
EXPLORING ANALOG AND DIGITAL DESIGN USING THE

OPEN-SOURCE ELECTRIC VLSI DESIGN SYSTEM

Gunasekhar Aluru B.E

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2016

APPROVED:

Saraju P. Mohanty, Major Professor
Elias Kougianos, Co-Major Professor
Philip H. Sweany, Committee Member
Barrett Bryant, Chair of the Department of

Computer Science and Engineering
Costas Tsatsoulis,

Dean of the College of Engineering
Costas Tsatsoulis, Dean of the Robert B. Toulouse

School of Graduate Studies

Aluru, Gunasekhar. Exploring Analog and Digital Design Using the Open-Source

Electric VLSI Design System. Master of Science (Computer Engineering), May 2016, 79

pp., 9 tables, 62 figures, references, 38 titles.

The design of VLSI electronic circuits can be achieved at many different abstraction

levels starting from system behavior to the most detailed, physical layout level. As the

number of transistors in VLSI circuits is increasing, the complexity of the design is also

increasing, and it is now beyond human ability to manage. Hence CAD (Computer Aided

design) or EDA (Electronic Design Automation) tools are involved in the design. EDA or

CAD tools automate the design, verification and testing of these VLSI circuits. In today’s

market, there are many EDA tools available. However, they are very expensive and require

high-performance platforms. One of the key challenges today is to select appropriate CAD or

EDA tools which are open-source for academic purposes. This thesis provides a detailed

examination of an open-source EDA tool called Electric VLSI Design system. An excellent

and efficient CAD tool useful for students and teachers to implement ideas by modifying the

source code, Electric fulfills these requirements. This thesis’ primary objective is to explain

the Electric software features and architecture and to provide various digital and analog

designs that are implemented by this software for educational purposes. Since the choice of an

EDA tool is based on the efficiency and functions that it can provide, this thesis explains all

the analysis and synthesis tools that electric provides and how efficient they are. Hence, this

thesis is of benefit for students and teachers that choose Electric as their open-source EDA

tool for educational purposes.

Copyright 2016

by

Gunasekhar Aluru

ii

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest gratitude to my major professor, Dr.

Saraju P. Mohanty, for his continuous help during my Thesis work and research, for his

encouragement, motivation, enthusiasm, and immense knowledge. Words do not suffice to

show how thankful I am. I would like to extend my deepest appreciation to my co-major

professor, Dr. Elias Kougianos, for his encouragement, support, advice and feedback that

helped me through the completion of this work. I would also like to thank my committee

member Philip H. Sweany, for encouragement and providing insightful comments. I would

also like to extend my appreciation to the Deaprtment of Computer Science and Engineering

(http://www.cse.unt.edu), which provided me with useful resources that made my work

easy.

My special thanks to my father Gurubrahmam, my mother Padmavathi and brother

Jayasekhar. Without their support, love and patience none of this would be possible. Last

but no least, I would like to thank my fellow Nanosystem Design Laboratory (NSDL,

http://nsdl.cse.unt.edu) members and friends who supported me throughout this process.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1 INTRODUCTION 1

1.1. Existing Open-Source EDA Tools 2

1.2. Organization of the Thesis 3

CHAPTER 2 THE ELECTRIC VLSI DESIGN SYSTEM:

FEATURES AND SOFTWARE ARCHITECTURE 4

2.1. Electric History 4

2.2. Electric Installation 5

2.2.1. Downloading Electric 5

2.2.2. Supported Environments 6

2.2.3. System Requirements 6

2.2.4. Plugins 7

2.2.5. Source Code 7

2.3. Electric Features 10

2.3.1. Electric GUI 10

2.3.2. Representation 11

2.3.3. Design Environments 13

2.3.4. Analysis and Synthesis Tools 14

2.3.5. External Interfaces 22

iv

2.3.6. Parasitic Extraction 23

2.4. Design Flow in Electric 24

2.4.1. Schematic level Design 24

2.4.2. Physical level Design 24

2.5. Scripting in Electric 27

2.6. Electric Advantages 32

CHAPTER 3 DIGITAL INTEGRATED CIRCUIT DESIGN USING ELECTRIC 34

3.1. ALU 34

3.1.1. Gate level Components 34

3.1.2. Implementation of AN 8-bit ALU 42

3.2. 2-Bit Multiplier 44

3.2.1. Logic Level Components 46

3.2.2. Implementation of a 2-bit Multiplier 47

3.3. Frequency Divider 49

3.3.1. Logic level Compoenents 51

3.3.2. Implementation of Frequency divider 53

3.4. 1-Bit SRAM 54

3.4.1. 6T-Cell 56

3.4.2. Implemtation of a 1-bit SRAM 56

CHAPTER 4 ANALOG INTEGRATED CIRCUIT DESIGN USING ELECTRIC 60

4.1. 3-Stage Ring Oscillator 60

4.1.1. Schematic Design 61

4.1.2. Physical Design 62

4.1.3. Simulation Results 63

4.2. Voltage Controlled Oscillator 64

4.2.1. Schematic Design 64

4.2.2. Physical Design 65

v

4.2.3. Simulation results 66

4.3. Sense Amplifier 67

4.3.1. Schematic Design 67

4.3.2. Physical Design 69

4.3.3. Simulation Results 69

4.4. Charge Pump 71

4.4.1. Schematic Design 71

4.4.2. Physical Design 71

4.4.3. Simulation Results 72

CHAPTER 5 CONCLUSION AND FUTURE RESEARCH 74

5.1. Summary and Conclusions 74

5.2. Future Research 75

BIBLIOGRAPHY 76

vi

LIST OF TABLES

Page

Table 1.1. Existing Open Source EDA tools 3

Table 2.1. List of Fundamental Packages in the Electric source code. 9

Table 2.2. Design Environments in Electric. 15

Table 2.3. List of fundamental design rules. 19

Table 2.4. Important Methods for Designing in mocmos technology. 32

Table 3.1. Functions selected by 2-bit F inputs 45

Table 3.2. Input and output values for 8-bit ALU 45

Table 4.1. Ring Oscillator Characteristics 63

Table 4.2. Characteristics of the 180-nm TSMC CMOS VCO 67

vii

LIST OF FIGURES

Page

Figure 1.1. VLSI Design Abstraction Levels 2

Figure 2.1. Block diagram of Electric Source Code 8

Figure 2.2. Electric Main GUI 9

Figure 2.3. Representation in the Electric tool. 12

Figure 2.4. PMOS transistor and its components in Electric tool. 13

Figure 2.5. PMOS transistor and its layers in polygon-based tool. 14

Figure 2.6. List of Analysis and synthesis tools. 16

Figure 2.7. list of fundamental design rules. 18

Figure 2.8. Electric Design Flow. 25

Figure 2.9. Schematic level components and design. 26

Figure 2.10. Physical level components and design. 27

Figure 2.11. Outputs for scripts running in Electric 31

Figure 3.1. 1-bit ALU schematic diagram. 35

Figure 3.2. Inverter schematic diagram. 36

Figure 3.3. Layout Diagram of an Inverter. 36

Figure 3.4. Simulation results for Inverter. 37

Figure 3.5. Schematic diagram of an OR gate. 38

Figure 3.6. Layout diagram of an OR gate. 38

Figure 3.7. Simulation results of an OR gate. 39

Figure 3.8. Schematic diagram of an AND gate. 39

Figure 3.9. Layout diagram of an AND gate. 40

Figure 3.10. Simulation results for AND gate. 40

Figure 3.11. Schematic diagram of a MUX. 41

Figure 3.12. Layout diagram of a MUX. 42

viii

Figure 3.13. Schematic Diagram of a Full Adder. 43

Figure 3.14. Layout Diagram of a Full adder. 43

Figure 3.15. Simulation results for a Full adder 44

Figure 3.16. Simulation results for 8-bit ALU. 45

Figure 3.17. Layout Diagram of a Full adder. 46

Figure 3.18. Schematic diagram of a half-adder. 47

Figure 3.19. Layout diagram of a half-adder. 47

Figure 3.20. 2-bit multiplication process. 48

Figure 3.21. Schematic diagram of a 2-bit multiplier. 49

Figure 3.22. Layout diagram of a 2-bit multiplier. 49

Figure 3.23. Input signals for a 2-bit multiplier. 50

Figure 3.24. Output signals for a 2-bit multiplier. 50

Figure 3.25. Schematic diagram of a JK Flip-Flop. 52

Figure 3.26. Layout Diagram of a JK Flip-Flop. 52

Figure 3.27. Schematic Diagram of NAND gate. 53

Figure 3.28. Simulation results for NAND gate. 53

Figure 3.29. Layout Diagram of a NAND gate. 54

Figure 3.30. Schematic diagram of a Frequency divider. 55

Figure 3.31. Layout diagram of a Frequency divider. 55

Figure 3.32. Simulation result for Frequency divider. 55

Figure 3.33. Schmetic circuit of an SRAM cell. 56

Figure 3.34. Layout diagram of an SRAM cell. 57

Figure 3.35. Schematic diagram of an 1-bit SRAM. 58

Figure 3.36. Layout diagram of an 1-bit SRAM. 59

Figure 3.37. 1-Bit SRAM Timing Waveform. 59

Figure 4.1. Schematic diagram of 3-Stage Ring Oscillator 61

Figure 4.2. Layout Diagram of 3-Stage Ring Oscillator. 62

Figure 4.3. Simulation Result of a Ring Oscillator. 63

ix

Figure 4.4. Schematic diagram of a 5-stage VCO. 65

Figure 4.5. Layout Diagram of the a 5-Stage VCO. 66

Figure 4.6. Simulation results for 5 stage VCO. 66

Figure 4.7. Schematic diagram of sense amplifier. 68

Figure 4.8. Physical design of sense amplifier. 69

Figure 4.9. Sensing Waveform for sense amplifier. 70

Figure 4.10. Control Signals for sense amplifier. 70

Figure 4.11. Schematic diagram of a Charge Pump. 72

Figure 4.12. Simulation results for Charge Pump. 73

Figure 4.13. Physical design of charge pump. 73

x

CHAPTER 1

INTRODUCTION

Electronic systems play a crucial role in human life. Electronic systems ranging from

Integrated Circuits (ICs) to PCB (Printed Circuit Boards) are developed and produced by

EDA (Electronic Design Automation) tools. EDA is a collection of algorithms, methodolo-

gies, and tools which automate the design, verification and testing of electronic systems.

There are many commercial EDA tools, which are the industry standard and very expensive

to license such as Cadence, Mentor Graphics, Synopsys, etc. Free/Open-Source Software

(FOSS) EDA tools are the only effective way for students and teachers to learn and im-

plement their ideas by modifying the source code. The Electric VLSI Design System is a

sophisticated open-source CAD system which can handle a variety of technologies such as

CMOS and Bipolar from schematics to the layout. It has many generic analysis and synthesis

tools which can automate the design and reduce the time and work. It also supports most

popular interchange and manufacturing formats such as EDIF, VHDL, GDS, LEF/DEF, etc.

[6, 35, 19].

Figure 1.1 shows the various VLSI design abstraction levels [19, 20]. Hardware de-

signers use these VLSI design abstraction levels to ensure that all the sets of specifications

and primary goals such as power consumption, speed, etc. are met. With the given set of

specifications, the main objective at the system level is to define the partitions of the system

and their interfaces. The next step is to represent the subsystem’s behavior using high-level

programming languages. Through behavioral verification, we could know whether the model

has met the requirements or not. After the specifications are assured, the next step in the

design process is to define the design at Register Transfer Level (RTL) [23]. At RTL, the

timing and data transfers between simple functional units such as registers, full-adders, de-

coders, counters, etc. are described. At gate level, the design is a structure of gates, latches,

and flip-flops. In this level, the accurate area and delay are estimated [21]. In transistor or

circuit level, the design is implemented with transistors. Physical design plays a most vital

1

System Level

Gate Level

Register-Transfer Level

Transistor Level

Physical Level

Figure 1.1. VLSI Design Abstraction Levels

role in the design steps because it deals with the area, power and performance of the final

electronic system or circuit. It also completes the floorplanning, placement, and routing

for the design [37]. The designer can use the Electric software from gate level to physical

level design of an IC design flow. Since it does not have an inbuilt Verilog simulator, it

can’t simulate Verilog code, but it can build Verilog decks for simulation in different Verilog

simulators.

1.1. Existing Open-Source EDA Tools

Based on the VLSI design flow, a good EDA tool should support features such as

logical design, circuit schematics, layout generation, and also design rule check. In today’s

market, most VLSI CAD systems which support all these features are not FOSS, but there

are some open source tools which support some features individually. These are listed in

table 1.1 [19]. The main drawback of other open-source EDA tools is that they are not

2

as comprehensive as Electric. Even though some tools support some features the totality

of features is not integrated into one CAD system which is FOSS. Only the Electric CAD

system supports all desired features and is comprehensive [34].

Tools Version Licence Supported Platform Funtions

Electric Version 9.06 GPL Mac OS, Windows, Linux HDL to Layout, Mixed-Signal

Toped Toped 0.9.8 GPL Windows, Linux Circuit Layout, Mixed-Signal

gEDA version 1.8.2 GPL Linux, Mac OS X PCB Design, Schematics

Magic Magic 8.1 BSD Linux Circuit Layout, Mixed-Signal

eSim Version 1.0.0 GPL Windows, Linux PCB Design, Schematics

Xcircuit Version 3.9 GPL Windows, Unix Schematic Capture

Qucs Release 0.0.18 GPL Mac OS, Windows, Linux PCB Design, Schematics

Table 1.1. Existing Open Source EDA tools

1.2. Organization of the Thesis

This thesis is organized as follows.

Chapter 2 explains the history, architecture, features and also installation of the Electric

VLSI Design system. Design environments, analysis and synthesis tools and also external

interfaces that are provided by Electric are described here.

