ERRATUM: "IS THERE A METALLICITY-LUMINOSITY RELATIONSHIP IN ACTIVE GALACTIC NUCLEI? THE CASE OF NARROW-LINE SEYFERT 1 GALAXIES" (ApJ, 567, L19 [2002])
 Ohad Shemmer and Hagai Netzer

School of Physics and Astronomy and the Wise Observatory, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; ohad@wise.tau.ac.il, netzer@wise.tau.ac.il

We found a computational error in the above Letter, affecting the calculation of the intrinsic luminosities of several objects in our sample. As a consequence, new versions of Figure 2 and Tables 1 and 2 are presented below. This does not affect any of the main results of the Letter.

Fig. 2.-HF93 metallicity indicators, N v/C iv (top) and N v/He il (bottom), as a function of luminosity. Empty circles mark BLAGNs, and filled circles marks NLS1s; solid lines represent the BLAGN best-fit Z-L slope; large squares with error bars represent average line ratios in bins of 0.5 in $\log \nu L_{\nu}$ of the entire data set. Note the significant deviation of the low-luminosity bins from the straight line (top) owing to the addition of NLS1s.

TABLE 1
Linear Regression Parameters for N v/C iv versus $\log \nu L_{\nu}$

Data Set Code $^{\mathrm{a}}$	Number of Objects	Pearson (r)	Spearman $\left(r_{\mathrm{s}}\right)$	Slope (a)	Constant (b)
B	121	0.70	0.73	0.19 ± 0.02	-2.86 ± 0.23
B+N	130	0.55	0.60	0.13 ± 0.02	-2.11 ± 0.23
RQQ (B)	105	0.72	0.74	0.18 ± 0.02	-2.82 ± 0.23
RQQ (B+N)	114	0.56	0.60	0.13 ± 0.02	-2.04 ± 0.24
B+up.lim.	137	0.67	0.69	0.19 ± 0.02	-2.91 ± 0.24
B+N+up.lim.	146	0.52	0.57	0.13 ± 0.02	-2.17 ± 0.24

${ }^{a}$ Data set codes are B for BLAGNs, N for NLS1s, RQQ for radio-quiet quasars, and up.lim. for upper limits on the line ratio.

TABLE 2
Linear Regression Parameters for N v/He ii versus $\log \nu L_{v}$

Data Set Code $^{\mathrm{a}}$	Number of Objects	Pearson (r)	Spearman $\left(r_{\mathrm{s}}\right)$	Slope (a)	Constant (b)
B	98	0.58	0.60	0.14 ± 0.02	-1.37 ± 0.27
B+N	107	0.50	0.53	0.11 ± 0.02	-0.95 ± 0.24
RQQ (B)	83	0.61	0.64	0.14 ± 0.02	-1.25 ± 0.26
RQQ (B+N)	92	0.54	0.57	0.11 ± 0.02	-0.87 ± 0.23
B+up.lim.	110	0.54	0.55	0.15 ± 0.02	-1.45 ± 0.28
B+N+up.lim.	119	0.46	0.48	0.11 ± 0.02	-1.00 ± 0.26

${ }^{\text {a }}$ Data set codes are identical to those in Table 1.

