Гechnical Memorandum

SCTM 256-60(14)

VAPOR PRESSURES OF THE RARE EARTHS

THIS IS A SANDIA CORPORATION WORKING PAPER AND IS INTENDED PRIMAR!LY FOR INTERNAL DISTRIBUTION; THE IDEAS EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THE OPINION OF THE CORPORATION.

Standard Distribution: Physics and

 Mathematics
SCTM 256-60(14)

VAPOR PRESSURES OF THE RARE EARTHS

L. C. Beavis, 1413

Abstract

This report presents the vapor pressures versus temperature data graphically for the rare earth elements, yttrium and scandium.

LEGALNOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price $\$ 0.50$. Available from the Office of Technical Services, Department of Commerce, Washington 25, D. C.

VAPOR PRESSURES OF THE RARE EARTHS

The purpose of this memorandum is to present vapor pressure versus temperature data graphically for the rare earths and certain elements with similar properties. This sort of information is of interest to those who plan to use these materials at high temperatures and/or high vacua. Vapor pressure data on the more cormon elements is portrayed in References 1 and 2.

Until a few years ago the thermodynamic properties of the rare earths were unknown, and therefore the vapor pressure curves for these materials could not be developed. Recently, however, with the increased availability of these elements in pure form, more information necessary to deduce vapor pressures has become available.

The vapor pressure curves (Figure l) for europium, gadolinium, lanthanum, lutecium, niobium, scandium, samarium, ytterbium, and yttrium are plotted directly from the pressure equilibrium constant data as given in Reference 3. Some of the values of properties used in developing the equilibrium constants were estimated from the best available sources. Those elements whose curves are plotted from such data are so noted by an asterisk on Figure 1. A circled x signifies the melting point of the element.

The remainder of the rare earths' vapor pressures were calculated using data that were presented as best estimates in Reference 3. This information has no estimated errors, but considering that the known properties of the rare earths are fairly closely grouped, it would be strange if the properties of the remaining rare earths were very much different from the estimated values.

The method for calculating vapor pressures used is outlined by Joos, Reference 4. One starts by using the Clapyerm-Clausius equation

$$
\begin{equation*}
\frac{d p}{d T}=\frac{L_{(T)}}{T\left(V_{v}-V_{c}\right)} \tag{1}
\end{equation*}
$$

where p is pressure,
T is Absolute Temperature,
$L_{(T)}$ is the heat of transformation from the condensed phase to the vapor phase
and $V_{v}-V_{c}$ are the molar volumes of the vapor and condensed phases respectively.
As temperatures of interest are not near the critical point $V_{V}-V_{c} \approx V_{v}$.
At low pressures, the vapor acts nearly like a perfect gas, and thus Equation 1 becomes

Figure 1.

$$
\begin{equation*}
\frac{d p}{d T}=\frac{L(T)}{\frac{R T}{P}} \tag{2}
\end{equation*}
$$

$\mathrm{L}_{(T)}$ is a function of temperature, and thus its variation must be taken into consideration upon integrating. If we imagine first that the material of interest is to be vaporized at T and then the vapor heated to T_{B}, the heat required is

$$
Q=C_{p}^{V}\left(T_{B}-T\right)+L_{T}
$$

C_{p}^{v} is the specific heat at constant pressure for the vapor.
Another way of accomplishing this same physical change is to heat the condensed phase to T_{B} before allowing it to vaporize.

$$
Q=C_{p}^{s}\left(T_{m}-T\right)+L_{m}+C_{p}^{L_{p}}\left(T_{B}-T_{m}\right)+L_{B}
$$

C_{p}^{s} is the solid specific heat
I_{m} is the latent heat of fusion occurring at T_{m} the melting temperature
C_{p}^{L} is the liquid specific heat
L_{B} is the vaporization latent heat at the boiling point T_{B}.
The energy required is the same in both cases, and thus

$$
\begin{equation*}
L_{(T)}=C_{p}^{s}\left(T_{m}-T\right)+L_{m}+C_{p}^{L_{2}}\left(T_{B}-T_{m}\right)+L_{B}-C_{p}^{v}\left(T_{B-T}\right) \tag{3}
\end{equation*}
$$

Then $\ln p=\frac{1}{R} \int\left[C_{p}^{s}\left(T_{m}-T\right)+L_{m}+C_{p}^{L}\left(T_{B}-T_{m}\right)+L_{B}=C_{p}^{v}\left(T_{B}-T\right)\right] \frac{d T}{T^{2}}$
It should be noted that phase transition latent heats as well as the functional dependence of the C_{p} on T must be used in calculations of this type for highest accuracies. It was felt that such a high degree of accuracy was unwarranted when using the presently available data.

