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The current generation of structural equation modeling (SEM) is loosely split in two 

divergent groups - covariance-based and variance-based structural equation modeling. The 

relative newness of variance-based SEM has limited the development of techniques that extend 

its applicability to non-metric data. This study focuses upon the extension of general linear 

model techniques within the variance-based platform of partial least squares structural equation 

modeling (PLS-SEM). This modeling procedure receives it name through the iterative PLS‑SEM 

algorithm’s estimates of the coefficients for the partial ordinary least squares regression models 

in both the measurement model and the overall structural model. This research addresses the 

following research questions: (1) What are the appropriate measures for data segmentation 

within PLS‑SEM? (2) What are the appropriate steps for the analysis of rank-ordered path 

coefficients within PLS‑SEM? and (3) What is an appropriate model selection index for PLS‑

SEM? The limited type of data to which PLS-SEM is applicable suggests an opportunity to 

extend the method for use with different data and as a result a broader number of applications. 

This study develops and tests several methodologies that are prevalent in the general linear 

model (GLM). The proposed data segmentation approaches posited and tested through post hoc 

analysis of structural model. Monte Carlo simulation allows demonstrating the improvement of 

the proposed model fit indices in comparison to the established indices found within the SEM 

literature. These posited PLS methods, that are logical transfers of GLM methods, are tested 

using examples. These tests enable demonstrating the methods and recommending reporting 

requirements. 
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CHAPTER 1 

INTRODUCTION 

Everything that is old is new and everything that is new is old 

 

As researchers, we currently live in an exciting time that allows us to witness the 

intersection of vast technological advances in computational power and speed with an explosion 

of “new generation” statistical methodology and applications. As this environment continues to 

move forward and prosper, these advances lead us to greater insights through an expansion in both 

breathe and depth of analysis techniques. That being said, as with any form of progressive march 

forward in time, there are questions left unanswered and approaches often left on the wayside that 

become forgotten as progress steps ever forward.  

The move from the traditional univariate and bivariate analysis methods to multivariate-

based analysis was the initial catalyst for the innovation of many new statistical techniques. This 

led to the rebirth and repurposing of what was considered rudimentary statistical approaches from 

the past into additional multivariate techniques that provide greater depth of analysis. Though 

many of these univariate and bivariate techniques were less utilized because of the development 

of newer techniques, they subsequently increased in value after their transition to inclusion into 

the newer multivariate methods. The application of many of these early methods, though still 

theoretically sound, are often ignored as the level of complexity of multivariate analysis has 

increased through the ever-growing availability of analytic processing power provided by the 

personal computer. 

Though many of these newer generation methods can provide a much finer lenses to 

conduct analysis, the unspoken reality is that a multitude of these techniques are still bound by 
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both the underlying mathematical operations and necessary assumptions of linear regression, and 

are thus just an extension or replications of methods of the past. One place this is starkly evident 

is in the steady progression through the continual advancement and continued repurposing of 

analysis techniques in the realm of structural equation modeling (Gefen, Straub, & Boudreau, 

2000). Structural equation modeling, or SEM, is general statistical modeling category that has 

extensive applications within the applied and behavioral sciences (J. Hair, Black, Babin, Anderson, 

& Tatham, 2010). Though there are various forms of SEM, the overarching approach can be 

generalized as a combination of factor analysis techniques and regression or path analysis. SEM 

is often utilized in the context of theoretical constructs, which are represented by the latent factors. 

These latent factors are hypothesized to influence a number of observed variables. The 

relationships between the theoretical constructs are represented by standardized or unstandardized 

regression or path coefficients between the factors. Structural equation models are often visualized 

via a graphical path diagram that allows for an easier interpretation of complex relationships within 

multilevel.  

SEM has substantial advantages over the previous generations of multivariate techniques, 

such as canonical correlation, MANOVA, or multiple regression, due the ability to better model 

the underlying theory with data. In addition, many of the assumptions that constrain the prior 

methods of analysis can be relaxed within SEM, thus providing greater flexibility to model theory 

with data (Chin, 1998). Though SEM provides greater flexibility to the researcher, many of the 

techniques applied within the previous generation of statistical analysis can still be utilized to add 

further granularity to this data analysis method. These approaches can be used to tease out hidden 

truths within the underlying data structure that would be left unfound using the current second-

generation structural equation modeling approaches.  
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Through the progression of “what’s old is new again” within methodological techniques, 

SEM has previously benefited inclusion or extension of various statistical approaches and 

techniques that are strongly supported in the a priori linear regression methodology. Examples of 

these applications of linear regression techniques include concepts a rudimentary as analysis of 

statistical differences in standardized and unstandardized path strengths (Neff, 1985) and the 

analysis of interactions among latent variables (Ping, 1995) in Structural Equation Models, to 

somewhat more complex areas such as the analysis of direct and indirect effects among latent 

constructs, (K A Bollen, 1987) and power analysis within Structural Equation Models (Tanaka, 

1987). This continued reliance on previous methodology provides a key to identify potential gaps 

in the extant literature and a roadmap for the future develop of additional SEM methodological 

techniques. 

With an eye firmly planted in the past and with the need to continue to advance SEM 

methodology into the future, I propose three methodologies to further application and general 

acceptance of various techniques within structural equation modeling. This manuscript is arranged 

in the in six chapters. Following this Introduction chapter is a comprehensive explanation of SEM 

and the similarities and differences between the two divergent methodological paths, covariance 

based and variance based SEM. This will be followed by three essays discussing in-depth these 

proposed methodologies and will conclude with a summary discussion.  The first essay presents a 

data segmentation approach within structural equation modeling (SEM) based around the long 

accepted technique (Cohen, Cohen, West, & Aiken, 2003; Goldfeld & Quandt, 1965; J. Hair et al., 

2010) of segmentation of a data through the upper and lower, otherwise referred to as  polar, 

extremes. The second essay provides steps to integrate rank-order statistics with path analysis 

within both covariance and variance based SEM, as an extension of proposed techniques in linear 
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regression (Judge, Griffiirths, Hill, Lutkepohl, & Lee, 1984). The third essay focusses on method 

to provided model comparison indices for PLS-SEM, driven by the call for a comparative measure 

to covariance based SEM (Henseler & Sarstedt, 2012; Lowry & Gaskin, 2014; Tenenhaus, Vinzi, 

Chatelin, & Lauro, 2005).  Finally, a closing discussion will include several implications of these 

methodologies, suggestions on their use and application and potential areas to expand these topics 

in future research. 
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CHAPTER 2 

COVARIANCE AND VARIANCE BASED SEM 

 

What is Structural Equation Modeling?  

 

SEM has its origin in path analysis, initially conceived by the renowned geneticist Sewall 

Wright (Wright, 1921). Path analysis is a modeling approach in which individual single indicators 

are employed for each of the variables in the causal model. Therefore, there are no derived latent 

constructs, only repressive single indicators, and consequently no requirement to test for the 

reliability and validity of the items representing each individual latent construct.  In the most 

generalized view of SEM, path analysis only utilizes the structural model within SEM, but not the 

measurement model.  Wright’s early works provide the basis for both the graphical representation 

and the underlying logic that SEM is now firmly entrenched within. SEM analysis typically begins 

with the drawing a path diagram consisting of boxes and circles, which are connected by arrows. 

In Wright’s original notation, measured or “observed” variables are represented by a rectangle or 

square box, and unmeasured or “latent” factors by a circle or ellipse. Single headed arrows, or 

more commonly recognized as  ‘paths,’ are used to define the separate causal relationships in the 

model, with the variable at the tail of the arrow causing the variable at the point. Double-headed 

arrows indicate covariances or correlations, without a causal interpretation. These general 

graphical representations are still in use today within SEM, with some minor modifications. Within 

the newer generations of SEM packages, the single headed arrows or paths represent regression 

coefficients, and double-headed arrows covariances.  
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Adapted from Grace (2006) 

During the 1960s and early 1970s, sociologists in particular, pioneered by Blalock (1961), 

Boudon (1965) and Duncan (1966) discovered the potential of path analysis and related partial 

correlation methods. Path analysis was superseded by COV-SEM within the applied and 

behavioral sciences in the mid-1970s. COV-SEM remained unchallenged within the realm 

structural equation modeling until the early 1980s, with the introduction of variance-based 

structural equation modeling methods. Though these advances have changed both the complexity 

and depth of analysis that was viewed possible with path analysis, SEM is still dependent on path 

diagrams to express what the modeler hypothesizes about the causal relationships that generate the 

relationships among variables. 

Figure 1 Visual Representation of the Contributions to SEM Over Time 

Wright
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Fisher
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(1973)
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The current generation of structural equation modeling is loosely split in two divergent 

groups; covariance based and variance based structural equation modeling. These two approaches, 

though both considered under the umbrella of SEM, have separate primary objectives in 

developing and fitting the prescribed causal model.  Covariance based SEM focusses on 

reproducing the theoretical covariance matrix, without focusing on explained variance. Variance 
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based SEM is an approach aimed at maximizing the explained variance of the dependent latent 

constructs. In the following section both covariance based and variance based SEM will be 

explained in greater detail. 

 

Covariance Based Structural Equation Modeling 

 

Covariance based structural equation modeling, or COV-SEM, implies a structure for the 

covariances between the observed variables within the dataset. The structured relationships 

provide the basis of the analysis through the conformation of the reliability and validity of the 

underlying latent constructs manifested within the observed variables. Subsequent analysis of the 

relationships between these latent constructs then provide the support for the casual relationships 

within an already established through a grounded theoretical model.  This  model-building 

approach  can be viewed of as the analysis of two conceptually distinct models (Anderson & 

Gerbing, 1982). A confirmatory measurement model specifies the relationships of the observed 

measures to their theorized underlying latent constructs. Within the confirmatory measurement 

model, each construct is therefore allowed to intercorrelate freely. Upon the verification of 

satisfactory covariance relationships among and across the latent constructs, a confirmatory 

structural model then specifies the individual causal relations of the constructs to one another, 

within a predetermined a priori model that is well-grounded in theory (Anderson & Gerbing, 

1988).  
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Confirmatory Factor Analysis 

 

As an illustration throughout this section, a simplistic model with three hypothesized latent 

constructs (Y1, Y3, and Y3) and seven observed variables (X1-X7) will be used.  The model in 

Figure 2 is the confirmatory factor model with three individual hypothesized latent constructs, 

which are drawn as latent factors as denoted by the oval representation. These factors are assumed 

to cause the variation and covariation between the seven observed variables, denoted with 

rectangular representation. There are double-headed arrows between each two factor pairs, which 

indicates the assumption that that the two factors are correlated. The arrows from the factors to the 

variables represent linear regression coefficients or ‘factor loadings’. With assumption that the 

latent factors do not account for all of the variation with the individual observed variables each 

observed variable is also associated with a residual error term, which is also unmeasured and 

depicted by a circle. 
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 The assumptions of factor analysis assumes that the covariances between a group of 

observed variables can be explained by a smaller number of underlying latent factors (Harman, 

1960). In exploratory factor analysis, we proceed as if we have no hypothesis about the number of 

latent factors and the relations between the latent factors and the observed variables. Statistical 

procedures are used to estimate the number of underlying factors. The number of  factors can be 

estimated through a wide variety of techniques, including methods such as Kaiser's (1960) 

eigenvalue greater than one approach, Cattell's (1966) scree plot analysis technique, Revelle and 

Rocklin's (1979) very simple structure (VSS) criterion, Velicer's (1976) minimum average partial 
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Figure 2 Illustrated Confirmatory Factor Model  
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test, or Horn's (1965) parallel analysis to estimate the factor loadings. In exploratory factor 

analysis, the model is arbitrary: all variables load to some degree on all unique factors. 

Generally, a transformation method such as Varimax (Henry F Kaiser, 1958)  rotation is 

used to improve the interpretation of the results through the rotation of factors in multidimensional 

space to arrive at a solution with best simplified structure. In contrast, the path diagram in Figure 

1 represents a clear hypothesis about the factor structure. Models of this kind are often called 

confirmatory factor analysis (CFA) or the less popular restricted models (K. G. Jöreskog, 1973; 

K. Jöreskog, 1970). In COV-SEM, this confirmatory factor model is imposed on the data with the 

factor structure predetermined through exploratory factor analysis or a priori latent construct 

designations.  This approach within CFA has a two-fold objective. First, it aims to obtain estimates 

of the parameters of the model, including the factor loadings, the variances and covariances of the 

factors, and the residual error variances of each of the observed variables. The second purpose is 

to assess the overall fit of the model, by verifying that the proposed latent constructs represented 

within the confirmatory measurement model itself provides a good overall fit to the data.  

Typically, some of the factor loadings are constrained or fixed to be zero. In Figure 1, the 

absence of arrows going from factor Y1 to X3, X4, X5, X6, X7,’ implies that the corresponding 

loadings within the factor matrix are fixed to zero. Similarly, the loadings of X1, X2, X5, X6, and 

X7 on Y2 and X1, X2, X3, and X4 on Y3 are also fixed to zero. The factor model in Figure 1 shows 

a perfect simple structure where each variable loads exclusively on one factor only. Confirmative 

factor analysis can specify an exact hypothesized structure, and test whether it is plausible, while 

explorative factor analysis can only approximate such simple structures by rotation based through 

trial and error. 
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For each individual latent factor, we also must fix one loading to one, as seen with Y1 →X1, 

Y2 →X3 and Y3 →X5, to provide the latent factor an interpretable scale. If one factor loading is 

not fixed to one (or to another number not equal to zero), the scale of the latent factor is 

undetermined. For each latent factor, we can estimate the loadings given a fixed variance for the 

latent factor, which standardizes the scale of the factor to a Z-score, or we can estimate the factor 

variance given at least one fixed loading. With each factor loading a function of the variance of 

the latent factor, and the variance of the latent factor a function of the loadings, simultaneously 

estimate unique values for all of these values is not feasible. There lie two different approaches to 

solve this issue in estimation. In COV-SEM, it is appropriate to fix one loading for each factor to 

one, and then estimate the factor variances. The other potential solution is to fix the variance of all 

factors to one, and estimate all factor loadings. 

The assumption is that the three hypothesized latent constructs (Y1, Y3, and Y3) will not 

perfectly predict the observed variables, and therefore it is modeled by specifying a specific error 

factor for each observed variable. These measurement errors are often pictured as single arrows 

linking the observed variables with the unobserved error factors.  

