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An analytical model and a Monte Carlo simulation are presented of an experiment that
could be used to determine the direction of the acceleration of antihydrogen due to
gravity. The experiment would rely on methods developed by existing antihydrogen
research collaborations. The configuration consists of two circular, parallel plates
that have an axis of symmetry directed away from the center of the earth. The
plates are separated by a small vertical distance, and include one or more pairs
of circular barriers that protrude from the upper and lower plates, thereby forming
an aperture between the plates. Antihydrogen annihilations that occur just beyond
each barrier, within a “shadow” region, are asymmetric on the upper plate relative
to the lower plate. The probability for such annihilations is determined for a point,
line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is
predicted to be necessary for the aperture-based experiment to indicate the direction
of free fall acceleration of antimatter, provided that antihydrogen is produced within
a sufficiently small antiproton plasma at a temperature of 4 K. C© 2013 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4827498]

I. INTRODUCTION

There has never been reported experimental evidence that indicates the direction of the accel-
eration of antimatter (e.g., antiprotons, positrons, antihydrogen) due to a gravitational field. Exper-
imental collaborations located at CERN such as ALPHA,1–4 ATRAP,5–7 ASACUSA,8, 9 AEGIS10

and GBAR11 are developing methods to study the properties of antihydrogen. These groups may
pursue determining the direction antihydrogen falls in the presence of earth’s gravitational field. An-
tihydrogen research may ultimately provide experimental tests of CPT (charge conjugation, parity,
time reversal) symmetry and the weak equivalence principle of general relativity.12–17

Aperture-based antihydrogen gravity experiments have been previously considered that use a
horizontal, cylindrical drift tube with a single or multiple aperture setup.18, 19 The present work
represents a third iteration of study on a possible aperture-based antimatter gravity experiment. The
analysis indicates that a substantial reduction in experimental run time may be possible relative to
that predicted by the previous studies. The main objective of the experiment would be to determine
whether antihydrogen accelerates vertically up or down as a result of earth’s gravity. It is assumed
that a detector, such as that used by the ALPHA collaboration,2 would be used to distinguish between
antihydrogen annihilations and cosmic rays.

Conceptual illustrations of the experimental setup are shown in Figs. 1 and 2. The configuration
consists of two circular, parallel plates with the source of antihydrogen located within a region near
the geometric center. The plates have an axis of symmetry directed away from the center of the earth
and are separated by a small vertical distance. Between the plates, there are circular barriers that
protrude from the top and bottom plates. Each circular barrier is coaxial with the axis of symmetry
of the configuration.

aAuthor to whom correspondence should be addressed. Electronic mail: cao@unt.edu.
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FIG. 1. Cross-sectional perspective view of the parallel plate apparatus.
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FIG. 2. Two-dimensional conceptual illustration of a parallel plate geometry for an antihydrogen gravity experiment.

The antiatoms are considered to have initial coordinates within the distributed source shown in
Fig. 2. The two straight line trajectories, passing infinitesimally close to the edges of the upper and
lower barriers, define two “shadow” regions on the upper and lower plates, respectively. Provided
no other forces act on the antiatoms, annihilations within the shadow regions are only possible if
the trajectories of the antiatoms are affected by gravity. If antimatter accelerates towards the earth,
only annihilations within the shadow region of the lower plate would be possible. If antimatter
accelerates away from the earth, only annihilations within the shadow region of the upper plate
would be possible. In Sec. II, an analytical model is presented for the parallel plate configuration
considering a point source of antiatoms. A Monte Carlo simulation is presented that considers either
a point source of antiatoms (Sec. III) or a spatially distributed source of antiatoms (Sec. IV). A
discussion and concluding remarks are presented in Sec. V.

II. ANALYTICAL MODEL

A Cartesian coordinate system with coordinates (x, y, z) and associated unit vectors (î, ĵ , k̂)
is defined such that the axis of symmetry coincides with the z-axis, and the coordinate origin is
located at the point where the axis of symmetry intersects the midplane between the plates. Suppose
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that antimatter experiences a gravitational acceleration that is equal in magnitude and opposite in
direction to that of ordinary matter. An antiatom’s acceleration due to gravity is expressed as g = g k̂,
where g is the associated magnitude. The equations of motion in Cartesian coordinates are

x(t) = x0 + v0x t,

y(t) = y0 + v0yt,

z(t) = z0 + v0z t + 1

2
gt2. (1)

Here, x(t), y(t) and z(t) are the displacements relative to the coordinate origin at a time t, x0, y0 and
z0 are the initial coordinates, and v0x , v0y and v0z are the components of the initial velocity of the
antiatom. To develop an analytical model, it is assumed that an antiatom’s initial position is located
at the coordinate origin such that x0 = y0 = z0 = 0. In terms of spherical coordinates, the initial
velocity components are written as

v0x = v0 sin(θ0) cos(φ0),

v0y = v0 sin(θ0) sin(φ0),

v0z = v0 cos(θ0), (2)

where v0 is the initial speed of an antiatom, and θ0 and φ0 are the angles that describe the initial
direction of motion for the antiatom. Due to the azimuthal symmetry of the system, the problem may
be solved in the r-z plane of a cylindrical coordinate system using radial r and axial z coordinates,
with no loss of generality. The radial coordinate r is expressed in terms of the Cartesian coordinates
by r2(t) = x2(t) + y2(t). Solving for time gives t = r/[v0 sin(θ0)]. The initial speed of an antiatom
may be expressed in terms of initial kinetic energy K0 as v0 = √

2K0/m, where m is the mass of an
antiatom. Substitution and rearrangement gives

K0 = mgr2

4[z − r cot(θ0)] sin2(θ0)
. (3)

There exists a range of initial kinetic energies K0 and angles θ0 that result in a trajectory that
intersects the shadow region of the upper plate. A lower bound on the initial kinetic energy coincides
with a trajectory that passes infinitesimally close to the lower edge of the upper barrier located at
z = a and r = b = a R

Z . Here, a is the vertical distance from the midplane to the lower edge of the
upper barrier, R is the radial distance from the point source of antiatoms to the far edge of the shadow
region, b is the radial distance from the z-axis to the circular barriers, and Z is the vertical distance
from the midplane to the upper plate. (See Fig. 2, but with distributed source parameters, defined
later, having the values �x = Lp = ρp = 0.) Substitution into Eq. (3) yields the minimum initial
kinetic energy for an antiatom to reach the shadow region of the upper plate,

K0,min = mgR2

4(Z/a)[Z − R cot(θ0)] sin2(θ0)
. (4)

Likewise, an upper bound on the initial kinetic energy corresponds to a trajectory that intersects the
upper plate at the far edge of the shadow region, i.e., at z = Z and r = R. Substitution into Eq. (3)
provides the maximum initial kinetic energy,

K0,max = mgR2

4[Z − R cot(θ0)] sin2(θ0)
. (5)

For the analytical model, the lower and upper bounds on the initial angle are considered to be
those corresponding to the straight line trajectories in Fig. 2 (with �x = 0),

θ0,min = arctan

(
R

Z

)
, (6)
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and

θ0,max = π − arctan

(
R

Z

)
. (7)

An annihilation distribution that is maximally asymmetric between the upper and lower plates
corresponds to one associated with the maximum probability for the initial kinetic energy and angle
to satisfy K0, min < K0 < K0, max and θ0, min < θ0 < θ0, max . The probability for an antiatom’s initial
motion to satisfy K0, min < K0 < K0, max and θ0, min < θ0 < θ0, max is evaluated by assuming that the
antiatoms have a Maxwellian velocity distribution. Such an assumption is consistent with producing
antiatoms within a thermalized, drifting (e.g., rotating) plasma, provided that the antiproton drift
speed is much smaller than the antiproton thermal speed throughout the plasma. The probability
density function in terms of Cartesian initial velocity components is given by

fc(v0) = f0 exp

[
−m(v2

0x + v2
0y + v2

0z)

2kB T

]
, (8)

where v0 represents the initial Cartesian velocity components v0x , v0y and v0z , f0 is a normalization
constant, kB is Boltzmann’s constant and T is temperature.

