Stable Nanocrystalline Au Film Structures for Sliding Electrical Contacts

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

Hard gold thin films and coatings are widely used in electronics as an effective material to reduce the friction and wear of relatively less expensive electrically conductive materials while simultaneously seeking to provide oxidation resistance and stable sliding electrical contact resistance (ECR). The main focus of this dissertation was to synthesize nanocrystalline Au films with grain structures capable of remaining stable during thermal exposure and under sliding electrical contact stress and the passing of electrical current. Here we have utilized a physical vapor deposition (PVD) technique, electron beam evaporation, to synthesize Au films modified by ion implantation and codeposited ZnO ... continued below

Creation Information

Mogonye, Jon-Erik May 2016.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 42 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Mogonye, Jon-Erik

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Hard gold thin films and coatings are widely used in electronics as an effective material to reduce the friction and wear of relatively less expensive electrically conductive materials while simultaneously seeking to provide oxidation resistance and stable sliding electrical contact resistance (ECR). The main focus of this dissertation was to synthesize nanocrystalline Au films with grain structures capable of remaining stable during thermal exposure and under sliding electrical contact stress and the passing of electrical current. Here we have utilized a physical vapor deposition (PVD) technique, electron beam evaporation, to synthesize Au films modified by ion implantation and codeposited ZnO hardened Au nanocomposites. Simultaneous friction and ECR experiments of low fluence (< 1x10^17 cm^-2) He and Ar ion implanted Au films showed reduction in friction coefficients from ~1.5 to ~0.5 and specific wear rates from ~4x10^-3 to ~6x10^-5 mm^3/N·m versus as-deposited Au films without significant change in sliding ECR (~16 mΩ). Subsurface microstructural changes of He implanted films due to tribological stress were analyzed via site-specific cross-sectional transmission electron microscopy (TEM) and revealed the formation of nanocrystalline grains for low energy (22.5 keV) implantation conditions as well as the growth and redistribution of cavities. Nanoindentation hardness results revealed an increase from 0.84 GPa for as-deposited Au to ~1.77 GPa for Au uniformly implanted with 1 at% He. These strength increases are correlated with an Orowan hardening mechanism that increases proportionally to (He concentration)1/3. Au-ZnO nanocomposite films in the oxide dilute regime (< 5 vol% ZnO) were investigated for low temperature aging stability in friction and ECR. Annealing at 250 °C for 24 hours Au-(2 vol%)ZnO retained a friction coefficient comparable to commercial Ni hardened Au of ~ 0.3 and sliding ECR values of ~35 mΩ. Nanoindentation hardness increases of these films (~2.6 GPa for 5 vol% ZnO) are correlated to microstructure via high resolution TEM and scanning electron microscope cross-sections to both Hall-Petch and Orowan strengthening mechanisms. Also presented is a correlation between electrical resistivity and grain size in the oxide dilute range based on the Mayadas-Shatzkes (M-S) electron scattering model. Using the M-S model in combination with a model describing solute drag stabilized grain growth kinetics we present a new technique to probe grain boundary mobility and thermal stability from in-situ electrical resistivity measurements during annealing experiments.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2016

Added to The UNT Digital Library

  • June 28, 2016, 4:28 p.m.

Description Last Updated

  • July 25, 2016, 12:40 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 42

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mogonye, Jon-Erik. Stable Nanocrystalline Au Film Structures for Sliding Electrical Contacts, dissertation, May 2016; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc849672/: accessed December 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .