p; is the address of the ifh word in the list, a; is the data-item stored at
the ith word, and linki is data stored at the ith word used in computing Pi1e A
data-accessing procedure to extract Bysoesdy from this typical list structure
would generate the sequence PireessP from the link information linkl, oo .linkn_1°
After the generation of each p; (i=1,n) the corresponding a, can then be extracted.

Similarily, consider a... -2, as machine instructions. They can be sequenced

1
by a program counter p which takes on a succession of values PisoeoPpe After
the generation of each P; the instruction a, located at p; is executed, and then

based on Py and 2,5 is calculated. The only difference between instruction

P:
sequencing and data—:c-:tessing of a list structure is that in instruction sequencing
the link information,. linki, is always encoded in the instruction, a, (an instruction
includes an implicit or explicit link). Thus, the general paradigms developed to
sequence through arbitrary list structure can also be used to define conventional
sequential control structures.

The IFL is specifically designed to efficiently sequence through an arbitrary
formatted list structure, and generate either the address of the final list element
p, or the addresses of the intermediate list elements PiseeePp q- In the latter

case, the SBL uses the addresses of these intermediate list elements to generate

- 13 -

a series of macro calling sequences (the binding of a parameter p; to a macro
body). The execution of the macro with parameter p, then results in the carrying
out of the semantics associated with a5, where a, can be a data-item, an emulated
instruction, or the name of a process. These semantics involve, respectiVely,’
the retrieval of the data-element from the memory subsystem,' the exécutibﬂ of

a functional unit with appropriate input and output sets, of the génération and
execution of further macro calling sequences. The first two cases are handled
by subsystem command macros while the latter case by structure building ,
macros. Thus, depending on the types of the macros bound to the sequence of
pararriéter Pyo- °pn-1’ a data-accessing process, an I/O process, or a compu-

tational process can be defined.

A. Control Data Structure
The SBL delines a control structure through the dynamic genei-ation of a

tree type data structure in the process space memory whose nonterminal nodes
contain calling sequences to either a subsystem command macro or a structure
building macro. The process space memory also holds all temporary information
structures, which will be considered as terminal nodes of control data structure,
needed in the expansion and the execution of a macro. The data structure for
control is in the form of a tree due to the ease of specifying such control concepts
as hierarchical structure (functional decomposition), parallelism, co;routines,
and recursion. The representation of hierarchical structure and recursion-is --
possible because additional levels (sibling groups) may be dynamically built in
the tree through the expansion of nonterminal nodes (macro calling seyuences).
The representation of parallel and co-routine control structures is possible
because brother nodes in the tree may he treated as distinct independent processes
each with its own state information. A tree data structure is also a convenient
syntax framework (father, brother, etc., relationship between nodes) for defining
distributed control systems. Namely, the control structure of a complex system
can sometimes be conveniently represented through hierarchical structure where
in each sibling set (structural level) of the tree there is embedded a simple
control process (clocking process)9 that initially sequences its brother .nodes.

If additional clocking processes are contained in the sibling set, control may pass
to these processes after initialization. Thus, instead of one complex control

process for the entire system, the control can be distributed throughout the

- 14 -

system. In addition, if these simple control processes can be coded so their
addressing structure is not based on their absolute locations in the tree, but

only on their relative position in terms of father and brother addressing in the
tree, then relative addressing allows copies of a single process to be used at
different levels in the tree. The simultaneous execution of many calling sequences
to the same macro body-is permitted because information local to each macro
expansion and its subsequent execution is stored with the activating calling
sequence.

Another important feature of the SBL is the separation that is made between
the generation of a macro calling sequence (e.g., the binding of parameters to
the macro body) from the expansion and execution of that calling sequence. The
rules for the dynamic sequencing of the nodes of the control data structure can,
therefore, be di_fferént from the rules for building of the control data structure.
The only built-in sequencing associated with the tree is that a father node must

be expanded before any of its son's. The form of control data structure is thus

just a convenient syntax framework within which sequencing rules can be
expressed. This allows control structures which cannot be conveniently repre-
sented in a tree structure (e.g., fork-join control as will be seen in example 9‘,
computational graphs, etc.) to still be programmed in the SBL since the tree is
the form for generation of the control data structure but not necessarily the form
for the passage of control during execution. The SBL also separates the expan-
sion of a macro calling sequence (which results in the generation of a control
structure that defines a process) from the subsequent execution of the expanded
macro (which results in the execution of the process). Through this separation,
the SBL can control the relative rate of execution of the control structure defined
by the expanded macro, e.g., executing a macro that defines an iteration control
structure for only one cycle (loop) and then suspending the execution of the macro.
A tree node (macro calling sequence) has seven states of activity: (1) it is
unexpanded; (2) it is being expanded; (3) it is expanded; (4) it is being executed;
(5) it is being suspended*; (6) it is suspended; and (7) it is terminated. By con-
trolling the activity rate of a node, namely the rules (conditions) for transition
between the seven node states, the SBL can produce an arbitrary "time grain'',
The time grain of a process refers to the smallest unit of a process activity that
can be controlled, Time grain, as will be seen later, can be employed to repre-
sent concisely such control concepts as co-routines, interrupts, monitoring,

lock-step execution, etc.

X
The fifth state indicates the node is currently executing but will be suspended
al the end of its current time grain.

- 15 -

The ability to separate the expansion of a macro calling sequence froin its
execﬁtion also avoids the unnecessary rebuilding of the control data structure
when the form of the control data structure (e.g., the number of son nodes at a
particular level in the tree) does not vary from execution to executmn, The o

SBL is defined so that only the dynamic parts of the control structure a.re rebullt'

the static parts of the control structures once defined are not regenerated
Additionally, the parameters used to execute and to rebuild parts of the control
structure can be different from those used to initially generate the control

structure.

B. Use of the Six SBL Macro Types
In a recent report by D. Fisher,

10 the control concepts underlying all con-
trol structures were specified as the following: '(1) there must be means to .
specify a necessary chronological ordering among processes and (2) a méans to
specify that processes can be processed concurrently. There must be (3) a
conditional for selecting alternatives, (4) a means to monitor (i.e., nonbusy
waiting) for given conditions, (5) a means for making a process indivisible
relative to other processes, and (6) a means for making the execution of a process
continuous relative to other process ... A process A will be called continuous
relative to another process B if and only if communication is established between
A and B in such a way that state changes in B are temporarily delayed while the
entire action of A is carried to completion."” ‘ _

These underlying control concepts are implemented in terms of the structure

building macros in the following ways, respectively: (1) Sequential control is

implemented through the iteration macro. The iteration macro generates a list

of macro calling sequences where each calling sequence is executed to completion
before the next calling sequence in the list is generated. (2) Parallel control is

implemented by the hierarchical macro. The hierarchical macro generates a

list of macro calling sequences as its son nodes in the control data structure plus
specifying a clocking process that controls the initial sequencing of the son nodes.

The clocking process, in turn, executes control macros that control the execution

of son nodes. These control macros can activate a node without the control
macro's completion being delayed until the comipletion of the activated node, and
therefore, the clocking process does not have to wait for the completion of a node

before it activates other nodes. Thus, a clocking process can activate two or

- 16 -

more son nodes so that they are concurrently executing. (3) Conditional

sequencing is implemented by either a selection macro or a hierarchical macro

in which case the son nodes are possible alternatives and the clocking process
selects the alternative. (4) Monitoring and continuous sequencing is implemented
through the idea of time grain. The control structure of a process that is being
monitored for a specified condition can be constructed so that the process is
activated so as to suspend itself after it has performed the smallest unit of work
which can effect the condition being monitored. Thus, before reactivating the
suspended process the condition being monitored can be checked, and if necessary,
an appropriate interrupt process activated. The concept of time grain is realized
through the use of a clocking process for a group of son nodes together with the
ability to execute via a control macro an iteration macro for only one cycle
(calling sequence) per execution. (5) Indivisibility of processes is realized by not

allowing a control macro to execute a node which is currently executing or being

expanded.

The subsystem commands macros in conjunction with structure building
macro are used to define an I/O control structure which, for example, can |
duplicate the effect of an I/0 channel on a conventional computer. An I/O contfol
structure defined by a subsystem command macro cén be considered a macro-
instruction when the functional unit being controlled in an arithmetic device.

This use of a subsystem command was exemplified by example 1. The idea of
a genefalized I/0 contfol structure to control arithmetic units has been proposed
in a previous paper by the author, 7 and also has been proposed by La.ss8 as basis

of ihe design of a high speed computer.

C. Format of SBL Macro Calling Sequence

An SBL macro calling sequence has a fixed format, and consists of an address,
q;\a;nd\ fcwo integer parameters, p and k. The address, q, specifies the location
of a macro body in the program memory. The integer values defined by p and k
are the external parameters used in the expansion of the macro body. These
external parameters are stored in the control data structure as integer values,
pointers to p or k parameters in other macro calling sequences stored in the
control data structure, or pointers to fields in the memory subsystem. In the
latter case, the pointer has two components, the first component is the beginning
bit address of the field while the second component is the length of the field.

- 17 -

This field in the memory subsystem is interpreted as an integer value where
the length of the field is smallér than the length of fixed size integér data that
the IFL operates on. ‘

This option of storing pointérs instead of values for the external parameters
p and k greétly increases the ability to program emulators that directly mirror
the control actions of the emulated computer. The first type of pointer allows the
representation of the static data relationships between p and k parameters
in the control data structure. In particulér, the first type of pointer
facilitates the representation of broadcast type control structures, and allows
modifications at one level in the control data struclure to be reflected in changes
at other levels in the tree which are not normally accessible from the first level,
The second type of pointer allows the state of emulator to be directly mapped on
to the state of the emulatéd computer, 'I'his mappluy is accomplished by storing
part of the state of emulator in the memory subsystem instead.of entirely in the
process space memory. Thus, SBL operations on p and k parameters can be
directly reflected back into changes in the contents of the memory subsystem.
In particular, this second typé of pointer capability is very valuable in the pro-
gramming of an emulator for a computer whose state vector is not separated
from its memory (e.g., the PDP—ll(l-G) computer whose program counter is
stored as register 7 in its memory) since the state of emulator (e.g., the address
of current instruction being processed, etc.) and the state of the emulated com-
puter (e.g., its program counter, etc.) can be made equivaletit. Thus, the
emulator does not have to process in a special way instructions of the emulated
computer that modify memory registers which contain parts of the stite vector
of the emulated computer. Further, the second type of pointer capability allows
the state vector of an emulated computer to be stored in a single field in the
memory subsystem and references to it to be distributed throughout the control
data structure. Thus, by modifying a single field in the memory subsystem,
the control data structure can be modified to reflect a new state vector for the
emulated computer.