A change of variables is carried out to write the probability density in spherical coordi-
nates (v0, θ0, φ0). In spherical coordinates, velocity space is defined to have the following ranges:
0 ≤ v0 < ∞, 0 ≤ θ0 ≤ π and 0 ≤ φ0 < 2π . Recognizing that v2

0 = v2
0x + v2

0y + v2
0z and employing

the Jacobian transformation matrix, the normalized velocity-space probability density in spherical
coordinates is given by

fs(v0, θ0) = 1√
2π

(
m

kB T

)3/2

v2
0 sin(θ0) exp

[
− m v2

0

2kB T

]
. (9)

Another change of variables is done to write the probability density in terms of K0 = 1
2 mv2

0 and θ0.
The normalized probability density is then

f (K0, θ0) = 1√
π (kB T )3

sin(θ0)
√

K0 exp

[
− K0

kB T

]
. (10)

Thus, the probability, P, for an antiatom to satisfy the conditions K0, min < K0 < K0, max and θ0, min

< θ0 < θ0, max is

P =
∫ θ0,max

θ0,min

∫ K0,max

K0,min

f (K0, θ0) d K0dθ0. (11)

The inner integral can be evaluated analytically. The definite integral is

∫ K0,max

K0,min

f (K0, θ0) d K0 =
[

1

2
erf

(√
K0

kB T

)
−

√
K0

πkB T
exp

(
− K0

kB T

)]
sin(θ0)

∣∣∣∣
K0,max

K0,min

, (12)

where erf is the error function. The outer integral in Eq. (11) is evaluated numerically.
A maximized value for P corresponds to an annihilation distribution that is maximally asym-

metric between top and bottom plates. The distance from the midplane to the barrier edge is written
as a = Z/κ , where κ must be larger than one. Figure 3 shows the effect on P of changing one
parameter and holding the others constant. For the parameters considered, the plots indicate that P
decreases nonlinearly with T, increases linearly with R and increases nearly linearly with κ . For the
given values of T, R and κ , P has a maximum value at a single value for Z.

A temperature of T = 4 K is assumed based on the ATRAP collaboration’s reported achievement
of cooling an antiproton plasma to a temperature of T = 3.5 K.5 The radius of the plates is chosen
to be R = 0.6 m, considering space limitations for the experimental apparatus. The aperture size a
and barrier location b are related by b = (aR)/Z = R/κ . Thus, a smaller value for a is associated
with circular barriers that are necessarily closer to the antihydrogen source for fixed Z in the present
model. A value of κ = 10 is chosen, and the probability is found to have a maximum at Z = 0.0501 m.
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FIG. 3. Effect of changing a single parameter, (a) T, (b) R, (c) κ or (d) Z. The values of parameters that are held constant are
T = 4 K, R = 60 cm, κ = 10, and Z = 5.01 cm.
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A base case is defined with parameters T = 4 K, R = 0.6 m, κ = 10 and Z = 0.0501 m, which gives
a maximum value of P = 3.945 × 10−5. Thus, for every 106 antiatoms produced, the model predicts
that there should be 39 annihilations within the shadow region. It should be noted that the ALPHA
collaboration reported producing antihydrogen within a thermalized antihydrogen plasma having a
temperature T ≈ 54 K.2 For this temperature, with the same values for R and κ as in the base case, it
is found that the value Z = 0.0292 m gives a maximum value of P = 2.95 × 10−6. The model then
predicts approximately 3 annihilations within the shadow region for every 106 antiatoms produced.
Another calculation is also provided, by way of example, for the base case parameters, except with
Z = 0.08 m and κ = 4. It is found that P = 3.276 × 10−5, predicting 33 annihilations within the
shadow region for every 106 antiatoms produced.

III. MONTE CARLO SIMULATION

A Monte Carlo simulation is used to determine the effect of having a distributed source of
antiatoms. For the first set of simulations, however, each antiatom’s trajectory is considered to start
from a point at the coordinate origin,

x0 = 0

y0 = 0

z0 = 0. (13)

The antiatom’s initial Cartesian velocity components are given by Eq. (2). The velocity-space
probability density, Eq. (9), is sampled to obtain values for v0, θ0 and φ0. Since Eq. (9) has no
dependence on the azimuthal angle, φ0 is sampled using

φ0 = 2π Rφ, (14)

where Rφ denotes a random number between 0 and 1. For the remainder of this work, R with a
subscript attached will be used to distinguish between different random numbers equally likely to
have any value between 0 and 1.

The part of the probability density in Eq. (9) that involves θ0 is separable and is proportional
to sin (θ0). To reduce the computation time, θ0 is sampled over the range θ l < θ0 < θu, where θ l

and θu represent lower and upper limits on sampled values. The lower limit is chosen to be the
angle associated with straight-line trajectories that pass infinitesimally close to the lower edge of
the upper barrier, θl = θ0,min = arctan(R/Z ). The upper limit is chosen to be the angle associated
with straight-line trajectories that pass infinitesimally close to the upper edge of the lower barrier,
θu = θ0,max = π − arctan(R/Z ). The sampling expression is given by

Rθ =
∫ θ0

θl
sin θ dθ∫ θu

θl
sin θ dθ

. (15)

Solving for θ0 gives

θ0 = arccos

(
1 − 2Rθ√

1 + R2

Z2

)
. (16)

The fraction of the solid angle that is sampled is

F� =
∫ θu

θl
sin θ dθ∫ π

0 sin θ dθ
= 1√

1 + R2

Z2

. (17)

The initial speed of an antiatom is calculated as v0 =
√

v2
x + v2

y + v2
z , where vx , vy and vz are sampled

using a Maxwellian distribution with a zero mean and a standard deviation given by the thermal
speed, vt = √

(kT )/m. The equations of motion are given by Eq. (1), with an assumed upward
acceleration given by g = g k̂.
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TABLE I. Summary of results for the Monte Carlo simulations for the point and line antihydrogen sources. All simulations
are run with R = 0.6 m and N = 107. The value of P is calculated using Eq. (11), which is not applicable (NA) for finite
values of Lp.

〈NH̄ 〉 ± SD 〈NH̄ 〉
(P·N ) ± SD

(P·N ) T (K) Z (m) κ a (m) Lp (m) Ns

383.5 ± 20.8 0.972 ± 0.053 4 0.0501 10 0.00501 0 832,104
28.9 ± 5.3 0.978 ± 0.179 54 0.0292 10 0.0029 0 486,091
323.2 ± 21.0 0.987 ± 0.064 4 0.08 4 0.02 0 1,321,637
28.3 ± 5.5 NA 4 0.0501 10 0.00501 0.0008 832,104
12.1 ± 3.5 NA 4 0.0501 10 0.00501 0.004 832,104
9.9 ± 3.1 NA 4 0.0501 10 0.00501 0.008 832,104
8.2 ± 2.3 NA 4 0.0501 10 0.00501 0.01 832,104

Three conditions must be met for an antiatom to annihilate in the shadow region. (1) Prior to
annihilation in the shadow region, the antiatom must remain in the space between the two plates. (2)
The antiatom must pass through the aperture created by the upper and lower barriers. (3) The antiatom
must intersect the upper or lower plate within the shadow region. To determine if these conditions
are met, it is convenient to consider the coordinates of the antiatoms at two times throughout the
trajectory. The first, τ 1, corresponds to the time at which the antiatom travels the radial distance to

the barriers and is given by τ1 = b/
√

v2
0x + v2

0y . The second, τ a, corresponds to the time at which

the antiatom annihilates on the upper or lower plates. Here, τ 1 and τ a must be real and positive.
The annihilation time is found by evaluating the equation of motion in the z direction in Eq. (1) at
t = τ a and z(τ a) = |Z|. Solving for τ a yields four solutions. Of these, τ a would take on the form
of the solution that is real, positive and has the smallest value. If τ a > τ 1 the trajectory satisfies
condition (1). If |z(τ 1)| < a, the antiatom passes through the aperture satisfying condition (2). If
b <