Chapter 3 presents four digital designs that are implemented with Electric. The accuracy of

the simulations and layout designs of digital circuits demonstrates how electric can handle

digital design.

Chapter 4 presents four analog designs that are implemented with Electric. This chapter

also demonstrates how Electric can handle analog layout design and simulation.

Chapter 5 discusses directions for future work and conclusions.

3

CHAPTER 2

THE ELECTRIC VLSI DESIGN SYSTEM:

FEATURES AND SOFTWARE ARCHITECTURE

2.1. Electric History

Initially, the Electric VLSI design system was written in the C language in 1982 by

Steven Rubin [35] at the Fairchild A.I. Laboratory in Palo Alto, California. After 2003, it

was ported to Java.

• In 1983, the first paper about Electric was published. It was available to universities

in source-code form.

• In the mid 1980s, Electric was commercially released by Applicon with the name

Bravo3VLSI.

• In 1988, a company called Electric Editor Incorporated was founded and sold Elec-

tric commercially.

• In 1998, “Electric Editor Incorporated” stepped forward and gave the Electric source

code to the Free Software Foundation (FSF). The FSF is the primary organizational

sponsor for the GNU Operating System, and its aim is to promote computer user

freedom and give everyone equal rights to their programs.

• In 2000, Steven Rubin created Static Free Software, which developed and maintained

Electric.

• In 2004, Static Free Software become part of RuLabinsky Enterprises, Inc. and

continued developing Electric as free software.

• In June 2005, the Java version of Electric has released after abandoning the C

version in September 2003. It took two years to complete the translation. Even

now, the C version is still available on the site.

• In 2010, Oracle acquired Sun Microsystems and Electric. It continued the Electric

development and still makes it available as free software.

4

Electric was built because there were no design systems that had a combination of graph-

ics, connectivity, and accurate geometry for IC design. The Electric design system has

a vast database which is built on network structure, primarily to implement connectivity.

The network has nodes and arcs, which are components in the circuit and connecting wires

respectively. These network nodes and arcs have their own geometric data, for a correct rep-

resentation of the circuit. Electric has an expansive database and can store a large number

of structures, design rules, etc.

2.2. Electric Installation

2.2.1. Downloading Electric

The Electric software is simply a JAR file. JAR or Java Archive is a file format which

aggregates many Java class files and associated images, text, etc. into one single archive file.

There are three ways to run the Electric software [13].

2.2.1.1. Run from the web

Running from the web is the easiest way to try. The user has to download a Java

Web Start file from the link available [33]. This file has links to the Electric, and whenever

there is a new release of the software, it automatically downloads it to the system. It is slow

at first because it downloads the additional files to the system.

2.2.1.2. Download the JAR file

Since Electric software is a jar file, it doesn’t require installation. It doesn’t require

tedious commands or other third party resources files to run it. The latest version of Electric

available is 9.06, and it is called “Electric-9.06.jar”. There are two versions of JAR files

available online at the www.staticfreesoft.com site. One is with source code, and another

one is without source code. The one with source code is named as “Source” and without the

source code is called the “Binary” version.

5

2.2.1.3. Building Electric from source code

The first thing one has to do for running Electric software from source code is to

create an account on java.net. The source code is available at java.net/projects/Electric.

Even though the source version of Electric has the source code, it is not recommended be-

cause it doesn’t handle dependencies. The easiest way of downloading the source from the

respository is through SVN checkout, with the software TortoiseSVN. TortoiseSVN is a free

open-source windowns client.After downloading the Electric source code, one has to obtain a

java programming IDE (Integrated Development Environment) such as NetBeans or Eclipse.

2.2.2. Supported Environments

Macintosh (system 7 or higher), UNIX (all Variants), and Windows (XP, 2000, 8, 10).

This flexibility alone makes Electric to be chosen among other free open-source IC layout

software.

2.2.3. System Requirements

Electric can be run even on low-end systems but it requires Apache Harmony, Open-

JDK or Oracle Java Version 1.6 or higher to be installed on the system. Since Electric

is written in Java and Oracle supports it, it is recommended to install Java 1.6 or higher

versions on the system.

2.2.3.1. Memory Control

The only known problem with Java is that the Java Virtual Machine (JVM) limits

the programs from growing too large. Since it has a memory limit, very large circuits in

Electric can’t be edited. The Electric software has a solution for this issue. Electric can

request more memory from the Java whenever it runs out of memory. For windows, one can

set the maximum memory to 1.5 Gigabytes. For Linux and Macintosh, it can exceed 3.6

Gigabytes.

6

2.2.4. Plugins

Electric can handle external sources or Java plugins to extend its functionalities.

GNU does not distribute these plugins because of copyright restrictions. These plugins must

be downloaded separately. If Electric is built from the source code, all plugins are available

and this is the easiest way to obtain the plugins.

• Jython: Jython is a Java package which implements Python language scripts on

the Java Platform. Python source code is compiled down to Java bytecodes by the

compiler in Jython. These Java bytecodes can run directly on the JVM which needs

a set of libraries to compile and Jython supports them. Jython can be download

from the www.Jython.org.

• Bean Shell: Bean shell is also a Java package which evaluates Java expressions and

scripts. Bean shell can be embedded into the Java platform and can run Java syntax

and scripts with a set of libraries. It can be downloaded from www.beanshell.org.

• IRSIM: IRSIM is a switch level simulator for digital circuits from Standford Univer-

sity. It was originally written in the C language, and then was translated to Java

so it could plug into Electric. It is available from www.staticfreesoft.com.

• Java3D: Java 3D is not a plugin; rather it is a Java package. After installing

Java3D, Electric can integrate it functionalities into the software. It facilitates one

to view the physical design in three dimensions. It can help the designer to see the

connections between the nodes and contacts. It also helps students to learn from

the 3D view of the layout diagram. It is available from the site www.j3d.org.

• Java Media Framework: Java Media Framework (JMF) is an enhancement to Java.

It adds extra facilities to Java3D and animates the 3D capture. It is available from

Oracle.

2.2.5. Source Code

The source code can be downloaded from the repository. A typical Java source code

contains packages, interfaces, fields, classes, methods, etc. A package is a namespace that

7

Package

electric

Class

● Launcher
● Main
● StartupPrefs

Package

● database
● lib
● technology
● tool
● util
● plugins
● api

Figure 2.1. Block diagram of Electric Source Code

organizes a set of related classes and interfaces. Typically a package is similar to different

folders on the computer. After downloading the Electric source code, the source code starts

from the package name com, then sun, and then the actual Electric package which contains

all the packages required to build Electric. The Electric package is shown in the block

diagram shown in figure 2.1. It contains three classes and seven other packages. The class

launcher initializes the Electric software, the Main class initializes Electric and then starts

the system. StartupPrefs is a module to access preferences which are used in starting the

Electric software. Table 2.1 shows the list of packages that are essential for programming

and can also useful for modifying the code to implement new concepts in Electric.

8

Package Description

com.sun.Electric It has all the packages to build Electric.

com.sun.Electric.database This package handles the database for Electric.

com.sun.Electric.lib It has all the built-in library files.

com.sun.Electric.technology It has all technology information for Electric.

com.sun.Electric.tool Package for all analysis and synthesis tools.

com.sun.Electric.util Package for all utilities.

com.sun.Electric.Plugins It has all plugin information for Electric.

com.sun.Electric.api Package for all Application programming Interfaces.

com.sun.Electric.database.geometry Package for geometric support in Electric.

com.sun.Electric.database.hierarchy Package for hierarchy (cell instances inside of cells).

com.sun.Electric.database.prototype Package for the prototype classes in Electric.

com.sun.Electric.database.topology Package for connected Nodes and Arcs.

Table 2.1. List of Fundamental Packages in the Electric source code.

Menubar

Statusbar

Electric Message Window

Design Area

Project Explorer

Editing Toolbar

Figure 2.2. Electric Main GUI

9

2.3. Electric Features

2.3.1. Electric GUI

The Electric GUI (figure 2.2) consists of Menubar, Editing Toolbar, Status bar,

Project Explorer, and the Electric Messages window. Menubar of the Electric consists of all

the menus such as File, Edit, Cell, Export, View, Window, Tools, Help, Debug. The File

menu provides important options for creating a new library, open existing library, importing

and exporting modern interchange and manufacturing format, and saving the library. The

Edit menu contains all the editing commands needed for editing the current library or cell.

It also provides additional options such as technology editing and technology specific op-

tions, where technology editing includes technology creation wizard where one can edit the

design rules for any particular technology and technology specific option includes describing

the current technology for the designers. The Cell menu has options to create, edit, copy

cells and it also allows designers to move up and down the hierarchy of a cell. The Export

menu contains options to export the nodes and pins for the cell to a name, which is decided

by designers. The View menu provides designers for editing layout view, or make an icon

view of a circuit. The Window menu provides the designer with zooming in or out options

and also when the 3D plugin is installed in Electric it gives the designer the ability to view

the circuit in three dimensions. The Tools menu provides many analysis and synthesis tools

that are integrated into Electric. The Help menu helps the designer in providing the sample

library and also general information about Electric.

The Editing Toolbar allows the designer to save, open, zoom-in, zoom-out, increase

and decrease the scale functions. Project Explorer window has three other tabs: Com-

ponents, Explorer, and Layer. Components tab has all the components for each design

environment that are required to design a circuit. For example, it has schematic components

for designing a schematic level circuit, and it has layout components for designing the layout

of a circuit. The Explorer tab shows the project libraries, cells in the libraries and also

cells in lower hierarchy. The Layers tab provides options to the designer to make the layers

visible, invisible, or select them all for every design environment in Electric. The Electric

10

message window shows the result of current and previous actions. For example, if a DRC

check has been done on a circuit, the result whether it passed or failed is shown in this

window. The Status bar has three parts: the first part displays the name of the component

selected, the second part displays the size of the design, the third part shows the current

design environment of the cell and also shows the scale.

2.3.2. Representation

Any graphical CAD system can offer two basic user-interface styles, connectivity,

and geometry. The connectivity approach is used by all schematic capture based systems:

components are placed, and wires are used to connect them. As the system already knows

that the wires connect to the components, the circuit is properly connected, even when they

are moved. Integrated circuit layout systems use the geometry approach. Masks for chip

fabrication are formed by different layers, which are laid in areas of “paint”. The connectivity

is absolutely not present, and any of the pieces of paint can vary the circuit’s topology [28].

For any connectivity information, one has to go through the error-prone “node-extraction”

phase. Electric is different because it uses the connectivity approach for even integrated

circuit layout. For example, for a PMOS transistor, a designer can place PMOS transistors,

contacts, etc. and draw wires such as metal-1, polysilicon-1, etc. to connect them. This

connectivity-based approach shows the geometry and also the connectivity between them.

Electric uses the terms nodes and arcs for the components and wires respectively. For a

detailed explanation, a node is a component in the design environment of Electric and an

arc is a connecting wire and it’s more than that in Electric. They can be made into many

forms with respect to the design environment. Even when the circuit is changed, the arc

remains connected. It is the most important property of arc in Electric. Figure 2.3 shows

the representation of nodes and arcs. A transistor node, poly arc, and a contact node are

shown. Nodes always have ports on them, which are the connection sites for an arc. An arc

always connects to two nodes [2].

Integrated circuit layout tools available in the market are polygon-based or paint-

based tools, whereas Electric is a connectivity based layout tool. Figure 2.4 shows the shows

11

Transistor Node Poly Arc Contact Node

Transistor
Node

Contact
 Node

 Poly
Arc

Port Port

Actual Layout

Figure 2.3. Representation in the Electric tool.

the nodes and arcs required to build a PMOS transistor in Electric. Figure 2.5 shows the

layers needed to form a PMOS transistor and also the actual layout of a PMOS transistor in

polygon based tools. In polygon–based integrated circuit layout tools, six different layers are

required to form a PMOS transistor. In Electric, a PMOS transistor node itself has N-well,

Active, p-select, and poly layers as per design rules. These layers expand when one changes

the width and length of a node. In a similar way, a P-Active contact has N-well, P-select,

Active, metal-1, and contact layers in it. Even these expand when the designer changes the

length and width. P-active also consists of N-well, P-select, Active layers in it. Whenever

there is a need to alter the size of a transistor, a designer just needs to change the length

and width of these components. Hence, there is no need to redraw the layers, and also, there

will be fewer geometrical errors.

12

PMOS transistor Node

P-Active Contact

P-Active Arc

(a) Nodes and Arcs of PMOS

transistor.

(b) PMOS transistor in Electric tool.

Figure 2.4. PMOS transistor and its components in Electric tool.

2.3.3. Design Environments

Electric provides many different design environments. These environments exist as a

technology in Electric. Every design environment consists of a set of primitive nodes, arcs

and also has some information about design rules. Most of these environments are for the

layout of integrated circuits, and also, non-IC design environments are present in Electric.

This thesis mainly concentrates on CMOS technology. In Electric, technologies are in XML

13

Contact

Oxide Diffusion

Poly

Metal-1

Pimp (P-plus)

N-well

(a) PMOS transistor layers. (b) PMOS transistor in polygon based tool.

Figure 2.5. PMOS transistor and its layers in polygon-based tool.

format, which contains physical and Electrical details of the foundry process, and they are

attached to the layers which include the design rules, etc. These is Electric-independent in-

formation. It also contains Electric specific information such as primitive nodes and arcs for

designing in Electric. These XML files are automatically generated by Electric by using the

Technology editor and Technology- creation Wizard in Edit menu. Electric allows

the designer to edit the technology by converting the current technology into libraries by

using the command Convert technology to library for editing in Edit/ technology

editing menu. The design environments that are provided by Electric are shown in table

2.2 [28].