When $T>T_{m}$ equation 4 reduces to

$$
\begin{equation*}
\log _{10} P_{\text {mm }}=\frac{1}{4.571}\left[-\frac{L_{B}+\left(C_{p}^{L}-C_{p}^{V}\right) T_{B}}{T}-\left(c_{p}^{L}-C_{p}^{V}\right) \log _{10^{T}}\right]+C_{1} \tag{5}
\end{equation*}
$$

When $T<T_{m}$

$$
\begin{equation*}
\log _{10} P_{\text {mm }}=\frac{1}{4.571}\left[\frac{-I_{B}-C_{p}^{L}\left(T_{B}-T_{m}\right)-I_{m}-C_{p m}^{s} T_{m}+C_{p}^{v_{T}}}{T}-\left(C_{p}^{s}-C_{p}^{v}\right) \log _{10^{T}}\right]+C_{2} \tag{6}
\end{equation*}
$$

The constant C_{1} is found at the boiling point where $p=760 \mathrm{~mm} . C_{2}$ is evaluated at the melting point through pressure continuity considerations.

The data used to prepare Figure 2 is presented in Table I. This method has been checked against some elements where accurate data was presented and was found to be good to about l-10 percent. The solid specific heats in general show the largest variations, and a value which was averaged over the solid temperature range of interest was used.

Table I

		$\begin{gathered} \mathrm{cal} / \mathrm{gm} \\ \mathrm{~mol} \end{gathered}$		$\begin{gathered} \mathrm{cal} / \mathrm{gm} \\ \mathrm{~mol} \end{gathered}$		$\underset{\mathrm{mol}}{\mathrm{cal} / \mathrm{gm}}$	
Element	Tm ${ }^{\circ} \mathrm{K}$	I_{m}	$\mathrm{T}_{\mathrm{B}}{ }^{\circ} \mathrm{K}$	L_{B}	$\mathrm{c}_{\mathrm{p}}^{\mathrm{s}}$ *	$C_{p}^{L} *$	$\mathrm{c}_{\mathrm{p}}^{\mathrm{v}}$ *
Ce	1077	2200*	3200	75,000	--	8.00	6.00
Dy	1773	4100*	2600	60,000	8.25	8.00	6.00
Er	1800	4100*	2900*	70,000*	8.25	8.00*	7.00
Ho	esti* ${ }^{*}$	to be ${ }^{*}$	rly the	same as ${ }^{*} \mathrm{~d}$	rosium	*	*
Pr	1208	2400*	3290	79,500	--	8.00	6.00
Tb	1700*	3900*	2800*	70,000	8.5	8.00	6.00
Tm	1400*	4400*	2400*	51,000*	8.00	8.00	5.20

Figure 2.

Figure 2 (Cont.)

1. Review of Scientific Instruments, 19, 920(1948), R. R. Law.
2. Vapor Pressure Curves for the More Common Elements, Sheet A and Sheet B, prepared by Richard E. Honig. Published by Radio Corporation of America.
3. Thermodynamic Properties of the Elements, D. R. Stull and G. C. Sinke, American Chemical Society.
4. Theoretical Physics, Georg Joos, Hafner Publishing Company.
Distribution
Standard Distribution UC-34
M. Karnowsky, 1121 (2)
N. J. Pollard 1411
J. P. Shoup, 1413(5)
L. C. Beavis, 1413 (5)
G. L. Knieger, 1413
J. L. Colp, 5431
M. G. Randle, 3421-2
R. K. Smeltzer, 3421-3
W. F. Carstens, 3423
A. D. Pepmueller, 8233
R. C. Smelich, 3466-1 (5)