√
x(τa)2 + y(τa)2 < R the trajectory satisfies condition (3). If all three conditions are met, the

coordinates of the simulated annihilation site is recorded.
Let Ns, N = Ns

F�
and NH̄ denote the number of simulated antiatoms, the equivalent number

of antiatoms that would be emitted into the entire 4π solid angle and the number of simulated
annihilations that occur within the shadow region on the upper plate, respectively. One simulation,
carried out with a specified parameter set (e.g., a set of values for R, T, Z, a and Ns), yields a single
value for NH̄ . Twenty simulations are carried out with N = 107 for each set of parameters, and
the average 〈NH̄ 〉 and standard deviation SD are recorded. The results are shown in Table I. The
correlation between statistical results for NH̄ and the probability evaluated using Eq. (11) is shown
by evaluating the quotients 〈NH̄ 〉/ (P N ) and SD/(PN). A value 〈NH̄ 〉/ (P N ) = 1 would indicate
the best possible agreement between the analytical model and the Monte Carlo simulation. For the
base case, an average of 383.5 ± 20.8 simulated annihilations occur within the shadow region. For
T = 54 K, Z = 0.0292 m, and the same values for R and κ as in the base case, an average of 28.9
± 5.3 simulated annihilations occur within the shadow region. The simulation is also run for the
parameter set T = 4 K, Z = 0.08 m and κ = 4. An average of 323.2 ± 21.0 annihilations occur
within the shadow region.

Figure 4 shows the trajectories of antiatoms that annihilate in the shadow region for parameters
R = 0.6 m, Z = 0.0493 m, κ = 10 and N = 100,000 at temperatures 54 K, 4 K and 0.4 K. The initial
conditions for Fig. 4 are sampled in the same way as those for the first three rows of Table I, i.e., by
using Eqs. (13), (14), and (16) and a sampled Maxwellian speed distribution. The effect of gravity
on the trajectories is more pronounced at lower temperatures.

The ALPHA collaboration reported the production of 6 × 103 antiatoms for each bunch of
antiprotons delivered by the CERN Antiproton Decelerator (AD).2 While the AD was in operation,
the bunches were provided approximately every 100 seconds. With full utilization of the bunches
taken as an upper limit, the antiatom production rate would be about 60 antiatoms per second. It
is illustrative to consider such a production rate here, even though the configuration considered
here does not employ a horizontal cylindrical drift tube, which would be more compatible with the
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FIG. 4. Trajectories are shown for antiatoms that originate at the coordinate origin and annihilate in the shadow region out of
Ns = 8,190 simulated antiatoms with parameters R = 0.6 m, Z = 0.0493 m and κ = 10. In order to show trajectories in the y-z
plane only, φ0 = π /2 and φ0 = 3π /2 were used. The temperatures for (a), (b) and (c) are 54 K, 4 K and 0.4 K, respectively. In
(a), four (4) annihilations occur. The associated four trajectories start at the coordinate origin, with two pairs of trajectories
that overlap and are indistinguishable. The number of annihilations in the shadow region tends to increase with decreasing
temperature (4 at 54 K, 37 at 4 K and 376 at 0.4 K). At higher temperatures, trajectories tend to follow nearly straight paths.

ALPHA apparatus. For T = 4 K, the results obtained here indicate that it would only be necessary
to produce about 105 antiatoms for the experiment to indicate the direction of free fall acceleration,
provided that antihydrogen is produced within a sufficiently small antihydrogen plasma. This could
be achieved in a minimum of about 30 minutes of experimental run time. This corresponds to a
reduction in experimental run time by a factor of 3,000 from the 58 days that was previously reported
in Ref. 18 for an aperture-based experiment that employs a cylindrical drift tube.