2.3.4. Analysis and Synthesis Tools

Since VLSI design has become more complex and very hard to complete the whole

design by hand, there is a need for analysis and synthesis tools. Synthesis tools will cre-

ate or generate circuitry automatically, and analysis tools will verify the circuitry that has

14

Design Envinorment Description

Artwork This design environment provides the components that are used for

drawing graphics and also creating icons for the cell.

BiCMOS It is a semiconductor technology which integrates two separate tech-

nologies such as bipolar junction transistor and the CMOS transis-

tor in an IC.

Bipolar It is a bipolar technology (self-aligned and single poly).

CMOS CMOS is technology, based on an old paper by Griswold Thomas

and it was never got into the actual process which exists as an

illustration.

FPGA FPGA (Field programmable gate array) is an IC technology in Elec-

tric however it is a basic technology which doesn’t have capabilities

of FPGA. It has to be customized by the user with architecture file.

Gem Gem tool is a temporal logic technology in Electric. It is based on

the paper by Lansky A.L and Owicki S.S

MOCMOS It is a CMOS technology that is fabricated by MOSIS project. It

has MOSIS design rules which are similar to lambda rules.

RCMOS RCMOS is the round CMOS technology by Caltech which is an

design environment in Electric.

NMOS It is a technology which uses the only nmos for logic gates and other

digital circuits.

PCB In PCB, Electrical components are connected by conductive tracks,

pads etc which are mechanically supported. Electric’s PCB tech-

nology is very basic and have 8 layers.

Schematic schematic is a design environment where digital and analog

schematic level designs are designed.

Table 2.2. Design Environments in Electric.

15

been designed by hand. Electric comes with many tools which make designing easy for the

user. Analysis tools in Electric are DRC, simulators, and network comparison (LVS) tools.

Synthesis tools in Electric are circuit generators, Routers, etc. To obtain a list of tools in

Electric, the command List Tools in the Tools menu shows all the tools, including which

are active. The list of tools from the menu is shown in figure 2.6.

The JOBS section in cell explorer shows which tools are currently running, and the ER-

RORS section in cell explorer, reports the errors that are generated for the current design.

By using Show Next Error and Show Previous Error commands in menu Edit/ Se-

lection , one can browse the errors that are reported in ERRORS section.

Analysis Tools Synthesis Tools

● Design Rule Checker
● Electric Rule Checker
● Network Comparison
● Multiple Simulators

● Routers
● Compactors
● Circuit Generators
● Silicon Compilers

Tools

Figure 2.6. List of Analysis and synthesis tools.

16

2.3.4.1. Design Rule Checking

Design rules are necessary for designing any physical level design. These design rules

mainly come from the limitations in manufacturing processes [36, 18]. Attempts to reduce

defects during mask making or constraints in the precision alignment of photolithography

equipment can cause these limitations. The design rule checker ensures that the design is

as per the design rules that are given by the technology manufacturer [32, 19]. In Electric,

there are three types of design rule checkers: Incremental, Hierarchical and Schematic.

• Hierarchical DRC: The Hierarchical design rule checker checks the current cell

design and also the hierarchical design of it. The design rules are already present

in the Electric software for every technology; there is no need to import the Design

rules into Electric. Check Hierarchically command in Tools/DRC menu checks

the hierarchical design of the current cell. Physical level design rules are shown in

figure 2.7.

• Incremental DRC: The Incremental design rule checker runs continuously in the

background as along as the design is being edited. This checker works only on the

physical design level environments such as the mocmos, bicmos, mocmosub, etc., It

examines the layout and issues error messages as it goes. This feature is one of the

best advantages of Electric. The user can make sure the design is as per the design

rules right there, without waiting to finish the design and then run Hierarchical

DRC.

• Schematic DRC: The schematic design rule checker checks the design in the

schematic level. It looks for the nodes whose names are the same as network names

in the cell, arcs that end on another arc without connection between them, etc. The

same Check Hierarchically command in Tools/DRC menu checks the design

when the current cell is in the schematic design environment.

Electric can also read MentorGraphics R© Calibre R© and Cadence R© Assura R© DRC

output files. With the command Import Assura DRC Errors for Current Cell and

Import Calibre DRC Errors for Current Cell from Tools/DRC menu. Figure 2.7

17

shows the fundamental design rules used to design all the physical designs in mocmos tech-

nology

N-Well N-Well N-Well P-Well

A1=12

A2=6 A3=18 A4=0

Poly-1 Poly-1 Active

B1=2

B2=2 B3=1

B4=2

Similar for both transistors

Metal-1Metal-1 Metal-1Metal-1

Metal-1-
Polysilicon-1-
Con

Metal-1-
Metal-2-Con

C1=3

C2=3

D1=3 D2=3

D3=3

Active

Contact

Poly-1

D4=2

Via

D5=2

Metal-6 Metal-6

Via-5

E1=5

E2=5

E3=3

A. N-well Rules

B. Poly Rules

C. Metal-1,2,3,4,5 Rules

D. Contact and Via Rules E. Metal-6 Rules

Figure 2.7. list of fundamental design rules.

18

A N-Well Rules

A1 Minimum N-well width 12λ

A2 Minimum spacing between wells at same potential 6λ

A3 Minimum spacing between wells at different potential 18λ

A4 Minimum spacing between wells of different type 0

B Poly Rules

B1 Polysilicon minimum width 2λ

B2 Minimum spacing over field 3λ

B3 Minimum spacing over active 1λ

B4 Minimum extension over active 2λ

C Metal-1,2,3,4,5 Rules

C1 Minimum width of a Metal 3λ

C2 Minimum spacing between metals 3λ

D Contact and Via-1,2,3,4 Rules

D1 Minimum distance between contact and metal 3λ

D2 Minimum distance between contacts 3λ

D3 Minimum spacing between contact to poly 2λ

D4 Exact size of a Via 2X2

E Metal-6 and Via-6 Rules

E1 Minimum width 5λ

E2 Minimum spacing 5λ

E3 Exact size of a via-6 3X3

Table 2.3. List of fundamental design rules.

19

2.3.4.2. Electrical Rule Checking

Electric comes with two types of Electric rule checker, Well and Substrate checking

and Antenna Rule Checking. The Well Checker checks whether there are well contacts in

every area of the well. It also checks whether the power and ground connections are in the

appropriate places and checks the spacing rules between well areas. Checking spacing rules

can also be done by DRC (Design Rule Checker) after checking the option in the preferences

section. The command Check Wells in Tools/ERC menu will check the wells in the design.

Antenna Rule Checker checks the antenna rules for the design. Antenna rules are necessary

during fabrication of IC’s to make sure that the transistors are not destroyed in that process.

In the fabrication process, to form poly and metal layers the wafer is bombarded with ions.

These ions should travel to the substrate and active layers through the wafer. If the poly or

metal has a large area and if it only connects to gates of the transistor and is not connected

to the source and drain, then ions could travel through the transistors. If the ratio between

area of poly or metal to the area of the transistor is too large, then the transistors will be

destroyed [35]. The command Antenna Check in Tools/ERC will check the antenna rules

for the design [9].

2.3.4.3. Simulation

Electric comes with two built-in simulators, IRSIM and ALS. IRSIM is not available

through the Electric jar file due to license restrictions. It is an open-source gate-level simu-

lator created at Stanford university. The easiest way to get the IRSIM simulator is to build

Electric software from its source code. Electric can create input decks for Verilog simulation

and can also create input decks for spice simulations. The command Write Verilog Deck

in Tools/Simulation (Verilog) menu can produce Verilog decks and the command Write

Spice Deck in Tools/Simulation (Spice) menu can produce spice decks. Electric doesn’t

have Verilog simulator to simulate the input decks and it only has gate level simulator to

simulate the digital designs. One can setup LTspice to simulate the design from Electric.

Ina similar way HSPICE can also be set up. HSPICE is an industry standard SPICE sim-

ulator for over 25 years. It allows accurate circuit simulations which are trusted by many

20

IC design manufacturers. LTSPICE is a free SPICE simulation software, designed by Linear

Technology. It has schematic capture to design the schematic circuits and waveform viewer

to analyze the simulation results.

2.3.4.4. Routing

Routing in EDA tools adds wires to components in the design. In Electric there are

4 different types of routers maze-router, river-router, sea-of-gates router, clock-router and

based on A* and the Lee/Moore algorithms there are 6 experimental routers. From Tool-

s/Routing one can choose different types of routing methods [4].

2.3.4.5. Network Consistency Checking

LVS (Layout vs. Schematic) is the tool which checks the layout design to match with

the schematic design. In Electric, Network consistency checking (NCC) is used to check two

network designs even two layout designs, two schematics designs, layout vs. schematic de-

sign, etc. With the command Schematics and layout views of cell in current window

in the Tools/NCC menu one can check the network of both cells. It is one of the important

features in Electric, the designer can check anytime and for any cell. [38].

2.3.4.6. Placement

Right placement is necessary for the chip to perform efficiently as it will affect the

chip performance and also causes manufacturability problems. In Electric there are differ-

ent types of algorithms and different types of placement. With the command Floorplan

and Place Current Cell in Tools/Placement menu one can place the current cell using

existing algorithms. Force Directed is one of the algorithm that gives good results within

seconds. Genetic algorithm is one of the algorithms in Electric for placing that needs long

runtimes. These are few types of placement algorithms that are present in Electric.

21

2.3.4.7. Compaction

The Compaction tool reduces the space between the components to minimal design

rule spacing in the layout design. This tool helps the user to make room for many other

components in the given area. Electric has not stated the algorithm it uses. It does all

single-axis compaction, horizontal and vertical directions until there is no space left in the

circuit. Do compaction command in Tools/Compaction menu will perform the function.

[9].

2.3.4.8. Silicon Compiler

Silicon Compiler is a tool which can generate a layout from the user’s input VHDL

or Verilog code. It was founded by Johannsen, Mead and Cheng in 1981. Though Electric

has the tool it has not worked well. It converts VHDL code to the netlist for the QUISC

tool. QUISC is a tool that can do place and route of a cell from schematic or structural

VHDL description. The command to use the silicon compiler is Convert Current Cell to

Layout from the Tools/silicon compiler menu.

2.3.5. External Interfaces

For compatibility with other EDA systems, Electric supports many popular inter-

change and manufacturing formats. Importing and exporting the formats can be done using

the commands Import and Export in File menu. Many of these formats don’t come with

circuit connection information. The node extractor in Electric can be used to convert these

pure-layer nodes to Electric components.

• CIF: CIF is abbreviated as Caltech Intermediate Format and was designed by

Caltech. It was originally designed to describe Integrated Circuits. A CIF file

consists of textual commands which set layers and draw on them. CIF is old but

still in use. The last publication on CIF file format was published on Feb 11, 1980,

by the California Institute of Technology.

22

• GDS II: GDS II is an industry standard format for exchange of IC layout artwork.

Previously, it was not an open industry standard. It was designed and owned by

Calma. Later, it was moved to GE [28]. GDS II file format is the final output for

any IC design cycle.

• DXF: AutoCAD DXF is abbreviated as Drawing Interchange Format, which is

controlled and defined by AutoDesk. It is developed to represent the data used in

CAD systems. Almost every type of data can be represented in DXF file format.

• Verilog and VHDL: Verilog and VHDL are hardware description languages. Elec-

tric can import and export to these languages. Electric has two issues with Verilog;

Electric has a weak and old parser which can’t handle standard Verilog code. The

second problem with Electric is that it can’t handle behavioral Verilog. Therefore,

it cannot understand some of the Verilog code.

• Eagle, Pads, ECAD: Eagle is an interface to CadSoft’s EAGLE schematic design

system. Pads is an interface to Mentor’s PADS schematic design system. ECAD is

an interface to ECAD schematic design system.

• Gerber, SVG, Postscript: Gerber is a PCB artwork file format. It contains all

the information related to PCB layers required for fabrication. SVG is abbreviated

as Scalable Vector Graphics; it is based on the XML language. It is used to capture

the current cell window. Postscript is an Adobe printing language which is used to

capture the current cell window.

2.3.6. Parasitic Extraction

Parasitic capacitance and resistance of the interconnect influences and affects the

performance of VLSI circuits. With the decrease in transistor feature size and increase in

circuit performance (higher speeds) interconnect parasitic effects are becoming more impor-

tant. Hence, there is a need to extract the parasitics from the active devices, and the wire

interconnects of an IC for synthesizing the design. Parasitics are extracted from the sim-

ulations of the physical design of an IC using analog/SPICE simulators. Electric provides

the designers to extract the parasitics from the layout, using preferences of Electric, under

23

Tools/parasitic section one has to check the boxes of Extract R and Extract C and

then under Tools/Spice/CDL section one has to choose Conservative RC option for

Parasitics in the same preferences of Electric.

2.4. Design Flow in Electric

Digital and Analog designs in Electric follow the design flow shown in figure 2.8.

2.4.1. Schematic level Design

In Electric, all transistor-level designs are created in the schematics design environ-

ment. It has all the digital, analog and mixed-signal components that are needed to design

the transistor-level designs. Figure 9(b) shows the components required to build the inverter

in transistor-level. It needs a a p-channel transistor, an n-channel transistor, voltage source,

ground, wire, and input and output ports to send input and to get output voltages. The

PMOS is connected to Vdd because it passes strong 1 and NMOS passes strong 0, hence

PMOS is best for pull-up network, and NMOS is best for pull-down network. After de-

signing the transistor level diagram of an inverter the next step is to check for any circuit

connection errors with DRC tool and then simulate the circuit for schematic verification.

LTspice or other SPICE simulators can be used to check the design.