Due to the approach of analysis within COV-SEM, the restricted model utilized and 

confirmed during the confirmatory factor analysis must be specified prior to analysis. The model 

specification is guided by a combination of theory and empirical results from previous research. 

This specification is approached through a guided understanding of the intention of the observed 

variables and their expected relationships with the hypothesized latent constructs balanced with a 

theoretical understanding of the potential impact of misrepresentative observed variables.     Upon 

specification of a model, estimation of factor loadings and (co)variances and statistical tests to 
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assess how well the hypothesized model fits the data can be conducted. A more discussion 

regarding fit indices within COV-SEM follows later within this section. 

  

Modification Indices 

If the fit of a model is not adequate, common practice to modify the model by deleting 

parameters that are not significant and/or adding parameters that improve the fit. To assist in this 

process, most COV-SEM software computes modification indices for each fixed parameter, both 

observed and hypothesized. The given value of a modification index is the minimum amount that 

the chi-square statistic is expected to decrease if the corresponding parameter is freed. This 

information is used to conduct a sequence of model modifications in attempt to improve the overall 

fit of the hypothesized model to the data. In iterative fashion, a parameter is freed that produces 

the largest improvement in fit within the model, and this process is repeated until an adequate fit 

is reached.   For example, if in a confirmative factor model a loading that is fixed to zero shows a 

large modification index, we may free this parameter and estimate its value. This will improve the 

fit of the model, at the cost of one degree of freedom.  
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Associated with the sequential model step modification technique is the danger of 

capitalization on chance properties within the sample of observed variables. The potential for over-

fitting an ungeneralizable model is always prevalent and steps need to be made to prevent this 

accordingly. Modifications of the model are advised only when there is a theoretical justification 

to free the parameter. These justifications include the potential for correlation among observed 

variables within specified latent constructs and the need clarify the model to improve discriminant 

validity through combination of factors or  improvement of variation within factors through item 

deletion (Kenneth A Bollen, 1989).  A major concern is that the need for theoretical justification 

is evaluated posthoc and therefore provides a secondary motivation for justifying model 

modifications. Simulation research has shown that model modification often fails to find the 

correct model  (Spirtes, Scheines, & Glymour, 1990) and that models achieved through this process 
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cross-validate poorly with separate datasets (R. C. MacCallum, Roznowski, & Necowitz, 1992; R. 

MacCallum, 1986). The use of multiple a priori models and cross-validation of each model on a 

different sample is an alternative strategy for the development and evaluation of SEM models (R 

Cudeck & Henly, 1991; R. C. MacCallum et al., 1992). 

 

Estimation  

Fitting a model to data means solving a set of simultaneous equations. On the one hand, 

there is the model with its parameters, whose values we wish to estimate. On the other hand, there 

are the sample statistics that we ‘know’ to be good estimates of the corresponding population 

values. In SEM, it is typically assumed that the sample data follow a multivariate normal 

distribution, so that the means and covariance matrix contain all the information. SEM software 

uses complex algorithms that maximize the fit of the model, taking all model restrictions (fixed 

parameters, equality constraints) into account. The method most widely used for estimation is 

Maximum Likelihood (ML) estimation, which assumes multivariate normal data and a reasonable 

sample size, e.g. about 200 observations. There are a variety of estimation procedures that can be 

used for non-normal continuous data. With non-normal data, the means and covariance matrix 

does not represent all the information, and usually these alternative estimation methods need raw 

data. 

Simulation research has shown that with a good model and multivariate normal data a 

reasonable sample size is about 200 cases (Boomsma, 1982), although there are examples in the 

literature that use smaller samples. If the data are continuous but not normal, an alternative 

estimation method is Asymptotically Distribution Free (ADF or WLS for Weighted Least Squares 
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in LISERL). Another alternative is to correct the chi-square statistic for the degree of non-

normality.  

Simulation research (Boomsma, 1982; Chou & Bentler, 1995) shows that with non- normal 

data, ADF estimation requires very large samples, typically more than a thousand cases. Maximum 

likelihood estimation still produces good estimates in most cases, but larger sample sizes are 

needed, typically at least 400 cases.  

Model Fit: Goodness-of-Fit Indices 

Statistical tests for model fit have the problem that their power varies with the sample size. 

If the sample is very large, the statistical test will almost certainly be significant. Thus, with large 

samples, the model will always be rejected, even if the model accurately describes the data. 

Conversely, with a very small sample, the model will always be accepted, even if the data fit is  

poor. 

The most commonly used goodness of fit index (GFI) in COV-SEM is the χ2 statistic, 

defined as 

1) χ2  ∴  (𝑁 − 1) �̂�𝑚𝑖𝑛
 

2) H0: hypothesized covariance matrix = observed covariance matrix 

H1: hypothesized covariance matrix ≠ observed covariance matrix 

where “N is the sample size, and �̂�𝑚𝑖𝑛 is the minimum value of the empirical fit function, 

estimated using an iterative procedure under the assumption that the data have multivariate normal 

distribution” (Cheung & Rensvold, 2002, p. 234). A nonsignificant χ2 value indicates failure to 

reject the null hypothesis that the hypothesized covariance matrix developed based upon the 

hypothesized relationships between the observed variables and the latent construct is identical to 

the observed covariance matrix within the data, which can be accepted as evidence of adequate fit.  
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The drawback for the usage of the χ2 statistic is the problems associated with statistic’s 

functional dependence on N.  Larger sample sizes produce larger χ2 statistics that are more likely 

to be significant (Type I error) and inversely small samples may be too likely to accept poor models 

(Type II error). Models with more variables tend to have larger χ2 values. The χ2 statistics is 

affected by the distribution of variables.  Highly skewed and kurtotic variables increase χ2 values 

and the potential for lack of fit due to of omitted variables is always present.  Omission of variables 

may make it difficult to reproduce the correlation (or covariance) matrix perfectly. Given the 

sensitivity of the χ2 statistic, researchers have proposed a variety of alternative fit indices to assess 

model fit.  

Most COV-SEM goodness-of-fit measures are some derivation of χ2 test and associated the 

degrees of freedom. A large majority of fit indices not only consider the fit of the model, but also 

its simplicity. A saturated model, that specifies all possible paths between all variables, always fits 

the data perfectly, but it is just as complex as the observed data. That does not necessarily make it 

useless. If two models have the same degree of fit, due to the desire for parsimony the simpler of 

the two should be selected. In general, there is a trade-off between the fit of a model and the 

simplicity of a model. Several goodness-of-fit indices have been proposed to assess simultaneously 

both the fit and the simplicity of a model. The goal is to produce a goodness-of-fit index that does 

not depend on the sample size or the distribution of the data. In fact, most goodness-of-fit indices 

still depend on sample size and distribution, but the dependency is much smaller than that of the 

routine chi-square test. Due to these underlying characteristics fit indices can be categorized into 

several groupings.  Tanaka (1993), Williams and Holahan (1994), Maruyama (1997), and  many 

others have help distinguish these grouping into several specific types of fit indices:  Absolute fit 

indices, relative fit indices, parsimony fit indices, and those based on the noncentrality parameter. 
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Absolute Fit Indices (χ2, GFI, AGFI, Hoelter’s CN, AIC, BIC, ECVI, RMR, SRMR)  

 

Absolute fit indices do not use an alternative model as a base for comparison (Hu & 

Bentler, 1998).  These indices are derived from the fit of the observed and implied covariance 

matrices and the maximum likelihood minimization function. Chi-square is the original fit index 

for structural models because it is derived directly from the fit function and has provides the 

starting point for the for the creation of the absolute indices. There are several other indices that 

fall into the category of absolute indices, including the goodness-of-fit index (GFI), the adjusted 

goodness of fit index (AGFI), χ2/df ratio, Hoelter’s CN (“critical N”), Akaike’s information 

criterion (AIC), the Bayesian information criterion (BIC), the expected cross-validation index 

(ECVI), the root mean square residual (RMR), and the standardized root mean square residual 

(SRMR). These indices have similar problems to those of the chi-square, because they are based 

on simple variations on chi-square and therefore susceptible to the same flaws. 

 

Relative Fit Indices  

 

Relative fit indices compare a chi-square for the model tested to one from a so-called null 

model (also called a “baseline” model or “independence” model).  The null model is a model tested 

that specifies that all measured variables are uncorrelated (there are no latent variables).  The null 

model should always have a very large chi-square (poor fit) (Iacobucci, 2010).  There are several 

relative fit indices (which are not explicitly designed to be provide penalties for less parsimonious 

models), including Bollen’s incremental fit index (IFI), the Tucker-Lewis index (TLI), and the 

Bentler-Bonett normed fit index (NFI).  Most of these fit indices are computed by using ratios of 
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the model chi-square and the null model chi-square and dfs for the models.  All of them have 

values that range between approximately 0 and 1.0.  Some of these indices are “normed” so that 

their values cannot be below 0 or above 1 (e.g., NFI, CFI).  Others are considered “nonnormed” 

because, on occasion, they may be larger than 1 or slightly below 0 (e.g., TLI, IFI).  In the past, 

these indexes have generally been used with a conventional cutoff in which values larger than .90 

are considered good fitting models, but there seems to be consensus now that this value should be 

increased to .95. 

 

Parsimonious Fit Indices  

 

These fit indices are relative fit indices that are adjustments to most of the ones above.  The 

adjustments are to penalize models that are less parsimonious, so that simpler theoretical processes 

are favored over more complex ones.  The more complex the model, the lower the fit index.  

Parsimonious fit indices include PGFI (based on the GFI), PNFI (based on the NFI), PNFI2 (based 

on Bollen’s IFI), PCFI (based on the CFI mentioned below).  Mulaik et al. (1989) developed a 

number of these.  Although many researchers believe that parsimony adjustments are important, 

there is some debate about whether or not they are appropriate and the strength of the weighting 

adjustment needed for corrects across complex multi-level models (Preacher, 2006).  

 

Noncentrality-Based Indices  

 

The concept of the noncentrality parameter is a somewhat abstract idea.  The rationale for 

the noncentrality parameter is that our usual chi-square fit is based on a test that the null hypothesis 

is true (χ2=0). This gives a distribution of the “central” chi-square.  Because we are not hoping to 
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reject the null hypothesis in structural modeling, it can be argued that we should be testing to reject 

the alternative hypothesis (Ha) (Hu & Bentler, 1998).  A test that rejected the alternative 

hypothesis, Ha, would make statistical decisions using the “noncentral” chi-square distribution 

created under the case when Ha is assumed to be true in the population (i.e., an incorrect model in 

the population).  This approach to model fit uses a chi-square equal to the df for the model as 

having a perfect fit (as opposed to chi-square equal to 0). Thus, the noncentrality parameter is 

calculated by subtracting the df of the model from the chi-square ( 2 df  ).  Usually this value is 

adjusted for sample size and referred to as the rescaled noncentrality parameter: 
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A population version is often referred to as  and is computed by dividing by N rather than 

N-1.  Noncentrality-based indices include the Root Mean Square Error of Approximation 

(RMSEA)—not to be confused with RMR or SRMR, Bentler’s Comparative Fit Index (CFI), 

McDonald and Marsh’s Relative Noncentrality Index (RNI), and McDonald’s Centrality Index 

(CI).  Because the noncentrality parameter is simply a function of chi-square, df, and N, several of 

the formulas for the relative fit indices described above can be algebraically manipulated to include 

the noncentrality parameter.  For example the TLI can also be presented as: 
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Where dmodel and dfmodel are the noncentrality parameter and the degrees of freedom for the 

model tested and d0 and df0 are the noncentrality parameter for the null model.   
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Multiple Regression Analysis 

It is instructive to see how a familiar analysis procedure, such as multiple regression 

analysis, looks when represented as a path model.  Figure 3 makes two things abundantly clear. 

First, in multiple regression analysis, the assumption is that the independent variables are 

correlated and in Figure 3 we find that assumption represented as the two-headed arrows between 

the predictor variables Y1 and Y2. Second, the residual error in multiple regression analysis is 

actually an unobserved, latent variable, as denoted by e8. Note that the loading of the residual error 

factor is fixed to one, to achieve identification. 

 

Upon estimation of the model in Figure 3, COV-SEM provides the unstandardized and 

standardized regression weights, a variance estimate for the residual errors, and the squared 

multiple correlation of the dependent variable Y3. In the analysis of the structural model, COV-

SEM does not calculate the χ2test for the model fit. The reason is that the model in Figure 3 

estimates precisely as many parameters as there are data points. The seven variables, which gives 

us a 7x7 variance/covariance matrix. This matrix has seven variances and 21 unique covariances, 

together 28 data points. The path model in Figure 3 implies estimation of the following parameters: 
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Figure 4 Regression Analysis Notation 
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the variances and covariances of the three independent variables (25), the regression coefficients 

(2), and the error variance (1). These also sum to 28. With as many parameters as data points, the 

model is in fact a re-expression of our data. As a consequence, the multiple regression model by 

itself cannot be tested. The model itself may be rejected if the squared multiple correlation is below 

the expected threshold for the discipline but this is not strictly a model test. 

Using SEM to estimate multiple correlations has few advantages, we use this example only 

to show how a familiar analysis method looks when cast in the SEM framework. The real strength 

of SEM is, that we may specify and estimate more complicated path models, with intervening 

variables between the independent and dependent variables, and latent factor as well.  

 

COV-SEM Closing 

Covariance based structural equation modeling provides a robust environment for analysis 

provided that the data and research design follows a set of modest assumptions in regards to 

distribution characteristics and sample size. The combination of factor analysis and path models 

allow for both a visual representation of the modeled environment and a two-stage approach for 

determining the validity of the modeled environment allows for a balanced approach for model 

verification and a deep inside approach for confirmation. The estimation of causal model 

parameters, while accounting for observed covariances and reliability and validity confirmation at 

both the indicator and latent construct level, allows for statistically precise estimates generally 

through Maximum Likelihood Estimation. These precise estimates dictate that COV-SEM is an 

extremely useful and robust methodology for the theoretical development and testing of complex 

behavioral models at the constraint driven cost of s methodological flexibility.   These constraints, 
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though less strenuous than some analysis techniques still pose a problem depending on both nature 

of the data collected and the initial intent of the research.  

 

Variance Based Structural Equation Modeling 

 

Variance based structural equation modeling, or VAR-SEM, is the somewhat maligned 

sibling of COV-SEM. Though still following through to the stringent multi-stage approach for 

both validation and estimation, the approach differs radically from COV-SEM. VAR-SEM is 

predicated on the design that upon an initial verification of the indicator reliability, the variance 

explained for the endogenous constructs should be maximized through a weighted-average of the 

impact of the various indicators upon both the exogenous and endogenous constructs throughout 

the model. Though many of the underlying structures are similar to that of COV-SEM, both the 

primary assumptions of the underlying distributions and the methodology used to provide the 

estimation of parameters are radically different.  

VAR-SEM was initially proposed by Wold and Jöreskog in 1982.  This Partial least squares 

(PLS) design looked to approach the causal modeling aspect of Structual equation modeling 

through the lens of variance maximaization instead of the desire to fit a set of data to a prescribe 

variance and covariance matrix. Through this design Partial least squares structural equation 

modeling, PLS-SEM, was developed using the standard two-part model estimation and validation 

techniques and COV-SEM.  This approach, though lacking in the statistial precision of COV-SEM, 

was found to be more robust in respect to both model mispecification and normality assumptions. 

These stark differnces provide a intersting juxtapostion for both the potential application and 

methodlical flexiblity in comparision to it’s more established sibling. 
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 PLS Model Explanation 

A PLS structural equation model with individual latent constructs is an iterative modeling 

approach based upon two distinct components that are verified sequentially (Wold & Jöreskog, 

1982). The first component of the PLS structural equation model consists of the measurement 

model, also known as outer model in the PLS‑SEM literature. The measurement model is 

comprised of the predictive relationships between each individual specific latent construct and the 

associated indicator items for that latent construct. Multiple relations between the associated 

indicators items across latent construct are not permitted, therefore indicator variables can only be 

associated with a single latent construct.  

PLS‑SEM is sufficiently robust to manage both formative and reflective measurement 

models. Reflective indicators are viewed through the lens of the associated latent construct, and 

inversely changes in the latent construct are reflected in the changes in the indicator variables. 

Reflective indicators are visually represented as unidirectional arrows originating from the latent 

construct outward to the indicator variables. In contrast to reflective indicators, formative 

indicators are presumed to cause an individual latent construct, and therefore changes in the 

indicator variables define the change in the value of the latent construct. Formative indicators are 

represented within the visual model by unidirectional arrows originating from the indicator 

variables inward to the formative latent construct. 

The second component is the structural model, or inner model, in PLS‑SEM. The model 

demonstrates the structural relationships, or paths, between the individual latent constructs. Due 

to the nature of the algorithm, PLS‑SEM can only analyze recursive relationships within the 

structural model and therefore the individual structural paths between the latent constructs can 

only be unidirectional in nature. In the structural model, it is imperative for the analysis that we 
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differentiate between endogenous and exogenous constructs. An endogenous construct describes 

latent constructs in the structural model that are explained by other constructs via structural model 

relationships. Therefore individual endogenous constructs are identified in the model by the 

structural path relationships pointing towards them. The term exogenous is used to describe latent 

constructs that only provide an origination point for structural path relationships. Latent constructs 

in the structural model containing both structural path relationships directing towards and 

originating from the latent construct are subsequently identified as endogenous constructs in the 

structural model. 

 

Figure 5 demonstrates an example of a simple path model to be used a primer for 

explanation of the execution of the algorithm. The model contains an individual endogenous latent 

construct (Y3) that is predicted by two exogenous latent constructs (Y1 and Y2). The latent 

constructs Y1 and Y2 are each measured with two reflective indicator variables, (X1 through X4). 

Y3 is measured with three formative indicator variables (X5 to X7).  

X1

X2
X5

X6

X7

Y1

X3

X4

Y2

Y3

W1

W2

W3

W4

P2

P1

W5

W7

W6

Figure 5 Illustated Path Model 
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PLS Algorithm Application 

The modeling procedure receives it name through the iterative PLS‑SEM algorithm’s 

estimates of the coefficients for the partial ordinary least squares regression models in both the 

measurement models and the overall structural model. Though similar is application, the formative 

or reflective nature of the latent construct does dictate portions of the analytical method.  If the 

user assumes a formative measurement model of a latent construct, a multiple regression model is 

estimated with the latent construct as the dependent variable and the assigned indicators as 

independent variables (computation of outer weights). In contrast, when a reflective measurement 

model is assumed, the regression model includes single regressions with each indicator 

individually being the dependent variable, whereas the latent construct is always the independent 

variable (computation of outer loadings). When the structural model relationships are calculated, 

each endogenous latent construct represents the dependent variable with its latent construct 

antecedents as independent variables in a partial regression model. All partial regression models 

are estimated by the iterative procedures of the PLS‑SEM algorithm. The basic PLS‑SEM 

algorithm (Lohmöller, 1989) continues the two-stage approach. In the first stage, each latent 

constructs’ scores are estimated through a four-part method detailed later in this section. The 

second stage then calculates the final estimates of the individual outer weights and loadings of 

indicators as well as each of the structural model’s path coefficients.  

The initial stage consists of four steps that iteratively estimate the individual latent 

construct scores. In the initial iteration of the first step, the latent construct scores’ outer 

approximations are derived as linear combinations of the standardized values of all individual 

indicators associated with each particular latent construct. Later iterations of the method use the 
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estimated coefficients of the paths between the latent constructs and the indicator variables (Wi) 

from Step 4 of Stage One. For the initial iteration, any combination of indicators can serve as an 

approximation for the latent construct. PLS‑SEM software programs, such as SmartPLS  (C M 

Ringle, Wende, & Will, 2005), use a uniform value of 1 as an initial value for each of the outer 

weights (W1 to W7). 

In Step 2, the PLS‑SEM algorithm computes estimates for the structural model 

relationships (P1 and P2). Several different weighting schemes are available to estimate these 

proxies. We recommend applying the path weighting scheme that uses combinations of regression 

analyses and bivariate correlations based on latent construct scores as proxies for structural model 

relationships. This method develops latent construct scores that maximize the final R² value 

estimations of the endogenous latent constructs (Lohmöller, 1989). In Step 3, the inner 

approximation of the latent construct scores (Y1, Y2, and Y3) are calculated as linear combinations 

of their respective adjacent latent construct outer approximations (from Step 1) using the 

previously determined (Step 2) inner weights. Finally, in Step 4, the outer weights (W1 to W7) are 

calculated in two different ways, depending on the type of measurement model represented by 

each construct. If a construct is measured reflectively, then the correlations between the inner 

proxy of each latent construct and its indicator variables are applied (outer loadings). If a construct 

is measured formatively, then regression weights (i.e., outer weights) are applied that are the result 
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of the ordinary least squares regression of each latent construct’s inner proxy on its indicator 

variables. 

 

As seen in Figure 6, the four steps in the initial stage are repeated until the sum of the outer 

weights’ changes between successive iterations is sufficiently below the user’s predetermined 

threshold for convergence. The recommended stop criterion is a threshold value of 10–5 to ensure 

both the algorithm’s convergence while simultaneously minimizing computational requirements.  

If the algorithm converges in Step 4 of Stage One, then the final outer weights are used to compute 

the final latent construct scores in Stage Two. The final latent construct scores are used to run the 

ordinary least squares regressions for each construct to determine the structural model 

relationships’ estimates (path coefficients).  

 

Step 1: Estimation 
Outer Weights (W)

Step 2: Estimation  
Structual Model 
Relationships (P)

Step 3: Estimation 
Latent Cosntruct 

Scores  (Y)

Step 4: Estimation 
Outer Weights (W) 
and Comparison to 

Step 1 for 
Convergence

Figure 6 PLS‑SEM Algorithm Iteration Sequence 
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Evaluation of the Outer Model Reliability and Validity 

Internal consistency reliability 

 

Verification of the internal consistency reliability of the reflective latent indicator variables 

in the outer model was conducted. The indicators met the following accepted thresholds: Cronbach 

alpha (Cronbach, 1951) above 0.7 (Nunnally & Bernstein, 1994), composite reliability (Werts, 

Linn, & Jöreskog, 1974) higher than the recommended value of 0.8 (Nunnally & Bernstein, 1994).  

 

Convergent validity of the item indicators 

 

Convergent validity of the item indicators were verified through the analysis of the outer 

loadings of indicators being greater than the accepted threshold for 0.7 or through the verification 

of indicators above the minimum cutoff value 0.4  and the negligible impact of their removal on 

the composite reliability of the latent reflective construct (J. F. Hair, Hult, Ringle, & Sarstedt, 

2014).  

 

Convergent validity of reflective latent construct 

 

At the construct level, convergent validity was established with the average variance 

extracted (AVE) values of the reflective latent constructs (Fornell & Larcker, 1981) over 0.5. 

Discriminant validity was assessed through the analysis of the cross loadings of indicators and the 

Fornell-Larker criterion. Fornell-Larker (Fornell & Larcker, 1981) states that the square root of 

the AVE values of the reflective constructs should be higher than the highest correlation of the 

latent variable constructs.  
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Convergent validity of formative latent construct 

 

For the formative construct Socioeconomic status (SES) , the traditional indicators for the 

verification of reliability and convergent validity are not applicable (Kenneth A Bollen, 1989).  

Convergent validity was assessed through redundancy analysis with formative latent construct 

SES, meeting the minimum path coefficient threshold of 0.9 (Chin, 1998). Multicollinearity of the 

formative indictors was assessed with all Variance Inflation Factors (VIF) falling well below the 

established threshold of 5 (J. F. Hair, Ringle, & Sarstedt, 2011). 

 

Evaluation of Significance of the Path Coefficients of the Inner Model 

 

PLS‑SEM does not presume that the data are normally distributed. Consequently, PLS 

applies nonparametric bootstrapping (Davison & Hinkley, 1997; DiCiccio & Efron, 1996; Efron 

& Tibshirani, 1994), which involves repeated random sampling with replacement from the original 

sample to create a bootstrap sample, to obtain standard errors for hypothesis testing. The process 

assumes that the sample distribution is a reasonable representation of the intended population 

distribution. The bootstrap sample enables the estimated coefficients in PLS‑SEM to be tested for 

their significance(Christian M Ringle, Sinkovics, & Henseler, 2009). 

The procedure creates a large, prespecified number of bootstrap samples (e.g., 5,000) (J. 

F. Hair et al., 2014) by randomly drawing cases with replacement from the original sample. Each 

bootstrap sample should have the same number of cases as the original sample. The PLS algorithm 

estimates the SEM results from each bootstrap sample (e.g., 5,000 PLS‑SEM estimations). The 

repeated bootstrap parameter estimates are then used to create an empirical sampling distribution 

for each model parameter, and the empirical sampling distribution’s standard deviation is used as 
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proxy for the empirical standard error for the parameter. The obtained path model coefficients 

form a bootstrap distribution, which can be viewed as an approximation of the sampling 

distribution. The PLS‑SEM results of all the bootstrap samples provide the standard error for each 

path model coefficient. With this information, a student’s t‑test can be performed to measure the 

significance of path model relationships. 

The bootstrapping analysis allows for the statistical testing of the hypothesis that a 

coefficient equals zero (null hypothesis) as opposed to the alternative hypothesis that the 

coefficient does not equal zero (two-tailed test). The effectiveness of the bootstrap depends on the 

sample’s representativeness in terms of the targeted population. 

 

PLS-SEM Conclusion 

 

PLS-SEM, though starkly different than it’s siblings that follow the COV-SEM path, 

provides a much needed alternative method within the SEM literature. Due the nature of 

measurement error associated with behavioral data as well as the general exploratory nature of 

many burgeoning research areas, many research problems may fail to meet the somewhat rigid 

requirements of COV-SEM. The VAR-SEM’s combination of principal components and path 

models provided a useful method for estimation and testing beyond those utilized in COV-SEM. 

Because of the variance maximization approach through the Least Square method, there is limited 

specific misspecification problems in models with both reflective and formative constructs. PLS-

SEM willingly trades parameter estimation efficiency for prediction accuracy, simplicity, and 

fewer assumptions. This combined with the distribution free nature of PLS-SEM allows for a much 

smaller sample size requirements and stronger exploratory results. 
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Though PLS-SEM in particular, and VAR-SEM in general, provide a list of radically 

divergent restrictions and constraints to its covariance-based siblings, the general acceptance to 

COV-SEM lags in comparison. Some of this can be attributed to some level of recency bias in the 

methodology, but the detractors of VAR-SEM have several methodical points that contain much 

merit. Most of these center around the lack of statistical precision and the estimation design and 

the potential of false or impartial results. These detractions provide ample justification for the use 

of COV-SEM in conjunction with or in lieu of VAR-SEM. As one who delves rather heavily into 

methodological techniques, both have their benefits and hindrances. Always let the data and 

research question drive this methodological decision, and not the prescribed notion of superiority 

of one method over the other. 
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Table 1 VAR-SEM and COV-SEM 

VAR-SEM COV-SEM 

Maximize the variance explained Estimate causal model parameters 

Combination of Principal components and path models. 

Caution: Loadings are over estimated while path coefficients are 

underestimated 

Combination of factor analysis and path models 

Primarily intended for causal-predictive analysis in situations of high 

complexity but low theoretical information 

Theory-oriented, however, some fit indices decline (AGFI and 

GFI) as model complexity increases (more constructs) 

Attempts to explain the variances Accounts for observed covariances 

Trades parameter estimation efficiency for prediction accuracy, 

simplicity, 

and fewer assumptions 

Provides statistically precise estimates but has stringent 

assumptions 

Estimates via Least Square methods Estimates obtained via Maximum Likelihood Estimation 

(MLE) methods 

Has no specific identification problems in models with formative 

constructs 

Has specific identification problems in models with formative 

constructs 

Useful in estimation and testing Useful in theoretical development and testing 

Can be used when number of variables in a model far exceeds number 

of observations 

Needs large samples for accurate estimation and relatively 

fewer variables and constructs for convergence 

Concurrently tests the psychometric properties of scales used to 

measure both the outer (measurement) and inner (structural) 

models 

Separately tests the psychometric properties of scales used to 

measure both the measurement and structural models 
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CHAPTER 3 

DATA SEGMENTATION 

 

Data Segmentation 

 

The segmentation or parsing of a dataset into distinct groups based upon a predetermined 

criterion is a long held statistical technique. This longstanding method has been used to isolate 

differences in behavioral models in a myriad of instances, including such mundane things as 

differences in gender buying behaviors (Hansen & Jensen, 2009), desktop security behavior 

(Hanus & Wu, 2015) and cellphone addiction (Salehan & Negahban, 2013) to things as political 

charged as usage of mass transit (Scott, George, & Prybutok, 2016) and behavioral characteristics 

within political voting patterns over time (Campbell, Munro, Alford, & Campbell, 2000). The 

more standard usage is within the marketing realm for a variety of applications. These avenues 

include such examples such as market (Wind, 1978), brand (Guzmán & Paswan, 2009), customer 

(Chen, Narasimhan, & Zhang, 2001), or supplier segmentation (Day, Magnan, & Moeller, 2010).   