The expansion of a SBL macro q, based onp and k, generates the form of
a control structure and the internal parameters of the control structure definition
that are not modified (constant) from one execution to another. After the expan-
sion of the macro q, the value -6f the expansion parameters p and k can be changed

by a control macro to p and k, and used as execution parameters of the process

- 18 -

defined by the expanded macro. The internal parameters, which vary from
execution to execution, are not calculated at macro expansion time, but instead,
are recé.lculated based on the execution parameters p and k, upon each new
execution* of the process defined by the control structure. The programmer

can define which of internal parameters vary by setting appropriate fields in the
macro body. Varying internal parameters are distinguished from constant.in-
ternal parameters in the control data structure by storing, respectively, the
name of an IFL program in the parameter field instead of an integer value. Thus,
only dynamic parts of a control structure need be rebuilt on each execution, and
only parameters with varying values need be recalculated.

A macro call contains only two parameters, p and k, because most sequential
control rules can be expressed in terms of the modification of, at most, two
variables at each step of the sequencing. Thus, the two parameters p and k
represent the variables or pointer to the variables which are modified at each
step of the sequence. The semantics usually associated with these two parameters
will be the following: the first parameter, p, represents the address of the data-
(e.g., instruction, parameter list, etc.) {o be processed at the current step of
the sequence, and the second parameter, k, represents the .value of a counter

_ that determines the termination of the sequencing.

Example 2
Consider the ALGOL statement: "FOR I+ 1 step 1 until N DO A(]) -~ B()

*C(D),'". The sequencing for this statement can be defined in terms of the
following list of pairs: (1,N) (2,N-1) ... (i, N-i+1), ... (N,1). The first
element of the pair defines the value of I. The value of I is then used as a
parameter to a macro that constructs the subsystem commands to carry
out A(l) —~ B(I) *C(I). The second element of the pair, whose value is the
number of iterations that remain before the current iteration is initiated,
is used to define the termination condition of the FOR loop. The IFL
program that generates this list of pairs, as will be seen later, in example

17, can be stated in just one IFL instruction.

¥ .
It may be advantageous to also have the option of recomputing internal param-
eters when the process goes from the suspended state to the execute state, ' -

- 19 -

The "address' of a data item is used in this discussion in a very general sense
to mean information sufficient to determine, possibly by a calculation, either
the location of the data~item in the memory subsystem or its expiicit v-alue.

The following notation will be employed in the paper for sp'ecifying a macro
name, a macro type, and a macro calling sequence. A macro name is speciﬁed‘
in one of three following ways: (1) as a symbolic name which is optionally sub- '
scripted, e.g., M, a; a1 etc.; (2) as an absolute address in the pr'ogramA
memory enclosed in parentheses, e.g., (0), (10), etc.; (3) as an addressarith-
metic expression involving symbolic names enclosed in parenthesis, e.g., (a+10),
(M +i), (M +A -B,) The type of macro is specified by appendmg D I, S, IT, H,
or C, as a superscrlpt to the macro name, e.g., M’I (0) , etc. The macro type
is optional and is only added for reading clarification. A mucro calling sequence
is defined by a macro name and optionally its type followed by two parameters
which are either symbolic names or integer values enclosed in parentheses, e.g.,
M,(0,5), 10)P0,5), (M+5)2(p, k), ete.

D. Subsystem Command Macros

The data-descriptor macro, when expanded, generates a memory subsystem

command. The memory subsystem command, when executed, activates the
memory subsystem to retrieve (or store)A a single data-item. This command is
defined in terms of three fields: the first field, f, specifies the format of the
data-item (1's complement, floating point, etc.), the second field, a, specities
the address in the memory subsystem of the beginning bit position of the string

of bits which denote the data-item, and the third field, {, specifies the length in
terms of the number of bits of the data-item. The execution of the memory sub-
system command results in the bit string bounded by addresses a and (a+{-1)
being retrieved from the memory subsystem and then sent together with format
field, f, to a functional unit. If £=0, then address a is used as an immediate
operand. The data-descriptor macro ncither specifies the particular furictional
unit that receives 'or genei‘ates the data-item, nor whether the operatidn is a
store or fetch. These specifications of functional unit and operation are defined
by the instruction macro that directly or indirectly activates the data-descriptor
macro calling sequence. Thus, the same data-descriptor macro can be used with
many functional units and may be used either for a store or fetch operation. The
use of a format field, f, in the specification of both input and output allows the
functional unit to be very sophisticated in being able to perform, if desired,
arithmetic operations involving operands and results of different types and lengths.

5(11)

This type of functional unit was proposed for B850 computer.

- 20 -

The data-descriptor macro generates a memory subsystem command by cal-
culating values for the f, a, and { fields (internal parameters). It determines
the values for each of these fields by specifying in its body either a constant for
the value of the field or the name of an IFL program. In the latter case, the
named IFL program is called with the two Barameters in the macro calling,
sequence, and the value returned by the IFL program becomes the value of the
field. The IFL program will be executed at the time of either macro expansion
or macro execution depending upon whether the value of the internal parameter
calculated by the IFL program is a constant for all executions of the generéted
memory subsystem command.

The IFL program can involve an arbitrarily complex computation and,
additionally, as seen in Fig. 2, can access the memory subsystem for data.
Thus, the generation of a memory subsystem command, especially the calcu-
lation of the address field, a, can be either a simple or complex calculation,
depending upon the nature of the IFL program invoked. The data descriptor °

macro calling sequence, when expanded, is represented by the following figure:
D
(94 (P, k))

MEM (f, a, 9)

4

*a box will represent a terminal node

3

Example 3*

Consider a computer with a 24 bit word in floating point format, and with
an instruction format in which bits 0-6 are the op code, bit 7 is an indirect
bit, and 8-23 are the address of the next word of the indirect chain. A
data-descriptor macro, OPFT, which generates a memory subsystem
command that retrieves the desired data-item can be specified in the fol-
lowing manner: Let the p parameter of the macro be the virtual address
of an instruction of the emulated computer; the body of OPFT is defined
such that the f field is a constant that specifies the floating point data-

format, the ¢ field is the constant 24, and the address field, a, is

*
Examples 3, 4, 5, 7 and 8 form an integrated sequence that defines the
control data structure of an idealized von Neumann computer pictured in
Fig. 4 on page 32.

- 91 -

calculated by an IFL program, (INDIRECT) which, using the parameter
p, generates the bit address of the last element of the indirect chain.
The eXpa.nsiori of the macro calling sequence OPFT (p,k) is then repre-

sented by the following figure:

(OPFT (p,k))

MEM {(floating point, INDIRECT (p,k), 24)

The IFL program INDIRECT is not invoked at macro expansion time but
rather at macro execution time since the address ficld, a, of the memory
subsystem command will be recalculated for each execution of the macro
OPFT. '

The instruction macro, when expanded, generates an I/O control structure

that defines the interaction between a functional unit and the memory subsystem.
The basic form of the I/0 control structure generated by the instruction macro

is very similar to the basic form of the control structure generated by the
hierarchical macro; that is, a group of son nodes together with a clocking process.
The basic difference between these two types of control structures is the format
of the clocking process that is used to sequence the son nodes. The hierarchical
macro clocking process is an arbitrary process while the instruction macro
clocking process has a fixed format. 'The son nodés of an instruction macro
specify the data-accessing procedures which fetch (store) the input (output) data
sets of the functional unit, The built-in clocking process of the instruction macro,
ICP, is activated with four internal parameters: fu, the name of a functional
unit¥; in, the number of input set generator nodes (the number of output set
generators are the remaining son nodes); cf, control information sent to the func-
tional unit; 3, an addrcog in thc memory cubsystem where tho status of the
functional unit at the termination of its operatioh is stored. The internal param-

eters fu, cf, and s can, if desired, be recalculated for each execution of the

*
fu can also refer to an IFL program which simulates the action of a functional
unit. Theuseof a pseudo-functional unit will be discussed in V.D.

- 22 -

instruction macro. However, the parameter, in, can be only calculated at
macro expansion time since it relates to the form of the I/O control structure.
The instruction macro calling sequence, when expanded, is represented by the

following figure:

(a(p, k))

ICP(fu, in, cf, 5) @(pl’@ C(pm 1rD Cm+1(pm+1’ m@ < 1n+m Pin+m? m+r@

The clocking process- ICP when executed, activates the functional unit fu with
control infor.matiorgcf,'.and then waits for a request by the functional unit for input
or output data. When input data is requesteﬁ, the calling sequence ql(pl’kl) i‘s'
activated to generate a single input value. Upon further requests for input
ql(pl,kl) is;executed again until it produces no more data (e.g., it is terminated)
and then q2(p2,k) is activated. The same process is then repeated with qz(pz,kz) .

If an output is requested, q 1) is activated to store a value. Upon

1n+1(p1n+1’ in+
further requests for output, an analogous process to the input case just described
is carried out. A functional unit can also operate in the mode where it requesfs
all its input data simultaneously, in which case all the input generators Il° . Iln
are simultaneously activated to generate inputs. At the termination of operation
of the functional unit, the status of the unit is stored starting at address s in the

memory subsystem.

Exafngle, 4

Consider the computer detailed in the previous example. An instruction
‘macro INSTFORMATI(p,k) which generates a functional unit subsystem
command that emulates instructions of this computer can be defined in the

following manner. Let the p parameter of the instruction macro be the

- virtual address of the instruction to be emulated, and assume that the
" implicit second operand and result operand of the instruction is the accu-~
mulator, The body of INSTFORMAT is defined such that the following

- 23 -

control structure is generated.

C INSTFORMAT (p, k))
!
@PFT(p,@

where fu is calculated by an IFL prc;g‘ram, defined in the macro body
‘ INSTFO'RMATI that extracts bits P0~-P6 from the memory subsystem,

and ACC- (p,k) generates a fixed data—descrlptor which represents the .

ICP(fu, 2,ct,s) ACCD(p, k)

"area in thc memory subsystem set aside as the accumulator,

The instruction macro can also be used to construct I/O control structures
that fepresent a pipeline of functional units. The pipelining of functional units
makes unnecessary the use of the memory subsystem as a temporary storage

buffer for data that passes directly from one functional unit to another. An

exampie of a control structure for a two level pipeline (inp— fu1 — fu2 — out)

is the following:

o)

ICP(tu;, 1,,) GNPD@l,le @(pz,kQ
/\ 1.
ICP(fu,, 0,) @UTD(pyng

The semantics assomated with execution of this control structure is the followmg.
D

The execution of q ‘activates functional unit, ful, with input generated by INP
The output of ful is then stored by qI1 But, qI1 is an instruction macro. In that
case, the output directed to qﬁ is sent as an input value to fu2 after all the input
data generators of ,qu are exheusted, In this particular example, there are no

input generators so that output of fu1 is immediately gated into fuZ, Thus,

- 924 -

creating a two-level pipeline. Trees of functional units can also be created by

" this same mechanisms; except in this case of a tree of functional units, the control
‘structure is set up so that the instruction macro is requested to produce an input
instead of storing an output. The output generated by the instruction macro is
then 'outp’utt‘ed when all the output set generators of the functional unit are
exhausted. o ' '

The semantics of the data-descriptor macro and-the instruction macro have
‘been chosen so as to clearly divorce the function of data-accessing from the
computational algorithm (functional unit). This separation then facilitates 1) the
definition of I/0 control structures which directly emulate different types of IML
instruction formats and 2) the incorporation of functional units into the functional
unit subsystem that have complex input and output requirements (e.g., a matrix

multiply unit, etc.).

E. Struéture Building Macros

L. Sequent1a1 Control Structures .
The selection macro serves the same purpose in the SBL as does the Case
-statement in ALGOL the Computed Go To statement in FORTRAN, or the data-

dependent Jump instruction in machme language. The selection macro provides

'a mechamsm whlch allows the cond1t10na1 expans1on of a node in the control data
structure. In essence, the selection macro defines a one-level decodmg tree
wh1ch results in the generatmn of an arbitrary macro callmg sequence. The
expansion of a selection macro, ¢ (p,k) , results in the generation of another
macro q(p,k) where the values of a4sD» a.nd k are either constants specified in the
macro body or are computed by an IFL program using p and k as parameters.

- The selection macro, ‘when expanded, produces the following structure in thé

SEL(q,, INC, ¢, p,k) @(B.ED

pro¢ess space memory:

where SEL is a built-in control process with five internal parameters that gener-

ates and then executes the macro calling sequence q(p,K) as its brother node. The

_ 95 -

. internal parameter q, is an address in the program memory, and is added to the
integer value, INC, -so as to generate the address of macro q. The parameter
q, can be thought of as the base address of a vector of alternative processes
while INC. is an index into the vector that determines the desired alternative.
The internal parameter q, relates to the form of the selection control structure,
and thus cannot be computed after each new execution. The internal parameter
c is control information that defines how the macro calling sequence g(p, k) will

be activated when qS_ is executed, : = E : ;

: E_x__@_lp_e . ; _

. Consider a computer w1th several dlfferent instruction formats, The
emulation of instructions of this computer could be programmed by -
having a separate instruction macro INSTFORMATIJ, for each instruc-
tion format J. A selection macro INSTDECODEs could then be used to |

select the correct mstructlon macro for each emulated 1nstruct1on,

The 1terat1on macro serves the same purpose in the SBL as does the
' FOR LOOP in ALGOL, the DO- LOOP in FORTRAN, or the MAPCAR functlon
in LISP. The 1terat1on macro prov1des a mechamsm for bu11d1ng sequent1a1

processes° An iteration macro, q (p,k) , defmes a sequentla.l process by

generatmg and e‘(ecutmg a hst ot macro calling sequences.

ql(pl, 1)’ qz(pz’ 2) 000 q (p k)’ 1+1(p1+1 1+1) @90 q.n(pn! n)

The iteration macro defines only a sequential process because each macro calling

sequence qi(pi,ki)‘ is completely executed before the generation of the next calling
' . . IT

sequence q; +1(pi +1’ki 1) The iteration macro, q =, when expanded produces

the following structure in the process space memory;

- 926 -

where SCP (Sequential Clocking Process) is a built-in clocking process that
generates and then executes successive elements of the list of macro calling
sequences. The SCP, after the generation of each calling sequence qi(pi’ki) ,
then executes this calling sequence as its brother node. The iteration macro
may be activated by a control macro so that only a single macro calling
sequence qi(pi’ki) is executed; and then after the termination or suspension of
this calling sequence the iteration macro is suspended. Upon reactivation of the
suspended iteration macro,. depending upon whether qi(pi’ki) is terminated or

suspended, respectively, either the next calling sequence q; +1(pi ki +1) will be

generated and then executed or else qi(pi’ki) will be reactivated.,-'-1
The clocking process SCP is activated with five internal parameters: the
first two parameters, M and V, are the addresses of IFL programs; the third
parameter, c, specifies control information; the remaining parameters pO’kO
.are used to construct the initial calling sequence in the list. The M program
called with parameters (pi’ki) computes 9,10 the location of a macro. The V

program, also called with parameters (pi’ki) » computes (p which are

i+1’ki+1) ’ ,
the corresponding parameters for Uype The M and V internal parameters relate
to the form of the iteration control structure and thus cannot be‘vgried from
execution to execution. The clocking process SCP terminates the generation of
calling sequences when kn+1 =0,

Example 6

Consider the Algol Procedure:

PROCEDURE FORLOOP (A, B,C, N);
ARRAY A [1:N], B [1:N], C [1:N];
INTEGER I;

FOR I — 1 step 1 until N

DO A [I}— B([I] *C [I};

END

- 27 -

This procedure can be represented in terms of the following control data V

structure:

G‘ORLOOPIT(parlist, D

SCP(STAT, INDEX, 1,0,n+1)

STATY(, N-])

ICP(*,2,cf,s)

@@AYD(I,@ ' @YD(I,Q

MEM(1,C+, 24) | | MEM(1, B+1, 24)

MEM(1, A+I, 24)

where parlist is a pointer to the pé.rameter list (A, B,C,N); INDEX is an

IFL program that generates the sequence of pairs (1,N) (2,N-1) ... (N, 1);

and ARRAY is a data-descriptor macro that retrieves (stores) the ith' word

of an array, It is assumed the data elements of the array are 24 bits in

width. This control structure, once expanded, need not be reconstructed

for further pfocedure calls, only the value of parameters A,B,C, and N

need be recomputed on each execution.

The control information ¢ is used to define how the macro calling sequence will

be activated; namely, if qi is itself an iteration macro, whether it will be activated

either for a single cycle and then suspended, or whether it will be activated for

the entire list of macro calling sequences and then terminated. Thus, the time

grain (smallest unit of work which can be controlled) of a contirol structure that

is constructed out of a series of successive functional decomposition of a sequen-

tial process can be set at any desired level in the decomposition.

Example 6A

Consider the iteration macro, AIT(p,k) , which when executed generadtes

and executes the following list of macro calling sequences BIT(pl,kl) sy soes

BIT(pn,kn) . Likewise, consider BIT(pi,ki) which when executed generates

- 28 -

[

and executes the following list of macro calling sequences C (pl, 1), coes
C (p). If the 1terat1on macro A is executed for a single cycle,

. and the c parameter assoc1ated with SCP node of A is set for a single
cycle execute, then AI w111 be suspended after the completion of each
data-descriptor macro C (p k) Thus, in this above case, the time

| grain of AI is the complete execution of macro C Whlle if the ¢
parameter is set for execution until termination, then A when executed
for a smgle cycle will be suspended after the termination of iteration

macro B (p k) Thus, in this latter case, the time grain of AI

the complete execution of BIT

Another 1mportant pr0perty of the 1tera.ted macro is that generation of the

magcro calling sequence q, +1(p may be affected by the results of executing

i+1? i-lrl)
‘the macro calhng.sequences ql,(pl’kl) oo qi(pi’ki) The executlon ot a macro
may produce side effects by modifying the contents of the memory subsystem or
the control data structure which in turn may effect the execution of the M and v
programs. .This ability to alter the generation pattern of iteration macro via .

side effects is crucial to defining the sequencing of machine language instructions.

AExample 7 .
Consider an 1terat10n macro INSTEXEC (p,k) which generates the follow—
ing sequence: INSTDECODE (pl, 1), INSTDECODE (p k), <. o Where

Py is interpreted as the address of an 1nstruct1on of an emulated ‘computer,

and k is the state vector of the emulated computern The selectlon macro
INSTDECODES in turn generates an instructor macro INSTFORMAT J(p k),
where J refers to the format of the instruction stored at p;e INSTFORMATfI
when executed carr1es out the semantics of the mstruct1on at location p .
Therefore, the iterated macro can be thought of as the sequencing unit of
a computer, the selection macro as the decode unit, and the instruction

- macro as the arithmetic and logic-unit. This control structure in this ex-

i . ample can be very easily extended to'include an interrupt structure. All
that is required is to set up a clocking process that activates INSTEXECIT
for one cycle at a time, and then checks whether an interrupt requires

. processing. In this case, the time grain is.set as the execution of a single

emulated instruction, Y

- 29 -

The iteration macro can also be used to construct data-accessing procedures
whén qi(pi,ki) is a data—'descripto'r macro calling sequence. The iteration macro
in this case can be considered a.n.operan(d name generator and the data-descriptor
macro a value generator. An additional use of the iteration macro is the building
up of a co-routine structure since the iterated macro holds its state when sus-
pended. By combining these two uses of the iterated macro (as a data-accessing
procedure and a co—routme), a stack data-accessing structure can be constructed.
2, Nonsequential Control Structures

The hierarchical macro prov1des a mechanism for defmmg control structures

that contain more than one clocking process (path of control); 12 especmlly con-

trol structures that distribute control through a hierarchy of control levels. A
distributed control structurc, constructed by a sequence of hierarchical macros,
can be used to define, depending upon the number of clocking processes that are
simultaneously executed, either quaS1—para11e1 13 or parallel control structures.
In addition, many sequential control structures can also be easily defined in terms
of a distributed '(quasi-parallel) control structli_re, e.g., a subroutine call
mechanism: the execution of the subroutine call suSpends the clocking process

of the caller, and activates the clockmg process -of the gubroutme the return
from the subroutine then terminates the clocking process of the subroutme and
reactivates the clocking process of the caller. The block structure and procedure
calls of ALGOL and co-routines are other examblés of sequential distributed
control structures. In e_ssencé, the hierarchical macro allows the structure of

a complex process fo be functionally decomposed into a set of executions of less
complex processes. Thus, the hierarchical macro, in order to represent this
functional decomposition, must define (1) the' set of less complex processes, and
"(2) the sequencmg algorithm (clockmg process) for this set of processes.