DISTRIBUTION - Physics and Mathematics

Copies		Copi
3	Aberdeen Proving Ground	1
1	Aerojet-General Corporation	2
1	Aerojet-General, San Ramon (IOO-880)	1
1	AFPR, Boeing, Seattle	2
3	AFPR, Lockheed, Marietta	1
2	Air Force Special Weapons Center	1
2	ANP Project Office, Convair, Fort Worth	15
1	Alco Products, Inc.	
1	Allis-Chalmers Manufacturing Company	1
1	Argonne Cancer Research Hospital	1
10	Argonne National Laboratory	
1	Armed Forces Special Weapons Project, Washington	1
1	Army Ballistic Missile Agency	
4	Army Chemical Center	
1	Army Signal Research and Development Laboratory	1
1	Atomic Bomb Casualty Commission	4
1	AEC Scientific Representative, Japan	1
3	Atomic Energy Commission, Washington	3
3	Atomics International	1
4	Babcock and Wilcox Company (NYOO-1940)	2
2	Battelle Memorial Institute	1
4	Bettis Plant	1
4	Brookhaven National Laboratory	1
1	Brush Beryllium Company	1
1	Bureau of Ships (Code 1500)	1
1	Bureau of Yards and Docks	1
1	Carnegie Institute of Technology	
1	Chicago Operations Office	1
1	Chicago Patent Group	1
1	Columbia University (Havens)	2
1	Columbia University (SOO-187)	5
2	Combustion Engineering, Inc.	1
1	Convair-General Dynamics Corporation, San Diego	1
5	Defence Research Member	1
2	Department of the Army, G-2	
3	duPont Company, Aiken	1
1	duPont Company, Wilmington	
1	Edgerton, Germeshausen and Grier, Inc., Las Vegas	1
1	Frankford Arsenal	
1	General Atomic Division	2
2	General Electric Company (ANPD)	1
6	General Electric Company, Richland	1
1	General Electric Company, St. Petersburg	2
1	General Nuclear Engineering Corporation	4
1	Gibbs and Cox, Inc.	1
2	Goodyear Atomic Corporation	1
1	Grand Junction Operations Office	1
2	Iowa State College	2
2	Jet Propulsion Laboratory	2
3	Knolls Atomic Power Laboratory	
2	Los Alamos Scientific Laboratory	1
1	Lovelace Foundation	1
1	Maritime Administration	2
1	Martin Company	6
2	Midwestern Universities Research Association	1
1	Mound Laboratory	1
1	National Aeronautics and Space Administration, Cleveland	1
2	National Bureau of Standards	325
1	National Bureau of Standards (Library)	75
1	National Lead Company of Ohio	
1	Naval Medical Research Institute	615
3	Naval Research Laboratory	

New Brunswick Area Office
New York Operations Office
New York University (Richtmyer)
Nuclear Development Corporation of America
Nuclear Metals, Inc.
Oak Ridge Institute of Nuclear Studies
Office of Naval Research
Office of Naval Research (Code 422)
Office of Ordnance Research
Office of Quartermaster General
Office of the Chief of Naval Operations
Ordnance Materials Research Office
Ordnance Tank-Automotive Command
Patent Branch, Washington
Pennsylvania State University (Blanchard)
Phillips Petroleum Company (NRTS)
Power Reactor Development Company
Pratt and Whitney Aircraft Division
Princeton University (White)
Public Health Service
Public Health Service, Savannah
Rensselaer Polytechnic Institute
Sandia Corporation, Albuquerque
Stevens Institute of Technology
Sylvania Electric Products, Inc.
Technical Research Group
Tennessee Valley Authority
Texas Nuclear Corporation
The Surgeon General
Union Carbide Nuclear Company (ORGDP)
Union Carbide Nuclear Company (ORNL)
Union Carbide Nuclear Company (Paducah Plant)
USAF Project RAND
U. S. Geological Survey, Denver
U. S. Geological Survey, Menlo Park
U. S. Geological Survey, Naval Gun Factory
U. S. Geological Survey, Washington
U. S. Naval Ordnance Laboratory
U. S. Naval Postgraduate School
U. S. Naval Radiological Defense Laboratory
U. S. Patent Office

University of California at Los Angeles
University of California, Berkeley
University of California, Livermore
University of California, San Francisco
University of Puerto Rico
University of Rochester
University of Rochester (Marshak)
University of Washington (Geballe)
University of Washington (Rohde)
Walter Reed Army Medical Center
Watertown Arsenal
Westinghouse Electric Corporation (Schafer)
Wright Air Development Center
Yale University (Breit)
Yale University (Schultz)
Yankee Atomic Electric Company
Office of Technical Services, Washington
Office of Technical Services, Washington