The limitations for segmentation are only tied to the underlying theoretical expectations within the 

a priori  research design and conceptual foundation that drives the explanation of the relationship. 

Because of the relative simplicity of this as a univariate technique and depth of informative 

power provided by group comparison, segmentation in its many forms provides a strong tool for 

analysis across a variety of technical approaches.   The difficulties do not arise from the usage of 

hypothesis testing for the difference of univariate means, but instead from the complications 

attributed to the multivariate nature of many latent concepts. These concepts are then compounded 

by the various methodological necessities for the confirmation of internal and external validity of 
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latent constructs. These issues can be further complicated by the necessity to balance the 

importance of the various distinctions within the potential multiple levels formative latent 

constructs with the desire to isolate particular probative segments of the data. Due to these 

distinctive difficulties, this methodological arena provides a unique opportunity to advance 

methodological applications within structural equation modeling.  

 

Polar Extremes  

 

The use of polar extremes as a data segmentation approach is an established practice to 

maximize variance within a specific dependent variable or to mitigate potential structural problems 

within a response variable. Polar extreme segmentation is defined as the ordering of observations 

of a variable, which is often the dependent variable, and parsing of the data set into an arbitrarily 

determined equal number of values. Often one third of the total number of observations is removed 

from the center of the data, leaving the outer third from both sides of the date set. This elimination 

of the centroid of a dataset places greater emphasis upon the tail values of the dependent variable 

within a specific dataset. Implementation of this approach allows for minimizing potential 

response bias within an inherently biased sample, the interpretation of a nonlinear variable, or 

maximizing the variance of extreme groups while mitigating the impact of an ambiguous centroid. 

The methodology parses a dataset while maintaining some level of impartiality due to the arbitrary 

designation of the parsing value.   

One of the earliest uses of this methodology to bifurcate a dataset was provided by Goldfeld 

and Quandt (1965). They employed this method to parse a dataset into two distinct groups to test 

for homoscedasticity among residuals in least squares regression. The more common and well-
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known applications is found within the multivariate techniques of discriminant analysis or logistic 

regression. Discriminant analysis is used to determine whether statistically significant differences 

exist within the average score of a set of variables within two or more exhaustive  a priori defined 

groups (J. Hair et al., 2010). These predefined groups can be multichotomous or dichotomous in 

nature and are subject to the potential bias of interpretation of arbitrary segmentation with the use 

of continuous variables. Though the principals within discriminant analysis allow for the use of an 

unlimited number of groups within the dependent variable, the desire to weight the need for 

multiple distinct unique categories with the analytical power derived from the analysis method 

provides a practical constraint to the number of groups within the dependent variable. This 

approach is further complicated by the need to simplify the number of categories to provide 

solution clarity when explaining the underlying dimensions of discriminant function and each 

independent variable. 

The polar extreme segmentation approach was applied within discriminant analysis to 

isolate the underlying relationships within a continuous dependent variable while mitigating the 

crossover effects applied from an ambiguous centroid. Early usage of this approach was 

centralized within the marketing literature on high and low usage products to isolate dominant 

change characteristics of users without the interference of the potential bias of the user categorized 

as medium usage (Green, Tull, & Albaum, 1988). Though originally viewed within the lenses of 

product differentiation and consumer behavior, the polar extremes approach has been extended 

into a variety of disciplines including entrepreneurship (McDougall, 1996), industrial marketing 

(Skarmeas & Kastsikeas, 2001), social entropy (Mitar, 2009), and service quality (Landrum, 

Prybutok, Zhang, & Peak, 2009). Though not extensively discussed in this paper, the polar extreme 

approach is just as applicable to parsing a dependent variable for use in logistic regression as it is 
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in discriminant analysis. As a result, numerous applications applied the technique within logistic 

regression. The applications range among varied topics such as the application to performance 

evaluation modeling (P Burton, Wu, Prybutok, & Harden, 2012), the classification of poverty 

thresholds (Treanor, 2013), the understanding of deforestation patterns (Rueda, 2010), active 

citizenship (Iezzi & Deriu, 2013), and social network position (Paul Burton, Wu, & Prybutok, 

2010). 

Application of Polar Extremes 

In some instances, the analysis approach, an identified potential form of an a priori bias, 

or the underlying data structure of the dependent variable, appropriately suggests the use of polar 

extremes data segmentation.  The nature of the dependent variable also determines the extent and 

mechanics by which the methodology is employed. With univariate dependent variables, in either 

discrete or continuous form, the segmentation process has always been straightforward. The initial 

step of univariate dependent variable polar extreme segmentation requires the calculation of the 

prescribed measure of central tendency for the dependent variable, the mean, the weighted mean, 

the median, or mode that will be used within the segmentation process. The ordering of the overall 

dataset by the dependent variable, and subsequent identification of the specific observation most 

accurately reflecting the value representing the measure of central tendency, provides the starting 

point for case wise deletion of observations. The case wise deletion of an equal number of 

observations above and below the measure of central tendency, totaling a predetermined value set 

by the researcher, is generally equal to approximately one third of the total number of observations, 

completes the data segmentation, and renders the dataset ready for additional forms of analysis. 

Then subsequent analysis is conducted using the upper and lower third of the data with the middle 

third removed. 
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Segmentation of multi-indicator constructs (Messick, 1995), where the segmented 

constructs are subsequently used as the dependent variable, are found extensively within social 

and behavioral research.  Such segmentation with the simple aggregation or arithmetic mean of 

the total set of indicators to create a new univariate dependent variable for use in the polar extreme 

data segmentation procedure is easily accomplished. Polar extreme data segmentation of the 

dependent variable is used in conjunction with many forms of multivariate analysis but remains 

undeveloped for applications within structural equation modeling.  

 

PLS Polar Extreme Methodology 

Structural equation modeling takes the form of covariance-based structural equation 

modeling (COV-SEM) and partial least squares based structural equation modeling (PLS-SEM).  

Where COV-SEM has the objective of reproducing the covariance matrix without focusing on the 

explained variance, PLS-SEM focuses on the maximization of the explained variance of the 

dependent latent constructs within the model (J. F. Hair et al., 2011). Though both methods allow 

causal modeling, the underlying methods are different, and influence the application of the polar 

extreme methodology for data segmentation. One of the major differences between COV-SEM 

and PLS-SEM is the interpretation of variance between individual indicators and their associated 

weight among the individual constructs. COV-SEM, with the use of equally weighted indicators 

among the constructs to create an estimated covariance structure (Barbara Byrne, 1998), 

theoretically can follow the simplified polar extreme data segmentation method of a multi-

indicator dependent variable. However, applying the polar extreme data segmentation 

methodology within PLS-SEM is more complex because of the need to balance the unequal 

weights of each indicator within a specific construct. Further complications include how to 
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navigate the potential problems related to evaluating reliability and validity, and the estimation of 

the parameters of the outer and inner model while maintaining the impartiality of an a priori data 

segmentation. 

Both covariance-based structural equation modeling and partial least squares based 

structural equation modeling follow a generalized conceptual framework, and each approach 

involves an a priori model that is well-grounded in theory. Though similar in level of 

computational complexity, PLS-SEM uses a different methodology to assess the structural a priori 

model than COV-SEM. This component based iterative approach (Tenenhaus, 2008), which 

includes both the outer or measurement model and the inner or structural model, uses a weighted 

indicator technique that makes the use of a generalized polar extreme methodology  impractical 

within PLS-SEM. To alleviate this hurdle, additional steps must be included within the 

methodology to account for the unequal weights of indicators, while following the assumption of 

an a priori theory driven model.  

To implement the polar extreme data segmentation approach within PLS-SEM, sequential 

ordering of the data allows us to balance the requirements of the unequal indicator weights within 

the measurement model with the assumptions within the structural model. The initial step of the 

segmentation method  begins with the completion of  principal component analysis (PCA)  to 

analyze the indicator’s underlying factor structure (Gotz, Liehr-Gobbers, & Krafft, 2010) and 

subsequent potential item pruning to determine the content validity of the finalized constructs. 

Upon the completion of PCA and the potential revision of the conceptual model, the finalized 

model needs to be scrutinized, via both a comprehensive assessment of the supporting theory and 

through a logical evaluation of the graphical representation of the structural model. This 

determines the endogenous latent constructs that will have a substantial individual impact within 
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the a priori model. Identifying the latent constructs allows for the eventual selection of a single 

individual endogenous latent construct for the polar extreme data segmentation approach within 

PLS-SEM. This final selection of a specific latent construct is determined either through the 

identification of a potential form of bias that manifests specifically within the individual 

endogenous latent construct, the detection of a significant unique bivariate characteristic within 

the specific endogenous latent construct supported with corroborating literature, or through the 

analysis of the underlying data structure. 

Creating a secondary Dependent Variable Indicator Model (DVIM) allows us to account 

for the unequal weights of indicators, while maintaining the assumption of an a priori theory driven 

model when creating the Latent Variable Scores of the individual endogenous latent construct. 

Due to the potential impact by other indicators within the unselected endogenous and exogenous 

latent constructs, on both the individual items weights and latent variable scores, the DVIM only 

contains the selected endogenous latent construct, with the indicators remaining after the PCA. 

This single construct is replicated to form an unrelated stand-alone model with a single path 

connecting the two duplicate constructs with their associated remaining indicators. Upon creation 

of the DVIM, the PLS algorithm is applied to determine the individual indicator items weights for 

the primary and replicated constructs. We then confirm the indicator reliability of the selected 

endogenous latent construct through the sequential deletion from both replicated constructs and 

the rerunning of the PLS algorithm until all remaining indicator loadings achieve 0.708 or higher 

(J. F. Hair et al., 2014). 

Upon the establishment of a valid DVIM, we must extract the individual Latent Variable 

Scores for the endogenous latent construct that is central to the segmentation approach from the 

PLS-SEM output. The Latent Variable Score (LVS), the weighted numeric value that indicates an 
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individual observation’s position within a specific latent construct, provides the multivariate 

equivalent of the univariate solution used in the simplified approach of the polar extremes data 

segmentation methodology. We determine the individual measure of central tendency of the LVS 

for use with the polar extremes data segmentation approach, and then import the individual LVS 

for every observation into the data repository containing the indicator data for all of the latent 

variable constructs included within the model. The ordering of the overall dataset by LVS and 

identification of the specific observation that most closely reflects the value that represents the 

measure of central tendency provides the origin for case wise deletion of observations. The case 

wise deletion of an equal number of observations preceding and succeeding the measure of central 

tendency totals a predetermined value set by the researcher that maintains the minimum sample 

size determined through an a priori power analysis. This completes the segmentation procedure.  

As a result of the segmentation approach, the selected endogenous latent construct used to 

determine the LVS should not undergo further item reduction when verifying the outer model. 

With the weighted indicator approach of PLS-SEM, reduction of additional indicators from the 

construct that was used to develop the LVS could potentially change the individual rank order of 

observations prior to case wise deletion. If additional item reduction of the initial selected 

endogenous latent construct is required within the context of the full model, the segmentation 

approach should be considered invalid, and the approach should be redone. This new segmentation 

should include further scrutiny of the underlying factors provoking the need for additional 

indicator pruning within the selected endogenous latent construct used to determine the LVS.  
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Discretization of a Latent Construct 

 

Beyond the approach of bifurcating the actual dataset, multiple concepts have been 

proposed to discretize univariate indicator values. Discretization from an analytical analysis 

method is reliant upon the creation of an additional categorical binary indicator (0 and 1) to 

represent two distinct states within the dataset.  The creation of binary indicators on the surface is 

a simplified concept that is dependent on the isolated cut value of transition from 0 to 1. Though 

simple in initial intellectual complexity, this change point is of either driven by an arbitrary 

selection of a specified  change point provided by existing literature or theory or  is based upon 

the a measure of central tendency derived by the researcher.  

As we move from the basic view of a univariate value to represent a latent construct to the 

view in a multivariate context, the overall intellectual concept gains a new level of logical 

complexity. Though the approximation method of the multivariate version of a latent construct can 

be dictated by both the established field norms and data type, any method requires the development 

of an individual overall composite value representing a quantified value of a latent construct  (H. 

Blalock, 1971). These methods can be scrutinized overall for validation from a discipline specific 

context but will be demonstrated herein in absentia.  

The simplified discretization of a multivariate dataset via an individual latent construct can 

be accomplished through several techniques. The commonly accepted approach follows much 

along the lines of the univariate method discussed previously. Using the appropriate method of 

computation to determine the value for the latent construct, the researcher then must determine the 

arbitrary breakpoint for the construction of a separate the binary indicator. After selecting the 

prescribed value of central tendency, the next step in discretization is the ordering of the overall 
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dataset by the dependent variable. The subsequent identification of the specific observation most 

accurately reflecting the value representing the measure of central tendency provides the starting 

point the change point from 0 to 1 of the new univariate discretization variable. 

 

Bifurcation of Latent Constructs in Partial Least Squares SEM 

 

With the various prescribed methods of splitting a dataset into separate distinct groups, the 

specific application is dependent on the method applied in the creation of a quantified value for 

the latent construct. In this setting, Partial Least Squares SEM, the weighted creation of the Latent 

Variable Score provides the initial step with in which the discretization of the latent construct can 

be initiated.   

 

Conclusion 

 

Segmentation techniques provide a welcome avenue to continue to extend the various 

applications within the SEM methodology. Parsing a dataset through a particular the latent variable 

scores of a specific latent construct provides a relative straightforward approach to find the 

dichotomous divergent outcome. The primary difference between the COV-SEM and VAR –SEM 

approach is the need for the inclusion of additional step within the VAR-SEM approach to control 

for the weighted indicator approach used in PLS-SEM. With the internal and external validity 

confirmation requirements of latent constructs within both avenues of SEM, both methods must 

still stick firmly to their two-stage approach through the segmentation process.   
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Upon completion of the initial segmentation process care must be taken to reaffirm the 

reliability as well as internal and external validity of both competing dataset prior to any form of 

comparative analysis. This approach should then mirror the standard multigroup analysis 

techniques  (B. Byrne, 2004; Keil, Tan, Wei, Saarinen, & Tuunainen, 2000; Sarstedt, 2011) found 

within the SEM literature.  

