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Abstract. Multiple low energies (78 keV, 68 keV and 58 keV) of Ag ions with different fluences up to 1×1016 atoms/cm2 

were sequentially implanted into Si(100) to create a distribution of different sizes and densities of buried metal 
nanoclusters (NC) at the near-surface layers. These structures have applications in fields involving plasmonics, optical 
emitters, photovoltaic, and nano-electronics. The dimension, location and concentration of these NCs influence the type 
of the applications. The implantation profiles were simulated by utilizing the widely used Stopping and Range of Ions in 
Matter (SRIM) code as well as a dynamic-TRIM code, which accounts for surface sputtering. The implanted samples 
were subsequently annealed either in a gas mixture of 4% H2 + 96% Ar or in vacuum at a temperature ~500 ºC up to 90 
minutes. The annealing was carried out below the eutectic temperature (~ 841 ºC) of Ag-Si to preferentially synthesize Ag 
NCs in Si rather than silicide. In order to study the size, concentration and distribution of the Ag NCs in Si, the samples 
were characterized by Rutherford Backscattering Spectrometry (RBS), X-ray photoelectron spectroscopy (XPS) in 
combination with Ar-ion etching, and Transmission Electron Microscopy (TEM) techniques. The annealed samples 
showed a preferential distribution of the Ag NCs’ sizes up to 10 nm either near the surface region (< 25nm) or at deeper 
layers  (60-80 nm) closer to the interface of the implanted layer with the crystalline Si substrate. Ag NCs of larger 
diameters (up to 15 nm) were seen in the annealed sample near the peak concentration positions (~35-55 nm) of the 
implanted Ag ions. We have investigated the optical absorption properties due to these nano-structures in Si. The multiple 
energy implanted samples annealed in a gas mixture of 4% H2 + 96% Ar show enhancements in the optical absorption in 
the visible range.  

Keywords: Ag nanoclusters, ion implantation, RBS, XPS, TEM. 
PACS: 61.80.Jh, 68.35.bg, 68.35.Ct, 68.37.Og, 68.55.Ln   
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INTRODUCTION
      The applications of the transitional metal (e.g. Ag, Au) nanoparticle range from the plasmonics [1-3], 
photovoltaic device (PV) [4-8], optical antenna, nanoscanning probe [9-12], medical and biosensor [8-9], and nano-
drug delivery system [13-14]. The critical factors in influencing the optical and electronic applications of metal 
nanoparticles are the dimension, location and the density of the nanoparticles [15, 16]. It’s been known that in 
optical applications, the elemental type, size, and shape of a metal nanoparticles or nanoclusters (NC) are correlated 
to the efficiency and wavelength of the scattering electromagnetic (EM) waves [17]. The visible EM spectrum can 
penetrate from ~100 nm (for =400 nm) to ~7 micrometer ( m) (for =700 nm) in crystalline Si (c-Si) and ~100 nm 
(for =400 nm) to ~5 m (for =700 nm) in amorphous Silicon (a-Si) [18].  
      Ion Beam Synthesis (IBS) involving irradiation of low energy (< 100 keV) metal ions in Si based substrates and 
subsequent thermal annealing has developed into a reliable technique for production of buried structures in the sub-
surface regions (< 60 nm in depth) [19-21]. The ion implantation parameters can control the ion type, fluence 
(concentration), and the energy (depth); hence one can architect the size and depth of the NP in Si substrate. Since 
the NCs are formed beneath the top surface, the NCs of implanted materials are well protected; hence the subsequent 
device can be mechanically robust. As a general rule, the ion implanted NPs are distributed in a more or less 
Gaussian profile in the ion implanted zone (ion projected range, Rp) in the substrate, but for some materials, there 
are some preferential sites where the nucleation of NPs are preferable. For example, Au and InP NPs are generally 
found near the surface, whereas for ZnS NPs are predominantly found at the substrate interface boundary [22].  
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        The metallic as well as semiconductor NCs exhibit enhanced optical properties [23]. These optical properties 
are due to the quantum effects as well as electronic properties influenced by the implanted ion species. The quantum 
effect is due to the NCs’ spatial character such as size, shape, and location. This property enhances the optical 
properties of the free electrons present in the metallic NCs. Larger NCs are primarily responsible for light absorption 
and scattering, whereas the smaller NCs are responsible for the nonlinear optical properties. The modified Mie 
expression [23] in Eq. 1 shows the absorption of light due to the size and ion species of NCs: 

   -------------------------------------------------------  Eq. (1), 

Where  is the absorption coefficient, p, 1, and 2 are the volume fraction, real, and imaginary dielectric constant of 
the NC, respectively,  is the wavelength of the light, and nd is the refractive index of the medium. 
           In this study, we have investigated the synthesis of Ag NCs in Si(100) substrate by implanting multiple 
energies (< 80 keV) and fluences of Ag ions and subsequent thermal annealing. We report the synthesis, 
characterization of Ag NCs in Si(100) substrates, surface modification due to the low energy ion irradiation, and 
optical absorption from the ion irradiation induced modified layers in the Si substrate. The formation and 
distribution of Ag NCs in Si were characterized by RBS, XPS depth profiling, and TEM techniques. The surface 
roughness of the Si substrates was characterized by an optical profilometer. 