2.4.2. Physical level Design

Once the schematic design is ready, the next step is to translate the schematic design

to device and wire placements on silicon [6]. This level is called physical level. In Electric

the layout of a schematic diagram is drawn in the “mocmos” design environment. There

are many technologies present in Electric as design environments. For a standard CMOS

technology, the user can choose mocmos, mocmossub, etc. depending on the technology

size. For an 180 nm design mocmos is a perfect choice. In Electric for laying out the inverter

at the physical level, we need a P-channel transistor, N-channel transistor, P-well, N-well,

N-active and p-active components. We also need a P-active arc, N-active arc, metal-1 arc

24

Digital Circuit Specifications or
Analog Circuit Specifications

Schematic Design
● Done in Schematic Design Environment
● Denoted by “Cell_name{Sch}”

Schematic Verification
● Run DRC to check schematic Errors

with inbuilt Schematic DRC tool

Schematic Simulation
● With Write a SPICE deck from Simulation

Tool.

Layout Design
● Usually for Standard CMOS process it is

done in MOCMOS design environment.
● Denoted by “Cell_name{lay}”

Physical Verification
● Run DRC to check Layout design is as per

rules
● Run LVS to check Layout vs Schematic.
● Run ERC to check wells and Antenna rules

Layout Simulation
● With Write a SPICE deck from Simulation

Tool.

Final Layout

Figure 2.8. Electric Design Flow.

and poly arc. All these arcs are formed when components are connected. Figure 2.10 shows

the components and actual layout design of an inverter using the components. After layout

25

And

Or

Buffer

Flip-Flips

NMOS-Transistor

PMOS-Transistor

Diode

Inductor

Ground

Miscellaneous

Wire Contact

Hierarchical Cells

Bus Pin

Bus Arc

Box

Xor

Mux

Switch

4-Pin NMOS

4-Pin PMOS

Capacitor

Resistor

Vdd

Connection

Port

Spice Components

Pin

Arc

(a) Schematic design components.

PMOS-Transistor

VDD

NMOS-Transistor

Ground

Vout

PortVin

Port

(b) Schematic design of an Inverter.

Figure 2.9. Schematic level components and design.

design of an inverter, next step is to check for any layout design errors using DRC. Deign

errors in layout design are harder to rectify than errors in schematic design. LVS (Layout

vs. Schematic) is used in this design to check that the layout design is actual representing

the schematic circuit, and then one can check for well and antenna rules if necessary. Layout

simulation can also be done similar to schematic design simulation.

26

Miscellaneous

Hierarchical Cells

Metal-3-Contact

Meta-2-Contact

Polysilicon-2-Contact

Polysilicon-1-Contact

N-Active

P-Active

N-Well

NMOS-Transistor Node

PMOS-Transistor Node

Pure-Layer

Metal-3 Arc, Pin

Metal-2 Arc, Pin

Metal-1 Arc, Pin

Polysilicon2 Arc, Pin

Polysilicon1 Arc, Pin

N-Active Arc, Pin

P-Active Arc, Pin

P-Well

Analog Layers

(a) Physical design layers and components.

N-Well

Polysilicon-1,
PMOS-Transistor
Node

P-Active

vdd

gnd

Vin Vout

P-Active

PMOS-Transistor

NMOS-Transistor

Metal-1-Pin

Polysilicon-contact

N-Active

Metal-1-Arc

P-Well

(b) Layout design of an inverter.

Figure 2.10. Physical level components and design.

2.5. Scripting in Electric

Electric allows Python and Java programming languages as scripting languages to

run on the software. Scripting helps to automate the design flow. Scripting is used by many

leading EDA companies such as Mentor Graphics, Synopsys, Cadence, etc. to reduce the

time and work needed to establish design flows. It also reduces human errors that may

be caused when designing very large integrated circuits. Python is a widely used high-

level programming language. It supports objects oriented concepts, multiple programming

paradigms, and is also used for scientific computing. Electric uses Jython to run python

scripts and Beam shell plugin to run Java on it. By using scripting languages in Electric,

one can design a circuit in schematics and lay it out in the same technology. Some of the

Python scripts are listed below. The first python script listed creates a layout cell in mocmos

technology and names it as sample1. The classes and methods which are used to create the

27

cell are known from the Javadoc file of Electric. The second python script creates a two

input inverter layout diagram with cell name sample2.

1 from com . sun . e l e c t r i c . database . h i e ra r chy import Ce l l

2 from com . sun . e l e c t r i c . database . h i e ra r chy import Library

3 from com . sun . e l e c t r i c . database . topo logy import NodeInst

4 from com . sun . e l e c t r i c . database . v a r i ab l e import EvalJython

5 from com . sun . e l e c t r i c . techno logy import Technology

6 from java . awt . geom import Point2D

7 newCell = Ce l l . makeInstance (Library . getCurrent () , ” sample1{ l ay }”)

8 tech = Technology . f indTechnology (”mocmos”)

9 trP = tech . f indNodeProto (”P−Trans i s t o r ”)

10 tP = NodeInst . makeInstance (trP , Point2D . Double (10 , 10) , trP . getDefWidth () , trP

. getDefHeight () , newCell)

11 EvalJython . d i s p l a yCe l l (newCell)

1 from com . sun . e l e c t r i c . database . h i e ra r chy import Ce l l

2 from com . sun . e l e c t r i c . database . h i e ra r chy import Library

3 from com . sun . e l e c t r i c . database . h i e ra r chy import Export

4 from com . sun . e l e c t r i c . database . prototype import Po r tCha ra c t e r i s t i c

5 from com . sun . e l e c t r i c . database . topo logy import ArcInst

6 from com . sun . e l e c t r i c . database . topo logy import NodeInst

7 from com . sun . e l e c t r i c . database . topo logy import Geometric

8 from com . sun . e l e c t r i c . techno logy import Technology

9 from com . sun . e l e c t r i c . database import Ed i t i ngPre f e r enc e s

10 from java . awt . geom import Point2D

11 from com . sun . e l e c t r i c . t o o l import rout ing

12 from com . sun . e l e c t r i c . u t i l . math import Or i entat i on

13 # crea t e the new c e l l

14 newCell = Ce l l . makeInstance (Library . getCurrent () , ” sample2{ l ay }”)

15 tech = Technology . f indTechnology (”mocmos”)

16 # place a ro ta ted t r a n s i s t o r

28

17 trP = tech . f indNodeProto (”P−Trans i s t o r ”)

18 tP = NodeInst . makeInstance (trP , Point2D . Double (0 , 20) , 32 , trP . getDefHeight () ,

newCell , Or i enta t i on .R, ”pmos”)

19 # place a metal−Active contact

20 coP = tech . f indNodeProto (”Metal−1−P−Active−Con”)

21 maP = NodeInst . makeInstance (coP , Point2D . Double (5 , 20) , coP . getDefWidth () , 32 ,

newCell)

22 # place a metal−Active contact

23 coP1 = tech . f indNodeProto (”Metal−1−P−Active−Con”)

24 maP1 = NodeInst . makeInstance (coP1 , Point2D . Double (−5 , 20) , coP1 . getDefWidth () ,

32 , newCell)

25 # wire the t r a n s i s t o r to the contact

26 aP = tech . f indArcProto (”P−Active ”)

27 ArcInst . makeInstance (aP , tP . f i ndPo r t In s t (” d i f f−bottom”) , maP. f i ndPo r t In s t (”

metal−1−p−act ”))

28 # wire the t r a n s i s t o r to the contact

29 ArcInst . makeInstance (aP , tP . f i ndPo r t In s t (” d i f f−top ”) , maP1 . f i ndPo r t In s t (”metal

−1−p−act ”))

30 # place a ro ta ted t r a n s i s t o r

31 trP1 = tech . f indNodeProto (”N−Trans i s t o r ”)

32 tP1 = NodeInst . makeInstance (trP1 , Point2D . Double (0 , −7) , 22 , trP1 . getDefHeight

() , newCell , Or i entat i on .R, ”nmos”)

33 # place a metal−Active contact

34 coN = tech . f indNodeProto (”Metal−1−N−Active−Con”)

35 maN = NodeInst . makeInstance (coN , Point2D . Double (5 , −7) , coN . getDefWidth () , 22 ,

newCell)

36 # place a metal−Active contact

37 coN1 = tech . f indNodeProto (”Metal−1−N−Active−Con”)

38 maN1 = NodeInst . makeInstance (coN1 , Point2D . Double (−5 , −7) , coN1 . getDefWidth () ,

22 , newCell)

39 # wire the t r a n s i s t o r to the contact

29

40 aP1 = tech . f indArcProto (”N−Active ”)

41 ArcInst . makeInstance (aP1 , tP1 . f i ndPo r t In s t (” d i f f−bottom”) , maN. f i ndPo r t In s t (”

metal−1−n−act ”))

42 # wire the t r a n s i s t o r to the contact

43 ArcInst . makeInstance (aP1 , tP1 . f i ndPo r t In s t (” d i f f−top ”) , maN1. f i ndPo r t In s t (”

metal−1−n−act ”))

44 #poly to poly connect

45 poly2=tech . f indArcProto (” Po l y s i l i c on −1”)

46 p2p=ArcInst . makeInstance (poly2 , tP . f i ndPo r t In s t (” poly− l e f t ”) , tP1 . f i ndPo r t In s t

(” poly−r i g h t ”))

47 #metal to metal

48 metal1=tech . f indArcProto (”Metal−1”)

49 ArcInst . makeInstance (metal1 , maP. f i ndPo r t In s t (”metal−1−p−act ”) , maN.

f i ndPo r t In s t (”metal−1−n−act ”))

50 #N−we l l on top

51 nwel l= tech . f indNodeProto (”Metal−1−N−Well−Con”)

52 nwel l1=NodeInst . makeInstance (nwel l , Point2D . Double (−5 , 38) , 32 , 18 , newCell)

53 cente r=ArcInst . makeInstance (metal1 , nwel l1 . f i ndPo r t In s t (”metal−1−sub s t r a t e ”) ,

maP1 . f i ndPo r t In s t (”metal−1−p−act ”))

54 ArcInst . g e tTa i lPo r t In s t (c en t e r)

55 Export . newInstance (newCell , nwel l1 . f i ndPo r t In s t (”metal−1−sub s t r a t e ”) , ”vdd” ,

Po r tCha ra c t e r i s t i c . IN)

56 pwel l= tech . f indNodeProto (”Metal−1−P−Well−Con”)

57 pwel l1=NodeInst . makeInstance (pwel l , Point2D . Double (−5 , −22) , 32 , pwe l l .

getDefHeight () , newCell)

58 cente r1=ArcInst . makeInstance (metal1 , pwel l1 . f i ndPo r t In s t (”metal−1−we l l ”) ,maN1.

f i ndPo r t In s t (”metal−1−n−act ”))

59 Export . newInstance (newCell , pwel l1 . f i ndPo r t In s t (”metal−1−we l l ”) , ”gnd” ,

Po r tCha ra c t e r i s t i c . IN)

60 #input contact

61 conpoly = tech . f indNodeProto (”Metal−1−Po l y s i l i c on −1−Con”)

30

62 conpoly1 = NodeInst . makeInstance (conpoly , Point2D . Double (−8 , 4) , conpoly .

getDefWidth () , conpoly . getDefHeight () , newCell)

63 e r c=ArcInst . makeInstance (poly2 , tP . f i ndPo r t In s t (” poly− l e f t ”) , conpoly1 .

f i ndPo r t In s t (”metal−1−po l y s i l i c o n −1”))

64 p=ArcInst . getArcId (e r c)

65 pr in t p

66 #output contact

67 conmet = tech . f indNodeProto (”Metal−1−Pin ”)

68 conmet1 = NodeInst . makeInstance (conmet , Point2D . Double (10 , 5) , conmet .

getDefWidth () , conmet . getDefHeight () , newCell)

Cell Name

Transistor Node

(a) Layout design of transistor node using

Python script.

Cell name

Design of an Inverter

(b) Layout design of an Inverter using Python.

Figure 2.11. Outputs for scripts running in Electric

.

31

Package Class Method Description

com.sun.Electric.

database.hierarchy

Cell makeInstance() This method creates a cell

com.sun.Electric.

technology

Technology findTechnology() This method finds the re-

quired technology

com.sun.Electric.

technology

Technology findNodeProto() This method returns the

primitiveNode name in that

technology

com.sun.Electric.

technology

Technology findArcProto() This method returns the

ArcProto name in that tech-

nology

com.sun.Electric.

database.topology

NodeInst makeInstance() Creates a NodeInst and do

extra things necessary for it.

com.sun.Electric.

database.topology

ArcInst makeInstance() Creates ArcInst with appro-

priate defaults, connecting

two PortInsts

Table 2.4. Important Methods for Designing in mocmos technology.

2.6. Electric Advantages

• Integrity: It is very rare for an open source EDA tool where schematics and layout

design with simulation are done in one tool. The Electric VLSI design system is a

single user interface where schematics and IC layout designs are done. It has LVS (

Layout vs. Schematic) check to check and compare both designs.

• No node extraction: Node extraction is one of the steps in the design flow for designs

to see connectivity of layout. In Electric there is no need to separately do this step

as it is instantly available with the connectivity part of it. Connectivity is the crucial

thing in physical design level. It must be verified during or right after the design,

32

but most conventional design systems wait for a finished layout. This causes many

errors in the physical layout. The process of converting the design to connected

circuitry from pure geometry is called node extraction.

• No geometry errors: Layers have different minimum geometry rules. In Electric

components which have complex geometries are set as one single component and

can be edited for change of size. Transistor is one such example.

• Simpler design process: In physical design stage of design, designers usually iterate

between DRC (Design rule checking) and Layout vs Schematic (LVS). The problem

is that LVS needs to know the circuit connectivity, which is obtained by the node

extraction process, which can only run after DRC. Hence the layout must be DRC

clean before running LVS. When LVS has problems, one has to edit the layout and

make it DRC clean again, which takes a lot of time. In Electric, the first step is to

know the layout vs schematic errors and then one can easily edit the layout without

fear of losing the LVS match.

• More powerful editing: Because Electric shows the network information even in

Integrated circuit layout, browsing the circuit has become more powerful and gives

a lot of information about it. Since Electric is connectivity based tool, the tools

in Electric make the circuit always connected, even when the circuit is modified on

different hierarchy levels.

33

CHAPTER 3

DIGITAL INTEGRATED CIRCUIT DESIGN USING ELECTRIC

In this chapter, digital circuits are explored with the help of the Electric EDA tool.

A combinational circuit, a sequential circuit, a memory design and an arithmetic logic unit

circuit are chosen for four digital designs in this chapter. All the standard digital circuits

such as Inverter, AND gate, NAND gate, etc. that a student needs to learn are covered in

this chapter, showing the schematic level design, the physical level design and also simula-

tions for that design. All designs are drawn from standard textbooks and existing research

literature. The physical level designs are all drawn, following MOSIS design rules for TSMC

180nm technology. The model files for transistors are taken from the official MOSIS site.

3.1. ALU

The ALU (Arithmetic and Logic Unit) is a main and crucial part in a CPU (Central

Processing Unit). The ALU is used in almost every computing application for all logical and

mathematical operations. It is a multi-functional circuit which can perform many operations

such as AND, NOR, addition, subtraction, etc. without depending on control units. Figure

3.1 shows an 1-bit ALU, which is formed with AND gate, OR gate, full adder, and three

2to1 multiplexers. It performs AND, OR, addition and subtraction operations. Here the

AND gate and OR gates are used for directly performing AND and OR operations and the

full-adder performs the addition and subtraction operations. A multiplexer is used to control

the operations. The other two multiplexers are used for sending the right operation result

to the output. Hence, the 1-bit ALU is formed with six gate level components[27].

3.1.1. Gate level Components

3.1.1.1. Inverter

The inverter is a most important and central block of all digital designs. The working

principle of the inverter is that when the input is connected to ground, the output is pulled

34

AND

Full Adder

INV

2-to-1
Mux

1

0

2-to-1
Mux

1

0

2-to-1
Mux

1

0

OR
A

B

Cout Cin

Z

F[1:0]

F[0]

F[1]

�
��
�
��

Figure 3.1. 1-bit ALU schematic diagram.

to VDD through the PMOS. When the input is connected to the source, the output is pulled

down to ground through the NMOS. The inverter has one p-channel transistor and one n-

channel transistor which are connected to source and ground, respectively [3]. Figure 3.2

shows the transistor level diagram of an inverter. It has a PMOS and NMOS connected in

series, and also a voltage source VDD and ground are connected to these transistors. Figure

3.3 shows the physical diagram of an inverter, the PMOS and NMOS transistors are drawn

as devices. The input port Vin formed with Polysilicon-1 contact and Metal-1 pin is used

for the Vout port. Only Metal-1 arc and polysilicon arc is used for connecting the devices.

The layout area of the implemented Inverter is 58.3µm×12.2.1µm. Figure 3.4 shows the

simulation result for an inverter. When Vin is HIGH the output at Vout is LOW. Similarly,

when Vin is LOW the output at Vout is HIGH.

35

VoutVin

2

10
NMOS

2

20
PMOS

Figure 3.2. Inverter schematic diagram.

vdd

gnd

Vin Vout

Figure 3.3. Layout Diagram of an Inverter.

36

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0

1

2

V
in

(V
)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0

1

2

Simulation Time(us)

V
ou

t(V
)

Figure 3.4. Simulation results for Inverter.

3.1.1.2. OR gate

The OR gate is one of the basic logic circuits in the combinational logic gates family.

OR gate consists of three series PMOS transistors and three parallel NMOS transistors. It

is formed with NOR gate and an inverter connected to VDD and ground and has two inputs

A and B, and output AORB. When both input signals A and B are lOW, the output AORB

is also LOW. For the other cases the output is always HIGH. Figure 3.5 shows the schematic

diagram of an OR gate. The sizings of the transistors are done as per the technology model

file. The fan-in count of the OR gate is 2, and the fan-out count is 1. Fan-in of a logic

gate is the number of gates present in the input and fan-out is a total number of gates that

are driven by gate output. Figure3.6 shows the layout diagram of an OR gate. The layout

area of the implemented OR gate is 79.32µm×75.1µm. Here for the input signals A and

B polysilicon-1 contact is used and for the output AORB, the metal-1 pin is used. All the

connections are drawn using polysilicon arc and metal-1 arc. Figure 3.7 shows the simulation

results for the OR gate. When VA and VB are LOW the output voltage VAORB is LOW. For

the rest of the cases the output voltage VAORB is always HIGH.

37

B AORB

A

2

10
NMOS 2

10
NMOS

2

10
NMOS

2

20
PMOS

2

20
PMOS

2

20
PMOS

Figure 3.5. Schematic diagram of an OR gate.

vdd

gnd

A

B

AORB

Figure 3.6. Layout diagram of an OR gate.

3.1.1.3. AND Gate

The AND gate is formed with a NAND gate and an inverter. It consists of three

PMOS transistors connected in parallel and three NMOS transistors connected in series.

Figure 3.8 shows the schematic diagram of an AND gate. It has two inputs A and B, and

output ANANDB. When A and B are HIGH, the output AANDB is HIGH. For the rest of the

38

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

V
A

(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2
V

B
(V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

Simulation Time(us)

V
A

O
R

B
(V

)

Figure 3.7. Simulation results of an OR gate.

B

AANDBA
2

10
NMOS

2

10
NMOS

2
10

NMOS

2
20

PMOS 2
20

PMOS 2

20
PMOS

Figure 3.8. Schematic diagram of an AND gate.

cases the output is LOW. Figure 3.9 shows the layout diagram of an AND gate. Polysilicon-1

contacts are used for the A and B inputs, the metal-1 pin is used for the AANDB output.

Figure 3.10 shows the simulation result of an AND gate. The layout area of the implemented

AND gate is 80.5µm×70.4µm.The result shows the same when A and B input are HIGH,

the output AANDB is HIGH and rest of all cases it is LOW.

3.1.1.4. MUX

The multiplexer is a digital switch that has multiple inputs and a single output. It

chooses one of many inputs and sends a single output through it with the help of control

39

vdd

gnd

A

B

AANDB

Figure 3.9. Layout diagram of an AND gate.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

V
A

(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

V
B

(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

Simulation Time(us)V
A

A
N

D
B

(V
)

Figure 3.10. Simulation results for AND gate.

inputs. Here a 2 to 1 multiplexer is used to build the 8-bit ALU. Transmission gates are used

to build the multiplexer. A transmission gate is a complementary switch, which is formed

by parallel connection of PMOS and NMOS transistors. Figure 3.11 displays the schematic

diagram of a multiplexer. It is built with two transmission gates and one inverter. A total

of 6 transistors is used to create the multiplexer. Figure 3.12 shows the layout diagram of

the multiplexer. Metal-2 contacts are used for inputs A and B, polysilicon-1 contact and

metal-1 pin are used for the S and Z respectively. The layout area of the implemented MUX

40

is 130.5µm×94.5µm [10].

INV

A

S

B

Z

2 10

NMOS

2 10

NMOS

2 10

PMOS

2 10

PMOS

Figure 3.11. Schematic diagram of a MUX.

3.1.1.5. Full Adder

Adders play a very crucial role in VLSI systems. Microprocessors, digital signal

processing architectures, parity checkers, etc. use adders in their applications. Here a full

28 transistor conventional adder is implemented. In static CMOS, the NMOS passes 0’s,

and PMOS passes 1’s hence the levels will never be degraded. The advantages of CMOS

full adders is that the layout is straight forward since the transistors are complementary,

and it has high noise margins and stability at low voltages due to a complementary pair of

transistors [1]. Other than the A and B inputs it also has a Cin input which is the carry of

the sum from the previous operation. Cout and sum are the outputs of the full adder. Figure

3.13 shows the schematic diagram of a full adder. Figure 3.14 shows the layout diagram of

a full adder. Here polysilicon-1 is used for A and B inputs, and the metal-2 pin is used for

41

vdd

gnd

A

B

S

Z

Figure 3.12. Layout diagram of a MUX.

Cin input. The outputs are formed with metal-1 pins. For connections, poly arc, metal-1

arc, and metal-2 are used in drawing the full adder layout circuit. The layout area of the

implemented adder is 306.9µm×406.2µm. Figure 3.15 shows the simulation results for a full

adder. When A is 1, B is 0, and Cin is 0 the sum is 1 and Cout is 0. Similarly, when A is 1,

B is 0 and Cin is 1 then the sum is 0 and Cout is 1.

3.1.2. Implementation of AN 8-bit ALU

In electric, there is an arc called bus that can be used to connect components similar

to wire. Its advantage is that instead of creating multiple input wires a single bus is used and

can export to multiple inputs. This benefit of a bus is useful in designing schematic circuits

which have multiple inputs and outputs. The ALU has 8-bits A and B inputs and 8-bits of

output Z, carry in and carry out and it also has two extra input bits to choose which function

that ALU should perform. Table 3.1 shows the functions which are performed by the 8-bit

ALU, which can be selected by two bits of F inputs. Table 3.2 shows the binary output

values for a given set of input values. In the simulation of the 8-bit ALU the input A and B

binary values are fixed and then with changing the function bits of ALU the operations AND,

42

Cin

A

B

S

Cout

2
10

NMOS

2
10

NMOS

2
10

NMOS

2
10

NMOS 2
10

NMOS

2
10

NMOS

2
10

NMOS

2
10

NMOS 2
10

NMOS

2
10

NMOS 2
10

NMOS

2
10

NMOS

2
10

NMOS 2
10

NMOS

2
20

PMOS
2

20
PMOS

2
20

PMOS

2
20

PMOS

2
20

PMOS

2
20

PMOS 2
20

PMOS 2
20

PMOS

2

20
PMOS

2
20

PMOS

2
20

PMOS

2
20

PMOS

2
20

PMOS

2
20

PMOS

Figure 3.13. Schematic Diagram of a Full Adder.

vdd

gnd

A

B

Cout

Cin

S

Figure 3.14. Layout Diagram of a Full adder.

43

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0
1
2

A
(V

)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−5

0
1
2

B
(V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0
1
2

C
in

(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0
1
2

Simulation Time(us)

C
ou

t(V
)

Figure 3.15. Simulation results for a Full adder

addition, subtraction, and OR are performed. Figure 3.16 displays the simulation results

of the 8-bit ALU. The outputs of all Z0 to Z7 are shown in the simulation results. AND

operation is performed by 8-bit ALU till time period 1, addition operation is performed from

time period 1 to 2, OR operation is performed from the time period 2 to 3 and subtraction

operation is performed by 8-bit ALU from time period 3 to 4. Figure 3.17 shows the layout

diagram of an 8-bit ALU. The placement of all the layout blocks of gate level components

results in minimum area. For connections, the metal-1,2,3 arc are used and for inputs and

outputs polysilicon-1, metal-1,2,3 contacts are used. There were no errors in DRC (Design

Rule Checker) check and it also satisfied the LVS (layout vs. schematic) check. The layout

area of the implemented 8-bit ALU is 582.7µm×2357.9µm.

3.2. 2-Bit Multiplier

Multiplication is necessary for the arithmetic operations that are performed by the

processor. In this section, a 2-bit multiplier circuit is used to perform the operation. This

2-bit multiplier circuit consists of two half-adder circuits and 4 AND gate circuits which is

a combinational circuit [16] where the output depends on the inputs and not past output

values. The multiplication is done by the simple sum of the partial products technique and

it is illustrated in figure 3.20. The product of multiplicand and multiplier bits is done using

44

F1 F0 Function

0 0 AND

0 1 ADD

1 0 OR

1 1 SUB

Table 3.1. Func-

tions selected by 2-bit

F inputs

Inputs Value

A 01010001

B 10101100

Outputs Value

AANDB 00000000

AORB 11111101

A+B 11111101

A-B 10100101

Table 3.2. Input

and output values for

8-bit ALU

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

1

2

Z
0(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

1

2

Z
1(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

1

2

Z
2(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

1

2

Z
3(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

1

2

Z
4(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

1

2

Z
5(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

1

2

Z
6(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

1

2

Simulation Time(us)

Z
7(

v)

Figure 3.16. Simulation results for 8-bit ALU.

AND gates to get the partial products then the partial products are added using half-adder

circuits to get 4 bits output that is the final product of 2-bit multiplier. if there is a J bits

multiplier and a K bits multiplicand we need J×K AND gates and (J-1)×K half adders to

get the product for J+K bits.

45

Figure 3.17. Layout Diagram of a Full adder.

3.2.1. Logic Level Components

3.2.1.1. Half-Adder

A typical adder is a digital combinational circuit which is used to add two numbers.

It has two outputs port for sum bit (s) and carry bit (c). Many adders can be realized

for binary numbers, binary coded decimal (BCD), etc. Adder circuits can be used in many

applications in digital electronics. For example, they are used for addressing decoding, table

index calculation, etc. There are two types of adder circuits: Half-adder and Full-adder. In

this section a half-adder circuit is implemented. A half adder circuit adds two numbers and

produces a sum bit(s) and carry bit (c) as outputs. The gate level components of half adder

circuit are XOR and NAND gates. With XOR of A and B, the sum bit is produced and

with A NAND B the carry bit is produced. Half adder circuit adds only two number and

produces sum if there is any carry as input to the half adder, it will be neglected. Hence, it

is called half adder. Figure 3.18 displays the schematic circuit of a half adder. It is formed

with an XOR gate and an AND gate. Figure 3.19 shows the layout diagram of a half adder.