The h1erarchlca1 macro, q (p,k) , when expanded, generates a list of macro

calling sequences:

4;(PyKy)s Ao(Pgskg) ceey @ (B ,k)
and then expands a macro calling sequence (q+1)(p,k). The macro (q+1).‘ is a
clocking process that controls through the execution of control macros the initial
sequencing of the list of macro calling sequences. The list of macro calling
sequences is generated using the same mechanlsm, SCP(M,V c,pO,k)» employed

by the iterated macro to generate a list. Except, in this case, the generation

4

- 30 -

pattern of the list cannot be altered through side effects since a macro calling
sequence in the list is not executed until the entire list is generated. The
control field ¢ in SCP in the case of hierarchical macro is used to define a
default value for control information associated with the execution of each
qi(pi’ki) . The list of mécro éalling sequences after its generation is stored as
son nodes of the hierarcAhical macro in the control data structure. The expansion
of a hierarchical macro results in the generation of the following structure in

the process space memory:

r—-—=—1
+1)(p,k) | 1K) Jeeooeo
lL (_‘jl_)(_P _)_j (ql(pl 1))

The macro calling sequence (q+1)(p,k) is enclosed in a dotted box to indicate
that the results of expanding the calling sequence (q+1)(p,k) is placed in the process
space memory rather than the actual calling sequence (q+1)(p,k). Thus, if (q+1)
is an iteration macro, then the expansion of qH(p,k) would result in the following

control data structure:

I
I
[
The execution of qH(p,k) in this above case results in the execution of the built-in
clocking process SCP(M,V,c ,1_)0,120) which sequentially generates and executes a
list of macros calling sequences c—ll(f)l,l—(l) eea ai(ﬁi,l—(i) ... o The results of
executing this list of macro calling sequences, in turn, define the initial sequencing
of ql(pl’kl) oo qn(pn,kn) . The clocking process call sequence (q+1)(p, k) does

not have any characteristics which distinguish it from other processes defined by
the SBL. Thus, a clocking process can be of arbitrary complexity and only the

parts of its structure which are changed on cach cxccution need be modified. A

-31-

tree of arbitrary width and depth can then be dynamically generated since the

macro q, may itself be a hierarchical macro°

Example 8
Consider the emulation of a conventlonal von Neumann computer orgamza—

tion with an interrupt structure, The bas1c form of the control structure

for an emulator for this type of computer can be constructed by combmmg
together the control structures discussed in examples 3 4, 5, and 7, and
then adding a hierarchical macro that specifies the 1nterrupt structure.

Figure 4 represents this control structure, where SEQUNIT is a clocking

comP(p, k)

SEQUNIT INSTEXEC'T) INTHANDLER
SCP(M,V, ¢ ;py:k) @STDECODES(pc,S‘v) -)
/
SEL(INSTFORMAT, J, ¢ ,pe, sv) INSTFORMAT J(pc s@
ICP(fu, 2, cf, 5) ((OP ™) acc?
MEM(, a,)

FIG. 4--The control data structure for an emulator of a von Neumann .
computer organization with interrupt.

!

process that activates INSTEXECIT

for one cycle (instruction) at a time,
and then checks whether an interrupt reduires servicing; if it does; then
INTHANDLER is executed, else INSTEXECIT is reactivated and the basic

sequencing cycle is repeated.

-39 -

i

The hierarchical macro can also be used to construct distributed control
structures which are not conventionally represented in terms of a tree structure.
Nontree like control structures can be represented, because, as previously
discussed, the dynamic sequencing of the tree (which is defined by clocking
processes o_f arbitrary complexity) is' separated from the generation of thé tr'e.e
structure. The sequencing of siblingbnodes is, therefore, not restricted to a
predefined set of built-in sequencing patterns since the élocking process is an
arbitrary program. In addition, the time grain of a process defined by a
hierarchical macro alsé can be arbitra.ry since the time grain of the clocking

process is programmable.

Example 9 '
Consider the‘ parallel control structure defined by a fork-join instruction. 14

. The fork-join control structure is normally represented in terms of the
directed graph in Fig. 5a. However, if the correct clocking processes are
attached to a tree of processes, then the fork-join control structure can be
represénted iﬁ terms of a tree, és viewed in Fig. 5b: the clocking process
Control-1 _seqﬁentially exebutes the process specified by macros "PARL AB"
and C. Control—2 clocking brocess_ executes processes A and B 1n p,ai‘allel,
-and isv not terminated until both processes A and B are terminated.

" 5a o 5b

Fork A;AB Fork A,B

b |
A B | Control-1 |

b o —— e

r—

- —

=
Join A, B | Control-2 | A) C B)

b e —— aa— od

@)

FIG. 5--Fork-join instruction.

- 33 -

3. Tree Structured Addressing

The control macro and IFL refer to (address) processes (rnacro calling
sequences) in the process space mémory either through. their absolute location
in the process space memory or their relative location in the control data struc-
ture tree with respect to the address of either the ¢ontrol macro calling sequence
or the macro calling sequence ‘that invokes the IFL program, 'In general a node
in an arbltra.ry tree structure requlres k parameters to specﬁy its address
uniquely, where k is the depth of the node in the tree.. However, by emplolyin'gP
relative addressing for node ,specification and restricting the .pa’;rt of the tree
that can be addressed from any node, the address of a process can be Specified
in terms of two parameters. The resiriction on accessing only part of the tree
corresponds very closely to the restriction placed on accessing variables in a
uested bluck siructure 1n ALGOL and 1¢ not a serious practicai limitation.
Further, this relative addressing mode, if necessary, can be overrldden by using
absolute addressmg node. '

The relat1ve addressmg schema is a two step process, each step usmg one
of the parameters., The first step, using a parameter to mdicate the number of
times applies the father (antecedent) relation recursiveiy to the relative base

‘node. The second step, usmg a parameter to specify the numbeér of the brother,
locates a particular brother of the node which results from the first step. The
address schema, where (n,l) are the two parameters, -can then be specified by
the following formula: (b):'othcr1 .father™ .base-node). In the case uf the absolute
address node, the addressing schema is (brother1 .n) where the parameter N is

the absolute address of a node.

- 34 -

Example 10

Consider the following tree:

(1)
Ly ' (1,2)
(1,1,1) (1,1,2) (1,2, (1,2,2) (1,2,9 - (1,2,4
A | B
(1,2,2,1) (1,2, 2 2)

T

(1,2,2,2,1) (12222) (1.4223)
D

then using E(1,2,2,2,2) as a relative base node
(2,-1) addresses A (1,2,1)
" (2,2) addresses B (1,2,4)
(1,0) addresses C (1,2,2,2)
(0,-1) addressesD (1,2,2,2,1)

In general, if a base node address is (a : DR an) then relative address

+1)-

2
2 oo Anoi- 1)’(a(n i)

(i, j) refers to node (al

This relative address capability can be used very advantageously in the definition
of recursive distributed control structures since a clocking process does not have
to know the exact level of the tree it is controlling. Thus, the copies of a single

clocking process can bc uscd to control different levels of the tree.

4, Synchronization, and Control and Datfa T.inkage Among Processes
The previous sections in this chapter have described the form, the method
for constructing and the addressing structure of the control data structure. This

section will now detail how the control macro, which is the basic building block

- 35 -

of cloecking processes, uses the control data structure as a syntactic f'ram‘evyork
within which to define nonsequential control structures., o

The control macro combines the control fupcti’ons of process activation
(including parameter passage) and process synchronization. The control macro
perform§$ these control functions through operations on the data stored at a node:
in the process space memory. This data can be considered the state vector of
a process, where the process is defined by the control structure g'enerated by
the macro calling sequence stored at the node. This process state vector con-
tains seven components (q,p,k,s,c,r,d) where q,p, and k ié a macro calling
sequence, s is the current state of the process, c is control information associated
with the activation of the process, and r and 4 are pointers to nodes that, respec-
tively, define the immediate global.control and data environment of the process.
The control information, ¢, specifics the time grain of the process, the conditions
for the process signalling its external clocking process, and the conditions for
rebuilding the process' control structure; the time grain of a process can be
defined to be the execution of the process' internal clocking process for either a
single cycle or until it is terminated; the time grain of a process defines at what
points a process' activity can be suspended. A process can Signal its eXternal
clocking process when the process' state is expanded, suspended, terminated,
or either suspended or terminated. The immediate global control environment
pointer, r, conventionally called a return link specifies the address of this
external clocking process that will be signalled, The ¢ component also specifies
whether a process' control structure will be partially rebuilt after each execution
of the process, or either partially or completely rebuilt after the process is
terminated. The immediate data environment pointer, d, is used by the tree
address mechanism to locate nodes in the_/process space memory. 'I'he values
of r and d when a node is initially generated are, respectively, the addresses of
node's clocking process and father. However, these default options for r and d'
can be overridden by the control macro $o as to create a control data structure

for the passage of control which is not a tree structure.

- 36 -

Example 11
. Consider the following ALGOL program, discussed in a report by Shawls:'

A: begin real al, sooy ApS
procedure r;

begin real Tis coes T s

R: r

end r;
Al: r;
end A

r i3 called at Al; after ¢ is called recursively for the first time at R, the

- control data structure has the following form:

A(BASEA,)

R(BASER2,)
In this example, the immediate global data environment is the same for

" both instantiations of R. This example points up the distinction between
the control and data environment of a process, and the necessity for being
able to construct each of these environments independent of one another '
and to override the normal tree structure discipline for representing

control and data relationships among processes.

- 37 -

A node contains, in addition to process state vector, the address of the
node's first son. The locations of a node's siblings are implicitly defined since
sibling nodes are stored in consecutive locations in the process space memory,

The control macro, qc(p,k) , when expanded, generates the following control

CM(n, £, svt, syn)

structure:

where CM is a built-in clocking process with four internal parameters. The
first two parameters, n and 1 specify the relative address of a node in the control
data structure. The third parameter, svt, is a template for a process state
vector where for each of the component of vector there is stored in the template
either a value or null symbol. The fourth parameter, syn, is used to synchronize
the activity of the control macro with the activity of the process loca{ced. at (n,]).
The execution of the built-in clocking process CM results in the modification
of the state vector of the process located at relative addfess (n,]) in the process
space memory. This process' state vector is modified by replacing the value of
each of its components by the corresponding svt component whenever this corre- '
sponding svt component is not null. Thus, only the components of the state vector
of the activated process which vary from execution to execution of the process
need be recalculated and then replaced by the control macro. The static compo-
nents of a process state vector (the fixed control and data linkages of a process)
are defined either by default options when the process' state vector is initially
generated or by the control macro which initially expands the macro calling
sequence that defines control structure of the process. Thereafter, the control
macro that activates the process has a template state vector whose components
are null whenever the corresponding components-of the process' state vector are
static. At the same time as the modification of the process' state vector is
completed, the s component of the state vector of the CM clocking process is
modified, depending upon the syn parameter, to be either the suspended or the
terminated state. Through this mechanism of simultaneous modifying of two
state vectors, the activity of one process can be synchronized with activity of

another process.