EXPERIMENTAL 
Si (100) wafers (Boron doped p-type, resistivity of 10–20 cm) cleaned with acetone were irradiated 

sequentially with low energies Ag- ions. The ion energies were 78 keV, 68 keV, and 58 keV with fluences of 1×1016 

atoms/cm2, 5×1015 atoms/cm2, and 2.5×1015 atoms/cm2, respectively (designated as type I-sample). To estimate the 
effects of the irradiation of single energy Ag ions, another set of six samples were created by implanting with single 
energies  of Ag 76 keV, 67 keV, and 57 keV, respectively, and with the two fluences of 5×1015 and 1×1016 
atoms/cm2. All the samples were tilted to ~5o to the surface normal to avoid ion channeling. The ion implantation 
source was a National Electrostatic Corporation (NEC) SNICS II (source of negative ion by cesium sputtering), 
which is one of the three sources attached to NEC 3 MV tandem (9SDH-2 Pelletron) accelerator. The details of the 
accelerator facility at the Ion Beam Modification and Analysis Laboratory (IBMAL) are provided in reference [24]. 
The shallow depth ion implantation was carried out in the low energy (LE) implant line of the tandem accelerator 
[24]. The current density for the ion implantation was maintained at less than one A/ cm2 to minimize the self-
annealing of the implanted sample. The vacuum of the ion implantation chamber was 1×10-6 torr or better. The 
samples were prepared after simulating the depth profile of the implanted Ag ions in Si according to the Stopping 
and Range of Ions in Matter (SRIM/TRIM) code [25]. The different energies of Ag ions were implanted in Si (100) 
in order to have clear ion projected range (Rp) peak separation so that layers of Ag NCs are expected to be formed 
around the desired depth of Rp. The selection of the ion energy is such that the differences between the Rp are about 
~10-30 nm according to the widely used SRIM. We have also used a Dynamic Monte Carlo program or T-DYN 
based on the static TRIM program [26, 27]. In contrast to the static version, the T-DYN also simulates the dynamic 
change of surface position due to sputtering and/or deposition of the targets during high uence ion implantation.  

The type-I implanted samples were subsequently annealed in a gas mixture of 4% H2 + 96% Ar at a 
temperature ~500 ºC for up to 90 minutes. The annealing was carried out below the eutectic temperature (~ 841 ºC) 
of Ag-Si to preferentially synthesize Ag NCs in Si rather than silicides. The single energy irradiated samples were 
annealed in vacuum at a temperature ~500 ºC for up to 90 minutes.  

A set of as-implanted and annealed samples were characterized by RBS, XPS, and TEM (for type I only). 
The RBS measurements were carried out in a NEC 9SH Pelletron accelerator beam line using a rectangular 
collimated beam of ~1 mm2 with 2.0 MeV He+ ions [24]. The solid angle of the RBS (Passivated Implanted Planar 
Silicon) detector was ~1-2 milli-Sr. at a back scattering angle of 150o. To minimize the secondary electrons, the He+ 
ion beam was passes through a series of aperture and ceramic disc magnet just at the opening of the analyzing 
chamber along with negative 300 volt electron suppressor. The charges were integrated at a tungsten wire mess 
installed in the beam line right after the slit [28]. A second set of sample were annealed at 500 oC for 90 minutes. 
These annealed samples were also characterized using the same techniques as as-implanted samples. The RBS 
spectra were anlyzed with the SIMNRA computer package [29].  The XPS and TEM measurements were carried out 
at the Center for Advanced Research and Technology (CART) facility of UNT. The XPS depth profiling 
measurements were performed with PHI 5000 Versaprobe. Al monochromatic X-ray radiation (1486.6 eV) was 
focused to a spot size of about 200 μm. The sputtering was performed with a 2 keV Ar beam of 1×1 mm2 area. The 
pressure of the target chamber was kept at 7.5×10-10 torr.  
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The TEM measurements were performed using a high resolution FEI Co. Tecnai G2 F20 S-twin machine 
operated at 200 keV. During the TEM measurement, electron energy loss spectrometry (EELS) of Si and Ag were 
monitored. The elemental concentration of some of the larger NCs was measured using energy dispersive x-ray 
(EDX) setup attached to the TEM. The TEM images were analyzed using ImageJ package [30]. The ImageJ is an 
open source image processing and analysis software package developed by National Institute of Health, USA using 
the Java program. It can display, edit, and analyze 8–bit, 16–bit, and 32–bit images. The ImageJ package can take 
input image in many formats including TIFF, GIF, JPEG, BMP, DICOM, FITS, and raw. It is possible to calculate 
the area and pixel value statistics of user-defined selections in the TEM images. It supports standard image 
processing functions such as contrast manipulation, sharpening, smoothing, edge detection, and median filtering. It 
does geometric transformations such as scaling, rotation, and flips. Spatial calibration is available to provide real 
world dimensional measurements in units such as nanometers. Custom acquisition, analysis, and processing plugins 
can be developed using ImageJ’s built in editor and Java compiler. User-written plugins make it possible to solve 
many image processing or analysis problem. The image threshold can be selected by choosing one of the several 
image analysis modes included in the program. We have used the statistical “mean” method for the TEM image 
analysis. The size selection for the NCs included only from 3 nm2 to 300 nm2. 