Finally, any manipulation of a dataset prior to analysis should dictate caution in the 

interpretation  of the findings. Though the technique attempts to control for the creation of 

heterogeneity within the data, the potential for the creation of unrepresentative groupings forces 

the researcher to be cognizant of potential concerns related to the construction of a misleading 

sample of the target population. Diligence should be exercised when grounding an a priori model 

within the established literature, and special attention should be given to the identification of 

potential subgroups that could affect the heterogeneity of the endogenous latent construct used in 

the polar extremes segmentation approach. 

Bias, inherent or systematic in nature, clouds the view and interpretation of latent 

constructs within behavioral research. Posthoc verification of the homogeneity of data, both that 

the indicator and construct level should be observed. Any manipulation of a dataset prior to 

analysis should dictate caution in the interpretation of the findings. The potential for the creation 

of unrepresentative groupings forces the researcher to be cognizant of potential concerns related 

to the construction of a misleading sample of the target population.  Diligence should be exercised 

and these methods should only be conduct upon a sufficiently theoretically grounded a priori 

model within the established literature, and special attention should be given to the identification 

of potential subgroups that could affect the heterogeneity of the endogenous latent construct used 

in segmentation approach.  
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CHAPTER 4 

RANK ORDER OF PATH COEFFICENTS 

  

Rank Order Analysis 

 

Human beings, by their very nature, dwell on the rank or order within their own 

environment (Fiske, 1991). The continued strive for order leads both the researcher and their 

subjects and respondents down an interesting path of analysis. With the strive for order or hierarchy 

within a specific segment of thoughts or directives, the subjects or respondent will readily provide 

rankings of particular attributes provided a subsequent context to provide sufficient order (Wind, 

1978).  The more interesting product of this drive for hierarchy is the impact of latent concepts 

and how when not provided a fixed context to anchor a ranking, the potential juxtaposition created 

through analyzing strength of association.   

By understanding the impact of context driven hierarchy and their relationship to strengths 

of association, individual researchers can gleam several interesting contextual relationships 

between the two delivery mechanisms. By confirming the ranking of the hierarchical association 

with the numeric context of strengths of association, preliminary confirmation of both internal 

validity and indicator reliability may be determined. The expectation should be that the latent 

concept is easily defined within the individual indicators in relation to the context of the study and 

therefore the concept should be easily discernable to the respondent. Therefore, the individual term 

used to describe this latent construct should also retain the same relative hierarchical position as 

the potential strength of association determined through your multivariate analysis. 
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Comparison of Path Coefficients in Structural Equation Modeling 

 

Few multivariate approaches to provide the depth of analysis and consistent use in 

behavioral research to afford the ability to be utilized in this proposed manner. To employ this 

strategy certain induvial components must be present to facilitate the analysis. The individual 

latent constructs must be easily rendered to tangible form to provide the respondents the ability to 

readily rank the various latent ideas into a hierarchical structure.  In addition, the strength of 

association between individual latent constructs and a specific exogenous and their associated 

standard errors must be generated to be viewed in comparison.  Due to its consistent use of within 

behavioral research, the strong relationship to linear regression and its underlying components, 

and the necessity for an a priori model that provides a context for analysis, structural equation 

modeling is an appropriate platform for the proposed methodology.    

Structural equation modeling takes the form of covariance-based structural equation 

modeling (COV-SEM) and partial least squares based structural equation modeling (PLS-SEM).  

COV-SEM has the objective of reproducing the covariance matrix without focusing on the 

explained variance while PLS-SEM focuses on the maximization of the explained variance of the 

dependent latent constructs within the model.  The reproduction of the quantifiable paths of 

individual relationships between latent variable constructs and their individual associated standard 

error plays a direct role in the identification of the relative ranks of impact upon the endogenous 

latent construct. 

One of the major differences between COV-SEM and PLS-SEM is the interpretation of 

variance between individual indicators and their associated weight among the individual 

constructs.   
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With the approximation of the underlying parameters of the structural equation model, the 

verification of the statistical significance difference between the individual path coefficients are 

needed. This can conducted through the analysis of the unstandardized path coefficients provided 

with either SEM modeling approach. Due to the underlying distribution assumptions provided 

within either structural equation modeling method, parametric or nonparametric tests are available 

to determine the statistically difference significance of the path coefficients.  

The underlying assumption of normality within covariance based SEM provides a simplified 

approach for the test of significance between the individual path coefficients. The use of the 

studentized range (q) distribution, with the degrees of freedom of approximated by the heuristic 

proposed by (Rigdon, 1994)  provides the critical value for the proposed test of the hypothesis 

with the decision rule of Reject H0 if : 

 

1) |𝑞∗| >  𝑞𝛼

2
,𝑑𝑓,𝑘  where: 

 

2) 𝑑𝑓 =
𝑚∗(𝑚+1)

2
− 2𝑚 −  𝜉

(𝜉−1)

2
, where m=number of indicators and 𝜉 =

number of construct  

 

The usage of the q distribution provides a correction for experiment wise error among 

multiple comparisons. The hypothesis of each of the separate individual pairwise comparisons and 

associated test statistic are as follows:  
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3) H0: βi= βk 

HA: βi≠ βk 

4) 𝑞∗ =
𝛽𝑖−𝛽𝑗

√
𝑆𝐸𝑖
𝑛𝑖

+
𝑆𝐸𝑗

𝑛𝑗

  

Due to the distribution-free nature of Partial Least Squares SEM, two separate approaches 

have been proposed within the extant literature for comparison of path coefficients. The 

application of parametric tests, as seen in prior section, requires the parametric assumptions 

about the distributions of the parameter standard errors. This approach was demonstrated within 

Keil et al. (Keil et al., 2000) for multi-group comparisons within PLS-SEM with assumption of 

equal variances and can be considered applicable after conducting the appropriate normality test. 

Chinn and Dibbern (2010) cast doubts regarding if  inherent distributional assumptions fits the 

ethos of PLS path modeling, which is generally regarded as being distribution-free. Therefore, to 

maintain conformity with the nonparametric nature of PLS-SEM  is additionally included for 

discussion. 

The distribution free assumption of PLS-SEM uncovers an underlying logical fallacy of 

hypothesis testing. In order to determine the confidence interval of a model parameter such as a 

path coefficient, one has to recognize that the bootstrapping procedure generates a distribution T 

of w. However, significance testing needs to account for the distribution of T under H0, which is 

the null distribution of T. This distribution is essential for performing the test since it provides 

the basis for determining the p-value. If the null distribution is unknown, the asymptotic 

normality of the test statistic is commonly assumed. Although nonparametric alternatives can be 
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obtained through bootstrapping, this approach overlooks the possibility that the data could be 

generated under the alternative hypothesis H1 : θ ≠ θ0. 

This problem can be addressed by examining the statistical correspondence between tests of 

significance and confidence intervals when the null hypothesis concerns a particular parameter 

value. The use of bias correction for bootstrap confidence of intervals of individual path 

coefficients within PLS-SEM is discussed in Gudergan et al.(2008). The corresponding two-

tailed biased corrected confidence interval for the bootstrap estimates of bias (bB) and variance 

(vB) with path (t) is: 

5) 𝑡 − 𝑏𝐵 ± 𝑣𝐵

1

2  𝑧1−
𝛼

2
 

where 𝑏𝐵 = �̅�𝐵 − 𝑤 is the difference in the mean value of w for all bootstraps and the 

original PLS estimation path coefficient 

The bootstrap confidence interval for each resulting path can then be compared to 

determine if there is a statistically significant difference.  

 

Analysis of Rank Order Relationships 

 

Upon the completion of the analysis of significant difference of the path coefficients, 

ordering of their respective values in magnitude from greatest to least impact provides the 

established quantitative rank order of the individual antecedents. Verification of the semantic 

directionality of item indicators across the specific latent constructs in comparison is necessary to 

ensure equitable magnitude of deviation.  These ranking can then be compared to the rank order 
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of the individual paths within the a priori model provided by the participants during the initial data 

collection.  

Comparison of the prescribed ranks is a sequential two-step process that requires the 

conformation of consistency of rankings between participants before the investigation between 

the perceived and actual rankings. Verification of the presence of individual statist ically 

significant representative groups throughout the sample can be accomplished through a rank-

based procedure known as the Friedman test (1937, 1940). Friedman test, commonly referred to 

as Friedman’s Two Way Analysis of Variance is a non-parametric statistical test to determine if 

the individual rankings for the samples were drawn from distributions with the same median. 

The test statistic for Freidman’s test can be determined with  

6) 𝐹 = (
12

𝑁∗ 𝑘 (𝑘+1)
) ∗ ∑ 𝑅2 − (3𝑁(𝑘 + 1)) 

where N is the number of subjects involved, k the number of potential ranking conditions, 

and  R the total for each ordered rank. 

The Friedman test is an omnibus test verifies whether there are overall differences, but 

does not pinpoint which groups in particular differ from each other (Daniel, 1990). To then isolate 

the specifics within the individual ranks an additional level of analysis is needed. The Wilcoxon 

signed-rank test (Wilcoxon, Katti, & Wilcox, 1963) is the nonparametric test equivalent to the 

dependent t-test. Due to the multiple comparison of the various prescribed rank combinations, a 

Bonferroni (Dunn, 1959, 1961) adjustment is then required.  
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7) 𝐻0: difference between the pairs follows a symmetric distribution around zero  

𝐻𝐴: difference between the pairs does not follow a symmetric distribution around zero 

8) W =  ∑ [𝑠𝑔𝑛(𝑥2,𝑖 − 𝑥1,𝑖) ∗  𝑅𝑖
𝑁𝑟
𝑖=1  

Once comparison of the prescribed ranks is completed, then the researcher may inspect the 

hierarchical relationships between the two methodologies. Due to the nature of the level of analysis 

and data structure of the final comparative lists, descriptive measures should be used initially 

investigate the potential differences. As an initial suggestion, Kendall’s tau is a nonparametric 

measure of association/correlation employed with ordinal data, and can provide insight into the 

degree of association between the two ranking methods.  Kendall’s tau measures the degree of 

agreement between two sets of ranks with respect to the relative ordering of all possible pairs of 

subjects/objects to determine if there is a significant correlation between the rank-orders assigned 

through the two methods (Sheskin, 2000). If there is a statistically significant correlation between 

the two sets of ranked data, confirmation of both internal validity and indicator reliability may be 

present.  

 

Methodological Application  

 

Measurement 

 

To illustrate the proposed methodology an electronic survey instrument was administrated 

to a student population to gage the students’ perceptions and knowledge towards craft beer and the 

impact they have on purchase intention. Whenever possible existing scales with limited 
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modification were employed. Demographic variables were collected for use as control variables 

within the analysis. The instrument consisted of twelve indicators covering five endogenous and 

one exogenous construct each on a five-point Likert type scale. In addition, each respondent was 

asked two separate questions in regards the impact of latent endogenous concepts upon the 

exogenous construct, Purchase Intention. Initially each responded was asked to order the absolute 

impact that each of the five categories have on their willingness to purchase a particular craft beer 

purchase. In addition, a constant sum scale totaling 100% was used to provide a greater weight to 

each respondent’s individual preferences. 

 

Figure 7 Research Model Visualization 

Knowledge

Perceived Quality

Availability

Texture

Price

Purchase Intention
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Sample and Data Collection 

 

Data was obtained from a survey instrument electronically administered to undergraduate 

students in medium-sized Midwestern university. The use of student respondents as research 

subjects has led to a debate on the external validity and generalization of study results. However, 

due to the context of our study, specifically trying to gain insight into the taste preference and 

buying behavior of 21 – 25 year old college students for craft beer, a student sample is both 

necessary and appropriate.  

Students were informed of the purpose of the study prior to answering the questionnaire 

and were not provided extra course credit for their participation. Sampling took place over a ten-

day period and yielded four hundred and sixteen responses. Of those, discarding twenty-nine 

observations due to incomplete or invalid responses provided a useable sample of three hundred 

and eighty-seven. In terms of demographics, the total sample had 159 (41%) females and 228 

(59%) males with a mean age of 22.5 years and a median age of 23 years. This closely mirrored 

the demographic characteristics of the overall university. An a priori power analysis using 

Gpower3.1 (Faul, Erdfelder, Lang, & Buchner, 2007) was performed to determine a minimum 

necessary sample size of 138 observations for a medium effect size of 0.15, with an alpha error 

probability of 0.05 and corresponding power of 0.95 with three predicting endogenous constructs. 

 

Measurement Model 

 

With a cursory analysis of the descriptive statistics and an established a priori model, 

analysis was performed using PLS-SEM. Verification of the internal consistency reliability of the 
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reflective latent indicator variables in the outer model was conducted. The indicators met the 

threshold for PLS-SEM exploratory research that composite reliability (Werts et al., 1974) is 

higher than the recommended value of 0.7 (Nunnally & Bernstein, 1994).  

Convergent validity of the item indicators were verified through the analysis of the outer 

loadings of indicators being greater than the accepted threshold for 0.7 or through the verification 

of indicators above the minimum cutoff value 0.4  and the negligible impact of their removal on 

the composite reliability of the latent reflective construct (J. F. Hair et al., 2014). At the latent 

construct level, convergent validity was established with the average variance extracted (AVE) 

values of the reflective latent constructs (Fornell & Larcker, 1981) over 0.5. Discriminant validity 

was assessed through the analysis of the cross loadings of indicators and the Fornell-Larker 

criterion. Fornell-Larker (Fornell & Larcker, 1981) states that the square root of the AVE values 

of the reflective constructs should be higher than the highest correlation of the latent variable 

constructs.  

Table 2 Measurement Model Specifications 

  
    AVE 

Composite 

Reliability 
Texture Price 

Purchase 

Intention 

Perceived 

Quality 
Availability Knowledge 

Texture 0.750 0.855 0.866           

Price 0.674 0.798 -0.118 0.821      

Purchase Intention 0.858 0.923 -0.196 0.161 0.926     

Perceived Quality 0.636 0.772 0.016 0.080 0.157 0.797    

Availability 0.584 0.705 -0.004 0.212 0.224 0.032 0.764   

Knowledge 0.769 0.870 0.179 0.017 -0.270 0.062 -0.195 0.877 

 

Structural model 

After the confirmation of the reliability and validity of the outer model, analysis of the path 

coefficients be concluded.  Estimated bootstrap standard error was used to calculate the Student’s 

t test with the recommended 5,000 bootstrap samples (J. F. Hair et al., 2014). The paths between 

Knowledge, Perceived Quality, Availability, and Texture and Purchase Intention show a direct 
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relationship that is statically significant at the 0.01 level. The path between Price and Purchase 

Intention shows a direct positive relationship that is statically significant at the 0.05 level.  