- 38 -

Example 12

| . Corisider two procesées A and B, where process A calls process B as
a subroutine. Process A performs the subroutine call by executing and
then waiting for termination of a CM clocking process. In turn, the
CM clocking process activates the process B and modifies B's state

vector so that process B will signal a return when it is terminated, and

this return will be to the CM clocking process. At the same time, the

syri parameter of CM is set up so that after process B's state vector is

modified the CM clocking brocess is suspended. When process B is

terminated, CM will then be re-awoken and will go to the terminated-
state, Thi,s action in turn will allow'proc'ess A to continue processing
since process A has been waiting on the completion of the CM clocking
process. If process A was not synehronized with the activity of process
B then syn parameter of CM would be set up so that after process B is
activated the CM process is terminated. Thus, process A after process
B is activated will immediately continue processing. Process A while
waitihg for CM process to terminate is not suspended because the action |
‘of suspending process AA'r.nay be significant to A's external clocking '
process since the Suepending of A means that process A has completed
a time gfaina Thus, this implementatio‘n of subroutine call permits A's
‘ external clocking process to view A as executing while process B is
executing, but at the same time A's internal clocking process is waiting:

on B's completion.

The CM clockmg process can only activate a’ process for execution (e.g.,
change the s component of the process’' state vector to executmg) when the process'
current state is unexpanded expanded, suspendeﬂ or terminated. In the case
that CM clockmg process attempts to execute an already executing process, the
CM clocking process either is suspended or goes into a busy wait until the process
to be executed is no lenger executing., The tifne grain of the node that generates
the CM determihes which one of these options is taken: if the time grain is a
single cycle the CM is s'uspende-d,' otherwise it busy waits. Thus, if two processes
simultaneouslyissue CM's 'which activate the same node (shared process), only one
CM will be allowed to execute the shared process, The other CM will then either

wait till the shared process is comple‘rei or possibly at some later time try to

-39 -

execute the shared process. This paradigm for sequentializing the execution of
a shared process can then be used as basis for constructing synchronizing prim-

itives for cooperating processes.,

Example 14

Consider the. 1mp1ementat10n of Dykstra s P and V semaphores in terms of
the CM clocking process. Let PV be a shared process where the p compo-
nent of its state vector is the name of semaphore varlable to be operated
on, the k component of. 1ts state vector mdlcates whether a'Por V operatlon
is lo be performed, and the r component is the address of the process that
actiuatcd PV, A process L performs a P or vV semaphore operatlon by
generating a CM clockmg process whose time gram 1s termmatmn, sﬂ
parameter in the caseof P operation Spe01f1es suspended while for a.V |
operation specifies terminated, (n, 1) parameters specva the relatlve address
of thc PV process, and the svt contams the correct calling sequence for
either a P or V operation.. The pv process when executed by CM for aPp
operation checks whether the semaphore var1ab1e spemﬁed in the calhng
sequence can be decremented if it can, then the operatlon is completed
and the PV process is suspended. Th1s-'suspens1on of PV results in ter-
mination of CM which then permits process L. to continue. In the casge that
semaphore can not be decremented the PV process modlhes its own state
vector component so that it does not return to CM when 1'r 1§ suspendad,
It then extracts the address of the CM process from its state vector, places
this address in queue associated with the semaphore name, and suspends
itself. Thus, the CM clocking proces-s still remains in the suspended
state, and therefore process L can not continue. The PV process. when
executed for V operation 1ncrements the semaphore var1ab1e, and then
checks whether there is a queued CM process on that semaphore variable
that can now be executed. If there is, this CM process address is stored
in the r component of PV state vector, and PV process then suspends-itself
which results in the queued CM process to be re- -awoken. The CM
clocking process that executed the PV process foraVv operat1on termm—
ates immediately after the PV process. state vector has been modified,
and thus Li can continue processing while:V operation is being done. If

the PV process is busy, when CM attempts to execute it, then CM goes

- 40 -

into a busy wait, however, this busy wait is not on a semaphore variable

but only on the process which updates the semaphore.

The CM can also be used to create a new copy of a process (node) instead of
.calling a shared process. This creation of new node occurs when the (n,1)

- parameter are (0,0). The new node is the root node of a separate tree, and only
the CM clocking process can access this tree. It may be also advisable, for
efficiency reasons, for a CM clocking process to be able to simultaneously acti-
vate all the sibling nodes at level in tree, and then be able to wait for all of them

to signal a return.

- 41 -

V. INTEGER FUNCTION LANGUAGE (IFL)

The IFL is a highly specialized micro-code language designed specially for
the task of address arithmetic computations. The output of the address arithmetic
computations performed by the IFL are then used in the expansion and execution
of SBL macros. The format of IFL instructions and SBL macros are very similar;
each is called with two parameters, and each has an expansion and execution phase,
In fact, the execution of SBL* and IFL statéments can be intermixed, and the same
syntax will be used to define an IFL instruction calling sequence as is used to de-
fine an SBL macro calling sequence (€.g.,- qF(p,k), (10)(p, 5), etc., where F is
for the convenience of the reader to differentiate an IFL calling sequence). The
basic difference in a conceptual sense between the IFL and SBL is that the execu-
tion of an IFL instruction results in the execution of a function which returns an
integer value whereas the execution of SBL macros resﬁlts in the execution of a
process. Thus, the IFL instruction can be considered a "functional macro'.

The basic reason for not defining address arithmetic algorithms interms of an SBL
control structure stems from the use of a different control structure for address
arithmetic functions than that for processes. In particular, the control structure
for defining address arithmetic functions can be much less complex and variable
than that required for processes. Thus, the sequencing schema for IFL instruc-
tions is built-in rather than explicitly defined, as in the case of the sequencing

for SBL macros. Address arithmetic algorithms can, therefore, be executed
without the overhead of a variable control structure used for deflining a process
control structure.

Before formally defining the syntax and semantics of the IFL, it is worth-
while to note the following characteristics of the IFL which differentiate it from
conventional micro-code instruction sets:

1. Parallelism: the IFL can execute, wherever appropriate, parallel

(concurrent) activity in an address arithmetic computation.

2, Modularity: complex IFL program can be easily constructed out of

calls to other IFL programs (the concept of a recursive function is
an integral part of the control structure of the IFL); each IFL instruc-

tion is called with two parameters and then returns an integer value.

*
The execution of an SBL macro in the context of an IFL program results in the
expansion and then complete execution of the macro. After its termination, the
next statement in the program memory is executed, and the control data structure
in process space memory resulting from its execution is garbage collected.

- 42 -

3. Reentrancy: the IFL interpreter does not have a fixed set of registers
but, instead, registers are dynamically created through the passage
of parameters. ‘ '

4. Simplicity: the syntaxA (format) and semantics of an IFL instruction

are uniform (regular) and simple.

A. Format and Sequenc'ir;g of IFL Instructions

The format of an IFL instruction qF, which is stored in a word in the pro-
gram memot‘y, consists of five identically forrﬁatted fields, fq, Aq, Bq, Kq, qu
The format of a field consists of an m bit interger*, ¢, plus a 2-bit descriptor
field, d, that defines the method for calculating the value associeted wi:th the
field; a field is represented by the following notation: (d,c).. The value associated

with a field is calculated, depending upon d, in one of the four following ways:

1. c;
2. ptec;
3. k+c;

4. (a+o)f (p,k) .
where p and k are the parameters used to call an IFL instruction q:qF(p,k) .
These three parameters, q, p and k, of an IFL instructiou calling sequence, can
be considered in terms of a conventional micro-computer orgamzatlon as the
current values respectlvely, of the program counter, accumulator, and index .
register.

The expansion phase of the instruction calling sequence q(p,k) is the parallel
evaluation of the five fields, fq, Aq~, Bq’Kq’Qq’ based on the above rules. These
five fields have the following semantics associated with their.values: fq (the
name of dyadic integer function which is the op-code of the IFL instruction q);
A and B (parameters for the funct1on f), K (a counter used to define termina-
‘tlon of sequencmg), and Q (an 1ncrement used to indicate the relative address

with respect to q of the next IFL instruction).

*The maximum size of ¢ which is dependent on m does not have to have an rela-
tionship to the maximum size of addressing space in the program memory or
the memory subsystem. The choice of a value for m will be based on consider-
ations of code density-and speed of execution. :

_ 43 -

Example 14 -
Consider the IFL instruction FACT which has the followmg five field

formats: (1,'*"), (2,0), (3,0),:(3,-1), (1,0). ‘The expansion phase of
FACT(p, k) then results in the five fields having the, following values:
—% =
fpacy™ " mutiply), Apscr™: B *raCT > Kpaer®o 1l a8 Qppcr™-
These five values gehereted by the expansidn phese are ’th‘en hs'ed in the
executlon phase of q(p,k) to defme the executlon semantlcs a.nd sequencmg of

IFL instructions in the followmg mamnero ‘
' q(p,k) '.- if k=0' then p else (q-'FQ)F (f ,(A) K)

This paradlgm for execution of IFL instructions results in the generatmn of a

sequence of triplets: (qO’pO’.kO) (ql,pl, 1) (qn’pn’ n) (qn+1’pn+1’0)’ ,
= = =) i > = =
where q,=q, p,=p, k;,=k, and fori 20, p, , fq (Aq Bql)’ i+ in and

qi+1=q.i+qu° ihe value p'n +1 is then heturneq to the process 'tha‘rt callee qO'_

ExamEle 15 .
Con51der the IFL mstructmn, FACT, dxscussed in Example 14, The exe-

cution of the calhng sequence FACT(p,k) then results in the followmg cal- '

culation: _

FACT(p,Kk) « if k=0 then p else (FACT+0).. . (p*k, k-1)
If p and k have the following initial values of,” respectively, 1 and N, then
FACT(1, N) when executed calculates N! in the following iterative manner:

'FACT(1, N)._ it N=0 then 1 else (FACI+0) (N*L,N-1) = FAbT(N N-1)

o
°

°

FACT(N!, i)« if i=0 then N!/i! else FACT(N!/(i-1)!,i-1)

°

FACT(N /0 » 0) —N' A '
This calculation generates a sequence of tr1p1ets (FACT ,1,N)
(FACT,N,N-1) ... (FACT,N!/i!,i) ... (FACT, NI, 0).

'

- 44 -

The sequenéing part of the execution paradigm for IFL instructions is very

general, and allows as special cases, iterative, straight—lvine, and conditional

sequencing of IFL instructions, plus a value return mechanism.

1.

2.

iterative sequencing, as seen in example 15, occurs when Qqs 0,

then q(p, k)~ if k=0 then p else q(pl,kl).

straight line sequencing occurs when QqE 1, then q(p, k)« if k=0 then

p else (g+1) (pl,kl); in addition, if k is always not zero when q is called,
then q(p, k) - (a+1)(p;,K;) -

conditional sequencing occurs when the field Qq is an expression rather
than a constant. »

a value return occurs when Kq=0, then g(p, k) « if k=0 then p elge (q+Qq)
(pl’ 0), but (q+Qq) (pl, 0)= Py and thus q(p, k)-— if k=0 then p else Py

in addition, if k is always not zero when q is called, then q(p,k).._plo

In addition, parallel and recursive sequencing of IFL instructions may be

programmed. Parallel and recursive sequences of IFL instructions arise because

the values associated with five fields can be calculated in parallel and may result

(when the descriptor, d, of a field is equal to 4) in the calling of an other IFL

instruction,

- Example 16
Consider the following two IFL instructions, X and Y, which have the

following field values:

= =% = = = =
X ={f,=* A =Y(p,k), Bk, K =0, Q =0}
Y ={ff =+, A =p, B =0, K _=k-1, Q =-1

{ y Y—p y -y QY }
where Y = (X+1)

The execution of the calling sequence X(p, k) then results in the following

calculation:

X(p, k) - if k=0 then p else (X+0) (Y(p, k) *k, 0) which is equivalent to
X(p, k) - if k=0 then p else Y(p,k)*k, where ' A
Y(p, k) « if k=0 then p else (Y-1)(p,k-1), however

X(p,k) only calls Y(p,k) when k#0, and also (Y-1)=X.

Thus Y(p,k)« X(p,k-1); and then

X(p, k) « if k=0 then p else X(p, k-1)*k

If p and k are initially, respectively, 1 and N, then X(1,N)
calculates N: in a recursive manner since:

X(1, N) .- if N=0 then 1 else X(1,N-1)*N,

- 45 -

The SBL and IFL interact through the generation by the SBL of an IFL 4
calling sequencé, qF(p,k) . The result of executing this calling sequence is the
return of either a single value Poi1r or each pair in theAsrequerllce'(pl,kl) cos
(pn,kn) . This latter type of return is used /to‘ define the executjon of tpe iteration
macro and results in a co-routine type interaction between the SBL and IFL since

the IFL program is suspended after each pair (pi’ki) is generated.

Example 17 ‘ , '
Consider the sequence of pairs (1,N)(2,N-1) ... (I, N-I+1) ... (N, 1) used

in defining the iteration macro that represents the ALGOL statement for
I——1 step 1 until Ndo A [I]« B[I]*C[I]. This sequence of pairs can be
generated by thé IFL instruction, INDEX, which has the follo‘wing field
values, o= " AnpEx P Binpex~l Enpex*L and QpepEx U
The IFL instruction calling sequence INDEX(0, N+1) when executed then
genetafes the following sequence of pairs: (1,N) ... (i, N+1-i), (i+1,N-1) ...

(N, A1) in the following manner:

INDEX(i, N+1-i) < if (N+1-i)=0 then i else INDEX(i+1, N-i)

In order to clarify the discussion of IFL programs presented in later sections,
the assembler notation specified in Table 1 will be used for describing IFL instruc-
tions and programs. This symbolic notation for IFL instructions can be mapped
directly (one-one) into actual 1K L instructions. The major purpose of the assem-
bler notation is to represent the special IFL seqliencing cases, previously
described, with a symbolic notation that indicates each of the special cases.

Table 2 indicates these relationships between assembler syntax and épecial cases

of IF L sequencing.

Example 17A
Consider the IFL instructions FACT, X, Y discussed previously. These TFT,

instructions can be symbolic represented as follows:

FACT:ITERATE(p:=P*k, k:=k-1);
X: if k=0 then p else [Y] *k;.
Y: k:=k-1, goto X .

- 46 -

L?

TABLE 1: Syntax of IFL Assembler

<IFL-PROGRAM >« <IFL-STATEMENT >; /<IFL-STATEMENT >; <IFL-PROGRAM >
<IFL~-STATEMENT >+ <STATEMENT-LABEL>: <STATEMENT >

<STATEMENT >~ if k=0 then p else .<IFL—INSTRUCTION>/<IFL—INSTRUCTION>
<IFL-INSTRUCTION>« <P-OP>, <K-OP>, <Q-OP> /ITERATE (<P-OP>, <K-OP>) /<PEXP>
<P-0P>« p: =<PEXP>

<K-OP>«k: =<EXP-FIELD>

<Q-OP >« go to <STATEMENT-LABEL>/go to <EXP-FIELD> (<LIST-STAT>)

<LIST-STAT >+ <STATEMENT-LABEL >/<STATEMENT—LABEL >, <LIST-STAT >

<PEXP> « <EXP-FIELD > <INFIX> <EXP-FIELD>/<PREFIX> (<EXP-FIELD>, <EXP-FIELD>)
<EXP-FIELD>~<C>/-<C>/p/p+<C>/p-<C>/k/+<C>/k-<C>/ <STATEMENT-LABEL>
KINFIX>e-+/*/~/>/</=/F/ oo

<PREFIX > - M/SHIFT/IA/IB/<EXP-FIELD /oo

<C>- "intergers less than om-1ly

TABLE 2
Special Case Syntax of Special Case
k #0 <STATEMENT >« <IFL-INSTRUCTION>
Qqs 0 <IFL-INSTRUCTION >« ITERATE (<P-OP>, <K-OP>)
Qq =1 . <IFL-INSTRUCTION>«~ <P-OP>, <K-OP>

Kq =0 <IFL-INSTRUCTION> - <PEXP>

B. Built-In Arithmetic Operations

The types of functions which fq field can represent fall into three classes:
interger arithmetic operations, conditional and selection operations, and memory
access operations. The intergér arithmetic opérations contain the conventional
arithmetic ;an(_i ldgical operations, concatenation, and shifting. Thei'eforé, if
fq=+ then fq(Aél’ Bq) equals Aq+Bq° The concatenation and shifting operators.
allows building a larger size constant from two smaller size constants or the
combining of disjoint memory fields. The conditional operations test a condition
between the two operands and, depending upon the -satisfaction of the condition,

produces either 0 or 1:
if f = ”>” then f (A B) > B then 1 elgse 0

The selection operatlon IA and IB, which are, respeclively defined hy fmld value
for fq of 1 or 0 have the following definition:
IA(A ,B) =A_ and IB(A ,B) =
| IA(A By = A and IB(A,. By) = By
The conditional and selection operators can then be combined to construct

if-then-else arithmetic statements.

Example 18
Consider the function X(I) which has the followmg definition: if I>5 then

I else 5. The function X can be programmed in terms of two IFL mstruc—

tions C and D, where

C: [D)(p, 9);
D: p>5;
Let C be called with parameter (I, 1) then C(I,1) - [D(I,)] (I, 5), and
D(I, 1) - if I>> 5 then 1 else 0.
Since [1] (I, 5)—IA(I 5) =1 and [0] (I 5)=1 (I 5) =5 then
C(I, 1) — 1f I>5 then I else 5,

There are two types of memory access operators: one to access the memory
subsystem and the other to access the process space memory. The memory
subsystem operator M(Aq, Bq) extracts from the memory subsystem starting at
bit Aq a string of length Bq, This string of bits is interpreted as an integer
value. The process space memory operations P]..(Aq, Bq), P2(Aq, Bq) veo P6(Aq, Bq),

- 48 -

retrieve, respectively, one of the six components of the process state vector

located at relative address (Aq, Bq) in the process space memory,

Example 19
Consider the addressing structure of the PDP-6. Each PDP-6 word is

36 bits long and is divided into three fields for addressing: an indirect
field, I, (Bit 13), an index field, B, (Bits 14-17), and an address field,
A, (Bifs 18-35). The index registers in the PDP-6 are the first 16 words
in memory. The addressing structure of PDP-6 is indirect addressing
with indexing at each level of the (arbitrarily long) indirect chain. The
first problem is how to represent the 36-bit wide word memory in the
memory subsystem. Let us lay out PDP-6 memory starting at bit 0

in the memory subsystem so that word K of the PDP-6 begins at address
M[K*36] and ends at M[K*36+35]. The following IFL program deter-
mines the address of the last word in the indirect chain giving the address

of the first word of the chain:

Comments
PD6ADD: if k=0 then p else p:=p*36, go to Converts virtual address
[k] (CHAIN, EXTRACT-A); to physical address and

then gets value associated

with physical address

CHAIN:p:= [EXTRACT-A] + [EXTRACT-B], Basic sequencing of
k:= [EXTRACT-I], go to PD6ADD; indirect addressing
EXTRACT-A: M(p+18, 18); Extracts address field
EXTRACT-B: p:=M(p+14, 4), k:=2, Extracts index field and
go to PD6ADD; then calls procedure to

get value of index

EXTRACT-I: M(p+13, 1); Extracts indirect field

The IFL program PD6ADD is called with parameters (al, 1) where ass is the
address of the first word of the chain.

\

Large size address constants can be generated by IFL instructions either

through the concatenation of smaller size address constants or by storing

- 49

beforehand the constant in the memory subsystem and then, when the constant -
is required, extracting it from the memory subsystcm. Though the above is a -
conceptually adequate solution, for reasons of execution efficiency and code
density, an additional instruction format has been added to the IFL to handle
large size address constants., This added type of instruction format, L, has the

following format:

word qL | d | Lo

2 5M+8
where d has the same semantics as it has in the basic instruction format of IFL
instruction, and .Qc is an address constant which fills the rest of the program

memory word., Thus, the' value of qL(p,k) depending upon d is computed in one
of the four possible ways: !Zc, p+£‘c, k+ﬂc, or (q+!lc) (p,Kk).

C. Side Effects in IFL

The IFL, as so far presented, is very similar in two significant ways to

"'pure LISP'; each creates temporary storage solely through parameter passages
and each has no side effects other than the return of a value. These character-
istics of the IFL, though theoretically interesting since they guarantee the deter-
mininacy of parallel IFL computations, severely limited the ability of this micro-
computer to emulate existing computers. In particular, the programming of
address arithmetic computations for emulator may involve more lhau just the
return of a Valﬁe; e.g., an effective address calculation may also involve checking
for an 'addresslalignment error, and, if necessary, then updating the state vector
of the emulated computer to indicate the addressing error. Thus, the IFL contains
provisions for the programming of side effects.

The IFL contains memory operations which can modify the contents of either
the memory subsystem or the process space memory. These mémory operations
SM, SP1, ... SP6, are the store counterparts, respectively, of the memory
access opération M; P1, ... P6., The memory store operation stores the p
parameter of an IFL calling sequence in the designated place in the memory sub-
system or process space memory. In addition, an IFL can be executed in a call
by value or call by name mode. In the call by value case, the values of fq(Aq, Bq)

and Kq are stored in, respectively, new temporary storage locations 1 and kl’

while in the call by name case, * the values of the parameters p and k are,
respectively, replaced by fq(Aq, Bq) and Kq; The call by name case is used
when the p and k parameters are pointers either to fields in the memory sub-
system or to p or k componenté in the process space memory; Thus, side-
effects in IFL can be programmed in two ways: directly through memory store
operations or indirectly through the call by name mode.