The optical characterization was mainly focused on the specular absorption by the samples. The specular 
absorption measurement was carried out by using the Shimadzu UV-2550 UV VIS Spectrometers. The spectrometer 
uses a Halogen Tungsten lamp, which has less than 0.0003% stray light with a 340nm (UV-39) filter. For the 
specular absorption, a specular reflectance measurement attachment is installed in the spectroscopy instrument. For 
calibration and setting up the base line absorption spectrum, two identical virgin samples from the same Si wafer are 
placed on the reference sample holder as well as on the characterizing sample holder. The aperture size for the 
reference as well as the sample holder was 5 mm diameter. The incident angle of the beam is 5°, which minimizes 
the influence of polarized light on the absorption spectrum. The base line absorption profile, as well as the 
normalization of the spectra of the implanted samples with respect to the virgin Si (100) intensity, was automatically 
adjusted using the UV-2550 spectrometer data acquisition software. Hence the absorption spectrum is the true 
absorption due to the ion induced modification done on the Si (100) surface layers. Most of the samples were 
characterized from 900 nm to 200 nm for specular absorption. Optical characterization was done at the Department 
of Chemistry in UNT.  

 
RESULTS and DISCUSSION 

Structural and Compositional Characterization: 
In figure 1, simulations of the projected 
range of the implanted ions for various 
energies normalized with their respective 
fluences are presented using the widely 
used TRIM code as well as the dynamic 
T-DYN code. In the 'as-implanted' sample, 
the amorphous layer in Si (a-Si) created 
by the 78 keV ion implantation was ~85 
nm thick. The Rp peaks from the SRIM 
simulations for 78, 68, and 58 keV Ag 
ions in Si are 45 nm, 40 nm, 35 nm, 
respectively, and the peak positions for 
individual curves are prominently 
separated from each other. The 
corresponding T-DYN simulations are 
shown in solid lines partially overlapping 
the TRIM simulation. The T-DYN 
simulations considered the dynamic 
changes in the target surface layer due to 
surface sputtering and implantation of the 
Ag ions. The sum of all the individual 
energies simulations are also shown to be 
peaked between ~35-45 nm depth. The 
corresponding T-DYN simulation for equivalent fluence at 74 keV shows the distribution of the ions is more 

Figure 1. TRIM simulation of the range of various energetic Ag ions in Si 
normalized with the respective ion fluences. The corresponding Rp values are
Rp78 keV = 45 nm, Rp68 keV = 40 nm, Rp58 keV = 35 nm. The corresponding T-
DYN simulations are shown in solid lines overlapped with the TRIM plots.  
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towards the surface region. The T-DYN simulations show the lateral shift in the Rp towards the surface as well as 
the decrease in the implanted ion concentrations due to the sputtering and redistribution of the surface layers. 
          In the figure 2, the RBS spectra of the as-implanted and annealed samples are shown for type –I samples (as 
simulated in figure 1). The RBS spectra simulated by SIMNRA are superimposed on the experimental spectra.  The 
Ag depth profile extracted using the SIMNRA are shown in the inset. The Ag profile of the as-implanted sample 
agrees quite well with the sum of the T-DYN simulations as shown in figure 1. For the annealed samples, the Ag 
atoms are seen to have a bimodal distribution, with a component migrating towards the top 20 nm from the surface 
region and another component centered at ~70 nm from the surface towards the interface of the amorphous and 
crystalline region of the samples.  

 
Figure 2. RBS spectra of the as-implanted and annealed Si samples with multiple energy Ag ion implantations (type-I sample). 
The spectra are overlapped with parameters fitted using the SIMNRA simulation package. The Ag depth profiles extracted using 
the SIMNRA are shown in the inset for the as-implanted and annealed samples. 
         In figure 3 the distributions of Ag in the as-implanted and annealed samples for type-I samples are shown 
using XPS depth profile with Ar ion etching. The general features of the Ag distributions follow the similar trends as 
the RBS result shown in figure 2. The absolute concentrations of Ag are slightly different in the XPS and RBS 
results, which may be due to different areas of observation between the two measurements. 

 
Figure 3.  Depth profiles of the Ag in the as-implanted and annealed Si samples (type-I sample) by collecting the Ag (2p) XPS 
signal from the surfaces while etching the samples using Ar ions. 
 The TEM images of the as-implanted and annealed Si samples with multiple energy Ag ion implantations 
(type-I samples) are presented in figure 4. The selected area diffraction (SAD) patterns from the as-implanted region 
(shown in the inset of the TEM image (Fig. 4(a)), indicates the implanted region (end of the implanted ion range) as 
totally amorphized Si (a-Si) ~85 nm deep. The SAD patterns from the underlying substrate show the crystalline 
nature of the Si substrate. In the case of the annealed sample, the TEM image (Fig. 4(b)) shows the shrinkage of a-Si 
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