IV. EFFECT OF A SPATIAL DISTRIBUTION OF INITIAL COORDINATES

The effects of having two different spatial distributions of initial coordinates for the antihydrogen
atoms are evaluated. The first is an infinitesimally thin line source with finite length Lp oriented
vertically along the axis of symmetry of the apparatus and centered about the midplane between the
plates. In this case, the azimuthal symmetry of the source distribution and the apparatus allow for the
simulation to be carried out in two dimensions with no loss of generality. The x-z plane is chosen.
The shadow region is defined by two straight line trajectories that start from the axis of symmetry
at the locations z = ±Lp/2 and that pass infinitesimally close to the barriers, as shown in Fig. 2.
The origin is displaced by an amount �x. Physically, �x represents the radial distance from the axis
of symmetry to the point at which the two straight line trajectories intersect the midplane. Here,
�x = L p

2 tan θl , where θl = arctan
(

R
Z

)
, and R is now the radial distance from the point at which the

two straight line trajectories intersect the midplane to the far edge of the shadow region. Thus,

�x = RL p

2Z
. (18)
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The initial coordinates are sampled via

x0 = − RL p

2Z

z0 = ηz
L p

2
. (19)

Here and hereafter, ηz will denote a random real number equally likely to have any value between
−1 and 1. Restricting the motion of the antiatoms to two dimensions and displacing the origin in
such a manner allows for the implementation of the sampling expression for θ0 given in Eq. (16).
The sampling expressions for the components of the initial velocity are

v0x = v0 sin (θ0) ,

v0z = v0 cos (θ0) . (20)

The simulation is carried out for N = 107 and Ns = F�N = 832, 104 for the base case param-
eters at different source lengths, and the results are shown in Table I. It is found that the number of
annihilations within the shadow region decreases significantly from an average of 383.5 ± 20.8 for
the point source to 28.3 ± 5.5 for a source with length 0.8 mm, 12.1 ± 3.5 for Lp = 4 mm, 9.9 ± 3.1
for Lp = 8 mm and 8.2 ± 2.3 for Lp = 1 cm. The simulated data indicates that as Lp is increased,
the total number of annihilations in the shadow region is decreased. It should be noted that, due to
the offset of the origin from the axis of symmetry of the plates, the radius of the plates would now
have a radius rplates = R + �x.

The second source distribution is a spheroid of equatorial radius ρp and polar radius L p

2 centered
about the origin. The spheroid is oriented such that the polar radius coincides with the z-axis and
the equatorial radius lies in the x-y plane. The sampling expression used for the initial Cartesian
coordinates of antiatoms within the spheroid are

x0 = ρp

√
Rr

(
1 − η2

z

)
cos(2π Rφ),

y0 = ρp

√
Rr

(
1 − η2

z

)
sin(2π Rφ),

z0 = ηz
L p

2
. (21)

These expressions are arrived at as indicated in the Appendix.
The antiatoms’ initial coordinates are sampled using Eq. (21), and the equations of motion

are given by Eq. (1). The Cartesian velocity components are written in the form of Eq. (2). The

magnitude is given by v0 =
√

v2
x + v2

y + v2
z , where vx , vy and vz are sampled as was done for the

point source. For the spheroidal geometry it is necessary to sample the full solid angle. Therefore, N
= Ns = 107 is used for all simulations. The sampling expression for φ0 is φ0 = 2πRφ . The sampling
expression for θ0 is

θ0 = arccos (1 − 2Rθ ), (22)

which is found by solving

Rθ =
∫ θ0

0 sin θ dθ∫ π

0 sin θ dθ
. (23)

The time at which the antiatom travels the radial distance to the barriers is given by solving
b2 = x(τ 1)2 + y(τ 1)2 for τ 1. If the conditions imposed in Sec. III are satisfied, then the coordinates
at which the antiatom annihilates are recorded.