The call by name mode is distinguished from the call by value mode through
two control bits attached to the IFL instruction format previously discussed.
There are also three other control bits, attached to each IFL instruction. These
three other control bits are used to sequence the evaluations of the five fields in
the IFL instruction and, thus, override the normal parallel evaluation.t These
field sequence control bits allow the programmer to specify the order of evalua-
tion of fields so as to avoid indeterminancy in IFL computations when one or
more of fiold ovaluationa result in side elfecls. In addition theé 1k'L, contains
three other memory operations, PM, PP2, and PP3, whose execution results in
the generation of a pointer to, respecﬁvely, a field in the memory subsystem{or

to a p or to a k component in the process space memory.

D. Pseudo-Functional Units

An IFL program can be used to simulate the actions of a functional unit in
the functional unit subsystem. This use of an IFL program occurs when the
value of the fu parameter of an instruction macro is greater than the number of
functional units in the functional unit subsystem. In this case, the fu parameter
is interpreted as the starting address in the program memory of an IFL program.
The IFL program activated by the instruction macro then interacts with the
input data and output data generators of the instruction macro through the following
operations: FI, FIF, FIA, FIL, FO, FOF, FOA, FOL, FC, FS and FIN. 'The

FI operation activates an input generator of the instruction macro and the bit

*
The notation used in the assembler to distinguish a call by name from that of a
call by value is the following: p- <PEXP> is a call by name while p:=<PEXP>
is a call by value.

T

The eight possible strategies for evaluation of the five fields have not yet been
fixed.

’

-'51 -

string produced by the input generator is the output of the FI operation. The
FIF, FIA, and FIL operations retrieve from the input generator, respectively,
the format, address, and length of the next input-data item to be generated. The
FO, FOF, FOA, and FOL opexfation‘s :activate an output generator and are the
output analogs of FI, FIF; FIA and FIL operations. The FC and FS operations
retrieve, respectively, the ¢ and s parameters of the 'insfruction macro. The,
FIN operations, is used to determine whether :th,er>e is:any more input data to be
processed. These operations in conjunction with the other IFL operations
preiziously, discussed allow TFL programs to simulate .an arbitrarily complex

functional unit.

- 52 -

VI. FORMAT OF SBL MACROS

N

An SBL prdgra_m, like an IFL program, is stored in the program memory.
The format of a word in the program memory that defines an SBL macro body is
identical to the format of a word that defines an IFL instruction. Further, the
definition of a macro body, stored at address q, is specified in terms of the
values of the fields fq, Aq, Bq, Kq, and Qq° These fields are computed for an
SBL macro definition in the same manner as they are computed for an IFL in-
struction, where the two parameters p and k that are used in computing the values
of the five fields are derived from the macro-calling sequence q(p,k). Thus, the
only difference between the definition of an SBL. macro body is the definitional
semantics associated with the values of the five fields. The different types of
macro bodies are specified in terms of a fixed set of definitional templates
(skeletons). The values of the five fields are then used in the expansion of a
template (to till in the blank spaces in a skeleton) where the usage of the five
fields is fixed according to the particular template being expanded. This method .
for specifying the body of a macro is simple and uniform but at the same time
very powerful since the value of each of the five fields can be the result of an
arbitrarily complex address arithmetic computation,

The possible formats of a word q in the program memory are the following:
t d {c
q qQ - q

- £ A A B B K K Q Q
t S d d
a | a I a cq | c [d c | dq cq |dq cc1

or

where tq specifies either the type of (template for) the macro body or the type of
IFL instruction stored at word q, and Sq is control information used in the evalua-
tion of the five fields. The type field, tq, is 3 bits long and specifies either one
of the six possible macro bodies or one of two possible IFL instruction types.

The control field, sq, is five bits long, and in the case of an IFL instruction sq,
specifies whether the instruction is called by name or by value and the order of
evaluation of the five ficlds, while in the case of an SBL macro sq specifies
whether each of five fields will be evaluated at the time of either macro expansion

or macro execution,

- 53 -

A. Data-Descriptor Macro
_The data-descriptor macro, qD, when expanded, Ijesillts in the generation

of a terminal node MEM({, a, §), where f specifies the format of a data item, a .
its address, and { its length. The values of these three parameters are computed,

based on the values of the five fields stored at location q, in the following manner:

a=f (A ,B)

q a9 q
} = K '
LeK,
f =

%

These three parameter values are computed at either macro expansion or macro
execution time depending upon the value of sqo Base relative addressing can be
programmed by setting fq= Tt Aq the value of a base register, and Bq the
address displacement relative to the base: a=Aq+Bq,

The following-symbolic notation will be used to represent the data-descriptor
macro body: '

' <DATA—DESCRIPTOR >:=<STATEMENT-LABEL>: b

<F> = <EXP-FIELD>
<A> =<PEXP>
<L> = <EXP-FIELD>

MEM(<F‘>, <A>, <L>)

The underlining of a parameter of MEM indicates the parameter is computed at
macro execution time rather than at thc time of macro expansion, ‘I'his ¢convention

of underlining will be used for all symbolic representation of SBL macro bodies.

Example 20
Conegider the data~-deseriptor macro, OPI"l', diseussed in example 3 on '

paﬁe 21, The body of the macro OPFT can be specified in the following

manner:

OPFT: MEM(1, [INDIRECT]*24, 24)
INDIRECTY ; if k=0 then p else p=p*24;
p=M(p+7, 16), k:=[[-BIT], go to INDIRECT;.

F. Mp+6, 1);

I-BIT
The 24 bit length words of the emulated computer are laid out in consecu-

tive bit locations starting at 0 in the memory subsystem. The macro

- 54 -

OPFT is invoked with a calling sequence whose first parameter, p, is
the virtual address of the first word of the indirect chain. IFL program
INDIRECT, invoked with the same calling sequence parameters as
OPFT, computes the virtuél address of the last element of the indirect
chain. Thus, the execution of OPFT(p,k) results in the execution of the

memory subsystem command MEM({, a,) where

= 1, specifying floating point format;
a = INDIRECT(p, k) *24, the absolute address of the last word
of the indirect chain;
£ = 24, the length of data word.

B. Selection Macro
The selection macro, qs, when expanded, results in the generation of a

terminal node SEL(q,, INC, c,p,k). This terminal node, when executed, gener-

ates and then executes the macro calling sequence q(p,k), where q is equal to
qO+INC, and ¢ indicates the type of activation. The value of the five parameters
of SEL are computed based on the value of the five fields stored at location q in

the following manner.

qp = a+fy

INC = A,
c=Bq
p =K,
k=Q

The following symbolic notation will be used to represent the selection macro

| body: r

S.SEL (<QO >, <INC>, <C >, <P>, <K>)

<SELECTION>:=<STATEMENT-LABEL>
<QO>:=<STATEMENT-LABEL>
<INC>:=<EXP-FIELD>

<C >=<EXP-FIFLD>
<P>:=<EXP-FIELD>

<K >:=<EXP-FIELD>

- 95

Example 21

Consider the selection macro, INSTDECODE, discussed in example 5
on page. 26, and suppose that the computer to be emulated has a 24 bit
length word where the first 2 bits of the Wdrd specify one of four pos-
siblé instruction formats. The body of the macro INSTDECODE can be

specified in the following manner:

INSTDECODE": SEL (INSTFORMAT, [DEC], 1, ps k);
DECF: p:=p*24; M(p,2);

where the macro INSTDECODE is invoked with a calling sequence whose
first parameter, p, is the virtual address Qf the instruction to be emu-
lated. The IFL program DEC, when cxecuted, returns the value of the
firs(two bits of the instruction word. This value is then used to choose
one of four possible macros: INSTFORMAT, (INSTFORMAT+1),
(INS'LTLIORMAT+2) vr (INSTFORMAT !13). Thie maoro is then exanulead
with the same‘ parameters as used to call INSTDECODE:

INSTFORMAT + DEC(p, k)

T R
It

p
k

C. Iteration Macro

The itoration macro, qIT, when expanded, results in the generation of a
terminal node SCP(M,V,c,pO,kO) . The SCP node, when executed, sequentially
generates and executes a list of macro calliug sequences: ql(pl,k 1) s vu
qn(pn,kn) . This list is generated by invoking the IFL program, V, with the
initial parameters Py and kO; V(pO,kO), executed like a co-routine as previously
described on page , generates a sequence of pairs (pl,kl) (pz,kz) oeo
(pn,kn) (pn-l 1’ 0). The first n pairs are used to define the parameters pairs in
the list of macro calling sequence. The corresponding macro q; associated with

each pair (pi’ki) is computed in the following manner:

9; =4 + M(pi-l’ ki-'~'1)
If the sq bit associated with M parameter is set to evaluation at the time of macro expan-
sion rather than macro execution, then M is a constant and thus qi=q+M is aconstant,
The ¢ parameter of SCP defines whether a macro calling sequence qi(pi, ki) willbe eval-
uated for a single cycle or to completion, and inthe casethat q; is a constant whether
the macro q; will be reexpanded for éach cycle of the interation macro, reexpanded only

for each sequence of parameters (pl, kl) cos (pn, kn) , or never reexpanded.

- 56 -

The following symbolic notation will be used to represent the iteration macro
body: ‘

<ITERATION>:=<STATEMAENT~LABEL>:IT SCP(<M>, <V>, <C >, <PO>, <KO>)
<M>:=<STATEMENT—LABEL >/<EXP-FIELD>
<V>:=<STATEMENT-LABEL>
- < C >:=<EXP-FIELD>
<PO>:=<EXP-FIELD>
<KO>:=<EXP-FIELD>

The parameter M is a <STATEMENT-LABEL> when M is evaluated at macro- - /

expansion time.,

Example 22
Consider the iteration macro, FORLOOPI

page . The body of the macro FORLOOP can be specified in the

T, described in example 6 on

following manner:

FORLOOP' L : SCP(STAT, [INDEX], 1,-24, [GET]);
INDEXF; ITERATE (p- p+24, k+ k-1);
GETYF : p:=(p+3)*24; p:=M(p+9, 15); p+1;

The macro is called with pafameter pair (parlist, 1), where parlist is a
virtual address of the parameter list (A, B,C,N). It is assumed that
memory subsystem represents a 24 bit wide computer memory. Thus,
in order to get absolute address of tﬁe parameter list, parlist must be
multiplied by 24. Further, it is assumed that parameters (A, B,C,N)
are stored in the last 15 bits of the 24 bit word. The IFL program GET
retrieves the value of parameter N and increases its value by 1. The
IFL program INDEX generates the sequence of pairs (0, N), (24,N-1) ...
((N-1) x 24, 1), where the first clecment of each represent the absolute
bit offset from the base of ‘thé array of the elements A{I], B[I] and C[I].
Example 23 will define the instruction macro STAT."