Metal-2 contacts are used for input signal A and B, metal-pin and metal-3 contact is used

for sum bit and carry bit respectively. All the connections are drawn using poly, metal-1,2

arcs. The layout area of the implemented Half-adder is 177.7µm×190.9µm.

46

XOR
A

B

C

S

AND

Figure 3.18. Schematic diagram of a half-adder.

vdd

gnd

A

B

S

C

Figure 3.19. Layout diagram of a half-adder.

3.2.2. Implementation of a 2-bit Multiplier

Figure 3.21 shows the schematic diagram of a 2-bit multiplier. Gate level components

are two half adders and four AND gates. It has four input bits A0, A1, B0, B1 and it has

four outputs bits C0, C1, C2, C3. This two-bit multiplier circuit multiplies two binary

digits of one number to two binary digits of another number and gives four bits output. A

normal multiplication process has a multiplicand and multiplier. The 2-bit multiplier works

47

B
1

B
0

A
1

A
0

A
0
B

0
A

0
B

1

A
1
B

0
A

1
B

1

A
0
B

0

A
0
B

1

A
1
B

0

+

Multiplicand

Multiplier

Partial
Product

C
0

A
1
B

1

C
1

C
2

C
3

+
Possible
Carry

Final Product

Figure 3.20. 2-bit multiplication process.

on the principle of the sum of partial products: the AND gate in the circuit multiples both

multiplicand bit and multiplier bit to give a partial product. All the partial products from

the AND circuit output are added by the half adder circuit to get the final result. Figure

3.20 shows how the multiplication process is done using the schematic circuit. Here B1 and

B0 are multiplicand bits and A1 and A0 are multiplier bits. A0B1 is a partial product, and

it is added to another partial product A1B0 by a half adder and the result is obtained in

C1. Figures 3.23 and 3.24 show the simulation results for the 2-bit multiplier. When A1

is 0, A0 is 1, B1 is 0 and B0 is 1 then the output C0 is 1 and rest C1, C2, C3 are zero.

Similarly, when When A1 is 1, A0 is 0, B1 is 1 and B0 is 0 then the output C2 is 1 and

rest C1, C0, C3 are zero. Figure 3.22 shows the layout diagram of the 2-bit multiplier. For

inputs and outputs, polysilicon-1, metal-1,metal-2 and also metal-3 contact are used and for

connections poly arc, metal-1,2,3 arc are used. The layout area of the implemented 2-bit

multiplier is 189.9µm×699.0µm.

48

HALF-ADDER HALF-ADDER

B1

A1

A0

B0

C0

C1C2C3

AND AND

AND AND

Figure 3.21. Schematic diagram of a 2-bit multiplier.

C2

C3

C0

C1

B0

B1
A1 A0

vdd

gnd

Figure 3.22. Layout diagram of a 2-bit multiplier.

3.3. Frequency Divider

A sequential logic circuit’s output variable is not solely dependent on the input vari-

able like combinational circuit but also it depends on the previous input variable’s history

[30]. For a sequential logic circuit, flip flops are the basic building blocks. In this design,

a frequency divider is implemented using flip flips. The frequency divider ()also called a

clock divider) is a circuit that can reduce the frequency of an input signal passing through

49

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0
1
2

A
0(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0
1
2

A
1(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0
1
2

B
0(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0
1
2

Simulation Time(us)

B
1(

V
)

Figure 3.23. Input signals for a 2-bit multiplier.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0
1
2

C
0(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0
1
2

C
1(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0
1
2

C
2(

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−6

0
1
2

Simulation Time(us)

C
3(

V
)

Figure 3.24. Output signals for a 2-bit multiplier.

it. There are various topologies and implementations for frequency dividers. Among all the

divider solutions, the digital frequency divider is preferred because it gives good trade-offs

in the areas of cost, power consumption, and physical dimensions [5]. The typical digital

frequency divider is made with DFF (D flip-flops) or JK flip-flops. Here JK flip-flops are used

to make a digital frequency divider. The JK flip-flops functions as counters which perform

power-of-2 integer divisions [19].

50

3.3.1. Logic level Compoenents

3.3.1.1. JK Flip-Flop

Master Slave JK Flip-flop is used for the frequency divider. At logic level, it consists

of two three-input NAND gates, six two-input NAND gates, and one inverter 3.25. It is

formed by a cascade connection of two S-R Flip-flops with feedback from the output of

second S-R FF to the input of first. The slave will respond to the negative value of the clock

signal since the inverter present is in clock line. Hence, when the clock is HIGH the master

part of JK flip is active, and Slave part is inactive, similarly when the clock is LOW the

master part is inactive, and slave is active. When J=k=0 the output will remain unchanged.

This is because if the Clock is zero the slave will be active and master will be inactive, so

there are no inputs from master to slave hence there is output from the slave. When J=0

and K=1 the output is Q=0 and Q Bar=1, if the clock= one the Master is active, and slave

is inactive. Hence, the outputs of the master are Q1=0 and Q1 Bar=1 so S=0 and R=1. If

the clock is zero the Master is inactive, and slave is active. Therefore, outputs will be Q=0

and Q Bar=1. Again when the clock is one the master is active, and slave is inactive, even

though the output of slave is fed to master the output of master’s remains same, i.e., Q1=0

and Q1 Bar=1. Thus, the outputs are stable from Master and Slave. When J=1 and K=0

the output is Q=1 and Q=0. If the clock is one the Master is active, and slave is inactive.

Therefore, the outputs of the master are Q1=1 and Q1 Bar=0 so S=1 and R=0. If the clock

is zero master is inactive, and slave is active. Therefore, the outputs of the slave will be

Q=1 and Q Bar=0. Hence, the outputs are Q=1 and Q Bar=0. When J=k=1 the output

toggles. If the clock is one Master is active, and slave is inactive, and the output of master

are Q1=1 and Q bar=1 and stays even when the clock is low because when the clock is 0

the master is inactive and the output of slave is not fed to the master. Therefore, the output

toggles and avoid racing effect of the JK flip-flop.

Figure 3.30 shows the digital frequency divider with two JK flip-flops connected in series.

The output of 1st JK flip-flop is given as input to the second flip-flop. The inputs of both

flip-flops J and K are supplied with VDD otherwise J and K are made HIGH. When the clock

51

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

INV

CLK

J

K Q_Bar

Q

S

R

Q1

Q1_Bar

Figure 3.25. Schematic diagram of a JK Flip-Flop.

vdd

gnd

CLK

J

K

Q

QB

Figure 3.26. Layout Diagram of a JK Flip-Flop.

is given the output frequency of the 1st JK flip-flop at QA is a division of input frequency by

2. Similarly, the output frequency of 2nd JK flip-flop at QB is a division of input frequency

by 4 (power-of-2 division). Figure 3.26 shows the layout diagram of a JK flip-flop. The

layout area of the implemented JK flip-flop ALU is 189.9µm×347.0µm.

3.3.1.2. NAND Gate

A NAND gate is formed with two PMOS transistors connected in parallel and two

NMOS transistors connected in series. Figure 3.27 shows the schematic diagram of a NAND

gate. The PMOS transistor’s source is connected to VDD and NMOS transistor’s source is

connected to ground. A and B are the inputs of the NAND gate, and ANANDB is the

52

B

AANDBA
2

10
NMOS

2

10
NMOS

2
10

NMOS

2
20

PMOS 2
20

PMOS 2

20
PMOS

Figure 3.27. Schematic Diagram of NAND gate.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

V
A

(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

V
B

(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

Simulation Time(us)V
A

N
A

N
D

B
(V

)

Figure 3.28. Simulation results for NAND gate.

output. When A and B are HIGH the output ANANDB is LOW, rest of all cases the output

is HIGH. Figure 3.28 shows the simulation results for the NAND gate. Figure 3.29 shows

the layout diagram of a NAND gate. Polysilicon-1 contact is used for input A and B, the

metal-1 pin is used for output ANANDB. The layout area of the implemented NAND gate

is 89.9µm×70.0µm.

3.3.2. Implementation of Frequency divider

Figure 3.30 shows the schematic diagram of a frequency divider. It consists of two

JK flip-flops connected in series. The clock is the input and QA, QB are the outputs of

53

vdd

A

B

ANANDB

gnd

Figure 3.29. Layout Diagram of a NAND gate.

the frequency divider. The primary aim of the frequency divider is to divide the frequency

of the signal which passes through it. The frequency divider implemented here divides the

signal by power of two. The clock signal frequency is divided by 2, and the result is obtained

at QA, and similarly, the input clock signal frequency is divided by four and the result is

obtained at QB. Figure 3.32 shows the simulation results of a frequency divider. From the

figure, the input clock frequency is 250 KHz and the output QA signal frequency is 125

KHz (divided by 2) and the output QB signal frequency is 62.5 KHz (divided by 4). Figure

3.31 shows the layout diagram of frequency divider, the inputs and outputs, polysilicon-1

contact, metal-1,2,3 contacts are used. All the connection are drawn using poly, metal-1,2,3

arcs. The layout area of the implemented frequency divider is 224.4µm×788.8µm.

3.4. 1-Bit SRAM

Memory is an essential component of any computing platform. Its primary functions

are sorting data, Instructions, application software, system software and also it stores the

data and instructions during any application’s or program’s execution [19]. SRAM (static

54

CLK

QA QB

J Q

QB

CLK

K

J Q

QB

CLK

K

Figure 3.30. Schematic diagram of a Frequency divider.

CLK QA QB

vdd

gnd

Figure 3.31. Layout diagram of a Frequency divider.

0 0.5 1 1.5 2 2.5 3 3.5
x 10

−5

0

1

2

C
L

K
(V

)

0 0.5 1 1.5 2 2.5 3 3.5
x 10

−5

0

1

2

Q
A

(V
)

0 0.5 1 1.5 2 2.5 3 3.5
x 10

−5

0

1

2

Q
B

(V
)

Simulation Time(us)

Figure 3.32. Simulation result for Frequency divider.

random access memory) is volatile memory and performs as a cache for processors. The

word static means that it stores a bit electronically without needing periodic refreshing. It is

a volatile memory, so it doesn’t store data permanently, but it provides high-speed buffering

55

Bitline
Bitline_Bar

Wordline

2

10

NMOS

2

10

NMOS

25
NMOS

25

NMOS

PM1

NM1

PM2

NM2

NM4
NM3

2
5

PMOS
2
5

PMOS

Figure 3.33. Schmetic circuit of an SRAM cell.

for processors. The term random access because any bit of data can be accessed at any

time [2]. In this section, a 1-bit SRAM circuit is explained and designed in schematics and

physical level.

3.4.1. 6T-Cell

The 6T-SRAM cell is the traditional SRAM cell which is widely used to build caches

in computing systems. There are various types of SRAMs depending upon the clocking

mechanism; they can be either asynchronous or synchronous SRAMs. 6T-SRAM is mainly

preferable because it provides excellent results in the areas of stability, area, leakage power,

and speed. Figure 3.33 shows the schematic diagram of 1-bit SRAM cell [31, 22]. The binary

signal is stored in two cross-coupled inverters or a latch which is formed by four transistors.

Two NMOS transistors are connected to the latch for reading and writing operations and are

called access transistors. The six transistors are named drive transistors (NM1, NM2), load

transistors (PM1, PM2) and access transistors (NM3, NM4). NM1, NM2 are sized wider

than NM3, NM4 to achieve read stability. Similarly, NM1, NM2 are sized wider than PM1,

PM2 for write stability. Figure 3.34 shows the layout diagram of a 6T-SRAM cell. The

layout area of the implemented 6T-SRAM cell is 66.4µm×67.1µm.

3.4.2. Implemtation of a 1-bit SRAM

The 1-bit SRAM array consists of a 6T-SRAM cell, a Sense-Amplifier, and a PRE-

charge circuit [24]. The voltage across bit lines determines the bit stored in the SRAM cell.

Whenever there is a large circuit of SRAM, getting proper output is difficult. Hence, the

56

vdd

gnd

Bitline Bitline_Bar

Wordline

Figure 3.34. Layout diagram of an SRAM cell.

sense amplifier is used for reliability and stability to the circuitry. The main function of a

sense amplifier is to sense the voltage across the bit lines and raise or lower the voltage levels.

The pre-charge circuit is used to pre-charge the circuit to a voltage VDD/2. Before every

read and write operation, the pre-charge circuit is turned on to set the voltages of bit lines

to VDD/2, and then it is turned off. The sense amplifier is turned on, it senses the voltage

difference and stores a bit in the SRAM cell. Figure 3.35 shows the schematic diagram of

a 1-bit SRAM circuit. Figure 3.37 shows the waveforms of output. The Pre-charge circuit

is turned on before the write operation. Logic 1 is given through Data In signal. Sense

amplifier and write enable (write) are turned HIGH at the same time, and then the word

line (WL) is activated when all inputs are stable. Now, to read the logic 1 from the circuit,

the Pre-charged circuit is re-activated and also Read enable (Read), sense amplifier and word

line signals are activated again simultaneously. This activation of signals, makes Data Out

signal HIGH.

The operation of writing a zero is also similar to writing logic 1. The pre-charge

circuit is turned on before writing zero. Then Data In is made zero or low, sense amplifier

and word lines are activated to store zero in SRAM cell. In a read operation, the zero

57

6T_Cell

INV

Data_Out Data_In

Read Write

WL

BL
BL_bar

Sense

210
NMOS

2 10
NMOS

2 10
NMOS

2
10

NMOS

2
10

NMOS

2
10 NMOS 2

10

NMOS

2
10NMOS

2
20

PMOS

2
20

PMOS

2
20

PMOS

PRE

VDD/2

Figure 3.35. Schematic diagram of an 1-bit SRAM.

reflected through Data out signal. Figure 3.36 shows the layout diagram of a 1-bit SRAM

circuit. The layout area of the implemented 6T-SRAM cell is 196.3µm×150.7µm..

58

vdd

gnd

Sense
Data_out

Data_In

WL
BL BL_Bar

Read

Write

Figure 3.36. Layout diagram of an 1-bit SRAM.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−8

0

0.5

1

D
at

a_
In

(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−8

0

1

2

PR
E

(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−8

0

0.5

1

R
ea

d(
V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−8

0

0.5

1

Se
ns

e(
V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−8

0

0.5

1

W
L

(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−8

0

0.5

1

W
ri

te
(V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−8

0

0.5

1

D
at

a_
O

ut
(V

)

Simulation Time(ns)

Figure 3.37. 1-Bit SRAM Timing Waveform.

59

CHAPTER 4

ANALOG INTEGRATED CIRCUIT DESIGN USING ELECTRIC

4.1. 3-Stage Ring Oscillator

The ring oscillator is an electronic device where an odd number of inverters are

connected in a cascade manner and whose output varies or oscillates over two voltage levels

representing true or false [2, 19]. Ring oscillators are widely used because they are very easy

to design not only in CMOS technology but also in BiCMOS. They can be used in many

applications in communication systems because of their ability to provide multiphase outputs

when required. The other useful features of the ring oscillators are that it is possible to tune

electrically and with low power, higher frequencies are also obtained [17]. The frequency of

oscillation Fosc is given by the formula:

(1) Fosc =
1

n(tPHL + tPLH)
,

where n= number of stages, tPHL = propagation delay of a signal from High to low, and

tPLH= propagation delay of a signal from low to High. There are capacitances which are

parasitics in the MOSFETS. So the total capacitance is given by Ctot = Cin + Cout where

Cin = 3
2
(WnLn + WpLp)Cox and Cout = (WnLn + WpLp)Cox. The total capacitance is given

by the formula.

(2) Ctot =
5

2
(WnLn +WpLp)Cox,

where Cox is the capacitance of the oxide. Wn, Ln are the width and length of nmos respec-

tively and Wp, Lp are the width and length of pmos respectively. Rn is the resistance of the

n-channel and Rp is the resistance of the p-channel. The propagation delay for the oscillator

is given as:

(3) tPHL + tPLH = (Rn +Rp)Ctot

60

4.1.1. Schematic Design

Figure 4.1 shows the schematic diagram of the CMOS inverter based 3-stage ring

oscillator [8]. The factors that change oscillation frequency of the ring oscillator are prop-

agation delay td of a stage and number of stages present in the closed chain loop. The

propagation delay and number of stages are inversely proportional to oscillation frequency.

Hence for higher frequencies the number of stages should be reduced which indirectly reduces

the propagation delay. Reducing number of stages is important because it helps to have more

area in the chips and reduces power consumption too. Here in this section a 3-stage ring

oscillator is designed.

2

10
nmos 2

10
nmos 2

10
nmos

2

20
pmos 2

20
pmos 2

20
pmos

Figure 4.1. Schematic diagram of 3-Stage Ring Oscillator

.

If a square pulse with period T and frequency fclk is given as an input to the inverter,

the current that it must pull from VDD is given as Iavg = VDDCtot

T
and the average power

dissipation of an inverter is given by :

61

(4) Pavg = VDDIavg =
V 2
DDCtot

T
= CtotVDDfclk.

The power delay product (PDP) is often used to compare different technologies or

device sizes; it characterizes the speed of a digital process and it is given by the relation:

(5) PDF = Pavg(tPHL + tPLH).

4.1.2. Physical Design

vdd

gnd

Figure 4.2. Layout Diagram of 3-Stage Ring Oscillator.

The physical design of the 3-stage ring oscillator is shown in figure 4.2. The layout is

drawn as per the design rules of the 180nm TSMC CMOS technology. The Inverter library

is used to design the 3-stage ring oscillator. For connections poly, metal-1 arcs are used and

for contacts polysilicon-1 contact is used.

62

4.1.3. Simulation Results

Figure 4.3 shows the simulation results of the 3 stage Ring Oscillator. The obtained

operating frequency is 4.4 GHz. The waveform is plotted between time and output voltage.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10

−9

−0.5

0

0.5

1

1.5

2

Simulation Time(ns)

O
ut

pu
t V

ol
ta

ge
 o

f
a

R
O

(V
)

Simulation output of a RO

Figure 4.3. Simulation Result of a Ring Oscillator.

Ring Oscillator Characteristics Specific Values

Technology TSMC 180-nm CMOS

VDD 1.8V

Initial Voltage 0V

O/P Frequency 4.4 Ghz

Average Power 41.34 u Watts

Cox Oxide capacitance 8.5fF

Rn effective resistance of n-channel MOSFET 3.2KΩ

Rn effective resistance of p-channel MOSFET 3.9KΩ

Table 4.1. Ring Oscillator Characteristics

63

4.2. Voltage Controlled Oscillator

The VCO is one of the central components in Pase Locked Loops (PLL), where it is

widely used. A VCO has an odd number of inverters which is similar to Ring oscillator, but

the propagation delays tPHL and tPLH of each inverter are controlled by the current source

and current sink that are present above and below each inverter respectively [9, 19]. Input

voltage controls the output frequency of a VCO.

The schematic diagram of a VCO is shown in figure 4.6. Two high impedance tran-

sistors M1 and M2 are present in the input stage of a VCO. Transistors M4 and M5 operates

as an inverter in the current starved stage. The current source and sink transistor M3 and

M6 limit the current flow to the inverters making them starve for the current [14]. The size

of the transistors and number of inverters factors the oscillation frequency of a VCO.

4.2.1. Schematic Design

For the design equations of a VCO, consider a single inverter with transistors M4 and

M5 shown in the figure 4.4. The capacitance of the inverter is given by Ctot = Cin + Cout

where Cin = 3
2
(WnLn +WpLp)Cox and Cout = (WnLn +WpLp)Cox. The total capacitance of

the inverter is given by:

(6) Ctot =
5

2
(WnLn +WpLp)Cox,

where Cox is the capacitance of the oxide and Wn, Ln are the width and length of nmos

and Wp, Lp are the width and length of pmos respectively. The total time taken by the

capacitance of an inverter to charge and discharge is given by:

(7) TD,Stage =
CtotVDD

ID
.

Therefore the oscillation frequency of the VCO is given by:

64

Vin

Vout

2

10
nmos

2

10
nmos

2

10
nmos

2

10
nmos

2

10
nmos

2

10
nmos

2

10
nmos

2
10

nmos

2
10

nmos

2

10
nmos

2

10
nmos

M1

M2

M3

M4

M5

M6

text

text

2

20
pmos

2

20
pmos

2

20
pmos

2

20
pmos

2

20
pmos

2

20
pmos

2

20
pmos

2
20

pmos

2
20

pmos

2

20
pmos

2

20
pmos

Figure 4.4. Schematic diagram of a 5-stage VCO.

(8) Fosc =
1

NTD,Stage

=
ID

NCtotV DD

The average current drawn by the VCO is given by Iavg = NVDDCtot

T
= N(V DD)CtotFosc.

The average power dissipated by the VCO is :

(9) Pavg = (VDD)Iavg.

4.2.2. Physical Design

Figure 4.5 displays the physical design of the VCO. The Vin input is formed by

using poly arc and Vout is formed with polysilicon-1 contact. The two series PMOS’s are

connected to two series NMOS’s in series. This library is arrayed for four times to form five

stage voltage controlled oscillator and the inverter library is also used here. The layout area

of the implemented VCO is 91.4µm×183.4µm.

65

vdd

gnd

Vin Vout

Figure 4.5. Layout Diagram of the a 5-Stage VCO.

4.2.3. Simulation results

Figure 4.6 shows the simulation results of the 5-stage VCO and table 4.2 shows the

characteristics of the 5-stage VCO. The average power dissipated by is 180 µW. The effective

resistance of n-channel and p-channel MOSFETs are calculated using the TSMC 180 model

file.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−8

−0.5

0

0.5

1

1.5

2

Simulation Time(ns)

O
ut

pu
t V

ol
ta

ge
 o

f
V

C
O

(V
)

Simulation output of 5−stage VCO

Figure 4.6. Simulation results for 5 stage VCO.

66

Voltage controlled Oscillator Characteristics Specific Values

Technology TSMC 180-nm CMOS

VDD 1.8V

Initial Voltage 0V

Average Power dissipated 180 u Watts

Cox Oxide capacitance 8.5fF

Rn effective resistance of n-channel MOSFET 3.2KΩ

Rn effective resistance of p-channel MOSFET 3.9KΩ

Table 4.2. Characteristics of the 180-nm TSMC CMOS VCO

4.3. Sense Amplifier

4.3.1. Schematic Design

The sense amplifier is one of the main components of memory circuits, and it is used

to sense the bit lines for a 1 or 0 that was written to the cell. Figure 4.7 shows a full-latch

cross-coupled sense amplifier that is fast and reliable [11]. The figure shows the schematic

diagram of sense amplifier. The transistors (M4, M5, M6, M7) form a cross-coupled inverter,

that is a primary component of a sense amplifier. M11, M10, M9 form a Precharge circuit

that precharges the bit lines B0 and B1 to VDD/2 voltage. Transistors M1 and M2 are called

access transistors that are connected to memory cells, and the transistor M3 and M8 are

used as a switch to active and deactivate the sense amplifier [19].

The primary step for reading out a DRAM cell is to precharge the bit lines BL and

BL Bar to VDD

2
voltage, which is done by turning on the PRE signal to high with VDD/2

voltage. When the PRE signal is low, the bit line BL and BL Bar have equal VDD/2 volt-

ages, and then a wordline WL is turned ON. That creates the voltage difference between

both bit lines BL Bar and BL where the BL Bar has a higher voltage than that of BL

when a logic 1 is read. The SE signal is raised high which makes the sense amplifier turn

67

on, the n-channel of the cross-coupled inverter pulls one of the bit line low, and p-channel

of the cross-coupled inverter that is triggered with SE1 pulls one of the bit line high. The

signal is then amplified and read as logic “1”. When the wordline is still high, the value is

written to the memory cell [25].

2
10

NMOS
2
10

NMOS

210

NMOS

2 10
NMOS

2 10
NMOS

2

10

NMOS

2
10

NMOS 2
10

NMOS
M1 M2

M4

M6

M5

M7

Cbl_Bar
Cbl

M3

M8

M11 M10

M9

Cs Cs

2
20

PMOS

2
20

PMOS

2
20

PMOS

BLBL_Bar

PRE

SE

SE1

VDD/2

WL WL

Figure 4.7. Schematic diagram of sense amplifier.

68

4.3.2. Physical Design

Figure 4.8 shows the layout design of a sense amplifier. For the input and outputs

port, metal-1, polysilicon-1, metal-2 contacts are used and for connections polysilicon, metal-

1,2 arcs are used. The layout area of the implemented sense amplifier is 125.3µm×89.1µm.

vdd

gnd

PRE VDD/2

SE1

SE

Figure 4.8. Physical design of sense amplifier.

4.3.3. Simulation Results

Figures 4.10 and 4.9 show the simulation results of the sense amplifier. Figure 4.9 is

the sensing waveform, when the control signals 4.10 are applied to the circuit the Bl, and

BL bar show the results. At first, when the PRE charge signal is applied, both bit lines are

69

0 0.5 1 1.5 2 2.5 3
x 10

−8

0

0.2

0.4

0.6

0.8

1

Time(ns)

V
ol

ta
ge

(V
)

Sensing Waveform

B0
B1

Figure 4.9. Sensing Waveform for sense amplifier.

0 0.5 1 1.5 2 2.5 3
x 10

−8

0

0.5

1

1.5

2

Time(ns)

V
ol

ta
ge

(V
)

Control Signals

PRE
WL
SE

Figure 4.10. Control Signals for sense amplifier.

equalized to VDD/2 voltage. Then when wordline is ON, the voltages vary in both bit lines.

This voltage is observed by the sense amplifier when it is turned on. The sense amplifier

amplifies the voltages of both bit lines. Here, in this case, the B0 is logic 0 and B1 is logic

1. Hence, the circuit accurately senses the signals.

70

4.4. Charge Pump

4.4.1. Schematic Design

A charge pump converts the digital signals from PFD to analog signals and supplies

them to the VCO. It consists of two switches, a current source, and a current sink. Charge

pumps are used in PLL’s for a low-cost IC solution. They are also used in LCD drivers,

voltage regulators, piezoelectric actuators, RF antenna switch controllers and many other

electronic systems and their components [19, 15, 7].

A PLL has four important blocks: PFD, Charge pump, Loop Filter and VCO. The

inputs UP and DOWN of the charge pump are the outputs of the PFD. These signals are

regulated by the reference and feedback signals. When the reference signal leads the feedback

signal, the PFD produces UP signal, and when feedback signal leads the reference signal,

it provides DOWN signal [26]. The UP signal that is produced from the PFD will trigger

the Charge pump to inject the charge into the loop filter, increasing the output voltage and

likewise, when the DOWN signal is high, the Charge pump sinks the current out the loop

filter, thus, the output voltage decreases [29]. If ICP is the current of the charge pump the

gain of the charge pump is given by:

(10) KCP =
ICP

2π

The current source and sink values should be the same to avoid current mismatching.

Thus, VCO’s control voltage is always the output voltage of charge pump. Figure 4.11 shows

the schematic diagram of a charge pump.

4.4.2. Physical Design

Figure 4.13 shows the layout diagram of the charge pump. Polysilicon-1 contacts

form the up and down input signals, and also the output signal Cpout. The layout area of

the implemented sense amplifier is 121.3µm×144.8µm.

71

Up

Down
CPout

2
10

NMOS

2
10

NMOS

2
10

NMOS

2
10

NMOS
2
10 NMOS

2
20

PMOS
2
20

PMOS

2
20

PMOS

2
20 PMOS

Figure 4.11. Schematic diagram of a Charge Pump.

4.4.3. Simulation Results

Figure 4.12 shows the simulation results of a charge pump circuit. When digital input

voltages are given through Up and Down, the circuit converts them into analog signals and

are given through Cpout.

72

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

V
U

p(V
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

V
D

ow
n(V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

−5

0

1

2

Simulation Time(ns)

V
C

Po
ut

(V
)

Figure 4.12. Simulation results for Charge Pump.

Vdd

Up

Down

CPout

gnd

Figure 4.13. Physical design of charge pump.

73

CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

5.1. Summary and Conclusions

The VlSI design course has become essential at most Electrical and Computer engi-

neering programs. However, most of the commercial VLSI CAD systems are highly priced

and require high-performance workstations which are not affordable for many academic in-

stitutions. This thesis provides some insight on the open-source EDA tool called Electric

VlSI design system and serves as a user manual for students, teachers and other professionals

who want to develop electric systems in affordable software.

The electric tool shows the best compatibility with all modern operating systems such

as Windows, Macintosh, and UNIX/Linux variants. It also provides important analysis tools

such as DRC (Design Rule Checker), Electric rule checker, Layout vs. Schematic checker

and inbuilt simulators, IRSIM and ASL in a user-friendly interface. Synthesis tools are also

built into electric which include Routers, placement tools, silicon compilers, and generators.

Electric also provides an excellent way of integrating different environments of design. Since

each fabrication process is enclosed in a technology in Electric, there are various technologies

available in electric, but this thesis mainly concentrated on the CMOS technology. It also

extracts the parasitics from the interconnects in the circuit designs. Electric can take python

and java language scripts to design the circuit which automates the design cycle. It exports

and imports many popular interchange and manufacturing formats such as EDIF, GDS-II,

CIF, etc. The design flow for Digital and Analog circuits in electric is similar and very easy

to learn for a student. The digital and analog design circuits are implemented in electric, in

CMOS TSMC 180nm technology in chapter 3 and chapter 4. These simulation results are

accurately correct and also show that electric can easily handle even more complex digital

and analog schematic and layout designs. These designs, which are implemented using

electric, will serve as examples for student projects and also help in further study of electric.

74

However there are some limitations in electric. Firstly it is not capable of designing below

180 nm technology. Secondly, Electric has integrated IRSIM, which only supports digital

simulation, and there is no inbuilt analog simulator. There are solutions for these limitations

in electric itself. One can edit the current technology using the technology creation wizard

in electric. However, it is a daunting and time-consuming process . LTspice, which is a free

circuit simulator, can also be integrated with electric for analog circuit simulations, which

can then overcome this limitation of electric. Because of these reasons, Electric VLSI design

system is expected to be useful the students, teachers and professionals.

5.2. Future Research

As a next step of this research, the digital and analog designs will be implemented

for GNR-FET. Recently a CAD environment for the design, analysis, and layout of CNFET

(Carbon Nanotube Filed-Effect Transistor Circuits) [12] has been created by Steven Rubin,

within electric. This is the first physical design tool for analysis and layout of CNFET

circuits which has been integrated into electric. Electric is a very promising tool for physical

designing and simulation. To further explore the capabilities of the layout designing provided

by electric, designs will be implemented using GNR-FET.

75

BIBLIOGRAPHY

[1] M. Aguirre-Hernandez and M. Linares-Aranda, CMOS Full-Adders for Energy-Efficient

Arithmetic Applications, Very Large Scale Integration (VLSI) Systems, IEEE Transac-

tions on 19 (2011), no. 4, 718–721.

[2] R Jacob Baker, CMOS: circuit design, layout, and simulation, vol. 18, John Wiley &

Sons, 2011.

[3] R Jacob Baker and CMOS Circuit Design, Layout, and simulation, 2004.

[4] Vaughn Betz and Jonathan Rose, VPR: A new packing, placement and routing tool for

FPGA research, Field-Programmable Logic and Applications, Springer, 1997, pp. 213–

222.

[5] J.D. Crockett and M. Siccardi, Power supply noise conversion to phase noise in cmos

frequency digital divider, Frequency Control Symposium and PDA Exhibition, 2002.

IEEE International, 2002, pp. 699–702.

[6] A.H. Farrahi, D.J. Hathaway, M. Wang, and M. Sarrafzadeh, Quality of eda cad tools:

definitions, metrics and directions, Quality Electronic Design, 2000. ISQED 2000. Pro-

ceedings. IEEE 2000 First International Symposium on, 2000, pp. 395–405.

[7] Oleg Garitselov, Saraju P Mohanty, and Elias Kougianos, Accurate polynomial

metamodeling-based ultra-fast bee colony optimization of a nano-cmos phase-locked loop,

Journal of Low Power Electronics 8 (2012), no. 3, 317–328.

[8] , A comparative study of metamodels for fast and accurate simulation of nano-

cmos circuits, Semiconductor Manufacturing, IEEE Transactions on 25 (2012), no. 1,

26–36.

[9] Dhruva Ghai, Saraju P Mohanty, and Elias Kougianos, Parasitic aware process varia-

tion tolerant voltage controlled oscillator (vco) design, Quality Electronic Design, 2008.

ISQED 2008. 9th International Symposium on, IEEE, 2008, pp. 330–333.

[10] Ghai, Dhruva and Mohanty, Saraju P and Kougianos, Elias, A 45nm flash analog to

76

digital converter for low voltage high speed system on chips, Proceedings of the 13th

NASA Symposium on VLSI Design, vol. 3, 2007.

[11] Ali Hajimiri and Raymond Heald, Design issues in cross-coupled inverter sense ampli-

fier, Circuits and Systems, 1998. ISCAS’98. Proceedings of the 1998 IEEE International

Symposium on, vol. 2, IEEE, 1998, pp. 149–152.

[12] Jiale Huang, Minhao Zhu, Shengqi Yang, Pallav Gupta, Wei Zhang, Steven M. Rubin,

Gilda Garretón, and Jin He, A physical design tool for carbon nanotube field-effect

transistor circuits, J. Emerg. Technol. Comput. Syst. 8 (2012), no. 3, 25:1–25:20.

[13] O. Karnalim and R. Mandala, Java archives search engine using byte code as informa-

tion source, Data and Software Engineering (ICODSE), 2014 International Conference

on, Nov 2014, pp. 1–6.

[14] Elias Kougianos and Saraju P Mohanty, Impact of gate-oxide tunneling on mixed-signal

design and simulation of a nano-cmos vco, Microelectronics Journal 40 (2009), no. 1,

95–103.

[15] Jae-Shin Lee, Min-Sun Keel, Shin-II Lim, and Suki Kim, Charge pump with perfect

current matching characteristics in phase-locked loops, Electronics Letters 36 (2000),

no. 23, 1907–1908.

[16] Sharad Malik, Analysis of cyclic combinational circuits, Computer-Aided Design, 1993.

ICCAD-93. Digest of Technical Papers., 1993 IEEE/ACM International Conference on,

IEEE, 1993, pp. 618–625.

[17] MK Mandal and BC Sarkar, Ring oscillators: Characteristics and applications, Indian

Journal of Pure & Applied Physics 48 (2010), 136–145.

[18] S. P. Mohanty, DfX for Nanoelectronic Embedded Systems, 18th December 2013,

Keynote Address, International Conference on Control, Automation, Robotics and Em-

bedded System, Indian Institute of Information Technology, Design and Manufacturing

Jabalpur, India.

[19] , Nanoelectronic Mixed-Signal System Design, no. 9780071825719 and

0071825711, McGraw-Hill Education, 2015.

77

[20] , Energy and Transient Power Minimization during Behavioral Synthesis, Ph.D.

thesis, Department of Computer Science and Engineering, University of South Florida,

Fall, 2003.

[21] Saraju P Mohanty, N Ranganathan, and Vamsi Krishna, Datapath scheduling using

dynamic frequency clocking, VLSI, 2002. Proceedings. IEEE Computer Society Annual

Symposium on, IEEE, 2002, pp. 58–63.

[22] Saraju P Mohanty, Jawar Singh, Elias Kougianos, and Dhiraj K Pradhan, Statistical

doe–ilp based power–performance–process (p3) optimization of nano-cmos sram, INTE-

GRATION, the VLSI journal 45 (2012), no. 1, 33–45.

[23] Saraju P Mohanty, Ramakrishna Velagapudi, and Elias Kougianos, Physical-aware sim-

ulated annealing optimization of gate leakage in nanoscale datapath circuits, Design,

Automation and Test in Europe, 2006. DATE’06. Proceedings, vol. 1, IEEE, 2006,

pp. 6–pp.

[24] Oghenekarho Okobiah, Saraju Mohanty, and Elias Kougianos, Fast design optimization

through simple kriging metamodeling: A sense amplifier case study, Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on 22 (2014), no. 4, 932–937.

[25] Oghenekarho Okobiah, Saraju P Mohanty, Elias Kougianos, and Mahesh Poolakka-

parambil, Towards robust nano-cmos sense amplifier design: a dual-threshold versus

dual-oxide perspective, Proceedings of the 21st edition of the great lakes symposium on

Great lakes symposium on VLSI, ACM, 2011, pp. 145–150.

[26] Jyoti P Patra and Umesh C Pati, Behavioral modeling and simulation of pll based

integer n frequency synthesizer using simulink, International Journal of Electronics and

Communication Engineering 5 (2012), 20.

[27] Medina Ruben, Design, layout, and simulation of an 8-bit alu, http://www.cmosedu.

com/.

[28] Steven M. Rubin, Computer aids for vlsi design, R.L. Ranch Press, 2015, Oracle and

Static Free Software.

78

http://www.cmosedu.com/
http://www.cmosedu.com/

[29] sarivisetti, Design and optimization of components in a 45nm cmos phase locked loop,

Master’s thesis, Computer Science and Engineering, University of North Texas, 2006.

[30] Hiroshi Shimizu and Masao Kaizuka, Sequential logic circuit, November 10 1987, US

Patent 4,706,217.

[31] Jawar Singh, Jimson Mathew, Saraju P Mohanty, and Dhiraj K Pradhan, A nano-cmos

process variation induced read failure tolerant sram cell, Circuits and Systems, 2008.

ISCAS 2008. IEEE International Symposium on, IEEE, 2008, pp. 3334–3337.

[32] T. Smedes, N. Trivedi, J. Fleurimont, A.J. Huitsing, P.C. de Jong, W. Scheucher, and

J. van Zwol, A drc-based check tool for esd layout verification, EOS/ESD Symposium,

2009 31st, Aug 2009, pp. 1–9.

[33] Rubin Steven, Running electric software from the web, http://java.net/projects/

electric/downloads/download/electric.jnp.

[34] , Website of electric vlsi design system, http://www.staticfreesoft.com/.

[35] Steven M. Rubin, Using the electric vlsi design system, R.L. Ranch Press, 2015, Oracle

and Static Free Software , ISBN 0972751432.

[36] Stephen M Trimberger, An introduction to cad for vlsi, Springer Science & Business

Media, 2012.

[37] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Tim Cheng, Electronic design

automation: synthesis, verification, and test, Morgan Kaufmann, 2009.

[38] Neil HE Weste and Kamran Eshraghian, Principles of cmos vlsi design: a systems

perspective, NASA STI/Recon Technical Report A 85 (1985), 47028.

79

http://java.net/projects/electric/downloads/download/electric.jnp
http://java.net/projects/electric/downloads/download/electric.jnp
http://www.staticfreesoft.com/

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1. Existing Open-Source EDA Tools
	1.2. Organization of the Thesis

	CHAPTER 2. THE ELECTRIC VLSI DESIGN SYSTEM: FEATURES AND SOFTWARE ARCHITECTURE
	2.1. Electric History
	2.2. Electric Installation
	2.2.1. Downloading Electric
	2.2.2. Supported Environments
	2.2.3. System Requirements
	2.2.4. Plugins
	2.2.5. Source Code

	2.3. Electric Features
	2.3.1. Electric GUI
	2.3.2. Representation
	2.3.3. Design Environments
	2.3.4. Analysis and Synthesis Tools
	2.3.5. External Interfaces
	2.3.6. Parasitic Extraction

	2.4. Design Flow in Electric
	2.4.1. Schematic level Design
	2.4.2. Physical level Design

	2.5. Scripting in Electric
	2.6. Electric Advantages

	CHAPTER 3. DIGITAL INTEGRATED CIRCUIT DESIGN USING ELECTRIC
	3.1. ALU
	3.1.1. Gate level Components
	3.1.2. Implementation of AN 8-bit ALU

	3.2. 2-Bit Multiplier
	3.2.1. Logic Level Components
	3.2.2. Implementation of a 2-bit Multiplier

	3.3. Frequency Divider
	3.3.1. Logic level Compoenents
	3.3.2. Implementation of Frequency divider

	3.4. 1-Bit SRAM
	3.4.1. 6T-Cell
	3.4.2. Implemtation of a 1-bit SRAM

	CHAPTER 4. ANALOG INTEGRATED CIRCUIT DESIGN USING ELECTRIC
	4.1. 3-Stage Ring Oscillator
	4.1.1. Schematic Design
	4.1.2. Physical Design
	4.1.3. Simulation Results

	4.2. Voltage Controlled Oscillator
	4.2.1. Schematic Design
	4.2.2. Physical Design
	4.2.3. Simulation results

	4.3. Sense Amplifier
	4.3.1. Schematic Design
	4.3.2. Physical Design
	4.3.3. Simulation Results

	4.4. Charge Pump
	4.4.1. Schematic Design
	4.4.2. Physical Design
	4.4.3. Simulation Results

	CHAPTER 5. CONCLUSION AND FUTURE RESEARCH
	5.1. Summary and Conclusions
	5.2. Future Research

	BIBLIOGRAPHY