A summary of the results for the spheroidal source of antiatoms, using the base case parameters
for N = Ns = 107 simulated antiatoms, is shown in Table II. The effects of changing the dimensions
of the antihydrogen source is evaluated by carrying out the simulation for six different values for
the equatorial radius, ρp, and three different values for the source length, Lp. The values for the
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TABLE II. Summary of results for the Monte Carlo simulations with the spheroidal antihy-
drogen source. All simulations are run with N = Ns = 107, T = 4 K, R = 0.6 m, Z = 5.01 cm,
κ = 10 and a = 5.01 mm.

〈NH̄ 〉 ± SD Lp (m) ρp (m)

7.9 ± 3.4 0.01 0.00004
12.6 ± 2.7 0.004 0.00004
28.0 ± 4.7 0.001 0.00004
7.7 ± 2.3 0.01 0.00008
12.9 ± 2.7 0.004 0.00008
27.1 ± 4.5 0.001 0.00008
7.7 ± 2.8 0.01 0.0004
13.1 ± 3.6 0.004 0.0004
27.4 ± 6.1 0.001 0.0004
7.9 ± 2.3 0.01 0.0008
12.6 ± 2.8 0.004 0.0008
27.0 ± 4.9 0.001 0.0008
5.9 ± 2.3 0.01 0.004
11.8 ± 3.2 0.004 0.004
19.7 ± 4.6 0.001 0.004
8.2 ± 2.7 0.01 0.008
9.9 ± 3.6 0.004 0.008
17.1 ± 3.8 0.001 0.008

equatorial radius that were used were ρp = 0.04 mm, ρp = 0.08 mm, ρp = 0.4 mm, ρp = 0.8 mm, ρp

= 4 mm and ρp = 8 mm. For each value of ρp the simulation is carried out for three source lengths,
Lp = 10 mm, Lp = 4 mm and Lp = 1 mm. The simulated data indicates that the average number
of annihilations, 〈NH̄ 〉, has little dependence on the value for the equatorial radius for the range of
values considered. In contrast, a change in length of the source by a factor of 10 from Lp = 10 mm
to Lp = 1 mm causes the value of 〈NH̄ 〉 to increase by more than a factor of three in some cases.

V. DISCUSSION AND CONCLUDING REMARKS

It should be noted that in this work the detection system implemented is assumed to be capable of
precisely determining the site of annihilation. In reality, however, there will be a finite resolution for
the detectors. For instance, in the ALPHA apparatus the axial resolution for diagnosing annihilation
events is about 5 mm.2 Two possible methods of resolving this problem could be: (1) Place particle
detectors with higher resolution within the shadow region. (2) Place a secondary set of circular
barriers a distance ζ , equal to the resolution of the detection system, from the edge of the shadow
region as shown in Fig. 2. For example, if the resolution of the detectors is 5 mm then the barriers
should be placed ζ = 5 mm from the edge of the shadow region. The vertical distances, h, from the
midplane to the edge of the secondary barriers would depend on the geometry of the antihydrogen
source. For the point and line source distributions h = Z(1 − ζ /R). For the spheroidal source
distribution, h may be found by evaluating Eq. (A11) at z = −h, r = �x + R − ζ , and solving
for h. With the secondary barriers placed in this manner, most of the antiatoms with trajectories
resulting in annihilations within the portion of the region R − ζ ≤ r ≤ R would then annihilate on
the secondary barriers. Thus, the annihilations due to these trajectories could be distinguished from
those occurring just outside of the shadow region.

Prior studies on aperture-based antihydrogen gravity experiments considered the use of a hori-
zontal drift tube, which was intended to be compatible with the ALPHA apparatus. The present work
proceeded without regard to compatibility with an existing experimental setup, and a new apparatus
would be required to employ the configuration considered here. The configuration was chosen with
the intent of minimizing the number of antiatoms necessary for an aperture-based experiment to
indicate the direction of free fall acceleration of antimatter. However, it was assumed that antihy-
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drogen can be produced within an antiproton plasma at a temperature of 4 K. The assumption is
significant, because an antiproton plasma has never been cooled to a temperature significantly lower
than 4 K.