D. Imstruction and Hierarchical Macros

The instruction macro, qI, when expanded results in the generation of a list
of macro calling sequences ql(pl’kl) s qn(pn’kn) , and a terminal node

ICP({u, in,cf, s). The body of the instruction macro, q°, is specified in terms of

- 57

two words q and g+1. The first word, q, specifies the parameters used to
generate the list of macro calling sequence while the second word, g+1, specifies
the parameters of the ICP node. The list of macro calling sequences. is generated
by the same process as used by the SCP node of an iteration macro to generate a
list of calling sequences. Thus, the five fields of q have the same semantics as
the five fields of an iteration macro body. The fields of g+1 correspond to
parameters of the ICP node, e. go» fu-‘f , in= Aq,cf Bq, s= Kq.

The symbolic notation that will be used to define the body of the mstructmn

macro is the following:

<INSTRUCTION>:=<STATEMENT-LABEL> © : SCP (<M>, <V'>, < C>, <PO>, <KO>),
ICP (<FU>, <IN>, <CF>, <85); ‘ '
<FU> =<EXP-FIELD>
' <IN> :=<EXP-FIELD >
<S> =<EXP-FIELD>

Example 23
Consider the instruction macro, STATI, discussed in example 6 on page 27,

The body of the macro STAT can be specified in the ‘following manner:

STATI:SCP(ARRAY,[GEN], 1, [POINT], 4), ICP(*unctional unit, 2,,);

. Comments
BASEF': p:=p2(2, 0); Extract virtual address of

dope vector -

p:=p+k-1; Compute desired element of
dope vector, e.g., A,B, or C

p:=p*24; Convert virtual addreés to

absolute address

p:=M(p+9; 16); - ' Get virtual uddrese of begin-

ning of array A,B, or C

p*24; Convert virtual address of
array to absolute address, and

then return absolute address

“ .

- 58 -

_GEN F: ITERATE (k:=k-1) Generates sequence of pairs
| | (1,3), (1,2), (L1

: POINTF : PP2(0, 0) _ - Generate pointer to p compo-
T : nent of the STAT calling

sequence which is I

The macro STAT is called with parameters ((i-1)*24, N-i+l) for i=1, N,

" ‘where the first parameter is the absolute bit offset from the base of array.
The first word of STAT generates the following list of macro calls:
ARRAY(J, 3), ARRAY(J,2), ARRAY(J, 1) where J is a pointer to the first
parameter of STAT: (i-1)*24. The data—desériptor macro, ARRAYD,
when expanded, computes, using the IFL program BASE, the absolute
address of the base of the array A, B or C, depending upon its second
parameter which is 1, 2 or 3. The ARRAY macro, when executed, computes
the effective address of the element of array A[I], B[I], and C[I], by adding
the base of the array computed at macro expansion time to the value pointed
to by J. ‘ '

The format of the hierarchical macro, qH, is very similar to the format of
the instruction macro. The difference between the formats is that the second e K
word g+1 of hierarchical macro can be an arbitrary SBL macro whereas the
second word of the instruction macro defines the parameters of the ICP node.
The symbolic notation that will be used to define the body of the hierarchical
macro is the following:

<HIERARCHICAL > :=<STATEMENT-LABEL> H : SCP(<M>, <V >, < C>, <PO>, <KO>), -

<SBL-MACRO>
<SBL-MACRO> :=<DATA-DESCRIPTOR >/<INSTRUCTION>/<ITERATION >/
<SELECTION>/<HIERARCHICAL >/<CONTROL >

E. Control Macro

The confrol macro, qc, when expanded results in the generation of a CM clocking
process which has four internal parameters n, £, svt, and syn. These four parameters
are specified in terms of two words q and q + 1. The five fields of the first word q
. have the following meaning: n = fq, 4= Aq, syn = Bq, null = Kq, r= Qq, and the fields

of the second word are respectively the q, p, k, ¢, and d components of the svt

-59 - .

terﬁplate. The parameter, null, indicates which one of comp'onerité‘ of the svt are
template, are null. In addition, the syn parameter also indicates the new s _com- "
ponent of svt template. " If the null parameter indicates that the components q, p,
k, ¢, and d are null then the qc can be specified in terms of only one word q.
The symbolic notation that will be used to define the body of the control macro

is the following:

< CONTROL > : = <STATEMENT - LABEL>{C}: CM(§N> » <L>, <SVT>, <SYN>)
<N> : = <EXP - FIELD>

<L> := <EXP - FIELD>

<SYN> :'= SUSPEND/TERNHNATE . A ‘

<SVT> : = (<Q>, <P>, <K>, <8>, <C>, <R>, <D>) -

<Q> := <EXP - MIELD> /< NULL> . _

"<P> := <EXP - FIELD>/<NULL>. _

<K> : = < EXP - FIELD>/<NULL>

<L>:= EXPAND/EXECUTE/TERNHNATEVSUSPEND%<NULL>
: =<EXP - FIELD> /< NULL>

<R> : =<EXP - FIEI_D> /<NULL>

<D> :=<EXP - FIELD> /< NULL>

A

Q
v
]

- 60 -

VII. SUMMARY COMMENT AND FUTURE RESEARCH

Th1s paper is a prehrmnary 1nvest1gat1on of the organization of a parallel
m1cro—computer designed to emulate a wide variety of sequential and parallel
computers. This micro-computer allows tailoring of the control structure of
an emulator so that it directly emulates (mirrors) the _contérol structure of the
computer to be emulated. An emulated control structure is implemented through
a tree type data structure which is dynamically generated and manipuiated by
six primitive (built-in) operators. This data structure for control is used as a
syntactic framework within which particular implementations of control concepts,
such as iterétion, recursion, co-routines, parallelism, interrupts, etc., can be
easily expressed. The major features of the control data structure and the
primitive operators are: 1) once the fixed control and data linkages among
processes have been defined, they‘ need not be rebuilt on subsequent executions .
of the control structure; 2) micro-programs may be written so that they execute
independently of the number of physical processors present and still take advan-
tage of available processors; 3) control structures for I/0 processes, data-
accessing processes, and cofnputational processes are expressed in a single
uniform framework. This method of emulating control structures is in sharp
contrast with the usual method of micro-programming control structures which
handles control instructions in the same manner as other types of instructions,
e.g., subroutines of micro-instructions, and provides a unifying method for
cfficicnt emulation of a wide variety of sequential and parallel computers.

Future research on this micro-computer organization will attempt to develop
more rigorous arguments for the merits of this proposed method for emulating
control structures. In particular, a simulator for this micro-computer organi-
zation and emulators for complex sequential and parallel IML's will be programmed.
These emulators will then be run on the simulator to gather performance statistics.
In addition, it is planned to develop a higher level language, which can be easily
compiled into SBL and IFL statements, for r(;,presenting control structures of
machines.,

There are two other research areas which will be investigated. The first
research area involves the addition to the SBL of primitive operators (macros)
which control access to nodes in the process space memory, fields in the memory

subsystem, and functional units in the functional unit subsystem. Thus, it is

- 61 -

proposed to-integrate the-concept of protection (capabilities, access path, etc.)
into the défi"nition of the control structure of'a process which is where the definition
of protection naturally belongs. i t"h’e*pre'liminar'y ihvestigation of this id‘ea,. it
appears that the concepts. of protection-discussed’ byiDelnhis.and’_Van Horn, 17
Lampson, 18 etc.. can be-easily specified, with the addition of two or three priini—"
tives to SBL, in. the framework. of the. proposed.data structure for control. Thus,
emulators for operat’ing_‘ systems. IML!s:will be: more easily implemented,, and'it
will be possible to:protect.a micro-code. from: interference. by'of;her micro- '
programs. _ .

The sccond research area to be:investigated involves applying the concept
of control structure definition. language: to: the: organization of ‘a computer rather
than just a micro-computer. The: i'nvestigati'on‘ of this: research area has been
prompted by the work of. Mi‘t‘clrr,e'lli1 Y on-the: organization of an interpreter; for. LC2 '
language. ’ ' :

- 62 -

10,

11,

12,

13.

14,

REFERENCES

Burroughs Corporation [(1963]. The Operational Characteristics of the
Processors for the Burroughs B5000, Burroughs Corporation, Detroit,
Michigan. -

Illiac-1IV System Study Final Report [1966]. Burroughs Corporation,
University of Illinois No. 09852~B. . '

Abrams, P. S. [1970]. An APL Machine. Report No. SLAC-114, Stanford
Lineaxr Accelerator Center, Stanford University, Stanford, California.
Melbourne, A. J. and Pugmire, J. M. [1965]. A Small Computer for the
Direct Processing of FORTRAN Statements. The Computer Journal,

Vol. 8 (April). ‘

"System/360 Model 40,2040 processing unit. " [1966]. IBM Field Engineering
Diagrams Manual, Document No. 0223-2842,

Cook, R. W, and Flynn M. J. [1970]. System Design of a Dynamic Micro-
processor. IEEE Transuactions on Computers, Vol. C-13, No. 3.

Lesser, V., R. [1968]. A Multi-Level Computer Organization Designed

to Separate Data-Accessing from the Computation. Tech. Rep. CS90,
Computer Science Department, Stanford University.

Lass, S. [1968]. A Fourth Generation Computer Organization. AFIPS Con-
ference Proceedings, Vol. 32.

Hdrning, J. J. and Randell, B. [1969]. Structuring Complex Processes.
Report RC-2459, IBM Watson Research Center, Yorktown Heights, New York,
Fisher, D, A. [1970]. Control Structures for Programming Languages,
Computer Science Department, Carnegie-Mellon University, Pittsburg,
Pennsylvania, Ph.D. thesis. "

Private communications with Burroughs Corporation on B8502 Organization.
[1969].

Bingham, H. W. and Reigel, E. W, [1969]. Parallelism Exposure and
Exploitation in Digital Computing Systems. Final technical report,
Burroughs Corp, Paoli, Pa.

Dahl, O., and Yngaard, K. [1966]. SIMULA - an Algol-Based Simulation
Language. Comm ACM 9.

Conway, M. E. [1963]. A Multiprocessor System Design. Proc. FJCC 24,
139-146,

- 63

15,

16,

17.

18.

19,
20.

Shaw, A. C. [1966]. Lecture Notes on a Course in Systems Programming,
Technical Report No. 52, Computer Science Department, Stanford University,
Stanford, . California.]

PDP-11 Reference Manual. ['1969]‘, Digital Equipment Corporation.

Dennis, J. B. and van Horn, E, C. [1966]. Programming Semantics for

Multiprogrammed Computation. Comm ACM 8, 3.

Lampson, B. W. [1969] .. Dynamic Protection Structures. AFIPS Conference
Proceedings. (FJCE 69). , ‘

Mitchell, J. [1970]. Lecture at Stanford University.. .
McKeeman, W. [1967]. Language Directed Computer Design. ' AIFIPS
Conference Proceedings (FJCC67).

- 64—