 

Figure 8 Structural Model Results 

Knowledge

Perceived Quality

Availability

Texture
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Purchase Intention
R2 = 16.5

0.152**

0.226**

0.160**

-0.145**

0.103*

*Path Coefficient Significant at the 0.05 level 
** Path Coefficient Significant at 0.01 level  

 

Post Hoc Analysis of Statistical Differences within Path Strengths 

 

Posthoc analysis of the strengths of each path was conducted to determine if there is a 

statistically significant difference between the strength of association between each individual path 
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within the a priori model. With 31 degrees of freedom, the critical values for α = 0.05 is  4.10 and  

α = 0.01 is 5.05 respectively.   

  

Table 3 Post Hoc Analysis of Statistical Differences within Path  

  
Path 

Coefficient 

Standard 

Error 
Knowledge Perceived Quality Availability Texture Price Ranking 

Knowledge 0.226 0.0452 0      1 

Perceived 

Quality 
0.16 0.0483 19.63 0     T-3 

Availability 0.152 0.0486 21.93 2.30* 0    T-3 

Texture -0.145 0.0501 23.62 4.24 83.71 0   4 

Price 0.103 0.0517 35.24 15.85 13.58 67.77 0 5 

Critical Values of q distribution with d.f.  =31,  α = 0.05 4.10, α = 0.01 5.05                  * No Significant difference 

 

Analysis shows a statistically significant difference between all paths except for the 

difference between Perceived Quality and Availability. With the inability to show a statistically 

significant difference you must conclude a tie and provide equal weight to both latent constructs 

within the rankings. 

Analysis of Rank Order Relationships 

 

The rank ordered relationship to each of the aforementioned endogenous constructs were 

obtained through a self-reported ranking by the each respondent to the question “Rank each of 

these individual concepts on the overall magnitude, regardless of positive or negative, it has on 

your purchase of microbrewery/craft beers; general availability of the selection, the knowledge 

you have about the product, the price per unit of your selection, your perceived level of quality of 

the product/brand, and the overall characteristics of the product’s taste, texture and style.  The 

three hundred and eighty-seven useable responses provide the following summary statistics of each 

category rank.   
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Table 4 Summary Statistics of Ordered Rankings 

 

N 

Mean 

Rank 

Percentiles 

25th 

50th 

(Median) 75th 

Price 387 1.4832 1.0000 1.0000 1.0000 

Knowledge 387 1.9742 2.0000 2.0000 2.0000 

Texture 387 3.5478 3.0000 4.0000 4.0000 

Availability 387 3.8889 3.0000 4.0000 4.0000 

Quality 387 3.8966 3.0000 4.0000 5.0000 

 

Upon a cursory analysis of the summary statistics, there exist the potential for variation 

among the individual rankings of the five latent concepts. Due to the nature of the underlying data, 

a non-parametric test is necessitated for the analysis. The Friedman test is the non-parametric 

alternative to the one-way ANOVA with repeated measures. It is used to test for differences 

between groups when the dependent variable being measured is ordinal (Sheskin, 2000).  There 

was a statistically significant difference in perceived strengths of impact of the various concepts 

as determined through Friedman Test, χ2(4) = 990.648, p < 0.001. 

With confirmation of the statistically significant difference between at least one individual 

rankings of the five latent concepts, individual differences must then be assessed. Once again, due 

to the nature of the underlying data, a non-parametric test is necessitated for the completion of the 

analysis. The Wilcoxon signed-rank test is the nonparametric test equivalent to the dependent t-

test (Sheskin, 2000) and can be used to determine the statistically significant difference between 

each induvial concept. Post hoc analysis with Wilcoxon signed-rank tests was conducted with a 

Bonferroni correction applied, resulting in a significance level set at p < 0.01 (0.05/10) for each of 

the ten separate individual tests. As seen in the proceeding Table, there were significant differences 

across the rankings of all the five latent concepts except between “Availability” and “Quality” (Z 

= -0.206, p = 0.839). 
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Table 5 Wilcoxon Signed-Rank Tests was Conducted with a Bonferroni Correction 

  

Knowledge 
- Price 

Quality - 
Price 

Texture - 
Price 

Availability 
- Price 

Quality - 
Knowledge 

Texture - 
Knowledge 

Availability 
- 

Knowledge 

Texture - 
Quality 

Availability 
- Quality 

Availability 
- Texture 

Z -8.845 -16.248 -15.732 -16.771 -16.825 -15.354 -16.74 -4.451 -0.206 -5.241 
Exact Sig. 

(2-tailed) .0000000 .0000000 .0000000 .0000000 .0000000 .0000000 .0000000 .0000070 .8391348 .0000001 

 

When you combine the results from the Friedman test and Wilcoxon signed-rank tests with 

a Bonferroni correction applied, it provides an informative ranking of the individual concepts as 

perceived by the respondents. With the inability to show a statistically significant difference you 

must conclude a tie and provide equal weight to both latent constructs within the rankings. These 

rankings are provides in the Table below. 

Table 6 Rankings after Post Hoc Analysis 

  Ranking 

Price 1 

Knowledge 
2 

Texture 
3 

Availability T-5 

Quality T-5 

Comparative Evaluation 

By following the prescribed method, you can now conduct a comparative evaluation 

between the two separate rankings.  Due to the nature of the level of analysis and data structure of 

the finally list, only descriptive instead of inferential measures can be used to discuss the potential 

differences. Measures of correlation are not inferential statistical tests, but are, instead, descriptive 

statistical measures that represent the degree of relationship between two or more variables.  

Kendall’s tau is a nonparametric measure of association/correlation employed with ordinal data, 

and can provide insight into the degree of association between the two ranking methods.  Kendall’s 
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tau measures the degree of agreement between two sets of ranks with respect to the relative 

ordering of all possible pairs of subjects/objects to determine if there is a significant correlation 

between the rank-orders assigned through the two methods. A Kendall's tau correlation was run to 

determine the relationship between the Rank Order and Path rankings amongst the five concepts 

and yielded no statistically significant result (τb = -0.333, p = .435) 

As seen in the Table below, the two approaches show some rather surprising differences 

between the derived rankings.  With the lack of significant results and thus lacking confirmation 

of the hierarchical association, post hoc analysis must be conducted from a visual interpretation 

and logical representation grounded in a theoretical context. 

Table 7 Comparative Rankings and Discordant Pairs 

Rank Order Ranking Discordant Pairs Path Rankings Ranking

Price 1 Knowledge 1

Knowledge 2 Quality 2.5

Texture 3 Availability 2.5

Availability 4.5 Texture 4

Quality 4.5 Price 5

 

 

Conclusion 

 

Comparative analysis of hierarchical path strengths provides an outlet to the researcher to 

an underutilized area of methodological rigor not previously explored in the extant structural 

equation modeling literature. Nonparametric procedures receive little appreciation beyond the 

prescribed standalone applications.  By extending beyond the standard parametric methods and 
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entering into the various nonparametric procedures intertwined within the analysis of hierarchical 

ordinal data, researchers can reach unexplored conclusion related to their latent concepts.  

The application of the proposed methodology provides two divergent yet equally valuable 

directions of exploration for the researcher. By confirming rank order of strength of impact through 

both the categorization of individual statement and comparative strengths off association between 

the latent constructs, an additional level of granularity can then be provided for both the 

determination of indicator reliability for internal consistency as well as additional confirmation for 

both internal and external validity.  Behavioral research is abound with strife due to the continued 

difficulties measuring the unobservable concepts that make up most of the backbone of the 

research discipline. Providing additional measure to reaffirm those latent ideas only strengthens 

the various behavioral disciplines and allows for a continued evolution in both indicator and scale 

evaluation.  
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CHAPTER 5  

MODEL SELECTION INDICES IN PLS-SEM 

 

Model Selection Indices in SEM 

 

Key issues in the use of structural equation models are determining the fit of the model to 

the data and comparing the relative fit of two or more models to the same data. Within 

Covar iance based st ructural equat ion modeling, the first test and index of model fit 

was an asymptotic chi-square distributed test statistic that tests whether a structural equation 

model reproduces the covariance matrix of observed variables (K. G. Jöreskog, 1973; K. 

Jöreskog, 1969). However, given the approximate nature of most models and the enhanced 

statistical power that generally accompanies a large sample size, the chi-square test statistic 

routinely rejects models in large samples regardless of their merit as approximations to the 

underlying process. Starting with Tucker and Lewis (1973) and Jöreskog and Sörbom (1979), a 

variety of fit indices have been developed to supplement the chi-square test statistic. Controversy 

surrounds these alternative fit indices within covar iance based st ructural equat ion 

modeling for several reasons. For example, the sampling distribution of a particular fit index is 

often unknown. Additionally, there is the potential for  fit index tends to increase as sample size 

increases (Kenneth A Bollen, 1989).  Finally, there is disagreement about the optimal cutoff 

values for a “well-fitting” model. 

Researchers frequently use the Information Theoretic (IT) model selection criteria and 

compare the fit of models in multiple regression, generalized linear models, and several other 

areas of statistical modeling (Cohen et al., 2003; J. Hair et al., 2010; Judge et al., 1984). Yet 
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despite this common use, Information Theoretic (IT) model selection criteria has received little 

attention in the structural equation modeling (SEM) literature. Within covariance based SEM, 

Cudeck and Browne (1983)  and Bollen (Kenneth A Bollen, 1989) gave only brief mention to 

Akaike’s (1974)  AIC or Schwarz’s (1978) BIC as an approximation to the Bayes factor. 

Homburg (1991) provided more discussion of AIC and BIC in structural equation models, as did 

Raftery (1995) and Haughton, Oud, and Jansen (1997) . Bollen, Harden, Ray and Zavisca (2014) 

provided additional clarity to the application of multiple indices and answered many of early 

proposed questions within the context of covar iance based st ructural equat ion modeling . 

However, compared to the root mean square error of approximation (RMSEA), comparative fit 

index (CFI), or other fit indices, it is less common to see IT model selection criteria of structural 

equation models, despite its potential value in comparing the fit of competing models.  While 

there exists a progressive advance in the creation of indices within covariance base structural 

equation modeling, there maintains a lag within the current variance based structural equation 

modeling literature.  

Within variance based structural equation modeling, PLS’s prediction orientation is 

driven to maximizing “explained variability” in all endogenous constructs in the structural 

model. Therefore the prescribed essential criterion of assessment  is perceived to be the 

coefficient of determination (R2) of the endogenous LVs (Christian M Ringle et al., 2009). The 

goodness of fit (GoF) is another R2 based index that allows validating a PLS model globally 

(Tenenhaus et al., 2005). However, the heavy reliance of PLS structural model validation on R2 

based measures means that when exploring different models, researchers may be tempted to 

add structural model parameters and relations in an effort to increase R2 in one or more LVs 

and ultimately the GoF (Henseler & Sarstedt, 2012). 
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The goal of exploratory research and model building is to select the “best” approximating 

model from a set of theoretically justified competing models. However, most SEM studies 

specify only one model structure and then use the data to either confirm or disconfirm the 

specific structure (Zheng & Pavlou, 2010). In the context of PLS, selecting a best model from a 

set of competing models should not only rest on maximizing the explained variance but also on 

achieving a balance with model parsimony. While the fit (R2) of a PLS model can be increased 

by increasing the number of parameters and relationships, researchers must guard against this 

tendency. Instead, an attempt should be made to arrive at a parsimonious model that also fits the 

data well. A highly complex model can provide a good fit with the data at hand but may not lead 

to any interpretable true relationship. Myung (2000) showed that model selection solely based on 

fit to the observed data will result in the choice of an unnecessarily complex model that overfits 

the data and therefore generalizes poorly. 

In their recent simulation study, Henseler and Sarstedt (2012)  showed that along with R2 

alone, the GoF based measures are not suitable for model validation and selection. They showed 

that neither the GoF nor the relative GoF (GoFrel) were able to separate valid models from 

invalid ones. The tendency of both R2 and GoF based measures to increase with model 

complexity (increase in model parameters and relationships) means that these indices will almost 

always favor complex models over parsimonious ones 

Several researchers have introduced and analyzed the use of Information Theoretic (IT) 

model selection criteria in the PLS context that can help researchers guide their model selection 

efforts, especially in exploratory settings with an evolving theory base under a set of competing 

models and hypotheses (Henseler & Sarstedt, 2012; Iacobucci, 2010; Vinzi et al., 2010). These 

indices mirror many of the established comparison indices found within multiple regression, 
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generalized linear models, and several other areas of statistical modeling. These various model 

selection indices are displayed with their formulation and brief explanation in Tables 3.  

 

Table 8 PLS-SEM Model Selection and Fit Indices 

Criterion Formula Description 

R2 

𝑅𝑘
2 = 1 −

𝑆𝑆 𝑒𝑟𝑟𝑜𝑟(𝑘)

𝑆𝑆 𝑡𝑜𝑡𝑎𝑙 (𝑘)
 

The most commonly used of all simple 
selection methods. Based upon the 

variation explained by OLS   

Adjusted R2 

𝑅𝑘
2 = 1 − (

𝑛 − 1

𝑛 −  𝑝𝑘

) (
𝑆𝑆 𝑒𝑟𝑟𝑜𝑟(𝑘)

𝑆𝑆 𝑡𝑜𝑡𝑎𝑙 (𝑘)
) 

Parsimonious adjustment to the classic R2 

formula commonly used as a selection 

criteria.   

Akaike 

Information 

Criterion (AIC) 
 

 

𝐴𝐼𝐶 = 𝑛 [log (
𝑆𝑆𝑒𝑟𝑟𝑜𝑟 𝑘

𝑛
) +

2𝑝𝑘

𝑛
] 

 

Heuristic approaches for Model selection 

criteria driven by a penalty approach that 

attempts to take in count of the likelihood 

of model  fit and the number of 
parameters used to achieve that fit in 

simple regression model 

Bayesian 

Information 

Criterion (BIC) 
𝐵𝐼𝐶 = 𝑛 [log (

𝑆𝑆𝑒𝑟𝑟𝑜𝑟 𝑘

𝑛
) +

𝑝𝑘 log(𝑛)

𝑛
] 

Tenenhaus’s 

Goodness of Fit  

(GoF) 

𝐺𝑜𝐹 =  √𝐶𝑜𝑚𝑚𝑢𝑛𝑎𝑙𝑖𝑡𝑦 𝑥 𝑅2̅̅̅̅  

 

A global criterion of goodness to fit as 

the geometric mean of the average 
communality and average R2 (Tenenhaus 

et al., 2005) 

 

 

The primary drawbacks for many of these indices are the overreliance upon the sum of 

squares and mean squared error provided within PLS-SEM. Within the standalone context of 

simple or multivariate regression, valuation of a model based upon the parameters and error 

provides a concise answer. The disadvantage of this approach within a multilevel PLS-SEM model 

is a mathematical artifact created through the Maximum Likelihood approach of the PLS 

algorithm; the sum of squares of each individual OLS regression model is equal to the sample size. 

Therefore, within the majority of IT model selection criteria adjusted through sample size, PLS-

SEM’s optimization criteria inadvertently biases many selection criteria.  
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An additional concern is the current view of parsimony within the lens of structural 

equation modeling. Though many IT model selection indices attempt to adjust for “parsimony” 

and model complexity, the multileveled nature of complex structural equation models and their 

impact are not recognized within the current generation of selection indices. Due to the ability for 

both endogenous and exogenous latent variable constructs to be considered potential predictors of 

other exogenous constructs with the model, the definition of parsimony (both figuratively and 

mathematically) within structural equation models should be also be further scrutinized. Selection 

criteria that adjustments for the specific number of model parameter fail to recognize the potential 

for over-fitting using multiple endogenous construct upon individual exogenous constructs.  

As Henseler and Sarstedt (2012) correctly surmised, the potential for over-reliance upon 

the current model selection indices, including the proposed PLS goodness of fit indices, can lead 

to a simplistic approach of model selection driven by model selection indices.  Therefore, they 

urge that researchers should carefully evaluate path coefficients and their significance in order to 

decide which model paths to retain or remove from their individual models. While carefully 

evaluating path significance is important in model selection, there persists a fear that over 

reliance on this approach might encourage researchers to cherry-pick significant paths in the 

model at the cost of theory and its generalizability. Due to this duality of potential pitfalls in the 

established literature and the inability to consistently manipulate individual human nature, 

additional refinement of the model selection criteria with PLS-SEM is necessitated.   
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Proposed Model Selection Indices PLSAIC & PLSBIC 

 

Due to the unique circumstances discussed previously, the formation of any new Model 

Selection indices will have to strike a delicate balance between the desire to combat oversaturation 

due to variance maximization and parsimony driven by the human condition. Due to PLS-SEM’s 

ability to concurrently model systems, the various levels of nested models, and therefore the 

number of simultaneous regression models throughout, must be taken into account. By providing 

parsimonious control both through the number of latent constructs per simultaneous regression as 

well as accounting for the total number of simultaneous regressions conducted, greater clarity of 

theoretical basis can be established. In addition, the current lack of parsimonious fit requirements 

promotes the over-fitting of exploratory models with marginal theoretical justification to utilize 

the aforementioned susceptibility to incremental changes in R2. 

The PLS-SEM approximation method and standardization would affect the main 

parameters within the current AIC and BIC indices. The mathematical artifact created through the 

Maximum Likelihood approach guarantees that the SSTotal will always be equivalent to n. 

Therefore, both the AIC and BIC indices in their current form can be heavily influenced by 

incremental changes in R2 that promotes oversaturation of the overall model.  

To counteract these probative issues, manipulation of the current AIC and BIC 

formulations were necessitated.   

1. PLS − AIC =  
∑⌈𝑛⌈𝑙𝑜𝑔(

𝑆𝑆
𝑒𝑟𝑟𝑜𝑟 𝑘

𝑛
)(

𝑝𝑇𝑜𝑡𝑎𝑙
𝑚⁄

𝑝𝑘
)⌉+

2𝑝𝑘
𝑛

⌉

𝑚
 

2. PLS − BIC =
∑⌈𝑛⌈𝑙𝑜𝑔(

𝑆𝑆
𝑒𝑟𝑟𝑜𝑟 𝑘

𝑛
)(

𝑝𝑇𝑜𝑡𝑎𝑙
𝑚⁄

𝑝𝑘
)⌉+

𝑝𝑘 log(𝑛)

𝑛
⌉

𝑚
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Where pk is the total parameters in the individual regression model, pTotal is the total 

parameters in the model, and m is the total partial regression models within the path model 

 

Monte Carlo Analysis of proposed Indices within Structural Equation Modeling 

  

The validity and utility of any simulation study is only as robust as the strengths of the 

concept and underlying questions assessed. A key step in designing a Monte Carlo experiment 

within structural equation modeling is therefore to create a set of models that are representative 

from an applied standpoint. Three models types of models are concluded to be commonly 

encountered in applied research: those with a small number of latent constructs, or for the purpose 

of discussion will be denoted to as “simple models”, those with two or more latent constructs 

regressed on two or more measured exogenous variables with less than ten total endogenous and 

exogenous predictors , which will be referenced to as “medium models”, and models with two or 

more latent constructs regressed on two or more measured exogenous variables with more than ten 

total endogenous and exogenous predictors , which will be referenced to as “complex models”. 

One target model to represent each of these general model types were generated for analysis. The 

first model, Model 1, contained nine measured variables and three latent constructs. Further, Factor 

2 was regressed on Factor 1, and Factor 3 was regressed on Factor 2 (creating a chain of causality 

for the latent variables). 

Figure 9 Model 1 Illustration 

1 2 3
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The second model, Model 2 contained 13 measured variables with the same measurement 

structure as Model 1 (three indicators per factor) but added three observed exogenous variables. 

Factor 1 depended on all three correlated exogenous variables, and Constructs 2 and 3 depended 

on just the first and third exogenous variables.  

Figure 10 Model 2 Illustration 

  

The third model, Model 3 contained 17 measured variables with the same measurement 

structure as Model 1 (three indicators per factor) but added five observed exogenous variables. 

Factor 1 depended on all four correlated exogenous variables, Constructs 2 and 3 depended on just 

the first and fourth exogenous variables, and Construct 4 depend on the fifth exogenous variable.  

 

1 2 3
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Figure 11 Model 3 Illustration

1 2 3 4

 

 

With the target models in place, the next step is to determine the experimental conditions 

to vary in the simulation. One of the most important variables in a simulation is sample size. With 

the potential for extensive choices in sample sizes to consider, due to the exploratory nature and 

thus potential for smaller sample sizes of VAR-SEM, exploring relatively small sample are 

especially important. Some areas of research routinely use sample sizes under 100. Thus, to 

explore the research questions dictated that we vary sample size, five sample sizes—50, 100, 250, 

500, and 1,000, were chosen. 

With initial model structures selected, a model and thee appropriate experimental 

conditions to be varied determined, the next step is to select specific values for the population 

model parameters. Like the other steps, this process should be a combination of theory, research, 

and utility. There are several issues to consider in picking the values of the parameters. First, they 

should reflect values commonly encountered in applied research. A traditional cutoff for a 

practically (vs. statistically) significant coefficient is a standardized coefficient of .10. As such, 

this forms a useful lower bound for coefficient values. Second, the R2 values the chosen 

coefficients produce should also be reasonable for applied research. For instance, R2 values with 

cross-sectional, individual-level data frequently range between .2 and .8. (Cohen, 1988, 1992). 
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Third, the parameters of the model should be statistically significant, even at the smallest sample 

size of the simulation (Hammersley & Handscomb, 1986; Paxton, Curran, Bollen, Kirby, & Chen, 

2001). 

 

Empirical comparison between fit statistics of PLS path modeling via Monte Carlo Simulation 

 

To better understand the relationships of the proposed indices and to assess their abilities 

in comparison to the now disparaged GoF measure, each approach was empirically examined 

exposing them to simulated data. The corresponding tables below depict the 2 estimated models 

types in comparison in a variety of states and sample sizes. For the PLS path modeling calculations, 

SmartPLS 2.0 M3 beta  (C M Ringle et al., 2005) was used, and the path weighting scheme was 

applied.  

Table 9 Small Model Baseline and R2 Delta 

Small Model AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC 

n = 50 100 250 500 1000 

R ² = 0.999 -149.96 -149.97 -299.98 -299.98 -749.99 -749.99 -1500.00 -1499.99 -3000.00 -3000.00 

0.8 -34.91 -34.91 -69.88 -69.88 -174.73 -174.73 -349.48 -349.48 -698.97 -698.97 

0.6 -19.86 -19.86 -39.77 -39.77 -99.48 -99.48 -198.97 -198.96 -397.94 -397.94 

0.4 -11.05 -11.06 -22.16 -22.16 -55.45 -55.45 -110.92 -110.92 -221.85 -221.85 

0.2 -4.81 -4.81 -9.67 -9.67 -24.22 -24.22 -48.45 -48.45 -96.91 -96.91 

           

Δ R ² = 0.05 ΔAIC ΔBIC ΔAIC ΔBIC ΔAIC ΔBIC ΔAIC ΔBIC ΔAIC ΔBIC 

n = 50.00 100.00 250.00 500.00 1000.00 

R ² = 0.8 1.82 1.83 3.68 3.68 9.22 9.22 18.44 18.44 36.89 36.89 

0.6 0.15 0.15 0.33 0.33 0.85 0.85 1.71 1.71 3.42 3.42 

0.4 -0.35 -0.35 -0.68 -0.68 -1.67 -1.68 -3.34 -3.34 -6.68 -6.68 

0.2 -0.60 -0.60 -1.17 -1.17 -2.89 -2.90 -5.78 -5.78 -11.56 -11.56 
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Table 10 Medium Model Baseline and R2 Delta 

Medium Model AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC 

n = 50 100 250 500 1000 

R ² = 0.999 -149.494 -149.508 -299.128 -299.128 -747.919 -747.915 -1495.866 -1495.863 -2991.746 -2991.743 

0.8 -34.443 -34.457 -69.025 -69.025 -172.661 -172.658 -345.351 -345.348 -690.716 -690.713 

0.6 -19.391 -19.405 -38.922 -38.922 -97.404 -97.400 -194.836 -194.833 -389.686 -389.683 

0.4 -10.587 -10.601 -21.313 -21.313 -53.381 -53.377 -106.790 -106.787 -213.594 -213.592 

0.2 -4.340 -4.354 -8.819 -8.819 -22.146 -22.143 -44.321 -44.318 -88.656 -88.653 

           

Δ R ² = 0.05 ΔAIC ΔBIC ΔAIC ΔBIC ΔAIC ΔBIC ΔAIC ΔBIC ΔAIC ΔBIC 

n = 50 100 250 500 1000 

R ² = 0.8 2.104 2.106 4.228 4.228 10.585 10.585 21.174 21.174 42.351 42.350 

0.6 0.988 0.990 1.997 1.997 5.006 5.006 10.017 10.016 20.035 20.035 

0.4 0.652 0.654 1.323 1.323 3.323 3.322 6.649 6.649 13.301 13.300 

0.2 0.489 0.491 0.998 0.998 2.509 2.509 5.023 5.022 10.047 10.047 

 

Table 11Complex Model Baseline and R2 Delta 

Complex Model AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC 

n = 50 100 250 500 1000 

R ² = 0.999 -148.92 -148.94 -298.03 -298.03 -745.22 -745.21 -1490.48 -1490.47 -2980.97 -2980.97 

0.8 -33.87 -33.89 -67.93 -67.93 -169.96 -169.96 -339.96 -339.96 -679.94 -679.94 

0.6 -18.82 -18.84 -37.83 -37.83 -94.70 -94.70 -189.45 -189.44 -378.91 -378.91 

0.4 -10.01 -10.03 -20.22 -20.22 -50.68 -50.68 -101.40 -101.40 -202.82 -202.82 

0.2 -3.76 -3.78 -7.72 -7.72 -19.45 -19.44 -38.93 -38.93 -77.88 -77.88 

           

           

Δ R ² = 0.05 ΔAIC ΔBIC ΔAIC ΔBIC ΔAIC ΔBIC ΔAIC ΔBIC ΔAIC ΔBIC 

n = 50 100 250 500 1000 

R ² = 0.8 0.863 0.865 3.742 3.742 9.365 9.365 18.733 18.733 37.468 37.468 

0.6 0.027 0.028 2.068 2.068 5.181 5.181 10.365 10.365 20.732 20.731 

0.4 -0.226 -0.224 0.563 0.563 3.918 3.918 7.840 7.839 15.681 15.681 

0.2 -0.348 -0.346 -0.681 -0.681 2.308 2.308 6.620 6.619 13.241 13.241 

 

  As seen in the aforementioned tables, the consistent struggle between parsimony within 

the induvial simultaneous regression models and within the overall model and their incremental 

impact at various levels of R2 provides an interesting hindrance between the three separate 

approaches.  Initial analysis was conducted on “simple model” to develop an initial point of 

reference for both the robustness of the model to incremental changes in R2 at the aggregate overall 



71 

 

model perspective and the individual model perspective as well as to gage parsimonious impact of 

the addition of additional predictive indicators.  From a “perfect” model fit perspective (R2 ≥ 0.9), 

each approach shows significant variation between the inclusion of additional predictors in 

conjunction with the incremental increase in R2 of the individual nested models within the overall 

SEM model. As the aggregate and individual R2 reduce into the realm of medium and small effect, 

a distinct pattern begins to form. Both PLS-AIC and PLS-BIC show a more responsive 

modification and comparative selection process than GoF at the medium and small effect level. As 

we begin to vary the number of predictive indicators for each nested model, both the PLS-AIC and 

PLS-BIC show greater restraint than GoF for the impact of providing a balance between small 

incremental increase in R2 and the continued addition of subsequent predictive indicators.  

When progressing from the “simple” model to the “complex” model, a much stronger 

pattern begins to emerge. In several instances GoF actually outperforms both the PLS-AIC and 

PLS-BIC in models that are of medium (total endogenous and exogenous predictors ≤ 10) with 

small to medium overall effects within the models. As the number of total predictors within the 

model increases, PLS-AIC and PLS-BIC once again outperforms GoF as a robust measure for 

model selection. The additional requirements for parsimony begin to become much more impactful 

within the “complex” model. As we add additional complexity to the various models, the necessity 

for restrictions to limit the over-fitting of exploratory models with marginal theoretical justification 

to utilize susceptibility to incremental changes in R2 becomes more evident and provides further 

credence for the application of PLS-AIC and PLS-BIC over GoF. 

 

Conclusion 
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PLS-AIC and PLS-BIC perform moderately well as a selection criteria for the inclusion of 

additional predictors within the overall and nested models within PLS-SEM. The primary caveat 

being that GoF can perform as well in situations that contain “medium” model complexity. 

Because of the limitations of GoF with “simple” and “complex” model structures, as well as the 

continued benefit of providing parsimonious model restrictions, PLS-AIC and PLS-BIC can be 

considered a superior Model Selection Indices for PLS-SEM.  

The primary concern with the creation of any indices within the VAR –SEM arena is the 

unfounded desire to compare these indices with overall model fit indices as reported within the 

COV-SEM literature instead of embracing the underlying assumptions and ethos of the exploratory 

nature of VSR-SEM. By treating justifiable model selection as the priority instead of the desire for 

a distribution driven model fit, the VAR-SEM can provide a much-needed alternative for model 

building within the exploratory research realm. By providing parsimonious control both through 

the number of latent constructs per simultaneous regression as well as accounting for the total 

number of simultaneous regressions conducted, greater clarity of theoretical basis can be 

established.   
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CHAPTER 6 

SUMMARY, CONCLUSION, AND LIMITATIONS 

Summary 

 

Most methodological advances are born through a mixture of logical progression of the 

discipline and the necessity of invention. Throughout many of these advances, the mantra of 

“everything that's old is new, and everything that's new is old” takes a prominent role and provides 

a precautionary tale for those that turn a blind eye to methods from the past. Within any discipline, 

if one looks hard enough, there are areas ripe for expansion just through the extension of previously 

defined knowledge. As demonstrated in this manuscript, structural equation modeling provides a 

fertile ground for these such methodological advances.  

In the previous chapters, this manuscript covered a variety of potential methodological 

applications for use within structural equation modeling. To limit confusion and to provide 

summated conclusions for the various proposed methodologies each chapter will be addressed 

sequentially. In Chapter 3, data segmentation and more specifically segmentation through polar 

extremes was investigated in the context of SEM. The current state of knowledge and applications 

of the polar extremes methodology was reviewed. Additionally, it introduces the application of the 

polar extremes data segmentation methodology within both COV-SEM and PLS-SEM. The polar 

extremes segmentation approach further broadens the applications of SEM into the social sciences. 

With the underlying concern of manipulation, consciously or subconsciously, within social 

psychology, the polar extremes segmentation provides the ability to mitigate an identified form of 

an a priori bias within a research context. Due to the exploratory nature of PLS-SEM, the 

application of the polar extremes methodology provides an additional avenue to maximize 
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variance within the model, while adhering to the necessity of utilizing grounded theory in models 

with uncertainties about their complexity and depth. This approach proves to be  useful in the 

testing and validation of exploratory models or for the casual predictive analysis in situations 

involving a higher degree of model sophistication and low theoretical information (Wold & 

Jöreskog, 1982).   

The introduction of the application of the polar extreme data segmentation methodology 

within PLS-SEM provides a springboard for further research within the area. Greater refinement 

of the underlying mathematical basis of the process is needed to isolate the impact on the process 

and on the associated statistical tests and the underlying PLS-SEM tolerances. The impact of third 

and fourth mathematical moments upon the currently arbitrarily determined number of values to 

be parsed from the dataset may yield intriguing results. Analysis of this approach with multiple 

categorical variable indicators may prove fruitful in maintaining homogeneity among the various 

latent constructs across the parsed dataset.  

Bias, inherent or systematic in nature, clouds the view and interpretation of latent 

constructs within behavioral research. The polar extremes data segmentation methodology can be 

applied to many of the culturally taboo and societally unresponsive topics found within the current 

research landscape. The continued awareness of the impact of one’s digital footprint, the steady 

impact of changing societal and cultural norms, and gradual awareness of the lack of anonymity 

in the Internet age provide a much greater driver for response bias among observations using a 

survey based methodology than has been  faced in the past. Therefore, we conclude that there is 

sufficient opportunity for the use methodology that will provide a functional application and 

integration of the polar extreme data segmentation approach within structural equation modeling. 
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Chapter 4 investigated the potential for the analysis of individual rankings of latent ideas 

by respondents or subjects in conjunction with result generated through structural equation 

modeling. By confirming the ranking of the hierarchical association with the numeric context of 

strengths of association, preliminary confirmation of both internal validity and indicator reliability 

may be determined. The expectation should be that the latent concept is easily defined within the 

individual indicators in relation to the context of the study and therefore the concept should be 

easily discernable to the respondent. Therefore, the individual term used to describe this latent 

construct should also retain the same relative hierarchical position as the potential strength of 

association determined through your multivariate analysis. 

The application of the proposed methodology provides two divergent yet equally valuable 

directions of exploration for the researcher. By confirming rank order of strength of impact through 

both the categorization of individual statement and comparative strengths off association between 

the latent constructs, an additional level of granularity can then be provided for both the 

determination of indicator reliability for internal consistency as well as additional confirmation for 

both internal and external validity.  Behavioral research is abound with strife due to the continued 

difficulties measuring the unobservable concepts that make up most of the backbone of the 

research discipline. Providing additional measure to reaffirm those latent ideas only strengthens 

the various behavioral disciplines and allows for a continued evolution in both indicator and scale 

evaluation.  

 The other potential avenue for this methodological application is not driven by the 

confirmatory nature of the analysis, but instead through the value gleamed through having 

discontinuous results between the induvial ordering and the relative strengths of association 

between latent construct. The communication of a brand’s image or a product’s attributes (Erdem 



76 

 

& Swait, 1998; Park, Jaworski, & Maclnnis, 1986; Zeithmal & Zeithaml, 1988) are longstanding 

heavily researched realms within the marketing literature.  Any form of methodology that allows 

the researcher to separate the mental imagery generated by a single collection of terms as a 

conceptual or product descriptor versus the validated latent idea or construct formulated by in-

depth questioning provides for the study of the implications of short-term recall or expectations of 

an attribute or topic in relation to stronger grounded views generated by latent constructs.  

By being able to isolate these differences, researchers and practitioners alike can apply 

these differences within both written advertisements as well as the imagery each concept brings 

forth. As an example, if a researcher determines that the individual impulsive reaction for the 

rankings of product attribute show a stark contrast in the importance of quality, high by rank order 

applications but midlevel in comparison to other measured latent concepts, an opportunity exist 

for the exploitation of this attribute. By creating a strong image of underlying quality of the 

product, through written and graphical imagery, while in actuality not radically changing the 

current quality standards, there may be an    opportunity to increase the overall favorability of the 

product.  The perception of higher quality may be important in a short-term comparative recall 

situation, such as an impulse buying environment, but the reality, long-term usage and product 

satisfaction, may hinge on other factors.  The ability to identify these particular areas to study, 

provide endless opportunities to extend the realm of consumer interaction, adverting consumption 

and buying behavior. 

Chapter 5 initiated the discussion regarding the formulation of model selection/fit indices 

in PLS-SEM to provide a more standard corollary to the more popular COV-SEM alternatives. A 

crucial detraction within the Structural Equation Model literature is the continued argument that 

due to the distribution free nature of PLS-SEM and the underlying estimation techniques used is 
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the ability to provide a universal model fit criterion in a simple or readily identifiable format.  Due 

to the underlying methodological design of PLS-SEM not only are these desires unfeasible, more 

importantly, it conflicts with the primary goal of PLS-SEM; to provide a distribution-free tool of 

analysis.  

The primary issue between these concepts is one of terminology and the acceptance of the 

nature of differences between the two divergent paths of SEM. The need for “Model Fit” indices 

within COV-SEM reflects the desire to reproduce the variance/covariance matrix of an established 

model developed in conjunction with the assumption of normality necessitated by the 

methodological constraints.  Alternatively, the variance maximization concept of PLS-SEM 

combined with the standard exploratory nature of the method leads to the need for explicit mode 

“Model Selection” indices. Though the concept of an omnibus test for model fit is a flawed concern 

within PLS-SEM, the notion that the model selection and model design criteria can be further 

strengthened is both an accurate representation and a well-founded concern.  To address these 

concerns this manuscript proposed two separate methods to provide a comprehensive 

parsimonious model selection indices within PLS-SEM. Both methods provide interesting result 

that should both enrich the understanding of the need for parsimony within PLS-SEM and provide 

a precautionary tale to those looking to oversaturate models to reach an arbitrary variance 

explained criteria.   

 

Conclusion 

 

The methodological advances presented in this work all have a large number of similarities. 

Each method discussed in this manuscript provides a continued progressive advance in the body 
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of knowledge of the SEM literature. Each proposed direction looks to use the conceptual 

understanding of those that have gone before us and allow those humble beginnings lead us to 

greater insights through an expansion in both breathe and depth of analysis techniques. Each of 

the proposed methodologies lean heavily of past techniques that have been either underutilized or 

even discarded as the steady progression of methodological advances continue.  

The segmentation of data within the SEM environment combines some of the simplistic 

statistical techniques and combines them with the heightened level of confirmation of reliability 

and validity harnessed within the latent construct environment. This allows a level granularity that 

would be presently unattainable in the current setting. The combination of rank order and path 

strength provides a unique look at the respondents or subjects interaction of single context driven 

items in conjunction with latent constructs derived from multi-item scales.  The juxtaposition of 

nonparametric techniques and path analysis provides a unique view not yet emphasized in the 

current literature. The creation of Model Selection indices within PLS-SEM provides a continued 

step forward in the continued quest for an omnibus fit index. Though still currently undefined, the 

Model Selection indices provide a new conceptual view to the fundamental concept.  

Like any other realm of methodology, the primary misuse of any technique within SEM is 

the violation of the prescribed assumptions of the analysis. The author strongly encourages all 

readers to continue to strive to strengthen your understand of the assumptions tied to SEM and 

accept that the divergent paths COB-SEM and PLS-SEM should be as the problem dictates. By 

reaching an acceptance of the limitations of both branches, the user can more readily avoid the 

major pitfalls within data analysis.  

 



79 

 

Limitations 

 

Statistical methodology is the tipping point for excellence in most research. By matching 

the appropriate tool to the given problem at hand, anything is possible. The biggest hurdle in all 

methodological research is not the identification of the problem at hand, but the conceptualization 

of how the combination of techniques has a value greater than just the sum of the collective parts.  

Each proposed methodology in this manuscript has distinct areas that will foster a 

beneficial application. The primary concern of the author is not the potential misinterpretation of 

the methodological steps, but the misuse of a technique when other more appropriate methods are 

available. The utilization of the polar extremes methodology provides a unique solution for 

analysis of latent constructs that provide a readily available conceptualization of extreme internal 

groupings. Parsing of an individual dataset is not a concept that should be entered into lightly and 

the theoretical and probative benefits need to vastly outweigh the impact of potential 

misspecification. The creation of methodology to provide analysis of rank order paths should be 

used from an exploratory perspective. Each individual step should be followed to show sequential 

verification of significance in difference between both sets of data before any generalization should 

be suggested. The creation of “Model Selection” indices in PLS-SEM should be utilized in 

conjunction with an a priori model and theoretical underpinning. One of the primary tenets of all 

structural equation modeling is the assumption of a strong theoretical backing and therefore the 

creation of “Model Selection” indices should not drive the analysis process.  

 

  



 

APPENDIX 

SAS CODE 

80



%macro corr2data(outdata, corrmat, n, full='T', corr='T'); 
  proc iml; 

 use &corrmat; 

 read all var _num_  into C; 

rn = nrow(C); 

cn = ncol(C); 

 if (cn = rn & %upcase(&full) ="F") then do; 

  do i = 1 to rn; 

 do j = i to cn; 

 if  i = j & C[i, j] = . then C[i,j] = 1; 

 if  i ^= j & C[i,j]=. then C[i,j]=C[j,i]; 

 end; 
 end; 

 end; 

 if %upcase(&corr) = "F" then do; /*converting the covariance to correlation*/ 

 do i = 1 to rn; 

 do j = 1 to cn; 

  if i ^=j then C[i,j] = C[i, j]/(sqrt(C[i,i])*sqrt(C[j,j])); 

 end; 

 end; 

  do i = 1 to rn; 

 C[i,i] = 1; 
  end; 

 end; 

 if  (cn = rn & sum(abs(C-t(C))) =0 & min(eigval(C)) > 0 & max(abs(C)) <= 1) 

 then do; 

 p = root(C); 

  dim = nrow(C); 

  myvar = rannor(J(&n, dim, 0)); 

  do i = 1 to dim; 

 myvar[, i] = myvar[,i]-(sum(myvar[,i])/&n); 

  end;  
  XX = (t(myvar)*myvar)/(&n-1); 

  U = root(inv(XX)); 

  Y = myvar*T(U); 

  T = Y*p; 

  create &outdata from T; 

 append from T; 

end; 

else print "Check your input matrix, it is not a correlation matrix nor a covariance matrix."; 

  quit; 

%mend; 
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data corr; 

  input x1 x2 x3 x4 x5 x6 x7 x8 x9; 

datalines; 
1.00 0.42 0.48 0.22 0.25 0.29 0.13 0.15 0.17 

0.42 1.00 0.56 0.25 0.29 0.34 0.15 0.18 0.20 

0.48 0.56 1.00 0.29 0.34 0.38 0.17 0.20 0.23 

0.22 0.25 0.29 1.00 0.42 0.48 0.22 0.25 0.29 

0.25 0.29 0.34 0.42 1.00 0.56 0.25 0.29 0.34 

0.29 0.34 0.38 0.48 0.56 1.00 0.29 0.34 0.38 

0.13 0.15 0.17 0.22 0.25 0.29 1.00 0.42 0.48 

0.15 0.18 0.20 0.25 0.29 0.34 0.42 1.00 0.56 

0.17 0.20 0.23 0.29 0.34 0.38 0.48 0.56 1.00 

; 

run; 

proc print data = corr; run; 

%corr2data(mycorr200, corr, 200, FULL='T', corr='T'); 

proc corr data = mycorr200; 

run; 

proc print data = mycorr200; run; 

%corr2data(mycorr100, corr, 100, FULL='T', corr='T'); 

proc corr data = mycorr100; 

run; 

proc print data = mycorr100; run; 

Proc export data = mycorr200 

dbms=xlsx  

  outfile="D:\Users\btg0021\Desktop\CORR200.xlsx" 

  replace; 

run; 

Proc export data = mycorr100 
dbms=xlsx  

  outfile="D:\Users\btg0021\Desktop\CORR100.xlsx" 

  replace; 

run; 
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