In summary: An analytical model and a Monte Carlo simulation have been developed of
an antihydrogen gravity experiment with parallel plate geometry. Calculations show that for the
parameters considered, a minimum of about 100,000 antiatoms would have to be produced for the
associated annihilation distribution to begin to indicate the direction of acceleration of antihydrogen
due to gravity. The analysis indicates that a substantial reduction in the minimum number of
synthesized antiatoms may be possible relative to that predicted by the previous studies of the
aperture-based approach. The present study for a parallel plate geometry also indicates that it is
advantageous: (1) to use plates with large radii so that the shadow region can be larger, (2) to use
small-radius barriers that form an aperture close to the antihydrogen production region, (3) to use
an optimized separation distance between the top and bottom plates, (4) to produce antihydrogen at
a low temperature and (5) to produce antihydrogen in a region that is as small as possible.
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APPENDIX

The expressions given by Eq. (21) are arrived at as follows: Each antiatom is considered to have
initial coordinates equally likely to be located anywhere within a spheroidal volume centered at the
origin. An initial z coordinate is randomly selected from within the length of the spheroid using z0

= ηzLp/2. Next, using the equation of the ellipse traced out by the spheroid in the r-z plane,

1 =
(

r

ρp

)2

+
(

2z

L p

)2

, (A1)

an expression for the maximal radial distance from the z-axis is obtained by evaluating Eq. (A1) at
z = z0 and r = rmax , and then solving for rmax :

rmax = ρp

√
1 −

(
2z0

L p

)2

. (A2)

The sampling expressions for the radial and azimuthal cylindrical coordinates are r0 = rmax
√

Rr and
�0 = 2πRφ . Thus, the sampling expressions for the associated Cartesian components are given by
x0 = r0cos (�0) and y0 = r0sin (�0).

Due to the finite dimensions of the antihydrogen source, there exists a problem in determining
the radial distance b from the z-axis at which the barriers should be placed. This issue is addressed
by noting that the extent of the shadow region R is determined by high energy antiatoms that have
initial coordinates on the surface of the spheroid and have trajectories that pass infinitesimally close
to the edge of each barrier. Such an antiatom will trace out a roughly linear trajectory that may
be represented as the equation of the tangent line to the ellipse in the r-z plane. Also, a straight line
trajectory that starts at z > 0 passes through the point r = R and z = −Z. Written in terms of a few
constants, the final result is given by

b = −a + Z + αR

α
. (A3)

Here,

α = L pc1c3

2ρ2
p[2Z (ρp L p)2 − c2]

(A4)
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where

c1 = (L p R)2 + (2Zρp)2,

c2 = L2
p R

√
L2

p(R2 − ρ2
p) + 4Z2ρ2

p,

c3 = ρp L p

√
1 −

(
c2 − 2Z (L pρp)2

L pc1

)2

. (A5)

To obtain this result, the equation of the tangent line is written in general form as

z = αr + β, (A6)

where α and β are the slope and z-intercept of the tangent line, respectively. The slope of the tangent
line evaluated at some point on the ellipse, r = ri and z = zi, is found by implicitly differentiating
Eq. (A1) with respect to r and solving for α = dz

dr . Doing so yields

α = − ri L2
p

4ziρ2
p

. (A7)

The slope of the line passing through the points P1 = (ri, zi) and P2 = (R, −Z) is also given by

α = zi + Z

ri − R
. (A8)

An expression for ri in terms of zi is obtained by evaluating Eq. (A1) at r = ri, z = zi and solving for
ri,

ri = ρp

√
1 −

(
2zi

L p

)2

. (A9)

Substituting this result into Eqs. (A7) and (A8), setting the two equations equal and solving for zi

yields an expression for zi in terms of R, Z, Lp and ρp. Using Eq. (A9), the slope α may then be
written in the form of Eq. (A4). To find the z-intercept β, Eq. (A6) is evaluated at P2 = (R, −Z) and
solved yielding

β = −(αR + Z ). (A10)

Equation (A6) may then be written as

z = α(r − R) − Z . (A11)

Finally, to obtain b, Eq. (A11) is evaluated at r = b and z = −a and solved yielding Eq. (A3).
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