The Study of Temporal and Spatial Variability of Degree Day Factor of Snowmelt in Colorado

PDF Version Also Available for Download.

Description

Snowmelt is one of the major sources of surface water supply and ground-water recharge in high elevation areas and can also cause flooding in snow dominated watersheds. Direct estimation of daily snowmelt requires daily snow water equivalent (SWE) measurements that are not always available, especially in places without monitoring stations. There are two alternative approaches to modeling snowmelt without using direct measurements of SWE, temperature-based and energy-based models. Due to its simplicity, computational efficiency, and less input data requirement, the temperature-based method is commonly used than the energy-based method. In the temperature-index approach snowmelt is estimated as a linear function ... continued below

Creation Information

Pokhrel, Pranav May 2016.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 33 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Pokhrel, Pranav

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Snowmelt is one of the major sources of surface water supply and ground-water recharge in high elevation areas and can also cause flooding in snow dominated watersheds. Direct estimation of daily snowmelt requires daily snow water equivalent (SWE) measurements that are not always available, especially in places without monitoring stations. There are two alternative approaches to modeling snowmelt without using direct measurements of SWE, temperature-based and energy-based models. Due to its simplicity, computational efficiency, and less input data requirement, the temperature-based method is commonly used than the energy-based method. In the temperature-index approach snowmelt is estimated as a linear function of average air temperature, and the slope of the linear function is called the degree-day factor (DDF). Hence, the DDF is an essential parameter for utilizing the temperature-based method to estimate snowmelt. Thereby, to analyze the spatial properties of DDF, 10 years DDF from the entire state of Colorado was calculated for this research. Likewise, to study the temporal properties, DDFs for 27 years from the White Yampa water basin and the Colorado Headwaters water basin were calculated.
As a part of the spatial analysis, the calculated DDFs were correlated with spatial variables (slope, aspect, latitude and elevation) and a spatial correlation graph was created to observe the possibility of predicting DDF. Also a multivariate regression model was prepared using these spatial variables to predict the DDF using spatial variables. Further, the DDFs calculated from Colorado headwaters and the White Yampa water basins were correlated for annual temporal variation, daily variation, variation with peak snow water equivalent and variation with important temporal cycles like accumulation period and melting period of snowmelt. The result obtained from this study showed that the variability of DDF is more dependent upon temporal factors compared to the spatial factors. Also, the results showed that predicting DDF is a difficult process and requires complex methods than simple linear models or multivariate models.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2016

Added to The UNT Digital Library

  • June 28, 2016, 4:28 p.m.

Description Last Updated

  • July 25, 2016, 1:07 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 33

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pokhrel, Pranav. The Study of Temporal and Spatial Variability of Degree Day Factor of Snowmelt in Colorado, thesis, May 2016; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc849730/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .